• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
4  *
5  *  Copyright (C) 2011 Weinmann Medical GmbH
6  *  Author: Nikolaus Voss <n.voss@weinmann.de>
7  *
8  *  Evolved from original work by:
9  *  Copyright (C) 2004 Rick Bronson
10  *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
11  *
12  *  Borrowed heavily from original work by:
13  *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/i2c.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/platform_device.h>
29 #include <linux/platform_data/dma-atmel.h>
30 #include <linux/pm_runtime.h>
31 
32 #include "i2c-at91.h"
33 
at91_init_twi_bus_master(struct at91_twi_dev * dev)34 void at91_init_twi_bus_master(struct at91_twi_dev *dev)
35 {
36 	struct at91_twi_pdata *pdata = dev->pdata;
37 	u32 filtr = 0;
38 
39 	/* FIFO should be enabled immediately after the software reset */
40 	if (dev->fifo_size)
41 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
42 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
43 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
44 	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
45 
46 	/* enable digital filter */
47 	if (pdata->has_dig_filtr && dev->enable_dig_filt)
48 		filtr |= AT91_TWI_FILTR_FILT;
49 
50 	/* enable advanced digital filter */
51 	if (pdata->has_adv_dig_filtr && dev->enable_dig_filt)
52 		filtr |= AT91_TWI_FILTR_FILT |
53 			 (AT91_TWI_FILTR_THRES(dev->filter_width) &
54 			 AT91_TWI_FILTR_THRES_MASK);
55 
56 	/* enable analog filter */
57 	if (pdata->has_ana_filtr && dev->enable_ana_filt)
58 		filtr |= AT91_TWI_FILTR_PADFEN;
59 
60 	if (filtr)
61 		at91_twi_write(dev, AT91_TWI_FILTR, filtr);
62 }
63 
64 /*
65  * Calculate symmetric clock as stated in datasheet:
66  * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
67  */
at91_calc_twi_clock(struct at91_twi_dev * dev)68 static void at91_calc_twi_clock(struct at91_twi_dev *dev)
69 {
70 	int ckdiv, cdiv, div, hold = 0, filter_width = 0;
71 	struct at91_twi_pdata *pdata = dev->pdata;
72 	int offset = pdata->clk_offset;
73 	int max_ckdiv = pdata->clk_max_div;
74 	struct i2c_timings timings, *t = &timings;
75 
76 	i2c_parse_fw_timings(dev->dev, t, true);
77 
78 	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
79 				       2 * t->bus_freq_hz) - offset);
80 	ckdiv = fls(div >> 8);
81 	cdiv = div >> ckdiv;
82 
83 	if (ckdiv > max_ckdiv) {
84 		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
85 			 ckdiv, max_ckdiv);
86 		ckdiv = max_ckdiv;
87 		cdiv = 255;
88 	}
89 
90 	if (pdata->has_hold_field) {
91 		/*
92 		 * hold time = HOLD + 3 x T_peripheral_clock
93 		 * Use clk rate in kHz to prevent overflows when computing
94 		 * hold.
