1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
5 *
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
8 *
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10 *
11 * Goals: 1) Integrate fully with Security Modules.
12 * 2) Minimal run-time overhead:
13 * a) Minimal when syscall auditing is disabled (audit_enable=0).
14 * b) Small when syscall auditing is enabled and no audit record
15 * is generated (defer as much work as possible to record
16 * generation time):
17 * i) context is allocated,
18 * ii) names from getname are stored without a copy, and
19 * iii) inode information stored from path_lookup.
20 * 3) Ability to disable syscall auditing at boot time (audit=0).
21 * 4) Usable by other parts of the kernel (if audit_log* is called,
22 * then a syscall record will be generated automatically for the
23 * current syscall).
24 * 5) Netlink interface to user-space.
25 * 6) Support low-overhead kernel-based filtering to minimize the
26 * information that must be passed to user-space.
27 *
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * https://github.com/linux-audit
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50
51 #include <linux/audit.h>
52
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
62
63 #include "audit.h"
64
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66 * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED -1
68 #define AUDIT_UNINITIALIZED 0
69 #define AUDIT_INITIALIZED 1
70 static int audit_initialized;
71
72 u32 audit_enabled = AUDIT_OFF;
73 bool audit_ever_enabled = !!AUDIT_OFF;
74
75 EXPORT_SYMBOL_GPL(audit_enabled);
76
77 /* Default state when kernel boots without any parameters. */
78 static u32 audit_default = AUDIT_OFF;
79
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32 audit_failure = AUDIT_FAIL_PRINTK;
82
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
85
86 /**
87 * struct audit_net - audit private network namespace data
88 * @sk: communication socket
89 */
90 struct audit_net {
91 struct sock *sk;
92 };
93
94 /**
95 * struct auditd_connection - kernel/auditd connection state
96 * @pid: auditd PID
97 * @portid: netlink portid
98 * @net: the associated network namespace
99 * @rcu: RCU head
100 *
101 * Description:
102 * This struct is RCU protected; you must either hold the RCU lock for reading
103 * or the associated spinlock for writing.
104 */
105 struct auditd_connection {
106 struct pid *pid;
107 u32 portid;
108 struct net *net;
109 struct rcu_head rcu;
110 };
111 static struct auditd_connection __rcu *auditd_conn;
112 static DEFINE_SPINLOCK(auditd_conn_lock);
113
114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
115 * to that number per second. This prevents DoS attacks, but results in
116 * audit records being dropped. */
117 static u32 audit_rate_limit;
118
119 /* Number of outstanding audit_buffers allowed.
120 * When set to zero, this means unlimited. */
121 static u32 audit_backlog_limit = 64;
122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
123 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
124
125 /* The identity of the user shutting down the audit system. */
126 static kuid_t audit_sig_uid = INVALID_UID;
127 static pid_t audit_sig_pid = -1;
128 static u32 audit_sig_sid;
129
130 /* Records can be lost in several ways:
131 0) [suppressed in audit_alloc]
132 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
133 2) out of memory in audit_log_move [alloc_skb]
134 3) suppressed due to audit_rate_limit
135 4) suppressed due to audit_backlog_limit
136 */
137 static atomic_t audit_lost = ATOMIC_INIT(0);
138
139 /* Monotonically increasing sum of time the kernel has spent
140 * waiting while the backlog limit is exceeded.
141 */
142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
143
144 /* Hash for inode-based rules */
145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
146
147 static struct kmem_cache *audit_buffer_cache;
148
149 /* queue msgs to send via kauditd_task */
150 static struct sk_buff_head audit_queue;
151 /* queue msgs due to temporary unicast send problems */
152 static struct sk_buff_head audit_retry_queue;
153 /* queue msgs waiting for new auditd connection */
154 static struct sk_buff_head audit_hold_queue;
155
156 /* queue servicing thread */
157 static struct task_struct *kauditd_task;
158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
159
160 /* waitqueue for callers who are blocked on the audit backlog */
161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
162
163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
164 .mask = -1,
165 .features = 0,
166 .lock = 0,};
167
168 static char *audit_feature_names[2] = {
169 "only_unset_loginuid",
170 "loginuid_immutable",
171 };
172
173 /**
174 * struct audit_ctl_mutex - serialize requests from userspace
175 * @lock: the mutex used for locking
176 * @owner: the task which owns the lock
177 *
178 * Description:
179 * This is the lock struct used to ensure we only process userspace requests
180 * in an orderly fashion. We can't simply use a mutex/lock here because we
181 * need to track lock ownership so we don't end up blocking the lock owner in
182 * audit_log_start() or similar.
183 */
184 static struct audit_ctl_mutex {
185 struct mutex lock;
186 void *owner;
187 } audit_cmd_mutex;
188
189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
190 * audit records. Since printk uses a 1024 byte buffer, this buffer
191 * should be at least that large. */
192 #define AUDIT_BUFSIZ 1024
193
194 /* The audit_buffer is used when formatting an audit record. The caller
195 * locks briefly to get the record off the freelist or to allocate the
196 * buffer, and locks briefly to send the buffer to the netlink layer or
197 * to place it on a transmit queue. Multiple audit_buffers can be in
198 * use simultaneously. */
199 struct audit_buffer {
200 struct sk_buff *skb; /* formatted skb ready to send */
201 struct audit_context *ctx; /* NULL or associated context */
202 gfp_t gfp_mask;
203 };
204
205 struct audit_reply {
206 __u32 portid;
207 struct net *net;
208 struct sk_buff *skb;
209 };
210
211 /**
212 * auditd_test_task - Check to see if a given task is an audit daemon
213 * @task: the task to check
214 *
215 * Description:
216 * Return 1 if the task is a registered audit daemon, 0 otherwise.
217 */
auditd_test_task(struct task_struct * task)218 int auditd_test_task(struct task_struct *task)
219 {
220 int rc;
221 struct auditd_connection *ac;
222
223 rcu_read_lock();
224 ac = rcu_dereference(auditd_conn);
225 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
226 rcu_read_unlock();
227
228 return rc;
229 }
230
231 /**
232 * audit_ctl_lock - Take the audit control lock
233 */
audit_ctl_lock(void)234 void audit_ctl_lock(void)
235 {
236 mutex_lock(&audit_cmd_mutex.lock);
237 audit_cmd_mutex.owner = current;
238 }
239
240 /**
241 * audit_ctl_unlock - Drop the audit control lock
242 */
audit_ctl_unlock(void)243 void audit_ctl_unlock(void)
244 {
245 audit_cmd_mutex.owner = NULL;
246 mutex_unlock(&audit_cmd_mutex.lock);
247 }
248
249 /**
250 * audit_ctl_owner_current - Test to see if the current task owns the lock
251 *
252 * Description:
253 * Return true if the current task owns the audit control lock, false if it
254 * doesn't own the lock.
255 */
audit_ctl_owner_current(void)256 static bool audit_ctl_owner_current(void)
257 {
258 return (current == audit_cmd_mutex.owner);
259 }
260
261 /**
262 * auditd_pid_vnr - Return the auditd PID relative to the namespace
263 *
264 * Description:
265 * Returns the PID in relation to the namespace, 0 on failure.
266 */
auditd_pid_vnr(void)267 static pid_t auditd_pid_vnr(void)
268 {
269 pid_t pid;
270 const struct auditd_connection *ac;
271
272 rcu_read_lock();
273 ac = rcu_dereference(auditd_conn);
274 if (!ac || !ac->pid)
275 pid = 0;
276 else
277 pid = pid_vnr(ac->pid);
278 rcu_read_unlock();
279
280 return pid;
281 }
282
283 /**
284 * audit_get_sk - Return the audit socket for the given network namespace
285 * @net: the destination network namespace
286 *
287 * Description:
288 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
289 * that a reference is held for the network namespace while the sock is in use.
290 */
audit_get_sk(const struct net * net)291 static struct sock *audit_get_sk(const struct net *net)
292 {
293 struct audit_net *aunet;
294
295 if (!net)
296 return NULL;
297
298 aunet = net_generic(net, audit_net_id);
299 return aunet->sk;
300 }
301
audit_panic(const char * message)302 void audit_panic(const char *message)
303 {
304 switch (audit_failure) {
305 case AUDIT_FAIL_SILENT:
306 break;
307 case AUDIT_FAIL_PRINTK:
308 if (printk_ratelimit())
309 pr_err("%s\n", message);
310 break;
311 case AUDIT_FAIL_PANIC:
312 panic("audit: %s\n", message);
313 break;
314 }
315 }
316
audit_rate_check(void)317 static inline int audit_rate_check(void)
318 {
319 static unsigned long last_check = 0;
320 static int messages = 0;
321 static DEFINE_SPINLOCK(lock);
322 unsigned long flags;
323 unsigned long now;
324 unsigned long elapsed;
325 int retval = 0;
326
327 if (!audit_rate_limit) return 1;
328
329 spin_lock_irqsave(&lock, flags);
330 if (++messages < audit_rate_limit) {
331 retval = 1;
332 } else {
333 now = jiffies;
334 elapsed = now - last_check;
335 if (elapsed > HZ) {
336 last_check = now;
337 messages = 0;
338 retval = 1;
339 }
340 }
341 spin_unlock_irqrestore(&lock, flags);
342
343 return retval;
344 }
345
346 /**
347 * audit_log_lost - conditionally log lost audit message event
348 * @message: the message stating reason for lost audit message
349 *
350 * Emit at least 1 message per second, even if audit_rate_check is
351 * throttling.
352 * Always increment the lost messages counter.
