1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Implementation of primary alsa driver code base for Intel HD Audio.
5 *
6 * Copyright(c) 2004 Intel Corporation. All rights reserved.
7 *
8 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
9 * PeiSen Hou <pshou@realtek.com.tw>
10 */
11
12 #include <linux/clocksource.h>
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/slab.h>
19
20 #ifdef CONFIG_X86
21 /* for art-tsc conversion */
22 #include <asm/tsc.h>
23 #endif
24
25 #include <sound/core.h>
26 #include <sound/initval.h>
27 #include "hda_controller.h"
28 #include "hda_local.h"
29
30 #define CREATE_TRACE_POINTS
31 #include "hda_controller_trace.h"
32
33 /* DSP lock helpers */
34 #define dsp_lock(dev) snd_hdac_dsp_lock(azx_stream(dev))
35 #define dsp_unlock(dev) snd_hdac_dsp_unlock(azx_stream(dev))
36 #define dsp_is_locked(dev) snd_hdac_stream_is_locked(azx_stream(dev))
37
38 /* assign a stream for the PCM */
39 static inline struct azx_dev *
azx_assign_device(struct azx * chip,struct snd_pcm_substream * substream)40 azx_assign_device(struct azx *chip, struct snd_pcm_substream *substream)
41 {
42 struct hdac_stream *s;
43
44 s = snd_hdac_stream_assign(azx_bus(chip), substream);
45 if (!s)
46 return NULL;
47 return stream_to_azx_dev(s);
48 }
49
50 /* release the assigned stream */
azx_release_device(struct azx_dev * azx_dev)51 static inline void azx_release_device(struct azx_dev *azx_dev)
52 {
53 snd_hdac_stream_release(azx_stream(azx_dev));
54 }
55
56 static inline struct hda_pcm_stream *
to_hda_pcm_stream(struct snd_pcm_substream * substream)57 to_hda_pcm_stream(struct snd_pcm_substream *substream)
58 {
59 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
60 return &apcm->info->stream[substream->stream];
61 }
62
azx_adjust_codec_delay(struct snd_pcm_substream * substream,u64 nsec)63 static u64 azx_adjust_codec_delay(struct snd_pcm_substream *substream,
64 u64 nsec)
65 {
66 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
67 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
68 u64 codec_frames, codec_nsecs;
69
70 if (!hinfo->ops.get_delay)
71 return nsec;
72
73 codec_frames = hinfo->ops.get_delay(hinfo, apcm->codec, substream);
74 codec_nsecs = div_u64(codec_frames * 1000000000LL,
75 substream->runtime->rate);
76
77 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
78 return nsec + codec_nsecs;
79
80 return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0;
81 }
82
83 /*
84 * PCM ops
85 */
86
azx_pcm_close(struct snd_pcm_substream * substream)87 static int azx_pcm_close(struct snd_pcm_substream *substream)
88 {
89 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
90 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
91 struct azx *chip = apcm->chip;
92 struct azx_dev *azx_dev = get_azx_dev(substream);
93
94 trace_azx_pcm_close(chip, azx_dev);
95 mutex_lock(&chip->open_mutex);
96 azx_release_device(azx_dev);
97 if (hinfo->ops.close)
98 hinfo->ops.close(hinfo, apcm->codec, substream);
99 snd_hda_power_down(apcm->codec);
100 mutex_unlock(&chip->open_mutex);
101 snd_hda_codec_pcm_put(apcm->info);
102 return 0;
103 }
104
azx_pcm_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)105 static int azx_pcm_hw_params(struct snd_pcm_substream *substream,
106 struct snd_pcm_hw_params *hw_params)
107 {
108 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
109 struct azx *chip = apcm->chip;
110 struct azx_dev *azx_dev = get_azx_dev(substream);
111 int ret = 0;
112
113 trace_azx_pcm_hw_params(chip, azx_dev);
114 dsp_lock(azx_dev);
115 if (dsp_is_locked(azx_dev)) {
116 ret = -EBUSY;
117 goto unlock;
118 }
119
120 azx_dev->core.bufsize = 0;
121 azx_dev->core.period_bytes = 0;
122 azx_dev->core.format_val = 0;
123
124 unlock:
125 dsp_unlock(azx_dev);
126 return ret;
127 }
128
azx_pcm_hw_free(struct snd_pcm_substream * substream)129 static int azx_pcm_hw_free(struct snd_pcm_substream *substream)
130 {
131 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
132 struct azx_dev *azx_dev = get_azx_dev(substream);
133 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
134
135 /* reset BDL address */
136 dsp_lock(azx_dev);
137 if (!dsp_is_locked(azx_dev))
138 snd_hdac_stream_cleanup(azx_stream(azx_dev));
139
140 snd_hda_codec_cleanup(apcm->codec, hinfo, substream);
141
142 azx_stream(azx_dev)->prepared = 0;
143 dsp_unlock(azx_dev);
144 return 0;
145 }
146
azx_pcm_prepare(struct snd_pcm_substream * substream)147 static int azx_pcm_prepare(struct snd_pcm_substream *substream)
148 {
149 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
150 struct azx *chip = apcm->chip;
151 struct azx_dev *azx_dev = get_azx_dev(substream);
152 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
153 struct snd_pcm_runtime *runtime = substream->runtime;
154 unsigned int format_val, stream_tag;
155 int err;
156 struct hda_spdif_out *spdif =
157 snd_hda_spdif_out_of_nid(apcm->codec, hinfo->nid);
158 unsigned short ctls = spdif ? spdif->ctls : 0;
159
160 trace_azx_pcm_prepare(chip, azx_dev);
161 dsp_lock(azx_dev);
162 if (dsp_is_locked(azx_dev)) {
163 err = -EBUSY;
164 goto unlock;
165 }
166
167 snd_hdac_stream_reset(azx_stream(azx_dev));
168 format_val = snd_hdac_calc_stream_format(runtime->rate,
169 runtime->channels,
170 runtime->format,
171 hinfo->maxbps,
172 ctls);
173 if (!format_val) {