95 		 */
96 		hold = DIV_ROUND_UP(t->sda_hold_ns
97 				    * (clk_get_rate(dev->clk) / 1000), 1000000);
98 		hold -= 3;
99 		if (hold < 0)
100 			hold = 0;
101 		if (hold > AT91_TWI_CWGR_HOLD_MAX) {
102 			dev_warn(dev->dev,
103 				 "HOLD field set to its maximum value (%d instead of %d)\n",
104 				 AT91_TWI_CWGR_HOLD_MAX, hold);
105 			hold = AT91_TWI_CWGR_HOLD_MAX;
106 		}
107 	}
108 
109 	if (pdata->has_adv_dig_filtr) {
110 		/*
111 		 * filter width = 0 to AT91_TWI_FILTR_THRES_MAX
112 		 * peripheral clocks
113 		 */
114 		filter_width = DIV_ROUND_UP(t->digital_filter_width_ns
115 				* (clk_get_rate(dev->clk) / 1000), 1000000);
116 		if (filter_width > AT91_TWI_FILTR_THRES_MAX) {
117 			dev_warn(dev->dev,
118 				"Filter threshold set to its maximum value (%d instead of %d)\n",
119 				AT91_TWI_FILTR_THRES_MAX, filter_width);
120 			filter_width = AT91_TWI_FILTR_THRES_MAX;
121 		}
122 	}
123 
124 	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
125 			    | AT91_TWI_CWGR_HOLD(hold);
126 
127 	dev->filter_width = filter_width;
128 
129 	dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns), filter_width %d (%d ns)\n",
130 		cdiv, ckdiv, hold, t->sda_hold_ns, filter_width,
131 		t->digital_filter_width_ns);
132 }
133 
at91_twi_dma_cleanup(struct at91_twi_dev * dev)134 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
135 {
136 	struct at91_twi_dma *dma = &dev->dma;
137 
138 	at91_twi_irq_save(dev);
139 
140 	if (dma->xfer_in_progress) {
141 		if (dma->direction == DMA_FROM_DEVICE)
142 			dmaengine_terminate_all(dma->chan_rx);
143 		else
144 			dmaengine_terminate_all(dma->chan_tx);
145 		dma->xfer_in_progress = false;
146 	}
147 	if (dma->buf_mapped) {
148 		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
149 				 dev->buf_len, dma->direction);
150 		dma->buf_mapped = false;
151 	}
152 
153 	at91_twi_irq_restore(dev);
154 }
155 
at91_twi_write_next_byte(struct at91_twi_dev * dev)156 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
157 {
158 	if (!dev->buf_len)
159 		return;
160 
161 	/* 8bit write works with and without FIFO */
162 	writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
163 
164 	/* send stop when last byte has been written */
165 	if (--dev->buf_len == 0) {
166 		if (!dev->use_alt_cmd)
167 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
168 		at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY);
169 	}
170 
171 	dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
172 
173 	++dev->buf;
174 }
175 
at91_twi_write_data_dma_callback(void * data)176 static void at91_twi_write_data_dma_callback(void *data)
177 {
178 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
179 
180 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
181 			 dev->buf_len, DMA_TO_DEVICE);
182 
183 	/*
184 	 * When this callback is called, THR/TX FIFO is likely not to be empty
185 	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
186 	 * Status Register to be sure that the STOP bit has been sent and the
187 	 * transfer is completed. The NACK interrupt has already been enabled,
188 	 * we just have to enable TXCOMP one.
189 	 */
190 	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
191 	if (!dev->use_alt_cmd)
192 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
193 }
194 
at91_twi_write_data_dma(struct at91_twi_dev * dev)195 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
196 {
197 	dma_addr_t dma_addr;
198 	struct dma_async_tx_descriptor *txdesc;
199 	struct at91_twi_dma *dma = &dev->dma;
200 	struct dma_chan *chan_tx = dma->chan_tx;
201 	unsigned int sg_len = 1;
202 
203 	if (!dev->buf_len)
204 		return;
205 
206 	dma->direction = DMA_TO_DEVICE;
207 
208 	at91_twi_irq_save(dev);
209 	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
210 				  DMA_TO_DEVICE);
211 	if (dma_mapping_error(dev->dev, dma_addr)) {
212 		dev_err(dev->dev, "dma map failed\n");
213 		return;
214 	}
215 	dma->buf_mapped = true;
216 	at91_twi_irq_restore(dev);
217 
218 	if (dev->fifo_size) {
219 		size_t part1_len, part2_len;
220 		struct scatterlist *sg;
221 		unsigned fifo_mr;
222 
223 		sg_len = 0;
224 
225 		part1_len = dev->buf_len & ~0x3;
226 		if (part1_len) {
227 			sg = &dma->sg[sg_len++];
228 			sg_dma_len(sg) = part1_len;
229 			sg_dma_address(sg) = dma_addr;
230 		}
231 
232 		part2_len = dev->buf_len & 0x3;
233 		if (part2_len) {
234 			sg = &dma->sg[sg_len++];
235 			sg_dma_len(sg) = part2_len;
236 			sg_dma_address(sg) = dma_addr + part1_len;
237 		}
238 
239 		/*
240 		 * DMA controller is triggered when at least 4 data can be
241 		 * written into the TX FIFO
242 		 */
243 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
244 		fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
245 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
246 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
247 	} else {
248 		sg_dma_len(&dma->sg[0]) = dev->buf_len;
249 		sg_dma_address(&dma->sg[0]) = dma_addr;
250 	}
251 
252 	txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
253 					 DMA_MEM_TO_DEV,
254 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
255 	if (!txdesc) {
256 		dev_err(dev->dev, "dma prep slave sg failed\n");
257 		goto error;
258 	}
259 
260 	txdesc->callback = at91_twi_write_data_dma_callback;
261 	txdesc->callback_param = dev;
262 
263 	dma->xfer_in_progress = true;
264 	dmaengine_submit(txdesc);
265 	dma_async_issue_pending(chan_tx);
266 
267 	return;
268 
269 error:
270 	at91_twi_dma_cleanup(dev);
271 }
272 
at91_twi_read_next_byte(struct at91_twi_dev * dev)273 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
274 {
275 	/*
276 	 * If we are in this case, it means there is garbage data in RHR, so
277 	 * delete them.