353 */
audit_log_lost(const char * message)354 void audit_log_lost(const char *message)
355 {
356 static unsigned long last_msg = 0;
357 static DEFINE_SPINLOCK(lock);
358 unsigned long flags;
359 unsigned long now;
360 int print;
361
362 atomic_inc(&audit_lost);
363
364 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
365
366 if (!print) {
367 spin_lock_irqsave(&lock, flags);
368 now = jiffies;
369 if (now - last_msg > HZ) {
370 print = 1;
371 last_msg = now;
372 }
373 spin_unlock_irqrestore(&lock, flags);
374 }
375
376 if (print) {
377 if (printk_ratelimit())
378 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
379 atomic_read(&audit_lost),
380 audit_rate_limit,
381 audit_backlog_limit);
382 audit_panic(message);
383 }
384 }
385
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)386 static int audit_log_config_change(char *function_name, u32 new, u32 old,
387 int allow_changes)
388 {
389 struct audit_buffer *ab;
390 int rc = 0;
391
392 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
393 if (unlikely(!ab))
394 return rc;
395 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
396 audit_log_session_info(ab);
397 rc = audit_log_task_context(ab);
398 if (rc)
399 allow_changes = 0; /* Something weird, deny request */
400 audit_log_format(ab, " res=%d", allow_changes);
401 audit_log_end(ab);
402 return rc;
403 }
404
audit_do_config_change(char * function_name,u32 * to_change,u32 new)405 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
406 {
407 int allow_changes, rc = 0;
408 u32 old = *to_change;
409
410 /* check if we are locked */
411 if (audit_enabled == AUDIT_LOCKED)
412 allow_changes = 0;
413 else
414 allow_changes = 1;
415
416 if (audit_enabled != AUDIT_OFF) {
417 rc = audit_log_config_change(function_name, new, old, allow_changes);
418 if (rc)
419 allow_changes = 0;
420 }
421
422 /* If we are allowed, make the change */
423 if (allow_changes == 1)
424 *to_change = new;
425 /* Not allowed, update reason */
426 else if (rc == 0)
427 rc = -EPERM;
428 return rc;
429 }
430
audit_set_rate_limit(u32 limit)431 static int audit_set_rate_limit(u32 limit)
432 {
433 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
434 }
435
audit_set_backlog_limit(u32 limit)436 static int audit_set_backlog_limit(u32 limit)
437 {
438 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
439 }
440
audit_set_backlog_wait_time(u32 timeout)441 static int audit_set_backlog_wait_time(u32 timeout)
442 {
443 return audit_do_config_change("audit_backlog_wait_time",
444 &audit_backlog_wait_time, timeout);
445 }
446
audit_set_enabled(u32 state)447 static int audit_set_enabled(u32 state)
448 {
449 int rc;
450 if (state > AUDIT_LOCKED)
451 return -EINVAL;
452
453 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
454 if (!rc)
455 audit_ever_enabled |= !!state;
456
457 return rc;
458 }
459
audit_set_failure(u32 state)460 static int audit_set_failure(u32 state)
461 {
462 if (state != AUDIT_FAIL_SILENT
463 && state != AUDIT_FAIL_PRINTK
464 && state != AUDIT_FAIL_PANIC)
465 return -EINVAL;
466
467 return audit_do_config_change("audit_failure", &audit_failure, state);
468 }
469
470 /**
471 * auditd_conn_free - RCU helper to release an auditd connection struct
472 * @rcu: RCU head
473 *
474 * Description:
475 * Drop any references inside the auditd connection tracking struct and free
476 * the memory.
477 */
auditd_conn_free(struct rcu_head * rcu)478 static void auditd_conn_free(struct rcu_head *rcu)
479 {
480 struct auditd_connection *ac;
481
482 ac = container_of(rcu, struct auditd_connection, rcu);
483 put_pid(ac->pid);
484 put_net(ac->net);
485 kfree(ac);
486 }
487
488 /**
489 * auditd_set - Set/Reset the auditd connection state
490 * @pid: auditd PID
491 * @portid: auditd netlink portid
492 * @net: auditd network namespace pointer
493 *
494 * Description:
495 * This function will obtain and drop network namespace references as
496 * necessary. Returns zero on success, negative values on failure.
497 */
auditd_set(struct pid * pid,u32 portid,struct net * net)498 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
499 {
500 unsigned long flags;
501 struct auditd_connection *ac_old, *ac_new;
502
503 if (!pid || !net)
504 return -EINVAL;
505
506 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
507 if (!ac_new)
508 return -ENOMEM;
509 ac_new->pid = get_pid(pid);
510 ac_new->portid = portid;
511 ac_new->net = get_net(net);
512
513 spin_lock_irqsave(&auditd_conn_lock, flags);
514 ac_old = rcu_dereference_protected(auditd_conn,
515 lockdep_is_held(&auditd_conn_lock));
516 rcu_assign_pointer(auditd_conn, ac_new);
517 spin_unlock_irqrestore(&auditd_conn_lock, flags);
518
519 if (ac_old)
520 call_rcu(&ac_old->rcu, auditd_conn_free);
521
522 return 0;
523 }
524
525 /**
526 * kauditd_print_skb - Print the audit record to the ring buffer
527 * @skb: audit record
528 *
529 * Whatever the reason, this packet may not make it to the auditd connection
530 * so write it via printk so the information isn't completely lost.
531 */
kauditd_printk_skb(struct sk_buff * skb)532 static void kauditd_printk_skb(struct sk_buff *skb)
533 {
534 struct nlmsghdr *nlh = nlmsg_hdr(skb);
535 char *data = nlmsg_data(nlh);
536
537 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
538 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
539 }
540
541 /**
542 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
543 * @skb: audit record
544 * @error: error code (unused)
545 *
546 * Description:
547 * This should only be used by the kauditd_thread when it fails to flush the
548 * hold queue.
549 */
kauditd_rehold_skb(struct sk_buff * skb,__always_unused int error)550 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
551 {
552 /* put the record back in the queue */
553 skb_queue_tail(&audit_hold_queue, skb);
554 }
555
556 /**
557 * kauditd_hold_skb - Queue an audit record, waiting for auditd
558 * @skb: audit record
559 * @error: error code
560 *
561 * Description:
562 * Queue the audit record, waiting for an instance of auditd. When this
563 * function is called we haven't given up yet on sending the record, but things
564 * are not looking good. The first thing we want to do is try to write the
565 * record via printk and then see if we want to try and hold on to the record
566 * and queue it, if we have room. If we want to hold on to the record, but we
567 * don't have room, record a record lost message.
568 */
kauditd_hold_skb(struct sk_buff * skb,int error)569 static void kauditd_hold_skb(struct sk_buff *skb, int error)
570 {
571 /* at this point it is uncertain if we will ever send this to auditd so
572 * try to send the message via printk before we go any further */
573 kauditd_printk_skb(skb);
574
575 /* can we just silently drop the message? */
576 if (!audit_default)
577 goto drop;
578
579 /* the hold queue is only for when the daemon goes away completely,
580 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
581 * record on the retry queue unless it's full, in which case drop it
582 */
583 if (error == -EAGAIN) {
584 if (!audit_backlog_limit ||
585 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
586 skb_queue_tail(&audit_retry_queue, skb);
587 return;
588 }
589 audit_log_lost("kauditd retry queue overflow");
590 goto drop;
591 }
592
593 /* if we have room in the hold queue, queue the message */
594 if (!audit_backlog_limit ||
595 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
596 skb_queue_tail(&audit_hold_queue, skb);
597 return;
598 }
599
600 /* we have no other options - drop the message */
601 audit_log_lost("kauditd hold queue overflow");
602 drop:
603 kfree_skb(skb);
604 }
605
606 /**
607 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
608 * @skb: audit record
609 * @error: error code (unused)
610 *
611 * Description:
612 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
613 * but for some reason we are having problems sending it audit records so
614 * queue the given record and attempt to resend.
615 */
kauditd_retry_skb(struct sk_buff * skb,__always_unused int error)616 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
617 {
618 if (!audit_backlog_limit ||
619 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
620 skb_queue_tail(&audit_retry_queue, skb);
621 return;
622 }
623
624 /* we have to drop the record, send it via printk as a last effort */
625 kauditd_printk_skb(skb);
626 audit_log_lost("kauditd retry queue overflow");
627 kfree_skb(skb);
628 }
629
630 /**
631 * auditd_reset - Disconnect the auditd connection
632 * @ac: auditd connection state
633 *
634 * Description:
635 * Break the auditd/kauditd connection and move all the queued records into the
636 * hold queue in case auditd reconnects. It is important to note that the @ac
637 * pointer should never be dereferenced inside this function as it may be NULL
638 * or invalid, you can only compare the memory address! If @ac is NULL then
639 * the connection will always be reset.
640 */
auditd_reset(const struct auditd_connection * ac)641 static void auditd_reset(const struct auditd_connection *ac)
642 {
643 unsigned long flags;
644 struct sk_buff *skb;
645 struct auditd_connection *ac_old;
646
647 /* if it isn't already broken, break the connection */
648 spin_lock_irqsave(&auditd_conn_lock, flags);
649 ac_old = rcu_dereference_protected(auditd_conn,
650 lockdep_is_held(&auditd_conn_lock));
651 if (ac && ac != ac_old) {
652 /* someone already registered a new auditd connection */
653 spin_unlock_irqrestore(&auditd_conn_lock, flags);
654 return;
655 }
656 rcu_assign_pointer(auditd_conn, NULL);
657 spin_unlock_irqrestore(&auditd_conn_lock, flags);
658
659 if (ac_old)
660 call_rcu(&ac_old->rcu, auditd_conn_free);
661
662 /* flush the retry queue to the hold queue, but don't touch the main
663 * queue since we need to process that normally for multicast */
664 while ((skb = skb_dequeue(&audit_retry_queue)))
665 kauditd_hold_skb(skb, -ECONNREFUSED);
666 }
667
668 /**
669 * auditd_send_unicast_skb - Send a record via unicast to auditd
670 * @skb: audit record
671 *
672 * Description:
673 * Send a skb to the audit daemon, returns positive/zero values on success and
674 * negative values on failure; in all cases the skb will be consumed by this
675 * function. If the send results in -ECONNREFUSED the connection with auditd
676 * will be reset. This function may sleep so callers should not hold any locks
677 * where this would cause a problem.