174 dev_err(chip->card->dev,
175 "invalid format_val, rate=%d, ch=%d, format=%d\n",
176 runtime->rate, runtime->channels, runtime->format);
177 err = -EINVAL;
178 goto unlock;
179 }
180
181 err = snd_hdac_stream_set_params(azx_stream(azx_dev), format_val);
182 if (err < 0)
183 goto unlock;
184
185 snd_hdac_stream_setup(azx_stream(azx_dev));
186
187 stream_tag = azx_dev->core.stream_tag;
188 /* CA-IBG chips need the playback stream starting from 1 */
189 if ((chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) &&
190 stream_tag > chip->capture_streams)
191 stream_tag -= chip->capture_streams;
192 err = snd_hda_codec_prepare(apcm->codec, hinfo, stream_tag,
193 azx_dev->core.format_val, substream);
194
195 unlock:
196 if (!err)
197 azx_stream(azx_dev)->prepared = 1;
198 dsp_unlock(azx_dev);
199 return err;
200 }
201
azx_pcm_trigger(struct snd_pcm_substream * substream,int cmd)202 static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
203 {
204 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
205 struct azx *chip = apcm->chip;
206 struct hdac_bus *bus = azx_bus(chip);
207 struct azx_dev *azx_dev;
208 struct snd_pcm_substream *s;
209 struct hdac_stream *hstr;
210 bool start;
211 int sbits = 0;
212 int sync_reg;
213
214 azx_dev = get_azx_dev(substream);
215 trace_azx_pcm_trigger(chip, azx_dev, cmd);
216
217 hstr = azx_stream(azx_dev);
218 if (chip->driver_caps & AZX_DCAPS_OLD_SSYNC)
219 sync_reg = AZX_REG_OLD_SSYNC;
220 else
221 sync_reg = AZX_REG_SSYNC;
222
223 if (dsp_is_locked(azx_dev) || !hstr->prepared)
224 return -EPIPE;
225
226 switch (cmd) {
227 case SNDRV_PCM_TRIGGER_START:
228 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
229 case SNDRV_PCM_TRIGGER_RESUME:
230 start = true;
231 break;
232 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
233 case SNDRV_PCM_TRIGGER_SUSPEND:
234 case SNDRV_PCM_TRIGGER_STOP:
235 start = false;
236 break;
237 default:
238 return -EINVAL;
239 }
240
241 snd_pcm_group_for_each_entry(s, substream) {
242 if (s->pcm->card != substream->pcm->card)
243 continue;
244 azx_dev = get_azx_dev(s);
245 sbits |= 1 << azx_dev->core.index;
246 snd_pcm_trigger_done(s, substream);
247 }
248
249 spin_lock(&bus->reg_lock);
250
251 /* first, set SYNC bits of corresponding streams */
252 snd_hdac_stream_sync_trigger(hstr, true, sbits, sync_reg);
253
254 snd_pcm_group_for_each_entry(s, substream) {
255 if (s->pcm->card != substream->pcm->card)
256 continue;
257 azx_dev = get_azx_dev(s);
258 if (start) {
259 azx_dev->insufficient = 1;
260 snd_hdac_stream_start(azx_stream(azx_dev), true);
261 } else {
262 snd_hdac_stream_stop(azx_stream(azx_dev));
263 }
264 }
265 spin_unlock(&bus->reg_lock);
266
267 snd_hdac_stream_sync(hstr, start, sbits);
268
269 spin_lock(&bus->reg_lock);
270 /* reset SYNC bits */
271 snd_hdac_stream_sync_trigger(hstr, false, sbits, sync_reg);
272 if (start)
273 snd_hdac_stream_timecounter_init(hstr, sbits);
274 spin_unlock(&bus->reg_lock);
275 return 0;
276 }
277
azx_get_pos_lpib(struct azx * chip,struct azx_dev * azx_dev)278 unsigned int azx_get_pos_lpib(struct azx *chip, struct azx_dev *azx_dev)
279 {
280 return snd_hdac_stream_get_pos_lpib(azx_stream(azx_dev));
281 }
282 EXPORT_SYMBOL_GPL(azx_get_pos_lpib);
283
azx_get_pos_posbuf(struct azx * chip,struct azx_dev * azx_dev)284 unsigned int azx_get_pos_posbuf(struct azx *chip, struct azx_dev *azx_dev)
285 {
286 return snd_hdac_stream_get_pos_posbuf(azx_stream(azx_dev));
287 }
288 EXPORT_SYMBOL_GPL(azx_get_pos_posbuf);
289
azx_get_position(struct azx * chip,struct azx_dev * azx_dev)290 unsigned int azx_get_position(struct azx *chip,
291 struct azx_dev *azx_dev)
292 {
293 struct snd_pcm_substream *substream = azx_dev->core.substream;
294 unsigned int pos;
295 int stream = substream->stream;
296 int delay = 0;
297
298 if (chip->get_position[stream])
299 pos = chip->get_position[stream](chip, azx_dev);
300 else /* use the position buffer as default */
301 pos = azx_get_pos_posbuf(chip, azx_dev);
302
303 if (pos >= azx_dev->core.bufsize)
304 pos = 0;
305
306 if (substream->runtime) {
307 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
308 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
309
310 if (chip->get_delay[stream])
311 delay += chip->get_delay[stream](chip, azx_dev, pos);
312 if (hinfo->ops.get_delay)
313 delay += hinfo->ops.get_delay(hinfo, apcm->codec,
314 substream);
315 substream->runtime->delay = delay;
316 }
317
318 trace_azx_get_position(chip, azx_dev, pos, delay);
319 return pos;
320 }
321 EXPORT_SYMBOL_GPL(azx_get_position);
322
azx_pcm_pointer(struct snd_pcm_substream * substream)323 static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream)
324 {
325 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
326 struct azx *chip = apcm->chip;
327 struct azx_dev *azx_dev = get_azx_dev(substream);
328 return bytes_to_frames(substream->runtime,
329 azx_get_position(chip, azx_dev));
330 }
331
332 /*
333 * azx_scale64: Scale base by mult/div while not overflowing sanely
334 *
335 * Derived from scale64_check_overflow in kernel/time/timekeeping.c
336 *
337 * The tmestamps for a 48Khz stream can overflow after (2^64/10^9)/48K which
338 * is about 384307 ie ~4.5 days.
339 *
340 * This scales the calculation so that overflow will happen but after 2^64 /
341 * 48000 secs, which is pretty large!
