1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 * Portions Copyright (C) Tino Reichardt, 2012
5 */
6
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include "jfs_incore.h"
10 #include "jfs_superblock.h"
11 #include "jfs_dmap.h"
12 #include "jfs_imap.h"
13 #include "jfs_lock.h"
14 #include "jfs_metapage.h"
15 #include "jfs_debug.h"
16 #include "jfs_discard.h"
17
18 /*
19 * SERIALIZATION of the Block Allocation Map.
20 *
21 * the working state of the block allocation map is accessed in
22 * two directions:
23 *
24 * 1) allocation and free requests that start at the dmap
25 * level and move up through the dmap control pages (i.e.
26 * the vast majority of requests).
27 *
28 * 2) allocation requests that start at dmap control page
29 * level and work down towards the dmaps.
30 *
31 * the serialization scheme used here is as follows.
32 *
33 * requests which start at the bottom are serialized against each
34 * other through buffers and each requests holds onto its buffers
35 * as it works it way up from a single dmap to the required level
36 * of dmap control page.
37 * requests that start at the top are serialized against each other
38 * and request that start from the bottom by the multiple read/single
39 * write inode lock of the bmap inode. requests starting at the top
40 * take this lock in write mode while request starting at the bottom
41 * take the lock in read mode. a single top-down request may proceed
42 * exclusively while multiple bottoms-up requests may proceed
43 * simultaneously (under the protection of busy buffers).
44 *
45 * in addition to information found in dmaps and dmap control pages,
46 * the working state of the block allocation map also includes read/
47 * write information maintained in the bmap descriptor (i.e. total
48 * free block count, allocation group level free block counts).
49 * a single exclusive lock (BMAP_LOCK) is used to guard this information
50 * in the face of multiple-bottoms up requests.
51 * (lock ordering: IREAD_LOCK, BMAP_LOCK);
52 *
53 * accesses to the persistent state of the block allocation map (limited
54 * to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
55 */
56
57 #define BMAP_LOCK_INIT(bmp) mutex_init(&bmp->db_bmaplock)
58 #define BMAP_LOCK(bmp) mutex_lock(&bmp->db_bmaplock)
59 #define BMAP_UNLOCK(bmp) mutex_unlock(&bmp->db_bmaplock)
60
61 /*
62 * forward references
63 */
64 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
65 int nblocks);
66 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
67 static int dbBackSplit(dmtree_t * tp, int leafno);
68 static int dbJoin(dmtree_t * tp, int leafno, int newval);
69 static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
70 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
71 int level);
72 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
73 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
74 int nblocks);
75 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
76 int nblocks,
77 int l2nb, s64 * results);
78 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
79 int nblocks);
80 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
81 int l2nb,
82 s64 * results);
83 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
84 s64 * results);
85 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
86 s64 * results);
87 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
88 static int dbFindBits(u32 word, int l2nb);
89 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
90 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
91 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
92 int nblocks);
93 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
94 int nblocks);
95 static int dbMaxBud(u8 * cp);
96 static int blkstol2(s64 nb);
97
98 static int cntlz(u32 value);
99 static int cnttz(u32 word);
100
101 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 int nblocks);
103 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104 static int dbInitDmapTree(struct dmap * dp);
105 static int dbInitTree(struct dmaptree * dtp);
106 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107 static int dbGetL2AGSize(s64 nblocks);
108
109 /*
110 * buddy table
111 *
112 * table used for determining buddy sizes within characters of
113 * dmap bitmap words. the characters themselves serve as indexes
114 * into the table, with the table elements yielding the maximum
115 * binary buddy of free bits within the character.
116 */
117 static const s8 budtab[256] = {
118 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134 };
135
136 /*
137 * NAME: dbMount()
138 *
139 * FUNCTION: initializate the block allocation map.
140 *
141 * memory is allocated for the in-core bmap descriptor and
142 * the in-core descriptor is initialized from disk.
143 *
144 * PARAMETERS:
145 * ipbmap - pointer to in-core inode for the block map.
146 *
147 * RETURN VALUES:
148 * 0 - success
149 * -ENOMEM - insufficient memory
150 * -EIO - i/o error
151 * -EINVAL - wrong bmap data
152 */
dbMount(struct inode * ipbmap)153 int dbMount(struct inode *ipbmap)
154 {
155 struct bmap *bmp;
156 struct dbmap_disk *dbmp_le;
157 struct metapage *mp;
158 int i, err;
159
160 /*
161 * allocate/initialize the in-memory bmap descriptor
162 */
163 /* allocate memory for the in-memory bmap descriptor */
164 bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
165 if (bmp == NULL)
166 return -ENOMEM;
167
168 /* read the on-disk bmap descriptor. */
169 mp = read_metapage(ipbmap,
170 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
171 PSIZE, 0);
172 if (mp == NULL) {
173 err = -EIO;
174 goto err_kfree_bmp;
175 }
176
177 /* copy the on-disk bmap descriptor to its in-memory version. */
178 dbmp_le = (struct dbmap_disk *) mp->data;
179 bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
180 bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
181 bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
182 bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
183 if (!bmp->db_numag) {
184 err = -EINVAL;
185 goto err_release_metapage;
186 }
187
188 bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
189 bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
190 bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
191 bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
192 bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
193 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
194 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
195 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
196 if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG) {
197 err = -EINVAL;
198 goto err_release_metapage;
199 }
200
201 if (((bmp->db_mapsize - 1) >> bmp->db_agl2size) > MAXAG) {
202 err = -EINVAL;
203 goto err_release_metapage;
204 }
205
206 for (i = 0; i < MAXAG; i++)
207 bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
208 bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
209 bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
210
211 /* release the buffer. */
212 release_metapage(mp);
213
214 /* bind the bmap inode and the bmap descriptor to each other. */
215 bmp->db_ipbmap = ipbmap;
216 JFS_SBI(ipbmap->i_sb)->bmap = bmp;
217
218 memset(bmp->db_active, 0, sizeof(bmp->db_active));
219
220 /*
221 * allocate/initialize the bmap lock
222 */
223 BMAP_LOCK_INIT(bmp);
224
225 return (0);
226
227 err_release_metapage:
228 release_metapage(mp);
229 err_kfree_bmp:
230 kfree(bmp);
231 return err;
232 }
233
234
235 /*
236 * NAME: dbUnmount()
237 *
238 * FUNCTION: terminate the block allocation map in preparation for
239 * file system unmount.
240 *
241 * the in-core bmap descriptor is written to disk and
242 * the memory for this descriptor is freed.
243 *
244 * PARAMETERS:
245 * ipbmap - pointer to in-core inode for the block map.
246 *
247 * RETURN VALUES:
248 * 0 - success
249 * -EIO - i/o error
250 */
dbUnmount(struct inode * ipbmap,int mounterror)251 int dbUnmount(struct inode *ipbmap, int mounterror)
252 {
253 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
254
255 if (!(mounterror || isReadOnly(ipbmap)))
256 dbSync(ipbmap);
257
258 /*
259 * Invalidate the page cache buffers
260 */
261 truncate_inode_pages(ipbmap->i_mapping, 0);
262
263 /* free the memory for the in-memory bmap. */
264 kfree(bmp);
265
266 return (0);
267 }
268
269 /*
270 * dbSync()
271 */
dbSync(struct inode * ipbmap)272 int dbSync(struct inode *ipbmap)
273 {
274 struct dbmap_disk *dbmp_le;
275 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
276 struct metapage *mp;
277 int i;
278
279 /*
280 * write bmap global control page
281 */
282 /* get the buffer for the on-disk bmap descriptor. */
283 mp = read_metapage(ipbmap,
284 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
285 PSIZE, 0);
286 if (mp == NULL) {
287 jfs_err("dbSync: read_metapage failed!");
288 return -EIO;
289 }
290 /* copy the in-memory version of the bmap to the on-disk version */
291 dbmp_le = (struct dbmap_disk *) mp->data;
292 dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
293 dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
294 dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
295 dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
296 dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
297 dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
298 dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
299 dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
300 dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
301 dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
302 dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
303 dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
304 for (i = 0; i < MAXAG; i++)
305 dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
306 dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
307 dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
308
309 /* write the buffer */
310 write_metapage(mp);
311
312 /*
313 * write out dirty pages of bmap
314 */
315 filemap_write_and_wait(ipbmap->i_mapping);
316
317 diWriteSpecial(ipbmap, 0);
318
319 return (0);
320 }
321
322 /*
323 * NAME: dbFree()
324 *
325 * FUNCTION: free the specified block range from the working block
326 * allocation map.
327 *
328 * the blocks will be free from the working map one dmap
329 * at a time.
330 *
331 * PARAMETERS:
332 * ip - pointer to in-core inode;
333 * blkno - starting block number to be freed.
334 * nblocks - number of blocks to be freed.
335 *
336 * RETURN VALUES:
337 * 0 - success
338 * -EIO - i/o error
339 */
dbFree(struct inode * ip,s64 blkno,s64 nblocks)340 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
341 {
342 struct metapage *mp;
343 struct dmap *dp;
344 int nb, rc;
345 s64 lblkno, rem;
346 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
347 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
348 struct super_block *sb = ipbmap->i_sb;
349
350 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
351
352 /* block to be freed better be within the mapsize. */
353 if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
354 IREAD_UNLOCK(ipbmap);
355 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
356 (unsigned long long) blkno,
357 (unsigned long long) nblocks);
358 jfs_error(ip->i_sb, "block to be freed is outside the map\n");
359 return -EIO;
360 }
361
362 /**
363 * TRIM the blocks, when mounted with discard option
364 */
365 if (JFS_SBI(sb)->flag & JFS_DISCARD)
366 if (JFS_SBI(sb)->minblks_trim <= nblocks)
367 jfs_issue_discard(ipbmap, blkno, nblocks);
368
369 /*
370 * free the blocks a dmap at a time.
371 */
372 mp = NULL;
373 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
374 /* release previous dmap if any */
375 if (mp) {
376 write_metapage(mp);
377 }
378
379 /* get the buffer for the current dmap. */
380 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
381 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
382 if (mp == NULL) {
383 IREAD_UNLOCK(ipbmap);
384 return -EIO;
385 }
386 dp = (struct dmap *) mp->data;
387
388 /* determine the number of blocks to be freed from
389 * this dmap.
390 */
391 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
392
393 /* free the blocks. */
394 if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
395 jfs_error(ip->i_sb, "error in block map\n");
396 release_metapage(mp);
397 IREAD_UNLOCK(ipbmap);
398 return (rc);
399 }
400 }
401
402 /* write the last buffer. */
403 if (mp)
404 write_metapage(mp);
405
406 IREAD_UNLOCK(ipbmap);
407
408 return (0);
409 }
410
411
412 /*
413 * NAME: dbUpdatePMap()
414 *
415 * FUNCTION: update the allocation state (free or allocate) of the
416 * specified block range in the persistent block allocation map.
417 *
418 * the blocks will be updated in the persistent map one
419 * dmap at a time.
420 *
421 * PARAMETERS:
422 * ipbmap - pointer to in-core inode for the block map.
423 * free - 'true' if block range is to be freed from the persistent
424 * map; 'false' if it is to be allocated.
425 * blkno - starting block number of the range.
426 * nblocks - number of contiguous blocks in the range.
427 * tblk - transaction block;
428 *
429 * RETURN VALUES:
430 * 0 - success
431 * -EIO - i/o error
432 */
433 int
dbUpdatePMap(struct inode * ipbmap,int free,s64 blkno,s64 nblocks,struct tblock * tblk)434 dbUpdatePMap(struct inode *ipbmap,
435 int free, s64 blkno, s64 nblocks, struct tblock * tblk)
436 {
437 int nblks, dbitno, wbitno, rbits;
438 int word, nbits, nwords;
439 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
440 s64 lblkno, rem, lastlblkno;
441 u32 mask;
442 struct dmap *dp;
443 struct metapage *mp;
444 struct jfs_log *log;
445 int lsn, difft, diffp;
446 unsigned long flags;
447
448 /* the blocks better be within the mapsize. */
449 if (blkno + nblocks > bmp->db_mapsize) {
450 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
451 (unsigned long long) blkno,
452 (unsigned long long) nblocks);
453 jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
454 return -EIO;
455 }
456
457 /* compute delta of transaction lsn from log syncpt */
458 lsn = tblk->lsn;
459 log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
460 logdiff(difft, lsn, log);
461
462 /*
463 * update the block state a dmap at a time.
464 */
465 mp = NULL;
466 lastlblkno = 0;
467 for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
468 /* get the buffer for the current dmap. */
469 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
470 if (lblkno != lastlblkno) {
471 if (mp) {
472 write_metapage(mp);
473 }
474
475 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
476 0);
477 if (mp == NULL)
478 return -EIO;
479 metapage_wait_for_io(mp);
480 }
481 dp = (struct dmap *) mp->data;
482
483 /* determine the bit number and word within the dmap of
484 * the starting block. also determine how many blocks
485 * are to be updated within this dmap.
486 */
487 dbitno = blkno & (BPERDMAP - 1);
488 word = dbitno >> L2DBWORD;
489 nblks = min(rem, (s64)BPERDMAP - dbitno);
490
491 /* update the bits of the dmap words. the first and last
492 * words may only have a subset of their bits updated. if
493 * this is the case, we'll work against that word (i.e.
494 * partial first and/or last) only in a single pass. a
495 * single pass will also be used to update all words that
496 * are to have all their bits updated.
497 */
498 for (rbits = nblks; rbits > 0;
499 rbits -= nbits, dbitno += nbits) {
500 /* determine the bit number within the word and
501 * the number of bits within the word.
502 */
503 wbitno = dbitno & (DBWORD - 1);
504 nbits = min(rbits, DBWORD - wbitno);
505
506 /* check if only part of the word is to be updated. */
507 if (nbits < DBWORD) {
508 /* update (free or allocate) the bits
509 * in this word.
510 */
511 mask =
512 (ONES << (DBWORD - nbits) >> wbitno);
513 if (free)
514 dp->pmap[word] &=
515 cpu_to_le32(~mask);
516 else
517 dp->pmap[word] |=
518 cpu_to_le32(mask);
519
520 word += 1;
521 } else {
522 /* one or more words are to have all
523 * their bits updated. determine how
524 * many words and how many bits.
525 */
526 nwords = rbits >> L2DBWORD;
527 nbits = nwords << L2DBWORD;
528
529 /* update (free or allocate) the bits
530 * in these words.
531 */
532 if (free)
533 memset(&dp->pmap[word], 0,
534 nwords * 4);
535 else
536 memset(&dp->pmap[word], (int) ONES,
537 nwords * 4);
538
539 word += nwords;
540 }
541 }
542
543 /*
544 * update dmap lsn
545 */
546 if (lblkno == lastlblkno)
547 continue;
548
549 lastlblkno = lblkno;
550
551 LOGSYNC_LOCK(log, flags);
552 if (mp->lsn != 0) {
553 /* inherit older/smaller lsn */
554 logdiff(diffp, mp->lsn, log);
555 if (difft < diffp) {
556 mp->lsn = lsn;
557
558 /* move bp after tblock in logsync list */
559 list_move(&mp->synclist, &tblk->synclist);
560 }
561
562 /* inherit younger/larger clsn */
563 logdiff(difft, tblk->clsn, log);
564 logdiff(diffp, mp->clsn, log);
565 if (difft > diffp)
566 mp->clsn = tblk->clsn;
567 } else {
568 mp->log = log;
569 mp->lsn = lsn;
570
571 /* insert bp after tblock in logsync list */
572 log->count++;
573 list_add(&mp->synclist, &tblk->synclist);
574
575 mp->clsn = tblk->clsn;
576 }
577 LOGSYNC_UNLOCK(log, flags);
578 }
579
580 /* write the last buffer. */
581 if (mp) {
582 write_metapage(mp);
583 }
584
585 return (0);
586 }
587
588
589 /*
590 * NAME: dbNextAG()
591 *
592 * FUNCTION: find the preferred allocation group for new allocations.