678 */
auditd_send_unicast_skb(struct sk_buff * skb)679 static int auditd_send_unicast_skb(struct sk_buff *skb)
680 {
681 int rc;
682 u32 portid;
683 struct net *net;
684 struct sock *sk;
685 struct auditd_connection *ac;
686
687 /* NOTE: we can't call netlink_unicast while in the RCU section so
688 * take a reference to the network namespace and grab local
689 * copies of the namespace, the sock, and the portid; the
690 * namespace and sock aren't going to go away while we hold a
691 * reference and if the portid does become invalid after the RCU
692 * section netlink_unicast() should safely return an error */
693
694 rcu_read_lock();
695 ac = rcu_dereference(auditd_conn);
696 if (!ac) {
697 rcu_read_unlock();
698 kfree_skb(skb);
699 rc = -ECONNREFUSED;
700 goto err;
701 }
702 net = get_net(ac->net);
703 sk = audit_get_sk(net);
704 portid = ac->portid;
705 rcu_read_unlock();
706
707 rc = netlink_unicast(sk, skb, portid, 0);
708 put_net(net);
709 if (rc < 0)
710 goto err;
711
712 return rc;
713
714 err:
715 if (ac && rc == -ECONNREFUSED)
716 auditd_reset(ac);
717 return rc;
718 }
719
720 /**
721 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
722 * @sk: the sending sock
723 * @portid: the netlink destination
724 * @queue: the skb queue to process
725 * @retry_limit: limit on number of netlink unicast failures
726 * @skb_hook: per-skb hook for additional processing
727 * @err_hook: hook called if the skb fails the netlink unicast send
728 *
729 * Description:
730 * Run through the given queue and attempt to send the audit records to auditd,
731 * returns zero on success, negative values on failure. It is up to the caller
732 * to ensure that the @sk is valid for the duration of this function.
733 *
734 */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb,int error))735 static int kauditd_send_queue(struct sock *sk, u32 portid,
736 struct sk_buff_head *queue,
737 unsigned int retry_limit,
738 void (*skb_hook)(struct sk_buff *skb),
739 void (*err_hook)(struct sk_buff *skb, int error))
740 {
741 int rc = 0;
742 struct sk_buff *skb = NULL;
743 struct sk_buff *skb_tail;
744 unsigned int failed = 0;
745
746 /* NOTE: kauditd_thread takes care of all our locking, we just use
747 * the netlink info passed to us (e.g. sk and portid) */
748
749 skb_tail = skb_peek_tail(queue);
750 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
751 /* call the skb_hook for each skb we touch */
752 if (skb_hook)
753 (*skb_hook)(skb);
754
755 /* can we send to anyone via unicast? */
756 if (!sk) {
757 if (err_hook)
758 (*err_hook)(skb, -ECONNREFUSED);
759 continue;
760 }
761
762 retry:
763 /* grab an extra skb reference in case of error */
764 skb_get(skb);
765 rc = netlink_unicast(sk, skb, portid, 0);
766 if (rc < 0) {
767 /* send failed - try a few times unless fatal error */
768 if (++failed >= retry_limit ||
769 rc == -ECONNREFUSED || rc == -EPERM) {
770 sk = NULL;
771 if (err_hook)
772 (*err_hook)(skb, rc);
773 if (rc == -EAGAIN)
774 rc = 0;
775 /* continue to drain the queue */
776 continue;
777 } else
778 goto retry;
779 } else {
780 /* skb sent - drop the extra reference and continue */
781 consume_skb(skb);
782 failed = 0;
783 }
784 }
785
786 return (rc >= 0 ? 0 : rc);
787 }
788
789 /*
790 * kauditd_send_multicast_skb - Send a record to any multicast listeners
791 * @skb: audit record
792 *
793 * Description:
794 * Write a multicast message to anyone listening in the initial network
795 * namespace. This function doesn't consume an skb as might be expected since
796 * it has to copy it anyways.
797 */
kauditd_send_multicast_skb(struct sk_buff * skb)798 static void kauditd_send_multicast_skb(struct sk_buff *skb)
799 {
800 struct sk_buff *copy;
801 struct sock *sock = audit_get_sk(&init_net);
802 struct nlmsghdr *nlh;
803
804 /* NOTE: we are not taking an additional reference for init_net since
805 * we don't have to worry about it going away */
806
807 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
808 return;
809
810 /*
811 * The seemingly wasteful skb_copy() rather than bumping the refcount
812 * using skb_get() is necessary because non-standard mods are made to
813 * the skb by the original kaudit unicast socket send routine. The
814 * existing auditd daemon assumes this breakage. Fixing this would
815 * require co-ordinating a change in the established protocol between
816 * the kaudit kernel subsystem and the auditd userspace code. There is
817 * no reason for new multicast clients to continue with this
818 * non-compliance.
819 */
820 copy = skb_copy(skb, GFP_KERNEL);
821 if (!copy)
822 return;
823 nlh = nlmsg_hdr(copy);
824 nlh->nlmsg_len = skb->len;
825
826 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
827 }
828
829 /**
830 * kauditd_thread - Worker thread to send audit records to userspace
831 * @dummy: unused
832 */
kauditd_thread(void * dummy)833 static int kauditd_thread(void *dummy)
834 {
835 int rc;
836 u32 portid = 0;
837 struct net *net = NULL;
838 struct sock *sk = NULL;
839 struct auditd_connection *ac;
840
841 #define UNICAST_RETRIES 5
842
843 set_freezable();
844 while (!kthread_should_stop()) {
845 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
846 rcu_read_lock();
847 ac = rcu_dereference(auditd_conn);
848 if (!ac) {
849 rcu_read_unlock();
850 goto main_queue;
851 }
852 net = get_net(ac->net);
853 sk = audit_get_sk(net);
854 portid = ac->portid;
855 rcu_read_unlock();
856
857 /* attempt to flush the hold queue */
858 rc = kauditd_send_queue(sk, portid,
859 &audit_hold_queue, UNICAST_RETRIES,
860 NULL, kauditd_rehold_skb);
861 if (rc < 0) {
862 sk = NULL;
863 auditd_reset(ac);
864 goto main_queue;
865 }
866
867 /* attempt to flush the retry queue */
868 rc = kauditd_send_queue(sk, portid,
869 &audit_retry_queue, UNICAST_RETRIES,
870 NULL, kauditd_hold_skb);
871 if (rc < 0) {
872 sk = NULL;
873 auditd_reset(ac);
874 goto main_queue;
875 }
876
877 main_queue:
878 /* process the main queue - do the multicast send and attempt
879 * unicast, dump failed record sends to the retry queue; if
880 * sk == NULL due to previous failures we will just do the
881 * multicast send and move the record to the hold queue */
882 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
883 kauditd_send_multicast_skb,
884 (sk ?
885 kauditd_retry_skb : kauditd_hold_skb));
886 if (ac && rc < 0)
887 auditd_reset(ac);
888 sk = NULL;
889
890 /* drop our netns reference, no auditd sends past this line */
891 if (net) {
892 put_net(net);
893 net = NULL;
894 }
895
896 /* we have processed all the queues so wake everyone */
897 wake_up(&audit_backlog_wait);
898
899 /* NOTE: we want to wake up if there is anything on the queue,
900 * regardless of if an auditd is connected, as we need to
901 * do the multicast send and rotate records from the
902 * main queue to the retry/hold queues */
903 wait_event_freezable(kauditd_wait,
904 (skb_queue_len(&audit_queue) ? 1 : 0));
905 }
906
907 return 0;
908 }
909
audit_send_list_thread(void * _dest)910 int audit_send_list_thread(void *_dest)
911 {
912 struct audit_netlink_list *dest = _dest;
913 struct sk_buff *skb;
914 struct sock *sk = audit_get_sk(dest->net);
915
916 /* wait for parent to finish and send an ACK */
917 audit_ctl_lock();
918 audit_ctl_unlock();
919
920 while ((skb = __skb_dequeue(&dest->q)) != NULL)
921 netlink_unicast(sk, skb, dest->portid, 0);
922
923 put_net(dest->net);
924 kfree(dest);
925
926 return 0;
927 }
928
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)929 struct sk_buff *audit_make_reply(int seq, int type, int done,
930 int multi, const void *payload, int size)
931 {
932 struct sk_buff *skb;
933 struct nlmsghdr *nlh;
934 void *data;
935 int flags = multi ? NLM_F_MULTI : 0;
936 int t = done ? NLMSG_DONE : type;
937
938 skb = nlmsg_new(size, GFP_KERNEL);
939 if (!skb)
940 return NULL;
941
942 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
943 if (!nlh)
944 goto out_kfree_skb;
945 data = nlmsg_data(nlh);
946 memcpy(data, payload, size);
947 return skb;
948
949 out_kfree_skb:
950 kfree_skb(skb);
951 return NULL;
952 }
953
audit_free_reply(struct audit_reply * reply)954 static void audit_free_reply(struct audit_reply *reply)
955 {
956 if (!reply)
957 return;
958
959 kfree_skb(reply->skb);
960 if (reply->net)
961 put_net(reply->net);
962 kfree(reply);
963 }
964
audit_send_reply_thread(void * arg)965 static int audit_send_reply_thread(void *arg)
966 {
967 struct audit_reply *reply = (struct audit_reply *)arg;
968
969 audit_ctl_lock();
970 audit_ctl_unlock();
971
972 /* Ignore failure. It'll only happen if the sender goes away,
973 because our timeout is set to infinite. */
974 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
975 reply->skb = NULL;
976 audit_free_reply(reply);
977 return 0;
978 }
979
980 /**
981 * audit_send_reply - send an audit reply message via netlink
982 * @request_skb: skb of request we are replying to (used to target the reply)
983 * @seq: sequence number
984 * @type: audit message type
985 * @done: done (last) flag
986 * @multi: multi-part message flag
987 * @payload: payload data
988 * @size: payload size
989 *
990 * Allocates a skb, builds the netlink message, and sends it to the port id.