342 *
343 * In caln below:
344 * base may overflow, but since there isn’t any additional division
345 * performed on base it’s OK
346 * rem can’t overflow because both are 32-bit values
347 */
348
349 #ifdef CONFIG_X86
azx_scale64(u64 base,u32 num,u32 den)350 static u64 azx_scale64(u64 base, u32 num, u32 den)
351 {
352 u64 rem;
353
354 rem = do_div(base, den);
355
356 base *= num;
357 rem *= num;
358
359 do_div(rem, den);
360
361 return base + rem;
362 }
363
azx_get_sync_time(ktime_t * device,struct system_counterval_t * system,void * ctx)364 static int azx_get_sync_time(ktime_t *device,
365 struct system_counterval_t *system, void *ctx)
366 {
367 struct snd_pcm_substream *substream = ctx;
368 struct azx_dev *azx_dev = get_azx_dev(substream);
369 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
370 struct azx *chip = apcm->chip;
371 struct snd_pcm_runtime *runtime;
372 u64 ll_counter, ll_counter_l, ll_counter_h;
373 u64 tsc_counter, tsc_counter_l, tsc_counter_h;
374 u32 wallclk_ctr, wallclk_cycles;
375 bool direction;
376 u32 dma_select;
377 u32 timeout;
378 u32 retry_count = 0;
379
380 runtime = substream->runtime;
381
382 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
383 direction = 1;
384 else
385 direction = 0;
386
387 /* 0th stream tag is not used, so DMA ch 0 is for 1st stream tag */
388 do {
389 timeout = 100;
390 dma_select = (direction << GTSCC_CDMAS_DMA_DIR_SHIFT) |
391 (azx_dev->core.stream_tag - 1);
392 snd_hdac_chip_writel(azx_bus(chip), GTSCC, dma_select);
393
394 /* Enable the capture */
395 snd_hdac_chip_updatel(azx_bus(chip), GTSCC, 0, GTSCC_TSCCI_MASK);
396
397 while (timeout) {
398 if (snd_hdac_chip_readl(azx_bus(chip), GTSCC) &
399 GTSCC_TSCCD_MASK)
400 break;
401
402 timeout--;
403 }
404
405 if (!timeout) {
406 dev_err(chip->card->dev, "GTSCC capture Timedout!\n");
407 return -EIO;
408 }
409
410 /* Read wall clock counter */
411 wallclk_ctr = snd_hdac_chip_readl(azx_bus(chip), WALFCC);
412
413 /* Read TSC counter */
414 tsc_counter_l = snd_hdac_chip_readl(azx_bus(chip), TSCCL);
415 tsc_counter_h = snd_hdac_chip_readl(azx_bus(chip), TSCCU);
416
417 /* Read Link counter */
418 ll_counter_l = snd_hdac_chip_readl(azx_bus(chip), LLPCL);
419 ll_counter_h = snd_hdac_chip_readl(azx_bus(chip), LLPCU);
420
421 /* Ack: registers read done */
422 snd_hdac_chip_writel(azx_bus(chip), GTSCC, GTSCC_TSCCD_SHIFT);
423
424 tsc_counter = (tsc_counter_h << TSCCU_CCU_SHIFT) |
425 tsc_counter_l;
426
427 ll_counter = (ll_counter_h << LLPC_CCU_SHIFT) | ll_counter_l;
428 wallclk_cycles = wallclk_ctr & WALFCC_CIF_MASK;
429
430 /*
431 * An error occurs near frame "rollover". The clocks in
432 * frame value indicates whether this error may have
433 * occurred. Here we use the value of 10 i.e.,
434 * HDA_MAX_CYCLE_OFFSET
435 */
436 if (wallclk_cycles < HDA_MAX_CYCLE_VALUE - HDA_MAX_CYCLE_OFFSET
437 && wallclk_cycles > HDA_MAX_CYCLE_OFFSET)
438 break;
439
440 /*
441 * Sleep before we read again, else we may again get
442 * value near to MAX_CYCLE. Try to sleep for different
443 * amount of time so we dont hit the same number again
444 */
445 udelay(retry_count++);
446
447 } while (retry_count != HDA_MAX_CYCLE_READ_RETRY);
448
449 if (retry_count == HDA_MAX_CYCLE_READ_RETRY) {
450 dev_err_ratelimited(chip->card->dev,
451 "Error in WALFCC cycle count\n");
452 return -EIO;
453 }
454
455 *device = ns_to_ktime(azx_scale64(ll_counter,
456 NSEC_PER_SEC, runtime->rate));
457 *device = ktime_add_ns(*device, (wallclk_cycles * NSEC_PER_SEC) /
458 ((HDA_MAX_CYCLE_VALUE + 1) * runtime->rate));
459
460 *system = convert_art_to_tsc(tsc_counter);
461
462 return 0;
463 }
464
465 #else
azx_get_sync_time(ktime_t * device,struct system_counterval_t * system,void * ctx)466 static int azx_get_sync_time(ktime_t *device,
467 struct system_counterval_t *system, void *ctx)
468 {
469 return -ENXIO;
470 }
471 #endif
472
azx_get_crosststamp(struct snd_pcm_substream * substream,struct system_device_crosststamp * xtstamp)473 static int azx_get_crosststamp(struct snd_pcm_substream *substream,
474 struct system_device_crosststamp *xtstamp)
475 {
476 return get_device_system_crosststamp(azx_get_sync_time,
477 substream, NULL, xtstamp);
478 }
479
is_link_time_supported(struct snd_pcm_runtime * runtime,struct snd_pcm_audio_tstamp_config * ts)480 static inline bool is_link_time_supported(struct snd_pcm_runtime *runtime,
481 struct snd_pcm_audio_tstamp_config *ts)
482 {
483 if (runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME)
484 if (ts->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED)
485 return true;
486
487 return false;
488 }
489
azx_get_time_info(struct snd_pcm_substream * substream,struct timespec64 * system_ts,struct timespec64 * audio_ts,struct snd_pcm_audio_tstamp_config * audio_tstamp_config,struct snd_pcm_audio_tstamp_report * audio_tstamp_report)490 static int azx_get_time_info(struct snd_pcm_substream *substream,
491 struct timespec64 *system_ts, struct timespec64 *audio_ts,
492 struct snd_pcm_audio_tstamp_config *audio_tstamp_config,
493 struct snd_pcm_audio_tstamp_report *audio_tstamp_report)
494 {
495 struct azx_dev *azx_dev = get_azx_dev(substream);
496 struct snd_pcm_runtime *runtime = substream->runtime;
497 struct system_device_crosststamp xtstamp;
498 int ret;
499 u64 nsec;
500
501 if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) &&
502 (audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) {
