• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 
81 static const struct bpf_func_proto *
82 bpf_sk_base_func_proto(enum bpf_func_id func_id);
83 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)84 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
85 {
86 	if (in_compat_syscall()) {
87 		struct compat_sock_fprog f32;
88 
89 		if (len != sizeof(f32))
90 			return -EINVAL;
91 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
92 			return -EFAULT;
93 		memset(dst, 0, sizeof(*dst));
94 		dst->len = f32.len;
95 		dst->filter = compat_ptr(f32.filter);
96 	} else {
97 		if (len != sizeof(*dst))
98 			return -EINVAL;
99 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
100 			return -EFAULT;
101 	}
102 
103 	return 0;
104 }
105 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
106 
107 /**
108  *	sk_filter_trim_cap - run a packet through a socket filter
109  *	@sk: sock associated with &sk_buff
110  *	@skb: buffer to filter
111  *	@cap: limit on how short the eBPF program may trim the packet
112  *
113  * Run the eBPF program and then cut skb->data to correct size returned by
114  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
115  * than pkt_len we keep whole skb->data. This is the socket level
116  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
117  * be accepted or -EPERM if the packet should be tossed.
118  *
119  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)120 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
121 {
122 	int err;
123 	struct sk_filter *filter;
124 
125 	/*
126 	 * If the skb was allocated from pfmemalloc reserves, only
127 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
128 	 * helping free memory
129 	 */
130 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
131 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
132 		return -ENOMEM;
133 	}
134 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
135 	if (err)
136 		return err;
137 
138 	err = security_sock_rcv_skb(sk, skb);
139 	if (err)
140 		return err;
141 
142 	rcu_read_lock();
143 	filter = rcu_dereference(sk->sk_filter);
144 	if (filter) {
145 		struct sock *save_sk = skb->sk;
146 		unsigned int pkt_len;
147 
148 		skb->sk = sk;
149 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
150 		skb->sk = save_sk;
151 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
152 	}
153 	rcu_read_unlock();
154 
155 	return err;
156 }
157 EXPORT_SYMBOL(sk_filter_trim_cap);
158 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)159 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
160 {
161 	return skb_get_poff(skb);
162 }
163 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)164 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
165 {
166 	struct nlattr *nla;
167 
168 	if (skb_is_nonlinear(skb))
169 		return 0;
170 
171 	if (skb->len < sizeof(struct nlattr))
172 		return 0;
173 
174 	if (a > skb->len - sizeof(struct nlattr))
175 		return 0;
176 
177 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
178 	if (nla)
179 		return (void *) nla - (void *) skb->data;
180 
181 	return 0;
182 }
183 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)184 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
185 {
186 	struct nlattr *nla;
187 
188 	if (skb_is_nonlinear(skb))
189 		return 0;
190 
191 	if (skb->len < sizeof(struct nlattr))
192 		return 0;
193 
194 	if (a > skb->len - sizeof(struct nlattr))
195 		return 0;
196 
197 	nla = (struct nlattr *) &skb->data[a];
198 	if (nla->nla_len > skb->len - a)
199 		return 0;
200 
201 	nla = nla_find_nested(nla, x);
202 	if (nla)
203 		return (void *) nla - (void *) skb->data;
204 
205 	return 0;
206 }
207 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)208 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
209 	   data, int, headlen, int, offset)
210 {
211 	u8 tmp, *ptr;
212 	const int len = sizeof(tmp);
213 
214 	if (offset >= 0) {
215 		if (headlen - offset >= len)
216 			return *(u8 *)(data + offset);
217 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
218 			return tmp;
219 	} else {
220 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
221 		if (likely(ptr))
222 			return *(u8 *)ptr;
223 	}
224 
225 	return -EFAULT;
226 }
227 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)228 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
229 	   int, offset)
230 {
231 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
232 					 offset);
233 }
234 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)235 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
236 	   data, int, headlen, int, offset)
237 {
238 	u16 tmp, *ptr;
239 	const int len = sizeof(tmp);
240 
241 	if (offset >= 0) {
242 		if (headlen - offset >= len)
243 			return get_unaligned_be16(data + offset);
244 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
245 			return be16_to_cpu(tmp);
246 	} else {
247 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
248 		if (likely(ptr))
249 			return get_unaligned_be16(ptr);
250 	}
251 
252 	return -EFAULT;
253 }
254 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)255 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
256 	   int, offset)
257 {
258 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
259 					  offset);
260 }
261 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)262 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
263 	   data, int, headlen, int, offset)
264 {
265 	u32 tmp, *ptr;
266 	const int len = sizeof(tmp);
267 
268 	if (likely(offset >= 0)) {
269 		if (headlen - offset >= len)
270 			return get_unaligned_be32(data + offset);
271 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
272 			return be32_to_cpu(tmp);
273 	} else {
274 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
275 		if (likely(ptr))
276 			return get_unaligned_be32(ptr);
277 	}
278 
279 	return -EFAULT;
280 }
281 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)282 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
283 	   int, offset)
284 {
285 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
286 					  offset);
287 }
288 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)289 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
290 			      struct bpf_insn *insn_buf)
291 {
292 	struct bpf_insn *insn = insn_buf;
293 
294 	switch (skb_field) {
295 	case SKF_AD_MARK:
296 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
297 
298 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
299 				      offsetof(struct sk_buff, mark));
300 		break;
301 
302 	case SKF_AD_PKTTYPE:
303 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
304 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
305 #ifdef __BIG_ENDIAN_BITFIELD
306 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
307 #endif
308 		break;
309 
310 	case SKF_AD_QUEUE:
311 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
312 
313 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
314 				      offsetof(struct sk_buff, queue_mapping));
315 		break;
316 
317 	case SKF_AD_VLAN_TAG:
318 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
319 
320 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
321 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
322 				      offsetof(struct sk_buff, vlan_tci));
323 		break;
324 	case SKF_AD_VLAN_TAG_PRESENT:
325 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
326 		if (PKT_VLAN_PRESENT_BIT)
327 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
328 		if (PKT_VLAN_PRESENT_BIT < 7)
329 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
330 		break;
331 	}
332 
333 	return insn - insn_buf;
334 }
335 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)336 static bool convert_bpf_extensions(struct sock_filter *fp,
337 				   struct bpf_insn **insnp)
338 {
339 	struct bpf_insn *insn = *insnp;
340 	u32 cnt;
341 
342 	switch (fp->k) {
343 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
344 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
345 
346 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
347 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
348 				      offsetof(struct sk_buff, protocol));
349 		/* A = ntohs(A) [emitting a nop or swap16] */
350 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
351 		break;
352 
353 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
354 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
355 		insn += cnt - 1;
356 		break;
357 
358 	case SKF_AD_OFF + SKF_AD_IFINDEX:
359 	case SKF_AD_OFF + SKF_AD_HATYPE:
360 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
361 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
362 
363 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
364 				      BPF_REG_TMP, BPF_REG_CTX,
365 				      offsetof(struct sk_buff, dev));
366 		/* if (tmp != 0) goto pc + 1 */
367 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
368 		*insn++ = BPF_EXIT_INSN();
369 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
370 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
371 					    offsetof(struct net_device, ifindex));
372 		else
373 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
374 					    offsetof(struct net_device, type));
375 		break;
376 
377 	case SKF_AD_OFF + SKF_AD_MARK:
378 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
379 		insn += cnt - 1;
380 		break;
381 
382 	case SKF_AD_OFF + SKF_AD_RXHASH:
383 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
384 
385 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
386 				    offsetof(struct sk_buff, hash));
387 		break;
388 
389 	case SKF_AD_OFF + SKF_AD_QUEUE:
390 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
391 		insn += cnt - 1;
392 		break;
393 
394 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
395 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
396 					 BPF_REG_A, BPF_REG_CTX, insn);
397 		insn += cnt - 1;
398 		break;
399 
400 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
401 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
402 					 BPF_REG_A, BPF_REG_CTX, insn);
403 		insn += cnt - 1;
404 		break;
405 
406 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
407 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
408 
409 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
410 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
411 				      offsetof(struct sk_buff, vlan_proto));
412 		/* A = ntohs(A) [emitting a nop or swap16] */
413 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
414 		break;
415 
416 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
417 	case SKF_AD_OFF + SKF_AD_NLATTR:
418 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
419 	case SKF_AD_OFF + SKF_AD_CPU:
420 	case SKF_AD_OFF + SKF_AD_RANDOM:
421 		/* arg1 = CTX */
422 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
423 		/* arg2 = A */
424 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
425 		/* arg3 = X */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
427 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
428 		switch (fp->k) {
429 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
430 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
431 			break;
432 		case SKF_AD_OFF + SKF_AD_NLATTR:
433 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
434 			break;
435 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
436 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
437 			break;
438 		case SKF_AD_OFF + SKF_AD_CPU:
439 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
440 			break;
441 		case SKF_AD_OFF + SKF_AD_RANDOM:
442 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
443 			bpf_user_rnd_init_once();
444 			break;
445 		}
446 		break;
447 
448 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
449 		/* A ^= X */
450 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
451 		break;
452 
453 	default:
454 		/* This is just a dummy call to avoid letting the compiler
455 		 * evict __bpf_call_base() as an optimization. Placed here
456 		 * where no-one bothers.