593 *
594 * Within the allocation groups, we maintain a preferred
595 * allocation group which consists of a group with at least
596 * average free space. It is the preferred group that we target
597 * new inode allocation towards. The tie-in between inode
598 * allocation and block allocation occurs as we allocate the
599 * first (data) block of an inode and specify the inode (block)
600 * as the allocation hint for this block.
601 *
602 * We try to avoid having more than one open file growing in
603 * an allocation group, as this will lead to fragmentation.
604 * This differs from the old OS/2 method of trying to keep
605 * empty ags around for large allocations.
606 *
607 * PARAMETERS:
608 * ipbmap - pointer to in-core inode for the block map.
609 *
610 * RETURN VALUES:
611 * the preferred allocation group number.
612 */
dbNextAG(struct inode * ipbmap)613 int dbNextAG(struct inode *ipbmap)
614 {
615 s64 avgfree;
616 int agpref;
617 s64 hwm = 0;
618 int i;
619 int next_best = -1;
620 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
621
622 BMAP_LOCK(bmp);
623
624 /* determine the average number of free blocks within the ags. */
625 avgfree = (u32)bmp->db_nfree / bmp->db_numag;
626
627 /*
628 * if the current preferred ag does not have an active allocator
629 * and has at least average freespace, return it
630 */
631 agpref = bmp->db_agpref;
632 if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
633 (bmp->db_agfree[agpref] >= avgfree))
634 goto unlock;
635
636 /* From the last preferred ag, find the next one with at least
637 * average free space.
638 */
639 for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
640 if (agpref == bmp->db_numag)
641 agpref = 0;
642
643 if (atomic_read(&bmp->db_active[agpref]))
644 /* open file is currently growing in this ag */
645 continue;
646 if (bmp->db_agfree[agpref] >= avgfree) {
647 /* Return this one */
648 bmp->db_agpref = agpref;
649 goto unlock;
650 } else if (bmp->db_agfree[agpref] > hwm) {
651 /* Less than avg. freespace, but best so far */
652 hwm = bmp->db_agfree[agpref];
653 next_best = agpref;
654 }
655 }
656
657 /*
658 * If no inactive ag was found with average freespace, use the
659 * next best
660 */
661 if (next_best != -1)
662 bmp->db_agpref = next_best;
663 /* else leave db_agpref unchanged */
664 unlock:
665 BMAP_UNLOCK(bmp);
666
667 /* return the preferred group.
668 */
669 return (bmp->db_agpref);
670 }
671
672 /*
673 * NAME: dbAlloc()
674 *
675 * FUNCTION: attempt to allocate a specified number of contiguous free
676 * blocks from the working allocation block map.
677 *
678 * the block allocation policy uses hints and a multi-step
679 * approach.
680 *
681 * for allocation requests smaller than the number of blocks
682 * per dmap, we first try to allocate the new blocks
683 * immediately following the hint. if these blocks are not
684 * available, we try to allocate blocks near the hint. if
685 * no blocks near the hint are available, we next try to
686 * allocate within the same dmap as contains the hint.
687 *
688 * if no blocks are available in the dmap or the allocation
689 * request is larger than the dmap size, we try to allocate
690 * within the same allocation group as contains the hint. if
691 * this does not succeed, we finally try to allocate anywhere
692 * within the aggregate.
693 *
694 * we also try to allocate anywhere within the aggregate for
695 * for allocation requests larger than the allocation group
696 * size or requests that specify no hint value.
697 *
698 * PARAMETERS:
699 * ip - pointer to in-core inode;
700 * hint - allocation hint.
701 * nblocks - number of contiguous blocks in the range.
702 * results - on successful return, set to the starting block number
703 * of the newly allocated contiguous range.
704 *
705 * RETURN VALUES:
706 * 0 - success
707 * -ENOSPC - insufficient disk resources
708 * -EIO - i/o error
709 */
dbAlloc(struct inode * ip,s64 hint,s64 nblocks,s64 * results)710 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
711 {
712 int rc, agno;
713 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
714 struct bmap *bmp;
715 struct metapage *mp;
716 s64 lblkno, blkno;
717 struct dmap *dp;
718 int l2nb;
719 s64 mapSize;
720 int writers;
721
722 /* assert that nblocks is valid */
723 assert(nblocks > 0);
724
725 /* get the log2 number of blocks to be allocated.
726 * if the number of blocks is not a log2 multiple,
727 * it will be rounded up to the next log2 multiple.
728 */
729 l2nb = BLKSTOL2(nblocks);
730
731 bmp = JFS_SBI(ip->i_sb)->bmap;
732
733 mapSize = bmp->db_mapsize;
734
735 /* the hint should be within the map */
736 if (hint >= mapSize) {
737 jfs_error(ip->i_sb, "the hint is outside the map\n");
738 return -EIO;
739 }
740
741 /* if the number of blocks to be allocated is greater than the
742 * allocation group size, try to allocate anywhere.
743 */
744 if (l2nb > bmp->db_agl2size) {
745 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
746
747 rc = dbAllocAny(bmp, nblocks, l2nb, results);
748
749 goto write_unlock;
750 }
751
752 /*
753 * If no hint, let dbNextAG recommend an allocation group
754 */
755 if (hint == 0)
756 goto pref_ag;
757
758 /* we would like to allocate close to the hint. adjust the
759 * hint to the block following the hint since the allocators
760 * will start looking for free space starting at this point.
761 */
762 blkno = hint + 1;
763
764 if (blkno >= bmp->db_mapsize)
765 goto pref_ag;
766
767 agno = blkno >> bmp->db_agl2size;
768
769 /* check if blkno crosses over into a new allocation group.
770 * if so, check if we should allow allocations within this
771 * allocation group.
772 */
773 if ((blkno & (bmp->db_agsize - 1)) == 0)
774 /* check if the AG is currently being written to.
775 * if so, call dbNextAG() to find a non-busy
776 * AG with sufficient free space.
777 */
778 if (atomic_read(&bmp->db_active[agno]))
779 goto pref_ag;
780
781 /* check if the allocation request size can be satisfied from a
782 * single dmap. if so, try to allocate from the dmap containing
783 * the hint using a tiered strategy.
784 */
785 if (nblocks <= BPERDMAP) {
786 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
787
788 /* get the buffer for the dmap containing the hint.
789 */
790 rc = -EIO;
791 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
792 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
793 if (mp == NULL)
794 goto read_unlock;
795
796 dp = (struct dmap *) mp->data;
797
798 /* first, try to satisfy the allocation request with the
799 * blocks beginning at the hint.
800 */
801 if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
802 != -ENOSPC) {
803 if (rc == 0) {
804 *results = blkno;
805 mark_metapage_dirty(mp);
806 }
807
808 release_metapage(mp);
809 goto read_unlock;
810 }
811
812 writers = atomic_read(&bmp->db_active[agno]);
813 if ((writers > 1) ||
814 ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
815 /*
816 * Someone else is writing in this allocation
817 * group. To avoid fragmenting, try another ag
818 */
819 release_metapage(mp);
820 IREAD_UNLOCK(ipbmap);
821 goto pref_ag;
822 }
823
824 /* next, try to satisfy the allocation request with blocks
825 * near the hint.
826 */
827 if ((rc =
828 dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
829 != -ENOSPC) {
830 if (rc == 0)
831 mark_metapage_dirty(mp);
832
833 release_metapage(mp);
834 goto read_unlock;
835 }
836
837 /* try to satisfy the allocation request with blocks within
838 * the same dmap as the hint.
839 */
840 if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
841 != -ENOSPC) {
842 if (rc == 0)
843 mark_metapage_dirty(mp);
844
845 release_metapage(mp);
846 goto read_unlock;
847 }
848
849 release_metapage(mp);
850 IREAD_UNLOCK(ipbmap);
851 }
852
853 /* try to satisfy the allocation request with blocks within
854 * the same allocation group as the hint.
855 */
856 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
857 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
858 goto write_unlock;
859
860 IWRITE_UNLOCK(ipbmap);
861
862
863 pref_ag:
864 /*
865 * Let dbNextAG recommend a preferred allocation group
866 */
867 agno = dbNextAG(ipbmap);
868 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
869
870 /* Try to allocate within this allocation group. if that fails, try to
871 * allocate anywhere in the map.
872 */
873 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
874 rc = dbAllocAny(bmp, nblocks, l2nb, results);
875
876 write_unlock:
877 IWRITE_UNLOCK(ipbmap);
878
879 return (rc);
880
881 read_unlock:
882 IREAD_UNLOCK(ipbmap);
883
884 return (rc);
885 }
886
887 #ifdef _NOTYET
888 /*
889 * NAME: dbAllocExact()
890 *
891 * FUNCTION: try to allocate the requested extent;
892 *
893 * PARAMETERS:
894 * ip - pointer to in-core inode;
895 * blkno - extent address;
896 * nblocks - extent length;
897 *
898 * RETURN VALUES:
899 * 0 - success
900 * -ENOSPC - insufficient disk resources
901 * -EIO - i/o error
902 */
dbAllocExact(struct inode * ip,s64 blkno,int nblocks)903 int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
904 {
905 int rc;
906 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
907 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
908 struct dmap *dp;
909 s64 lblkno;
910 struct metapage *mp;
911
912 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
913
914 /*
915 * validate extent request:
916 *
917 * note: defragfs policy:
918 * max 64 blocks will be moved.
919 * allocation request size must be satisfied from a single dmap.
920 */
921 if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
922 IREAD_UNLOCK(ipbmap);
923 return -EINVAL;
924 }
925
926 if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
927 /* the free space is no longer available */
928 IREAD_UNLOCK(ipbmap);
929 return -ENOSPC;
930 }
931
932 /* read in the dmap covering the extent */
933 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
934 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
935 if (mp == NULL) {
936 IREAD_UNLOCK(ipbmap);
937 return -EIO;
938 }
939 dp = (struct dmap *) mp->data;
940
941 /* try to allocate the requested extent */
942 rc = dbAllocNext(bmp, dp, blkno, nblocks);
943
944 IREAD_UNLOCK(ipbmap);
945
946 if (rc == 0)
947 mark_metapage_dirty(mp);
948
949 release_metapage(mp);
950
951 return (rc);
952 }
953 #endif /* _NOTYET */
954
955 /*
956 * NAME: dbReAlloc()
957 *
958 * FUNCTION: attempt to extend a current allocation by a specified
959 * number of blocks.
960 *
961 * this routine attempts to satisfy the allocation request
962 * by first trying to extend the existing allocation in
963 * place by allocating the additional blocks as the blocks
964 * immediately following the current allocation. if these
965 * blocks are not available, this routine will attempt to
966 * allocate a new set of contiguous blocks large enough
967 * to cover the existing allocation plus the additional
968 * number of blocks required.
969 *
970 * PARAMETERS:
971 * ip - pointer to in-core inode requiring allocation.
972 * blkno - starting block of the current allocation.
973 * nblocks - number of contiguous blocks within the current
974 * allocation.
975 * addnblocks - number of blocks to add to the allocation.
976 * results - on successful return, set to the starting block number
977 * of the existing allocation if the existing allocation
978 * was extended in place or to a newly allocated contiguous
979 * range if the existing allocation could not be extended
980 * in place.
981 *
982 * RETURN VALUES:
983 * 0 - success
984 * -ENOSPC - insufficient disk resources
985 * -EIO - i/o error
986 */
987 int
dbReAlloc(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks,s64 * results)988 dbReAlloc(struct inode *ip,
989 s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
990 {
991 int rc;
992
993 /* try to extend the allocation in place.
994 */
995 if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
996 *results = blkno;
997 return (0);
998 } else {
999 if (rc != -ENOSPC)
1000 return (rc);
1001 }
1002
1003 /* could not extend the allocation in place, so allocate a
1004 * new set of blocks for the entire request (i.e. try to get
1005 * a range of contiguous blocks large enough to cover the
1006 * existing allocation plus the additional blocks.)
1007 */
1008 return (dbAlloc
1009 (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
1010 }
1011
1012
1013 /*
1014 * NAME: dbExtend()
1015 *
1016 * FUNCTION: attempt to extend a current allocation by a specified
1017 * number of blocks.
1018 *
1019 * this routine attempts to satisfy the allocation request
1020 * by first trying to extend the existing allocation in
1021 * place by allocating the additional blocks as the blocks
1022 * immediately following the current allocation.
1023 *
1024 * PARAMETERS:
1025 * ip - pointer to in-core inode requiring allocation.
1026 * blkno - starting block of the current allocation.
1027 * nblocks - number of contiguous blocks within the current
1028 * allocation.
1029 * addnblocks - number of blocks to add to the allocation.
1030 *
1031 * RETURN VALUES:
1032 * 0 - success
1033 * -ENOSPC - insufficient disk resources
1034 * -EIO - i/o error
1035 */
dbExtend(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks)1036 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1037 {
1038 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1039 s64 lblkno, lastblkno, extblkno;
1040 uint rel_block;
1041 struct metapage *mp;
1042 struct dmap *dp;
1043 int rc;
1044 struct inode *ipbmap = sbi->ipbmap;
1045 struct bmap *bmp;
1046
1047 /*
1048 * We don't want a non-aligned extent to cross a page boundary
1049 */
1050 if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1051 (rel_block + nblocks + addnblocks > sbi->nbperpage))
1052 return -ENOSPC;
1053
1054 /* get the last block of the current allocation */
1055 lastblkno = blkno + nblocks - 1;
1056
1057 /* determine the block number of the block following
1058 * the existing allocation.
1059 */
1060 extblkno = lastblkno + 1;
1061
1062 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1063
1064 /* better be within the file system */
1065 bmp = sbi->bmap;
1066 if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1067 IREAD_UNLOCK(ipbmap);
1068 jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1069 return -EIO;
1070 }
1071
1072 /* we'll attempt to extend the current allocation in place by
1073 * allocating the additional blocks as the blocks immediately
1074 * following the current allocation. we only try to extend the
1075 * current allocation in place if the number of additional blocks
1076 * can fit into a dmap, the last block of the current allocation
1077 * is not the last block of the file system, and the start of the
1078 * inplace extension is not on an allocation group boundary.
1079 */
1080 if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1081 (extblkno & (bmp->db_agsize - 1)) == 0) {
1082 IREAD_UNLOCK(ipbmap);
1083 return -ENOSPC;
1084 }
1085
1086 /* get the buffer for the dmap containing the first block
1087 * of the extension.
1088 */
1089 lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1090 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1091 if (mp == NULL) {
1092 IREAD_UNLOCK(ipbmap);
1093 return -EIO;
1094 }
1095
1096 dp = (struct dmap *) mp->data;
1097
1098 /* try to allocate the blocks immediately following the
1099 * current allocation.
1100 */
1101 rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1102
1103 IREAD_UNLOCK(ipbmap);
1104
1105 /* were we successful ? */
1106 if (rc == 0)
1107 write_metapage(mp);
1108 else
1109 /* we were not successful */
1110 release_metapage(mp);
1111
1112 return (rc);
1113 }
1114
1115
1116 /*
1117 * NAME: dbAllocNext()
1118 *
1119 * FUNCTION: attempt to allocate the blocks of the specified block
1120 * range within a dmap.
1121 *
1122 * PARAMETERS:
1123 * bmp - pointer to bmap descriptor
1124 * dp - pointer to dmap.
1125 * blkno - starting block number of the range.
1126 * nblocks - number of contiguous free blocks of the range.
1127 *
1128 * RETURN VALUES:
1129 * 0 - success
1130 * -ENOSPC - insufficient disk resources
1131 * -EIO - i/o error
1132 *
1133 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1134 */
dbAllocNext(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)1135 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1136 int nblocks)
1137 {
1138 int dbitno, word, rembits, nb, nwords, wbitno, nw;
1139 int l2size;
1140 s8 *leaf;
1141 u32 mask;
1142
1143 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1144 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1145 return -EIO;
1146 }
1147
1148 /* pick up a pointer to the leaves of the dmap tree.