503
504 snd_pcm_gettime(substream->runtime, system_ts);
505
506 nsec = timecounter_read(&azx_dev->core.tc);
507 nsec = div_u64(nsec, 3); /* can be optimized */
508 if (audio_tstamp_config->report_delay)
509 nsec = azx_adjust_codec_delay(substream, nsec);
510
511 *audio_ts = ns_to_timespec64(nsec);
512
513 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK;
514 audio_tstamp_report->accuracy_report = 1; /* rest of structure is valid */
515 audio_tstamp_report->accuracy = 42; /* 24 MHz WallClock == 42ns resolution */
516
517 } else if (is_link_time_supported(runtime, audio_tstamp_config)) {
518
519 ret = azx_get_crosststamp(substream, &xtstamp);
520 if (ret)
521 return ret;
522
523 switch (runtime->tstamp_type) {
524 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC:
525 return -EINVAL;
526
527 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW:
528 *system_ts = ktime_to_timespec64(xtstamp.sys_monoraw);
529 break;
530
531 default:
532 *system_ts = ktime_to_timespec64(xtstamp.sys_realtime);
533 break;
534
535 }
536
537 *audio_ts = ktime_to_timespec64(xtstamp.device);
538
539 audio_tstamp_report->actual_type =
540 SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED;
541 audio_tstamp_report->accuracy_report = 1;
542 /* 24 MHz WallClock == 42ns resolution */
543 audio_tstamp_report->accuracy = 42;
544
545 } else {
546 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT;
547 }
548
549 return 0;
550 }
551
552 static const struct snd_pcm_hardware azx_pcm_hw = {
553 .info = (SNDRV_PCM_INFO_MMAP |
554 SNDRV_PCM_INFO_INTERLEAVED |
555 SNDRV_PCM_INFO_BLOCK_TRANSFER |
556 SNDRV_PCM_INFO_MMAP_VALID |
557 /* No full-resume yet implemented */
558 /* SNDRV_PCM_INFO_RESUME |*/
559 SNDRV_PCM_INFO_PAUSE |
560 SNDRV_PCM_INFO_SYNC_START |
561 SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */
562 SNDRV_PCM_INFO_HAS_LINK_ATIME |
563 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
564 .formats = SNDRV_PCM_FMTBIT_S16_LE,
565 .rates = SNDRV_PCM_RATE_48000,
566 .rate_min = 48000,
567 .rate_max = 48000,
568 .channels_min = 2,
569 .channels_max = 2,
570 .buffer_bytes_max = AZX_MAX_BUF_SIZE,
571 .period_bytes_min = 128,
572 .period_bytes_max = AZX_MAX_BUF_SIZE / 2,
573 .periods_min = 2,
574 .periods_max = AZX_MAX_FRAG,
575 .fifo_size = 0,
576 };
577
azx_pcm_open(struct snd_pcm_substream * substream)578 static int azx_pcm_open(struct snd_pcm_substream *substream)
579 {
580 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
581 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
582 struct azx *chip = apcm->chip;
583 struct azx_dev *azx_dev;
584 struct snd_pcm_runtime *runtime = substream->runtime;
585 int err;
586 int buff_step;
587
588 snd_hda_codec_pcm_get(apcm->info);
589 mutex_lock(&chip->open_mutex);
590 azx_dev = azx_assign_device(chip, substream);
591 trace_azx_pcm_open(chip, azx_dev);
592 if (azx_dev == NULL) {
593 err = -EBUSY;
594 goto unlock;
595 }
596 runtime->private_data = azx_dev;
597
598 runtime->hw = azx_pcm_hw;
599 if (chip->gts_present)
600 runtime->hw.info |= SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME;
601 runtime->hw.channels_min = hinfo->channels_min;
602 runtime->hw.channels_max = hinfo->channels_max;
603 runtime->hw.formats = hinfo->formats;
604 runtime->hw.rates = hinfo->rates;
605 snd_pcm_limit_hw_rates(runtime);
606 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
607
608 /* avoid wrap-around with wall-clock */
609 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME,
610 20,
611 178000000);
612
613 if (chip->align_buffer_size)
614 /* constrain buffer sizes to be multiple of 128
615 bytes. This is more efficient in terms of memory
616 access but isn't required by the HDA spec and
617 prevents users from specifying exact period/buffer
618 sizes. For example for 44.1kHz, a period size set
619 to 20ms will be rounded to 19.59ms. */
620 buff_step = 128;
621 else
622 /* Don't enforce steps on buffer sizes, still need to
623 be multiple of 4 bytes (HDA spec). Tested on Intel
624 HDA controllers, may not work on all devices where
625 option needs to be disabled */
626 buff_step = 4;
627
628 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
629 buff_step);
630 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
631 buff_step);
632 snd_hda_power_up(apcm->codec);
633 if (hinfo->ops.open)
634 err = hinfo->ops.open(hinfo, apcm->codec, substream);
635 else
636 err = -ENODEV;
637 if (err < 0) {
638 azx_release_device(azx_dev);
639 goto powerdown;
640 }
641 snd_pcm_limit_hw_rates(runtime);
642 /* sanity check */
643 if (snd_BUG_ON(!runtime->hw.channels_min) ||
644 snd_BUG_ON(!runtime->hw.channels_max) ||
645 snd_BUG_ON(!runtime->hw.formats) ||
646 snd_BUG_ON(!runtime->hw.rates)) {
647 azx_release_device(azx_dev);
648 if (hinfo->ops.close)
649 hinfo->ops.close(hinfo, apcm->codec, substream);
650 err = -EINVAL;
651 goto powerdown;
652 }
653
654 /* disable LINK_ATIME timestamps for capture streams
655 until we figure out how to handle digital inputs */
656 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
657 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */
658 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME;
659 }
660
661 snd_pcm_set_sync(substream);
662 mutex_unlock(&chip->open_mutex);
663 return 0;
664
665 powerdown:
666 snd_hda_power_down(apcm->codec);
667 unlock:
668 mutex_unlock(&chip->open_mutex);
669 snd_hda_codec_pcm_put(apcm->info);