457 		 */
458 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
459 		return false;
460 	}
461 
462 	*insnp = insn;
463 	return true;
464 }
465 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)466 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
467 {
468 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
469 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
470 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
471 		      BPF_SIZE(fp->code) == BPF_W;
472 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
473 	const int ip_align = NET_IP_ALIGN;
474 	struct bpf_insn *insn = *insnp;
475 	int offset = fp->k;
476 
477 	if (!indirect &&
478 	    ((unaligned_ok && offset >= 0) ||
479 	     (!unaligned_ok && offset >= 0 &&
480 	      offset + ip_align >= 0 &&
481 	      offset + ip_align % size == 0))) {
482 		bool ldx_off_ok = offset <= S16_MAX;
483 
484 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
485 		if (offset)
486 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
487 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
488 				      size, 2 + endian + (!ldx_off_ok * 2));
489 		if (ldx_off_ok) {
490 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
491 					      BPF_REG_D, offset);
492 		} else {
493 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
494 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
495 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
496 					      BPF_REG_TMP, 0);
497 		}
498 		if (endian)
499 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
500 		*insn++ = BPF_JMP_A(8);
501 	}
502 
503 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
504 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
506 	if (!indirect) {
507 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
508 	} else {
509 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
510 		if (fp->k)
511 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
512 	}
513 
514 	switch (BPF_SIZE(fp->code)) {
515 	case BPF_B:
516 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
517 		break;
518 	case BPF_H:
519 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
520 		break;
521 	case BPF_W:
522 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
523 		break;
524 	default:
525 		return false;
526 	}
527 
528 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
529 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
530 	*insn   = BPF_EXIT_INSN();
531 
532 	*insnp = insn;
533 	return true;
534 }
535 
536 /**
537  *	bpf_convert_filter - convert filter program
538  *	@prog: the user passed filter program
539  *	@len: the length of the user passed filter program
540  *	@new_prog: allocated 'struct bpf_prog' or NULL
541  *	@new_len: pointer to store length of converted program
542  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
543  *
544  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
545  * style extended BPF (eBPF).
546  * Conversion workflow:
547  *
548  * 1) First pass for calculating the new program length:
549  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
550  *
551  * 2) 2nd pass to remap in two passes: 1st pass finds new
552  *    jump offsets, 2nd pass remapping:
553  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
554  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)555 static int bpf_convert_filter(struct sock_filter *prog, int len,
556 			      struct bpf_prog *new_prog, int *new_len,
557 			      bool *seen_ld_abs)
558 {
559 	int new_flen = 0, pass = 0, target, i, stack_off;
560 	struct bpf_insn *new_insn, *first_insn = NULL;
561 	struct sock_filter *fp;
562 	int *addrs = NULL;
563 	u8 bpf_src;
564 
565 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
566 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
567 
568 	if (len <= 0 || len > BPF_MAXINSNS)
569 		return -EINVAL;
570 
571 	if (new_prog) {
572 		first_insn = new_prog->insnsi;
573 		addrs = kcalloc(len, sizeof(*addrs),
574 				GFP_KERNEL | __GFP_NOWARN);
575 		if (!addrs)
576 			return -ENOMEM;
577 	}
578 
579 do_pass:
580 	new_insn = first_insn;
581 	fp = prog;
582 
583 	/* Classic BPF related prologue emission. */
584 	if (new_prog) {
585 		/* Classic BPF expects A and X to be reset first. These need
586 		 * to be guaranteed to be the first two instructions.
587 		 */
588 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
589 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
590 
591 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
592 		 * In eBPF case it's done by the compiler, here we need to
593 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
594 		 */
595 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
596 		if (*seen_ld_abs) {
597 			/* For packet access in classic BPF, cache skb->data
598 			 * in callee-saved BPF R8 and skb->len - skb->data_len
599 			 * (headlen) in BPF R9. Since classic BPF is read-only
600 			 * on CTX, we only need to cache it once.
601 			 */
602 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
603 						  BPF_REG_D, BPF_REG_CTX,
604 						  offsetof(struct sk_buff, data));
605 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
606 						  offsetof(struct sk_buff, len));
607 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, data_len));
609 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
610 		}
611 	} else {
612 		new_insn += 3;
613 	}
614 
615 	for (i = 0; i < len; fp++, i++) {
616 		struct bpf_insn tmp_insns[32] = { };
617 		struct bpf_insn *insn = tmp_insns;
618 
619 		if (addrs)
620 			addrs[i] = new_insn - first_insn;
621 
622 		switch (fp->code) {
623 		/* All arithmetic insns and skb loads map as-is. */
624 		case BPF_ALU | BPF_ADD | BPF_X:
625 		case BPF_ALU | BPF_ADD | BPF_K:
626 		case BPF_ALU | BPF_SUB | BPF_X:
627 		case BPF_ALU | BPF_SUB | BPF_K:
628 		case BPF_ALU | BPF_AND | BPF_X:
629 		case BPF_ALU | BPF_AND | BPF_K:
630 		case BPF_ALU | BPF_OR | BPF_X:
631 		case BPF_ALU | BPF_OR | BPF_K:
632 		case BPF_ALU | BPF_LSH | BPF_X:
633 		case BPF_ALU | BPF_LSH | BPF_K:
634 		case BPF_ALU | BPF_RSH | BPF_X:
635 		case BPF_ALU | BPF_RSH | BPF_K:
636 		case BPF_ALU | BPF_XOR | BPF_X:
637 		case BPF_ALU | BPF_XOR | BPF_K:
638 		case BPF_ALU | BPF_MUL | BPF_X:
639 		case BPF_ALU | BPF_MUL | BPF_K:
640 		case BPF_ALU | BPF_DIV | BPF_X:
641 		case BPF_ALU | BPF_DIV | BPF_K:
642 		case BPF_ALU | BPF_MOD | BPF_X:
643 		case BPF_ALU | BPF_MOD | BPF_K:
644 		case BPF_ALU | BPF_NEG:
645 		case BPF_LD | BPF_ABS | BPF_W:
646 		case BPF_LD | BPF_ABS | BPF_H:
647 		case BPF_LD | BPF_ABS | BPF_B:
648 		case BPF_LD | BPF_IND | BPF_W:
649 		case BPF_LD | BPF_IND | BPF_H:
650 		case BPF_LD | BPF_IND | BPF_B:
651 			/* Check for overloaded BPF extension and
652 			 * directly convert it if found, otherwise
653 			 * just move on with mapping.