1149 */
1150 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1151
1152 /* determine the bit number and word within the dmap of the
1153 * starting block.
1154 */
1155 dbitno = blkno & (BPERDMAP - 1);
1156 word = dbitno >> L2DBWORD;
1157
1158 /* check if the specified block range is contained within
1159 * this dmap.
1160 */
1161 if (dbitno + nblocks > BPERDMAP)
1162 return -ENOSPC;
1163
1164 /* check if the starting leaf indicates that anything
1165 * is free.
1166 */
1167 if (leaf[word] == NOFREE)
1168 return -ENOSPC;
1169
1170 /* check the dmaps words corresponding to block range to see
1171 * if the block range is free. not all bits of the first and
1172 * last words may be contained within the block range. if this
1173 * is the case, we'll work against those words (i.e. partial first
1174 * and/or last) on an individual basis (a single pass) and examine
1175 * the actual bits to determine if they are free. a single pass
1176 * will be used for all dmap words fully contained within the
1177 * specified range. within this pass, the leaves of the dmap
1178 * tree will be examined to determine if the blocks are free. a
1179 * single leaf may describe the free space of multiple dmap
1180 * words, so we may visit only a subset of the actual leaves
1181 * corresponding to the dmap words of the block range.
1182 */
1183 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1184 /* determine the bit number within the word and
1185 * the number of bits within the word.
1186 */
1187 wbitno = dbitno & (DBWORD - 1);
1188 nb = min(rembits, DBWORD - wbitno);
1189
1190 /* check if only part of the word is to be examined.
1191 */
1192 if (nb < DBWORD) {
1193 /* check if the bits are free.
1194 */
1195 mask = (ONES << (DBWORD - nb) >> wbitno);
1196 if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1197 return -ENOSPC;
1198
1199 word += 1;
1200 } else {
1201 /* one or more dmap words are fully contained
1202 * within the block range. determine how many
1203 * words and how many bits.
1204 */
1205 nwords = rembits >> L2DBWORD;
1206 nb = nwords << L2DBWORD;
1207
1208 /* now examine the appropriate leaves to determine
1209 * if the blocks are free.
1210 */
1211 while (nwords > 0) {
1212 /* does the leaf describe any free space ?
1213 */
1214 if (leaf[word] < BUDMIN)
1215 return -ENOSPC;
1216
1217 /* determine the l2 number of bits provided
1218 * by this leaf.
1219 */
1220 l2size =
1221 min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1222
1223 /* determine how many words were handled.
1224 */
1225 nw = BUDSIZE(l2size, BUDMIN);
1226
1227 nwords -= nw;
1228 word += nw;
1229 }
1230 }
1231 }
1232
1233 /* allocate the blocks.
1234 */
1235 return (dbAllocDmap(bmp, dp, blkno, nblocks));
1236 }
1237
1238
1239 /*
1240 * NAME: dbAllocNear()
1241 *
1242 * FUNCTION: attempt to allocate a number of contiguous free blocks near
1243 * a specified block (hint) within a dmap.
1244 *
1245 * starting with the dmap leaf that covers the hint, we'll
1246 * check the next four contiguous leaves for sufficient free
1247 * space. if sufficient free space is found, we'll allocate
1248 * the desired free space.
1249 *
1250 * PARAMETERS:
1251 * bmp - pointer to bmap descriptor
1252 * dp - pointer to dmap.
1253 * blkno - block number to allocate near.
1254 * nblocks - actual number of contiguous free blocks desired.
1255 * l2nb - log2 number of contiguous free blocks desired.
1256 * results - on successful return, set to the starting block number
1257 * of the newly allocated range.
1258 *
1259 * RETURN VALUES:
1260 * 0 - success
1261 * -ENOSPC - insufficient disk resources
1262 * -EIO - i/o error
1263 *
1264 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1265 */
1266 static int
dbAllocNear(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks,int l2nb,s64 * results)1267 dbAllocNear(struct bmap * bmp,
1268 struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1269 {
1270 int word, lword, rc;
1271 s8 *leaf;
1272
1273 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1274 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1275 return -EIO;
1276 }
1277
1278 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1279
1280 /* determine the word within the dmap that holds the hint
1281 * (i.e. blkno). also, determine the last word in the dmap
1282 * that we'll include in our examination.
1283 */
1284 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1285 lword = min(word + 4, LPERDMAP);
1286
1287 /* examine the leaves for sufficient free space.
1288 */
1289 for (; word < lword; word++) {
1290 /* does the leaf describe sufficient free space ?
1291 */
1292 if (leaf[word] < l2nb)
1293 continue;
1294
1295 /* determine the block number within the file system
1296 * of the first block described by this dmap word.
1297 */
1298 blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1299
1300 /* if not all bits of the dmap word are free, get the
1301 * starting bit number within the dmap word of the required
1302 * string of free bits and adjust the block number with the
1303 * value.
1304 */
1305 if (leaf[word] < BUDMIN)
1306 blkno +=
1307 dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1308
1309 /* allocate the blocks.
1310 */
1311 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1312 *results = blkno;
1313
1314 return (rc);
1315 }
1316
1317 return -ENOSPC;
1318 }
1319
1320
1321 /*
1322 * NAME: dbAllocAG()
1323 *
1324 * FUNCTION: attempt to allocate the specified number of contiguous
1325 * free blocks within the specified allocation group.
1326 *
1327 * unless the allocation group size is equal to the number
1328 * of blocks per dmap, the dmap control pages will be used to
1329 * find the required free space, if available. we start the
1330 * search at the highest dmap control page level which
1331 * distinctly describes the allocation group's free space
1332 * (i.e. the highest level at which the allocation group's
1333 * free space is not mixed in with that of any other group).
1334 * in addition, we start the search within this level at a
1335 * height of the dmapctl dmtree at which the nodes distinctly
1336 * describe the allocation group's free space. at this height,
1337 * the allocation group's free space may be represented by 1
1338 * or two sub-trees, depending on the allocation group size.
1339 * we search the top nodes of these subtrees left to right for
1340 * sufficient free space. if sufficient free space is found,
1341 * the subtree is searched to find the leftmost leaf that
1342 * has free space. once we have made it to the leaf, we
1343 * move the search to the next lower level dmap control page
1344 * corresponding to this leaf. we continue down the dmap control
1345 * pages until we find the dmap that contains or starts the
1346 * sufficient free space and we allocate at this dmap.
1347 *
1348 * if the allocation group size is equal to the dmap size,
1349 * we'll start at the dmap corresponding to the allocation
1350 * group and attempt the allocation at this level.
1351 *
1352 * the dmap control page search is also not performed if the
1353 * allocation group is completely free and we go to the first
1354 * dmap of the allocation group to do the allocation. this is
1355 * done because the allocation group may be part (not the first
1356 * part) of a larger binary buddy system, causing the dmap
1357 * control pages to indicate no free space (NOFREE) within
1358 * the allocation group.
1359 *
1360 * PARAMETERS:
1361 * bmp - pointer to bmap descriptor
1362 * agno - allocation group number.
1363 * nblocks - actual number of contiguous free blocks desired.
1364 * l2nb - log2 number of contiguous free blocks desired.
1365 * results - on successful return, set to the starting block number
1366 * of the newly allocated range.
1367 *
1368 * RETURN VALUES:
1369 * 0 - success
1370 * -ENOSPC - insufficient disk resources
1371 * -EIO - i/o error
1372 *
1373 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1374 */
1375 static int
dbAllocAG(struct bmap * bmp,int agno,s64 nblocks,int l2nb,s64 * results)1376 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1377 {
1378 struct metapage *mp;
1379 struct dmapctl *dcp;
1380 int rc, ti, i, k, m, n, agperlev;
1381 s64 blkno, lblkno;
1382 int budmin;
1383
1384 /* allocation request should not be for more than the
1385 * allocation group size.
1386 */
1387 if (l2nb > bmp->db_agl2size) {
1388 jfs_error(bmp->db_ipbmap->i_sb,
1389 "allocation request is larger than the allocation group size\n");
1390 return -EIO;
1391 }
1392
1393 /* determine the starting block number of the allocation
1394 * group.
1395 */
1396 blkno = (s64) agno << bmp->db_agl2size;
1397
1398 /* check if the allocation group size is the minimum allocation
1399 * group size or if the allocation group is completely free. if
1400 * the allocation group size is the minimum size of BPERDMAP (i.e.
1401 * 1 dmap), there is no need to search the dmap control page (below)
1402 * that fully describes the allocation group since the allocation
1403 * group is already fully described by a dmap. in this case, we
1404 * just call dbAllocCtl() to search the dmap tree and allocate the
1405 * required space if available.
1406 *
1407 * if the allocation group is completely free, dbAllocCtl() is
1408 * also called to allocate the required space. this is done for
1409 * two reasons. first, it makes no sense searching the dmap control
1410 * pages for free space when we know that free space exists. second,
1411 * the dmap control pages may indicate that the allocation group
1412 * has no free space if the allocation group is part (not the first
1413 * part) of a larger binary buddy system.
1414 */
1415 if (bmp->db_agsize == BPERDMAP
1416 || bmp->db_agfree[agno] == bmp->db_agsize) {
1417 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1418 if ((rc == -ENOSPC) &&
1419 (bmp->db_agfree[agno] == bmp->db_agsize)) {
1420 printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1421 (unsigned long long) blkno,
1422 (unsigned long long) nblocks);
1423 jfs_error(bmp->db_ipbmap->i_sb,
1424 "dbAllocCtl failed in free AG\n");
1425 }
1426 return (rc);
1427 }
1428
1429 /* the buffer for the dmap control page that fully describes the
1430 * allocation group.
1431 */
1432 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1433 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1434 if (mp == NULL)
1435 return -EIO;
1436 dcp = (struct dmapctl *) mp->data;
1437 budmin = dcp->budmin;
1438
1439 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1440 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1441 release_metapage(mp);
1442 return -EIO;
1443 }
1444
1445 /* search the subtree(s) of the dmap control page that describes
1446 * the allocation group, looking for sufficient free space. to begin,
1447 * determine how many allocation groups are represented in a dmap
1448 * control page at the control page level (i.e. L0, L1, L2) that
1449 * fully describes an allocation group. next, determine the starting
1450 * tree index of this allocation group within the control page.
1451 */
1452 agperlev =
1453 (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1454 ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1455
1456 /* dmap control page trees fan-out by 4 and a single allocation
1457 * group may be described by 1 or 2 subtrees within the ag level
1458 * dmap control page, depending upon the ag size. examine the ag's
1459 * subtrees for sufficient free space, starting with the leftmost
1460 * subtree.
1461 */
1462 for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1463 /* is there sufficient free space ?
1464 */
1465 if (l2nb > dcp->stree[ti])
1466 continue;
1467
1468 /* sufficient free space found in a subtree. now search down
1469 * the subtree to find the leftmost leaf that describes this
1470 * free space.
1471 */
1472 for (k = bmp->db_agheight; k > 0; k--) {
1473 for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1474 if (l2nb <= dcp->stree[m + n]) {
1475 ti = m + n;
1476 break;
1477 }
1478 }
1479 if (n == 4) {
1480 jfs_error(bmp->db_ipbmap->i_sb,
1481 "failed descending stree\n");
1482 release_metapage(mp);
1483 return -EIO;
1484 }
1485 }
1486
1487 /* determine the block number within the file system
1488 * that corresponds to this leaf.
1489 */
1490 if (bmp->db_aglevel == 2)
1491 blkno = 0;
1492 else if (bmp->db_aglevel == 1)
1493 blkno &= ~(MAXL1SIZE - 1);
1494 else /* bmp->db_aglevel == 0 */
1495 blkno &= ~(MAXL0SIZE - 1);
1496
1497 blkno +=
1498 ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1499
1500 /* release the buffer in preparation for going down
1501 * the next level of dmap control pages.
1502 */
1503 release_metapage(mp);
1504
1505 /* check if we need to continue to search down the lower
1506 * level dmap control pages. we need to if the number of
1507 * blocks required is less than maximum number of blocks
1508 * described at the next lower level.
1509 */
1510 if (l2nb < budmin) {
1511
1512 /* search the lower level dmap control pages to get
1513 * the starting block number of the dmap that
1514 * contains or starts off the free space.
1515 */
1516 if ((rc =
1517 dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1518 &blkno))) {
1519 if (rc == -ENOSPC) {
1520 jfs_error(bmp->db_ipbmap->i_sb,
1521 "control page inconsistent\n");
1522 return -EIO;
1523 }
1524 return (rc);
1525 }
1526 }
1527
1528 /* allocate the blocks.
1529 */
1530 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1531 if (rc == -ENOSPC) {
1532 jfs_error(bmp->db_ipbmap->i_sb,
1533 "unable to allocate blocks\n");
1534 rc = -EIO;
1535 }
1536 return (rc);
1537 }
1538
1539 /* no space in the allocation group. release the buffer and
1540 * return -ENOSPC.
1541 */
1542 release_metapage(mp);
1543
1544 return -ENOSPC;
1545 }
1546
1547
1548 /*
1549 * NAME: dbAllocAny()
1550 *
1551 * FUNCTION: attempt to allocate the specified number of contiguous
1552 * free blocks anywhere in the file system.
1553 *
1554 * dbAllocAny() attempts to find the sufficient free space by
1555 * searching down the dmap control pages, starting with the
1556 * highest level (i.e. L0, L1, L2) control page. if free space
1557 * large enough to satisfy the desired free space is found, the
1558 * desired free space is allocated.
1559 *
1560 * PARAMETERS:
1561 * bmp - pointer to bmap descriptor
1562 * nblocks - actual number of contiguous free blocks desired.
1563 * l2nb - log2 number of contiguous free blocks desired.
1564 * results - on successful return, set to the starting block number
1565 * of the newly allocated range.
1566 *
1567 * RETURN VALUES:
1568 * 0 - success
1569 * -ENOSPC - insufficient disk resources
1570 * -EIO - i/o error
1571 *
1572 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1573 */
dbAllocAny(struct bmap * bmp,s64 nblocks,int l2nb,s64 * results)1574 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1575 {
1576 int rc;
1577 s64 blkno = 0;
1578
1579 /* starting with the top level dmap control page, search
1580 * down the dmap control levels for sufficient free space.
1581 * if free space is found, dbFindCtl() returns the starting
1582 * block number of the dmap that contains or starts off the
1583 * range of free space.
1584 */
1585 if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1586 return (rc);
1587
1588 /* allocate the blocks.
1589 */
1590 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1591 if (rc == -ENOSPC) {
1592 jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1593 return -EIO;
1594 }
1595 return (rc);
1596 }
1597
1598
1599 /*
1600 * NAME: dbDiscardAG()
1601 *
1602 * FUNCTION: attempt to discard (TRIM) all free blocks of specific AG
1603 *
1604 * algorithm:
1605 * 1) allocate blocks, as large as possible and save them
1606 * while holding IWRITE_LOCK on ipbmap
1607 * 2) trim all these saved block/length values
1608 * 3) mark the blocks free again
1609 *
1610 * benefit:
1611 * - we work only on one ag at some time, minimizing how long we
1612 * need to lock ipbmap
1613 * - reading / writing the fs is possible most time, even on
1614 * trimming
1615 *
1616 * downside:
1617 * - we write two times to the dmapctl and dmap pages
1618 * - but for me, this seems the best way, better ideas?