670 return err;
671 }
672
azx_pcm_mmap(struct snd_pcm_substream * substream,struct vm_area_struct * area)673 static int azx_pcm_mmap(struct snd_pcm_substream *substream,
674 struct vm_area_struct *area)
675 {
676 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
677 struct azx *chip = apcm->chip;
678 if (chip->ops->pcm_mmap_prepare)
679 chip->ops->pcm_mmap_prepare(substream, area);
680 return snd_pcm_lib_default_mmap(substream, area);
681 }
682
683 static const struct snd_pcm_ops azx_pcm_ops = {
684 .open = azx_pcm_open,
685 .close = azx_pcm_close,
686 .hw_params = azx_pcm_hw_params,
687 .hw_free = azx_pcm_hw_free,
688 .prepare = azx_pcm_prepare,
689 .trigger = azx_pcm_trigger,
690 .pointer = azx_pcm_pointer,
691 .get_time_info = azx_get_time_info,
692 .mmap = azx_pcm_mmap,
693 };
694
azx_pcm_free(struct snd_pcm * pcm)695 static void azx_pcm_free(struct snd_pcm *pcm)
696 {
697 struct azx_pcm *apcm = pcm->private_data;
698 if (apcm) {
699 list_del(&apcm->list);
700 apcm->info->pcm = NULL;
701 kfree(apcm);
702 }
703 }
704
705 #define MAX_PREALLOC_SIZE (32 * 1024 * 1024)
706
snd_hda_attach_pcm_stream(struct hda_bus * _bus,struct hda_codec * codec,struct hda_pcm * cpcm)707 int snd_hda_attach_pcm_stream(struct hda_bus *_bus, struct hda_codec *codec,
708 struct hda_pcm *cpcm)
709 {
710 struct hdac_bus *bus = &_bus->core;
711 struct azx *chip = bus_to_azx(bus);
712 struct snd_pcm *pcm;
713 struct azx_pcm *apcm;
714 int pcm_dev = cpcm->device;
715 unsigned int size;
716 int s, err;
717 int type = SNDRV_DMA_TYPE_DEV_SG;
718
719 list_for_each_entry(apcm, &chip->pcm_list, list) {
720 if (apcm->pcm->device == pcm_dev) {
721 dev_err(chip->card->dev, "PCM %d already exists\n",
722 pcm_dev);
723 return -EBUSY;
724 }
725 }
726 err = snd_pcm_new(chip->card, cpcm->name, pcm_dev,
727 cpcm->stream[SNDRV_PCM_STREAM_PLAYBACK].substreams,
728 cpcm->stream[SNDRV_PCM_STREAM_CAPTURE].substreams,
729 &pcm);
730 if (err < 0)
731 return err;
732 strlcpy(pcm->name, cpcm->name, sizeof(pcm->name));
733 apcm = kzalloc(sizeof(*apcm), GFP_KERNEL);
734 if (apcm == NULL) {
735 snd_device_free(chip->card, pcm);
736 return -ENOMEM;
737 }
738 apcm->chip = chip;
739 apcm->pcm = pcm;
740 apcm->codec = codec;
741 apcm->info = cpcm;
742 pcm->private_data = apcm;
743 pcm->private_free = azx_pcm_free;
744 if (cpcm->pcm_type == HDA_PCM_TYPE_MODEM)
745 pcm->dev_class = SNDRV_PCM_CLASS_MODEM;
746 list_add_tail(&apcm->list, &chip->pcm_list);
747 cpcm->pcm = pcm;
748 for (s = 0; s < 2; s++) {
749 if (cpcm->stream[s].substreams)
750 snd_pcm_set_ops(pcm, s, &azx_pcm_ops);
751 }
752 /* buffer pre-allocation */
753 size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024;
754 if (size > MAX_PREALLOC_SIZE)
755 size = MAX_PREALLOC_SIZE;
756 if (chip->uc_buffer)
757 type = SNDRV_DMA_TYPE_DEV_UC_SG;
758 snd_pcm_set_managed_buffer_all(pcm, type, chip->card->dev,
759 size, MAX_PREALLOC_SIZE);
760 return 0;
761 }
762
azx_command_addr(u32 cmd)763 static unsigned int azx_command_addr(u32 cmd)
764 {
765 unsigned int addr = cmd >> 28;
766
767 if (addr >= AZX_MAX_CODECS) {
768 snd_BUG();
769 addr = 0;
770 }
771
772 return addr;
773 }
774
775 /* receive a response */
azx_rirb_get_response(struct hdac_bus * bus,unsigned int addr,unsigned int * res)776 static int azx_rirb_get_response(struct hdac_bus *bus, unsigned int addr,
777 unsigned int *res)
778 {
779 struct azx *chip = bus_to_azx(bus);
780 struct hda_bus *hbus = &chip->bus;
781 int err;
782
783 again:
784 err = snd_hdac_bus_get_response(bus, addr, res);
785 if (!err)
786 return 0;
787
788 if (hbus->no_response_fallback)
789 return -EIO;
790
791 if (!bus->polling_mode) {
792 dev_warn(chip->card->dev,
793 "azx_get_response timeout, switching to polling mode: last cmd=0x%08x\n",
794 bus->last_cmd[addr]);
795 bus->polling_mode = 1;
796 goto again;
797 }
798
799 if (chip->msi) {
800 dev_warn(chip->card->dev,
801 "No response from codec, disabling MSI: last cmd=0x%08x\n",
802 bus->last_cmd[addr]);
803 if (chip->ops->disable_msi_reset_irq &&
804 chip->ops->disable_msi_reset_irq(chip) < 0)
805 return -EIO;
806 goto again;
807 }
808
809 if (chip->probing) {
810 /* If this critical timeout happens during the codec probing
811 * phase, this is likely an access to a non-existing codec
812 * slot. Better to return an error and reset the system.
813 */
814 return -EIO;
815 }
816
817 /* no fallback mechanism? */
818 if (!chip->fallback_to_single_cmd)
819 return -EIO;
820
821 /* a fatal communication error; need either to reset or to fallback
822 * to the single_cmd mode
823 */
824 if (hbus->allow_bus_reset && !hbus->response_reset && !hbus->in_reset) {
825 hbus->response_reset = 1;
826 dev_err(chip->card->dev,
827 "No response from codec, resetting bus: last cmd=0x%08x\n",
828 bus->last_cmd[addr]);
829 return -EAGAIN; /* give a chance to retry */
830 }
831
832 dev_err(chip->card->dev,
833 "azx_get_response timeout, switching to single_cmd mode: last cmd=0x%08x\n",
834 bus->last_cmd[addr]);
835 chip->single_cmd = 1;
836 hbus->response_reset = 0;
837 snd_hdac_bus_stop_cmd_io(bus);
838 return -EIO;
839 }
840
841 /*
842 * Use the single immediate command instead of CORB/RIRB for simplicity
843 *
844 * Note: according to Intel, this is not preferred use. The command was
845 * intended for the BIOS only, and may get confused with unsolicited
846 * responses. So, we shouldn't use it for normal operation from the
847 * driver.
