• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
blk_mq_poll_stats_bkt(const struct request * rq)49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct hd_struct *part;
99 	unsigned int inflight[2];
100 };
101 
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
blk_mq_in_flight(struct request_queue * q,struct hd_struct * part)115 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 
121 	return mi.inflight[0] + mi.inflight[1];
122 }
123 
blk_mq_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])124 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
125 			 unsigned int inflight[2])
126 {
127 	struct mq_inflight mi = { .part = part };
128 
129 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
130 	inflight[0] = mi.inflight[0];
131 	inflight[1] = mi.inflight[1];
132 }
133 
blk_freeze_queue_start(struct request_queue * q)134 void blk_freeze_queue_start(struct request_queue *q)
135 {
136 	mutex_lock(&q->mq_freeze_lock);
137 	if (++q->mq_freeze_depth == 1) {
138 		percpu_ref_kill(&q->q_usage_counter);
139 		mutex_unlock(&q->mq_freeze_lock);
140 		if (queue_is_mq(q))
141 			blk_mq_run_hw_queues(q, false);
142 	} else {
143 		mutex_unlock(&q->mq_freeze_lock);
144 	}
145 }
146 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
147 
blk_mq_freeze_queue_wait(struct request_queue * q)148 void blk_mq_freeze_queue_wait(struct request_queue *q)
149 {
150 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
151 }
152 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
153 
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)154 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
155 				     unsigned long timeout)
156 {
157 	return wait_event_timeout(q->mq_freeze_wq,
158 					percpu_ref_is_zero(&q->q_usage_counter),
159 					timeout);
160 }
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
162 
163 /*
164  * Guarantee no request is in use, so we can change any data structure of
165  * the queue afterward.
166  */
blk_freeze_queue(struct request_queue * q)167 void blk_freeze_queue(struct request_queue *q)
168 {
169 	/*
170 	 * In the !blk_mq case we are only calling this to kill the
171 	 * q_usage_counter, otherwise this increases the freeze depth
172 	 * and waits for it to return to zero.  For this reason there is
173 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
174 	 * exported to drivers as the only user for unfreeze is blk_mq.
175 	 */
176 	blk_freeze_queue_start(q);
177 	blk_mq_freeze_queue_wait(q);
178 }
179 
blk_mq_freeze_queue(struct request_queue * q)180 void blk_mq_freeze_queue(struct request_queue *q)
181 {
182 	/*
183 	 * ...just an alias to keep freeze and unfreeze actions balanced
184 	 * in the blk_mq_* namespace
185 	 */
186 	blk_freeze_queue(q);
187 }
188 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
189 
blk_mq_unfreeze_queue(struct request_queue * q)190 void blk_mq_unfreeze_queue(struct request_queue *q)
191 {
192 	mutex_lock(&q->mq_freeze_lock);
193 	q->mq_freeze_depth--;
194 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
195 	if (!q->mq_freeze_depth) {
196 		percpu_ref_resurrect(&q->q_usage_counter);
197 		wake_up_all(&q->mq_freeze_wq);
198 	}
199 	mutex_unlock(&q->mq_freeze_lock);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
202 
203 /*
204  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
205  * mpt3sas driver such that this function can be removed.
206  */
blk_mq_quiesce_queue_nowait(struct request_queue * q)207 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
208 {
209 	unsigned long flags;
210 
211 	spin_lock_irqsave(&q->queue_lock, flags);
212 	if (!q->quiesce_depth++)
213 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 	spin_unlock_irqrestore(&q->queue_lock, flags);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217 
218 /**
219  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220  * @q: request queue.
221  *
222  * Note: this function does not prevent that the struct request end_io()
223  * callback function is invoked. Once this function is returned, we make
224  * sure no dispatch can happen until the queue is unquiesced via
225  * blk_mq_unquiesce_queue().
226  */
blk_mq_quiesce_queue(struct request_queue * q)227 void blk_mq_quiesce_queue(struct request_queue *q)
228 {
229 	struct blk_mq_hw_ctx *hctx;
230 	unsigned int i;
231 	bool rcu = false;
232 
233 	blk_mq_quiesce_queue_nowait(q);
234 
235 	queue_for_each_hw_ctx(q, hctx, i) {
236 		if (hctx->flags & BLK_MQ_F_BLOCKING)
237 			synchronize_srcu(hctx->srcu);
238 		else
239 			rcu = true;
240 	}
241 	if (rcu)
242 		synchronize_rcu();
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245 
246 /*
247  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248  * @q: request queue.
249  *
250  * This function recovers queue into the state before quiescing
251  * which is done by blk_mq_quiesce_queue.
252  */
blk_mq_unquiesce_queue(struct request_queue * q)253 void blk_mq_unquiesce_queue(struct request_queue *q)
254 {
255 	unsigned long flags;
256 	bool run_queue = false;
257 
258 	spin_lock_irqsave(&q->queue_lock, flags);
259 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
260 		;
261 	} else if (!--q->quiesce_depth) {
262 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
263 		run_queue = true;
264 	}
265 	spin_unlock_irqrestore(&q->queue_lock, flags);
266 
267 	/* dispatch requests which are inserted during quiescing */
268 	if (run_queue)
269 		blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272 
blk_mq_wake_waiters(struct request_queue * q)273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 	struct blk_mq_hw_ctx *hctx;
276 	unsigned int i;
277 
278 	queue_for_each_hw_ctx(q, hctx, i)
279 		if (blk_mq_hw_queue_mapped(hctx))
280 			blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282 
283 /*
284  * Only need start/end time stamping if we have iostat or
285  * blk stats enabled, or using an IO scheduler.
286  */
blk_mq_need_time_stamp(struct request * rq)287 static inline bool blk_mq_need_time_stamp(struct request *rq)
288 {
289 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
290 }
291 
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,u64 alloc_time_ns)292 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
293 		unsigned int tag, u64 alloc_time_ns)
294 {
295 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
296 	struct request *rq = tags->static_rqs[tag];
297 
298 	if (data->q->elevator) {
299 		rq->tag = BLK_MQ_NO_TAG;
300 		rq->internal_tag = tag;
301 	} else {
302 		rq->tag = tag;
303 		rq->internal_tag = BLK_MQ_NO_TAG;
304 	}
305 
306 	/* csd/requeue_work/fifo_time is initialized before use */
307 	rq->q = data->q;
308 	rq->mq_ctx = data->ctx;
309 	rq->mq_hctx = data->hctx;
310 	rq->rq_flags = 0;
311 	rq->cmd_flags = data->cmd_flags;
312 	if (data->flags & BLK_MQ_REQ_PM)
313 		rq->rq_flags |= RQF_PM;
314 	if (blk_queue_io_stat(data->q))
315 		rq->rq_flags |= RQF_IO_STAT;
316 	INIT_LIST_HEAD(&rq->queuelist);
317 	INIT_HLIST_NODE(&rq->hash);
318 	RB_CLEAR_NODE(&rq->rb_node);
319 	rq->rq_disk = NULL;
320 	rq->part = NULL;
321 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
322 	rq->alloc_time_ns = alloc_time_ns;
323 #endif
324 	if (blk_mq_need_time_stamp(rq))
325 		rq->start_time_ns = ktime_get_ns();
326 	else
327 		rq->start_time_ns = 0;
328 	rq->io_start_time_ns = 0;
329 	rq->stats_sectors = 0;
330 	rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 	rq->nr_integrity_segments = 0;
333 #endif
334 	blk_crypto_rq_set_defaults(rq);
335 	/* tag was already set */
336 	WRITE_ONCE(rq->deadline, 0);
337 
338 	rq->timeout = 0;
339 
340 	rq->end_io = NULL;
341 	rq->end_io_data = NULL;
342 
343 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
344 	refcount_set(&rq->ref, 1);
345 
346 	if (!op_is_flush(data->cmd_flags)) {
347 		struct elevator_queue *e = data->q->elevator;
348 
349 		rq->elv.icq = NULL;
350 		if (e && e->type->ops.prepare_request) {
351 			if (e->type->icq_cache)
352 				blk_mq_sched_assign_ioc(rq);
353 
354 			e->type->ops.prepare_request(rq);
355 			rq->rq_flags |= RQF_ELVPRIV;
356 		}
357 	}
358 
359 	data->hctx->queued++;
360 	return rq;
361 }
362 
__blk_mq_alloc_request(struct blk_mq_alloc_data * data)363 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
364 {
365 	struct request_queue *q = data->q;
366 	struct elevator_queue *e = q->elevator;
367 	u64 alloc_time_ns = 0;
368 	unsigned int tag;
369 
370 	/* alloc_time includes depth and tag waits */
371 	if (blk_queue_rq_alloc_time(q))
372 		alloc_time_ns = ktime_get_ns();
373 
374 	if (data->cmd_flags & REQ_NOWAIT)
375 		data->flags |= BLK_MQ_REQ_NOWAIT;
376 
377 	if (e) {
378 		/*
379 		 * Flush requests are special and go directly to the
380 		 * dispatch list. Don't include reserved tags in the
381 		 * limiting, as it isn't useful.
382 		 */
383 		if (!op_is_flush(data->cmd_flags) &&
384 		    e->type->ops.limit_depth &&
385 		    !(data->flags & BLK_MQ_REQ_RESERVED))
386 			e->type->ops.limit_depth(data->cmd_flags, data);
387 	}
388 
389 retry:
390 	data->ctx = blk_mq_get_ctx(q);
391 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
392 	if (!e)
393 		blk_mq_tag_busy(data->hctx);
394 
395 	/*
396 	 * Waiting allocations only fail because of an inactive hctx.  In that
397 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
398 	 * should have migrated us to an online CPU by now.
399 	 */
400 	tag = blk_mq_get_tag(data);
401 	if (tag == BLK_MQ_NO_TAG) {
402 		if (data->flags & BLK_MQ_REQ_NOWAIT)
403 			return NULL;
404 
405 		/*
406 		 * Give up the CPU and sleep for a random short time to ensure
407 		 * that thread using a realtime scheduling class are migrated
408 		 * off the CPU, and thus off the hctx that is going away.
409 		 */
410 		msleep(3);
411 		goto retry;
412 	}
413 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
414 }
415 
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)416 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
417 		blk_mq_req_flags_t flags)
418 {
419 	struct blk_mq_alloc_data data = {
420 		.q		= q,
421 		.flags		= flags,
422 		.cmd_flags	= op,
423 	};
424 	struct request *rq;
425 	int ret;
426 
427 	ret = blk_queue_enter(q, flags);
428 	if (ret)
429 		return ERR_PTR(ret);
430 
431 	rq = __blk_mq_alloc_request(&data);
432 	if (!rq)
433 		goto out_queue_exit;
434 	rq->__data_len = 0;
435 	rq->__sector = (sector_t) -1;
436 	rq->bio = rq->biotail = NULL;
437 	return rq;
438 out_queue_exit:
439 	blk_queue_exit(q);
440 	return ERR_PTR(-EWOULDBLOCK);
441 }
442 EXPORT_SYMBOL(blk_mq_alloc_request);
443 
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)444 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
445 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
446 {
447 	struct blk_mq_alloc_data data = {
448 		.q		= q,
449 		.flags		= flags,
450 		.cmd_flags	= op,
451 	};
452 	u64 alloc_time_ns = 0;
453 	unsigned int cpu;
454 	unsigned int tag;
455 	int ret;
456 
457 	/* alloc_time includes depth and tag waits */
458 	if (blk_queue_rq_alloc_time(q))
459 		alloc_time_ns = ktime_get_ns();
460 
461 	/*
462 	 * If the tag allocator sleeps we could get an allocation for a
463 	 * different hardware context.  No need to complicate the low level
464 	 * allocator for this for the rare use case of a command tied to
465 	 * a specific queue.
466 	 */
467 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
468 		return ERR_PTR(-EINVAL);
469 
470 	if (hctx_idx >= q->nr_hw_queues)
471 		return ERR_PTR(-EIO);
472 
473 	ret = blk_queue_enter(q, flags);
474 	if (ret)
475 		return ERR_PTR(ret);
476 
477 	/*
478 	 * Check if the hardware context is actually mapped to anything.
479 	 * If not tell the caller that it should skip this queue.
480 	 */
481 	ret = -EXDEV;
482 	data.hctx = q->queue_hw_ctx[hctx_idx];
483 	if (!blk_mq_hw_queue_mapped(data.hctx))
484 		goto out_queue_exit;
485 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
486 	if (cpu >= nr_cpu_ids)
487 		goto out_queue_exit;
488 	data.ctx = __blk_mq_get_ctx(q, cpu);
489 
490 	if (!q->elevator)
491 		blk_mq_tag_busy(data.hctx);
492 
493 	ret = -EWOULDBLOCK;
494 	tag = blk_mq_get_tag(&data);
495 	if (tag == BLK_MQ_NO_TAG)
496 		goto out_queue_exit;
497 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
498 
499 out_queue_exit:
500 	blk_queue_exit(q);
501 	return ERR_PTR(ret);
502 }
503 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
504 
__blk_mq_free_request(struct request * rq)505 static void __blk_mq_free_request(struct request *rq)
506 {
507 	struct request_queue *q = rq->q;
508 	struct blk_mq_ctx *ctx = rq->mq_ctx;
509 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
510 	const int sched_tag = rq->internal_tag;
511 
512 	blk_crypto_free_request(rq);
513 	blk_pm_mark_last_busy(rq);
514 	rq->mq_hctx = NULL;
515 	if (rq->tag != BLK_MQ_NO_TAG)
516 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
517 	if (sched_tag != BLK_MQ_NO_TAG)
518 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
519 	blk_mq_sched_restart(hctx);
520 	blk_queue_exit(q);
521 }
522 
blk_mq_free_request(struct request * rq)523 void blk_mq_free_request(struct request *rq)
524 {
525 	struct request_queue *q = rq->q;
526 	struct elevator_queue *e = q->elevator;
527 	struct blk_mq_ctx *ctx = rq->mq_ctx;
528 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
529 
530 	if (rq->rq_flags & RQF_ELVPRIV) {
531 		if (e && e->type->ops.finish_request)
532 			e->type->ops.finish_request(rq);
533 		if (rq->elv.icq) {
534 			put_io_context(rq->elv.icq->ioc);
535 			rq->elv.icq = NULL;
536 		}
537 	}
538 
539 	ctx->rq_completed[rq_is_sync(rq)]++;
540 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
541 		__blk_mq_dec_active_requests(hctx);
542 
543 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
544 		laptop_io_completion(q->backing_dev_info);
545 
546 	rq_qos_done(q, rq);
547 
548 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
549 	if (refcount_dec_and_test(&rq->ref))
550 		__blk_mq_free_request(rq);
551 }
552 EXPORT_SYMBOL_GPL(blk_mq_free_request);
553 
__blk_mq_end_request(struct request * rq,blk_status_t error)554 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
555 {
556 	u64 now = 0;
557 
558 	if (blk_mq_need_time_stamp(rq))
559 		now = ktime_get_ns();
560 
561 	if (rq->rq_flags & RQF_STATS) {
562 		blk_mq_poll_stats_start(rq->q);
563 		blk_stat_add(rq, now);
564 	}
565 
566 	blk_mq_sched_completed_request(rq, now);
567 
568 	blk_account_io_done(rq, now);
569 
570 	if (rq->end_io) {
571 		rq_qos_done(rq->q, rq);
572 		rq->end_io(rq, error);
573 	} else {
574 		blk_mq_free_request(rq);
575 	}
576 }
577 EXPORT_SYMBOL(__blk_mq_end_request);
578 
blk_mq_end_request(struct request * rq,blk_status_t error)579 void blk_mq_end_request(struct request *rq, blk_status_t error)
580 {
581 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
582 		BUG();
583 	__blk_mq_end_request(rq, error);
584 }
585 EXPORT_SYMBOL(blk_mq_end_request);
586 
587 /*
588  * Softirq action handler - move entries to local list and loop over them
589  * while passing them to the queue registered handler.