278 	 */
279 	if (!dev->buf_len) {
280 		at91_twi_read(dev, AT91_TWI_RHR);
281 		return;
282 	}
283 
284 	/* 8bit read works with and without FIFO */
285 	*dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
286 	--dev->buf_len;
287 
288 	/* return if aborting, we only needed to read RHR to clear RXRDY*/
289 	if (dev->recv_len_abort)
290 		return;
291 
292 	/* handle I2C_SMBUS_BLOCK_DATA */
293 	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
294 		/* ensure length byte is a valid value */
295 		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
296 			dev->msg->flags &= ~I2C_M_RECV_LEN;
297 			dev->buf_len += *dev->buf;
298 			dev->msg->len = dev->buf_len + 1;
299 			dev_dbg(dev->dev, "received block length %zu\n",
300 					 dev->buf_len);
301 		} else {
302 			/* abort and send the stop by reading one more byte */
303 			dev->recv_len_abort = true;
304 			dev->buf_len = 1;
305 		}
306 	}
307 
308 	/* send stop if second but last byte has been read */
309 	if (!dev->use_alt_cmd && dev->buf_len == 1)
310 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
311 
312 	dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
313 
314 	++dev->buf;
315 }
316 
at91_twi_read_data_dma_callback(void * data)317 static void at91_twi_read_data_dma_callback(void *data)
318 {
319 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
320 	unsigned ier = AT91_TWI_TXCOMP;
321 
322 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
323 			 dev->buf_len, DMA_FROM_DEVICE);
324 
325 	if (!dev->use_alt_cmd) {
326 		/* The last two bytes have to be read without using dma */
327 		dev->buf += dev->buf_len - 2;
328 		dev->buf_len = 2;
329 		ier |= AT91_TWI_RXRDY;
330 	}
331 	at91_twi_write(dev, AT91_TWI_IER, ier);
332 }
333 
at91_twi_read_data_dma(struct at91_twi_dev * dev)334 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
335 {
336 	dma_addr_t dma_addr;
337 	struct dma_async_tx_descriptor *rxdesc;
338 	struct at91_twi_dma *dma = &dev->dma;
339 	struct dma_chan *chan_rx = dma->chan_rx;
340 	size_t buf_len;
341 
342 	buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
343 	dma->direction = DMA_FROM_DEVICE;
344 
345 	/* Keep in mind that we won't use dma to read the last two bytes */
346 	at91_twi_irq_save(dev);
347 	dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
348 	if (dma_mapping_error(dev->dev, dma_addr)) {
349 		dev_err(dev->dev, "dma map failed\n");
350 		return;
351 	}
352 	dma->buf_mapped = true;
353 	at91_twi_irq_restore(dev);
354 
355 	if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
356 		unsigned fifo_mr;
357 
358 		/*
359 		 * DMA controller is triggered when at least 4 data can be
360 		 * read from the RX FIFO
361 		 */
362 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
363 		fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
364 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
365 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
366 	}
367 
368 	sg_dma_len(&dma->sg[0]) = buf_len;
369 	sg_dma_address(&dma->sg[0]) = dma_addr;
370 
371 	rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
372 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
373 	if (!rxdesc) {
374 		dev_err(dev->dev, "dma prep slave sg failed\n");
375 		goto error;
376 	}
377 
378 	rxdesc->callback = at91_twi_read_data_dma_callback;
379 	rxdesc->callback_param = dev;
380 
381 	dma->xfer_in_progress = true;
382 	dmaengine_submit(rxdesc);
383 	dma_async_issue_pending(dma->chan_rx);
384 
385 	return;
386 
387 error:
388 	at91_twi_dma_cleanup(dev);
389 }
390 
atmel_twi_interrupt(int irq,void * dev_id)391 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
392 {
393 	struct at91_twi_dev *dev = dev_id;
394 	const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
395 	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
396 
397 	if (!irqstatus)
398 		return IRQ_NONE;
399 	/*
400 	 * In reception, the behavior of the twi device (before sama5d2) is
401 	 * weird. There is some magic about RXRDY flag! When a data has been
402 	 * almost received, the reception of a new one is anticipated if there
403 	 * is no stop command to send. That is the reason why ask for sending
404 	 * the stop command not on the last data but on the second last one.