848 * I left the codes, however, for debugging/testing purposes.
849 */
850
851 /* receive a response */
azx_single_wait_for_response(struct azx * chip,unsigned int addr)852 static int azx_single_wait_for_response(struct azx *chip, unsigned int addr)
853 {
854 int timeout = 50;
855
856 while (timeout--) {
857 /* check IRV busy bit */
858 if (azx_readw(chip, IRS) & AZX_IRS_VALID) {
859 /* reuse rirb.res as the response return value */
860 azx_bus(chip)->rirb.res[addr] = azx_readl(chip, IR);
861 return 0;
862 }
863 udelay(1);
864 }
865 if (printk_ratelimit())
866 dev_dbg(chip->card->dev, "get_response timeout: IRS=0x%x\n",
867 azx_readw(chip, IRS));
868 azx_bus(chip)->rirb.res[addr] = -1;
869 return -EIO;
870 }
871
872 /* send a command */
azx_single_send_cmd(struct hdac_bus * bus,u32 val)873 static int azx_single_send_cmd(struct hdac_bus *bus, u32 val)
874 {
875 struct azx *chip = bus_to_azx(bus);
876 unsigned int addr = azx_command_addr(val);
877 int timeout = 50;
878
879 bus->last_cmd[azx_command_addr(val)] = val;
880 while (timeout--) {
881 /* check ICB busy bit */
882 if (!((azx_readw(chip, IRS) & AZX_IRS_BUSY))) {
883 /* Clear IRV valid bit */
884 azx_writew(chip, IRS, azx_readw(chip, IRS) |
885 AZX_IRS_VALID);
886 azx_writel(chip, IC, val);
887 azx_writew(chip, IRS, azx_readw(chip, IRS) |
888 AZX_IRS_BUSY);
889 return azx_single_wait_for_response(chip, addr);
890 }
891 udelay(1);
892 }
893 if (printk_ratelimit())
894 dev_dbg(chip->card->dev,
895 "send_cmd timeout: IRS=0x%x, val=0x%x\n",
896 azx_readw(chip, IRS), val);
897 return -EIO;
898 }
899
900 /* receive a response */
azx_single_get_response(struct hdac_bus * bus,unsigned int addr,unsigned int * res)901 static int azx_single_get_response(struct hdac_bus *bus, unsigned int addr,
902 unsigned int *res)
903 {
904 if (res)
905 *res = bus->rirb.res[addr];
906 return 0;
907 }
908
909 /*
910 * The below are the main callbacks from hda_codec.
911 *
912 * They are just the skeleton to call sub-callbacks according to the
913 * current setting of chip->single_cmd.
914 */
915
916 /* send a command */
azx_send_cmd(struct hdac_bus * bus,unsigned int val)917 static int azx_send_cmd(struct hdac_bus *bus, unsigned int val)
918 {
919 struct azx *chip = bus_to_azx(bus);
920
921 if (chip->disabled)
922 return 0;
923 if (chip->single_cmd)
924 return azx_single_send_cmd(bus, val);
925 else
926 return snd_hdac_bus_send_cmd(bus, val);
927 }
928
929 /* get a response */
azx_get_response(struct hdac_bus * bus,unsigned int addr,unsigned int * res)930 static int azx_get_response(struct hdac_bus *bus, unsigned int addr,
931 unsigned int *res)
932 {
933 struct azx *chip = bus_to_azx(bus);
934
935 if (chip->disabled)
936 return 0;
937 if (chip->single_cmd)
938 return azx_single_get_response(bus, addr, res);
939 else
940 return azx_rirb_get_response(bus, addr, res);
941 }
942
943 static const struct hdac_bus_ops bus_core_ops = {
944 .command = azx_send_cmd,
945 .get_response = azx_get_response,
946 };
947
948 #ifdef CONFIG_SND_HDA_DSP_LOADER
949 /*
950 * DSP loading code (e.g. for CA0132)
951 */
952
953 /* use the first stream for loading DSP */
954 static struct azx_dev *
azx_get_dsp_loader_dev(struct azx * chip)955 azx_get_dsp_loader_dev(struct azx *chip)
956 {
957 struct hdac_bus *bus = azx_bus(chip);
958 struct hdac_stream *s;
959
960 list_for_each_entry(s, &bus->stream_list, list)
961 if (s->index == chip->playback_index_offset)
962 return stream_to_azx_dev(s);
963
964 return NULL;
965 }
966
snd_hda_codec_load_dsp_prepare(struct hda_codec * codec,unsigned int format,unsigned int byte_size,struct snd_dma_buffer * bufp)967 int snd_hda_codec_load_dsp_prepare(struct hda_codec *codec, unsigned int format,
968 unsigned int byte_size,
969 struct snd_dma_buffer *bufp)
970 {
971 struct hdac_bus *bus = &codec->bus->core;
972 struct azx *chip = bus_to_azx(bus);
973 struct azx_dev *azx_dev;
974 struct hdac_stream *hstr;
975 bool saved = false;
976 int err;
977
978 azx_dev = azx_get_dsp_loader_dev(chip);
979 hstr = azx_stream(azx_dev);
980 spin_lock_irq(&bus->reg_lock);
981 if (hstr->opened) {
982 chip->saved_azx_dev = *azx_dev;
983 saved = true;
984 }
985 spin_unlock_irq(&bus->reg_lock);
986
987 err = snd_hdac_dsp_prepare(hstr, format, byte_size, bufp);
988 if (err < 0) {
989 spin_lock_irq(&bus->reg_lock);
990 if (saved)
991 *azx_dev = chip->saved_azx_dev;
992 spin_unlock_irq(&bus->reg_lock);
993 return err;
994 }
995
996 hstr->prepared = 0;
997 return err;
998 }
999 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_prepare);
1000
snd_hda_codec_load_dsp_trigger(struct hda_codec * codec,bool start)1001 void snd_hda_codec_load_dsp_trigger(struct hda_codec *codec, bool start)
1002 {
1003 struct hdac_bus *bus = &codec->bus->core;
1004 struct azx *chip = bus_to_azx(bus);
1005 struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1006
1007 snd_hdac_dsp_trigger(azx_stream(azx_dev), start);
1008 }
1009 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_trigger);
1010