590  */
blk_done_softirq(struct softirq_action * h)591 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
592 {
593 	struct list_head *cpu_list, local_list;
594 
595 	local_irq_disable();
596 	cpu_list = this_cpu_ptr(&blk_cpu_done);
597 	list_replace_init(cpu_list, &local_list);
598 	local_irq_enable();
599 
600 	while (!list_empty(&local_list)) {
601 		struct request *rq;
602 
603 		rq = list_entry(local_list.next, struct request, ipi_list);
604 		list_del_init(&rq->ipi_list);
605 		rq->q->mq_ops->complete(rq);
606 	}
607 }
608 
blk_mq_trigger_softirq(struct request * rq)609 static void blk_mq_trigger_softirq(struct request *rq)
610 {
611 	struct list_head *list;
612 	unsigned long flags;
613 
614 	local_irq_save(flags);
615 	list = this_cpu_ptr(&blk_cpu_done);
616 	list_add_tail(&rq->ipi_list, list);
617 
618 	/*
619 	 * If the list only contains our just added request, signal a raise of
620 	 * the softirq.  If there are already entries there, someone already
621 	 * raised the irq but it hasn't run yet.
622 	 */
623 	if (list->next == &rq->ipi_list)
624 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
625 	local_irq_restore(flags);
626 }
627 
blk_softirq_cpu_dead(unsigned int cpu)628 static int blk_softirq_cpu_dead(unsigned int cpu)
629 {
630 	/*
631 	 * If a CPU goes away, splice its entries to the current CPU
632 	 * and trigger a run of the softirq
633 	 */
634 	local_irq_disable();
635 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
636 			 this_cpu_ptr(&blk_cpu_done));
637 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
638 	local_irq_enable();
639 
640 	return 0;
641 }
642 
643 
__blk_mq_complete_request_remote(void * data)644 static void __blk_mq_complete_request_remote(void *data)
645 {
646 	struct request *rq = data;
647 
648 	/*
649 	 * For most of single queue controllers, there is only one irq vector
650 	 * for handling I/O completion, and the only irq's affinity is set
651 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
652 	 * is handled on one specific CPU.
653 	 *
654 	 * So complete I/O requests in softirq context in case of single queue
655 	 * devices to avoid degrading I/O performance due to irqsoff latency.
656 	 */
657 	if (rq->q->nr_hw_queues == 1)
658 		blk_mq_trigger_softirq(rq);
659 	else
660 		rq->q->mq_ops->complete(rq);
661 }
662 
blk_mq_complete_need_ipi(struct request * rq)663 static inline bool blk_mq_complete_need_ipi(struct request *rq)
664 {
665 	int cpu = raw_smp_processor_id();
666 
667 	if (!IS_ENABLED(CONFIG_SMP) ||
668 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
669 		return false;
670 
671 	/* same CPU or cache domain?  Complete locally */
672 	if (cpu == rq->mq_ctx->cpu ||
673 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
674 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
675 		return false;
676 
677 	/* don't try to IPI to an offline CPU */
678 	return cpu_online(rq->mq_ctx->cpu);
679 }
680 
blk_mq_complete_request_remote(struct request * rq)681 bool blk_mq_complete_request_remote(struct request *rq)
682 {
683 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
684 
685 	/*
686 	 * For a polled request, always complete locallly, it's pointless
687 	 * to redirect the completion.
688 	 */
689 	if (rq->cmd_flags & REQ_HIPRI)
690 		return false;
691 
692 	if (blk_mq_complete_need_ipi(rq)) {
693 		rq->csd.func = __blk_mq_complete_request_remote;
694 		rq->csd.info = rq;
695 		rq->csd.flags = 0;
696 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
697 	} else {
698 		if (rq->q->nr_hw_queues > 1)
699 			return false;
700 		blk_mq_trigger_softirq(rq);
701 	}
702 
703 	return true;
704 }
705 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
706 
707 /**
708  * blk_mq_complete_request - end I/O on a request
709  * @rq:		the request being processed
710  *
711  * Description:
712  *	Complete a request by scheduling the ->complete_rq operation.
713  **/
blk_mq_complete_request(struct request * rq)714 void blk_mq_complete_request(struct request *rq)
715 {
716 	if (!blk_mq_complete_request_remote(rq))
717 		rq->q->mq_ops->complete(rq);
718 }
719 EXPORT_SYMBOL(blk_mq_complete_request);
720 
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)721 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
722 	__releases(hctx->srcu)
723 {
724 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
725 		rcu_read_unlock();
726 	else
727 		srcu_read_unlock(hctx->srcu, srcu_idx);
728 }
729 
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)730 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
731 	__acquires(hctx->srcu)
732 {
733 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
734 		/* shut up gcc false positive */
735 		*srcu_idx = 0;
736 		rcu_read_lock();
737 	} else
738 		*srcu_idx = srcu_read_lock(hctx->srcu);
739 }
740 
741 /**
742  * blk_mq_start_request - Start processing a request
743  * @rq: Pointer to request to be started
744  *
745  * Function used by device drivers to notify the block layer that a request
746  * is going to be processed now, so blk layer can do proper initializations
747  * such as starting the timeout timer.
748  */
blk_mq_start_request(struct request * rq)749 void blk_mq_start_request(struct request *rq)
750 {
751 	struct request_queue *q = rq->q;
752 
753 	trace_block_rq_issue(rq);
754 
755 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
756 		rq->io_start_time_ns = ktime_get_ns();
757 		rq->stats_sectors = blk_rq_sectors(rq);
758 		rq->rq_flags |= RQF_STATS;
759 		rq_qos_issue(q, rq);
760 	}
761 
762 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
763 
764 	blk_add_timer(rq);
765 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
766 
767 #ifdef CONFIG_BLK_DEV_INTEGRITY
768 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
769 		q->integrity.profile->prepare_fn(rq);
770 #endif
771 }
772 EXPORT_SYMBOL(blk_mq_start_request);
773 
__blk_mq_requeue_request(struct request * rq)774 static void __blk_mq_requeue_request(struct request *rq)
775 {
776 	struct request_queue *q = rq->q;
777 
778 	blk_mq_put_driver_tag(rq);
779 
780 	trace_block_rq_requeue(rq);
781 	rq_qos_requeue(q, rq);
782 
783 	if (blk_mq_request_started(rq)) {
784 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
785 		rq->rq_flags &= ~RQF_TIMED_OUT;
786 	}
787 }
788 
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)789 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
790 {
791 	__blk_mq_requeue_request(rq);
792 
793 	/* this request will be re-inserted to io scheduler queue */
794 	blk_mq_sched_requeue_request(rq);
795 
796 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
797 }
798 EXPORT_SYMBOL(blk_mq_requeue_request);
799 
blk_mq_requeue_work(struct work_struct * work)800 static void blk_mq_requeue_work(struct work_struct *work)
801 {
802 	struct request_queue *q =
803 		container_of(work, struct request_queue, requeue_work.work);
804 	LIST_HEAD(rq_list);
805 	struct request *rq, *next;
806 
807 	spin_lock_irq(&q->requeue_lock);
808 	list_splice_init(&q->requeue_list, &rq_list);
809 	spin_unlock_irq(&q->requeue_lock);
810 
811 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
812 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
813 			continue;
814 
815 		rq->rq_flags &= ~RQF_SOFTBARRIER;
816 		list_del_init(&rq->queuelist);
817 		/*
818 		 * If RQF_DONTPREP, rq has contained some driver specific
819 		 * data, so insert it to hctx dispatch list to avoid any
820 		 * merge.
821 		 */
822 		if (rq->rq_flags & RQF_DONTPREP)
823 			blk_mq_request_bypass_insert(rq, false, false);
824 		else
825 			blk_mq_sched_insert_request(rq, true, false, false);
826 	}
827 
828 	while (!list_empty(&rq_list)) {
829 		rq = list_entry(rq_list.next, struct request, queuelist);
830 		list_del_init(&rq->queuelist);
831 		blk_mq_sched_insert_request(rq, false, false, false);
832 	}
833 
834 	blk_mq_run_hw_queues(q, false);
835 }
836 
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)837 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
838 				bool kick_requeue_list)
839 {
840 	struct request_queue *q = rq->q;
841 	unsigned long flags;
842 
843 	/*
844 	 * We abuse this flag that is otherwise used by the I/O scheduler to
845 	 * request head insertion from the workqueue.
846 	 */
847 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
848 
849 	spin_lock_irqsave(&q->requeue_lock, flags);
850 	if (at_head) {
851 		rq->rq_flags |= RQF_SOFTBARRIER;
852 		list_add(&rq->queuelist, &q->requeue_list);
853 	} else {
854 		list_add_tail(&rq->queuelist, &q->requeue_list);
855 	}
856 	spin_unlock_irqrestore(&q->requeue_lock, flags);
857 
858 	if (kick_requeue_list)
859 		blk_mq_kick_requeue_list(q);
860 }
861 
blk_mq_kick_requeue_list(struct request_queue * q)862 void blk_mq_kick_requeue_list(struct request_queue *q)
863 {
864 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
865 }
866 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
867 
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)868 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
869 				    unsigned long msecs)
870 {
871 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
872 				    msecs_to_jiffies(msecs));
873 }
874 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
875 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)876 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
877 {
878 	if (tag < tags->nr_tags) {
879 		prefetch(tags->rqs[tag]);
880 		return tags->rqs[tag];
881 	}
882 
883 	return NULL;
884 }
885 EXPORT_SYMBOL(blk_mq_tag_to_rq);
886 
blk_mq_rq_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)887 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
888 			       void *priv, bool reserved)
889 {
890 	/*
891 	 * If we find a request that isn't idle and the queue matches,
892 	 * we know the queue is busy. Return false to stop the iteration.
893 	 */
894 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
895 		bool *busy = priv;
896 
897 		*busy = true;
898 		return false;
899 	}
900 
901 	return true;
902 }
903 
blk_mq_queue_inflight(struct request_queue * q)904 bool blk_mq_queue_inflight(struct request_queue *q)
905 {
906 	bool busy = false;
907 
908 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
909 	return busy;
910 }
911 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
912 
blk_mq_rq_timed_out(struct request * req,bool reserved)913 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
914 {
915 	req->rq_flags |= RQF_TIMED_OUT;
916 	if (req->q->mq_ops->timeout) {
917 		enum blk_eh_timer_return ret;
918 
919 		ret = req->q->mq_ops->timeout(req, reserved);
920 		if (ret == BLK_EH_DONE)
921 			return;
922 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
923 	}
924 
925 	blk_add_timer(req);
926 }
927 
blk_mq_req_expired(struct request * rq,unsigned long * next)928 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
929 {
930 	unsigned long deadline;
931 
932 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
933 		return false;
934 	if (rq->rq_flags & RQF_TIMED_OUT)
935 		return false;
936 
937 	deadline = READ_ONCE(rq->deadline);
938 	if (time_after_eq(jiffies, deadline))
939 		return true;
940 
941 	if (*next == 0)
942 		*next = deadline;
943 	else if (time_after(*next, deadline))
944 		*next = deadline;
945 	return false;
946 }
947 
blk_mq_put_rq_ref(struct request * rq)948 void blk_mq_put_rq_ref(struct request *rq)
949 {
950 	if (is_flush_rq(rq))
951 		rq->end_io(rq, 0);
952 	else if (refcount_dec_and_test(&rq->ref))
953 		__blk_mq_free_request(rq);
954 }
955 
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)956 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
957 		struct request *rq, void *priv, bool reserved)
958 {
959 	unsigned long *next = priv;
960 
961 	/*
962 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
963 	 * be reallocated underneath the timeout handler's processing, then
964 	 * the expire check is reliable. If the request is not expired, then
965 	 * it was completed and reallocated as a new request after returning
966 	 * from blk_mq_check_expired().
967 	 */
968 	if (blk_mq_req_expired(rq, next))
969 		blk_mq_rq_timed_out(rq, reserved);
970 	return true;
971 }
972 
blk_mq_timeout_work(struct work_struct * work)973 static void blk_mq_timeout_work(struct work_struct *work)
974 {
975 	struct request_queue *q =
976 		container_of(work, struct request_queue, timeout_work);
977 	unsigned long next = 0;
978 	struct blk_mq_hw_ctx *hctx;
979 	int i;
980 
981 	/* A deadlock might occur if a request is stuck requiring a
982 	 * timeout at the same time a queue freeze is waiting
983 	 * completion, since the timeout code would not be able to
984 	 * acquire the queue reference here.
985 	 *
986 	 * That's why we don't use blk_queue_enter here; instead, we use
987 	 * percpu_ref_tryget directly, because we need to be able to
988 	 * obtain a reference even in the short window between the queue
989 	 * starting to freeze, by dropping the first reference in
990 	 * blk_freeze_queue_start, and the moment the last request is
991 	 * consumed, marked by the instant q_usage_counter reaches
992 	 * zero.
993 	 */
994 	if (!percpu_ref_tryget(&q->q_usage_counter))
995 		return;
996 
997 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
998 
999 	if (next != 0) {
1000 		mod_timer(&q->timeout, next);
1001 	} else {
1002 		/*
1003 		 * Request timeouts are handled as a forward rolling timer. If
1004 		 * we end up here it means that no requests are pending and
1005 		 * also that no request has been pending for a while. Mark
1006 		 * each hctx as idle.