991 */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)992 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
993 int multi, const void *payload, int size)
994 {
995 struct task_struct *tsk;
996 struct audit_reply *reply;
997
998 reply = kzalloc(sizeof(*reply), GFP_KERNEL);
999 if (!reply)
1000 return;
1001
1002 reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1003 if (!reply->skb)
1004 goto err;
1005 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1006 reply->portid = NETLINK_CB(request_skb).portid;
1007
1008 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1009 if (IS_ERR(tsk))
1010 goto err;
1011
1012 return;
1013
1014 err:
1015 audit_free_reply(reply);
1016 }
1017
1018 /*
1019 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1020 * control messages.
1021 */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)1022 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1023 {
1024 int err = 0;
1025
1026 /* Only support initial user namespace for now. */
1027 /*
1028 * We return ECONNREFUSED because it tricks userspace into thinking
1029 * that audit was not configured into the kernel. Lots of users
1030 * configure their PAM stack (because that's what the distro does)
1031 * to reject login if unable to send messages to audit. If we return
1032 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1033 * configured in and will let login proceed. If we return EPERM
1034 * userspace will reject all logins. This should be removed when we
1035 * support non init namespaces!!
1036 */
1037 if (current_user_ns() != &init_user_ns)
1038 return -ECONNREFUSED;
1039
1040 switch (msg_type) {
1041 case AUDIT_LIST:
1042 case AUDIT_ADD:
1043 case AUDIT_DEL:
1044 return -EOPNOTSUPP;
1045 case AUDIT_GET:
1046 case AUDIT_SET:
1047 case AUDIT_GET_FEATURE:
1048 case AUDIT_SET_FEATURE:
1049 case AUDIT_LIST_RULES:
1050 case AUDIT_ADD_RULE:
1051 case AUDIT_DEL_RULE:
1052 case AUDIT_SIGNAL_INFO:
1053 case AUDIT_TTY_GET:
1054 case AUDIT_TTY_SET:
1055 case AUDIT_TRIM:
1056 case AUDIT_MAKE_EQUIV:
1057 /* Only support auditd and auditctl in initial pid namespace
1058 * for now. */
1059 if (task_active_pid_ns(current) != &init_pid_ns)
1060 return -EPERM;
1061
1062 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1063 err = -EPERM;
1064 break;
1065 case AUDIT_USER:
1066 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1067 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1068 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1069 err = -EPERM;
1070 break;
1071 default: /* bad msg */
1072 err = -EINVAL;
1073 }
1074
1075 return err;
1076 }
1077
audit_log_common_recv_msg(struct audit_context * context,struct audit_buffer ** ab,u16 msg_type)1078 static void audit_log_common_recv_msg(struct audit_context *context,
1079 struct audit_buffer **ab, u16 msg_type)
1080 {
1081 uid_t uid = from_kuid(&init_user_ns, current_uid());
1082 pid_t pid = task_tgid_nr(current);
1083
1084 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1085 *ab = NULL;
1086 return;
1087 }
1088
1089 *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1090 if (unlikely(!*ab))
1091 return;
1092 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1093 audit_log_session_info(*ab);
1094 audit_log_task_context(*ab);
1095 }
1096
audit_log_user_recv_msg(struct audit_buffer ** ab,u16 msg_type)1097 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1098 u16 msg_type)
1099 {
1100 audit_log_common_recv_msg(NULL, ab, msg_type);
1101 }
1102
is_audit_feature_set(int i)1103 int is_audit_feature_set(int i)
1104 {
1105 return af.features & AUDIT_FEATURE_TO_MASK(i);
1106 }
1107
1108
audit_get_feature(struct sk_buff * skb)1109 static int audit_get_feature(struct sk_buff *skb)
1110 {
1111 u32 seq;
1112
1113 seq = nlmsg_hdr(skb)->nlmsg_seq;
1114
1115 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1116
1117 return 0;
1118 }
1119
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1120 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1121 u32 old_lock, u32 new_lock, int res)
1122 {
1123 struct audit_buffer *ab;
1124
1125 if (audit_enabled == AUDIT_OFF)
1126 return;
1127
1128 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1129 if (!ab)
1130 return;
1131 audit_log_task_info(ab);
1132 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1133 audit_feature_names[which], !!old_feature, !!new_feature,
1134 !!old_lock, !!new_lock, res);
1135 audit_log_end(ab);
1136 }
1137
audit_set_feature(struct audit_features * uaf)1138 static int audit_set_feature(struct audit_features *uaf)
1139 {
1140 int i;
1141
1142 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1143
1144 /* if there is ever a version 2 we should handle that here */
1145
1146 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1147 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1148 u32 old_feature, new_feature, old_lock, new_lock;
1149
1150 /* if we are not changing this feature, move along */
1151 if (!(feature & uaf->mask))
1152 continue;
1153
1154 old_feature = af.features & feature;
1155 new_feature = uaf->features & feature;
1156 new_lock = (uaf->lock | af.lock) & feature;
1157 old_lock = af.lock & feature;
1158
1159 /* are we changing a locked feature? */
1160 if (old_lock && (new_feature != old_feature)) {
1161 audit_log_feature_change(i, old_feature, new_feature,
1162 old_lock, new_lock, 0);
1163 return -EPERM;
1164 }
1165 }
1166 /* nothing invalid, do the changes */
1167 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1168 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1169 u32 old_feature, new_feature, old_lock, new_lock;
1170
1171 /* if we are not changing this feature, move along */
1172 if (!(feature & uaf->mask))
1173 continue;
1174
1175 old_feature = af.features & feature;
1176 new_feature = uaf->features & feature;
1177 old_lock = af.lock & feature;
1178 new_lock = (uaf->lock | af.lock) & feature;
1179
1180 if (new_feature != old_feature)
1181 audit_log_feature_change(i, old_feature, new_feature,
1182 old_lock, new_lock, 1);
1183
1184 if (new_feature)
1185 af.features |= feature;
1186 else
1187 af.features &= ~feature;
1188 af.lock |= new_lock;
1189 }
1190
1191 return 0;
1192 }
1193
audit_replace(struct pid * pid)1194 static int audit_replace(struct pid *pid)
1195 {
1196 pid_t pvnr;
1197 struct sk_buff *skb;
1198
1199 pvnr = pid_vnr(pid);
1200 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1201 if (!skb)
1202 return -ENOMEM;
1203 return auditd_send_unicast_skb(skb);
1204 }
1205
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh)1206 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1207 {
1208 u32 seq;
1209 void *data;
1210 int data_len;
1211 int err;
1212 struct audit_buffer *ab;
1213 u16 msg_type = nlh->nlmsg_type;
1214 struct audit_sig_info *sig_data;
1215 char *ctx = NULL;
1216 u32 len;
1217
1218 err = audit_netlink_ok(skb, msg_type);
1219 if (err)
1220 return err;
1221
1222 seq = nlh->nlmsg_seq;
1223 data = nlmsg_data(nlh);
1224 data_len = nlmsg_len(nlh);
1225
1226 switch (msg_type) {
1227 case AUDIT_GET: {
1228 struct audit_status s;
1229 memset(&s, 0, sizeof(s));
1230 s.enabled = audit_enabled;
1231 s.failure = audit_failure;
1232 /* NOTE: use pid_vnr() so the PID is relative to the current
1233 * namespace */
1234 s.pid = auditd_pid_vnr();
1235 s.rate_limit = audit_rate_limit;
1236 s.backlog_limit = audit_backlog_limit;
1237 s.lost = atomic_read(&audit_lost);
1238 s.backlog = skb_queue_len(&audit_queue);
1239 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1240 s.backlog_wait_time = audit_backlog_wait_time;
1241 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1242 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1243 break;
1244 }
1245 case AUDIT_SET: {
1246 struct audit_status s;
1247 memset(&s, 0, sizeof(s));
1248 /* guard against past and future API changes */
1249 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1250 if (s.mask & AUDIT_STATUS_ENABLED) {
1251 err = audit_set_enabled(s.enabled);
1252 if (err < 0)
1253 return err;
1254 }
1255 if (s.mask & AUDIT_STATUS_FAILURE) {
1256 err = audit_set_failure(s.failure);
1257 if (err < 0)
1258 return err;
1259 }
1260 if (s.mask & AUDIT_STATUS_PID) {