654 			 */
655 			if (BPF_CLASS(fp->code) == BPF_LD &&
656 			    BPF_MODE(fp->code) == BPF_ABS &&
657 			    convert_bpf_extensions(fp, &insn))
658 				break;
659 			if (BPF_CLASS(fp->code) == BPF_LD &&
660 			    convert_bpf_ld_abs(fp, &insn)) {
661 				*seen_ld_abs = true;
662 				break;
663 			}
664 
665 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
666 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
667 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
668 				/* Error with exception code on div/mod by 0.
669 				 * For cBPF programs, this was always return 0.
670 				 */
671 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
672 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
673 				*insn++ = BPF_EXIT_INSN();
674 			}
675 
676 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
677 			break;
678 
679 		/* Jump transformation cannot use BPF block macros
680 		 * everywhere as offset calculation and target updates
681 		 * require a bit more work than the rest, i.e. jump
682 		 * opcodes map as-is, but offsets need adjustment.
683 		 */
684 
685 #define BPF_EMIT_JMP							\
686 	do {								\
687 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
688 		s32 off;						\
689 									\
690 		if (target >= len || target < 0)			\
691 			goto err;					\
692 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
693 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
694 		off -= insn - tmp_insns;				\
695 		/* Reject anything not fitting into insn->off. */	\
696 		if (off < off_min || off > off_max)			\
697 			goto err;					\
698 		insn->off = off;					\
699 	} while (0)
700 
701 		case BPF_JMP | BPF_JA:
702 			target = i + fp->k + 1;
703 			insn->code = fp->code;
704 			BPF_EMIT_JMP;
705 			break;
706 
707 		case BPF_JMP | BPF_JEQ | BPF_K:
708 		case BPF_JMP | BPF_JEQ | BPF_X:
709 		case BPF_JMP | BPF_JSET | BPF_K:
710 		case BPF_JMP | BPF_JSET | BPF_X:
711 		case BPF_JMP | BPF_JGT | BPF_K:
712 		case BPF_JMP | BPF_JGT | BPF_X:
713 		case BPF_JMP | BPF_JGE | BPF_K:
714 		case BPF_JMP | BPF_JGE | BPF_X:
715 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
716 				/* BPF immediates are signed, zero extend
717 				 * immediate into tmp register and use it
718 				 * in compare insn.
719 				 */
720 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
721 
722 				insn->dst_reg = BPF_REG_A;
723 				insn->src_reg = BPF_REG_TMP;
724 				bpf_src = BPF_X;
725 			} else {
726 				insn->dst_reg = BPF_REG_A;
727 				insn->imm = fp->k;
728 				bpf_src = BPF_SRC(fp->code);
729 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
730 			}
731 
732 			/* Common case where 'jump_false' is next insn. */
733 			if (fp->jf == 0) {
734 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
735 				target = i + fp->jt + 1;
736 				BPF_EMIT_JMP;
737 				break;
738 			}
739 
740 			/* Convert some jumps when 'jump_true' is next insn. */
741 			if (fp->jt == 0) {
742 				switch (BPF_OP(fp->code)) {
743 				case BPF_JEQ:
744 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
745 					break;
746 				case BPF_JGT:
747 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
748 					break;
749 				case BPF_JGE:
750 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
751 					break;
752 				default:
753 					goto jmp_rest;
754 				}
755 
756 				target = i + fp->jf + 1;
757 				BPF_EMIT_JMP;
758 				break;
759 			}
760 jmp_rest:
761 			/* Other jumps are mapped into two insns: Jxx and JA. */
762 			target = i + fp->jt + 1;
763 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
764 			BPF_EMIT_JMP;
765 			insn++;
766 
767 			insn->code = BPF_JMP | BPF_JA;
768 			target = i + fp->jf + 1;
769 			BPF_EMIT_JMP;
770 			break;
771 
772 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
773 		case BPF_LDX | BPF_MSH | BPF_B: {
774 			struct sock_filter tmp = {
775 				.code	= BPF_LD | BPF_ABS | BPF_B,
776 				.k	= fp->k,
777 			};
778 
779 			*seen_ld_abs = true;
780 
781 			/* X = A */
782 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
783 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
784 			convert_bpf_ld_abs(&tmp, &insn);
785 			insn++;
786 			/* A &= 0xf */
787 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
788 			/* A <<= 2 */
789 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
790 			/* tmp = X */
791 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
792 			/* X = A */
793 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
794 			/* A = tmp */
795 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
796 			break;
797 		}
798 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
799 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
800 		 */
801 		case BPF_RET | BPF_A:
802 		case BPF_RET | BPF_K:
803 			if (BPF_RVAL(fp->code) == BPF_K)
804 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
805 							0, fp->k);
806 			*insn = BPF_EXIT_INSN();
807 			break;
808 
809 		/* Store to stack. */
810 		case BPF_ST:
811 		case BPF_STX:
812 			stack_off = fp->k * 4  + 4;
813 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
814 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
815 					    -stack_off);
816 			/* check_load_and_stores() verifies that classic BPF can
817 			 * load from stack only after write, so tracking
818 			 * stack_depth for ST|STX insns is enough
819 			 */
820 			if (new_prog && new_prog->aux->stack_depth < stack_off)
821 				new_prog->aux->stack_depth = stack_off;
822 			break;
823 
824 		/* Load from stack. */
825 		case BPF_LD | BPF_MEM:
826 		case BPF_LDX | BPF_MEM:
827 			stack_off = fp->k * 4  + 4;
828 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
829 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
830 					    -stack_off);
831 			break;
832 
833 		/* A = K or X = K */
834 		case BPF_LD | BPF_IMM:
835 		case BPF_LDX | BPF_IMM:
836 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
837 					      BPF_REG_A : BPF_REG_X, fp->k);
838 			break;
839 
840 		/* X = A */
841 		case BPF_MISC | BPF_TAX:
842 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
843 			break;
844 
845 		/* A = X */
846 		case BPF_MISC | BPF_TXA:
847 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
848 			break;
849 
850 		/* A = skb->len or X = skb->len */
851 		case BPF_LD | BPF_W | BPF_LEN:
852 		case BPF_LDX | BPF_W | BPF_LEN:
853 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
854 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
855 					    offsetof(struct sk_buff, len));
856 			break;
857 
858 		/* Access seccomp_data fields. */
859 		case BPF_LDX | BPF_ABS | BPF_W:
860 			/* A = *(u32 *) (ctx + K) */
861 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
862 			break;
863 
864 		/* Unknown instruction. */
865 		default:
866 			goto err;
867 		}
868 
869 		insn++;
870 		if (new_prog)
871 			memcpy(new_insn, tmp_insns,
872 			       sizeof(*insn) * (insn - tmp_insns));
873 		new_insn += insn - tmp_insns;
874 	}
875 
876 	if (!new_prog) {
877 		/* Only calculating new length. */
878 		*new_len = new_insn - first_insn;
879 		if (*seen_ld_abs)
880 			*new_len += 4; /* Prologue bits. */
881 		return 0;
882 	}
883 
884 	pass++;
885 	if (new_flen != new_insn - first_insn) {
886 		new_flen = new_insn - first_insn;
887 		if (pass > 2)
888 			goto err;
889 		goto do_pass;
890 	}
891 
892 	kfree(addrs);
893 	BUG_ON(*new_len != new_flen);
894 	return 0;
895 err:
896 	kfree(addrs);
897 	return -EINVAL;
898 }
899 
900 /* Security:
901  *
902  * As we dont want to clear mem[] array for each packet going through
903  * __bpf_prog_run(), we check that filter loaded by user never try to read
904  * a cell if not previously written, and we check all branches to be sure
905  * a malicious user doesn't try to abuse us.