1007 		 */
1008 		queue_for_each_hw_ctx(q, hctx, i) {
1009 			/* the hctx may be unmapped, so check it here */
1010 			if (blk_mq_hw_queue_mapped(hctx))
1011 				blk_mq_tag_idle(hctx);
1012 		}
1013 	}
1014 	blk_queue_exit(q);
1015 }
1016 
1017 struct flush_busy_ctx_data {
1018 	struct blk_mq_hw_ctx *hctx;
1019 	struct list_head *list;
1020 };
1021 
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1022 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1023 {
1024 	struct flush_busy_ctx_data *flush_data = data;
1025 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1026 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1027 	enum hctx_type type = hctx->type;
1028 
1029 	spin_lock(&ctx->lock);
1030 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1031 	sbitmap_clear_bit(sb, bitnr);
1032 	spin_unlock(&ctx->lock);
1033 	return true;
1034 }
1035 
1036 /*
1037  * Process software queues that have been marked busy, splicing them
1038  * to the for-dispatch
1039  */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1040 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1041 {
1042 	struct flush_busy_ctx_data data = {
1043 		.hctx = hctx,
1044 		.list = list,
1045 	};
1046 
1047 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1048 }
1049 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1050 
1051 struct dispatch_rq_data {
1052 	struct blk_mq_hw_ctx *hctx;
1053 	struct request *rq;
1054 };
1055 
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1056 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1057 		void *data)
1058 {
1059 	struct dispatch_rq_data *dispatch_data = data;
1060 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1061 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1062 	enum hctx_type type = hctx->type;
1063 
1064 	spin_lock(&ctx->lock);
1065 	if (!list_empty(&ctx->rq_lists[type])) {
1066 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1067 		list_del_init(&dispatch_data->rq->queuelist);
1068 		if (list_empty(&ctx->rq_lists[type]))
1069 			sbitmap_clear_bit(sb, bitnr);
1070 	}
1071 	spin_unlock(&ctx->lock);
1072 
1073 	return !dispatch_data->rq;
1074 }
1075 
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1076 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1077 					struct blk_mq_ctx *start)
1078 {
1079 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1080 	struct dispatch_rq_data data = {
1081 		.hctx = hctx,
1082 		.rq   = NULL,
1083 	};
1084 
1085 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1086 			       dispatch_rq_from_ctx, &data);
1087 
1088 	return data.rq;
1089 }
1090 
queued_to_index(unsigned int queued)1091 static inline unsigned int queued_to_index(unsigned int queued)
1092 {
1093 	if (!queued)
1094 		return 0;
1095 
1096 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1097 }
1098 
__blk_mq_get_driver_tag(struct request * rq)1099 static bool __blk_mq_get_driver_tag(struct request *rq)
1100 {
1101 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1102 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1103 	int tag;
1104 
1105 	blk_mq_tag_busy(rq->mq_hctx);
1106 
1107 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1108 		bt = rq->mq_hctx->tags->breserved_tags;
1109 		tag_offset = 0;
1110 	} else {
1111 		if (!hctx_may_queue(rq->mq_hctx, bt))
1112 			return false;
1113 	}
1114 
1115 	tag = __sbitmap_queue_get(bt);
1116 	if (tag == BLK_MQ_NO_TAG)
1117 		return false;
1118 
1119 	rq->tag = tag + tag_offset;
1120 	return true;
1121 }
1122 
blk_mq_get_driver_tag(struct request * rq)1123 static bool blk_mq_get_driver_tag(struct request *rq)
1124 {
1125 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1126 
1127 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1128 		return false;
1129 
1130 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1131 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1132 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1133 		__blk_mq_inc_active_requests(hctx);
1134 	}
1135 	hctx->tags->rqs[rq->tag] = rq;
1136 	return true;
1137 }
1138 
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1139 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1140 				int flags, void *key)
1141 {
1142 	struct blk_mq_hw_ctx *hctx;
1143 
1144 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1145 
1146 	spin_lock(&hctx->dispatch_wait_lock);
1147 	if (!list_empty(&wait->entry)) {
1148 		struct sbitmap_queue *sbq;
1149 
1150 		list_del_init(&wait->entry);
1151 		sbq = hctx->tags->bitmap_tags;
1152 		atomic_dec(&sbq->ws_active);
1153 	}
1154 	spin_unlock(&hctx->dispatch_wait_lock);
1155 
1156 	blk_mq_run_hw_queue(hctx, true);
1157 	return 1;
1158 }
1159 
1160 /*
1161  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1162  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1163  * restart. For both cases, take care to check the condition again after
1164  * marking us as waiting.
1165  */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1166 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1167 				 struct request *rq)
1168 {
1169 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1170 	struct wait_queue_head *wq;
1171 	wait_queue_entry_t *wait;
1172 	bool ret;
1173 
1174 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1175 		blk_mq_sched_mark_restart_hctx(hctx);
1176 
1177 		/*
1178 		 * It's possible that a tag was freed in the window between the
1179 		 * allocation failure and adding the hardware queue to the wait
1180 		 * queue.
1181 		 *
1182 		 * Don't clear RESTART here, someone else could have set it.
1183 		 * At most this will cost an extra queue run.
1184 		 */
1185 		return blk_mq_get_driver_tag(rq);
1186 	}
1187 
1188 	wait = &hctx->dispatch_wait;
1189 	if (!list_empty_careful(&wait->entry))
1190 		return false;
1191 
1192 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1193 
1194 	spin_lock_irq(&wq->lock);
1195 	spin_lock(&hctx->dispatch_wait_lock);
1196 	if (!list_empty(&wait->entry)) {
1197 		spin_unlock(&hctx->dispatch_wait_lock);
1198 		spin_unlock_irq(&wq->lock);
1199 		return false;
1200 	}
1201 
1202 	atomic_inc(&sbq->ws_active);
1203 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1204 	__add_wait_queue(wq, wait);
1205 
1206 	/*
1207 	 * It's possible that a tag was freed in the window between the
1208 	 * allocation failure and adding the hardware queue to the wait
1209 	 * queue.
1210 	 */
1211 	ret = blk_mq_get_driver_tag(rq);
1212 	if (!ret) {
1213 		spin_unlock(&hctx->dispatch_wait_lock);
1214 		spin_unlock_irq(&wq->lock);
1215 		return false;
1216 	}
1217 
1218 	/*
1219 	 * We got a tag, remove ourselves from the wait queue to ensure
1220 	 * someone else gets the wakeup.
1221 	 */
1222 	list_del_init(&wait->entry);
1223 	atomic_dec(&sbq->ws_active);
1224 	spin_unlock(&hctx->dispatch_wait_lock);
1225 	spin_unlock_irq(&wq->lock);
1226 
1227 	return true;
1228 }
1229 
1230 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1231 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1232 /*
1233  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1234  * - EWMA is one simple way to compute running average value
1235  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1236  * - take 4 as factor for avoiding to get too small(0) result, and this
1237  *   factor doesn't matter because EWMA decreases exponentially
1238  */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1239 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1240 {
1241 	unsigned int ewma;
1242 
1243 	ewma = hctx->dispatch_busy;
1244 
1245 	if (!ewma && !busy)
1246 		return;
1247 
1248 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1249 	if (busy)
1250 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1251 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1252 
1253 	hctx->dispatch_busy = ewma;
1254 }
1255 
1256 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1257 
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1258 static void blk_mq_handle_dev_resource(struct request *rq,
1259 				       struct list_head *list)
1260 {
1261 	struct request *next =
1262 		list_first_entry_or_null(list, struct request, queuelist);
1263 
1264 	/*
1265 	 * If an I/O scheduler has been configured and we got a driver tag for
1266 	 * the next request already, free it.
1267 	 */
1268 	if (next)
1269 		blk_mq_put_driver_tag(next);
1270 
1271 	list_add(&rq->queuelist, list);
1272 	__blk_mq_requeue_request(rq);
1273 }
1274 
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1275 static void blk_mq_handle_zone_resource(struct request *rq,
1276 					struct list_head *zone_list)
1277 {
1278 	/*
1279 	 * If we end up here it is because we cannot dispatch a request to a
1280 	 * specific zone due to LLD level zone-write locking or other zone
1281 	 * related resource not being available. In this case, set the request
1282 	 * aside in zone_list for retrying it later.
1283 	 */
1284 	list_add(&rq->queuelist, zone_list);
1285 	__blk_mq_requeue_request(rq);
1286 }
1287 
1288 enum prep_dispatch {
1289 	PREP_DISPATCH_OK,
1290 	PREP_DISPATCH_NO_TAG,
1291 	PREP_DISPATCH_NO_BUDGET,
1292 };
1293 
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1294 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1295 						  bool need_budget)
1296 {
1297 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1298 
1299 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1300 		blk_mq_put_driver_tag(rq);
1301 		return PREP_DISPATCH_NO_BUDGET;
1302 	}
1303 
1304 	if (!blk_mq_get_driver_tag(rq)) {
1305 		/*
1306 		 * The initial allocation attempt failed, so we need to
1307 		 * rerun the hardware queue when a tag is freed. The
1308 		 * waitqueue takes care of that. If the queue is run
1309 		 * before we add this entry back on the dispatch list,
1310 		 * we'll re-run it below.
1311 		 */
1312 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1313 			/*
1314 			 * All budgets not got from this function will be put
1315 			 * together during handling partial dispatch
1316 			 */
1317 			if (need_budget)
1318 				blk_mq_put_dispatch_budget(rq->q);
1319 			return PREP_DISPATCH_NO_TAG;
1320 		}
1321 	}
1322 
1323 	return PREP_DISPATCH_OK;
1324 }
1325 
1326 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,unsigned int nr_budgets)1327 static void blk_mq_release_budgets(struct request_queue *q,
1328 		unsigned int nr_budgets)
1329 {
1330 	int i;
1331 
1332 	for (i = 0; i < nr_budgets; i++)
1333 		blk_mq_put_dispatch_budget(q);
1334 }
1335 
1336 /*
1337  * Returns true if we did some work AND can potentially do more.
1338  */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1339 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1340 			     unsigned int nr_budgets)
1341 {
1342 	enum prep_dispatch prep;
1343 	struct request_queue *q = hctx->queue;
1344 	struct request *rq, *nxt;
1345 	int errors, queued;
1346 	blk_status_t ret = BLK_STS_OK;
1347 	LIST_HEAD(zone_list);
1348 	bool needs_resource = false;
1349 
1350 	if (list_empty(list))
1351 		return false;
1352 
1353 	/*
1354 	 * Now process all the entries, sending them to the driver.
1355 	 */
1356 	errors = queued = 0;
1357 	do {
1358 		struct blk_mq_queue_data bd;
1359 
1360 		rq = list_first_entry(list, struct request, queuelist);
1361 
1362 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1363 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1364 		if (prep != PREP_DISPATCH_OK)
1365 			break;
1366 
1367 		list_del_init(&rq->queuelist);
1368 
1369 		bd.rq = rq;
1370 
1371 		/*
1372 		 * Flag last if we have no more requests, or if we have more
1373 		 * but can't assign a driver tag to it.
1374 		 */
1375 		if (list_empty(list))
1376 			bd.last = true;
1377 		else {
1378 			nxt = list_first_entry(list, struct request, queuelist);
1379 			bd.last = !blk_mq_get_driver_tag(nxt);
1380 		}
1381 
1382 		/*
1383 		 * once the request is queued to lld, no need to cover the
1384 		 * budget any more
1385 		 */
1386 		if (nr_budgets)
1387 			nr_budgets--;
1388 		ret = q->mq_ops->queue_rq(hctx, &bd);
1389 		switch (ret) {
1390 		case BLK_STS_OK:
1391 			queued++;
1392 			break;
1393 		case BLK_STS_RESOURCE:
1394 			needs_resource = true;
1395 			fallthrough;
1396 		case BLK_STS_DEV_RESOURCE:
1397 			blk_mq_handle_dev_resource(rq, list);
1398 			goto out;
1399 		case BLK_STS_ZONE_RESOURCE:
1400 			/*
1401 			 * Move the request to zone_list and keep going through
1402 			 * the dispatch list to find more requests the drive can
1403 			 * accept.
1404 			 */
1405 			blk_mq_handle_zone_resource(rq, &zone_list);
1406 			needs_resource = true;
1407 			break;
1408 		default:
1409 			errors++;
1410 			blk_mq_end_request(rq, BLK_STS_IOERR);
1411 		}
1412 	} while (!list_empty(list));
1413 out:
1414 	if (!list_empty(&zone_list))
1415 		list_splice_tail_init(&zone_list, list);
1416 
1417 	hctx->dispatched[queued_to_index(queued)]++;
1418 
1419 	/* If we didn't flush the entire list, we could have told the driver
1420 	 * there was more coming, but that turned out to be a lie.
1421 	 */
1422 	if ((!list_empty(list) || errors || needs_resource ||
1423 	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1424 		q->mq_ops->commit_rqs(hctx);
1425 	/*
1426 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1427 	 * that is where we will continue on next queue run.
1428 	 */
1429 	if (!list_empty(list)) {
1430 		bool needs_restart;
1431 		/* For non-shared tags, the RESTART check will suffice */
1432 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1433 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1434 
1435 		blk_mq_release_budgets(q, nr_budgets);
1436 
1437 		spin_lock(&hctx->lock);
1438 		list_splice_tail_init(list, &hctx->dispatch);
1439 		spin_unlock(&hctx->lock);
1440 
1441 		/*
1442 		 * Order adding requests to hctx->dispatch and checking
1443 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1444 		 * in blk_mq_sched_restart(). Avoid restart code path to
1445 		 * miss the new added requests to hctx->dispatch, meantime
1446 		 * SCHED_RESTART is observed here.
1447 		 */
1448 		smp_mb();
1449 
1450 		/*
1451 		 * If SCHED_RESTART was set by the caller of this function and
1452 		 * it is no longer set that means that it was cleared by another
1453 		 * thread and hence that a queue rerun is needed.
1454 		 *
1455 		 * If 'no_tag' is set, that means that we failed getting
1456 		 * a driver tag with an I/O scheduler attached. If our dispatch
1457 		 * waitqueue is no longer active, ensure that we run the queue
1458 		 * AFTER adding our entries back to the list.
1459 		 *
1460 		 * If no I/O scheduler has been configured it is possible that
1461 		 * the hardware queue got stopped and restarted before requests
1462 		 * were pushed back onto the dispatch list. Rerun the queue to
1463 		 * avoid starvation. Notes:
1464 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1465 		 *   been stopped before rerunning a queue.
1466 		 * - Some but not all block drivers stop a queue before
1467 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1468 		 *   and dm-rq.
1469 		 *
1470 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1471 		 * bit is set, run queue after a delay to avoid IO stalls
1472 		 * that could otherwise occur if the queue is idle.  We'll do
1473 		 * similar if we couldn't get budget or couldn't lock a zone
1474 		 * and SCHED_RESTART is set.
1475 		 */
1476 		needs_restart = blk_mq_sched_needs_restart(hctx);
1477 		if (prep == PREP_DISPATCH_NO_BUDGET)
1478 			needs_resource = true;
1479 		if (!needs_restart ||
1480 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1481 			blk_mq_run_hw_queue(hctx, true);
1482 		else if (needs_restart && needs_resource)
1483 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1484 
1485 		blk_mq_update_dispatch_busy(hctx, true);
1486 		return false;
1487 	} else
1488 		blk_mq_update_dispatch_busy(hctx, false);
1489 
1490 	return (queued + errors) != 0;
1491 }
1492 
1493 /**
1494  * __blk_mq_run_hw_queue - Run a hardware queue.
1495  * @hctx: Pointer to the hardware queue to run.
1496  *
1497  * Send pending requests to the hardware.
1498  */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1499 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1500 {
1501 	int srcu_idx;
1502 
1503 	/*
1504 	 * We should be running this queue from one of the CPUs that
1505 	 * are mapped to it.
1506 	 *
1507 	 * There are at least two related races now between setting
1508 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1509 	 * __blk_mq_run_hw_queue():
1510 	 *
1511 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1512 	 *   but later it becomes online, then this warning is harmless
1513 	 *   at all
1514 	 *
1515 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1516 	 *   but later it becomes offline, then the warning can't be
1517 	 *   triggered, and we depend on blk-mq timeout handler to
1518 	 *   handle dispatched requests to this hctx
1519 	 */
1520 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1521 		cpu_online(hctx->next_cpu)) {
1522 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1523 			raw_smp_processor_id(),
1524 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1525 		dump_stack();
1526 	}
1527 
1528 	/*
1529 	 * We can't run the queue inline with ints disabled. Ensure that
1530 	 * we catch bad users of this early.