1261 /* NOTE: we are using the vnr PID functions below
1262 * because the s.pid value is relative to the
1263 * namespace of the caller; at present this
1264 * doesn't matter much since you can really only
1265 * run auditd from the initial pid namespace, but
1266 * something to keep in mind if this changes */
1267 pid_t new_pid = s.pid;
1268 pid_t auditd_pid;
1269 struct pid *req_pid = task_tgid(current);
1270
1271 /* Sanity check - PID values must match. Setting
1272 * pid to 0 is how auditd ends auditing. */
1273 if (new_pid && (new_pid != pid_vnr(req_pid)))
1274 return -EINVAL;
1275
1276 /* test the auditd connection */
1277 audit_replace(req_pid);
1278
1279 auditd_pid = auditd_pid_vnr();
1280 if (auditd_pid) {
1281 /* replacing a healthy auditd is not allowed */
1282 if (new_pid) {
1283 audit_log_config_change("audit_pid",
1284 new_pid, auditd_pid, 0);
1285 return -EEXIST;
1286 }
1287 /* only current auditd can unregister itself */
1288 if (pid_vnr(req_pid) != auditd_pid) {
1289 audit_log_config_change("audit_pid",
1290 new_pid, auditd_pid, 0);
1291 return -EACCES;
1292 }
1293 }
1294
1295 if (new_pid) {
1296 /* register a new auditd connection */
1297 err = auditd_set(req_pid,
1298 NETLINK_CB(skb).portid,
1299 sock_net(NETLINK_CB(skb).sk));
1300 if (audit_enabled != AUDIT_OFF)
1301 audit_log_config_change("audit_pid",
1302 new_pid,
1303 auditd_pid,
1304 err ? 0 : 1);
1305 if (err)
1306 return err;
1307
1308 /* try to process any backlog */
1309 wake_up_interruptible(&kauditd_wait);
1310 } else {
1311 if (audit_enabled != AUDIT_OFF)
1312 audit_log_config_change("audit_pid",
1313 new_pid,
1314 auditd_pid, 1);
1315
1316 /* unregister the auditd connection */
1317 auditd_reset(NULL);
1318 }
1319 }
1320 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1321 err = audit_set_rate_limit(s.rate_limit);
1322 if (err < 0)
1323 return err;
1324 }
1325 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1326 err = audit_set_backlog_limit(s.backlog_limit);
1327 if (err < 0)
1328 return err;
1329 }
1330 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1331 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1332 return -EINVAL;
1333 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1334 return -EINVAL;
1335 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1336 if (err < 0)
1337 return err;
1338 }
1339 if (s.mask == AUDIT_STATUS_LOST) {
1340 u32 lost = atomic_xchg(&audit_lost, 0);
1341
1342 audit_log_config_change("lost", 0, lost, 1);
1343 return lost;
1344 }
1345 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1346 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1347
1348 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1349 return actual;
1350 }
1351 break;
1352 }
1353 case AUDIT_GET_FEATURE:
1354 err = audit_get_feature(skb);
1355 if (err)
1356 return err;
1357 break;
1358 case AUDIT_SET_FEATURE:
1359 if (data_len < sizeof(struct audit_features))
1360 return -EINVAL;
1361 err = audit_set_feature(data);
1362 if (err)
1363 return err;
1364 break;
1365 case AUDIT_USER:
1366 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1367 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1368 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1369 return 0;
1370 /* exit early if there isn't at least one character to print */
1371 if (data_len < 2)
1372 return -EINVAL;
1373
1374 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1375 if (err == 1) { /* match or error */
1376 char *str = data;
1377
1378 err = 0;
1379 if (msg_type == AUDIT_USER_TTY) {
1380 err = tty_audit_push();
1381 if (err)
1382 break;
1383 }
1384 audit_log_user_recv_msg(&ab, msg_type);
1385 if (msg_type != AUDIT_USER_TTY) {
1386 /* ensure NULL termination */
1387 str[data_len - 1] = '\0';
1388 audit_log_format(ab, " msg='%.*s'",
1389 AUDIT_MESSAGE_TEXT_MAX,
1390 str);
1391 } else {
1392 audit_log_format(ab, " data=");
1393 if (data_len > 0 && str[data_len - 1] == '\0')
1394 data_len--;
1395 audit_log_n_untrustedstring(ab, str, data_len);
1396 }
1397 audit_log_end(ab);
1398 }
1399 break;
1400 case AUDIT_ADD_RULE:
1401 case AUDIT_DEL_RULE:
1402 if (data_len < sizeof(struct audit_rule_data))
1403 return -EINVAL;
1404 if (audit_enabled == AUDIT_LOCKED) {
1405 audit_log_common_recv_msg(audit_context(), &ab,
1406 AUDIT_CONFIG_CHANGE);
1407 audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1408 msg_type == AUDIT_ADD_RULE ?
1409 "add_rule" : "remove_rule",
1410 audit_enabled);
1411 audit_log_end(ab);
1412 return -EPERM;
1413 }
1414 err = audit_rule_change(msg_type, seq, data, data_len);
1415 break;
1416 case AUDIT_LIST_RULES:
1417 err = audit_list_rules_send(skb, seq);
1418 break;
1419 case AUDIT_TRIM:
1420 audit_trim_trees();
1421 audit_log_common_recv_msg(audit_context(), &ab,
1422 AUDIT_CONFIG_CHANGE);
1423 audit_log_format(ab, " op=trim res=1");
1424 audit_log_end(ab);
1425 break;
1426 case AUDIT_MAKE_EQUIV: {
1427 void *bufp = data;
1428 u32 sizes[2];
1429 size_t msglen = data_len;
1430 char *old, *new;
1431
1432 err = -EINVAL;
1433 if (msglen < 2 * sizeof(u32))
1434 break;
1435 memcpy(sizes, bufp, 2 * sizeof(u32));
1436 bufp += 2 * sizeof(u32);
1437 msglen -= 2 * sizeof(u32);
1438 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1439 if (IS_ERR(old)) {
1440 err = PTR_ERR(old);
1441 break;
1442 }
1443 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1444 if (IS_ERR(new)) {
1445 err = PTR_ERR(new);
1446 kfree(old);
1447 break;
1448 }
1449 /* OK, here comes... */
1450 err = audit_tag_tree(old, new);
1451
1452 audit_log_common_recv_msg(audit_context(), &ab,
1453 AUDIT_CONFIG_CHANGE);
1454 audit_log_format(ab, " op=make_equiv old=");
1455 audit_log_untrustedstring(ab, old);
1456 audit_log_format(ab, " new=");
1457 audit_log_untrustedstring(ab, new);
1458 audit_log_format(ab, " res=%d", !err);
1459 audit_log_end(ab);
1460 kfree(old);
1461 kfree(new);
1462 break;
1463 }
1464 case AUDIT_SIGNAL_INFO:
1465 len = 0;
1466 if (audit_sig_sid) {
1467 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1468 if (err)
1469 return err;
1470 }
1471 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1472 if (!sig_data) {
1473 if (audit_sig_sid)
1474 security_release_secctx(ctx, len);
1475 return -ENOMEM;
1476 }
1477 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1478 sig_data->pid = audit_sig_pid;
1479 if (audit_sig_sid) {
1480 memcpy(sig_data->ctx, ctx, len);
1481 security_release_secctx(ctx, len);
1482 }
1483 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1484 sig_data, sizeof(*sig_data) + len);
1485 kfree(sig_data);
1486 break;
1487 case AUDIT_TTY_GET: {
1488 struct audit_tty_status s;
1489 unsigned int t;
1490
1491 t = READ_ONCE(current->signal->audit_tty);
1492 s.enabled = t & AUDIT_TTY_ENABLE;
1493 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1494
1495 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1496 break;
1497 }
1498 case AUDIT_TTY_SET: {
1499 struct audit_tty_status s, old;
1500 struct audit_buffer *ab;
1501 unsigned int t;
1502
1503 memset(&s, 0, sizeof(s));
1504 /* guard against past and future API changes */
1505 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1506 /* check if new data is valid */
1507 if ((s.enabled != 0 && s.enabled != 1) ||
1508 (s.log_passwd != 0 && s.log_passwd != 1))
1509 err = -EINVAL;
1510
1511 if (err)
1512 t = READ_ONCE(current->signal->audit_tty);
1513 else {
1514 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1515 t = xchg(¤t->signal->audit_tty, t);
1516 }
1517 old.enabled = t & AUDIT_TTY_ENABLE;
1518 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1519
1520 audit_log_common_recv_msg(audit_context(), &ab,
1521 AUDIT_CONFIG_CHANGE);
1522 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1523 " old-log_passwd=%d new-log_passwd=%d res=%d",
1524 old.enabled, s.enabled, old.log_passwd,
1525 s.log_passwd, !err);
1526 audit_log_end(ab);
1527 break;
1528 }
1529 default:
1530 err = -EINVAL;
1531 break;
1532 }
1533
1534 return err < 0 ? err : 0;
1535 }
1536
1537 /**
1538 * audit_receive - receive messages from a netlink control socket
1539 * @skb: the message buffer
1540 *
1541 * Parse the provided skb and deal with any messages that may be present,
1542 * malformed skbs are discarded.
