• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * audio resampling
3  * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 /**
22  * @file libavcodec/resample2.c
23  * audio resampling
24  * @author Michael Niedermayer <michaelni@gmx.at>
25  */
26 
27 #include "avcodec.h"
28 #include "dsputil.h"
29 
30 #ifndef CONFIG_RESAMPLE_HP
31 #define FILTER_SHIFT 15
32 
33 #define FELEM int16_t
34 #define FELEM2 int32_t
35 #define FELEML int64_t
36 #define FELEM_MAX INT16_MAX
37 #define FELEM_MIN INT16_MIN
38 #define WINDOW_TYPE 9
39 #elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE)
40 #define FILTER_SHIFT 30
41 
42 #define FELEM int32_t
43 #define FELEM2 int64_t
44 #define FELEML int64_t
45 #define FELEM_MAX INT32_MAX
46 #define FELEM_MIN INT32_MIN
47 #define WINDOW_TYPE 12
48 #else
49 #define FILTER_SHIFT 0
50 
51 #define FELEM double
52 #define FELEM2 double
53 #define FELEML double
54 #define WINDOW_TYPE 24
55 #endif
56 
57 
58 typedef struct AVResampleContext{
59     FELEM *filter_bank;
60     int filter_length;
61     int ideal_dst_incr;
62     int dst_incr;
63     int index;
64     int frac;
65     int src_incr;
66     int compensation_distance;
67     int phase_shift;
68     int phase_mask;
69     int linear;
70 }AVResampleContext;
71 
72 /**
73  * 0th order modified bessel function of the first kind.
74  */
bessel(double x)75 static double bessel(double x){
76     double v=1;
77     double t=1;
78     int i;
79 
80     x= x*x/4;
81     for(i=1; i<50; i++){
82         t *= x/(i*i);
83         v += t;
84     }
85     return v;
86 }
87 
88 /**
89  * builds a polyphase filterbank.
90  * @param factor resampling factor
91  * @param scale wanted sum of coefficients for each filter
92  * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16
93  */
av_build_filter(FELEM * filter,double factor,int tap_count,int phase_count,int scale,int type)94 void av_build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
95     int ph, i;
96     double x, y, w, tab[tap_count];
97     const int center= (tap_count-1)/2;
98 
99     /* if upsampling, only need to interpolate, no filter */
100     if (factor > 1.0)
101         factor = 1.0;
102 
103     for(ph=0;ph<phase_count;ph++) {
104         double norm = 0;
105         for(i=0;i<tap_count;i++) {
106             x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
107             if (x == 0) y = 1.0;
108             else        y = sin(x) / x;
109             switch(type){
110             case 0:{
111                 const float d= -0.5; //first order derivative = -0.5
112                 x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
113                 if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
114                 else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
115                 break;}
116             case 1:
117                 w = 2.0*x / (factor*tap_count) + M_PI;
118                 y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
119                 break;
120             default:
121                 w = 2.0*x / (factor*tap_count*M_PI);
122                 y *= bessel(type*sqrt(FFMAX(1-w*w, 0)));
123                 break;
124             }
125 
126             tab[i] = y;
127             norm += y;
128         }
129 
130         /* normalize so that an uniform color remains the same */
131         for(i=0;i<tap_count;i++) {
132 #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
133             filter[ph * tap_count + i] = tab[i] / norm;
134 #else
135             filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX);
136 #endif
137         }
138     }
139 #if 0
140     {
141 #define LEN 1024
142         int j,k;
143         double sine[LEN + tap_count];
144         double filtered[LEN];
145         double maxff=-2, minff=2, maxsf=-2, minsf=2;
146         for(i=0; i<LEN; i++){
147             double ss=0, sf=0, ff=0;
148             for(j=0; j<LEN+tap_count; j++)
149                 sine[j]= cos(i*j*M_PI/LEN);
150             for(j=0; j<LEN; j++){
151                 double sum=0;
152                 ph=0;
153                 for(k=0; k<tap_count; k++)
154                     sum += filter[ph * tap_count + k] * sine[k+j];
155                 filtered[j]= sum / (1<<FILTER_SHIFT);
156                 ss+= sine[j + center] * sine[j + center];
157                 ff+= filtered[j] * filtered[j];
158                 sf+= sine[j + center] * filtered[j];
159             }
160             ss= sqrt(2*ss/LEN);
161             ff= sqrt(2*ff/LEN);
162             sf= 2*sf/LEN;
163             maxff= FFMAX(maxff, ff);
164             minff= FFMIN(minff, ff);
165             maxsf= FFMAX(maxsf, sf);
166             minsf= FFMIN(minsf, sf);
167             if(i%11==0){
168                 av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
169                 minff=minsf= 2;
170                 maxff=maxsf= -2;
171             }
172         }
173     }
174 #endif