1531 	 */
1532 	WARN_ON_ONCE(in_interrupt());
1533 
1534 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1535 
1536 	hctx_lock(hctx, &srcu_idx);
1537 	blk_mq_sched_dispatch_requests(hctx);
1538 	hctx_unlock(hctx, srcu_idx);
1539 }
1540 
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1541 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1542 {
1543 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1544 
1545 	if (cpu >= nr_cpu_ids)
1546 		cpu = cpumask_first(hctx->cpumask);
1547 	return cpu;
1548 }
1549 
1550 /*
1551  * It'd be great if the workqueue API had a way to pass
1552  * in a mask and had some smarts for more clever placement.
1553  * For now we just round-robin here, switching for every
1554  * BLK_MQ_CPU_WORK_BATCH queued items.
1555  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1556 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1557 {
1558 	bool tried = false;
1559 	int next_cpu = hctx->next_cpu;
1560 
1561 	if (hctx->queue->nr_hw_queues == 1)
1562 		return WORK_CPU_UNBOUND;
1563 
1564 	if (--hctx->next_cpu_batch <= 0) {
1565 select_cpu:
1566 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1567 				cpu_online_mask);
1568 		if (next_cpu >= nr_cpu_ids)
1569 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1570 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1571 	}
1572 
1573 	/*
1574 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1575 	 * and it should only happen in the path of handling CPU DEAD.
1576 	 */
1577 	if (!cpu_online(next_cpu)) {
1578 		if (!tried) {
1579 			tried = true;
1580 			goto select_cpu;
1581 		}
1582 
1583 		/*
1584 		 * Make sure to re-select CPU next time once after CPUs
1585 		 * in hctx->cpumask become online again.
1586 		 */
1587 		hctx->next_cpu = next_cpu;
1588 		hctx->next_cpu_batch = 1;
1589 		return WORK_CPU_UNBOUND;
1590 	}
1591 
1592 	hctx->next_cpu = next_cpu;
1593 	return next_cpu;
1594 }
1595 
1596 /**
1597  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1598  * @hctx: Pointer to the hardware queue to run.
1599  * @async: If we want to run the queue asynchronously.
1600  * @msecs: Microseconds of delay to wait before running the queue.
1601  *
1602  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1603  * with a delay of @msecs.
1604  */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1605 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1606 					unsigned long msecs)
1607 {
1608 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1609 		return;
1610 
1611 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1612 		int cpu = get_cpu();
1613 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1614 			__blk_mq_run_hw_queue(hctx);
1615 			put_cpu();
1616 			return;
1617 		}
1618 
1619 		put_cpu();
1620 	}
1621 
1622 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1623 				    msecs_to_jiffies(msecs));
1624 }
1625 
1626 /**
1627  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1628  * @hctx: Pointer to the hardware queue to run.
1629  * @msecs: Microseconds of delay to wait before running the queue.
1630  *
1631  * Run a hardware queue asynchronously with a delay of @msecs.
1632  */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1633 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1634 {
1635 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1636 }
1637 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1638 
1639 /**
1640  * blk_mq_run_hw_queue - Start to run a hardware queue.
1641  * @hctx: Pointer to the hardware queue to run.
1642  * @async: If we want to run the queue asynchronously.
1643  *
1644  * Check if the request queue is not in a quiesced state and if there are
1645  * pending requests to be sent. If this is true, run the queue to send requests
1646  * to hardware.
1647  */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1648 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1649 {
1650 	int srcu_idx;
1651 	bool need_run;
1652 
1653 	/*
1654 	 * When queue is quiesced, we may be switching io scheduler, or
1655 	 * updating nr_hw_queues, or other things, and we can't run queue
1656 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1657 	 *
1658 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1659 	 * quiesced.
1660 	 */
1661 	hctx_lock(hctx, &srcu_idx);
1662 	need_run = !blk_queue_quiesced(hctx->queue) &&
1663 		blk_mq_hctx_has_pending(hctx);
1664 	hctx_unlock(hctx, srcu_idx);
1665 
1666 	if (need_run)
1667 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1668 }
1669 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1670 
1671 /**
1672  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1673  * @q: Pointer to the request queue to run.
1674  * @async: If we want to run the queue asynchronously.
1675  */
blk_mq_run_hw_queues(struct request_queue * q,bool async)1676 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1677 {
1678 	struct blk_mq_hw_ctx *hctx;
1679 	int i;
1680 
1681 	queue_for_each_hw_ctx(q, hctx, i) {
1682 		if (blk_mq_hctx_stopped(hctx))
1683 			continue;
1684 
1685 		blk_mq_run_hw_queue(hctx, async);
1686 	}
1687 }
1688 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1689 
1690 /**
1691  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1692  * @q: Pointer to the request queue to run.
1693  * @msecs: Microseconds of delay to wait before running the queues.
1694  */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)1695 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1696 {
1697 	struct blk_mq_hw_ctx *hctx;
1698 	int i;
1699 
1700 	queue_for_each_hw_ctx(q, hctx, i) {
1701 		if (blk_mq_hctx_stopped(hctx))
1702 			continue;
1703 
1704 		blk_mq_delay_run_hw_queue(hctx, msecs);
1705 	}
1706 }
1707 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1708 
1709 /**
1710  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1711  * @q: request queue.
1712  *
1713  * The caller is responsible for serializing this function against
1714  * blk_mq_{start,stop}_hw_queue().
1715  */
blk_mq_queue_stopped(struct request_queue * q)1716 bool blk_mq_queue_stopped(struct request_queue *q)
1717 {
1718 	struct blk_mq_hw_ctx *hctx;
1719 	int i;
1720 
1721 	queue_for_each_hw_ctx(q, hctx, i)
1722 		if (blk_mq_hctx_stopped(hctx))
1723 			return true;
1724 
1725 	return false;
1726 }
1727 EXPORT_SYMBOL(blk_mq_queue_stopped);
1728 
1729 /*
1730  * This function is often used for pausing .queue_rq() by driver when
1731  * there isn't enough resource or some conditions aren't satisfied, and
1732  * BLK_STS_RESOURCE is usually returned.
1733  *
1734  * We do not guarantee that dispatch can be drained or blocked
1735  * after blk_mq_stop_hw_queue() returns. Please use
1736  * blk_mq_quiesce_queue() for that requirement.
1737  */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1738 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1739 {
1740 	cancel_delayed_work(&hctx->run_work);
1741 
1742 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1743 }
1744 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1745 
1746 /*
1747  * This function is often used for pausing .queue_rq() by driver when
1748  * there isn't enough resource or some conditions aren't satisfied, and
1749  * BLK_STS_RESOURCE is usually returned.
1750  *
1751  * We do not guarantee that dispatch can be drained or blocked
1752  * after blk_mq_stop_hw_queues() returns. Please use
1753  * blk_mq_quiesce_queue() for that requirement.
1754  */
blk_mq_stop_hw_queues(struct request_queue * q)1755 void blk_mq_stop_hw_queues(struct request_queue *q)
1756 {
1757 	struct blk_mq_hw_ctx *hctx;
1758 	int i;
1759 
1760 	queue_for_each_hw_ctx(q, hctx, i)
1761 		blk_mq_stop_hw_queue(hctx);
1762 }
1763 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1764 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1765 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1766 {
1767 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1768 
1769 	blk_mq_run_hw_queue(hctx, false);
1770 }
1771 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1772 
blk_mq_start_hw_queues(struct request_queue * q)1773 void blk_mq_start_hw_queues(struct request_queue *q)
1774 {
1775 	struct blk_mq_hw_ctx *hctx;
1776 	int i;
1777 
1778 	queue_for_each_hw_ctx(q, hctx, i)
1779 		blk_mq_start_hw_queue(hctx);
1780 }
1781 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1782 
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1783 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1784 {
1785 	if (!blk_mq_hctx_stopped(hctx))
1786 		return;
1787 
1788 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1789 	blk_mq_run_hw_queue(hctx, async);
1790 }
1791 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1792 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1793 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1794 {
1795 	struct blk_mq_hw_ctx *hctx;
1796 	int i;
1797 
1798 	queue_for_each_hw_ctx(q, hctx, i)
1799 		blk_mq_start_stopped_hw_queue(hctx, async);
1800 }
1801 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1802 
blk_mq_run_work_fn(struct work_struct * work)1803 static void blk_mq_run_work_fn(struct work_struct *work)
1804 {
1805 	struct blk_mq_hw_ctx *hctx;
1806 
1807 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1808 
1809 	/*
1810 	 * If we are stopped, don't run the queue.
1811 	 */
1812 	if (blk_mq_hctx_stopped(hctx))
1813 		return;
1814 
1815 	__blk_mq_run_hw_queue(hctx);
1816 }
1817 
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1818 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1819 					    struct request *rq,
1820 					    bool at_head)
1821 {
1822 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1823 	enum hctx_type type = hctx->type;
1824 
1825 	lockdep_assert_held(&ctx->lock);
1826 
1827 	trace_block_rq_insert(rq);
1828 
1829 	if (at_head)
1830 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1831 	else
1832 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1833 }
1834 
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1835 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1836 			     bool at_head)
1837 {
1838 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1839 
1840 	lockdep_assert_held(&ctx->lock);
1841 
1842 	__blk_mq_insert_req_list(hctx, rq, at_head);
1843 	blk_mq_hctx_mark_pending(hctx, ctx);
1844 }
1845 
1846 /**
1847  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1848  * @rq: Pointer to request to be inserted.
1849  * @at_head: true if the request should be inserted at the head of the list.
1850  * @run_queue: If we should run the hardware queue after inserting the request.
1851  *
1852  * Should only be used carefully, when the caller knows we want to
1853  * bypass a potential IO scheduler on the target device.
1854  */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)1855 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1856 				  bool run_queue)
1857 {
1858 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1859 
1860 	spin_lock(&hctx->lock);
1861 	if (at_head)
1862 		list_add(&rq->queuelist, &hctx->dispatch);
1863 	else
1864 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1865 	spin_unlock(&hctx->lock);
1866 
1867 	if (run_queue)
1868 		blk_mq_run_hw_queue(hctx, false);
1869 }
1870 
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1871 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1872 			    struct list_head *list)
1873 
1874 {
1875 	struct request *rq;
1876 	enum hctx_type type = hctx->type;
1877 
1878 	/*
1879 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1880 	 * offline now
1881 	 */
1882 	list_for_each_entry(rq, list, queuelist) {
1883 		BUG_ON(rq->mq_ctx != ctx);
1884 		trace_block_rq_insert(rq);
1885 	}
1886 
1887 	spin_lock(&ctx->lock);
1888 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1889 	blk_mq_hctx_mark_pending(hctx, ctx);
1890 	spin_unlock(&ctx->lock);
1891 }
1892 
plug_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)1893 static int plug_rq_cmp(void *priv, const struct list_head *a,
1894 		       const struct list_head *b)
1895 {
1896 	struct request *rqa = container_of(a, struct request, queuelist);
1897 	struct request *rqb = container_of(b, struct request, queuelist);
1898 
1899 	if (rqa->mq_ctx != rqb->mq_ctx)
1900 		return rqa->mq_ctx > rqb->mq_ctx;
1901 	if (rqa->mq_hctx != rqb->mq_hctx)
1902 		return rqa->mq_hctx > rqb->mq_hctx;
1903 
1904 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1905 }
1906 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1907 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1908 {
1909 	LIST_HEAD(list);
1910 
1911 	if (list_empty(&plug->mq_list))
1912 		return;
1913 	list_splice_init(&plug->mq_list, &list);
1914 
1915 	if (plug->rq_count > 2 && plug->multiple_queues)
1916 		list_sort(NULL, &list, plug_rq_cmp);
1917 
1918 	plug->rq_count = 0;
1919 
1920 	do {
1921 		struct list_head rq_list;
1922 		struct request *rq, *head_rq = list_entry_rq(list.next);
1923 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1924 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1925 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1926 		unsigned int depth = 1;
1927 
1928 		list_for_each_continue(pos, &list) {
1929 			rq = list_entry_rq(pos);
1930 			BUG_ON(!rq->q);
1931 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1932 				break;
1933 			depth++;
1934 		}
1935 
1936 		list_cut_before(&rq_list, &list, pos);
1937 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1938 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1939 						from_schedule);
1940 	} while(!list_empty(&list));
1941 }
1942 
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)1943 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1944 		unsigned int nr_segs)
1945 {
1946 	int err;
1947 
1948 	if (bio->bi_opf & REQ_RAHEAD)
1949 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1950 
1951 	rq->__sector = bio->bi_iter.bi_sector;
1952 	rq->write_hint = bio->bi_write_hint;
1953 	blk_rq_bio_prep(rq, bio, nr_segs);
1954 
1955 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1956 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1957 	WARN_ON_ONCE(err);
1958 
1959 	blk_account_io_start(rq);
1960 }
1961 
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool last)1962 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1963 					    struct request *rq,
1964 					    blk_qc_t *cookie, bool last)
1965 {
1966 	struct request_queue *q = rq->q;
1967 	struct blk_mq_queue_data bd = {
1968 		.rq = rq,
1969 		.last = last,
1970 	};
1971 	blk_qc_t new_cookie;
1972 	blk_status_t ret;
1973 
1974 	new_cookie = request_to_qc_t(hctx, rq);
1975 
1976 	/*
1977 	 * For OK queue, we are done. For error, caller may kill it.
1978 	 * Any other error (busy), just add it to our list as we
1979 	 * previously would have done.
1980 	 */
1981 	ret = q->mq_ops->queue_rq(hctx, &bd);
1982 	switch (ret) {
1983 	case BLK_STS_OK:
1984 		blk_mq_update_dispatch_busy(hctx, false);
1985 		*cookie = new_cookie;
1986 		break;
1987 	case BLK_STS_RESOURCE:
1988 	case BLK_STS_DEV_RESOURCE:
1989 		blk_mq_update_dispatch_busy(hctx, true);
1990 		__blk_mq_requeue_request(rq);
1991 		break;
1992 	default:
1993 		blk_mq_update_dispatch_busy(hctx, false);
1994 		*cookie = BLK_QC_T_NONE;
1995 		break;
1996 	}
1997 
1998 	return ret;
1999 }
2000 
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert,bool last)2001 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2002 						struct request *rq,
2003 						blk_qc_t *cookie,
2004 						bool bypass_insert, bool last)
2005 {
2006 	struct request_queue *q = rq->q;
2007 	bool run_queue = true;
2008 
2009 	/*
2010 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2011 	 *
2012 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2013 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2014 	 * and avoid driver to try to dispatch again.
2015 	 */
2016 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2017 		run_queue = false;
2018 		bypass_insert = false;
2019 		goto insert;
2020 	}
2021 
2022 	if (q->elevator && !bypass_insert)
2023 		goto insert;
2024 
2025 	if (!blk_mq_get_dispatch_budget(q))
2026 		goto insert;
2027 
2028 	if (!blk_mq_get_driver_tag(rq)) {
2029 		blk_mq_put_dispatch_budget(q);
2030 		goto insert;
2031 	}
2032 
2033 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2034 insert:
2035 	if (bypass_insert)
2036 		return BLK_STS_RESOURCE;
2037 
2038 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2039 
2040 	return BLK_STS_OK;
2041 }
2042 
2043 /**
2044  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2045  * @hctx: Pointer of the associated hardware queue.
2046  * @rq: Pointer to request to be sent.