1543 */
audit_receive(struct sk_buff * skb)1544 static void audit_receive(struct sk_buff *skb)
1545 {
1546 struct nlmsghdr *nlh;
1547 /*
1548 * len MUST be signed for nlmsg_next to be able to dec it below 0
1549 * if the nlmsg_len was not aligned
1550 */
1551 int len;
1552 int err;
1553
1554 nlh = nlmsg_hdr(skb);
1555 len = skb->len;
1556
1557 audit_ctl_lock();
1558 while (nlmsg_ok(nlh, len)) {
1559 err = audit_receive_msg(skb, nlh);
1560 /* if err or if this message says it wants a response */
1561 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1562 netlink_ack(skb, nlh, err, NULL);
1563
1564 nlh = nlmsg_next(nlh, &len);
1565 }
1566 audit_ctl_unlock();
1567
1568 /* can't block with the ctrl lock, so penalize the sender now */
1569 if (audit_backlog_limit &&
1570 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1571 DECLARE_WAITQUEUE(wait, current);
1572
1573 /* wake kauditd to try and flush the queue */
1574 wake_up_interruptible(&kauditd_wait);
1575
1576 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1577 set_current_state(TASK_UNINTERRUPTIBLE);
1578 schedule_timeout(audit_backlog_wait_time);
1579 remove_wait_queue(&audit_backlog_wait, &wait);
1580 }
1581 }
1582
1583 /* Log information about who is connecting to the audit multicast socket */
audit_log_multicast(int group,const char * op,int err)1584 static void audit_log_multicast(int group, const char *op, int err)
1585 {
1586 const struct cred *cred;
1587 struct tty_struct *tty;
1588 char comm[sizeof(current->comm)];
1589 struct audit_buffer *ab;
1590
1591 if (!audit_enabled)
1592 return;
1593
1594 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1595 if (!ab)
1596 return;
1597
1598 cred = current_cred();
1599 tty = audit_get_tty();
1600 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1601 task_pid_nr(current),
1602 from_kuid(&init_user_ns, cred->uid),
1603 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1604 tty ? tty_name(tty) : "(none)",
1605 audit_get_sessionid(current));
1606 audit_put_tty(tty);
1607 audit_log_task_context(ab); /* subj= */
1608 audit_log_format(ab, " comm=");
1609 audit_log_untrustedstring(ab, get_task_comm(comm, current));
1610 audit_log_d_path_exe(ab, current->mm); /* exe= */
1611 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1612 audit_log_end(ab);
1613 }
1614
1615 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_multicast_bind(struct net * net,int group)1616 static int audit_multicast_bind(struct net *net, int group)
1617 {
1618 int err = 0;
1619
1620 if (!capable(CAP_AUDIT_READ))
1621 err = -EPERM;
1622 audit_log_multicast(group, "connect", err);
1623 return err;
1624 }
1625
audit_multicast_unbind(struct net * net,int group)1626 static void audit_multicast_unbind(struct net *net, int group)
1627 {
1628 audit_log_multicast(group, "disconnect", 0);
1629 }
1630
audit_net_init(struct net * net)1631 static int __net_init audit_net_init(struct net *net)
1632 {
1633 struct netlink_kernel_cfg cfg = {
1634 .input = audit_receive,
1635 .bind = audit_multicast_bind,
1636 .unbind = audit_multicast_unbind,
1637 .flags = NL_CFG_F_NONROOT_RECV,
1638 .groups = AUDIT_NLGRP_MAX,
1639 };
1640
1641 struct audit_net *aunet = net_generic(net, audit_net_id);
1642
1643 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1644 if (aunet->sk == NULL) {
1645 audit_panic("cannot initialize netlink socket in namespace");
1646 return -ENOMEM;
1647 }
1648 /* limit the timeout in case auditd is blocked/stopped */
1649 aunet->sk->sk_sndtimeo = HZ / 10;
1650
1651 return 0;
1652 }
1653
audit_net_exit(struct net * net)1654 static void __net_exit audit_net_exit(struct net *net)
1655 {
1656 struct audit_net *aunet = net_generic(net, audit_net_id);
1657
1658 /* NOTE: you would think that we would want to check the auditd
1659 * connection and potentially reset it here if it lives in this
1660 * namespace, but since the auditd connection tracking struct holds a
1661 * reference to this namespace (see auditd_set()) we are only ever
1662 * going to get here after that connection has been released */
1663
1664 netlink_kernel_release(aunet->sk);
1665 }
1666
1667 static struct pernet_operations audit_net_ops __net_initdata = {
1668 .init = audit_net_init,
1669 .exit = audit_net_exit,
1670 .id = &audit_net_id,
1671 .size = sizeof(struct audit_net),
1672 };
1673
1674 /* Initialize audit support at boot time. */
audit_init(void)1675 static int __init audit_init(void)
1676 {
1677 int i;
1678
1679 if (audit_initialized == AUDIT_DISABLED)
1680 return 0;
1681
1682 audit_buffer_cache = kmem_cache_create("audit_buffer",
1683 sizeof(struct audit_buffer),
1684 0, SLAB_PANIC, NULL);
1685
1686 skb_queue_head_init(&audit_queue);
1687 skb_queue_head_init(&audit_retry_queue);
1688 skb_queue_head_init(&audit_hold_queue);
1689
1690 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1691 INIT_LIST_HEAD(&audit_inode_hash[i]);
1692
1693 mutex_init(&audit_cmd_mutex.lock);
1694 audit_cmd_mutex.owner = NULL;
1695
1696 pr_info("initializing netlink subsys (%s)\n",
1697 audit_default ? "enabled" : "disabled");
1698 register_pernet_subsys(&audit_net_ops);
1699
1700 audit_initialized = AUDIT_INITIALIZED;
1701
1702 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1703 if (IS_ERR(kauditd_task)) {
1704 int err = PTR_ERR(kauditd_task);
1705 panic("audit: failed to start the kauditd thread (%d)\n", err);
1706 }
1707
1708 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1709 "state=initialized audit_enabled=%u res=1",
1710 audit_enabled);
1711
1712 return 0;
1713 }
1714 postcore_initcall(audit_init);
1715
1716 /*
1717 * Process kernel command-line parameter at boot time.
1718 * audit={0|off} or audit={1|on}.
1719 */
audit_enable(char * str)1720 static int __init audit_enable(char *str)
1721 {
1722 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1723 audit_default = AUDIT_OFF;
1724 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1725 audit_default = AUDIT_ON;
1726 else {
1727 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1728 audit_default = AUDIT_ON;
1729 }
1730
1731 if (audit_default == AUDIT_OFF)
1732 audit_initialized = AUDIT_DISABLED;
1733 if (audit_set_enabled(audit_default))
1734 pr_err("audit: error setting audit state (%d)\n",
1735 audit_default);
1736
1737 pr_info("%s\n", audit_default ?
1738 "enabled (after initialization)" : "disabled (until reboot)");
1739
1740 return 1;
1741 }
1742 __setup("audit=", audit_enable);
1743
1744 /* Process kernel command-line parameter at boot time.
1745 * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1746 static int __init audit_backlog_limit_set(char *str)
1747 {
1748 u32 audit_backlog_limit_arg;
1749
1750 pr_info("audit_backlog_limit: ");
1751 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1752 pr_cont("using default of %u, unable to parse %s\n",
1753 audit_backlog_limit, str);
1754 return 1;
1755 }
1756
1757 audit_backlog_limit = audit_backlog_limit_arg;
1758 pr_cont("%d\n", audit_backlog_limit);
1759
1760 return 1;
1761 }
1762 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1763
audit_buffer_free(struct audit_buffer * ab)1764 static void audit_buffer_free(struct audit_buffer *ab)
1765 {
1766 if (!ab)
1767 return;
1768
1769 kfree_skb(ab->skb);
1770 kmem_cache_free(audit_buffer_cache, ab);
1771 }
1772
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1773 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1774 gfp_t gfp_mask, int type)
1775 {
1776 struct audit_buffer *ab;
1777
1778 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1779 if (!ab)
1780 return NULL;
1781
1782 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1783 if (!ab->skb)
1784 goto err;
1785 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1786 goto err;
1787
1788 ab->ctx = ctx;
1789 ab->gfp_mask = gfp_mask;
1790
1791 return ab;
1792
1793 err:
1794 audit_buffer_free(ab);
1795 return NULL;
1796 }
1797
1798 /**
1799 * audit_serial - compute a serial number for the audit record
1800 *
1801 * Compute a serial number for the audit record. Audit records are
1802 * written to user-space as soon as they are generated, so a complete
1803 * audit record may be written in several pieces. The timestamp of the
1804 * record and this serial number are used by the user-space tools to
1805 * determine which pieces belong to the same audit record. The
1806 * (timestamp,serial) tuple is unique for each syscall and is live from
1807 * syscall entry to syscall exit.
1808 *
1809 * NOTE: Another possibility is to store the formatted records off the
1810 * audit context (for those records that have a context), and emit them
1811 * all at syscall exit. However, this could delay the reporting of
1812 * significant errors until syscall exit (or never, if the system
1813 * halts).
1814 */
audit_serial(void)1815 unsigned int audit_serial(void)
1816 {
1817 static atomic_t serial = ATOMIC_INIT(0);
1818
1819 return atomic_add_return(1, &serial);
1820 }
1821
audit_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1822 static inline void audit_get_stamp(struct audit_context *ctx,
1823 struct timespec64 *t, unsigned int *serial)
1824 {
1825 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1826 ktime_get_coarse_real_ts64(t);
1827 *serial = audit_serial();
1828 }
1829 }
1830
1831 /**
1832 * audit_log_start - obtain an audit buffer
1833 * @ctx: audit_context (may be NULL)
1834 * @gfp_mask: type of allocation
1835 * @type: audit message type
1836 *
1837 * Returns audit_buffer pointer on success or NULL on error.
1838 *
1839 * Obtain an audit buffer. This routine does locking to obtain the
1840 * audit buffer, but then no locking is required for calls to
1841 * audit_log_*format. If the task (ctx) is a task that is currently in a
1842 * syscall, then the syscall is marked as auditable and an audit record
1843 * will be written at syscall exit. If there is no associated task, then
1844 * task context (ctx) should be NULL.