405 	 *
406 	 * Unfortunately, we could still have the RXRDY flag set even if the
407 	 * transfer is done and we have read the last data. It might happen
408 	 * when the i2c slave device sends too quickly data after receiving the
409 	 * ack from the master. The data has been almost received before having
410 	 * the order to send stop. In this case, sending the stop command could
411 	 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
412 	 * the RXRDY interrupt first in order to not keep garbage data in the
413 	 * Receive Holding Register for the next transfer.
414 	 */
415 	if (irqstatus & AT91_TWI_RXRDY) {
416 		/*
417 		 * Read all available bytes at once by polling RXRDY usable w/
418 		 * and w/o FIFO. With FIFO enabled we could also read RXFL and
419 		 * avoid polling RXRDY.
420 		 */
421 		do {
422 			at91_twi_read_next_byte(dev);
423 		} while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY);
424 	}
425 
426 	/*
427 	 * When a NACK condition is detected, the I2C controller sets the NACK,
428 	 * TXCOMP and TXRDY bits all together in the Status Register (SR).
429 	 *
430 	 * 1 - Handling NACK errors with CPU write transfer.
431 	 *
432 	 * In such case, we should not write the next byte into the Transmit
433 	 * Holding Register (THR) otherwise the I2C controller would start a new
434 	 * transfer and the I2C slave is likely to reply by another NACK.
435 	 *
436 	 * 2 - Handling NACK errors with DMA write transfer.
437 	 *
438 	 * By setting the TXRDY bit in the SR, the I2C controller also triggers
439 	 * the DMA controller to write the next data into the THR. Then the
440 	 * result depends on the hardware version of the I2C controller.
441 	 *
442 	 * 2a - Without support of the Alternative Command mode.
443 	 *
444 	 * This is the worst case: the DMA controller is triggered to write the
445 	 * next data into the THR, hence starting a new transfer: the I2C slave
446 	 * is likely to reply by another NACK.
447 	 * Concurrently, this interrupt handler is likely to be called to manage
448 	 * the first NACK before the I2C controller detects the second NACK and
449 	 * sets once again the NACK bit into the SR.
450 	 * When handling the first NACK, this interrupt handler disables the I2C
451 	 * controller interruptions, especially the NACK interrupt.
452 	 * Hence, the NACK bit is pending into the SR. This is why we should
453 	 * read the SR to clear all pending interrupts at the beginning of
454 	 * at91_do_twi_transfer() before actually starting a new transfer.
455 	 *
456 	 * 2b - With support of the Alternative Command mode.
457 	 *
458 	 * When a NACK condition is detected, the I2C controller also locks the
459 	 * THR (and sets the LOCK bit in the SR): even though the DMA controller
460 	 * is triggered by the TXRDY bit to write the next data into the THR,
461 	 * this data actually won't go on the I2C bus hence a second NACK is not
462 	 * generated.