2047  * @cookie: Request queue cookie.
2048  *
2049  * If the device has enough resources to accept a new request now, send the
2050  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2051  * we can try send it another time in the future. Requests inserted at this
2052  * queue have higher priority.
2053  */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)2054 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2055 		struct request *rq, blk_qc_t *cookie)
2056 {
2057 	blk_status_t ret;
2058 	int srcu_idx;
2059 
2060 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2061 
2062 	hctx_lock(hctx, &srcu_idx);
2063 
2064 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2065 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2066 		blk_mq_request_bypass_insert(rq, false, true);
2067 	else if (ret != BLK_STS_OK)
2068 		blk_mq_end_request(rq, ret);
2069 
2070 	hctx_unlock(hctx, srcu_idx);
2071 }
2072 
blk_mq_request_issue_directly(struct request * rq,bool last)2073 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2074 {
2075 	blk_status_t ret;
2076 	int srcu_idx;
2077 	blk_qc_t unused_cookie;
2078 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2079 
2080 	hctx_lock(hctx, &srcu_idx);
2081 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2082 	hctx_unlock(hctx, srcu_idx);
2083 
2084 	return ret;
2085 }
2086 
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2087 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2088 		struct list_head *list)
2089 {
2090 	int queued = 0;
2091 	int errors = 0;
2092 
2093 	while (!list_empty(list)) {
2094 		blk_status_t ret;
2095 		struct request *rq = list_first_entry(list, struct request,
2096 				queuelist);
2097 
2098 		list_del_init(&rq->queuelist);
2099 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2100 		if (ret != BLK_STS_OK) {
2101 			errors++;
2102 			if (ret == BLK_STS_RESOURCE ||
2103 					ret == BLK_STS_DEV_RESOURCE) {
2104 				blk_mq_request_bypass_insert(rq, false,
2105 							list_empty(list));
2106 				break;
2107 			}
2108 			blk_mq_end_request(rq, ret);
2109 		} else
2110 			queued++;
2111 	}
2112 
2113 	/*
2114 	 * If we didn't flush the entire list, we could have told
2115 	 * the driver there was more coming, but that turned out to
2116 	 * be a lie.
2117 	 */
2118 	if ((!list_empty(list) || errors) &&
2119 	     hctx->queue->mq_ops->commit_rqs && queued)
2120 		hctx->queue->mq_ops->commit_rqs(hctx);
2121 }
2122 
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)2123 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2124 {
2125 	list_add_tail(&rq->queuelist, &plug->mq_list);
2126 	plug->rq_count++;
2127 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2128 		struct request *tmp;
2129 
2130 		tmp = list_first_entry(&plug->mq_list, struct request,
2131 						queuelist);
2132 		if (tmp->q != rq->q)
2133 			plug->multiple_queues = true;
2134 	}
2135 }
2136 
2137 /*
2138  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2139  * queues. This is important for md arrays to benefit from merging
2140  * requests.
2141  */
blk_plug_max_rq_count(struct blk_plug * plug)2142 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2143 {
2144 	if (plug->multiple_queues)
2145 		return BLK_MAX_REQUEST_COUNT * 2;
2146 	return BLK_MAX_REQUEST_COUNT;
2147 }
2148 
2149 /**
2150  * blk_mq_submit_bio - Create and send a request to block device.
2151  * @bio: Bio pointer.
2152  *
2153  * Builds up a request structure from @q and @bio and send to the device. The
2154  * request may not be queued directly to hardware if:
2155  * * This request can be merged with another one
2156  * * We want to place request at plug queue for possible future merging
2157  * * There is an IO scheduler active at this queue
2158  *
2159  * It will not queue the request if there is an error with the bio, or at the
2160  * request creation.
2161  *
2162  * Returns: Request queue cookie.
2163  */
blk_mq_submit_bio(struct bio * bio)2164 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2165 {
2166 	struct request_queue *q = bio->bi_disk->queue;
2167 	const int is_sync = op_is_sync(bio->bi_opf);
2168 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2169 	struct blk_mq_alloc_data data = {
2170 		.q		= q,
2171 	};
2172 	struct request *rq;
2173 	struct blk_plug *plug;
2174 	struct request *same_queue_rq = NULL;
2175 	unsigned int nr_segs;
2176 	blk_qc_t cookie;
2177 	blk_status_t ret;
2178 
2179 	blk_queue_bounce(q, &bio);
2180 	__blk_queue_split(&bio, &nr_segs);
2181 
2182 	if (!bio_integrity_prep(bio))
2183 		goto queue_exit;
2184 
2185 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2186 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2187 		goto queue_exit;
2188 
2189 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2190 		goto queue_exit;
2191 
2192 	rq_qos_throttle(q, bio);
2193 
2194 	data.cmd_flags = bio->bi_opf;
2195 	rq = __blk_mq_alloc_request(&data);
2196 	if (unlikely(!rq)) {
2197 		rq_qos_cleanup(q, bio);
2198 		if (bio->bi_opf & REQ_NOWAIT)
2199 			bio_wouldblock_error(bio);
2200 		goto queue_exit;
2201 	}
2202 
2203 	trace_block_getrq(q, bio, bio->bi_opf);
2204 
2205 	rq_qos_track(q, rq, bio);
2206 
2207 	cookie = request_to_qc_t(data.hctx, rq);
2208 
2209 	blk_mq_bio_to_request(rq, bio, nr_segs);
2210 
2211 	ret = blk_crypto_init_request(rq);
2212 	if (ret != BLK_STS_OK) {
2213 		bio->bi_status = ret;
2214 		bio_endio(bio);
2215 		blk_mq_free_request(rq);
2216 		return BLK_QC_T_NONE;
2217 	}
2218 
2219 	plug = blk_mq_plug(q, bio);
2220 	if (unlikely(is_flush_fua)) {
2221 		/* Bypass scheduler for flush requests */
2222 		blk_insert_flush(rq);
2223 		blk_mq_run_hw_queue(data.hctx, true);
2224 	} else if (plug && (q->nr_hw_queues == 1 ||
2225 		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2226 		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2227 		/*
2228 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2229 		 * we know the driver uses bd->last in a smart fashion.
2230 		 *
2231 		 * Use normal plugging if this disk is slow HDD, as sequential
2232 		 * IO may benefit a lot from plug merging.
2233 		 */
2234 		unsigned int request_count = plug->rq_count;
2235 		struct request *last = NULL;
2236 
2237 		if (!request_count)
2238 			trace_block_plug(q);
2239 		else
2240 			last = list_entry_rq(plug->mq_list.prev);
2241 
2242 		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2243 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2244 			blk_flush_plug_list(plug, false);
2245 			trace_block_plug(q);
2246 		}
2247 
2248 		blk_add_rq_to_plug(plug, rq);
2249 	} else if (q->elevator) {
2250 		/* Insert the request at the IO scheduler queue */
2251 		blk_mq_sched_insert_request(rq, false, true, true);
2252 	} else if (plug && !blk_queue_nomerges(q)) {
2253 		/*
2254 		 * We do limited plugging. If the bio can be merged, do that.
2255 		 * Otherwise the existing request in the plug list will be
2256 		 * issued. So the plug list will have one request at most
2257 		 * The plug list might get flushed before this. If that happens,
2258 		 * the plug list is empty, and same_queue_rq is invalid.
2259 		 */
2260 		if (list_empty(&plug->mq_list))
2261 			same_queue_rq = NULL;
2262 		if (same_queue_rq) {
2263 			list_del_init(&same_queue_rq->queuelist);
2264 			plug->rq_count--;
2265 		}
2266 		blk_add_rq_to_plug(plug, rq);
2267 		trace_block_plug(q);
2268 
2269 		if (same_queue_rq) {
2270 			data.hctx = same_queue_rq->mq_hctx;
2271 			trace_block_unplug(q, 1, true);
2272 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2273 					&cookie);
2274 		}
2275 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2276 			!data.hctx->dispatch_busy) {
2277 		/*
2278 		 * There is no scheduler and we can try to send directly
2279 		 * to the hardware.
2280 		 */
2281 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2282 	} else {
2283 		/* Default case. */
2284 		blk_mq_sched_insert_request(rq, false, true, true);
2285 	}
2286 
2287 	return cookie;
2288 queue_exit:
2289 	blk_queue_exit(q);
2290 	return BLK_QC_T_NONE;
2291 }
2292 
order_to_size(unsigned int order)2293 static size_t order_to_size(unsigned int order)
2294 {
2295 	return (size_t)PAGE_SIZE << order;
2296 }
2297 
2298 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2299 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2300 		struct blk_mq_tags *tags, unsigned int hctx_idx)
2301 {
2302 	struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2303 	struct page *page;
2304 	unsigned long flags;
2305 
2306 	list_for_each_entry(page, &tags->page_list, lru) {
2307 		unsigned long start = (unsigned long)page_address(page);
2308 		unsigned long end = start + order_to_size(page->private);
2309 		int i;
2310 
2311 		for (i = 0; i < set->queue_depth; i++) {
2312 			struct request *rq = drv_tags->rqs[i];
2313 			unsigned long rq_addr = (unsigned long)rq;
2314 
2315 			if (rq_addr >= start && rq_addr < end) {
2316 				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2317 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2318 			}
2319 		}
2320 	}
2321 
2322 	/*
2323 	 * Wait until all pending iteration is done.
2324 	 *
2325 	 * Request reference is cleared and it is guaranteed to be observed
2326 	 * after the ->lock is released.
2327 	 */
2328 	spin_lock_irqsave(&drv_tags->lock, flags);
2329 	spin_unlock_irqrestore(&drv_tags->lock, flags);
2330 }
2331 
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2332 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2333 		     unsigned int hctx_idx)
2334 {
2335 	struct page *page;
2336 
2337 	if (tags->rqs && set->ops->exit_request) {
2338 		int i;
2339 
2340 		for (i = 0; i < tags->nr_tags; i++) {
2341 			struct request *rq = tags->static_rqs[i];
2342 
2343 			if (!rq)
2344 				continue;
2345 			set->ops->exit_request(set, rq, hctx_idx);
2346 			tags->static_rqs[i] = NULL;
2347 		}
2348 	}
2349 
2350 	blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2351 
2352 	while (!list_empty(&tags->page_list)) {
2353 		page = list_first_entry(&tags->page_list, struct page, lru);
2354 		list_del_init(&page->lru);
2355 		/*
2356 		 * Remove kmemleak object previously allocated in
2357 		 * blk_mq_alloc_rqs().
2358 		 */
2359 		kmemleak_free(page_address(page));
2360 		__free_pages(page, page->private);
2361 	}
2362 }
2363 
blk_mq_free_rq_map(struct blk_mq_tags * tags,unsigned int flags)2364 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2365 {
2366 	kfree(tags->rqs);
2367 	tags->rqs = NULL;
2368 	kfree(tags->static_rqs);
2369 	tags->static_rqs = NULL;
2370 
2371 	blk_mq_free_tags(tags, flags);
2372 }
2373 
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags,unsigned int flags)2374 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2375 					unsigned int hctx_idx,
2376 					unsigned int nr_tags,
2377 					unsigned int reserved_tags,
2378 					unsigned int flags)
2379 {
2380 	struct blk_mq_tags *tags;
2381 	int node;
2382 
2383 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2384 	if (node == NUMA_NO_NODE)
2385 		node = set->numa_node;
2386 
2387 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2388 	if (!tags)
2389 		return NULL;
2390 
2391 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2392 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2393 				 node);
2394 	if (!tags->rqs) {
2395 		blk_mq_free_tags(tags, flags);
2396 		return NULL;
2397 	}
2398 
2399 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2400 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2401 					node);
2402 	if (!tags->static_rqs) {
2403 		kfree(tags->rqs);
2404 		blk_mq_free_tags(tags, flags);
2405 		return NULL;
2406 	}
2407 
2408 	return tags;
2409 }
2410 
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2411 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2412 			       unsigned int hctx_idx, int node)
2413 {
2414 	int ret;
2415 
2416 	if (set->ops->init_request) {
2417 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2418 		if (ret)
2419 			return ret;
2420 	}
2421 
2422 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2423 	return 0;
2424 }
2425 
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2426 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2427 		     unsigned int hctx_idx, unsigned int depth)
2428 {
2429 	unsigned int i, j, entries_per_page, max_order = 4;
2430 	size_t rq_size, left;
2431 	int node;
2432 
2433 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2434 	if (node == NUMA_NO_NODE)
2435 		node = set->numa_node;
2436 
2437 	INIT_LIST_HEAD(&tags->page_list);
2438 
2439 	/*
2440 	 * rq_size is the size of the request plus driver payload, rounded
2441 	 * to the cacheline size
2442 	 */
2443 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2444 				cache_line_size());
2445 	left = rq_size * depth;
2446 
2447 	for (i = 0; i < depth; ) {
2448 		int this_order = max_order;
2449 		struct page *page;
2450 		int to_do;
2451 		void *p;
2452 
2453 		while (this_order && left < order_to_size(this_order - 1))
2454 			this_order--;
2455 
2456 		do {
2457 			page = alloc_pages_node(node,
2458 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2459 				this_order);
2460 			if (page)
2461 				break;
2462 			if (!this_order--)
2463 				break;
2464 			if (order_to_size(this_order) < rq_size)
2465 				break;
2466 		} while (1);
2467 
2468 		if (!page)
2469 			goto fail;
2470 
2471 		page->private = this_order;
2472 		list_add_tail(&page->lru, &tags->page_list);
2473 
2474 		p = page_address(page);
2475 		/*
2476 		 * Allow kmemleak to scan these pages as they contain pointers
2477 		 * to additional allocations like via ops->init_request().
2478 		 */
2479 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2480 		entries_per_page = order_to_size(this_order) / rq_size;
2481 		to_do = min(entries_per_page, depth - i);
2482 		left -= to_do * rq_size;
2483 		for (j = 0; j < to_do; j++) {
2484 			struct request *rq = p;
2485 
2486 			tags->static_rqs[i] = rq;
2487 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2488 				tags->static_rqs[i] = NULL;
2489 				goto fail;
2490 			}
2491 
2492 			p += rq_size;
2493 			i++;
2494 		}
2495 	}
2496 	return 0;
2497 
2498 fail:
2499 	blk_mq_free_rqs(set, tags, hctx_idx);
2500 	return -ENOMEM;
2501 }
2502 
2503 struct rq_iter_data {
2504 	struct blk_mq_hw_ctx *hctx;
2505 	bool has_rq;
2506 };
2507 
blk_mq_has_request(struct request * rq,void * data,bool reserved)2508 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2509 {
2510 	struct rq_iter_data *iter_data = data;
2511 
2512 	if (rq->mq_hctx != iter_data->hctx)
2513 		return true;
2514 	iter_data->has_rq = true;
2515 	return false;
2516 }
2517 
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)2518 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2519 {
2520 	struct blk_mq_tags *tags = hctx->sched_tags ?
2521 			hctx->sched_tags : hctx->tags;
2522 	struct rq_iter_data data = {
2523 		.hctx	= hctx,
2524 	};
2525 
2526 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2527 	return data.has_rq;
2528 }
2529 
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)2530 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2531 		struct blk_mq_hw_ctx *hctx)
2532 {
2533 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2534 		return false;
2535 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2536 		return false;
2537 	return true;
2538 }
2539 
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)2540 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2541 {
2542 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2543 			struct blk_mq_hw_ctx, cpuhp_online);
2544 
2545 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2546 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2547 		return 0;
2548 
2549 	/*
2550 	 * Prevent new request from being allocated on the current hctx.
