• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11 
12 #include <trace/events/block.h>
13 
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20 
blk_mq_sched_assign_ioc(struct request * rq)21 void blk_mq_sched_assign_ioc(struct request *rq)
22 {
23 	struct request_queue *q = rq->q;
24 	struct io_context *ioc;
25 	struct io_cq *icq;
26 
27 	/*
28 	 * May not have an IO context if it's a passthrough request
29 	 */
30 	ioc = current->io_context;
31 	if (!ioc)
32 		return;
33 
34 	spin_lock_irq(&q->queue_lock);
35 	icq = ioc_lookup_icq(ioc, q);
36 	spin_unlock_irq(&q->queue_lock);
37 
38 	if (!icq) {
39 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
40 		if (!icq)
41 			return;
42 	}
43 	get_io_context(icq->ioc);
44 	rq->elv.icq = icq;
45 }
46 
47 /*
48  * Mark a hardware queue as needing a restart. For shared queues, maintain
49  * a count of how many hardware queues are marked for restart.
50  */
blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx * hctx)51 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
52 {
53 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
54 		return;
55 
56 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
57 }
58 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
59 
blk_mq_sched_restart(struct blk_mq_hw_ctx * hctx)60 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
61 {
62 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
63 		return;
64 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
65 
66 	/*
67 	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
68 	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
69 	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
70 	 * meantime new request added to hctx->dispatch is missed to check in
71 	 * blk_mq_run_hw_queue().
72 	 */
73 	smp_mb();
74 
75 	blk_mq_run_hw_queue(hctx, true);
76 }
77 
sched_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)78 static int sched_rq_cmp(void *priv, const struct list_head *a,
79 			const struct list_head *b)
80 {
81 	struct request *rqa = container_of(a, struct request, queuelist);
82 	struct request *rqb = container_of(b, struct request, queuelist);
83 
84 	return rqa->mq_hctx > rqb->mq_hctx;
85 }
86 
blk_mq_dispatch_hctx_list(struct list_head * rq_list)87 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
88 {
89 	struct blk_mq_hw_ctx *hctx =
90 		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
91 	struct request *rq;
92 	LIST_HEAD(hctx_list);
93 	unsigned int count = 0;
94 
95 	list_for_each_entry(rq, rq_list, queuelist) {
96 		if (rq->mq_hctx != hctx) {
97 			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
98 			goto dispatch;
99 		}
100 		count++;
101 	}
102 	list_splice_tail_init(rq_list, &hctx_list);
103 
104 dispatch:
105 	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
106 }
107 
108 #define BLK_MQ_BUDGET_DELAY	3		/* ms units */
109 
110 /*
111  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
112  * its queue by itself in its completion handler, so we don't need to
113  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
114  *
115  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
116  * be run again.  This is necessary to avoid starving flushes.
117  */
__blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)118 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
119 {
120 	struct request_queue *q = hctx->queue;
121 	struct elevator_queue *e = q->elevator;
122 	bool multi_hctxs = false, run_queue = false;
123 	bool dispatched = false, busy = false;
124 	unsigned int max_dispatch;
125 	LIST_HEAD(rq_list);
126 	int count = 0;
127 
128 	if (hctx->dispatch_busy)
129 		max_dispatch = 1;
130 	else
131 		max_dispatch = hctx->queue->nr_requests;
132 
133 	do {
134 		struct request *rq;
135 
136 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
137 			break;
138 
139 		if (!list_empty_careful(&hctx->dispatch)) {
140 			busy = true;
141 			break;
142 		}
143 
144 		if (!blk_mq_get_dispatch_budget(q))
145 			break;
146 
147 		rq = e->type->ops.dispatch_request(hctx);
148 		if (!rq) {
149 			blk_mq_put_dispatch_budget(q);
150 			/*
151 			 * We're releasing without dispatching. Holding the
152 			 * budget could have blocked any "hctx"s with the
153 			 * same queue and if we didn't dispatch then there's
154 			 * no guarantee anyone will kick the queue.  Kick it
155 			 * ourselves.