463 	 */
464 	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
465 		at91_disable_twi_interrupts(dev);
466 		complete(&dev->cmd_complete);
467 	} else if (irqstatus & AT91_TWI_TXRDY) {
468 		at91_twi_write_next_byte(dev);
469 	}
470 
471 	/* catch error flags */
472 	dev->transfer_status |= status;
473 
474 	return IRQ_HANDLED;
475 }
476 
at91_do_twi_transfer(struct at91_twi_dev * dev)477 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
478 {
479 	int ret;
480 	unsigned long time_left;
481 	bool has_unre_flag = dev->pdata->has_unre_flag;
482 	bool has_alt_cmd = dev->pdata->has_alt_cmd;
483 
484 	/*
485 	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
486 	 * read flag but shows the state of the transmission at the time the
487 	 * Status Register is read. According to the programmer datasheet,
488 	 * TXCOMP is set when both holding register and internal shifter are
489 	 * empty and STOP condition has been sent.
490 	 * Consequently, we should enable NACK interrupt rather than TXCOMP to
491 	 * detect transmission failure.
492 	 * Indeed let's take the case of an i2c write command using DMA.
493 	 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
494 	 * TXCOMP bits are set together into the Status Register.
495 	 * LOCK is a clear on write bit, which is set to prevent the DMA
496 	 * controller from sending new data on the i2c bus after a NACK
497 	 * condition has happened. Once locked, this i2c peripheral stops
498 	 * triggering the DMA controller for new data but it is more than
499 	 * likely that a new DMA transaction is already in progress, writing
500 	 * into the Transmit Holding Register. Since the peripheral is locked,
501 	 * these new data won't be sent to the i2c bus but they will remain
502 	 * into the Transmit Holding Register, so TXCOMP bit is cleared.
503 	 * Then when the interrupt handler is called, the Status Register is
504 	 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
505 	 * manage the error properly, without waiting for timeout.
506 	 * This case can be reproduced easyly when writing into an at24 eeprom.
507 	 *
508 	 * Besides, the TXCOMP bit is already set before the i2c transaction
509 	 * has been started. For read transactions, this bit is cleared when
510 	 * writing the START bit into the Control Register. So the
511 	 * corresponding interrupt can safely be enabled just after.
512 	 * However for write transactions managed by the CPU, we first write
513 	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
514 	 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
515 	 * the interrupt handler would be called immediately and the i2c command
516 	 * would be reported as completed.
517 	 * Also when a write transaction is managed by the DMA controller,
518 	 * enabling the TXCOMP interrupt in this function may lead to a race
519 	 * condition since we don't know whether the TXCOMP interrupt is enabled
520 	 * before or after the DMA has started to write into THR. So the TXCOMP
521 	 * interrupt is enabled later by at91_twi_write_data_dma_callback().
522 	 * Immediately after in that DMA callback, if the alternative command
523 	 * mode is not used, we still need to send the STOP condition manually
524 	 * writing the corresponding bit into the Control Register.
525 	 */
526 
527 	dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
528 		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
529 
530 	reinit_completion(&dev->cmd_complete);
531 	dev->transfer_status = 0;
532 
533 	/* Clear pending interrupts, such as NACK. */
534 	at91_twi_read(dev, AT91_TWI_SR);
535 
536 	if (dev->fifo_size) {
537 		unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
538 
539 		/* Reset FIFO mode register */
540 		fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
541 			     AT91_TWI_FMR_RXRDYM_MASK);
542 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
543 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
544 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
545 
546 		/* Flush FIFOs */
547 		at91_twi_write(dev, AT91_TWI_CR,
548 			       AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
549 	}
550 
551 	if (!dev->buf_len) {
552 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
553 		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
554 	} else if (dev->msg->flags & I2C_M_RD) {
555 		unsigned start_flags = AT91_TWI_START;
556 
557 		/* if only one byte is to be read, immediately stop transfer */
558 		if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
559 		    !(dev->msg->flags & I2C_M_RECV_LEN))
560 			start_flags |= AT91_TWI_STOP;
561 		at91_twi_write(dev, AT91_TWI_CR, start_flags);
562 		/*
563 		 * When using dma without alternative command mode, the last
564 		 * byte has to be read manually in order to not send the stop
565 		 * command too late and then to receive extra data.
566 		 * In practice, there are some issues if you use the dma to
567 		 * read n-1 bytes because of latency.
568 		 * Reading n-2 bytes with dma and the two last ones manually
569 		 * seems to be the best solution.