2551 	 *
2552 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2553 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2554 	 * seen once we return from the tag allocator.
2555 	 */
2556 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2557 	smp_mb__after_atomic();
2558 
2559 	/*
2560 	 * Try to grab a reference to the queue and wait for any outstanding
2561 	 * requests.  If we could not grab a reference the queue has been
2562 	 * frozen and there are no requests.
2563 	 */
2564 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2565 		while (blk_mq_hctx_has_requests(hctx))
2566 			msleep(5);
2567 		percpu_ref_put(&hctx->queue->q_usage_counter);
2568 	}
2569 
2570 	return 0;
2571 }
2572 
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)2573 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2574 {
2575 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2576 			struct blk_mq_hw_ctx, cpuhp_online);
2577 
2578 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2579 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2580 	return 0;
2581 }
2582 
2583 /*
2584  * 'cpu' is going away. splice any existing rq_list entries from this
2585  * software queue to the hw queue dispatch list, and ensure that it
2586  * gets run.
2587  */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2588 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2589 {
2590 	struct blk_mq_hw_ctx *hctx;
2591 	struct blk_mq_ctx *ctx;
2592 	LIST_HEAD(tmp);
2593 	enum hctx_type type;
2594 
2595 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2596 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2597 		return 0;
2598 
2599 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2600 	type = hctx->type;
2601 
2602 	spin_lock(&ctx->lock);
2603 	if (!list_empty(&ctx->rq_lists[type])) {
2604 		list_splice_init(&ctx->rq_lists[type], &tmp);
2605 		blk_mq_hctx_clear_pending(hctx, ctx);
2606 	}
2607 	spin_unlock(&ctx->lock);
2608 
2609 	if (list_empty(&tmp))
2610 		return 0;
2611 
2612 	spin_lock(&hctx->lock);
2613 	list_splice_tail_init(&tmp, &hctx->dispatch);
2614 	spin_unlock(&hctx->lock);
2615 
2616 	blk_mq_run_hw_queue(hctx, true);
2617 	return 0;
2618 }
2619 
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2620 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2621 {
2622 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2623 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2624 						    &hctx->cpuhp_online);
2625 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2626 					    &hctx->cpuhp_dead);
2627 }
2628 
2629 /*
2630  * Before freeing hw queue, clearing the flush request reference in
2631  * tags->rqs[] for avoiding potential UAF.
2632  */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)2633 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2634 		unsigned int queue_depth, struct request *flush_rq)
2635 {
2636 	int i;
2637 	unsigned long flags;
2638 
2639 	/* The hw queue may not be mapped yet */
2640 	if (!tags)
2641 		return;
2642 
2643 	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2644 
2645 	for (i = 0; i < queue_depth; i++)
2646 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
2647 
2648 	/*
2649 	 * Wait until all pending iteration is done.
2650 	 *
2651 	 * Request reference is cleared and it is guaranteed to be observed
2652 	 * after the ->lock is released.
2653 	 */
2654 	spin_lock_irqsave(&tags->lock, flags);
2655 	spin_unlock_irqrestore(&tags->lock, flags);
2656 }
2657 
2658 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2659 static void blk_mq_exit_hctx(struct request_queue *q,
2660 		struct blk_mq_tag_set *set,
2661 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2662 {
2663 	struct request *flush_rq = hctx->fq->flush_rq;
2664 
2665 	if (blk_mq_hw_queue_mapped(hctx))
2666 		blk_mq_tag_idle(hctx);
2667 
2668 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2669 			set->queue_depth, flush_rq);
2670 	if (set->ops->exit_request)
2671 		set->ops->exit_request(set, flush_rq, hctx_idx);
2672 
2673 	if (set->ops->exit_hctx)
2674 		set->ops->exit_hctx(hctx, hctx_idx);
2675 
2676 	blk_mq_remove_cpuhp(hctx);
2677 
2678 	spin_lock(&q->unused_hctx_lock);
2679 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2680 	spin_unlock(&q->unused_hctx_lock);
2681 }
2682 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2683 static void blk_mq_exit_hw_queues(struct request_queue *q,
2684 		struct blk_mq_tag_set *set, int nr_queue)
2685 {
2686 	struct blk_mq_hw_ctx *hctx;
2687 	unsigned int i;
2688 
2689 	queue_for_each_hw_ctx(q, hctx, i) {
2690 		if (i == nr_queue)
2691 			break;
2692 		blk_mq_debugfs_unregister_hctx(hctx);
2693 		blk_mq_exit_hctx(q, set, hctx, i);
2694 	}
2695 }
2696 
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2697 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2698 {
2699 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2700 
2701 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2702 			   __alignof__(struct blk_mq_hw_ctx)) !=
2703 		     sizeof(struct blk_mq_hw_ctx));
2704 
2705 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2706 		hw_ctx_size += sizeof(struct srcu_struct);
2707 
2708 	return hw_ctx_size;
2709 }
2710 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2711 static int blk_mq_init_hctx(struct request_queue *q,
2712 		struct blk_mq_tag_set *set,
2713 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2714 {
2715 	hctx->queue_num = hctx_idx;
2716 
2717 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2718 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2719 				&hctx->cpuhp_online);
2720 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2721 
2722 	hctx->tags = set->tags[hctx_idx];
2723 
2724 	if (set->ops->init_hctx &&
2725 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2726 		goto unregister_cpu_notifier;
2727 
2728 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2729 				hctx->numa_node))
2730 		goto exit_hctx;
2731 	return 0;
2732 
2733  exit_hctx:
2734 	if (set->ops->exit_hctx)
2735 		set->ops->exit_hctx(hctx, hctx_idx);
2736  unregister_cpu_notifier:
2737 	blk_mq_remove_cpuhp(hctx);
2738 	return -1;
2739 }
2740 
2741 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)2742 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2743 		int node)
2744 {
2745 	struct blk_mq_hw_ctx *hctx;
2746 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2747 
2748 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2749 	if (!hctx)
2750 		goto fail_alloc_hctx;
2751 
2752 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2753 		goto free_hctx;
2754 
2755 	atomic_set(&hctx->nr_active, 0);
2756 	atomic_set(&hctx->elevator_queued, 0);
2757 	if (node == NUMA_NO_NODE)
2758 		node = set->numa_node;
2759 	hctx->numa_node = node;
2760 
2761 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2762 	spin_lock_init(&hctx->lock);
2763 	INIT_LIST_HEAD(&hctx->dispatch);
2764 	hctx->queue = q;
2765 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2766 
2767 	INIT_LIST_HEAD(&hctx->hctx_list);
2768 
2769 	/*
2770 	 * Allocate space for all possible cpus to avoid allocation at
2771 	 * runtime
2772 	 */
2773 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2774 			gfp, node);
2775 	if (!hctx->ctxs)
2776 		goto free_cpumask;
2777 
2778 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2779 				gfp, node))
2780 		goto free_ctxs;
2781 	hctx->nr_ctx = 0;
2782 
2783 	spin_lock_init(&hctx->dispatch_wait_lock);
2784 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2785 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2786 
2787 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2788 	if (!hctx->fq)
2789 		goto free_bitmap;
2790 
2791 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2792 		init_srcu_struct(hctx->srcu);
2793 	blk_mq_hctx_kobj_init(hctx);
2794 
2795 	return hctx;
2796 
2797  free_bitmap:
2798 	sbitmap_free(&hctx->ctx_map);
2799  free_ctxs:
2800 	kfree(hctx->ctxs);
2801  free_cpumask:
2802 	free_cpumask_var(hctx->cpumask);
2803  free_hctx:
2804 	kfree(hctx);
2805  fail_alloc_hctx:
2806 	return NULL;
2807 }
2808 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2809 static void blk_mq_init_cpu_queues(struct request_queue *q,
2810 				   unsigned int nr_hw_queues)
2811 {
2812 	struct blk_mq_tag_set *set = q->tag_set;
2813 	unsigned int i, j;
2814 
2815 	for_each_possible_cpu(i) {
2816 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2817 		struct blk_mq_hw_ctx *hctx;
2818 		int k;
2819 
2820 		__ctx->cpu = i;
2821 		spin_lock_init(&__ctx->lock);
2822 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2823 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2824 
2825 		__ctx->queue = q;
2826 
2827 		/*
2828 		 * Set local node, IFF we have more than one hw queue. If
2829 		 * not, we remain on the home node of the device
2830 		 */
2831 		for (j = 0; j < set->nr_maps; j++) {
2832 			hctx = blk_mq_map_queue_type(q, j, i);
2833 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2834 				hctx->numa_node = cpu_to_node(i);
2835 		}
2836 	}
2837 }
2838 
__blk_mq_alloc_map_and_request(struct blk_mq_tag_set * set,int hctx_idx)2839 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2840 					int hctx_idx)
2841 {
2842 	unsigned int flags = set->flags;
2843 	int ret = 0;
2844 
2845 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2846 					set->queue_depth, set->reserved_tags, flags);
2847 	if (!set->tags[hctx_idx])
2848 		return false;
2849 
2850 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2851 				set->queue_depth);
2852 	if (!ret)
2853 		return true;
2854 
2855 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2856 	set->tags[hctx_idx] = NULL;
2857 	return false;
2858 }
2859 
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2860 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2861 					 unsigned int hctx_idx)
2862 {
2863 	unsigned int flags = set->flags;
2864 
2865 	if (set->tags && set->tags[hctx_idx]) {
2866 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2867 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2868 		set->tags[hctx_idx] = NULL;
2869 	}
2870 }
2871 
blk_mq_map_swqueue(struct request_queue * q)2872 static void blk_mq_map_swqueue(struct request_queue *q)
2873 {
2874 	unsigned int i, j, hctx_idx;
2875 	struct blk_mq_hw_ctx *hctx;
2876 	struct blk_mq_ctx *ctx;
2877 	struct blk_mq_tag_set *set = q->tag_set;
2878 
2879 	queue_for_each_hw_ctx(q, hctx, i) {
2880 		cpumask_clear(hctx->cpumask);
2881 		hctx->nr_ctx = 0;
2882 		hctx->dispatch_from = NULL;
2883 	}
2884 
2885 	/*
2886 	 * Map software to hardware queues.
2887 	 *
2888 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2889 	 */
2890 	for_each_possible_cpu(i) {
2891 
2892 		ctx = per_cpu_ptr(q->queue_ctx, i);
2893 		for (j = 0; j < set->nr_maps; j++) {
2894 			if (!set->map[j].nr_queues) {
2895 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2896 						HCTX_TYPE_DEFAULT, i);
2897 				continue;
2898 			}
2899 			hctx_idx = set->map[j].mq_map[i];
2900 			/* unmapped hw queue can be remapped after CPU topo changed */
2901 			if (!set->tags[hctx_idx] &&
2902 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2903 				/*
2904 				 * If tags initialization fail for some hctx,
2905 				 * that hctx won't be brought online.  In this
2906 				 * case, remap the current ctx to hctx[0] which
2907 				 * is guaranteed to always have tags allocated
2908 				 */
2909 				set->map[j].mq_map[i] = 0;
2910 			}
2911 
2912 			hctx = blk_mq_map_queue_type(q, j, i);
2913 			ctx->hctxs[j] = hctx;
2914 			/*
2915 			 * If the CPU is already set in the mask, then we've
2916 			 * mapped this one already. This can happen if
2917 			 * devices share queues across queue maps.
2918 			 */
2919 			if (cpumask_test_cpu(i, hctx->cpumask))
2920 				continue;
2921 
2922 			cpumask_set_cpu(i, hctx->cpumask);
2923 			hctx->type = j;
2924 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2925 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2926 
2927 			/*
2928 			 * If the nr_ctx type overflows, we have exceeded the
2929 			 * amount of sw queues we can support.
2930 			 */
2931 			BUG_ON(!hctx->nr_ctx);
2932 		}
2933 
2934 		for (; j < HCTX_MAX_TYPES; j++)
2935 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2936 					HCTX_TYPE_DEFAULT, i);
2937 	}
2938 
2939 	queue_for_each_hw_ctx(q, hctx, i) {
2940 		/*
2941 		 * If no software queues are mapped to this hardware queue,
2942 		 * disable it and free the request entries.
2943 		 */
2944 		if (!hctx->nr_ctx) {
2945 			/* Never unmap queue 0.  We need it as a
2946 			 * fallback in case of a new remap fails
2947 			 * allocation
2948 			 */
2949 			if (i && set->tags[i])
2950 				blk_mq_free_map_and_requests(set, i);
2951 
2952 			hctx->tags = NULL;
2953 			continue;
2954 		}
2955 
2956 		hctx->tags = set->tags[i];
2957 		WARN_ON(!hctx->tags);
2958 
2959 		/*
2960 		 * Set the map size to the number of mapped software queues.
2961 		 * This is more accurate and more efficient than looping
2962 		 * over all possibly mapped software queues.
2963 		 */
2964 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2965 
2966 		/*
2967 		 * Initialize batch roundrobin counts
2968 		 */
2969 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2970 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2971 	}
2972 }
2973 
2974 /*
2975  * Caller needs to ensure that we're either frozen/quiesced, or that
2976  * the queue isn't live yet.
2977  */
queue_set_hctx_shared(struct request_queue * q,bool shared)2978 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2979 {
2980 	struct blk_mq_hw_ctx *hctx;
2981 	int i;
2982 
2983 	queue_for_each_hw_ctx(q, hctx, i) {
2984 		if (shared) {
2985 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2986 		} else {
2987 			blk_mq_tag_idle(hctx);
2988 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2989 		}
2990 	}
2991 }
2992 
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)2993 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2994 					 bool shared)
2995 {
2996 	struct request_queue *q;
2997 
2998 	lockdep_assert_held(&set->tag_list_lock);
2999 
3000 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3001 		blk_mq_freeze_queue(q);
3002 		queue_set_hctx_shared(q, shared);
3003 		blk_mq_unfreeze_queue(q);
3004 	}
3005 }
3006 
blk_mq_del_queue_tag_set(struct request_queue * q)3007 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3008 {
3009 	struct blk_mq_tag_set *set = q->tag_set;
3010 
3011 	mutex_lock(&set->tag_list_lock);
3012 	list_del(&q->tag_set_list);
3013 	if (list_is_singular(&set->tag_list)) {
3014 		/* just transitioned to unshared */
3015 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3016 		/* update existing queue */
3017 		blk_mq_update_tag_set_shared(set, false);
3018 	}
3019 	mutex_unlock(&set->tag_list_lock);
3020 	INIT_LIST_HEAD(&q->tag_set_list);
3021 }
3022 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3023 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3024 				     struct request_queue *q)
3025 {
3026 	mutex_lock(&set->tag_list_lock);
3027 
3028 	/*
3029 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3030 	 */
3031 	if (!list_empty(&set->tag_list) &&
3032 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3033 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3034 		/* update existing queue */
3035 		blk_mq_update_tag_set_shared(set, true);
3036 	}
3037 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3038 		queue_set_hctx_shared(q, true);
3039 	list_add_tail(&q->tag_set_list, &set->tag_list);
3040 
3041 	mutex_unlock(&set->tag_list_lock);
3042 }
3043 
3044 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3045 static int blk_mq_alloc_ctxs(struct request_queue *q)
3046 {
3047 	struct blk_mq_ctxs *ctxs;
3048 	int cpu;
3049 
3050 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3051 	if (!ctxs)
3052 		return -ENOMEM;
3053 
3054 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3055 	if (!ctxs->queue_ctx)
3056 		goto fail;
3057 
3058 	for_each_possible_cpu(cpu) {
3059 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3060 		ctx->ctxs = ctxs;
3061 	}
3062 
3063 	q->mq_kobj = &ctxs->kobj;
3064 	q->queue_ctx = ctxs->queue_ctx;
3065 
3066 	return 0;
3067  fail:
3068 	kfree(ctxs);
3069 	return -ENOMEM;
3070 }
3071 
3072 /*
3073  * It is the actual release handler for mq, but we do it from
3074  * request queue's release handler for avoiding use-after-free
3075  * and headache because q->mq_kobj shouldn't have been introduced,
3076  * but we can't group ctx/kctx kobj without it.