1619 * /TR 2012
1620 *
1621 * PARAMETERS:
1622 * ip - pointer to in-core inode
1623 * agno - ag to trim
1624 * minlen - minimum value of contiguous blocks
1625 *
1626 * RETURN VALUES:
1627 * s64 - actual number of blocks trimmed
1628 */
dbDiscardAG(struct inode * ip,int agno,s64 minlen)1629 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1630 {
1631 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1632 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1633 s64 nblocks, blkno;
1634 u64 trimmed = 0;
1635 int rc, l2nb;
1636 struct super_block *sb = ipbmap->i_sb;
1637
1638 struct range2trim {
1639 u64 blkno;
1640 u64 nblocks;
1641 } *totrim, *tt;
1642
1643 /* max blkno / nblocks pairs to trim */
1644 int count = 0, range_cnt;
1645 u64 max_ranges;
1646
1647 /* prevent others from writing new stuff here, while trimming */
1648 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1649
1650 nblocks = bmp->db_agfree[agno];
1651 max_ranges = nblocks;
1652 do_div(max_ranges, minlen);
1653 range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1654 totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1655 if (totrim == NULL) {
1656 jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1657 IWRITE_UNLOCK(ipbmap);
1658 return 0;
1659 }
1660
1661 tt = totrim;
1662 while (nblocks >= minlen) {
1663 l2nb = BLKSTOL2(nblocks);
1664
1665 /* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1666 rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1667 if (rc == 0) {
1668 tt->blkno = blkno;
1669 tt->nblocks = nblocks;
1670 tt++; count++;
1671
1672 /* the whole ag is free, trim now */
1673 if (bmp->db_agfree[agno] == 0)
1674 break;
1675
1676 /* give a hint for the next while */
1677 nblocks = bmp->db_agfree[agno];
1678 continue;
1679 } else if (rc == -ENOSPC) {
1680 /* search for next smaller log2 block */
1681 l2nb = BLKSTOL2(nblocks) - 1;
1682 nblocks = 1LL << l2nb;
1683 } else {
1684 /* Trim any already allocated blocks */
1685 jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1686 break;
1687 }
1688
1689 /* check, if our trim array is full */
1690 if (unlikely(count >= range_cnt - 1))
1691 break;
1692 }
1693 IWRITE_UNLOCK(ipbmap);
1694
1695 tt->nblocks = 0; /* mark the current end */
1696 for (tt = totrim; tt->nblocks != 0; tt++) {
1697 /* when mounted with online discard, dbFree() will
1698 * call jfs_issue_discard() itself */
1699 if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1700 jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1701 dbFree(ip, tt->blkno, tt->nblocks);
1702 trimmed += tt->nblocks;
1703 }
1704 kfree(totrim);
1705
1706 return trimmed;
1707 }
1708
1709 /*
1710 * NAME: dbFindCtl()
1711 *
1712 * FUNCTION: starting at a specified dmap control page level and block
1713 * number, search down the dmap control levels for a range of
1714 * contiguous free blocks large enough to satisfy an allocation
1715 * request for the specified number of free blocks.
1716 *
1717 * if sufficient contiguous free blocks are found, this routine
1718 * returns the starting block number within a dmap page that
1719 * contains or starts a range of contiqious free blocks that
1720 * is sufficient in size.
1721 *
1722 * PARAMETERS:
1723 * bmp - pointer to bmap descriptor
1724 * level - starting dmap control page level.
1725 * l2nb - log2 number of contiguous free blocks desired.
1726 * *blkno - on entry, starting block number for conducting the search.
1727 * on successful return, the first block within a dmap page
1728 * that contains or starts a range of contiguous free blocks.
1729 *
1730 * RETURN VALUES:
1731 * 0 - success
1732 * -ENOSPC - insufficient disk resources
1733 * -EIO - i/o error
1734 *
1735 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1736 */
dbFindCtl(struct bmap * bmp,int l2nb,int level,s64 * blkno)1737 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1738 {
1739 int rc, leafidx, lev;
1740 s64 b, lblkno;
1741 struct dmapctl *dcp;
1742 int budmin;
1743 struct metapage *mp;
1744
1745 /* starting at the specified dmap control page level and block
1746 * number, search down the dmap control levels for the starting
1747 * block number of a dmap page that contains or starts off
1748 * sufficient free blocks.
1749 */
1750 for (lev = level, b = *blkno; lev >= 0; lev--) {
1751 /* get the buffer of the dmap control page for the block
1752 * number and level (i.e. L0, L1, L2).
1753 */
1754 lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1755 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1756 if (mp == NULL)
1757 return -EIO;
1758 dcp = (struct dmapctl *) mp->data;
1759 budmin = dcp->budmin;
1760
1761 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1762 jfs_error(bmp->db_ipbmap->i_sb,
1763 "Corrupt dmapctl page\n");
1764 release_metapage(mp);
1765 return -EIO;
1766 }
1767
1768 /* search the tree within the dmap control page for
1769 * sufficient free space. if sufficient free space is found,
1770 * dbFindLeaf() returns the index of the leaf at which
1771 * free space was found.
1772 */
1773 rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1774
1775 /* release the buffer.
1776 */
1777 release_metapage(mp);
1778
1779 /* space found ?
1780 */
1781 if (rc) {
1782 if (lev != level) {
1783 jfs_error(bmp->db_ipbmap->i_sb,
1784 "dmap inconsistent\n");
1785 return -EIO;
1786 }
1787 return -ENOSPC;
1788 }
1789
1790 /* adjust the block number to reflect the location within
1791 * the dmap control page (i.e. the leaf) at which free
1792 * space was found.
1793 */
1794 b += (((s64) leafidx) << budmin);
1795
1796 /* we stop the search at this dmap control page level if
1797 * the number of blocks required is greater than or equal
1798 * to the maximum number of blocks described at the next
1799 * (lower) level.
1800 */
1801 if (l2nb >= budmin)
1802 break;
1803 }
1804
1805 *blkno = b;
1806 return (0);
1807 }
1808
1809
1810 /*
1811 * NAME: dbAllocCtl()
1812 *
1813 * FUNCTION: attempt to allocate a specified number of contiguous
1814 * blocks starting within a specific dmap.
1815 *
1816 * this routine is called by higher level routines that search
1817 * the dmap control pages above the actual dmaps for contiguous
1818 * free space. the result of successful searches by these
1819 * routines are the starting block numbers within dmaps, with
1820 * the dmaps themselves containing the desired contiguous free
1821 * space or starting a contiguous free space of desired size
1822 * that is made up of the blocks of one or more dmaps. these
1823 * calls should not fail due to insufficent resources.
1824 *
1825 * this routine is called in some cases where it is not known
1826 * whether it will fail due to insufficient resources. more
1827 * specifically, this occurs when allocating from an allocation
1828 * group whose size is equal to the number of blocks per dmap.
1829 * in this case, the dmap control pages are not examined prior
1830 * to calling this routine (to save pathlength) and the call
1831 * might fail.
1832 *
1833 * for a request size that fits within a dmap, this routine relies
1834 * upon the dmap's dmtree to find the requested contiguous free
1835 * space. for request sizes that are larger than a dmap, the
1836 * requested free space will start at the first block of the
1837 * first dmap (i.e. blkno).
1838 *
1839 * PARAMETERS:
1840 * bmp - pointer to bmap descriptor
1841 * nblocks - actual number of contiguous free blocks to allocate.
1842 * l2nb - log2 number of contiguous free blocks to allocate.
1843 * blkno - starting block number of the dmap to start the allocation
1844 * from.
1845 * results - on successful return, set to the starting block number
1846 * of the newly allocated range.
1847 *
1848 * RETURN VALUES:
1849 * 0 - success
1850 * -ENOSPC - insufficient disk resources
1851 * -EIO - i/o error
1852 *
1853 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1854 */
1855 static int
dbAllocCtl(struct bmap * bmp,s64 nblocks,int l2nb,s64 blkno,s64 * results)1856 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1857 {
1858 int rc, nb;
1859 s64 b, lblkno, n;
1860 struct metapage *mp;
1861 struct dmap *dp;
1862
1863 /* check if the allocation request is confined to a single dmap.
1864 */
1865 if (l2nb <= L2BPERDMAP) {
1866 /* get the buffer for the dmap.
1867 */
1868 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1869 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1870 if (mp == NULL)
1871 return -EIO;
1872 dp = (struct dmap *) mp->data;
1873
1874 /* try to allocate the blocks.
1875 */
1876 rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1877 if (rc == 0)
1878 mark_metapage_dirty(mp);
1879
1880 release_metapage(mp);
1881
1882 return (rc);
1883 }
1884
1885 /* allocation request involving multiple dmaps. it must start on
1886 * a dmap boundary.
1887 */
1888 assert((blkno & (BPERDMAP - 1)) == 0);
1889
1890 /* allocate the blocks dmap by dmap.
1891 */
1892 for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1893 /* get the buffer for the dmap.
1894 */
1895 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1896 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1897 if (mp == NULL) {
1898 rc = -EIO;
1899 goto backout;
1900 }
1901 dp = (struct dmap *) mp->data;
1902
1903 /* the dmap better be all free.
1904 */
1905 if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1906 release_metapage(mp);
1907 jfs_error(bmp->db_ipbmap->i_sb,
1908 "the dmap is not all free\n");
1909 rc = -EIO;
1910 goto backout;
1911 }
1912
1913 /* determine how many blocks to allocate from this dmap.
1914 */
1915 nb = min_t(s64, n, BPERDMAP);
1916
1917 /* allocate the blocks from the dmap.
1918 */
1919 if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1920 release_metapage(mp);
1921 goto backout;
1922 }
1923
1924 /* write the buffer.
1925 */
1926 write_metapage(mp);
1927 }
1928
1929 /* set the results (starting block number) and return.
1930 */
1931 *results = blkno;
1932 return (0);
1933
1934 /* something failed in handling an allocation request involving
1935 * multiple dmaps. we'll try to clean up by backing out any
1936 * allocation that has already happened for this request. if
1937 * we fail in backing out the allocation, we'll mark the file
1938 * system to indicate that blocks have been leaked.
1939 */
1940 backout:
1941
1942 /* try to backout the allocations dmap by dmap.
1943 */
1944 for (n = nblocks - n, b = blkno; n > 0;
1945 n -= BPERDMAP, b += BPERDMAP) {
1946 /* get the buffer for this dmap.
1947 */
1948 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1949 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1950 if (mp == NULL) {
1951 /* could not back out. mark the file system
1952 * to indicate that we have leaked blocks.
1953 */
1954 jfs_error(bmp->db_ipbmap->i_sb,
1955 "I/O Error: Block Leakage\n");
1956 continue;
1957 }
1958 dp = (struct dmap *) mp->data;
1959
1960 /* free the blocks is this dmap.
1961 */
1962 if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1963 /* could not back out. mark the file system
1964 * to indicate that we have leaked blocks.
1965 */
1966 release_metapage(mp);
1967 jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1968 continue;
1969 }
1970
1971 /* write the buffer.
1972 */
1973 write_metapage(mp);
1974 }
1975
1976 return (rc);
1977 }
1978
1979
1980 /*
1981 * NAME: dbAllocDmapLev()
1982 *
1983 * FUNCTION: attempt to allocate a specified number of contiguous blocks
1984 * from a specified dmap.
1985 *
1986 * this routine checks if the contiguous blocks are available.
1987 * if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1988 * returned.
1989 *
1990 * PARAMETERS:
1991 * mp - pointer to bmap descriptor
1992 * dp - pointer to dmap to attempt to allocate blocks from.
1993 * l2nb - log2 number of contiguous block desired.
1994 * nblocks - actual number of contiguous block desired.
1995 * results - on successful return, set to the starting block number
1996 * of the newly allocated range.
1997 *
1998 * RETURN VALUES:
1999 * 0 - success
2000 * -ENOSPC - insufficient disk resources
2001 * -EIO - i/o error
2002 *
2003 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
2004 * IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
2005 */
2006 static int
dbAllocDmapLev(struct bmap * bmp,struct dmap * dp,int nblocks,int l2nb,s64 * results)2007 dbAllocDmapLev(struct bmap * bmp,
2008 struct dmap * dp, int nblocks, int l2nb, s64 * results)
2009 {
2010 s64 blkno;
2011 int leafidx, rc;
2012
2013 /* can't be more than a dmaps worth of blocks */
2014 assert(l2nb <= L2BPERDMAP);
2015
2016 /* search the tree within the dmap page for sufficient
2017 * free space. if sufficient free space is found, dbFindLeaf()
2018 * returns the index of the leaf at which free space was found.
2019 */
2020 if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
2021 return -ENOSPC;
2022
2023 /* determine the block number within the file system corresponding
2024 * to the leaf at which free space was found.
2025 */
2026 blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
2027
2028 /* if not all bits of the dmap word are free, get the starting
2029 * bit number within the dmap word of the required string of free
2030 * bits and adjust the block number with this value.
2031 */
2032 if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
2033 blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
2034
2035 /* allocate the blocks */
2036 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
2037 *results = blkno;
2038
2039 return (rc);
2040 }
2041
2042
2043 /*
2044 * NAME: dbAllocDmap()
2045 *
2046 * FUNCTION: adjust the disk allocation map to reflect the allocation
2047 * of a specified block range within a dmap.
2048 *
2049 * this routine allocates the specified blocks from the dmap
2050 * through a call to dbAllocBits(). if the allocation of the
2051 * block range causes the maximum string of free blocks within
2052 * the dmap to change (i.e. the value of the root of the dmap's
2053 * dmtree), this routine will cause this change to be reflected
2054 * up through the appropriate levels of the dmap control pages
2055 * by a call to dbAdjCtl() for the L0 dmap control page that
2056 * covers this dmap.
2057 *
2058 * PARAMETERS:
2059 * bmp - pointer to bmap descriptor
2060 * dp - pointer to dmap to allocate the block range from.
2061 * blkno - starting block number of the block to be allocated.
2062 * nblocks - number of blocks to be allocated.
2063 *
2064 * RETURN VALUES:
2065 * 0 - success
2066 * -EIO - i/o error
2067 *
2068 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2069 */
dbAllocDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2070 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2071 int nblocks)
2072 {
2073 s8 oldroot;
2074 int rc;
2075
2076 /* save the current value of the root (i.e. maximum free string)
2077 * of the dmap tree.
2078 */
2079 oldroot = dp->tree.stree[ROOT];
2080
2081 /* allocate the specified (blocks) bits */
2082 dbAllocBits(bmp, dp, blkno, nblocks);
2083
2084 /* if the root has not changed, done. */
2085 if (dp->tree.stree[ROOT] == oldroot)
2086 return (0);
2087
2088 /* root changed. bubble the change up to the dmap control pages.
2089 * if the adjustment of the upper level control pages fails,
2090 * backout the bit allocation (thus making everything consistent).
2091 */
2092 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2093 dbFreeBits(bmp, dp, blkno, nblocks);
2094
2095 return (rc);
2096 }
2097
2098
2099 /*
2100 * NAME: dbFreeDmap()
2101 *
2102 * FUNCTION: adjust the disk allocation map to reflect the allocation
2103 * of a specified block range within a dmap.
2104 *
2105 * this routine frees the specified blocks from the dmap through
2106 * a call to dbFreeBits(). if the deallocation of the block range
2107 * causes the maximum string of free blocks within the dmap to
2108 * change (i.e. the value of the root of the dmap's dmtree), this
2109 * routine will cause this change to be reflected up through the
2110 * appropriate levels of the dmap control pages by a call to
2111 * dbAdjCtl() for the L0 dmap control page that covers this dmap.
2112 *
2113 * PARAMETERS:
2114 * bmp - pointer to bmap descriptor
2115 * dp - pointer to dmap to free the block range from.
2116 * blkno - starting block number of the block to be freed.
2117 * nblocks - number of blocks to be freed.
2118 *
2119 * RETURN VALUES:
2120 * 0 - success
2121 * -EIO - i/o error
2122 *
2123 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2124 */
dbFreeDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2125 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2126 int nblocks)
2127 {
2128 s8 oldroot;
2129 int rc = 0, word;
2130
2131 /* save the current value of the root (i.e. maximum free string)
2132 * of the dmap tree.