570 		 */
571 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
572 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
573 			at91_twi_read_data_dma(dev);
574 		} else {
575 			at91_twi_write(dev, AT91_TWI_IER,
576 				       AT91_TWI_TXCOMP |
577 				       AT91_TWI_NACK |
578 				       AT91_TWI_RXRDY);
579 		}
580 	} else {
581 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
582 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
583 			at91_twi_write_data_dma(dev);
584 		} else {
585 			at91_twi_write_next_byte(dev);
586 			at91_twi_write(dev, AT91_TWI_IER,
587 				       AT91_TWI_TXCOMP | AT91_TWI_NACK |
588 				       (dev->buf_len ? AT91_TWI_TXRDY : 0));
589 		}
590 	}
591 
592 	time_left = wait_for_completion_timeout(&dev->cmd_complete,
593 					      dev->adapter.timeout);
594 	if (time_left == 0) {
595 		dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
596 		dev_err(dev->dev, "controller timed out\n");
597 		at91_init_twi_bus(dev);
598 		ret = -ETIMEDOUT;
599 		goto error;
600 	}
601 	if (dev->transfer_status & AT91_TWI_NACK) {
602 		dev_dbg(dev->dev, "received nack\n");
603 		ret = -EREMOTEIO;
604 		goto error;
605 	}
606 	if (dev->transfer_status & AT91_TWI_OVRE) {
607 		dev_err(dev->dev, "overrun while reading\n");
608 		ret = -EIO;
609 		goto error;
610 	}
611 	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
612 		dev_err(dev->dev, "underrun while writing\n");
613 		ret = -EIO;
614 		goto error;
615 	}
616 	if ((has_alt_cmd || dev->fifo_size) &&
617 	    (dev->transfer_status & AT91_TWI_LOCK)) {
618 		dev_err(dev->dev, "tx locked\n");
619 		ret = -EIO;
620 		goto error;
621 	}
622 	if (dev->recv_len_abort) {
623 		dev_err(dev->dev, "invalid smbus block length recvd\n");
624 		ret = -EPROTO;
625 		goto error;
626 	}
627 
628 	dev_dbg(dev->dev, "transfer complete\n");
629 
630 	return 0;
631 
632 error:
633 	/* first stop DMA transfer if still in progress */
634 	at91_twi_dma_cleanup(dev);
635 	/* then flush THR/FIFO and unlock TX if locked */
636 	if ((has_alt_cmd || dev->fifo_size) &&
637 	    (dev->transfer_status & AT91_TWI_LOCK)) {
638 		dev_dbg(dev->dev, "unlock tx\n");
639 		at91_twi_write(dev, AT91_TWI_CR,
640 			       AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
641 	}
642 
643 	/*
644 	 * some faulty I2C slave devices might hold SDA down;
645 	 * we can send a bus clear command, hoping that the pins will be
646 	 * released
647 	 */
648 	i2c_recover_bus(&dev->adapter);
649 
650 	return ret;
651 }
652 
at91_twi_xfer(struct i2c_adapter * adap,struct i2c_msg * msg,int num)653 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
654 {
655 	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
656 	int ret;
657 	unsigned int_addr_flag = 0;
658 	struct i2c_msg *m_start = msg;
659 	bool is_read;
660 	u8 *dma_buf = NULL;
661 
662 	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
663 
664 	ret = pm_runtime_get_sync(dev->dev);
665 	if (ret < 0)
666 		goto out;
667 
668 	if (num == 2) {
669 		int internal_address = 0;
670 		int i;
671 
672 		/* 1st msg is put into the internal address, start with 2nd */
673 		m_start = &msg[1];
674 		for (i = 0; i < msg->len; ++i) {
675 			const unsigned addr = msg->buf[msg->len - 1 - i];
676 
677 			internal_address |= addr << (8 * i);
678 			int_addr_flag += AT91_TWI_IADRSZ_1;
679 		}
680 		at91_twi_write(dev, AT91_TWI_IADR, internal_address);
681 	}
682 
683 	dev->use_alt_cmd = false;
684 	is_read = (m_start->flags & I2C_M_RD);
685 	if (dev->pdata->has_alt_cmd) {
686 		if (m_start->len > 0 &&
687 		    m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
688 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
689 			at91_twi_write(dev, AT91_TWI_ACR,
690 				       AT91_TWI_ACR_DATAL(m_start->len) |
691 				       ((is_read) ? AT91_TWI_ACR_DIR : 0));