906  */
check_load_and_stores(const struct sock_filter * filter,int flen)907 static int check_load_and_stores(const struct sock_filter *filter, int flen)
908 {
909 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
910 	int pc, ret = 0;
911 
912 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
913 
914 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
915 	if (!masks)
916 		return -ENOMEM;
917 
918 	memset(masks, 0xff, flen * sizeof(*masks));
919 
920 	for (pc = 0; pc < flen; pc++) {
921 		memvalid &= masks[pc];
922 
923 		switch (filter[pc].code) {
924 		case BPF_ST:
925 		case BPF_STX:
926 			memvalid |= (1 << filter[pc].k);
927 			break;
928 		case BPF_LD | BPF_MEM:
929 		case BPF_LDX | BPF_MEM:
930 			if (!(memvalid & (1 << filter[pc].k))) {
931 				ret = -EINVAL;
932 				goto error;
933 			}
934 			break;
935 		case BPF_JMP | BPF_JA:
936 			/* A jump must set masks on target */
937 			masks[pc + 1 + filter[pc].k] &= memvalid;
938 			memvalid = ~0;
939 			break;
940 		case BPF_JMP | BPF_JEQ | BPF_K:
941 		case BPF_JMP | BPF_JEQ | BPF_X:
942 		case BPF_JMP | BPF_JGE | BPF_K:
943 		case BPF_JMP | BPF_JGE | BPF_X:
944 		case BPF_JMP | BPF_JGT | BPF_K:
945 		case BPF_JMP | BPF_JGT | BPF_X:
946 		case BPF_JMP | BPF_JSET | BPF_K:
947 		case BPF_JMP | BPF_JSET | BPF_X:
948 			/* A jump must set masks on targets */
949 			masks[pc + 1 + filter[pc].jt] &= memvalid;
950 			masks[pc + 1 + filter[pc].jf] &= memvalid;
951 			memvalid = ~0;
952 			break;
953 		}
954 	}
955 error:
956 	kfree(masks);
957 	return ret;
958 }
959 
chk_code_allowed(u16 code_to_probe)960 static bool chk_code_allowed(u16 code_to_probe)
961 {
962 	static const bool codes[] = {
963 		/* 32 bit ALU operations */
964 		[BPF_ALU | BPF_ADD | BPF_K] = true,
965 		[BPF_ALU | BPF_ADD | BPF_X] = true,
966 		[BPF_ALU | BPF_SUB | BPF_K] = true,
967 		[BPF_ALU | BPF_SUB | BPF_X] = true,
968 		[BPF_ALU | BPF_MUL | BPF_K] = true,
969 		[BPF_ALU | BPF_MUL | BPF_X] = true,
970 		[BPF_ALU | BPF_DIV | BPF_K] = true,
971 		[BPF_ALU | BPF_DIV | BPF_X] = true,
972 		[BPF_ALU | BPF_MOD | BPF_K] = true,
973 		[BPF_ALU | BPF_MOD | BPF_X] = true,
974 		[BPF_ALU | BPF_AND | BPF_K] = true,
975 		[BPF_ALU | BPF_AND | BPF_X] = true,
976 		[BPF_ALU | BPF_OR | BPF_K] = true,
977 		[BPF_ALU | BPF_OR | BPF_X] = true,
978 		[BPF_ALU | BPF_XOR | BPF_K] = true,
979 		[BPF_ALU | BPF_XOR | BPF_X] = true,
980 		[BPF_ALU | BPF_LSH | BPF_K] = true,
981 		[BPF_ALU | BPF_LSH | BPF_X] = true,
982 		[BPF_ALU | BPF_RSH | BPF_K] = true,
983 		[BPF_ALU | BPF_RSH | BPF_X] = true,
984 		[BPF_ALU | BPF_NEG] = true,
985 		/* Load instructions */
986 		[BPF_LD | BPF_W | BPF_ABS] = true,
987 		[BPF_LD | BPF_H | BPF_ABS] = true,
988 		[BPF_LD | BPF_B | BPF_ABS] = true,
989 		[BPF_LD | BPF_W | BPF_LEN] = true,
990 		[BPF_LD | BPF_W | BPF_IND] = true,
991 		[BPF_LD | BPF_H | BPF_IND] = true,
992 		[BPF_LD | BPF_B | BPF_IND] = true,
993 		[BPF_LD | BPF_IMM] = true,
994 		[BPF_LD | BPF_MEM] = true,
995 		[BPF_LDX | BPF_W | BPF_LEN] = true,
996 		[BPF_LDX | BPF_B | BPF_MSH] = true,
997 		[BPF_LDX | BPF_IMM] = true,
998 		[BPF_LDX | BPF_MEM] = true,
999 		/* Store instructions */
1000 		[BPF_ST] = true,
1001 		[BPF_STX] = true,
1002 		/* Misc instructions */
1003 		[BPF_MISC | BPF_TAX] = true,
1004 		[BPF_MISC | BPF_TXA] = true,
1005 		/* Return instructions */
1006 		[BPF_RET | BPF_K] = true,
1007 		[BPF_RET | BPF_A] = true,
1008 		/* Jump instructions */
1009 		[BPF_JMP | BPF_JA] = true,
1010 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1011 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1012 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1013 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1014 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1015 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1016 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1017 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1018 	};
1019 
1020 	if (code_to_probe >= ARRAY_SIZE(codes))
1021 		return false;
1022 
1023 	return codes[code_to_probe];
1024 }
1025 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1026 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1027 				unsigned int flen)
1028 {
1029 	if (filter == NULL)
1030 		return false;
1031 	if (flen == 0 || flen > BPF_MAXINSNS)
1032 		return false;
1033 
1034 	return true;
1035 }
1036 
1037 /**
1038  *	bpf_check_classic - verify socket filter code
1039  *	@filter: filter to verify
1040  *	@flen: length of filter
1041  *
1042  * Check the user's filter code. If we let some ugly
1043  * filter code slip through kaboom! The filter must contain
1044  * no references or jumps that are out of range, no illegal
1045  * instructions, and must end with a RET instruction.
1046  *
1047  * All jumps are forward as they are not signed.
1048  *
1049  * Returns 0 if the rule set is legal or -EINVAL if not.
1050  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1051 static int bpf_check_classic(const struct sock_filter *filter,
1052 			     unsigned int flen)
1053 {
1054 	bool anc_found;
1055 	int pc;
1056 
1057 	/* Check the filter code now */
1058 	for (pc = 0; pc < flen; pc++) {
1059 		const struct sock_filter *ftest = &filter[pc];
1060 
1061 		/* May we actually operate on this code? */
1062 		if (!chk_code_allowed(ftest->code))
1063 			return -EINVAL;
1064 
1065 		/* Some instructions need special checks */
1066 		switch (ftest->code) {
1067 		case BPF_ALU | BPF_DIV | BPF_K:
1068 		case BPF_ALU | BPF_MOD | BPF_K:
1069 			/* Check for division by zero */
1070 			if (ftest->k == 0)
1071 				return -EINVAL;
1072 			break;
1073 		case BPF_ALU | BPF_LSH | BPF_K:
1074 		case BPF_ALU | BPF_RSH | BPF_K:
1075 			if (ftest->k >= 32)
1076 				return -EINVAL;
1077 			break;
1078 		case BPF_LD | BPF_MEM:
1079 		case BPF_LDX | BPF_MEM:
1080 		case BPF_ST:
1081 		case BPF_STX:
1082 			/* Check for invalid memory addresses */
1083 			if (ftest->k >= BPF_MEMWORDS)
1084 				return -EINVAL;
1085 			break;
1086 		case BPF_JMP | BPF_JA:
1087 			/* Note, the large ftest->k might cause loops.