3077  */
blk_mq_release(struct request_queue * q)3078 void blk_mq_release(struct request_queue *q)
3079 {
3080 	struct blk_mq_hw_ctx *hctx, *next;
3081 	int i;
3082 
3083 	queue_for_each_hw_ctx(q, hctx, i)
3084 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3085 
3086 	/* all hctx are in .unused_hctx_list now */
3087 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3088 		list_del_init(&hctx->hctx_list);
3089 		kobject_put(&hctx->kobj);
3090 	}
3091 
3092 	kfree(q->queue_hw_ctx);
3093 
3094 	/*
3095 	 * release .mq_kobj and sw queue's kobject now because
3096 	 * both share lifetime with request queue.
3097 	 */
3098 	blk_mq_sysfs_deinit(q);
3099 }
3100 
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3101 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3102 		void *queuedata)
3103 {
3104 	struct request_queue *uninit_q, *q;
3105 
3106 	uninit_q = blk_alloc_queue(set->numa_node);
3107 	if (!uninit_q)
3108 		return ERR_PTR(-ENOMEM);
3109 	uninit_q->queuedata = queuedata;
3110 
3111 	/*
3112 	 * Initialize the queue without an elevator. device_add_disk() will do
3113 	 * the initialization.
3114 	 */
3115 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3116 	if (IS_ERR(q))
3117 		blk_cleanup_queue(uninit_q);
3118 
3119 	return q;
3120 }
3121 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3122 
blk_mq_init_queue(struct blk_mq_tag_set * set)3123 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3124 {
3125 	return blk_mq_init_queue_data(set, NULL);
3126 }
3127 EXPORT_SYMBOL(blk_mq_init_queue);
3128 
3129 /*
3130  * Helper for setting up a queue with mq ops, given queue depth, and
3131  * the passed in mq ops flags.
3132  */
blk_mq_init_sq_queue(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)3133 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3134 					   const struct blk_mq_ops *ops,
3135 					   unsigned int queue_depth,
3136 					   unsigned int set_flags)
3137 {
3138 	struct request_queue *q;
3139 	int ret;
3140 
3141 	memset(set, 0, sizeof(*set));
3142 	set->ops = ops;
3143 	set->nr_hw_queues = 1;
3144 	set->nr_maps = 1;
3145 	set->queue_depth = queue_depth;
3146 	set->numa_node = NUMA_NO_NODE;
3147 	set->flags = set_flags;
3148 
3149 	ret = blk_mq_alloc_tag_set(set);
3150 	if (ret)
3151 		return ERR_PTR(ret);
3152 
3153 	q = blk_mq_init_queue(set);
3154 	if (IS_ERR(q)) {
3155 		blk_mq_free_tag_set(set);
3156 		return q;
3157 	}
3158 
3159 	return q;
3160 }
3161 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3162 
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3163 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3164 		struct blk_mq_tag_set *set, struct request_queue *q,
3165 		int hctx_idx, int node)
3166 {
3167 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3168 
3169 	/* reuse dead hctx first */
3170 	spin_lock(&q->unused_hctx_lock);
3171 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3172 		if (tmp->numa_node == node) {
3173 			hctx = tmp;
3174 			break;
3175 		}
3176 	}
3177 	if (hctx)
3178 		list_del_init(&hctx->hctx_list);
3179 	spin_unlock(&q->unused_hctx_lock);
3180 
3181 	if (!hctx)
3182 		hctx = blk_mq_alloc_hctx(q, set, node);
3183 	if (!hctx)
3184 		goto fail;
3185 
3186 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3187 		goto free_hctx;
3188 
3189 	return hctx;
3190 
3191  free_hctx:
3192 	kobject_put(&hctx->kobj);
3193  fail:
3194 	return NULL;
3195 }
3196 
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3197 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3198 						struct request_queue *q)
3199 {
3200 	int i, j, end;
3201 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3202 
3203 	if (q->nr_hw_queues < set->nr_hw_queues) {
3204 		struct blk_mq_hw_ctx **new_hctxs;
3205 
3206 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3207 				       sizeof(*new_hctxs), GFP_KERNEL,
3208 				       set->numa_node);
3209 		if (!new_hctxs)
3210 			return;
3211 		if (hctxs)
3212 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3213 			       sizeof(*hctxs));
3214 		q->queue_hw_ctx = new_hctxs;
3215 		kfree(hctxs);
3216 		hctxs = new_hctxs;
3217 	}
3218 
3219 	/* protect against switching io scheduler  */
3220 	mutex_lock(&q->sysfs_lock);
3221 	for (i = 0; i < set->nr_hw_queues; i++) {
3222 		int node;
3223 		struct blk_mq_hw_ctx *hctx;
3224 
3225 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3226 		/*
3227 		 * If the hw queue has been mapped to another numa node,
3228 		 * we need to realloc the hctx. If allocation fails, fallback
3229 		 * to use the previous one.
3230 		 */
3231 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3232 			continue;
3233 
3234 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3235 		if (hctx) {
3236 			if (hctxs[i])
3237 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3238 			hctxs[i] = hctx;
3239 		} else {
3240 			if (hctxs[i])
3241 				pr_warn("Allocate new hctx on node %d fails,\
3242 						fallback to previous one on node %d\n",
3243 						node, hctxs[i]->numa_node);
3244 			else
3245 				break;
3246 		}
3247 	}
3248 	/*
3249 	 * Increasing nr_hw_queues fails. Free the newly allocated
3250 	 * hctxs and keep the previous q->nr_hw_queues.
3251 	 */
3252 	if (i != set->nr_hw_queues) {
3253 		j = q->nr_hw_queues;
3254 		end = i;
3255 	} else {
3256 		j = i;
3257 		end = q->nr_hw_queues;
3258 		q->nr_hw_queues = set->nr_hw_queues;
3259 	}
3260 
3261 	for (; j < end; j++) {
3262 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3263 
3264 		if (hctx) {
3265 			blk_mq_exit_hctx(q, set, hctx, j);
3266 			hctxs[j] = NULL;
3267 		}
3268 	}
3269 	mutex_unlock(&q->sysfs_lock);
3270 }
3271 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q,bool elevator_init)3272 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3273 						  struct request_queue *q,
3274 						  bool elevator_init)
3275 {
3276 	/* mark the queue as mq asap */
3277 	q->mq_ops = set->ops;
3278 
3279 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3280 					     blk_mq_poll_stats_bkt,
3281 					     BLK_MQ_POLL_STATS_BKTS, q);
3282 	if (!q->poll_cb)
3283 		goto err_exit;
3284 
3285 	if (blk_mq_alloc_ctxs(q))
3286 		goto err_poll;
3287 
3288 	/* init q->mq_kobj and sw queues' kobjects */
3289 	blk_mq_sysfs_init(q);
3290 
3291 	INIT_LIST_HEAD(&q->unused_hctx_list);
3292 	spin_lock_init(&q->unused_hctx_lock);
3293 
3294 	blk_mq_realloc_hw_ctxs(set, q);
3295 	if (!q->nr_hw_queues)
3296 		goto err_hctxs;
3297 
3298 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3299 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3300 
3301 	q->tag_set = set;
3302 
3303 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3304 	if (set->nr_maps > HCTX_TYPE_POLL &&
3305 	    set->map[HCTX_TYPE_POLL].nr_queues)
3306 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3307 
3308 	q->sg_reserved_size = INT_MAX;
3309 
3310 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3311 	INIT_LIST_HEAD(&q->requeue_list);
3312 	spin_lock_init(&q->requeue_lock);
3313 
3314 	q->nr_requests = set->queue_depth;
3315 
3316 	/*
3317 	 * Default to classic polling
3318 	 */
3319 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3320 
3321 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3322 	blk_mq_add_queue_tag_set(set, q);
3323 	blk_mq_map_swqueue(q);
3324 
3325 	if (elevator_init)
3326 		elevator_init_mq(q);
3327 
3328 	return q;
3329 
3330 err_hctxs:
3331 	kfree(q->queue_hw_ctx);
3332 	q->nr_hw_queues = 0;
3333 	blk_mq_sysfs_deinit(q);
3334 err_poll:
3335 	blk_stat_free_callback(q->poll_cb);
3336 	q->poll_cb = NULL;
3337 err_exit:
3338 	q->mq_ops = NULL;
3339 	return ERR_PTR(-ENOMEM);
3340 }
3341 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3342 
3343 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)3344 void blk_mq_exit_queue(struct request_queue *q)
3345 {
3346 	struct blk_mq_tag_set *set = q->tag_set;
3347 
3348 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3349 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3350 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3351 	blk_mq_del_queue_tag_set(q);
3352 }
3353 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)3354 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3355 {
3356 	int i;
3357 
3358 	for (i = 0; i < set->nr_hw_queues; i++) {
3359 		if (!__blk_mq_alloc_map_and_request(set, i))
3360 			goto out_unwind;
3361 		cond_resched();
3362 	}
3363 
3364 	return 0;
3365 
3366 out_unwind:
3367 	while (--i >= 0)
3368 		blk_mq_free_map_and_requests(set, i);
3369 
3370 	return -ENOMEM;
3371 }
3372 
3373 /*
3374  * Allocate the request maps associated with this tag_set. Note that this
3375  * may reduce the depth asked for, if memory is tight. set->queue_depth
3376  * will be updated to reflect the allocated depth.
3377  */
blk_mq_alloc_map_and_requests(struct blk_mq_tag_set * set)3378 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3379 {
3380 	unsigned int depth;
3381 	int err;
3382 
3383 	depth = set->queue_depth;
3384 	do {
3385 		err = __blk_mq_alloc_rq_maps(set);
3386 		if (!err)
3387 			break;
3388 
3389 		set->queue_depth >>= 1;
3390 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3391 			err = -ENOMEM;
3392 			break;
3393 		}
3394 	} while (set->queue_depth);
3395 
3396 	if (!set->queue_depth || err) {
3397 		pr_err("blk-mq: failed to allocate request map\n");
3398 		return -ENOMEM;
3399 	}
3400 
3401 	if (depth != set->queue_depth)
3402 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3403 						depth, set->queue_depth);
3404 
3405 	return 0;
3406 }
3407 
blk_mq_update_queue_map(struct blk_mq_tag_set * set)3408 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3409 {
3410 	/*
3411 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3412 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3413 	 * number of hardware queues.
3414 	 */
3415 	if (set->nr_maps == 1)
3416 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3417 
3418 	if (set->ops->map_queues && !is_kdump_kernel()) {
3419 		int i;
3420 
3421 		/*
3422 		 * transport .map_queues is usually done in the following
3423 		 * way:
3424 		 *
3425 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3426 		 * 	mask = get_cpu_mask(queue)
3427 		 * 	for_each_cpu(cpu, mask)
3428 		 * 		set->map[x].mq_map[cpu] = queue;
3429 		 * }
3430 		 *
3431 		 * When we need to remap, the table has to be cleared for
3432 		 * killing stale mapping since one CPU may not be mapped
3433 		 * to any hw queue.
3434 		 */
3435 		for (i = 0; i < set->nr_maps; i++)
3436 			blk_mq_clear_mq_map(&set->map[i]);
3437 
3438 		return set->ops->map_queues(set);
3439 	} else {
3440 		BUG_ON(set->nr_maps > 1);
3441 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3442 	}
3443 }
3444 
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)3445 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3446 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3447 {
3448 	struct blk_mq_tags **new_tags;
3449 
3450 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3451 		return 0;
3452 
3453 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3454 				GFP_KERNEL, set->numa_node);
3455 	if (!new_tags)
3456 		return -ENOMEM;
3457 
3458 	if (set->tags)
3459 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3460 		       sizeof(*set->tags));
3461 	kfree(set->tags);
3462 	set->tags = new_tags;
3463 	set->nr_hw_queues = new_nr_hw_queues;
3464 
3465 	return 0;
3466 }
3467 
3468 /*
3469  * Alloc a tag set to be associated with one or more request queues.
3470  * May fail with EINVAL for various error conditions. May adjust the
3471  * requested depth down, if it's too large. In that case, the set
3472  * value will be stored in set->queue_depth.
3473  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)3474 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3475 {
3476 	int i, ret;
3477 
3478 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3479 
3480 	if (!set->nr_hw_queues)
3481 		return -EINVAL;
3482 	if (!set->queue_depth)
3483 		return -EINVAL;
3484 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3485 		return -EINVAL;
3486 
3487 	if (!set->ops->queue_rq)
3488 		return -EINVAL;
3489 
3490 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3491 		return -EINVAL;
3492 
3493 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3494 		pr_info("blk-mq: reduced tag depth to %u\n",
3495 			BLK_MQ_MAX_DEPTH);
3496 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3497 	}
3498 
3499 	if (!set->nr_maps)
3500 		set->nr_maps = 1;
3501 	else if (set->nr_maps > HCTX_MAX_TYPES)
3502 		return -EINVAL;
3503 
3504 	/*
3505 	 * If a crashdump is active, then we are potentially in a very
3506 	 * memory constrained environment. Limit us to 1 queue and
3507 	 * 64 tags to prevent using too much memory.