2133 */
2134 oldroot = dp->tree.stree[ROOT];
2135
2136 /* free the specified (blocks) bits */
2137 rc = dbFreeBits(bmp, dp, blkno, nblocks);
2138
2139 /* if error or the root has not changed, done. */
2140 if (rc || (dp->tree.stree[ROOT] == oldroot))
2141 return (rc);
2142
2143 /* root changed. bubble the change up to the dmap control pages.
2144 * if the adjustment of the upper level control pages fails,
2145 * backout the deallocation.
2146 */
2147 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2148 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2149
2150 /* as part of backing out the deallocation, we will have
2151 * to back split the dmap tree if the deallocation caused
2152 * the freed blocks to become part of a larger binary buddy
2153 * system.
2154 */
2155 if (dp->tree.stree[word] == NOFREE)
2156 dbBackSplit((dmtree_t *) & dp->tree, word);
2157
2158 dbAllocBits(bmp, dp, blkno, nblocks);
2159 }
2160
2161 return (rc);
2162 }
2163
2164
2165 /*
2166 * NAME: dbAllocBits()
2167 *
2168 * FUNCTION: allocate a specified block range from a dmap.
2169 *
2170 * this routine updates the dmap to reflect the working
2171 * state allocation of the specified block range. it directly
2172 * updates the bits of the working map and causes the adjustment
2173 * of the binary buddy system described by the dmap's dmtree
2174 * leaves to reflect the bits allocated. it also causes the
2175 * dmap's dmtree, as a whole, to reflect the allocated range.
2176 *
2177 * PARAMETERS:
2178 * bmp - pointer to bmap descriptor
2179 * dp - pointer to dmap to allocate bits from.
2180 * blkno - starting block number of the bits to be allocated.
2181 * nblocks - number of bits to be allocated.
2182 *
2183 * RETURN VALUES: none
2184 *
2185 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2186 */
dbAllocBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2187 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2188 int nblocks)
2189 {
2190 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2191 dmtree_t *tp = (dmtree_t *) & dp->tree;
2192 int size;
2193 s8 *leaf;
2194
2195 /* pick up a pointer to the leaves of the dmap tree */
2196 leaf = dp->tree.stree + LEAFIND;
2197
2198 /* determine the bit number and word within the dmap of the
2199 * starting block.
2200 */
2201 dbitno = blkno & (BPERDMAP - 1);
2202 word = dbitno >> L2DBWORD;
2203
2204 /* block range better be within the dmap */
2205 assert(dbitno + nblocks <= BPERDMAP);
2206
2207 /* allocate the bits of the dmap's words corresponding to the block
2208 * range. not all bits of the first and last words may be contained
2209 * within the block range. if this is the case, we'll work against
2210 * those words (i.e. partial first and/or last) on an individual basis
2211 * (a single pass), allocating the bits of interest by hand and
2212 * updating the leaf corresponding to the dmap word. a single pass
2213 * will be used for all dmap words fully contained within the
2214 * specified range. within this pass, the bits of all fully contained
2215 * dmap words will be marked as free in a single shot and the leaves
2216 * will be updated. a single leaf may describe the free space of
2217 * multiple dmap words, so we may update only a subset of the actual
2218 * leaves corresponding to the dmap words of the block range.
2219 */
2220 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2221 /* determine the bit number within the word and
2222 * the number of bits within the word.
2223 */
2224 wbitno = dbitno & (DBWORD - 1);
2225 nb = min(rembits, DBWORD - wbitno);
2226
2227 /* check if only part of a word is to be allocated.
2228 */
2229 if (nb < DBWORD) {
2230 /* allocate (set to 1) the appropriate bits within
2231 * this dmap word.
2232 */
2233 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2234 >> wbitno);
2235
2236 /* update the leaf for this dmap word. in addition
2237 * to setting the leaf value to the binary buddy max
2238 * of the updated dmap word, dbSplit() will split
2239 * the binary system of the leaves if need be.
2240 */
2241 dbSplit(tp, word, BUDMIN,
2242 dbMaxBud((u8 *) & dp->wmap[word]));
2243
2244 word += 1;
2245 } else {
2246 /* one or more dmap words are fully contained
2247 * within the block range. determine how many
2248 * words and allocate (set to 1) the bits of these
2249 * words.
2250 */
2251 nwords = rembits >> L2DBWORD;
2252 memset(&dp->wmap[word], (int) ONES, nwords * 4);
2253
2254 /* determine how many bits.
2255 */
2256 nb = nwords << L2DBWORD;
2257
2258 /* now update the appropriate leaves to reflect
2259 * the allocated words.
2260 */
2261 for (; nwords > 0; nwords -= nw) {
2262 if (leaf[word] < BUDMIN) {
2263 jfs_error(bmp->db_ipbmap->i_sb,
2264 "leaf page corrupt\n");
2265 break;
2266 }
2267
2268 /* determine what the leaf value should be
2269 * updated to as the minimum of the l2 number
2270 * of bits being allocated and the l2 number
2271 * of bits currently described by this leaf.
2272 */
2273 size = min_t(int, leaf[word],
2274 NLSTOL2BSZ(nwords));
2275
2276 /* update the leaf to reflect the allocation.
2277 * in addition to setting the leaf value to
2278 * NOFREE, dbSplit() will split the binary
2279 * system of the leaves to reflect the current
2280 * allocation (size).
2281 */
2282 dbSplit(tp, word, size, NOFREE);
2283
2284 /* get the number of dmap words handled */
2285 nw = BUDSIZE(size, BUDMIN);
2286 word += nw;
2287 }
2288 }
2289 }
2290
2291 /* update the free count for this dmap */
2292 le32_add_cpu(&dp->nfree, -nblocks);
2293
2294 BMAP_LOCK(bmp);
2295
2296 /* if this allocation group is completely free,
2297 * update the maximum allocation group number if this allocation
2298 * group is the new max.
2299 */
2300 agno = blkno >> bmp->db_agl2size;
2301 if (agno > bmp->db_maxag)
2302 bmp->db_maxag = agno;
2303
2304 /* update the free count for the allocation group and map */
2305 bmp->db_agfree[agno] -= nblocks;
2306 bmp->db_nfree -= nblocks;
2307
2308 BMAP_UNLOCK(bmp);
2309 }
2310
2311
2312 /*
2313 * NAME: dbFreeBits()
2314 *
2315 * FUNCTION: free a specified block range from a dmap.
2316 *
2317 * this routine updates the dmap to reflect the working
2318 * state allocation of the specified block range. it directly
2319 * updates the bits of the working map and causes the adjustment
2320 * of the binary buddy system described by the dmap's dmtree
2321 * leaves to reflect the bits freed. it also causes the dmap's
2322 * dmtree, as a whole, to reflect the deallocated range.
2323 *
2324 * PARAMETERS:
2325 * bmp - pointer to bmap descriptor
2326 * dp - pointer to dmap to free bits from.
2327 * blkno - starting block number of the bits to be freed.
2328 * nblocks - number of bits to be freed.
2329 *
2330 * RETURN VALUES: 0 for success
2331 *
2332 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2333 */
dbFreeBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2334 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2335 int nblocks)
2336 {
2337 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2338 dmtree_t *tp = (dmtree_t *) & dp->tree;
2339 int rc = 0;
2340 int size;
2341
2342 /* determine the bit number and word within the dmap of the
2343 * starting block.
2344 */
2345 dbitno = blkno & (BPERDMAP - 1);
2346 word = dbitno >> L2DBWORD;
2347
2348 /* block range better be within the dmap.
2349 */
2350 assert(dbitno + nblocks <= BPERDMAP);
2351
2352 /* free the bits of the dmaps words corresponding to the block range.
2353 * not all bits of the first and last words may be contained within
2354 * the block range. if this is the case, we'll work against those
2355 * words (i.e. partial first and/or last) on an individual basis
2356 * (a single pass), freeing the bits of interest by hand and updating
2357 * the leaf corresponding to the dmap word. a single pass will be used
2358 * for all dmap words fully contained within the specified range.
2359 * within this pass, the bits of all fully contained dmap words will
2360 * be marked as free in a single shot and the leaves will be updated. a
2361 * single leaf may describe the free space of multiple dmap words,
2362 * so we may update only a subset of the actual leaves corresponding
2363 * to the dmap words of the block range.
2364 *
2365 * dbJoin() is used to update leaf values and will join the binary
2366 * buddy system of the leaves if the new leaf values indicate this
2367 * should be done.
2368 */
2369 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2370 /* determine the bit number within the word and
2371 * the number of bits within the word.
2372 */
2373 wbitno = dbitno & (DBWORD - 1);
2374 nb = min(rembits, DBWORD - wbitno);
2375
2376 /* check if only part of a word is to be freed.
2377 */
2378 if (nb < DBWORD) {
2379 /* free (zero) the appropriate bits within this
2380 * dmap word.
2381 */
2382 dp->wmap[word] &=
2383 cpu_to_le32(~(ONES << (DBWORD - nb)
2384 >> wbitno));
2385
2386 /* update the leaf for this dmap word.
2387 */
2388 rc = dbJoin(tp, word,
2389 dbMaxBud((u8 *) & dp->wmap[word]));
2390 if (rc)
2391 return rc;
2392
2393 word += 1;
2394 } else {
2395 /* one or more dmap words are fully contained
2396 * within the block range. determine how many
2397 * words and free (zero) the bits of these words.
2398 */
2399 nwords = rembits >> L2DBWORD;
2400 memset(&dp->wmap[word], 0, nwords * 4);
2401
2402 /* determine how many bits.
2403 */
2404 nb = nwords << L2DBWORD;
2405
2406 /* now update the appropriate leaves to reflect
2407 * the freed words.
2408 */
2409 for (; nwords > 0; nwords -= nw) {
2410 /* determine what the leaf value should be
2411 * updated to as the minimum of the l2 number
2412 * of bits being freed and the l2 (max) number
2413 * of bits that can be described by this leaf.
2414 */
2415 size =
2416 min(LITOL2BSZ
2417 (word, L2LPERDMAP, BUDMIN),
2418 NLSTOL2BSZ(nwords));
2419
2420 /* update the leaf.
2421 */
2422 rc = dbJoin(tp, word, size);
2423 if (rc)
2424 return rc;
2425
2426 /* get the number of dmap words handled.
2427 */
2428 nw = BUDSIZE(size, BUDMIN);
2429 word += nw;
2430 }
2431 }
2432 }
2433
2434 /* update the free count for this dmap.
2435 */
2436 le32_add_cpu(&dp->nfree, nblocks);
2437
2438 BMAP_LOCK(bmp);
2439
2440 /* update the free count for the allocation group and
2441 * map.
2442 */
2443 agno = blkno >> bmp->db_agl2size;
2444 bmp->db_nfree += nblocks;
2445 bmp->db_agfree[agno] += nblocks;
2446
2447 /* check if this allocation group is not completely free and
2448 * if it is currently the maximum (rightmost) allocation group.
2449 * if so, establish the new maximum allocation group number by
2450 * searching left for the first allocation group with allocation.
2451 */
2452 if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2453 (agno == bmp->db_numag - 1 &&
2454 bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2455 while (bmp->db_maxag > 0) {
2456 bmp->db_maxag -= 1;
2457 if (bmp->db_agfree[bmp->db_maxag] !=
2458 bmp->db_agsize)
2459 break;
2460 }
2461
2462 /* re-establish the allocation group preference if the
2463 * current preference is right of the maximum allocation
2464 * group.
2465 */
2466 if (bmp->db_agpref > bmp->db_maxag)
2467 bmp->db_agpref = bmp->db_maxag;
2468 }
2469
2470 BMAP_UNLOCK(bmp);
2471
2472 return 0;
2473 }
2474
2475
2476 /*
2477 * NAME: dbAdjCtl()
2478 *
2479 * FUNCTION: adjust a dmap control page at a specified level to reflect
2480 * the change in a lower level dmap or dmap control page's
2481 * maximum string of free blocks (i.e. a change in the root
2482 * of the lower level object's dmtree) due to the allocation
2483 * or deallocation of a range of blocks with a single dmap.
2484 *
2485 * on entry, this routine is provided with the new value of
2486 * the lower level dmap or dmap control page root and the
2487 * starting block number of the block range whose allocation
2488 * or deallocation resulted in the root change. this range
2489 * is respresented by a single leaf of the current dmapctl
2490 * and the leaf will be updated with this value, possibly
2491 * causing a binary buddy system within the leaves to be
2492 * split or joined. the update may also cause the dmapctl's
2493 * dmtree to be updated.
2494 *
2495 * if the adjustment of the dmap control page, itself, causes its
2496 * root to change, this change will be bubbled up to the next dmap
2497 * control level by a recursive call to this routine, specifying
2498 * the new root value and the next dmap control page level to
2499 * be adjusted.
2500 * PARAMETERS:
2501 * bmp - pointer to bmap descriptor
2502 * blkno - the first block of a block range within a dmap. it is
2503 * the allocation or deallocation of this block range that
2504 * requires the dmap control page to be adjusted.
2505 * newval - the new value of the lower level dmap or dmap control
2506 * page root.
2507 * alloc - 'true' if adjustment is due to an allocation.
2508 * level - current level of dmap control page (i.e. L0, L1, L2) to
2509 * be adjusted.
2510 *
2511 * RETURN VALUES:
2512 * 0 - success
2513 * -EIO - i/o error
2514 *
2515 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2516 */
2517 static int
dbAdjCtl(struct bmap * bmp,s64 blkno,int newval,int alloc,int level)2518 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2519 {
2520 struct metapage *mp;
2521 s8 oldroot;
2522 int oldval;
2523 s64 lblkno;
2524 struct dmapctl *dcp;
2525 int rc, leafno, ti;
2526
2527 /* get the buffer for the dmap control page for the specified
2528 * block number and control page level.
2529 */
2530 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2531 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2532 if (mp == NULL)
2533 return -EIO;
2534 dcp = (struct dmapctl *) mp->data;
2535
2536 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2537 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2538 release_metapage(mp);
2539 return -EIO;
2540 }
2541
2542 /* determine the leaf number corresponding to the block and
2543 * the index within the dmap control tree.
2544 */
2545 leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2546 ti = leafno + le32_to_cpu(dcp->leafidx);
2547
2548 /* save the current leaf value and the current root level (i.e.
2549 * maximum l2 free string described by this dmapctl).
2550 */
2551 oldval = dcp->stree[ti];
2552 oldroot = dcp->stree[ROOT];
2553
2554 /* check if this is a control page update for an allocation.
2555 * if so, update the leaf to reflect the new leaf value using
2556 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2557 * the leaf with the new value. in addition to updating the
2558 * leaf, dbSplit() will also split the binary buddy system of
2559 * the leaves, if required, and bubble new values within the
2560 * dmapctl tree, if required. similarly, dbJoin() will join
2561 * the binary buddy system of leaves and bubble new values up
2562 * the dmapctl tree as required by the new leaf value.
2563 */
2564 if (alloc) {
2565 /* check if we are in the middle of a binary buddy
2566 * system. this happens when we are performing the
2567 * first allocation out of an allocation group that
2568 * is part (not the first part) of a larger binary
2569 * buddy system. if we are in the middle, back split
2570 * the system prior to calling dbSplit() which assumes
2571 * that it is at the front of a binary buddy system.
2572 */
2573 if (oldval == NOFREE) {
2574 rc = dbBackSplit((dmtree_t *) dcp, leafno);
2575 if (rc)
2576 return rc;
2577 oldval = dcp->stree[ti];
2578 }
2579 dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2580 } else {
2581 rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2582 if (rc)
2583 return rc;
2584 }
2585
2586 /* check if the root of the current dmap control page changed due
2587 * to the update and if the current dmap control page is not at
2588 * the current top level (i.e. L0, L1, L2) of the map. if so (i.e.