692 			dev->use_alt_cmd = true;
693 		} else {
694 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
695 		}
696 	}
697 
698 	at91_twi_write(dev, AT91_TWI_MMR,
699 		       (m_start->addr << 16) |
700 		       int_addr_flag |
701 		       ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
702 
703 	dev->buf_len = m_start->len;
704 	dev->buf = m_start->buf;
705 	dev->msg = m_start;
706 	dev->recv_len_abort = false;
707 
708 	if (dev->use_dma) {
709 		dma_buf = i2c_get_dma_safe_msg_buf(m_start, 1);
710 		if (!dma_buf) {
711 			ret = -ENOMEM;
712 			goto out;
713 		}
714 		dev->buf = dma_buf;
715 	}
716 
717 	ret = at91_do_twi_transfer(dev);
718 	i2c_put_dma_safe_msg_buf(dma_buf, m_start, !ret);
719 
720 	ret = (ret < 0) ? ret : num;
721 out:
722 	pm_runtime_mark_last_busy(dev->dev);
723 	pm_runtime_put_autosuspend(dev->dev);
724 
725 	return ret;
726 }
727 
728 /*
729  * The hardware can handle at most two messages concatenated by a
730  * repeated start via it's internal address feature.
731  */
732 static const struct i2c_adapter_quirks at91_twi_quirks = {
733 	.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
734 	.max_comb_1st_msg_len = 3,
735 };
736 
at91_twi_func(struct i2c_adapter * adapter)737 static u32 at91_twi_func(struct i2c_adapter *adapter)
738 {
739 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
740 		| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
741 }
742 
743 static const struct i2c_algorithm at91_twi_algorithm = {
744 	.master_xfer	= at91_twi_xfer,
745 	.functionality	= at91_twi_func,
746 };
747 
at91_twi_configure_dma(struct at91_twi_dev * dev,u32 phy_addr)748 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
749 {
750 	int ret = 0;
751 	struct dma_slave_config slave_config;
752 	struct at91_twi_dma *dma = &dev->dma;
753 	enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
754 
755 	/*
756 	 * The actual width of the access will be chosen in
757 	 * dmaengine_prep_slave_sg():
758 	 * for each buffer in the scatter-gather list, if its size is aligned
759 	 * to addr_width then addr_width accesses will be performed to transfer
760 	 * the buffer. On the other hand, if the buffer size is not aligned to
761 	 * addr_width then the buffer is transferred using single byte accesses.
762 	 * Please refer to the Atmel eXtended DMA controller driver.
763 	 * When FIFOs are used, the TXRDYM threshold can always be set to
764 	 * trigger the XDMAC when at least 4 data can be written into the TX
765 	 * FIFO, even if single byte accesses are performed.
766 	 * However the RXRDYM threshold must be set to fit the access width,
767 	 * deduced from buffer length, so the XDMAC is triggered properly to
768 	 * read data from the RX FIFO.
769 	 */
770 	if (dev->fifo_size)
771 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
772 
773 	memset(&slave_config, 0, sizeof(slave_config));
774 	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
775 	slave_config.src_addr_width = addr_width;
776 	slave_config.src_maxburst = 1;
777 	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
778 	slave_config.dst_addr_width = addr_width;
779 	slave_config.dst_maxburst = 1;
780 	slave_config.device_fc = false;
781 
782 	dma->chan_tx = dma_request_chan(dev->dev, "tx");
783 	if (IS_ERR(dma->chan_tx)) {
784 		ret = PTR_ERR(dma->chan_tx);
785 		dma->chan_tx = NULL;
786 		goto error;
787 	}
788 
789 	dma->chan_rx = dma_request_chan(dev->dev, "rx");
790 	if (IS_ERR(dma->chan_rx)) {
791 		ret = PTR_ERR(dma->chan_rx);
792 		dma->chan_rx = NULL;
793 		goto error;
794 	}
795 
796 	slave_config.direction = DMA_MEM_TO_DEV;
797 	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
798 		dev_err(dev->dev, "failed to configure tx channel\n");
799 		ret = -EINVAL;
800 		goto error;
801 	}