1088 			 * Compare this with conditional jumps below,
1089 			 * where offsets are limited. --ANK (981016)
1090 			 */
1091 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1092 				return -EINVAL;
1093 			break;
1094 		case BPF_JMP | BPF_JEQ | BPF_K:
1095 		case BPF_JMP | BPF_JEQ | BPF_X:
1096 		case BPF_JMP | BPF_JGE | BPF_K:
1097 		case BPF_JMP | BPF_JGE | BPF_X:
1098 		case BPF_JMP | BPF_JGT | BPF_K:
1099 		case BPF_JMP | BPF_JGT | BPF_X:
1100 		case BPF_JMP | BPF_JSET | BPF_K:
1101 		case BPF_JMP | BPF_JSET | BPF_X:
1102 			/* Both conditionals must be safe */
1103 			if (pc + ftest->jt + 1 >= flen ||
1104 			    pc + ftest->jf + 1 >= flen)
1105 				return -EINVAL;
1106 			break;
1107 		case BPF_LD | BPF_W | BPF_ABS:
1108 		case BPF_LD | BPF_H | BPF_ABS:
1109 		case BPF_LD | BPF_B | BPF_ABS:
1110 			anc_found = false;
1111 			if (bpf_anc_helper(ftest) & BPF_ANC)
1112 				anc_found = true;
1113 			/* Ancillary operation unknown or unsupported */
1114 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1115 				return -EINVAL;
1116 		}
1117 	}
1118 
1119 	/* Last instruction must be a RET code */
1120 	switch (filter[flen - 1].code) {
1121 	case BPF_RET | BPF_K:
1122 	case BPF_RET | BPF_A:
1123 		return check_load_and_stores(filter, flen);
1124 	}
1125 
1126 	return -EINVAL;
1127 }
1128 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1129 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1130 				      const struct sock_fprog *fprog)
1131 {
1132 	unsigned int fsize = bpf_classic_proglen(fprog);
1133 	struct sock_fprog_kern *fkprog;
1134 
1135 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1136 	if (!fp->orig_prog)
1137 		return -ENOMEM;
1138 
1139 	fkprog = fp->orig_prog;
1140 	fkprog->len = fprog->len;
1141 
1142 	fkprog->filter = kmemdup(fp->insns, fsize,
1143 				 GFP_KERNEL | __GFP_NOWARN);
1144 	if (!fkprog->filter) {
1145 		kfree(fp->orig_prog);
1146 		return -ENOMEM;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
bpf_release_orig_filter(struct bpf_prog * fp)1152 static void bpf_release_orig_filter(struct bpf_prog *fp)
1153 {
1154 	struct sock_fprog_kern *fprog = fp->orig_prog;
1155 
1156 	if (fprog) {
1157 		kfree(fprog->filter);
1158 		kfree(fprog);
1159 	}
1160 }
1161 
__bpf_prog_release(struct bpf_prog * prog)1162 static void __bpf_prog_release(struct bpf_prog *prog)
1163 {
1164 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1165 		bpf_prog_put(prog);
1166 	} else {
1167 		bpf_release_orig_filter(prog);
1168 		bpf_prog_free(prog);
1169 	}
1170 }
1171 
__sk_filter_release(struct sk_filter * fp)1172 static void __sk_filter_release(struct sk_filter *fp)
1173 {
1174 	__bpf_prog_release(fp->prog);
1175 	kfree(fp);
1176 }
1177 
1178 /**
1179  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1180  *	@rcu: rcu_head that contains the sk_filter to free
1181  */
sk_filter_release_rcu(struct rcu_head * rcu)1182 static void sk_filter_release_rcu(struct rcu_head *rcu)
1183 {
1184 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1185 
1186 	__sk_filter_release(fp);
1187 }
1188 
1189 /**
1190  *	sk_filter_release - release a socket filter
1191  *	@fp: filter to remove
1192  *
1193  *	Remove a filter from a socket and release its resources.
1194  */
sk_filter_release(struct sk_filter * fp)1195 static void sk_filter_release(struct sk_filter *fp)
1196 {
1197 	if (refcount_dec_and_test(&fp->refcnt))
1198 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1199 }
1200 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1201 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1202 {
1203 	u32 filter_size = bpf_prog_size(fp->prog->len);
1204 
1205 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1206 	sk_filter_release(fp);
1207 }
1208 
1209 /* try to charge the socket memory if there is space available
1210  * return true on success
1211  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1212 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1213 {
1214 	u32 filter_size = bpf_prog_size(fp->prog->len);
1215 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1216 
1217 	/* same check as in sock_kmalloc() */
1218 	if (filter_size <= optmem_max &&
1219 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1220 		atomic_add(filter_size, &sk->sk_omem_alloc);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1226 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1227 {
1228 	if (!refcount_inc_not_zero(&fp->refcnt))
1229 		return false;
1230 
1231 	if (!__sk_filter_charge(sk, fp)) {
1232 		sk_filter_release(fp);
1233 		return false;
1234 	}
1235 	return true;
1236 }
1237 
bpf_migrate_filter(struct bpf_prog * fp)1238 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1239 {
1240 	struct sock_filter *old_prog;
1241 	struct bpf_prog *old_fp;
1242 	int err, new_len, old_len = fp->len;
1243 	bool seen_ld_abs = false;
1244 
1245 	/* We are free to overwrite insns et al right here as it
1246 	 * won't be used at this point in time anymore internally
1247 	 * after the migration to the internal BPF instruction
1248 	 * representation.
1249 	 */
1250 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1251 		     sizeof(struct bpf_insn));
1252 
1253 	/* Conversion cannot happen on overlapping memory areas,
1254 	 * so we need to keep the user BPF around until the 2nd
1255 	 * pass. At this time, the user BPF is stored in fp->insns.
1256 	 */
1257 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1258 			   GFP_KERNEL | __GFP_NOWARN);
1259 	if (!old_prog) {
1260 		err = -ENOMEM;
1261 		goto out_err;
1262 	}
1263 
1264 	/* 1st pass: calculate the new program length. */
1265 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1266 				 &seen_ld_abs);
1267 	if (err)
1268 		goto out_err_free;
1269 
1270 	/* Expand fp for appending the new filter representation. */
1271 	old_fp = fp;
1272 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1273 	if (!fp) {
1274 		/* The old_fp is still around in case we couldn't
1275 		 * allocate new memory, so uncharge on that one.
1276 		 */
1277 		fp = old_fp;
1278 		err = -ENOMEM;
1279 		goto out_err_free;
1280 	}
1281 
1282 	fp->len = new_len;
1283 
1284 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1285 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1286 				 &seen_ld_abs);
1287 	if (err)
1288 		/* 2nd bpf_convert_filter() can fail only if it fails
1289 		 * to allocate memory, remapping must succeed. Note,
1290 		 * that at this time old_fp has already been released
1291 		 * by krealloc().
1292 		 */
1293 		goto out_err_free;
1294 
1295 	fp = bpf_prog_select_runtime(fp, &err);
1296 	if (err)
1297 		goto out_err_free;
1298 
1299 	kfree(old_prog);
1300 	return fp;
1301 
1302 out_err_free:
1303 	kfree(old_prog);
1304 out_err:
1305 	__bpf_prog_release(fp);
1306 	return ERR_PTR(err);
1307 }
1308 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1309 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1310 					   bpf_aux_classic_check_t trans)
1311 {
1312 	int err;
1313 
1314 	fp->bpf_func = NULL;
1315 	fp->jited = 0;
1316 
1317 	err = bpf_check_classic(fp->insns, fp->len);
1318 	if (err) {
1319 		__bpf_prog_release(fp);
1320 		return ERR_PTR(err);
1321 	}
1322 
1323 	/* There might be additional checks and transformations
1324 	 * needed on classic filters, f.e. in case of seccomp.
1325 	 */
1326 	if (trans) {
1327 		err = trans(fp->insns, fp->len);
1328 		if (err) {
1329 			__bpf_prog_release(fp);
1330 			return ERR_PTR(err);
1331 		}
1332 	}
1333 
1334 	/* Probe if we can JIT compile the filter and if so, do
1335 	 * the compilation of the filter.