2589 * root changed and this is not the top level), call this routine
2590 * again (recursion) for the next higher level of the mapping to
2591 * reflect the change in root for the current dmap control page.
2592 */
2593 if (dcp->stree[ROOT] != oldroot) {
2594 /* are we below the top level of the map. if so,
2595 * bubble the root up to the next higher level.
2596 */
2597 if (level < bmp->db_maxlevel) {
2598 /* bubble up the new root of this dmap control page to
2599 * the next level.
2600 */
2601 if ((rc =
2602 dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2603 level + 1))) {
2604 /* something went wrong in bubbling up the new
2605 * root value, so backout the changes to the
2606 * current dmap control page.
2607 */
2608 if (alloc) {
2609 dbJoin((dmtree_t *) dcp, leafno,
2610 oldval);
2611 } else {
2612 /* the dbJoin() above might have
2613 * caused a larger binary buddy system
2614 * to form and we may now be in the
2615 * middle of it. if this is the case,
2616 * back split the buddies.
2617 */
2618 if (dcp->stree[ti] == NOFREE)
2619 dbBackSplit((dmtree_t *)
2620 dcp, leafno);
2621 dbSplit((dmtree_t *) dcp, leafno,
2622 dcp->budmin, oldval);
2623 }
2624
2625 /* release the buffer and return the error.
2626 */
2627 release_metapage(mp);
2628 return (rc);
2629 }
2630 } else {
2631 /* we're at the top level of the map. update
2632 * the bmap control page to reflect the size
2633 * of the maximum free buddy system.
2634 */
2635 assert(level == bmp->db_maxlevel);
2636 if (bmp->db_maxfreebud != oldroot) {
2637 jfs_error(bmp->db_ipbmap->i_sb,
2638 "the maximum free buddy is not the old root\n");
2639 }
2640 bmp->db_maxfreebud = dcp->stree[ROOT];
2641 }
2642 }
2643
2644 /* write the buffer.
2645 */
2646 write_metapage(mp);
2647
2648 return (0);
2649 }
2650
2651
2652 /*
2653 * NAME: dbSplit()
2654 *
2655 * FUNCTION: update the leaf of a dmtree with a new value, splitting
2656 * the leaf from the binary buddy system of the dmtree's
2657 * leaves, as required.
2658 *
2659 * PARAMETERS:
2660 * tp - pointer to the tree containing the leaf.
2661 * leafno - the number of the leaf to be updated.
2662 * splitsz - the size the binary buddy system starting at the leaf
2663 * must be split to, specified as the log2 number of blocks.
2664 * newval - the new value for the leaf.
2665 *
2666 * RETURN VALUES: none
2667 *
2668 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2669 */
dbSplit(dmtree_t * tp,int leafno,int splitsz,int newval)2670 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2671 {
2672 int budsz;
2673 int cursz;
2674 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2675
2676 /* check if the leaf needs to be split.
2677 */
2678 if (leaf[leafno] > tp->dmt_budmin) {
2679 /* the split occurs by cutting the buddy system in half
2680 * at the specified leaf until we reach the specified
2681 * size. pick up the starting split size (current size
2682 * - 1 in l2) and the corresponding buddy size.
2683 */
2684 cursz = leaf[leafno] - 1;
2685 budsz = BUDSIZE(cursz, tp->dmt_budmin);
2686
2687 /* split until we reach the specified size.
2688 */
2689 while (cursz >= splitsz) {
2690 /* update the buddy's leaf with its new value.
2691 */
2692 dbAdjTree(tp, leafno ^ budsz, cursz);
2693
2694 /* on to the next size and buddy.
2695 */
2696 cursz -= 1;
2697 budsz >>= 1;
2698 }
2699 }
2700
2701 /* adjust the dmap tree to reflect the specified leaf's new
2702 * value.
2703 */
2704 dbAdjTree(tp, leafno, newval);
2705 }
2706
2707
2708 /*
2709 * NAME: dbBackSplit()
2710 *
2711 * FUNCTION: back split the binary buddy system of dmtree leaves
2712 * that hold a specified leaf until the specified leaf
2713 * starts its own binary buddy system.
2714 *
2715 * the allocators typically perform allocations at the start
2716 * of binary buddy systems and dbSplit() is used to accomplish
2717 * any required splits. in some cases, however, allocation
2718 * may occur in the middle of a binary system and requires a
2719 * back split, with the split proceeding out from the middle of
2720 * the system (less efficient) rather than the start of the
2721 * system (more efficient). the cases in which a back split
2722 * is required are rare and are limited to the first allocation
2723 * within an allocation group which is a part (not first part)
2724 * of a larger binary buddy system and a few exception cases
2725 * in which a previous join operation must be backed out.
2726 *
2727 * PARAMETERS:
2728 * tp - pointer to the tree containing the leaf.
2729 * leafno - the number of the leaf to be updated.
2730 *
2731 * RETURN VALUES: none
2732 *
2733 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2734 */
dbBackSplit(dmtree_t * tp,int leafno)2735 static int dbBackSplit(dmtree_t * tp, int leafno)
2736 {
2737 int budsz, bud, w, bsz, size;
2738 int cursz;
2739 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2740
2741 /* leaf should be part (not first part) of a binary
2742 * buddy system.
2743 */
2744 assert(leaf[leafno] == NOFREE);
2745
2746 /* the back split is accomplished by iteratively finding the leaf
2747 * that starts the buddy system that contains the specified leaf and
2748 * splitting that system in two. this iteration continues until
2749 * the specified leaf becomes the start of a buddy system.
2750 *
2751 * determine maximum possible l2 size for the specified leaf.
2752 */
2753 size =
2754 LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2755 tp->dmt_budmin);
2756
2757 /* determine the number of leaves covered by this size. this
2758 * is the buddy size that we will start with as we search for
2759 * the buddy system that contains the specified leaf.
2760 */
2761 budsz = BUDSIZE(size, tp->dmt_budmin);
2762
2763 /* back split.
2764 */
2765 while (leaf[leafno] == NOFREE) {
2766 /* find the leftmost buddy leaf.
2767 */
2768 for (w = leafno, bsz = budsz;; bsz <<= 1,
2769 w = (w < bud) ? w : bud) {
2770 if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2771 jfs_err("JFS: block map error in dbBackSplit");
2772 return -EIO;
2773 }
2774
2775 /* determine the buddy.
2776 */
2777 bud = w ^ bsz;
2778
2779 /* check if this buddy is the start of the system.
2780 */
2781 if (leaf[bud] != NOFREE) {
2782 /* split the leaf at the start of the
2783 * system in two.
2784 */
2785 cursz = leaf[bud] - 1;
2786 dbSplit(tp, bud, cursz, cursz);
2787 break;
2788 }
2789 }
2790 }
2791
2792 if (leaf[leafno] != size) {
2793 jfs_err("JFS: wrong leaf value in dbBackSplit");
2794 return -EIO;
2795 }
2796 return 0;
2797 }
2798
2799
2800 /*
2801 * NAME: dbJoin()
2802 *
2803 * FUNCTION: update the leaf of a dmtree with a new value, joining
2804 * the leaf with other leaves of the dmtree into a multi-leaf
2805 * binary buddy system, as required.
2806 *
2807 * PARAMETERS:
2808 * tp - pointer to the tree containing the leaf.
2809 * leafno - the number of the leaf to be updated.
2810 * newval - the new value for the leaf.
2811 *
2812 * RETURN VALUES: none
2813 */
dbJoin(dmtree_t * tp,int leafno,int newval)2814 static int dbJoin(dmtree_t * tp, int leafno, int newval)
2815 {
2816 int budsz, buddy;
2817 s8 *leaf;
2818
2819 /* can the new leaf value require a join with other leaves ?
2820 */
2821 if (newval >= tp->dmt_budmin) {
2822 /* pickup a pointer to the leaves of the tree.
2823 */
2824 leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2825
2826 /* try to join the specified leaf into a large binary
2827 * buddy system. the join proceeds by attempting to join
2828 * the specified leafno with its buddy (leaf) at new value.
2829 * if the join occurs, we attempt to join the left leaf
2830 * of the joined buddies with its buddy at new value + 1.
2831 * we continue to join until we find a buddy that cannot be
2832 * joined (does not have a value equal to the size of the
2833 * last join) or until all leaves have been joined into a
2834 * single system.
2835 *
2836 * get the buddy size (number of words covered) of
2837 * the new value.
2838 */
2839 budsz = BUDSIZE(newval, tp->dmt_budmin);
2840
2841 /* try to join.
2842 */
2843 while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2844 /* get the buddy leaf.
2845 */
2846 buddy = leafno ^ budsz;
2847
2848 /* if the leaf's new value is greater than its
2849 * buddy's value, we join no more.
2850 */
2851 if (newval > leaf[buddy])
2852 break;
2853
2854 /* It shouldn't be less */
2855 if (newval < leaf[buddy])
2856 return -EIO;
2857
2858 /* check which (leafno or buddy) is the left buddy.
2859 * the left buddy gets to claim the blocks resulting
2860 * from the join while the right gets to claim none.
2861 * the left buddy is also eligible to participate in
2862 * a join at the next higher level while the right
2863 * is not.
2864 *
2865 */
2866 if (leafno < buddy) {
2867 /* leafno is the left buddy.
2868 */
2869 dbAdjTree(tp, buddy, NOFREE);
2870 } else {
2871 /* buddy is the left buddy and becomes
2872 * leafno.
2873 */
2874 dbAdjTree(tp, leafno, NOFREE);
2875 leafno = buddy;
2876 }
2877
2878 /* on to try the next join.
2879 */
2880 newval += 1;
2881 budsz <<= 1;
2882 }
2883 }
2884
2885 /* update the leaf value.
2886 */
2887 dbAdjTree(tp, leafno, newval);
2888
2889 return 0;
2890 }
2891
2892
2893 /*
2894 * NAME: dbAdjTree()
2895 *
2896 * FUNCTION: update a leaf of a dmtree with a new value, adjusting
2897 * the dmtree, as required, to reflect the new leaf value.
2898 * the combination of any buddies must already be done before
2899 * this is called.
2900 *
2901 * PARAMETERS:
2902 * tp - pointer to the tree to be adjusted.
2903 * leafno - the number of the leaf to be updated.
2904 * newval - the new value for the leaf.
2905 *
2906 * RETURN VALUES: none
2907 */
dbAdjTree(dmtree_t * tp,int leafno,int newval)2908 static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2909 {
2910 int lp, pp, k;
2911 int max;
2912
2913 /* pick up the index of the leaf for this leafno.
2914 */
2915 lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2916
2917 /* is the current value the same as the old value ? if so,
2918 * there is nothing to do.
2919 */
2920 if (tp->dmt_stree[lp] == newval)
2921 return;
2922
2923 /* set the new value.
2924 */
2925 tp->dmt_stree[lp] = newval;
2926
2927 /* bubble the new value up the tree as required.
2928 */
2929 for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2930 /* get the index of the first leaf of the 4 leaf
2931 * group containing the specified leaf (leafno).
2932 */
2933 lp = ((lp - 1) & ~0x03) + 1;
2934
2935 /* get the index of the parent of this 4 leaf group.
2936 */
2937 pp = (lp - 1) >> 2;
2938
2939 /* determine the maximum of the 4 leaves.
2940 */
2941 max = TREEMAX(&tp->dmt_stree[lp]);
2942
2943 /* if the maximum of the 4 is the same as the
2944 * parent's value, we're done.
2945 */
2946 if (tp->dmt_stree[pp] == max)
2947 break;
2948
2949 /* parent gets new value.
2950 */
2951 tp->dmt_stree[pp] = max;
2952
2953 /* parent becomes leaf for next go-round.
2954 */
2955 lp = pp;
2956 }
2957 }
2958
2959
2960 /*
2961 * NAME: dbFindLeaf()
2962 *
2963 * FUNCTION: search a dmtree_t for sufficient free blocks, returning
2964 * the index of a leaf describing the free blocks if
2965 * sufficient free blocks are found.
2966 *
2967 * the search starts at the top of the dmtree_t tree and
2968 * proceeds down the tree to the leftmost leaf with sufficient
2969 * free space.
2970 *
2971 * PARAMETERS:
2972 * tp - pointer to the tree to be searched.
2973 * l2nb - log2 number of free blocks to search for.
2974 * leafidx - return pointer to be set to the index of the leaf
2975 * describing at least l2nb free blocks if sufficient
2976 * free blocks are found.
2977 *
2978 * RETURN VALUES:
2979 * 0 - success
2980 * -ENOSPC - insufficient free blocks.
2981 */
dbFindLeaf(dmtree_t * tp,int l2nb,int * leafidx)2982 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2983 {
2984 int ti, n = 0, k, x = 0;
2985
2986 /* first check the root of the tree to see if there is
2987 * sufficient free space.
2988 */
2989 if (l2nb > tp->dmt_stree[ROOT])
2990 return -ENOSPC;
2991
2992 /* sufficient free space available. now search down the tree
2993 * starting at the next level for the leftmost leaf that
2994 * describes sufficient free space.
2995 */
2996 for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2997 k > 0; k--, ti = ((ti + n) << 2) + 1) {
2998 /* search the four nodes at this level, starting from
2999 * the left.
3000 */
3001 for (x = ti, n = 0; n < 4; n++) {
3002 /* sufficient free space found. move to the next
3003 * level (or quit if this is the last level).
3004 */
3005 if (l2nb <= tp->dmt_stree[x + n])
3006 break;
3007 }
3008
3009 /* better have found something since the higher
3010 * levels of the tree said it was here.
3011 */
3012 assert(n < 4);
3013 }
3014
3015 /* set the return to the leftmost leaf describing sufficient
3016 * free space.
3017 */
3018 *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
3019
3020 return (0);
3021 }
3022
3023
3024 /*
3025 * NAME: dbFindBits()
3026 *
3027 * FUNCTION: find a specified number of binary buddy free bits within a
3028 * dmap bitmap word value.
3029 *
3030 * this routine searches the bitmap value for (1 << l2nb) free
3031 * bits at (1 << l2nb) alignments within the value.
3032 *
3033 * PARAMETERS:
3034 * word - dmap bitmap word value.
3035 * l2nb - number of free bits specified as a log2 number.
3036 *
3037 * RETURN VALUES:
3038 * starting bit number of free bits.
3039 */
dbFindBits(u32 word,int l2nb)3040 static int dbFindBits(u32 word, int l2nb)
3041 {
3042 int bitno, nb;
3043 u32 mask;
3044
3045 /* get the number of bits.
3046 */
3047 nb = 1 << l2nb;
3048 assert(nb <= DBWORD);
3049
3050 /* complement the word so we can use a mask (i.e. 0s represent
3051 * free bits) and compute the mask.
3052 */
3053 word = ~word;
3054 mask = ONES << (DBWORD - nb);
3055
3056 /* scan the word for nb free bits at nb alignments.
3057 */
3058 for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
3059 if ((mask & word) == mask)
3060 break;
3061 }
3062
3063 ASSERT(bitno < 32);
3064
3065 /* return the bit number.
3066 */
3067 return (bitno);
3068 }
3069
3070
3071 /*
3072 * NAME: dbMaxBud(u8 *cp)
3073 *
3074 * FUNCTION: determine the largest binary buddy string of free
3075 * bits within 32-bits of the map.
3076 *
3077 * PARAMETERS:
3078 * cp - pointer to the 32-bit value.
3079 *
3080 * RETURN VALUES:
3081 * largest binary buddy of free bits within a dmap word.
3082 */
dbMaxBud(u8 * cp)3083 static int dbMaxBud(u8 * cp)
3084 {
3085 signed char tmp1, tmp2;
3086
3087 /* check if the wmap word is all free. if so, the
3088 * free buddy size is BUDMIN.