802 
803 	slave_config.direction = DMA_DEV_TO_MEM;
804 	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
805 		dev_err(dev->dev, "failed to configure rx channel\n");
806 		ret = -EINVAL;
807 		goto error;
808 	}
809 
810 	sg_init_table(dma->sg, 2);
811 	dma->buf_mapped = false;
812 	dma->xfer_in_progress = false;
813 	dev->use_dma = true;
814 
815 	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
816 		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
817 
818 	return ret;
819 
820 error:
821 	if (ret != -EPROBE_DEFER)
822 		dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
823 	if (dma->chan_rx)
824 		dma_release_channel(dma->chan_rx);
825 	if (dma->chan_tx)
826 		dma_release_channel(dma->chan_tx);
827 	return ret;
828 }
829 
at91_init_twi_recovery_gpio(struct platform_device * pdev,struct at91_twi_dev * dev)830 static int at91_init_twi_recovery_gpio(struct platform_device *pdev,
831 				       struct at91_twi_dev *dev)
832 {
833 	struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
834 
835 	rinfo->pinctrl = devm_pinctrl_get(&pdev->dev);
836 	if (!rinfo->pinctrl || IS_ERR(rinfo->pinctrl)) {
837 		dev_info(dev->dev, "can't get pinctrl, bus recovery not supported\n");
838 		return PTR_ERR(rinfo->pinctrl);
839 	}
840 	dev->adapter.bus_recovery_info = rinfo;
841 
842 	return 0;
843 }
844 
at91_twi_recover_bus_cmd(struct i2c_adapter * adap)845 static int at91_twi_recover_bus_cmd(struct i2c_adapter *adap)
846 {
847 	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
848 
849 	dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
850 	if (!(dev->transfer_status & AT91_TWI_SDA)) {
851 		dev_dbg(dev->dev, "SDA is down; sending bus clear command\n");
852 		if (dev->use_alt_cmd) {
853 			unsigned int acr;
854 
855 			acr = at91_twi_read(dev, AT91_TWI_ACR);
856 			acr &= ~AT91_TWI_ACR_DATAL_MASK;
857 			at91_twi_write(dev, AT91_TWI_ACR, acr);
858 		}
859 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_CLEAR);
860 	}
861 
862 	return 0;
863 }
864 
at91_init_twi_recovery_info(struct platform_device * pdev,struct at91_twi_dev * dev)865 static int at91_init_twi_recovery_info(struct platform_device *pdev,
866 				       struct at91_twi_dev *dev)
867 {
868 	struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
869 	bool has_clear_cmd = dev->pdata->has_clear_cmd;
870 
871 	if (!has_clear_cmd)
872 		return at91_init_twi_recovery_gpio(pdev, dev);
873 
874 	rinfo->recover_bus = at91_twi_recover_bus_cmd;
875 	dev->adapter.bus_recovery_info = rinfo;
876 
877 	return 0;
878 }
879 
at91_twi_probe_master(struct platform_device * pdev,u32 phy_addr,struct at91_twi_dev * dev)880 int at91_twi_probe_master(struct platform_device *pdev,
881 			  u32 phy_addr, struct at91_twi_dev *dev)
882 {
883 	int rc;
884 
885 	init_completion(&dev->cmd_complete);
886 
887 	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
888 			      dev_name(dev->dev), dev);
889 	if (rc) {
890 		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
891 		return rc;
892 	}
893 
894 	if (dev->dev->of_node) {
895 		rc = at91_twi_configure_dma(dev, phy_addr);
896 		if (rc == -EPROBE_DEFER)
897 			return rc;
898 	}
899 
900 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
901 				  &dev->fifo_size)) {
902 		dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
903 	}
904 
905 	dev->enable_dig_filt = of_property_read_bool(pdev->dev.of_node,
906 						     "i2c-digital-filter");
907 
908 	dev->enable_ana_filt = of_property_read_bool(pdev->dev.of_node,
909 						     "i2c-analog-filter");
910 	at91_calc_twi_clock(dev);
911 
912 	rc = at91_init_twi_recovery_info(pdev, dev);
913 	if (rc == -EPROBE_DEFER)
914 		return rc;
915 
916 	dev->adapter.algo = &at91_twi_algorithm;
917 	dev->adapter.quirks = &at91_twi_quirks;
918 
919 	return 0;
920 }
921