156 			 */
157 			run_queue = true;
158 			break;
159 		}
160 
161 		/*
162 		 * Now this rq owns the budget which has to be released
163 		 * if this rq won't be queued to driver via .queue_rq()
164 		 * in blk_mq_dispatch_rq_list().
165 		 */
166 		list_add_tail(&rq->queuelist, &rq_list);
167 		if (rq->mq_hctx != hctx)
168 			multi_hctxs = true;
169 	} while (++count < max_dispatch);
170 
171 	if (!count) {
172 		if (run_queue)
173 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
174 	} else if (multi_hctxs) {
175 		/*
176 		 * Requests from different hctx may be dequeued from some
177 		 * schedulers, such as bfq and deadline.
178 		 *
179 		 * Sort the requests in the list according to their hctx,
180 		 * dispatch batching requests from same hctx at a time.
181 		 */
182 		list_sort(NULL, &rq_list, sched_rq_cmp);
183 		do {
184 			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
185 		} while (!list_empty(&rq_list));
186 	} else {
187 		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
188 	}
189 
190 	if (busy)
191 		return -EAGAIN;
192 	return !!dispatched;
193 }
194 
blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)195 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
196 {
197 	unsigned long end = jiffies + HZ;
198 	int ret;
199 
200 	do {
201 		ret = __blk_mq_do_dispatch_sched(hctx);
202 		if (ret != 1)
203 			break;
204 		if (need_resched() || time_is_before_jiffies(end)) {
205 			blk_mq_delay_run_hw_queue(hctx, 0);
206 			break;
207 		}
208 	} while (1);
209 
210 	return ret;
211 }
212 
blk_mq_next_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)213 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
214 					  struct blk_mq_ctx *ctx)
215 {
216 	unsigned short idx = ctx->index_hw[hctx->type];
217 
218 	if (++idx == hctx->nr_ctx)
219 		idx = 0;
220 
221 	return hctx->ctxs[idx];
222 }
223 
224 /*
225  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
226  * its queue by itself in its completion handler, so we don't need to
227  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
228  *
229  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
230  * be run again.  This is necessary to avoid starving flushes.
231  */
blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx * hctx)232 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
233 {
234 	struct request_queue *q = hctx->queue;
235 	LIST_HEAD(rq_list);
236 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
237 	int ret = 0;
238 	struct request *rq;
239 
240 	do {
241 		if (!list_empty_careful(&hctx->dispatch)) {
242 			ret = -EAGAIN;
243 			break;
244 		}
245 
246 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
247 			break;
248 
249 		if (!blk_mq_get_dispatch_budget(q))
250 			break;
251 
252 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
253 		if (!rq) {
254 			blk_mq_put_dispatch_budget(q);
255 			/*
256 			 * We're releasing without dispatching. Holding the
257 			 * budget could have blocked any "hctx"s with the
258 			 * same queue and if we didn't dispatch then there's
259 			 * no guarantee anyone will kick the queue.  Kick it
260 			 * ourselves.
261 			 */
262 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
263 			break;
264 		}
265 
266 		/*
267 		 * Now this rq owns the budget which has to be released
268 		 * if this rq won't be queued to driver via .queue_rq()
269 		 * in blk_mq_dispatch_rq_list().
270 		 */
271 		list_add(&rq->queuelist, &rq_list);
272 
273 		/* round robin for fair dispatch */
274 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
275 
276 	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
277 
278 	WRITE_ONCE(hctx->dispatch_from, ctx);
279 	return ret;
280 }
281 
__blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)282 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
283 {
284 	struct request_queue *q = hctx->queue;
285 	struct elevator_queue *e = q->elevator;
286 	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
287 	int ret = 0;
288 	LIST_HEAD(rq_list);
289 
290 	/*
291 	 * If we have previous entries on our dispatch list, grab them first for
292 	 * more fair dispatch.