snd_hda_codec_load_dsp_cleanup(struct hda_codec * codec,struct snd_dma_buffer * dmab)1011 void snd_hda_codec_load_dsp_cleanup(struct hda_codec *codec,
1012 struct snd_dma_buffer *dmab)
1013 {
1014 struct hdac_bus *bus = &codec->bus->core;
1015 struct azx *chip = bus_to_azx(bus);
1016 struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1017 struct hdac_stream *hstr = azx_stream(azx_dev);
1018
1019 if (!dmab->area || !hstr->locked)
1020 return;
1021
1022 snd_hdac_dsp_cleanup(hstr, dmab);
1023 spin_lock_irq(&bus->reg_lock);
1024 if (hstr->opened)
1025 *azx_dev = chip->saved_azx_dev;
1026 hstr->locked = false;
1027 spin_unlock_irq(&bus->reg_lock);
1028 }
1029 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_cleanup);
1030 #endif /* CONFIG_SND_HDA_DSP_LOADER */
1031
1032 /*
1033 * reset and start the controller registers
1034 */
azx_init_chip(struct azx * chip,bool full_reset)1035 void azx_init_chip(struct azx *chip, bool full_reset)
1036 {
1037 if (snd_hdac_bus_init_chip(azx_bus(chip), full_reset)) {
1038 /* correct RINTCNT for CXT */
1039 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1040 azx_writew(chip, RINTCNT, 0xc0);
1041 }
1042 }
1043 EXPORT_SYMBOL_GPL(azx_init_chip);
1044
azx_stop_all_streams(struct azx * chip)1045 void azx_stop_all_streams(struct azx *chip)
1046 {
1047 struct hdac_bus *bus = azx_bus(chip);
1048
1049 snd_hdac_stop_streams(bus);
1050 }
1051 EXPORT_SYMBOL_GPL(azx_stop_all_streams);
1052
azx_stop_chip(struct azx * chip)1053 void azx_stop_chip(struct azx *chip)
1054 {
1055 snd_hdac_bus_stop_chip(azx_bus(chip));
1056 }
1057 EXPORT_SYMBOL_GPL(azx_stop_chip);
1058
1059 /*
1060 * interrupt handler
1061 */
stream_update(struct hdac_bus * bus,struct hdac_stream * s)1062 static void stream_update(struct hdac_bus *bus, struct hdac_stream *s)
1063 {
1064 struct azx *chip = bus_to_azx(bus);
1065 struct azx_dev *azx_dev = stream_to_azx_dev(s);
1066
1067 /* check whether this IRQ is really acceptable */
1068 if (!chip->ops->position_check ||
1069 chip->ops->position_check(chip, azx_dev)) {
1070 spin_unlock(&bus->reg_lock);
1071 snd_pcm_period_elapsed(azx_stream(azx_dev)->substream);
1072 spin_lock(&bus->reg_lock);
1073 }
1074 }
1075
azx_interrupt(int irq,void * dev_id)1076 irqreturn_t azx_interrupt(int irq, void *dev_id)
1077 {
1078 struct azx *chip = dev_id;
1079 struct hdac_bus *bus = azx_bus(chip);
1080 u32 status;
1081 bool active, handled = false;
1082 int repeat = 0; /* count for avoiding endless loop */
1083
1084 #ifdef CONFIG_PM
1085 if (azx_has_pm_runtime(chip))
1086 if (!pm_runtime_active(chip->card->dev))
1087 return IRQ_NONE;
1088 #endif
1089
1090 spin_lock(&bus->reg_lock);
1091
1092 if (chip->disabled)
1093 goto unlock;
1094
1095 do {
1096 status = azx_readl(chip, INTSTS);
1097 if (status == 0 || status == 0xffffffff)
1098 break;
1099
1100 handled = true;
1101 active = false;
1102 if (snd_hdac_bus_handle_stream_irq(bus, status, stream_update))
1103 active = true;
1104
1105 status = azx_readb(chip, RIRBSTS);
1106 if (status & RIRB_INT_MASK) {
1107 /*
1108 * Clearing the interrupt status here ensures that no
1109 * interrupt gets masked after the RIRB wp is read in
1110 * snd_hdac_bus_update_rirb. This avoids a possible
1111 * race condition where codec response in RIRB may
1112 * remain unserviced by IRQ, eventually falling back
1113 * to polling mode in azx_rirb_get_response.
1114 */
1115 azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);
1116 active = true;
1117 if (status & RIRB_INT_RESPONSE) {
1118 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1119 udelay(80);
1120 snd_hdac_bus_update_rirb(bus);
1121 }
1122 }
1123 } while (active && ++repeat < 10);
1124
1125 unlock:
1126 spin_unlock(&bus->reg_lock);
1127
1128 return IRQ_RETVAL(handled);
1129 }
1130 EXPORT_SYMBOL_GPL(azx_interrupt);
1131
1132 /*
1133 * Codec initerface
1134 */
1135
1136 /*
1137 * Probe the given codec address
1138 */
probe_codec(struct azx * chip,int addr)1139 static int probe_codec(struct azx *chip, int addr)
1140 {
1141 unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) |
1142 (AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID;
1143 struct hdac_bus *bus = azx_bus(chip);
1144 int err;
1145 unsigned int res = -1;
1146
1147 mutex_lock(&bus->cmd_mutex);
1148 chip->probing = 1;
1149 azx_send_cmd(bus, cmd);
1150 err = azx_get_response(bus, addr, &res);
1151 chip->probing = 0;
1152 mutex_unlock(&bus->cmd_mutex);
1153 if (err < 0 || res == -1)
1154 return -EIO;
1155 dev_dbg(chip->card->dev, "codec #%d probed OK\n", addr);
1156 return 0;
1157 }
1158
snd_hda_bus_reset(struct hda_bus * bus)1159 void snd_hda_bus_reset(struct hda_bus *bus)
1160 {
1161 struct azx *chip = bus_to_azx(&bus->core);
1162
1163 bus->in_reset = 1;
1164 azx_stop_chip(chip);
1165 azx_init_chip(chip, true);
1166 if (bus->core.chip_init)
1167 snd_hda_bus_reset_codecs(bus);
1168 bus->in_reset = 0;
1169 }
1170
1171 /* HD-audio bus initialization */
azx_bus_init(struct azx * chip,const char * model)1172 int azx_bus_init(struct azx *chip, const char *model)
1173 {
1174 struct hda_bus *bus = &chip->bus;