3089 */
3090 if (*((uint *) cp) == 0)
3091 return (BUDMIN);
3092
3093 /* check if the wmap word is half free. if so, the
3094 * free buddy size is BUDMIN-1.
3095 */
3096 if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3097 return (BUDMIN - 1);
3098
3099 /* not all free or half free. determine the free buddy
3100 * size thru table lookup using quarters of the wmap word.
3101 */
3102 tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3103 tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3104 return (max(tmp1, tmp2));
3105 }
3106
3107
3108 /*
3109 * NAME: cnttz(uint word)
3110 *
3111 * FUNCTION: determine the number of trailing zeros within a 32-bit
3112 * value.
3113 *
3114 * PARAMETERS:
3115 * value - 32-bit value to be examined.
3116 *
3117 * RETURN VALUES:
3118 * count of trailing zeros
3119 */
cnttz(u32 word)3120 static int cnttz(u32 word)
3121 {
3122 int n;
3123
3124 for (n = 0; n < 32; n++, word >>= 1) {
3125 if (word & 0x01)
3126 break;
3127 }
3128
3129 return (n);
3130 }
3131
3132
3133 /*
3134 * NAME: cntlz(u32 value)
3135 *
3136 * FUNCTION: determine the number of leading zeros within a 32-bit
3137 * value.
3138 *
3139 * PARAMETERS:
3140 * value - 32-bit value to be examined.
3141 *
3142 * RETURN VALUES:
3143 * count of leading zeros
3144 */
cntlz(u32 value)3145 static int cntlz(u32 value)
3146 {
3147 int n;
3148
3149 for (n = 0; n < 32; n++, value <<= 1) {
3150 if (value & HIGHORDER)
3151 break;
3152 }
3153 return (n);
3154 }
3155
3156
3157 /*
3158 * NAME: blkstol2(s64 nb)
3159 *
3160 * FUNCTION: convert a block count to its log2 value. if the block
3161 * count is not a l2 multiple, it is rounded up to the next
3162 * larger l2 multiple.
3163 *
3164 * PARAMETERS:
3165 * nb - number of blocks
3166 *
3167 * RETURN VALUES:
3168 * log2 number of blocks
3169 */
blkstol2(s64 nb)3170 static int blkstol2(s64 nb)
3171 {
3172 int l2nb;
3173 s64 mask; /* meant to be signed */
3174
3175 mask = (s64) 1 << (64 - 1);
3176
3177 /* count the leading bits.
3178 */
3179 for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3180 /* leading bit found.
3181 */
3182 if (nb & mask) {
3183 /* determine the l2 value.
3184 */
3185 l2nb = (64 - 1) - l2nb;
3186
3187 /* check if we need to round up.
3188 */
3189 if (~mask & nb)
3190 l2nb++;
3191
3192 return (l2nb);
3193 }
3194 }
3195 assert(0);
3196 return 0; /* fix compiler warning */
3197 }
3198
3199
3200 /*
3201 * NAME: dbAllocBottomUp()
3202 *
3203 * FUNCTION: alloc the specified block range from the working block
3204 * allocation map.
3205 *
3206 * the blocks will be alloc from the working map one dmap
3207 * at a time.
3208 *
3209 * PARAMETERS:
3210 * ip - pointer to in-core inode;
3211 * blkno - starting block number to be freed.
3212 * nblocks - number of blocks to be freed.
3213 *
3214 * RETURN VALUES:
3215 * 0 - success
3216 * -EIO - i/o error
3217 */
dbAllocBottomUp(struct inode * ip,s64 blkno,s64 nblocks)3218 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3219 {
3220 struct metapage *mp;
3221 struct dmap *dp;
3222 int nb, rc;
3223 s64 lblkno, rem;
3224 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3225 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3226
3227 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3228
3229 /* block to be allocated better be within the mapsize. */
3230 ASSERT(nblocks <= bmp->db_mapsize - blkno);
3231
3232 /*
3233 * allocate the blocks a dmap at a time.
3234 */
3235 mp = NULL;
3236 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3237 /* release previous dmap if any */
3238 if (mp) {
3239 write_metapage(mp);
3240 }
3241
3242 /* get the buffer for the current dmap. */
3243 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3244 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3245 if (mp == NULL) {
3246 IREAD_UNLOCK(ipbmap);
3247 return -EIO;
3248 }
3249 dp = (struct dmap *) mp->data;
3250
3251 /* determine the number of blocks to be allocated from
3252 * this dmap.
3253 */
3254 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3255
3256 /* allocate the blocks. */
3257 if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3258 release_metapage(mp);
3259 IREAD_UNLOCK(ipbmap);
3260 return (rc);
3261 }
3262 }
3263
3264 /* write the last buffer. */
3265 write_metapage(mp);
3266
3267 IREAD_UNLOCK(ipbmap);
3268
3269 return (0);
3270 }
3271
3272
dbAllocDmapBU(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)3273 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3274 int nblocks)
3275 {
3276 int rc;
3277 int dbitno, word, rembits, nb, nwords, wbitno, agno;
3278 s8 oldroot;
3279 struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3280
3281 /* save the current value of the root (i.e. maximum free string)
3282 * of the dmap tree.
3283 */
3284 oldroot = tp->stree[ROOT];
3285
3286 /* determine the bit number and word within the dmap of the
3287 * starting block.
3288 */
3289 dbitno = blkno & (BPERDMAP - 1);
3290 word = dbitno >> L2DBWORD;
3291
3292 /* block range better be within the dmap */
3293 assert(dbitno + nblocks <= BPERDMAP);
3294
3295 /* allocate the bits of the dmap's words corresponding to the block
3296 * range. not all bits of the first and last words may be contained
3297 * within the block range. if this is the case, we'll work against
3298 * those words (i.e. partial first and/or last) on an individual basis
3299 * (a single pass), allocating the bits of interest by hand and
3300 * updating the leaf corresponding to the dmap word. a single pass
3301 * will be used for all dmap words fully contained within the
3302 * specified range. within this pass, the bits of all fully contained
3303 * dmap words will be marked as free in a single shot and the leaves
3304 * will be updated. a single leaf may describe the free space of
3305 * multiple dmap words, so we may update only a subset of the actual
3306 * leaves corresponding to the dmap words of the block range.
3307 */
3308 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3309 /* determine the bit number within the word and
3310 * the number of bits within the word.
3311 */
3312 wbitno = dbitno & (DBWORD - 1);
3313 nb = min(rembits, DBWORD - wbitno);
3314
3315 /* check if only part of a word is to be allocated.
3316 */
3317 if (nb < DBWORD) {
3318 /* allocate (set to 1) the appropriate bits within
3319 * this dmap word.
3320 */
3321 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3322 >> wbitno);
3323
3324 word++;
3325 } else {
3326 /* one or more dmap words are fully contained
3327 * within the block range. determine how many
3328 * words and allocate (set to 1) the bits of these
3329 * words.
3330 */
3331 nwords = rembits >> L2DBWORD;
3332 memset(&dp->wmap[word], (int) ONES, nwords * 4);
3333
3334 /* determine how many bits */
3335 nb = nwords << L2DBWORD;
3336 word += nwords;
3337 }
3338 }
3339
3340 /* update the free count for this dmap */
3341 le32_add_cpu(&dp->nfree, -nblocks);
3342
3343 /* reconstruct summary tree */
3344 dbInitDmapTree(dp);
3345
3346 BMAP_LOCK(bmp);
3347
3348 /* if this allocation group is completely free,
3349 * update the highest active allocation group number
3350 * if this allocation group is the new max.
3351 */
3352 agno = blkno >> bmp->db_agl2size;
3353 if (agno > bmp->db_maxag)
3354 bmp->db_maxag = agno;
3355
3356 /* update the free count for the allocation group and map */
3357 bmp->db_agfree[agno] -= nblocks;
3358 bmp->db_nfree -= nblocks;
3359
3360 BMAP_UNLOCK(bmp);
3361
3362 /* if the root has not changed, done. */
3363 if (tp->stree[ROOT] == oldroot)
3364 return (0);
3365
3366 /* root changed. bubble the change up to the dmap control pages.
3367 * if the adjustment of the upper level control pages fails,
3368 * backout the bit allocation (thus making everything consistent).
3369 */
3370 if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3371 dbFreeBits(bmp, dp, blkno, nblocks);
3372
3373 return (rc);
3374 }
3375
3376
3377 /*
3378 * NAME: dbExtendFS()
3379 *
3380 * FUNCTION: extend bmap from blkno for nblocks;
3381 * dbExtendFS() updates bmap ready for dbAllocBottomUp();
3382 *
3383 * L2
3384 * |
3385 * L1---------------------------------L1
3386 * | |
3387 * L0---------L0---------L0 L0---------L0---------L0
3388 * | | | | | |
3389 * d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,.,dm;
3390 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3391 *
3392 * <---old---><----------------------------extend----------------------->
3393 */
dbExtendFS(struct inode * ipbmap,s64 blkno,s64 nblocks)3394 int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3395 {
3396 struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3397 int nbperpage = sbi->nbperpage;
3398 int i, i0 = true, j, j0 = true, k, n;
3399 s64 newsize;
3400 s64 p;
3401 struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3402 struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3403 struct dmap *dp;
3404 s8 *l0leaf, *l1leaf, *l2leaf;
3405 struct bmap *bmp = sbi->bmap;
3406 int agno, l2agsize, oldl2agsize;
3407 s64 ag_rem;
3408
3409 newsize = blkno + nblocks;
3410
3411 jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3412 (long long) blkno, (long long) nblocks, (long long) newsize);
3413
3414 /*
3415 * initialize bmap control page.
3416 *
3417 * all the data in bmap control page should exclude
3418 * the mkfs hidden dmap page.
3419 */
3420
3421 /* update mapsize */
3422 bmp->db_mapsize = newsize;
3423 bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3424
3425 /* compute new AG size */
3426 l2agsize = dbGetL2AGSize(newsize);
3427 oldl2agsize = bmp->db_agl2size;
3428
3429 bmp->db_agl2size = l2agsize;
3430 bmp->db_agsize = 1 << l2agsize;
3431
3432 /* compute new number of AG */
3433 agno = bmp->db_numag;
3434 bmp->db_numag = newsize >> l2agsize;
3435 bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3436
3437 /*
3438 * reconfigure db_agfree[]
3439 * from old AG configuration to new AG configuration;
3440 *
3441 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3442 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3443 * note: new AG size = old AG size * (2**x).
3444 */
3445 if (l2agsize == oldl2agsize)
3446 goto extend;
3447 k = 1 << (l2agsize - oldl2agsize);
3448 ag_rem = bmp->db_agfree[0]; /* save agfree[0] */
3449 for (i = 0, n = 0; i < agno; n++) {
3450 bmp->db_agfree[n] = 0; /* init collection point */
3451
3452 /* coalesce contiguous k AGs; */
3453 for (j = 0; j < k && i < agno; j++, i++) {
3454 /* merge AGi to AGn */
3455 bmp->db_agfree[n] += bmp->db_agfree[i];
3456 }
3457 }
3458 bmp->db_agfree[0] += ag_rem; /* restore agfree[0] */
3459
3460 for (; n < MAXAG; n++)
3461 bmp->db_agfree[n] = 0;
3462
3463 /*
3464 * update highest active ag number
3465 */
3466
3467 bmp->db_maxag = bmp->db_maxag / k;
3468
3469 /*
3470 * extend bmap
3471 *
3472 * update bit maps and corresponding level control pages;
3473 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3474 */
3475 extend:
3476 /* get L2 page */
3477 p = BMAPBLKNO + nbperpage; /* L2 page */
3478 l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3479 if (!l2mp) {
3480 jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3481 return -EIO;
3482 }
3483 l2dcp = (struct dmapctl *) l2mp->data;
3484
3485 /* compute start L1 */
3486 k = blkno >> L2MAXL1SIZE;
3487 l2leaf = l2dcp->stree + CTLLEAFIND + k;
3488 p = BLKTOL1(blkno, sbi->l2nbperpage); /* L1 page */
3489
3490 /*
3491 * extend each L1 in L2
3492 */
3493 for (; k < LPERCTL; k++, p += nbperpage) {
3494 /* get L1 page */
3495 if (j0) {
3496 /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3497 l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3498 if (l1mp == NULL)
3499 goto errout;
3500 l1dcp = (struct dmapctl *) l1mp->data;
3501
3502 /* compute start L0 */
3503 j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3504 l1leaf = l1dcp->stree + CTLLEAFIND + j;
3505 p = BLKTOL0(blkno, sbi->l2nbperpage);
3506 j0 = false;
3507 } else {
3508 /* assign/init L1 page */
3509 l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3510 if (l1mp == NULL)
3511 goto errout;
3512
3513 l1dcp = (struct dmapctl *) l1mp->data;
3514
3515 /* compute start L0 */
3516 j = 0;
3517 l1leaf = l1dcp->stree + CTLLEAFIND;
3518 p += nbperpage; /* 1st L0 of L1.k */
3519 }
3520
3521 /*
3522 * extend each L0 in L1
3523 */
3524 for (; j < LPERCTL; j++) {
3525 /* get L0 page */
3526 if (i0) {
3527 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3528
3529 l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3530 if (l0mp == NULL)
3531 goto errout;
3532 l0dcp = (struct dmapctl *) l0mp->data;
3533
3534 /* compute start dmap */
3535 i = (blkno & (MAXL0SIZE - 1)) >>
3536 L2BPERDMAP;
3537 l0leaf = l0dcp->stree + CTLLEAFIND + i;
3538 p = BLKTODMAP(blkno,
3539 sbi->l2nbperpage);
3540 i0 = false;
3541 } else {
3542 /* assign/init L0 page */
3543 l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3544 if (l0mp == NULL)
3545 goto errout;
3546
3547 l0dcp = (struct dmapctl *) l0mp->data;
3548
3549 /* compute start dmap */
3550 i = 0;
3551 l0leaf = l0dcp->stree + CTLLEAFIND;
3552 p += nbperpage; /* 1st dmap of L0.j */
3553 }
3554
3555 /*
3556 * extend each dmap in L0
3557 */
3558 for (; i < LPERCTL; i++) {
3559 /*
3560 * reconstruct the dmap page, and
3561 * initialize corresponding parent L0 leaf
3562 */
3563 if ((n = blkno & (BPERDMAP - 1))) {
3564 /* read in dmap page: */
3565 mp = read_metapage(ipbmap, p,
3566 PSIZE, 0);
3567 if (mp == NULL)
3568 goto errout;
3569 n = min(nblocks, (s64)BPERDMAP - n);
3570 } else {
3571 /* assign/init dmap page */
3572 mp = read_metapage(ipbmap, p,
3573 PSIZE, 0);
3574 if (mp == NULL)
3575 goto errout;
3576
3577 n = min_t(s64, nblocks, BPERDMAP);
3578 }
3579
3580 dp = (struct dmap *) mp->data;
3581 *l0leaf = dbInitDmap(dp, blkno, n);
3582
3583 bmp->db_nfree += n;
3584 agno = le64_to_cpu(dp->start) >> l2agsize;
3585 bmp->db_agfree[agno] += n;
3586
3587 write_metapage(mp);
3588
3589 l0leaf++;
3590 p += nbperpage;
3591
3592 blkno += n;
3593 nblocks -= n;
3594 if (nblocks == 0)
3595 break;
3596 } /* for each dmap in a L0 */
3597
3598 /*
3599 * build current L0 page from its leaves, and
3600 * initialize corresponding parent L1 leaf
3601 */
3602 *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3603 write_metapage(l0mp);
3604 l0mp = NULL;
3605
3606 if (nblocks)
3607 l1leaf++; /* continue for next L0 */
3608 else {
3609 /* more than 1 L0 ? */
3610 if (j > 0)
3611 break; /* build L1 page */
3612 else {
3613 /* summarize in global bmap page */
3614 bmp->db_maxfreebud = *l1leaf;
3615 release_metapage(l1mp);
3616 release_metapage(l2mp);
3617 goto finalize;
3618 }
3619 }
3620 } /* for each L0 in a L1 */
3621
3622 /*
3623 * build current L1 page from its leaves, and
3624 * initialize corresponding parent L2 leaf
3625 */
3626 *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3627 write_metapage(l1mp);
3628 l1mp = NULL;
3629
3630 if (nblocks)
3631 l2leaf++; /* continue for next L1 */
3632 else {
3633 /* more than 1 L1 ? */
3634 if (k > 0)
3635 break; /* build L2 page */
3636 else {
3637 /* summarize in global bmap page */
3638 bmp->db_maxfreebud = *l2leaf;
3639 release_metapage(l2mp);
3640 goto finalize;
3641 }
3642 }
3643 } /* for each L1 in a L2 */
3644
3645 jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3646 errout:
3647 if (l0mp)
3648 release_metapage(l0mp);
3649 if (l1mp)
3650 release_metapage(l1mp);
3651 release_metapage(l2mp);
3652 return -EIO;
3653
3654 /*
3655 * finalize bmap control page
3656 */
3657 finalize:
3658
3659 return 0;
3660 }
3661
3662
3663 /*
3664 * dbFinalizeBmap()
3665 */
dbFinalizeBmap(struct inode * ipbmap)3666 void dbFinalizeBmap(struct inode *ipbmap)
3667 {
3668 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3669 int actags, inactags, l2nl;
3670 s64 ag_rem, actfree, inactfree, avgfree;
3671 int i, n;
3672
3673 /*
3674 * finalize bmap control page
3675 */
3676 //finalize:
3677 /*
3678 * compute db_agpref: preferred ag to allocate from
3679 * (the leftmost ag with average free space in it);
3680 */
3681 //agpref:
3682 /* get the number of active ags and inacitve ags */
3683 actags = bmp->db_maxag + 1;
3684 inactags = bmp->db_numag - actags;
3685 ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1); /* ??? */
3686
3687 /* determine how many blocks are in the inactive allocation
3688 * groups. in doing this, we must account for the fact that
3689 * the rightmost group might be a partial group (i.e. file
3690 * system size is not a multiple of the group size).