293 	 */
294 	if (!list_empty_careful(&hctx->dispatch)) {
295 		spin_lock(&hctx->lock);
296 		if (!list_empty(&hctx->dispatch))
297 			list_splice_init(&hctx->dispatch, &rq_list);
298 		spin_unlock(&hctx->lock);
299 	}
300 
301 	/*
302 	 * Only ask the scheduler for requests, if we didn't have residual
303 	 * requests from the dispatch list. This is to avoid the case where
304 	 * we only ever dispatch a fraction of the requests available because
305 	 * of low device queue depth. Once we pull requests out of the IO
306 	 * scheduler, we can no longer merge or sort them. So it's best to
307 	 * leave them there for as long as we can. Mark the hw queue as
308 	 * needing a restart in that case.
309 	 *
310 	 * We want to dispatch from the scheduler if there was nothing
311 	 * on the dispatch list or we were able to dispatch from the
312 	 * dispatch list.
313 	 */
314 	if (!list_empty(&rq_list)) {
315 		blk_mq_sched_mark_restart_hctx(hctx);
316 		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
317 			if (has_sched_dispatch)
318 				ret = blk_mq_do_dispatch_sched(hctx);
319 			else
320 				ret = blk_mq_do_dispatch_ctx(hctx);
321 		}
322 	} else if (has_sched_dispatch) {
323 		ret = blk_mq_do_dispatch_sched(hctx);
324 	} else if (hctx->dispatch_busy) {
325 		/* dequeue request one by one from sw queue if queue is busy */
326 		ret = blk_mq_do_dispatch_ctx(hctx);
327 	} else {
328 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
329 		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
330 	}
331 
332 	return ret;
333 }
334 
blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)335 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
336 {
337 	struct request_queue *q = hctx->queue;
338 
339 	/* RCU or SRCU read lock is needed before checking quiesced flag */
340 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
341 		return;
342 
343 	hctx->run++;
344 
345 	/*
346 	 * A return of -EAGAIN is an indication that hctx->dispatch is not
347 	 * empty and we must run again in order to avoid starving flushes.
348 	 */
349 	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
350 		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
351 			blk_mq_run_hw_queue(hctx, true);
352 	}
353 }
354 
__blk_mq_sched_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)355 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
356 		unsigned int nr_segs)
357 {
358 	struct elevator_queue *e = q->elevator;
359 	struct blk_mq_ctx *ctx;
360 	struct blk_mq_hw_ctx *hctx;
361 	bool ret = false;
362 	enum hctx_type type;
363 
364 	if (e && e->type->ops.bio_merge)
365 		return e->type->ops.bio_merge(q, bio, nr_segs);
366 
367 	ctx = blk_mq_get_ctx(q);
368 	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
369 	type = hctx->type;
370 	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
371 	    list_empty_careful(&ctx->rq_lists[type]))
372 		return false;
373 
374 	/* default per sw-queue merge */
375 	spin_lock(&ctx->lock);
376 	/*
377 	 * Reverse check our software queue for entries that we could
378 	 * potentially merge with. Currently includes a hand-wavy stop
379 	 * count of 8, to not spend too much time checking for merges.
380 	 */
381 	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
382 		ctx->rq_merged++;
383 		ret = true;
384 	}
385 
386 	spin_unlock(&ctx->lock);
387 
388 	return ret;
389 }
390 
blk_mq_sched_try_insert_merge(struct request_queue * q,struct request * rq,struct list_head * free)391 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
392 				   struct list_head *free)
393 {
394 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
395 }
396 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
397 
blk_mq_sched_request_inserted(struct request * rq)398 void blk_mq_sched_request_inserted(struct request *rq)
399 {
400 	trace_block_rq_insert(rq);
401 }
402 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
403 
blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx * hctx,bool has_sched,struct request * rq)404 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
405 				       bool has_sched,
406 				       struct request *rq)
407 {
408 	/*
409 	 * dispatch flush and passthrough rq directly
410 	 *
411 	 * passthrough request has to be added to hctx->dispatch directly.