175 }
176 
av_resample_init(int out_rate,int in_rate,int filter_size,int phase_shift,int linear,double cutoff)177 AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
178     AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
179     double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
180     int phase_count= 1<<phase_shift;
181 
182     c->phase_shift= phase_shift;
183     c->phase_mask= phase_count-1;
184     c->linear= linear;
185 
186     c->filter_length= FFMAX((int)ceil(filter_size/factor), 1);
187     c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
188     av_build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE);
189     memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
190     c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
191 
192     c->src_incr= out_rate;
193     c->ideal_dst_incr= c->dst_incr= in_rate * phase_count;
194     c->index= -phase_count*((c->filter_length-1)/2);
195 
196     return c;
197 }
198 
av_resample_close(AVResampleContext * c)199 void av_resample_close(AVResampleContext *c){
200     av_freep(&c->filter_bank);
201     av_freep(&c);
202 }
203 
av_resample_compensate(AVResampleContext * c,int sample_delta,int compensation_distance)204 void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
205 //    sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
206     c->compensation_distance= compensation_distance;
207     c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
208 }
209 
av_resample(AVResampleContext * c,short * dst,short * src,int * consumed,int src_size,int dst_size,int update_ctx)210 int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
211     int dst_index, i;
212     int index= c->index;
213     int frac= c->frac;
214     int dst_incr_frac= c->dst_incr % c->src_incr;
215     int dst_incr=      c->dst_incr / c->src_incr;
216     int compensation_distance= c->compensation_distance;
217 
218   if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
219         int64_t index2= ((int64_t)index)<<32;
220         int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
221         dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
222 
223         for(dst_index=0; dst_index < dst_size; dst_index++){
224             dst[dst_index] = src[index2>>32];
225             index2 += incr;
226         }
227         frac += dst_index * dst_incr_frac;
228         index += dst_index * dst_incr;
229         index += frac / c->src_incr;
230         frac %= c->src_incr;
231   }else{
232     for(dst_index=0; dst_index < dst_size; dst_index++){
233         FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
234         int sample_index= index >> c->phase_shift;
235         FELEM2 val=0;
236 
237         if(sample_index < 0){
238             for(i=0; i<c->filter_length; i++)
239                 val += src[FFABS(sample_index + i) % src_size] * filter[i];
240         }else if(sample_index + c->filter_length > src_size){
241             break;
242         }else if(c->linear){
243             FELEM2 v2=0;
244             for(i=0; i<c->filter_length; i++){
245                 val += src[sample_index + i] * (FELEM2)filter[i];
246                 v2  += src[sample_index + i] * (FELEM2)filter[i + c->filter_length];
247             }
248             val+=(v2-val)*(FELEML)frac / c->src_incr;
249         }else{
250             for(i=0; i<c->filter_length; i++){
251                 val += src[sample_index + i] * (FELEM2)filter[i];
252             }
253         }
254 
255 #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
256         dst[dst_index] = av_clip_int16(lrintf(val));
257 #else
258         val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
259         dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
260 #endif
261 
262         frac += dst_incr_frac;
263         index += dst_incr;
264         if(frac >= c->src_incr){
265             frac -= c->src_incr;
266             index++;
267         }
268 
269         if(dst_index + 1 == compensation_distance){
270             compensation_distance= 0;
271             dst_incr_frac= c->ideal_dst_incr % c->src_incr;
272             dst_incr=      c->ideal_dst_incr / c->src_incr;
273         }
274     }
275   }
276     *consumed= FFMAX(index, 0) >> c->phase_shift;
277     if(index>=0) index &= c->phase_mask;
278 
279     if(compensation_distance){
280         compensation_distance -= dst_index;
281         assert(compensation_distance > 0);
282     }
283     if(update_ctx){
284         c->frac= frac;
285         c->index= index;
286         c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
287         c->compensation_distance= compensation_distance;
288     }
289 #if 0
290     if(update_ctx && !c->compensation_distance){
291 #undef rand
292         av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
293 av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
294     }
295 #endif
296 
297     return dst_index;
298 }
299