3691 */
3692 inactfree = (inactags && ag_rem) ?
3693 ((inactags - 1) << bmp->db_agl2size) + ag_rem
3694 : inactags << bmp->db_agl2size;
3695
3696 /* determine how many free blocks are in the active
3697 * allocation groups plus the average number of free blocks
3698 * within the active ags.
3699 */
3700 actfree = bmp->db_nfree - inactfree;
3701 avgfree = (u32) actfree / (u32) actags;
3702
3703 /* if the preferred allocation group has not average free space.
3704 * re-establish the preferred group as the leftmost
3705 * group with average free space.
3706 */
3707 if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3708 for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3709 bmp->db_agpref++) {
3710 if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3711 break;
3712 }
3713 if (bmp->db_agpref >= bmp->db_numag) {
3714 jfs_error(ipbmap->i_sb,
3715 "cannot find ag with average freespace\n");
3716 }
3717 }
3718
3719 /*
3720 * compute db_aglevel, db_agheight, db_width, db_agstart:
3721 * an ag is covered in aglevel dmapctl summary tree,
3722 * at agheight level height (from leaf) with agwidth number of nodes
3723 * each, which starts at agstart index node of the smmary tree node
3724 * array;
3725 */
3726 bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3727 l2nl =
3728 bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3729 bmp->db_agheight = l2nl >> 1;
3730 bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3731 for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3732 i--) {
3733 bmp->db_agstart += n;
3734 n <<= 2;
3735 }
3736
3737 }
3738
3739
3740 /*
3741 * NAME: dbInitDmap()/ujfs_idmap_page()
3742 *
3743 * FUNCTION: initialize working/persistent bitmap of the dmap page
3744 * for the specified number of blocks:
3745 *
3746 * at entry, the bitmaps had been initialized as free (ZEROS);
3747 * The number of blocks will only account for the actually
3748 * existing blocks. Blocks which don't actually exist in
3749 * the aggregate will be marked as allocated (ONES);
3750 *
3751 * PARAMETERS:
3752 * dp - pointer to page of map
3753 * nblocks - number of blocks this page
3754 *
3755 * RETURNS: NONE
3756 */
dbInitDmap(struct dmap * dp,s64 Blkno,int nblocks)3757 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3758 {
3759 int blkno, w, b, r, nw, nb, i;
3760
3761 /* starting block number within the dmap */
3762 blkno = Blkno & (BPERDMAP - 1);
3763
3764 if (blkno == 0) {
3765 dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3766 dp->start = cpu_to_le64(Blkno);
3767
3768 if (nblocks == BPERDMAP) {
3769 memset(&dp->wmap[0], 0, LPERDMAP * 4);
3770 memset(&dp->pmap[0], 0, LPERDMAP * 4);
3771 goto initTree;
3772 }
3773 } else {
3774 le32_add_cpu(&dp->nblocks, nblocks);
3775 le32_add_cpu(&dp->nfree, nblocks);
3776 }
3777
3778 /* word number containing start block number */
3779 w = blkno >> L2DBWORD;
3780
3781 /*
3782 * free the bits corresponding to the block range (ZEROS):
3783 * note: not all bits of the first and last words may be contained
3784 * within the block range.
3785 */
3786 for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3787 /* number of bits preceding range to be freed in the word */
3788 b = blkno & (DBWORD - 1);
3789 /* number of bits to free in the word */
3790 nb = min(r, DBWORD - b);
3791
3792 /* is partial word to be freed ? */
3793 if (nb < DBWORD) {
3794 /* free (set to 0) from the bitmap word */
3795 dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3796 >> b));
3797 dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3798 >> b));
3799
3800 /* skip the word freed */
3801 w++;
3802 } else {
3803 /* free (set to 0) contiguous bitmap words */
3804 nw = r >> L2DBWORD;
3805 memset(&dp->wmap[w], 0, nw * 4);
3806 memset(&dp->pmap[w], 0, nw * 4);
3807
3808 /* skip the words freed */
3809 nb = nw << L2DBWORD;
3810 w += nw;
3811 }
3812 }
3813
3814 /*
3815 * mark bits following the range to be freed (non-existing
3816 * blocks) as allocated (ONES)
3817 */
3818
3819 if (blkno == BPERDMAP)
3820 goto initTree;
3821
3822 /* the first word beyond the end of existing blocks */
3823 w = blkno >> L2DBWORD;
3824
3825 /* does nblocks fall on a 32-bit boundary ? */
3826 b = blkno & (DBWORD - 1);
3827 if (b) {
3828 /* mark a partial word allocated */
3829 dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3830 w++;
3831 }
3832
3833 /* set the rest of the words in the page to allocated (ONES) */
3834 for (i = w; i < LPERDMAP; i++)
3835 dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3836
3837 /*
3838 * init tree
3839 */
3840 initTree:
3841 return (dbInitDmapTree(dp));
3842 }
3843
3844
3845 /*
3846 * NAME: dbInitDmapTree()/ujfs_complete_dmap()
3847 *
3848 * FUNCTION: initialize summary tree of the specified dmap:
3849 *
3850 * at entry, bitmap of the dmap has been initialized;
3851 *
3852 * PARAMETERS:
3853 * dp - dmap to complete
3854 * blkno - starting block number for this dmap
3855 * treemax - will be filled in with max free for this dmap
3856 *
3857 * RETURNS: max free string at the root of the tree
3858 */
dbInitDmapTree(struct dmap * dp)3859 static int dbInitDmapTree(struct dmap * dp)
3860 {
3861 struct dmaptree *tp;
3862 s8 *cp;
3863 int i;
3864
3865 /* init fixed info of tree */
3866 tp = &dp->tree;
3867 tp->nleafs = cpu_to_le32(LPERDMAP);
3868 tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3869 tp->leafidx = cpu_to_le32(LEAFIND);
3870 tp->height = cpu_to_le32(4);
3871 tp->budmin = BUDMIN;
3872
3873 /* init each leaf from corresponding wmap word:
3874 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3875 * bitmap word are allocated.
3876 */
3877 cp = tp->stree + le32_to_cpu(tp->leafidx);
3878 for (i = 0; i < LPERDMAP; i++)
3879 *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3880
3881 /* build the dmap's binary buddy summary tree */
3882 return (dbInitTree(tp));
3883 }
3884
3885
3886 /*
3887 * NAME: dbInitTree()/ujfs_adjtree()
3888 *
3889 * FUNCTION: initialize binary buddy summary tree of a dmap or dmapctl.
3890 *
3891 * at entry, the leaves of the tree has been initialized
3892 * from corresponding bitmap word or root of summary tree
3893 * of the child control page;
3894 * configure binary buddy system at the leaf level, then
3895 * bubble up the values of the leaf nodes up the tree.
3896 *
3897 * PARAMETERS:
3898 * cp - Pointer to the root of the tree
3899 * l2leaves- Number of leaf nodes as a power of 2
3900 * l2min - Number of blocks that can be covered by a leaf
3901 * as a power of 2
3902 *
3903 * RETURNS: max free string at the root of the tree
3904 */
dbInitTree(struct dmaptree * dtp)3905 static int dbInitTree(struct dmaptree * dtp)
3906 {
3907 int l2max, l2free, bsize, nextb, i;
3908 int child, parent, nparent;
3909 s8 *tp, *cp, *cp1;
3910
3911 tp = dtp->stree;
3912
3913 /* Determine the maximum free string possible for the leaves */
3914 l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3915
3916 /*
3917 * configure the leaf levevl into binary buddy system
3918 *
3919 * Try to combine buddies starting with a buddy size of 1
3920 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3921 * can be combined if both buddies have a maximum free of l2min;
3922 * the combination will result in the left-most buddy leaf having
3923 * a maximum free of l2min+1.
3924 * After processing all buddies for a given size, process buddies
3925 * at the next higher buddy size (i.e. current size * 2) and
3926 * the next maximum free (current free + 1).
3927 * This continues until the maximum possible buddy combination
3928 * yields maximum free.
3929 */
3930 for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3931 l2free++, bsize = nextb) {
3932 /* get next buddy size == current buddy pair size */
3933 nextb = bsize << 1;
3934
3935 /* scan each adjacent buddy pair at current buddy size */
3936 for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3937 i < le32_to_cpu(dtp->nleafs);
3938 i += nextb, cp += nextb) {
3939 /* coalesce if both adjacent buddies are max free */
3940 if (*cp == l2free && *(cp + bsize) == l2free) {
3941 *cp = l2free + 1; /* left take right */
3942 *(cp + bsize) = -1; /* right give left */
3943 }
3944 }
3945 }
3946
3947 /*
3948 * bubble summary information of leaves up the tree.
3949 *
3950 * Starting at the leaf node level, the four nodes described by
3951 * the higher level parent node are compared for a maximum free and
3952 * this maximum becomes the value of the parent node.
3953 * when all lower level nodes are processed in this fashion then
3954 * move up to the next level (parent becomes a lower level node) and
3955 * continue the process for that level.
3956 */
3957 for (child = le32_to_cpu(dtp->leafidx),
3958 nparent = le32_to_cpu(dtp->nleafs) >> 2;
3959 nparent > 0; nparent >>= 2, child = parent) {
3960 /* get index of 1st node of parent level */
3961 parent = (child - 1) >> 2;
3962
3963 /* set the value of the parent node as the maximum
3964 * of the four nodes of the current level.
3965 */
3966 for (i = 0, cp = tp + child, cp1 = tp + parent;
3967 i < nparent; i++, cp += 4, cp1++)
3968 *cp1 = TREEMAX(cp);
3969 }
3970
3971 return (*tp);
3972 }
3973
3974
3975 /*
3976 * dbInitDmapCtl()
3977 *
3978 * function: initialize dmapctl page
3979 */
dbInitDmapCtl(struct dmapctl * dcp,int level,int i)3980 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3981 { /* start leaf index not covered by range */
3982 s8 *cp;
3983
3984 dcp->nleafs = cpu_to_le32(LPERCTL);
3985 dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3986 dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3987 dcp->height = cpu_to_le32(5);
3988 dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3989
3990 /*
3991 * initialize the leaves of current level that were not covered
3992 * by the specified input block range (i.e. the leaves have no
3993 * low level dmapctl or dmap).
3994 */
3995 cp = &dcp->stree[CTLLEAFIND + i];
3996 for (; i < LPERCTL; i++)
3997 *cp++ = NOFREE;
3998
3999 /* build the dmap's binary buddy summary tree */
4000 return (dbInitTree((struct dmaptree *) dcp));
4001 }
4002
4003
4004 /*
4005 * NAME: dbGetL2AGSize()/ujfs_getagl2size()
4006 *
4007 * FUNCTION: Determine log2(allocation group size) from aggregate size
4008 *
4009 * PARAMETERS:
4010 * nblocks - Number of blocks in aggregate
4011 *
4012 * RETURNS: log2(allocation group size) in aggregate blocks
4013 */
dbGetL2AGSize(s64 nblocks)4014 static int dbGetL2AGSize(s64 nblocks)
4015 {
4016 s64 sz;
4017 s64 m;
4018 int l2sz;
4019
4020 if (nblocks < BPERDMAP * MAXAG)
4021 return (L2BPERDMAP);
4022
4023 /* round up aggregate size to power of 2 */
4024 m = ((u64) 1 << (64 - 1));
4025 for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
4026 if (m & nblocks)
4027 break;
4028 }
4029
4030 sz = (s64) 1 << l2sz;
4031 if (sz < nblocks)
4032 l2sz += 1;
4033
4034 /* agsize = roundupSize/max_number_of_ag */
4035 return (l2sz - L2MAXAG);
4036 }
4037
4038
4039 /*
4040 * NAME: dbMapFileSizeToMapSize()
4041 *
4042 * FUNCTION: compute number of blocks the block allocation map file
4043 * can cover from the map file size;
4044 *
4045 * RETURNS: Number of blocks which can be covered by this block map file;
4046 */
4047
4048 /*
4049 * maximum number of map pages at each level including control pages
4050 */
4051 #define MAXL0PAGES (1 + LPERCTL)
4052 #define MAXL1PAGES (1 + LPERCTL * MAXL0PAGES)
4053
4054 /*
4055 * convert number of map pages to the zero origin top dmapctl level
4056 */
4057 #define BMAPPGTOLEV(npages) \
4058 (((npages) <= 3 + MAXL0PAGES) ? 0 : \
4059 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4060
dbMapFileSizeToMapSize(struct inode * ipbmap)4061 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4062 {
4063 struct super_block *sb = ipbmap->i_sb;
4064 s64 nblocks;
4065 s64 npages, ndmaps;
4066 int level, i;
4067 int complete, factor;
4068
4069 nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4070 npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4071 level = BMAPPGTOLEV(npages);
4072
4073 /* At each level, accumulate the number of dmap pages covered by
4074 * the number of full child levels below it;
4075 * repeat for the last incomplete child level.
4076 */
4077 ndmaps = 0;
4078 npages--; /* skip the first global control page */
4079 /* skip higher level control pages above top level covered by map */
4080 npages -= (2 - level);
4081 npages--; /* skip top level's control page */
4082 for (i = level; i >= 0; i--) {
4083 factor =
4084 (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4085 complete = (u32) npages / factor;
4086 ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4087 ((i == 1) ? LPERCTL : 1));
4088
4089 /* pages in last/incomplete child */
4090 npages = (u32) npages % factor;
4091 /* skip incomplete child's level control page */
4092 npages--;
4093 }
4094
4095 /* convert the number of dmaps into the number of blocks
4096 * which can be covered by the dmaps;
4097 */
4098 nblocks = ndmaps << L2BPERDMAP;
4099
4100 return (nblocks);
4101 }
4102