412 	 * For some reason, device may be in one situation which can't
413 	 * handle FS request, so STS_RESOURCE is always returned and the
414 	 * FS request will be added to hctx->dispatch. However passthrough
415 	 * request may be required at that time for fixing the problem. If
416 	 * passthrough request is added to scheduler queue, there isn't any
417 	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
418 	 */
419 	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
420 		return true;
421 
422 	if (has_sched)
423 		rq->rq_flags |= RQF_SORTED;
424 
425 	return false;
426 }
427 
blk_mq_sched_insert_request(struct request * rq,bool at_head,bool run_queue,bool async)428 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
429 				 bool run_queue, bool async)
430 {
431 	struct request_queue *q = rq->q;
432 	struct elevator_queue *e = q->elevator;
433 	struct blk_mq_ctx *ctx = rq->mq_ctx;
434 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
435 
436 	WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
437 
438 	if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
439 		/*
440 		 * Firstly normal IO request is inserted to scheduler queue or
441 		 * sw queue, meantime we add flush request to dispatch queue(
442 		 * hctx->dispatch) directly and there is at most one in-flight
443 		 * flush request for each hw queue, so it doesn't matter to add
444 		 * flush request to tail or front of the dispatch queue.
445 		 *
446 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
447 		 * command, and queueing it will fail when there is any
448 		 * in-flight normal IO request(NCQ command). When adding flush
449 		 * rq to the front of hctx->dispatch, it is easier to introduce
450 		 * extra time to flush rq's latency because of S_SCHED_RESTART
451 		 * compared with adding to the tail of dispatch queue, then
452 		 * chance of flush merge is increased, and less flush requests
453 		 * will be issued to controller. It is observed that ~10% time
454 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
455 		 * drive when adding flush rq to the front of hctx->dispatch.
456 		 *
457 		 * Simply queue flush rq to the front of hctx->dispatch so that
458 		 * intensive flush workloads can benefit in case of NCQ HW.
459 		 */
460 		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
461 		blk_mq_request_bypass_insert(rq, at_head, false);
462 		goto run;
463 	}
464 
465 	if (e && e->type->ops.insert_requests) {
466 		LIST_HEAD(list);
467 
468 		list_add(&rq->queuelist, &list);
469 		e->type->ops.insert_requests(hctx, &list, at_head);
470 	} else {
471 		spin_lock(&ctx->lock);
472 		__blk_mq_insert_request(hctx, rq, at_head);
473 		spin_unlock(&ctx->lock);
474 	}
475 
476 run:
477 	if (run_queue)
478 		blk_mq_run_hw_queue(hctx, async);
479 }
480 
blk_mq_sched_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)481 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
482 				  struct blk_mq_ctx *ctx,
483 				  struct list_head *list, bool run_queue_async)
484 {
485 	struct elevator_queue *e;
486 	struct request_queue *q = hctx->queue;
487 
488 	/*
489 	 * blk_mq_sched_insert_requests() is called from flush plug
490 	 * context only, and hold one usage counter to prevent queue
491 	 * from being released.
492 	 */
493 	percpu_ref_get(&q->q_usage_counter);
494 
495 	e = hctx->queue->elevator;
496 	if (e && e->type->ops.insert_requests)
497 		e->type->ops.insert_requests(hctx, list, false);
498 	else {
499 		/*
500 		 * try to issue requests directly if the hw queue isn't
501 		 * busy in case of 'none' scheduler, and this way may save
502 		 * us one extra enqueue & dequeue to sw queue.