1336 	 */
1337 	bpf_jit_compile(fp);
1338 
1339 	/* JIT compiler couldn't process this filter, so do the
1340 	 * internal BPF translation for the optimized interpreter.
1341 	 */
1342 	if (!fp->jited)
1343 		fp = bpf_migrate_filter(fp);
1344 
1345 	return fp;
1346 }
1347 
1348 /**
1349  *	bpf_prog_create - create an unattached filter
1350  *	@pfp: the unattached filter that is created
1351  *	@fprog: the filter program
1352  *
1353  * Create a filter independent of any socket. We first run some
1354  * sanity checks on it to make sure it does not explode on us later.
1355  * If an error occurs or there is insufficient memory for the filter
1356  * a negative errno code is returned. On success the return is zero.
1357  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1358 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1359 {
1360 	unsigned int fsize = bpf_classic_proglen(fprog);
1361 	struct bpf_prog *fp;
1362 
1363 	/* Make sure new filter is there and in the right amounts. */
1364 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1365 		return -EINVAL;
1366 
1367 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1368 	if (!fp)
1369 		return -ENOMEM;
1370 
1371 	memcpy(fp->insns, fprog->filter, fsize);
1372 
1373 	fp->len = fprog->len;
1374 	/* Since unattached filters are not copied back to user
1375 	 * space through sk_get_filter(), we do not need to hold
1376 	 * a copy here, and can spare us the work.
1377 	 */
1378 	fp->orig_prog = NULL;
1379 
1380 	/* bpf_prepare_filter() already takes care of freeing
1381 	 * memory in case something goes wrong.
1382 	 */
1383 	fp = bpf_prepare_filter(fp, NULL);
1384 	if (IS_ERR(fp))
1385 		return PTR_ERR(fp);
1386 
1387 	*pfp = fp;
1388 	return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(bpf_prog_create);
1391 
1392 /**
1393  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1394  *	@pfp: the unattached filter that is created
1395  *	@fprog: the filter program
1396  *	@trans: post-classic verifier transformation handler
1397  *	@save_orig: save classic BPF program
1398  *
1399  * This function effectively does the same as bpf_prog_create(), only
1400  * that it builds up its insns buffer from user space provided buffer.
1401  * It also allows for passing a bpf_aux_classic_check_t handler.
1402  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1403 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1404 			      bpf_aux_classic_check_t trans, bool save_orig)
1405 {
1406 	unsigned int fsize = bpf_classic_proglen(fprog);
1407 	struct bpf_prog *fp;
1408 	int err;
1409 
1410 	/* Make sure new filter is there and in the right amounts. */
1411 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1412 		return -EINVAL;
1413 
1414 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1415 	if (!fp)
1416 		return -ENOMEM;
1417 
1418 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1419 		__bpf_prog_free(fp);
1420 		return -EFAULT;
1421 	}
1422 
1423 	fp->len = fprog->len;
1424 	fp->orig_prog = NULL;
1425 
1426 	if (save_orig) {
1427 		err = bpf_prog_store_orig_filter(fp, fprog);
1428 		if (err) {
1429 			__bpf_prog_free(fp);
1430 			return -ENOMEM;
1431 		}
1432 	}
1433 
1434 	/* bpf_prepare_filter() already takes care of freeing
1435 	 * memory in case something goes wrong.
1436 	 */
1437 	fp = bpf_prepare_filter(fp, trans);
1438 	if (IS_ERR(fp))
1439 		return PTR_ERR(fp);
1440 
1441 	*pfp = fp;
1442 	return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1445 
bpf_prog_destroy(struct bpf_prog * fp)1446 void bpf_prog_destroy(struct bpf_prog *fp)
1447 {
1448 	__bpf_prog_release(fp);
1449 }
1450 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1451 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1452 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1453 {
1454 	struct sk_filter *fp, *old_fp;
1455 
1456 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1457 	if (!fp)
1458 		return -ENOMEM;
1459 
1460 	fp->prog = prog;
1461 
1462 	if (!__sk_filter_charge(sk, fp)) {
1463 		kfree(fp);
1464 		return -ENOMEM;
1465 	}
1466 	refcount_set(&fp->refcnt, 1);
1467 
1468 	old_fp = rcu_dereference_protected(sk->sk_filter,
1469 					   lockdep_sock_is_held(sk));
1470 	rcu_assign_pointer(sk->sk_filter, fp);
1471 
1472 	if (old_fp)
1473 		sk_filter_uncharge(sk, old_fp);
1474 
1475 	return 0;
1476 }
1477 
1478 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1479 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1480 {
1481 	unsigned int fsize = bpf_classic_proglen(fprog);
1482 	struct bpf_prog *prog;
1483 	int err;
1484 
1485 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1486 		return ERR_PTR(-EPERM);
1487 
1488 	/* Make sure new filter is there and in the right amounts. */
1489 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1490 		return ERR_PTR(-EINVAL);
1491 
1492 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1493 	if (!prog)
1494 		return ERR_PTR(-ENOMEM);
1495 
1496 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1497 		__bpf_prog_free(prog);
1498 		return ERR_PTR(-EFAULT);
1499 	}
1500 
1501 	prog->len = fprog->len;
1502 
1503 	err = bpf_prog_store_orig_filter(prog, fprog);
1504 	if (err) {
1505 		__bpf_prog_free(prog);
1506 		return ERR_PTR(-ENOMEM);
1507 	}
1508 
1509 	/* bpf_prepare_filter() already takes care of freeing
1510 	 * memory in case something goes wrong.
1511 	 */
1512 	return bpf_prepare_filter(prog, NULL);
1513 }
1514 
1515 /**
1516  *	sk_attach_filter - attach a socket filter
1517  *	@fprog: the filter program
1518  *	@sk: the socket to use
1519  *
1520  * Attach the user's filter code. We first run some sanity checks on
1521  * it to make sure it does not explode on us later. If an error
1522  * occurs or there is insufficient memory for the filter a negative
1523  * errno code is returned. On success the return is zero.
1524  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1525 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1526 {
1527 	struct bpf_prog *prog = __get_filter(fprog, sk);
1528 	int err;
1529 
1530 	if (IS_ERR(prog))
1531 		return PTR_ERR(prog);
1532 
1533 	err = __sk_attach_prog(prog, sk);
1534 	if (err < 0) {
1535 		__bpf_prog_release(prog);
1536 		return err;
1537 	}
1538 
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(sk_attach_filter);
1542 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1543 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1544 {
1545 	struct bpf_prog *prog = __get_filter(fprog, sk);
1546 	int err;
1547 
1548 	if (IS_ERR(prog))
1549 		return PTR_ERR(prog);
1550 
1551 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1552 		err = -ENOMEM;
1553 	else
1554 		err = reuseport_attach_prog(sk, prog);
1555 
1556 	if (err)
1557 		__bpf_prog_release(prog);
1558 
1559 	return err;
1560 }
1561 
__get_bpf(u32 ufd,struct sock * sk)1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565 		return ERR_PTR(-EPERM);
1566 
1567 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569 
sk_attach_bpf(u32 ufd,struct sock * sk)1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1573 	int err;
1574 
1575 	if (IS_ERR(prog))
1576 		return PTR_ERR(prog);
1577 
1578 	err = __sk_attach_prog(prog, sk);
1579 	if (err < 0) {
1580 		bpf_prog_put(prog);
1581 		return err;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589 	struct bpf_prog *prog;
1590 	int err;
1591 
1592 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1593 		return -EPERM;
1594 
1595 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1596 	if (PTR_ERR(prog) == -EINVAL)
1597 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1598 	if (IS_ERR(prog))
1599 		return PTR_ERR(prog);
1600 
1601 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1602 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1603 		 * bpf prog (e.g. sockmap).  It depends on the
1604 		 * limitation imposed by bpf_prog_load().