3508 	 */
3509 	if (is_kdump_kernel()) {
3510 		set->nr_hw_queues = 1;
3511 		set->nr_maps = 1;
3512 		set->queue_depth = min(64U, set->queue_depth);
3513 	}
3514 	/*
3515 	 * There is no use for more h/w queues than cpus if we just have
3516 	 * a single map
3517 	 */
3518 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3519 		set->nr_hw_queues = nr_cpu_ids;
3520 
3521 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3522 		return -ENOMEM;
3523 
3524 	ret = -ENOMEM;
3525 	for (i = 0; i < set->nr_maps; i++) {
3526 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3527 						  sizeof(set->map[i].mq_map[0]),
3528 						  GFP_KERNEL, set->numa_node);
3529 		if (!set->map[i].mq_map)
3530 			goto out_free_mq_map;
3531 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3532 	}
3533 
3534 	ret = blk_mq_update_queue_map(set);
3535 	if (ret)
3536 		goto out_free_mq_map;
3537 
3538 	ret = blk_mq_alloc_map_and_requests(set);
3539 	if (ret)
3540 		goto out_free_mq_map;
3541 
3542 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3543 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3544 
3545 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3546 			ret = -ENOMEM;
3547 			goto out_free_mq_rq_maps;
3548 		}
3549 	}
3550 
3551 	mutex_init(&set->tag_list_lock);
3552 	INIT_LIST_HEAD(&set->tag_list);
3553 
3554 	return 0;
3555 
3556 out_free_mq_rq_maps:
3557 	for (i = 0; i < set->nr_hw_queues; i++)
3558 		blk_mq_free_map_and_requests(set, i);
3559 out_free_mq_map:
3560 	for (i = 0; i < set->nr_maps; i++) {
3561 		kfree(set->map[i].mq_map);
3562 		set->map[i].mq_map = NULL;
3563 	}
3564 	kfree(set->tags);
3565 	set->tags = NULL;
3566 	return ret;
3567 }
3568 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3569 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)3570 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3571 {
3572 	int i, j;
3573 
3574 	for (i = 0; i < set->nr_hw_queues; i++)
3575 		blk_mq_free_map_and_requests(set, i);
3576 
3577 	if (blk_mq_is_sbitmap_shared(set->flags))
3578 		blk_mq_exit_shared_sbitmap(set);
3579 
3580 	for (j = 0; j < set->nr_maps; j++) {
3581 		kfree(set->map[j].mq_map);
3582 		set->map[j].mq_map = NULL;
3583 	}
3584 
3585 	kfree(set->tags);
3586 	set->tags = NULL;
3587 }
3588 EXPORT_SYMBOL(blk_mq_free_tag_set);
3589 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)3590 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3591 {
3592 	struct blk_mq_tag_set *set = q->tag_set;
3593 	struct blk_mq_hw_ctx *hctx;
3594 	int i, ret;
3595 
3596 	if (!set)
3597 		return -EINVAL;
3598 
3599 	if (q->nr_requests == nr)
3600 		return 0;
3601 
3602 	blk_mq_freeze_queue(q);
3603 	blk_mq_quiesce_queue(q);
3604 
3605 	ret = 0;
3606 	queue_for_each_hw_ctx(q, hctx, i) {
3607 		if (!hctx->tags)
3608 			continue;
3609 		/*
3610 		 * If we're using an MQ scheduler, just update the scheduler
3611 		 * queue depth. This is similar to what the old code would do.
3612 		 */
3613 		if (!hctx->sched_tags) {
3614 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3615 							false);
3616 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3617 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3618 		} else {
3619 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3620 							nr, true);
3621 		}
3622 		if (ret)
3623 			break;
3624 		if (q->elevator && q->elevator->type->ops.depth_updated)
3625 			q->elevator->type->ops.depth_updated(hctx);
3626 	}
3627 
3628 	if (!ret)
3629 		q->nr_requests = nr;
3630 
3631 	blk_mq_unquiesce_queue(q);
3632 	blk_mq_unfreeze_queue(q);
3633 
3634 	return ret;
3635 }
3636 
3637 /*
3638  * request_queue and elevator_type pair.
3639  * It is just used by __blk_mq_update_nr_hw_queues to cache
3640  * the elevator_type associated with a request_queue.
3641  */
3642 struct blk_mq_qe_pair {
3643 	struct list_head node;
3644 	struct request_queue *q;
3645 	struct elevator_type *type;
3646 };
3647 
3648 /*
3649  * Cache the elevator_type in qe pair list and switch the
3650  * io scheduler to 'none'
3651  */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)3652 static bool blk_mq_elv_switch_none(struct list_head *head,
3653 		struct request_queue *q)
3654 {
3655 	struct blk_mq_qe_pair *qe;
3656 
3657 	if (!q->elevator)
3658 		return true;
3659 
3660 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3661 	if (!qe)
3662 		return false;
3663 
3664 	INIT_LIST_HEAD(&qe->node);
3665 	qe->q = q;
3666 	qe->type = q->elevator->type;
3667 	list_add(&qe->node, head);
3668 
3669 	mutex_lock(&q->sysfs_lock);
3670 	/*
3671 	 * After elevator_switch_mq, the previous elevator_queue will be
3672 	 * released by elevator_release. The reference of the io scheduler
3673 	 * module get by elevator_get will also be put. So we need to get
3674 	 * a reference of the io scheduler module here to prevent it to be
3675 	 * removed.
3676 	 */
3677 	__module_get(qe->type->elevator_owner);
3678 	elevator_switch_mq(q, NULL);
3679 	mutex_unlock(&q->sysfs_lock);
3680 
3681 	return true;
3682 }
3683 
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)3684 static void blk_mq_elv_switch_back(struct list_head *head,
3685 		struct request_queue *q)
3686 {
3687 	struct blk_mq_qe_pair *qe;
3688 	struct elevator_type *t = NULL;
3689 
3690 	list_for_each_entry(qe, head, node)
3691 		if (qe->q == q) {
3692 			t = qe->type;
3693 			break;
3694 		}
3695 
3696 	if (!t)
3697 		return;
3698 
3699 	list_del(&qe->node);
3700 	kfree(qe);
3701 
3702 	mutex_lock(&q->sysfs_lock);
3703 	elevator_switch_mq(q, t);
3704 	mutex_unlock(&q->sysfs_lock);
3705 }
3706 
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3707 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3708 							int nr_hw_queues)
3709 {
3710 	struct request_queue *q;
3711 	LIST_HEAD(head);
3712 	int prev_nr_hw_queues;
3713 
3714 	lockdep_assert_held(&set->tag_list_lock);
3715 
3716 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3717 		nr_hw_queues = nr_cpu_ids;
3718 	if (nr_hw_queues < 1)
3719 		return;
3720 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3721 		return;
3722 
3723 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3724 		blk_mq_freeze_queue(q);
3725 	/*
3726 	 * Switch IO scheduler to 'none', cleaning up the data associated
3727 	 * with the previous scheduler. We will switch back once we are done
3728 	 * updating the new sw to hw queue mappings.
3729 	 */
3730 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3731 		if (!blk_mq_elv_switch_none(&head, q))
3732 			goto switch_back;
3733 
3734 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3735 		blk_mq_debugfs_unregister_hctxs(q);
3736 		blk_mq_sysfs_unregister(q);
3737 	}
3738 
3739 	prev_nr_hw_queues = set->nr_hw_queues;
3740 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3741 	    0)
3742 		goto reregister;
3743 
3744 	set->nr_hw_queues = nr_hw_queues;
3745 fallback:
3746 	blk_mq_update_queue_map(set);
3747 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3748 		blk_mq_realloc_hw_ctxs(set, q);
3749 		if (q->nr_hw_queues != set->nr_hw_queues) {
3750 			int i = prev_nr_hw_queues;
3751 
3752 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3753 					nr_hw_queues, prev_nr_hw_queues);
3754 			for (; i < set->nr_hw_queues; i++)
3755 				blk_mq_free_map_and_requests(set, i);
3756 
3757 			set->nr_hw_queues = prev_nr_hw_queues;
3758 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3759 			goto fallback;
3760 		}
3761 		blk_mq_map_swqueue(q);
3762 	}
3763 
3764 reregister:
3765 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3766 		blk_mq_sysfs_register(q);
3767 		blk_mq_debugfs_register_hctxs(q);
3768 	}
3769 
3770 switch_back:
3771 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3772 		blk_mq_elv_switch_back(&head, q);
3773 
3774 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3775 		blk_mq_unfreeze_queue(q);
3776 }
3777 
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3778 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3779 {
3780 	mutex_lock(&set->tag_list_lock);
3781 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3782 	mutex_unlock(&set->tag_list_lock);
3783 }
3784 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3785 
3786 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3787 static bool blk_poll_stats_enable(struct request_queue *q)
3788 {
3789 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3790 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3791 		return true;
3792 	blk_stat_add_callback(q, q->poll_cb);
3793 	return false;
3794 }
3795 
blk_mq_poll_stats_start(struct request_queue * q)3796 static void blk_mq_poll_stats_start(struct request_queue *q)
3797 {
3798 	/*
3799 	 * We don't arm the callback if polling stats are not enabled or the
3800 	 * callback is already active.
3801 	 */
3802 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3803 	    blk_stat_is_active(q->poll_cb))
3804 		return;
3805 
3806 	blk_stat_activate_msecs(q->poll_cb, 100);
3807 }
3808 
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3809 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3810 {
3811 	struct request_queue *q = cb->data;
3812 	int bucket;
3813 
3814 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3815 		if (cb->stat[bucket].nr_samples)
3816 			q->poll_stat[bucket] = cb->stat[bucket];
3817 	}
3818 }
3819 
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)3820 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3821 				       struct request *rq)
3822 {
3823 	unsigned long ret = 0;
3824 	int bucket;
3825 
3826 	/*
3827 	 * If stats collection isn't on, don't sleep but turn it on for
3828 	 * future users
3829 	 */
3830 	if (!blk_poll_stats_enable(q))
3831 		return 0;
3832 
3833 	/*
3834 	 * As an optimistic guess, use half of the mean service time
3835 	 * for this type of request. We can (and should) make this smarter.
3836 	 * For instance, if the completion latencies are tight, we can
3837 	 * get closer than just half the mean. This is especially
3838 	 * important on devices where the completion latencies are longer
3839 	 * than ~10 usec. We do use the stats for the relevant IO size
3840 	 * if available which does lead to better estimates.
3841 	 */
3842 	bucket = blk_mq_poll_stats_bkt(rq);
3843 	if (bucket < 0)
3844 		return ret;
3845 
3846 	if (q->poll_stat[bucket].nr_samples)
3847 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3848 
3849 	return ret;
3850 }
3851 
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct request * rq)3852 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3853 				     struct request *rq)
3854 {
3855 	struct hrtimer_sleeper hs;
3856 	enum hrtimer_mode mode;
3857 	unsigned int nsecs;
3858 	ktime_t kt;
3859 
3860 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3861 		return false;
3862 
3863 	/*
3864 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3865 	 *
3866 	 *  0:	use half of prev avg
3867 	 * >0:	use this specific value
3868 	 */
3869 	if (q->poll_nsec > 0)
3870 		nsecs = q->poll_nsec;
3871 	else
3872 		nsecs = blk_mq_poll_nsecs(q, rq);
3873 
3874 	if (!nsecs)
3875 		return false;
3876 
3877 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3878 
3879 	/*
3880 	 * This will be replaced with the stats tracking code, using
3881 	 * 'avg_completion_time / 2' as the pre-sleep target.
3882 	 */
3883 	kt = nsecs;
3884 
3885 	mode = HRTIMER_MODE_REL;
3886 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3887 	hrtimer_set_expires(&hs.timer, kt);
3888 
3889 	do {
3890 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3891 			break;
3892 		set_current_state(TASK_UNINTERRUPTIBLE);
3893 		hrtimer_sleeper_start_expires(&hs, mode);
3894 		if (hs.task)
3895 			io_schedule();
3896 		hrtimer_cancel(&hs.timer);
3897 		mode = HRTIMER_MODE_ABS;
3898 	} while (hs.task && !signal_pending(current));
3899 
3900 	__set_current_state(TASK_RUNNING);
3901 	destroy_hrtimer_on_stack(&hs.timer);
3902 	return true;
3903 }
3904 
blk_mq_poll_hybrid(struct request_queue * q,struct blk_mq_hw_ctx * hctx,blk_qc_t cookie)3905 static bool blk_mq_poll_hybrid(struct request_queue *q,
3906 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3907 {
3908 	struct request *rq;
3909 
3910 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3911 		return false;
3912 
3913 	if (!blk_qc_t_is_internal(cookie))
3914 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3915 	else {
3916 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3917 		/*
3918 		 * With scheduling, if the request has completed, we'll
3919 		 * get a NULL return here, as we clear the sched tag when
3920 		 * that happens. The request still remains valid, like always,
3921 		 * so we should be safe with just the NULL check.
3922 		 */
3923 		if (!rq)
3924 			return false;
3925 	}
3926 
3927 	return blk_mq_poll_hybrid_sleep(q, rq);
3928 }
3929 
3930 /**
3931  * blk_poll - poll for IO completions
3932  * @q:  the queue
3933  * @cookie: cookie passed back at IO submission time
3934  * @spin: whether to spin for completions
3935  *
3936  * Description:
3937  *    Poll for completions on the passed in queue. Returns number of
3938  *    completed entries found. If @spin is true, then blk_poll will continue
3939  *    looping until at least one completion is found, unless the task is
3940  *    otherwise marked running (or we need to reschedule).
3941  */
blk_poll(struct request_queue * q,blk_qc_t cookie,bool spin)3942 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3943 {
3944 	struct blk_mq_hw_ctx *hctx;
3945 	long state;
3946 
3947 	if (!blk_qc_t_valid(cookie) ||
3948 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3949 		return 0;
3950 
3951 	if (current->plug)
3952 		blk_flush_plug_list(current->plug, false);
3953 
3954 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3955 
3956 	/*
3957 	 * If we sleep, have the caller restart the poll loop to reset
3958 	 * the state. Like for the other success return cases, the
3959 	 * caller is responsible for checking if the IO completed. If
3960 	 * the IO isn't complete, we'll get called again and will go
3961 	 * straight to the busy poll loop.
3962 	 */
3963 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3964 		return 1;
3965 
3966 	hctx->poll_considered++;
3967 
3968 	state = current->state;
3969 	do {
3970 		int ret;
3971 
3972 		hctx->poll_invoked++;
3973 
3974 		ret = q->mq_ops->poll(hctx);
3975 		if (ret > 0) {
3976 			hctx->poll_success++;
3977 			__set_current_state(TASK_RUNNING);
3978 			return ret;
3979 		}
3980 
3981 		if (signal_pending_state(state, current))
3982 			__set_current_state(TASK_RUNNING);
3983 
3984 		if (current->state == TASK_RUNNING)
3985 			return 1;
3986 		if (ret < 0 || !spin)
3987 			break;
3988 		cpu_relax();
3989 	} while (!need_resched());
3990 
3991 	__set_current_state(TASK_RUNNING);
3992 	return 0;
3993 }
3994 EXPORT_SYMBOL_GPL(blk_poll);
3995 
blk_mq_rq_cpu(struct request * rq)3996 unsigned int blk_mq_rq_cpu(struct request *rq)
3997 {
3998 	return rq->mq_ctx->cpu;
3999 }
4000 EXPORT_SYMBOL(blk_mq_rq_cpu);
4001 
blk_mq_cancel_work_sync(struct request_queue * q)4002 void blk_mq_cancel_work_sync(struct request_queue *q)
4003 {
4004 	if (queue_is_mq(q)) {
4005 		struct blk_mq_hw_ctx *hctx;
4006 		int i;
4007 
4008 		cancel_delayed_work_sync(&q->requeue_work);
4009 
4010 		queue_for_each_hw_ctx(q, hctx, i)
4011 			cancel_delayed_work_sync(&hctx->run_work);
4012 	}
4013 }
4014 
blk_mq_init(void)4015 static int __init blk_mq_init(void)
4016 {
4017 	int i;
4018 
4019 	for_each_possible_cpu(i)
4020 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
4021 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4022 
4023 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4024 				  "block/softirq:dead", NULL,
4025 				  blk_softirq_cpu_dead);
4026 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4027 				blk_mq_hctx_notify_dead);
4028 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4029 				blk_mq_hctx_notify_online,
4030 				blk_mq_hctx_notify_offline);
4031 	return 0;
4032 }
4033 subsys_initcall(blk_mq_init);
4034