503 		 */
504 		if (!hctx->dispatch_busy && !e && !run_queue_async) {
505 			blk_mq_try_issue_list_directly(hctx, list);
506 			if (list_empty(list))
507 				goto out;
508 		}
509 		blk_mq_insert_requests(hctx, ctx, list);
510 	}
511 
512 	blk_mq_run_hw_queue(hctx, run_queue_async);
513  out:
514 	percpu_ref_put(&q->q_usage_counter);
515 }
516 
blk_mq_sched_alloc_tags(struct request_queue * q,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)517 static int blk_mq_sched_alloc_tags(struct request_queue *q,
518 				   struct blk_mq_hw_ctx *hctx,
519 				   unsigned int hctx_idx)
520 {
521 	struct blk_mq_tag_set *set = q->tag_set;
522 	/* Clear HCTX_SHARED so tags are init'ed */
523 	unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
524 	int ret;
525 
526 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
527 					       set->reserved_tags, flags);
528 	if (!hctx->sched_tags)
529 		return -ENOMEM;
530 
531 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
532 	if (ret) {
533 		blk_mq_free_rq_map(hctx->sched_tags, flags);
534 		hctx->sched_tags = NULL;
535 	}
536 
537 	return ret;
538 }
539 
540 /* called in queue's release handler, tagset has gone away */
blk_mq_sched_tags_teardown(struct request_queue * q)541 static void blk_mq_sched_tags_teardown(struct request_queue *q)
542 {
543 	struct blk_mq_hw_ctx *hctx;
544 	int i;
545 
546 	queue_for_each_hw_ctx(q, hctx, i) {
547 		/* Clear HCTX_SHARED so tags are freed */
548 		unsigned int flags = hctx->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
549 
550 		if (hctx->sched_tags) {
551 			blk_mq_free_rq_map(hctx->sched_tags, flags);
552 			hctx->sched_tags = NULL;
553 		}
554 	}
555 }
556 
blk_mq_init_sched(struct request_queue * q,struct elevator_type * e)557 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
558 {
559 	struct blk_mq_hw_ctx *hctx;
560 	struct elevator_queue *eq;
561 	unsigned int i;
562 	int ret;
563 
564 	if (!e) {
565 		q->elevator = NULL;
566 		q->nr_requests = q->tag_set->queue_depth;
567 		return 0;
568 	}
569 
570 	/*
571 	 * Default to double of smaller one between hw queue_depth and 128,
572 	 * since we don't split into sync/async like the old code did.
573 	 * Additionally, this is a per-hw queue depth.
574 	 */
575 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
576 				   BLKDEV_MAX_RQ);
577 
578 	queue_for_each_hw_ctx(q, hctx, i) {
579 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
580 		if (ret)
581 			goto err;
582 	}
583 
584 	ret = e->ops.init_sched(q, e);
585 	if (ret)
586 		goto err;
587 
588 	blk_mq_debugfs_register_sched(q);
589 
590 	queue_for_each_hw_ctx(q, hctx, i) {
591 		if (e->ops.init_hctx) {
592 			ret = e->ops.init_hctx(hctx, i);
593 			if (ret) {
594 				eq = q->elevator;
595 				blk_mq_sched_free_requests(q);
596 				blk_mq_exit_sched(q, eq);
597 				kobject_put(&eq->kobj);
598 				return ret;
599 			}
600 		}
601 		blk_mq_debugfs_register_sched_hctx(q, hctx);
602 	}
603 
604 	return 0;
605 
606 err:
607 	blk_mq_sched_free_requests(q);
608 	blk_mq_sched_tags_teardown(q);
609 	q->elevator = NULL;
610 	return ret;
611 }
612 
613 /*
614  * called in either blk_queue_cleanup or elevator_switch, tagset
615  * is required for freeing requests
616  */
blk_mq_sched_free_requests(struct request_queue * q)617 void blk_mq_sched_free_requests(struct request_queue *q)
618 {
619 	struct blk_mq_hw_ctx *hctx;
620 	int i;
621 
622 	queue_for_each_hw_ctx(q, hctx, i) {
623 		if (hctx->sched_tags)
624 			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
625 	}
626 }
627 
blk_mq_exit_sched(struct request_queue * q,struct elevator_queue * e)628 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
629 {
630 	struct blk_mq_hw_ctx *hctx;
631 	unsigned int i;
632 
633 	queue_for_each_hw_ctx(q, hctx, i) {
634 		blk_mq_debugfs_unregister_sched_hctx(hctx);
635 		if (e->type->ops.exit_hctx && hctx->sched_data) {
636 			e->type->ops.exit_hctx(hctx, i);
637 			hctx->sched_data = NULL;
638 		}
639 	}
640 	blk_mq_debugfs_unregister_sched(q);
641 	if (e->type->ops.exit_sched)
642 		e->type->ops.exit_sched(e);
643 	blk_mq_sched_tags_teardown(q);
644 	q->elevator = NULL;
645 }
646