1605 		 * Hence, sysctl_optmem_max is not checked.
1606 		 */
1607 		if ((sk->sk_type != SOCK_STREAM &&
1608 		     sk->sk_type != SOCK_DGRAM) ||
1609 		    (sk->sk_protocol != IPPROTO_UDP &&
1610 		     sk->sk_protocol != IPPROTO_TCP) ||
1611 		    (sk->sk_family != AF_INET &&
1612 		     sk->sk_family != AF_INET6)) {
1613 			err = -ENOTSUPP;
1614 			goto err_prog_put;
1615 		}
1616 	} else {
1617 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1618 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1619 			err = -ENOMEM;
1620 			goto err_prog_put;
1621 		}
1622 	}
1623 
1624 	err = reuseport_attach_prog(sk, prog);
1625 err_prog_put:
1626 	if (err)
1627 		bpf_prog_put(prog);
1628 
1629 	return err;
1630 }
1631 
sk_reuseport_prog_free(struct bpf_prog * prog)1632 void sk_reuseport_prog_free(struct bpf_prog *prog)
1633 {
1634 	if (!prog)
1635 		return;
1636 
1637 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1638 		bpf_prog_put(prog);
1639 	else
1640 		bpf_prog_destroy(prog);
1641 }
1642 
1643 struct bpf_scratchpad {
1644 	union {
1645 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1646 		u8     buff[MAX_BPF_STACK];
1647 	};
1648 };
1649 
1650 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1651 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1652 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1653 					  unsigned int write_len)
1654 {
1655 	return skb_ensure_writable(skb, write_len);
1656 }
1657 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1658 static inline int bpf_try_make_writable(struct sk_buff *skb,
1659 					unsigned int write_len)
1660 {
1661 	int err = __bpf_try_make_writable(skb, write_len);
1662 
1663 	bpf_compute_data_pointers(skb);
1664 	return err;
1665 }
1666 
bpf_try_make_head_writable(struct sk_buff * skb)1667 static int bpf_try_make_head_writable(struct sk_buff *skb)
1668 {
1669 	return bpf_try_make_writable(skb, skb_headlen(skb));
1670 }
1671 
bpf_push_mac_rcsum(struct sk_buff * skb)1672 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1673 {
1674 	if (skb_at_tc_ingress(skb))
1675 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1676 }
1677 
bpf_pull_mac_rcsum(struct sk_buff * skb)1678 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1679 {
1680 	if (skb_at_tc_ingress(skb))
1681 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1682 }
1683 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1684 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1685 	   const void *, from, u32, len, u64, flags)
1686 {
1687 	void *ptr;
1688 
1689 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1690 		return -EINVAL;
1691 	if (unlikely(offset > INT_MAX))
1692 		return -EFAULT;
1693 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1694 		return -EFAULT;
1695 
1696 	ptr = skb->data + offset;
1697 	if (flags & BPF_F_RECOMPUTE_CSUM)
1698 		__skb_postpull_rcsum(skb, ptr, len, offset);
1699 
1700 	memcpy(ptr, from, len);
1701 
1702 	if (flags & BPF_F_RECOMPUTE_CSUM)
1703 		__skb_postpush_rcsum(skb, ptr, len, offset);
1704 	if (flags & BPF_F_INVALIDATE_HASH)
1705 		skb_clear_hash(skb);
1706 
1707 	return 0;
1708 }
1709 
1710 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1711 	.func		= bpf_skb_store_bytes,
1712 	.gpl_only	= false,
1713 	.ret_type	= RET_INTEGER,
1714 	.arg1_type	= ARG_PTR_TO_CTX,
1715 	.arg2_type	= ARG_ANYTHING,
1716 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1717 	.arg4_type	= ARG_CONST_SIZE,
1718 	.arg5_type	= ARG_ANYTHING,
1719 };
1720 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1721 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1722 	   void *, to, u32, len)
1723 {
1724 	void *ptr;
1725 
1726 	if (unlikely(offset > INT_MAX))
1727 		goto err_clear;
1728 
1729 	ptr = skb_header_pointer(skb, offset, len, to);
1730 	if (unlikely(!ptr))
1731 		goto err_clear;
1732 	if (ptr != to)
1733 		memcpy(to, ptr, len);
1734 
1735 	return 0;
1736 err_clear:
1737 	memset(to, 0, len);
1738 	return -EFAULT;
1739 }
1740 
1741 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1742 	.func		= bpf_skb_load_bytes,
1743 	.gpl_only	= false,
1744 	.ret_type	= RET_INTEGER,
1745 	.arg1_type	= ARG_PTR_TO_CTX,
1746 	.arg2_type	= ARG_ANYTHING,
1747 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1748 	.arg4_type	= ARG_CONST_SIZE,
1749 };
1750 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1751 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1752 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1753 	   void *, to, u32, len)
1754 {
1755 	void *ptr;
1756 
1757 	if (unlikely(offset > 0xffff))
1758 		goto err_clear;
1759 
1760 	if (unlikely(!ctx->skb))
1761 		goto err_clear;
1762 
1763 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1764 	if (unlikely(!ptr))
1765 		goto err_clear;
1766 	if (ptr != to)
1767 		memcpy(to, ptr, len);
1768 
1769 	return 0;
1770 err_clear:
1771 	memset(to, 0, len);
1772 	return -EFAULT;
1773 }
1774 
1775 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1776 	.func		= bpf_flow_dissector_load_bytes,
1777 	.gpl_only	= false,
1778 	.ret_type	= RET_INTEGER,
1779 	.arg1_type	= ARG_PTR_TO_CTX,
1780 	.arg2_type	= ARG_ANYTHING,
1781 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1782 	.arg4_type	= ARG_CONST_SIZE,
1783 };
1784 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1785 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1786 	   u32, offset, void *, to, u32, len, u32, start_header)
1787 {
1788 	u8 *end = skb_tail_pointer(skb);
1789 	u8 *start, *ptr;
1790 
1791 	if (unlikely(offset > 0xffff))
1792 		goto err_clear;
1793 
1794 	switch (start_header) {
1795 	case BPF_HDR_START_MAC:
1796 		if (unlikely(!skb_mac_header_was_set(skb)))
1797 			goto err_clear;
1798 		start = skb_mac_header(skb);
1799 		break;
1800 	case BPF_HDR_START_NET:
1801 		start = skb_network_header(skb);
1802 		break;
1803 	default:
1804 		goto err_clear;
1805 	}
1806 
1807 	ptr = start + offset;
1808 
1809 	if (likely(ptr + len <= end)) {
1810 		memcpy(to, ptr, len);
1811 		return 0;
1812 	}
1813 
1814 err_clear:
1815 	memset(to, 0, len);
1816 	return -EFAULT;
1817 }
1818 
1819 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1820 	.func		= bpf_skb_load_bytes_relative,
1821 	.gpl_only	= false,
1822 	.ret_type	= RET_INTEGER,
1823 	.arg1_type	= ARG_PTR_TO_CTX,
1824 	.arg2_type	= ARG_ANYTHING,
1825 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1826 	.arg4_type	= ARG_CONST_SIZE,
1827 	.arg5_type	= ARG_ANYTHING,
1828 };
1829 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1830 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1831 {
1832 	/* Idea is the following: should the needed direct read/write
1833 	 * test fail during runtime, we can pull in more data and redo
1834 	 * again, since implicitly, we invalidate previous checks here.
1835 	 *
1836 	 * Or, since we know how much we need to make read/writeable,
1837 	 * this can be done once at the program beginning for direct
1838 	 * access case. By this we overcome limitations of only current
1839 	 * headroom being accessible.