1175 int err;
1176
1177 err = snd_hdac_bus_init(&bus->core, chip->card->dev, &bus_core_ops);
1178 if (err < 0)
1179 return err;
1180
1181 bus->card = chip->card;
1182 mutex_init(&bus->prepare_mutex);
1183 bus->pci = chip->pci;
1184 bus->modelname = model;
1185 bus->mixer_assigned = -1;
1186 bus->core.snoop = azx_snoop(chip);
1187 if (chip->get_position[0] != azx_get_pos_lpib ||
1188 chip->get_position[1] != azx_get_pos_lpib)
1189 bus->core.use_posbuf = true;
1190 bus->core.bdl_pos_adj = chip->bdl_pos_adj;
1191 if (chip->driver_caps & AZX_DCAPS_CORBRP_SELF_CLEAR)
1192 bus->core.corbrp_self_clear = true;
1193
1194 if (chip->driver_caps & AZX_DCAPS_4K_BDLE_BOUNDARY)
1195 bus->core.align_bdle_4k = true;
1196
1197 /* enable sync_write flag for stable communication as default */
1198 bus->core.sync_write = 1;
1199
1200 return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(azx_bus_init);
1203
1204 /* Probe codecs */
azx_probe_codecs(struct azx * chip,unsigned int max_slots)1205 int azx_probe_codecs(struct azx *chip, unsigned int max_slots)
1206 {
1207 struct hdac_bus *bus = azx_bus(chip);
1208 int c, codecs, err;
1209
1210 codecs = 0;
1211 if (!max_slots)
1212 max_slots = AZX_DEFAULT_CODECS;
1213
1214 /* First try to probe all given codec slots */
1215 for (c = 0; c < max_slots; c++) {
1216 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1217 if (probe_codec(chip, c) < 0) {
1218 /* Some BIOSen give you wrong codec addresses
1219 * that don't exist
1220 */
1221 dev_warn(chip->card->dev,
1222 "Codec #%d probe error; disabling it...\n", c);
1223 bus->codec_mask &= ~(1 << c);
1224 /* More badly, accessing to a non-existing
1225 * codec often screws up the controller chip,
1226 * and disturbs the further communications.
1227 * Thus if an error occurs during probing,
1228 * better to reset the controller chip to
1229 * get back to the sanity state.
1230 */
1231 azx_stop_chip(chip);
1232 azx_init_chip(chip, true);
1233 }
1234 }
1235 }
1236
1237 /* Then create codec instances */
1238 for (c = 0; c < max_slots; c++) {
1239 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1240 struct hda_codec *codec;
1241 err = snd_hda_codec_new(&chip->bus, chip->card, c, &codec);
1242 if (err < 0)
1243 continue;
1244 codec->jackpoll_interval = chip->jackpoll_interval;
1245 codec->beep_mode = chip->beep_mode;
1246 codecs++;
1247 }
1248 }
1249 if (!codecs) {
1250 dev_err(chip->card->dev, "no codecs initialized\n");
1251 return -ENXIO;
1252 }
1253 return 0;
1254 }
1255 EXPORT_SYMBOL_GPL(azx_probe_codecs);
1256
1257 /* configure each codec instance */
azx_codec_configure(struct azx * chip)1258 int azx_codec_configure(struct azx *chip)
1259 {
1260 struct hda_codec *codec, *next;
1261 int success = 0;
1262
1263 list_for_each_codec(codec, &chip->bus) {
1264 if (!snd_hda_codec_configure(codec))
1265 success++;
1266 }
1267
1268 if (success) {
1269 /* unregister failed codecs if any codec has been probed */
1270 list_for_each_codec_safe(codec, next, &chip->bus) {
1271 if (!codec->configured) {
1272 codec_err(codec, "Unable to configure, disabling\n");
1273 snd_hdac_device_unregister(&codec->core);
1274 }
1275 }
1276 }
1277
1278 return success ? 0 : -ENODEV;
1279 }
1280 EXPORT_SYMBOL_GPL(azx_codec_configure);
1281
stream_direction(struct azx * chip,unsigned char index)1282 static int stream_direction(struct azx *chip, unsigned char index)
1283 {
1284 if (index >= chip->capture_index_offset &&
1285 index < chip->capture_index_offset + chip->capture_streams)
1286 return SNDRV_PCM_STREAM_CAPTURE;
1287 return SNDRV_PCM_STREAM_PLAYBACK;
1288 }
1289
1290 /* initialize SD streams */
azx_init_streams(struct azx * chip)1291 int azx_init_streams(struct azx *chip)
1292 {
1293 int i;
1294 int stream_tags[2] = { 0, 0 };
1295
1296 /* initialize each stream (aka device)
1297 * assign the starting bdl address to each stream (device)
1298 * and initialize
1299 */
1300 for (i = 0; i < chip->num_streams; i++) {
1301 struct azx_dev *azx_dev = kzalloc(sizeof(*azx_dev), GFP_KERNEL);
1302 int dir, tag;
1303
1304 if (!azx_dev)
1305 return -ENOMEM;
1306
1307 dir = stream_direction(chip, i);
1308 /* stream tag must be unique throughout
1309 * the stream direction group,
1310 * valid values 1...15
1311 * use separate stream tag if the flag
1312 * AZX_DCAPS_SEPARATE_STREAM_TAG is used
1313 */
1314 if (chip->driver_caps & AZX_DCAPS_SEPARATE_STREAM_TAG)
1315 tag = ++stream_tags[dir];
1316 else
1317 tag = i + 1;
1318 snd_hdac_stream_init(azx_bus(chip), azx_stream(azx_dev),
1319 i, dir, tag);
1320 }
1321
1322 return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(azx_init_streams);
1325
azx_free_streams(struct azx * chip)1326 void azx_free_streams(struct azx *chip)
1327 {
1328 struct hdac_bus *bus = azx_bus(chip);
1329 struct hdac_stream *s;
1330
1331 while (!list_empty(&bus->stream_list)) {
1332 s = list_first_entry(&bus->stream_list, struct hdac_stream, list);
1333 list_del(&s->list);
1334 kfree(stream_to_azx_dev(s));
1335 }
1336 }
1337 EXPORT_SYMBOL_GPL(azx_free_streams);
1338