1845 */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1846 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1847 int type)
1848 {
1849 struct audit_buffer *ab;
1850 struct timespec64 t;
1851 unsigned int serial;
1852
1853 if (audit_initialized != AUDIT_INITIALIZED)
1854 return NULL;
1855
1856 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1857 return NULL;
1858
1859 /* NOTE: don't ever fail/sleep on these two conditions:
1860 * 1. auditd generated record - since we need auditd to drain the
1861 * queue; also, when we are checking for auditd, compare PIDs using
1862 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1863 * using a PID anchored in the caller's namespace
1864 * 2. generator holding the audit_cmd_mutex - we don't want to block
1865 * while holding the mutex, although we do penalize the sender
1866 * later in audit_receive() when it is safe to block
1867 */
1868 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1869 long stime = audit_backlog_wait_time;
1870
1871 while (audit_backlog_limit &&
1872 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1873 /* wake kauditd to try and flush the queue */
1874 wake_up_interruptible(&kauditd_wait);
1875
1876 /* sleep if we are allowed and we haven't exhausted our
1877 * backlog wait limit */
1878 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1879 long rtime = stime;
1880
1881 DECLARE_WAITQUEUE(wait, current);
1882
1883 add_wait_queue_exclusive(&audit_backlog_wait,
1884 &wait);
1885 set_current_state(TASK_UNINTERRUPTIBLE);
1886 stime = schedule_timeout(rtime);
1887 atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1888 remove_wait_queue(&audit_backlog_wait, &wait);
1889 } else {
1890 if (audit_rate_check() && printk_ratelimit())
1891 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1892 skb_queue_len(&audit_queue),
1893 audit_backlog_limit);
1894 audit_log_lost("backlog limit exceeded");
1895 return NULL;
1896 }
1897 }
1898 }
1899
1900 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1901 if (!ab) {
1902 audit_log_lost("out of memory in audit_log_start");
1903 return NULL;
1904 }
1905
1906 audit_get_stamp(ab->ctx, &t, &serial);
1907 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1908 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1909
1910 return ab;
1911 }
1912
1913 /**
1914 * audit_expand - expand skb in the audit buffer
1915 * @ab: audit_buffer
1916 * @extra: space to add at tail of the skb
1917 *
1918 * Returns 0 (no space) on failed expansion, or available space if
1919 * successful.
1920 */
audit_expand(struct audit_buffer * ab,int extra)1921 static inline int audit_expand(struct audit_buffer *ab, int extra)
1922 {
1923 struct sk_buff *skb = ab->skb;
1924 int oldtail = skb_tailroom(skb);
1925 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1926 int newtail = skb_tailroom(skb);
1927
1928 if (ret < 0) {
1929 audit_log_lost("out of memory in audit_expand");
1930 return 0;
1931 }
1932
1933 skb->truesize += newtail - oldtail;
1934 return newtail;
1935 }
1936
1937 /*
1938 * Format an audit message into the audit buffer. If there isn't enough
1939 * room in the audit buffer, more room will be allocated and vsnprint
1940 * will be called a second time. Currently, we assume that a printk
1941 * can't format message larger than 1024 bytes, so we don't either.
1942 */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1943 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1944 va_list args)
1945 {
1946 int len, avail;
1947 struct sk_buff *skb;
1948 va_list args2;
1949
1950 if (!ab)
1951 return;
1952
1953 BUG_ON(!ab->skb);
1954 skb = ab->skb;
1955 avail = skb_tailroom(skb);
1956 if (avail == 0) {
1957 avail = audit_expand(ab, AUDIT_BUFSIZ);
1958 if (!avail)
1959 goto out;
1960 }
1961 va_copy(args2, args);
1962 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1963 if (len >= avail) {
1964 /* The printk buffer is 1024 bytes long, so if we get
1965 * here and AUDIT_BUFSIZ is at least 1024, then we can
1966 * log everything that printk could have logged. */
1967 avail = audit_expand(ab,
1968 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1969 if (!avail)
1970 goto out_va_end;
1971 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1972 }
1973 if (len > 0)
1974 skb_put(skb, len);
1975 out_va_end:
1976 va_end(args2);
1977 out:
1978 return;
1979 }
1980
1981 /**
1982 * audit_log_format - format a message into the audit buffer.
1983 * @ab: audit_buffer
1984 * @fmt: format string
1985 * @...: optional parameters matching @fmt string
1986 *
1987 * All the work is done in audit_log_vformat.
1988 */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)1989 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1990 {
1991 va_list args;
1992
1993 if (!ab)
1994 return;
1995 va_start(args, fmt);
1996 audit_log_vformat(ab, fmt, args);
1997 va_end(args);
1998 }
1999
2000 /**
2001 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2002 * @ab: the audit_buffer
2003 * @buf: buffer to convert to hex
2004 * @len: length of @buf to be converted
2005 *
2006 * No return value; failure to expand is silently ignored.
2007 *
2008 * This function will take the passed buf and convert it into a string of
2009 * ascii hex digits. The new string is placed onto the skb.
2010 */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)2011 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2012 size_t len)
2013 {
2014 int i, avail, new_len;
2015 unsigned char *ptr;
2016 struct sk_buff *skb;
2017
2018 if (!ab)
2019 return;
2020
2021 BUG_ON(!ab->skb);
2022 skb = ab->skb;
2023 avail = skb_tailroom(skb);
2024 new_len = len<<1;
2025 if (new_len >= avail) {
2026 /* Round the buffer request up to the next multiple */
2027 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2028 avail = audit_expand(ab, new_len);
2029 if (!avail)
2030 return;
2031 }
2032
2033 ptr = skb_tail_pointer(skb);
2034 for (i = 0; i < len; i++)
2035 ptr = hex_byte_pack_upper(ptr, buf[i]);
2036 *ptr = 0;
2037 skb_put(skb, len << 1); /* new string is twice the old string */
2038 }
2039
2040 /*
2041 * Format a string of no more than slen characters into the audit buffer,
2042 * enclosed in quote marks.
2043 */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)2044 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2045 size_t slen)
2046 {
2047 int avail, new_len;
2048 unsigned char *ptr;
2049 struct sk_buff *skb;
2050
2051 if (!ab)
2052 return;
2053
2054 BUG_ON(!ab->skb);
2055 skb = ab->skb;
2056 avail = skb_tailroom(skb);
2057 new_len = slen + 3; /* enclosing quotes + null terminator */
2058 if (new_len > avail) {
2059 avail = audit_expand(ab, new_len);
2060 if (!avail)
2061 return;
2062 }
2063 ptr = skb_tail_pointer(skb);
2064 *ptr++ = '"';
2065 memcpy(ptr, string, slen);
2066 ptr += slen;
2067 *ptr++ = '"';
2068 *ptr = 0;
2069 skb_put(skb, slen + 2); /* don't include null terminator */
2070 }
2071
2072 /**
2073 * audit_string_contains_control - does a string need to be logged in hex
2074 * @string: string to be checked
2075 * @len: max length of the string to check
2076 */
audit_string_contains_control(const char * string,size_t len)2077 bool audit_string_contains_control(const char *string, size_t len)
2078 {
2079 const unsigned char *p;
2080 for (p = string; p < (const unsigned char *)string + len; p++) {
2081 if (*p == '"' || *p < 0x21 || *p > 0x7e)
2082 return true;
2083 }
2084 return false;
2085 }
2086
2087 /**
2088 * audit_log_n_untrustedstring - log a string that may contain random characters
2089 * @ab: audit_buffer
2090 * @len: length of string (not including trailing null)
2091 * @string: string to be logged
2092 *
2093 * This code will escape a string that is passed to it if the string
2094 * contains a control character, unprintable character, double quote mark,
2095 * or a space. Unescaped strings will start and end with a double quote mark.
2096 * Strings that are escaped are printed in hex (2 digits per char).
2097 *
2098 * The caller specifies the number of characters in the string to log, which may
2099 * or may not be the entire string.
2100 */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2101 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2102 size_t len)
2103 {
2104 if (audit_string_contains_control(string, len))
2105 audit_log_n_hex(ab, string, len);
2106 else
2107 audit_log_n_string(ab, string, len);
2108 }
2109
2110 /**
2111 * audit_log_untrustedstring - log a string that may contain random characters
2112 * @ab: audit_buffer
2113 * @string: string to be logged
2114 *
2115 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2116 * determine string length.
2117 */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2118 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2119 {
2120 audit_log_n_untrustedstring(ab, string, strlen(string));
2121 }
2122
2123 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2124 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2125 const struct path *path)
2126 {
2127 char *p, *pathname;
2128
2129 if (prefix)
2130 audit_log_format(ab, "%s", prefix);
2131
2132 /* We will allow 11 spaces for ' (deleted)' to be appended */
2133 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2134 if (!pathname) {
2135 audit_log_format(ab, "\"<no_memory>\"");
2136 return;
2137 }
2138 p = d_path(path, pathname, PATH_MAX+11);
2139 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2140 /* FIXME: can we save some information here? */
2141 audit_log_format(ab, "\"<too_long>\"");
2142 } else
2143 audit_log_untrustedstring(ab, p);
2144 kfree(pathname);
2145 }
2146
audit_log_session_info(struct audit_buffer * ab)2147 void audit_log_session_info(struct audit_buffer *ab)
2148 {
2149 unsigned int sessionid = audit_get_sessionid(current);
2150 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2151
2152 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2153 }
2154
audit_log_key(struct audit_buffer * ab,char * key)2155 void audit_log_key(struct audit_buffer *ab, char *key)
2156 {
2157 audit_log_format(ab, " key=");
2158 if (key)
2159 audit_log_untrustedstring(ab, key);
2160 else
2161 audit_log_format(ab, "(null)");
2162 }
2163
audit_log_task_context(struct audit_buffer * ab)2164 int audit_log_task_context(struct audit_buffer *ab)
2165 {
2166 char *ctx = NULL;
2167 unsigned len;
2168 int error;
2169 u32 sid;
2170
2171 security_task_getsecid(current, &sid);
2172 if (!sid)
2173 return 0;
2174
2175 error = security_secid_to_secctx(sid, &ctx, &len);
2176 if (error) {
2177 if (error != -EINVAL)
2178 goto error_path;
2179 return 0;
2180 }
2181
2182 audit_log_format(ab, " subj=%s", ctx);
2183 security_release_secctx(ctx, len);
2184 return 0;
2185
2186 error_path:
2187 audit_panic("error in audit_log_task_context");
2188 return error;
2189 }
2190 EXPORT_SYMBOL(audit_log_task_context);
2191
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2192 void audit_log_d_path_exe(struct audit_buffer *ab,
2193 struct mm_struct *mm)
2194 {
2195 struct file *exe_file;
2196
2197 if (!mm)
2198 goto out_null;
2199
2200 exe_file = get_mm_exe_file(mm);
2201 if (!exe_file)
2202 goto out_null;
2203
2204 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2205 fput(exe_file);
2206 return;
2207 out_null:
2208 audit_log_format(ab, " exe=(null)");
2209 }
2210
audit_get_tty(void)2211 struct tty_struct *audit_get_tty(void)
2212 {
2213 struct tty_struct *tty = NULL;
2214 unsigned long flags;
2215
2216 spin_lock_irqsave(¤t->sighand->siglock, flags);
2217 if (current->signal)
2218 tty = tty_kref_get(current->signal->tty);
2219 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
2220 return tty;
2221 }
2222
audit_put_tty(struct tty_struct * tty)2223 void audit_put_tty(struct tty_struct *tty)
2224 {
2225 tty_kref_put(tty);
2226 }
2227
audit_log_task_info(struct audit_buffer * ab)2228 void audit_log_task_info(struct audit_buffer *ab)
2229 {
2230 const struct cred *cred;
2231 char comm[sizeof(current->comm)];
2232 struct tty_struct *tty;
2233
2234 if (!ab)
2235 return;
2236
2237 cred = current_cred();
2238 tty = audit_get_tty();
2239 audit_log_format(ab,
2240 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2241 " euid=%u suid=%u fsuid=%u"
2242 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2243 task_ppid_nr(current),
2244 task_tgid_nr(current),
2245 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2246 from_kuid(&init_user_ns, cred->uid),
2247 from_kgid(&init_user_ns, cred->gid),
2248 from_kuid(&init_user_ns, cred->euid),
2249 from_kuid(&init_user_ns, cred->suid),
2250 from_kuid(&init_user_ns, cred->fsuid),
2251 from_kgid(&init_user_ns, cred->egid),
2252 from_kgid(&init_user_ns, cred->sgid),
2253 from_kgid(&init_user_ns, cred->fsgid),
2254 tty ? tty_name(tty) : "(none)",
2255 audit_get_sessionid(current));
2256 audit_put_tty(tty);
2257 audit_log_format(ab, " comm=");
2258 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2259 audit_log_d_path_exe(ab, current->mm);
2260 audit_log_task_context(ab);
2261 }
2262 EXPORT_SYMBOL(audit_log_task_info);
2263
2264 /**
2265 * audit_log_path_denied - report a path restriction denial
2266 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2267 * @operation: specific operation name
2268 */
audit_log_path_denied(int type,const char * operation)2269 void audit_log_path_denied(int type, const char *operation)
2270 {
2271 struct audit_buffer *ab;
2272
2273 if (!audit_enabled || audit_dummy_context())
2274 return;
2275
2276 /* Generate log with subject, operation, outcome. */
2277 ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2278 if (!ab)
2279 return;
2280 audit_log_format(ab, "op=%s", operation);
2281 audit_log_task_info(ab);
2282 audit_log_format(ab, " res=0");
2283 audit_log_end(ab);
2284 }
2285
2286 /* global counter which is incremented every time something logs in */
2287 static atomic_t session_id = ATOMIC_INIT(0);
2288
audit_set_loginuid_perm(kuid_t loginuid)2289 static int audit_set_loginuid_perm(kuid_t loginuid)
2290 {
2291 /* if we are unset, we don't need privs */
2292 if (!audit_loginuid_set(current))
2293 return 0;
2294 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2295 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2296 return -EPERM;
2297 /* it is set, you need permission */
2298 if (!capable(CAP_AUDIT_CONTROL))
2299 return -EPERM;
2300 /* reject if this is not an unset and we don't allow that */
2301 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2302 && uid_valid(loginuid))
2303 return -EPERM;
2304 return 0;
2305 }
2306
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)2307 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2308 unsigned int oldsessionid,
2309 unsigned int sessionid, int rc)
2310 {
2311 struct audit_buffer *ab;
2312 uid_t uid, oldloginuid, loginuid;
2313 struct tty_struct *tty;
2314
2315 if (!audit_enabled)
2316 return;
2317
2318 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2319 if (!ab)
2320 return;
2321
2322 uid = from_kuid(&init_user_ns, task_uid(current));
2323 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2324 loginuid = from_kuid(&init_user_ns, kloginuid),
2325 tty = audit_get_tty();
2326
2327 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2328 audit_log_task_context(ab);
2329 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2330 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2331 oldsessionid, sessionid, !rc);
2332 audit_put_tty(tty);
2333 audit_log_end(ab);
2334 }
2335
2336 /**
2337 * audit_set_loginuid - set current task's loginuid
2338 * @loginuid: loginuid value
2339 *
2340 * Returns 0.
2341 *
2342 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2343 */
audit_set_loginuid(kuid_t loginuid)2344 int audit_set_loginuid(kuid_t loginuid)
2345 {
2346 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2347 kuid_t oldloginuid;
2348 int rc;
2349
2350 oldloginuid = audit_get_loginuid(current);
2351 oldsessionid = audit_get_sessionid(current);
2352
2353 rc = audit_set_loginuid_perm(loginuid);
2354 if (rc)
2355 goto out;
2356
2357 /* are we setting or clearing? */
2358 if (uid_valid(loginuid)) {
2359 sessionid = (unsigned int)atomic_inc_return(&session_id);
2360 if (unlikely(sessionid == AUDIT_SID_UNSET))
2361 sessionid = (unsigned int)atomic_inc_return(&session_id);
2362 }
2363
2364 current->sessionid = sessionid;
2365 current->loginuid = loginuid;
2366 out:
2367 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2368 return rc;
2369 }
2370
2371 /**
2372 * audit_signal_info - record signal info for shutting down audit subsystem
2373 * @sig: signal value
2374 * @t: task being signaled
2375 *
2376 * If the audit subsystem is being terminated, record the task (pid)
2377 * and uid that is doing that.
2378 */
audit_signal_info(int sig,struct task_struct * t)2379 int audit_signal_info(int sig, struct task_struct *t)
2380 {
2381 kuid_t uid = current_uid(), auid;
2382
2383 if (auditd_test_task(t) &&
2384 (sig == SIGTERM || sig == SIGHUP ||
2385 sig == SIGUSR1 || sig == SIGUSR2)) {
2386 audit_sig_pid = task_tgid_nr(current);
2387 auid = audit_get_loginuid(current);
2388 if (uid_valid(auid))
2389 audit_sig_uid = auid;
2390 else
2391 audit_sig_uid = uid;
2392 security_task_getsecid(current, &audit_sig_sid);
2393 }
2394
2395 return audit_signal_info_syscall(t);
2396 }
2397
2398 /**
2399 * audit_log_end - end one audit record
2400 * @ab: the audit_buffer
2401 *
2402 * We can not do a netlink send inside an irq context because it blocks (last
2403 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2404 * queue and a tasklet is scheduled to remove them from the queue outside the
2405 * irq context. May be called in any context.
2406 */
audit_log_end(struct audit_buffer * ab)2407 void audit_log_end(struct audit_buffer *ab)
2408 {
2409 struct sk_buff *skb;
2410 struct nlmsghdr *nlh;
2411
2412 if (!ab)
2413 return;
2414
2415 if (audit_rate_check()) {
2416 skb = ab->skb;
2417 ab->skb = NULL;
2418
2419 /* setup the netlink header, see the comments in
2420 * kauditd_send_multicast_skb() for length quirks */
2421 nlh = nlmsg_hdr(skb);
2422 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2423
2424 /* queue the netlink packet and poke the kauditd thread */
2425 skb_queue_tail(&audit_queue, skb);
2426 wake_up_interruptible(&kauditd_wait);
2427 } else
2428 audit_log_lost("rate limit exceeded");
2429
2430 audit_buffer_free(ab);
2431 }
2432
2433 /**
2434 * audit_log - Log an audit record
2435 * @ctx: audit context
2436 * @gfp_mask: type of allocation
2437 * @type: audit message type
2438 * @fmt: format string to use
2439 * @...: variable parameters matching the format string
2440 *
2441 * This is a convenience function that calls audit_log_start,
2442 * audit_log_vformat, and audit_log_end. It may be called
2443 * in any context.
2444 */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2445 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2446 const char *fmt, ...)
2447 {
2448 struct audit_buffer *ab;
2449 va_list args;
2450
2451 ab = audit_log_start(ctx, gfp_mask, type);
2452 if (ab) {
2453 va_start(args, fmt);
2454 audit_log_vformat(ab, fmt, args);
2455 va_end(args);
2456 audit_log_end(ab);
2457 }
2458 }
2459
2460 EXPORT_SYMBOL(audit_log_start);
2461 EXPORT_SYMBOL(audit_log_end);
2462 EXPORT_SYMBOL(audit_log_format);
2463 EXPORT_SYMBOL(audit_log);
2464