1840 	 */
1841 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1842 }
1843 
1844 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1845 	.func		= bpf_skb_pull_data,
1846 	.gpl_only	= false,
1847 	.ret_type	= RET_INTEGER,
1848 	.arg1_type	= ARG_PTR_TO_CTX,
1849 	.arg2_type	= ARG_ANYTHING,
1850 };
1851 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1852 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1853 {
1854 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1855 }
1856 
1857 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1858 	.func		= bpf_sk_fullsock,
1859 	.gpl_only	= false,
1860 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1861 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1862 };
1863 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1864 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1865 					   unsigned int write_len)
1866 {
1867 	int err = __bpf_try_make_writable(skb, write_len);
1868 
1869 	bpf_compute_data_end_sk_skb(skb);
1870 	return err;
1871 }
1872 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1873 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1874 {
1875 	/* Idea is the following: should the needed direct read/write
1876 	 * test fail during runtime, we can pull in more data and redo
1877 	 * again, since implicitly, we invalidate previous checks here.
1878 	 *
1879 	 * Or, since we know how much we need to make read/writeable,
1880 	 * this can be done once at the program beginning for direct
1881 	 * access case. By this we overcome limitations of only current
1882 	 * headroom being accessible.
1883 	 */
1884 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1885 }
1886 
1887 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1888 	.func		= sk_skb_pull_data,
1889 	.gpl_only	= false,
1890 	.ret_type	= RET_INTEGER,
1891 	.arg1_type	= ARG_PTR_TO_CTX,
1892 	.arg2_type	= ARG_ANYTHING,
1893 };
1894 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1895 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1896 	   u64, from, u64, to, u64, flags)
1897 {
1898 	__sum16 *ptr;
1899 
1900 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1901 		return -EINVAL;
1902 	if (unlikely(offset > 0xffff || offset & 1))
1903 		return -EFAULT;
1904 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1905 		return -EFAULT;
1906 
1907 	ptr = (__sum16 *)(skb->data + offset);
1908 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1909 	case 0:
1910 		if (unlikely(from != 0))
1911 			return -EINVAL;
1912 
1913 		csum_replace_by_diff(ptr, to);
1914 		break;
1915 	case 2:
1916 		csum_replace2(ptr, from, to);
1917 		break;
1918 	case 4:
1919 		csum_replace4(ptr, from, to);
1920 		break;
1921 	default:
1922 		return -EINVAL;
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1929 	.func		= bpf_l3_csum_replace,
1930 	.gpl_only	= false,
1931 	.ret_type	= RET_INTEGER,
1932 	.arg1_type	= ARG_PTR_TO_CTX,
1933 	.arg2_type	= ARG_ANYTHING,
1934 	.arg3_type	= ARG_ANYTHING,
1935 	.arg4_type	= ARG_ANYTHING,
1936 	.arg5_type	= ARG_ANYTHING,
1937 };
1938 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1939 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1940 	   u64, from, u64, to, u64, flags)
1941 {
1942 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1943 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1944 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1945 	__sum16 *ptr;
1946 
1947 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1948 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1949 		return -EINVAL;
1950 	if (unlikely(offset > 0xffff || offset & 1))
1951 		return -EFAULT;
1952 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1953 		return -EFAULT;
1954 
1955 	ptr = (__sum16 *)(skb->data + offset);
1956 	if (is_mmzero && !do_mforce && !*ptr)
1957 		return 0;
1958 
1959 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1960 	case 0:
1961 		if (unlikely(from != 0))
1962 			return -EINVAL;
1963 
1964 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1965 		break;
1966 	case 2:
1967 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1968 		break;
1969 	case 4:
1970 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1971 		break;
1972 	default:
1973 		return -EINVAL;
1974 	}
1975 
1976 	if (is_mmzero && !*ptr)
1977 		*ptr = CSUM_MANGLED_0;
1978 	return 0;
1979 }
1980 
1981 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1982 	.func		= bpf_l4_csum_replace,
1983 	.gpl_only	= false,
1984 	.ret_type	= RET_INTEGER,
1985 	.arg1_type	= ARG_PTR_TO_CTX,
1986 	.arg2_type	= ARG_ANYTHING,
1987 	.arg3_type	= ARG_ANYTHING,
1988 	.arg4_type	= ARG_ANYTHING,
1989 	.arg5_type	= ARG_ANYTHING,
1990 };
1991 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1992 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1993 	   __be32 *, to, u32, to_size, __wsum, seed)
1994 {
1995 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1996 	u32 diff_size = from_size + to_size;
1997 	int i, j = 0;
1998 
1999 	/* This is quite flexible, some examples:
2000 	 *
2001 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2002 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2003 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2004 	 *
2005 	 * Even for diffing, from_size and to_size don't need to be equal.
2006 	 */
2007 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2008 		     diff_size > sizeof(sp->diff)))
2009 		return -EINVAL;
2010 
2011 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2012 		sp->diff[j] = ~from[i];
2013 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2014 		sp->diff[j] = to[i];
2015 
2016 	return csum_partial(sp->diff, diff_size, seed);
2017 }
2018 
2019 static const struct bpf_func_proto bpf_csum_diff_proto = {
2020 	.func		= bpf_csum_diff,
2021 	.gpl_only	= false,
2022 	.pkt_access	= true,
2023 	.ret_type	= RET_INTEGER,
2024 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2026 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2027 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2028 	.arg5_type	= ARG_ANYTHING,
2029 };
2030 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2031 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2032 {
2033 	/* The interface is to be used in combination with bpf_csum_diff()
2034 	 * for direct packet writes. csum rotation for alignment as well
2035 	 * as emulating csum_sub() can be done from the eBPF program.
2036 	 */
2037 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2038 		return (skb->csum = csum_add(skb->csum, csum));
2039 
2040 	return -ENOTSUPP;
2041 }
2042 
2043 static const struct bpf_func_proto bpf_csum_update_proto = {
2044 	.func		= bpf_csum_update,
2045 	.gpl_only	= false,
2046 	.ret_type	= RET_INTEGER,
2047 	.arg1_type	= ARG_PTR_TO_CTX,
2048 	.arg2_type	= ARG_ANYTHING,
2049 };
2050 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2051 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2052 {
2053 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2054 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2055 	 * is passed as flags, for example.
2056 	 */
2057 	switch (level) {
2058 	case BPF_CSUM_LEVEL_INC:
2059 		__skb_incr_checksum_unnecessary(skb);
2060 		break;
2061 	case BPF_CSUM_LEVEL_DEC:
2062 		__skb_decr_checksum_unnecessary(skb);
2063 		break;
2064 	case BPF_CSUM_LEVEL_RESET:
2065 		__skb_reset_checksum_unnecessary(skb);
2066 		break;
2067 	case BPF_CSUM_LEVEL_QUERY:
2068 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2069 		       skb->csum_level : -EACCES;
2070 	default:
2071 		return -EINVAL;
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 static const struct bpf_func_proto bpf_csum_level_proto = {
2078 	.func		= bpf_csum_level,
2079 	.gpl_only	= false,
2080 	.ret_type	= RET_INTEGER,
2081 	.arg1_type	= ARG_PTR_TO_CTX,
2082 	.arg2_type	= ARG_ANYTHING,
2083 };
2084 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2085 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2086 {
2087 	return dev_forward_skb(dev, skb);
2088 }
2089 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2090 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2091 				      struct sk_buff *skb)
2092 {
2093 	int ret = ____dev_forward_skb(dev, skb);
2094 
2095 	if (likely(!ret)) {
2096 		skb->dev = dev;
2097 		ret = netif_rx(skb);
2098 	}
2099 
2100 	return ret;
2101 }
2102 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2103 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105 	int ret;
2106 
2107 	if (dev_xmit_recursion()) {
2108 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2109 		kfree_skb(skb);
2110 		return -ENETDOWN;
2111 	}
2112 
2113 	skb->dev = dev;
2114 	skb->tstamp = 0;
2115 
2116 	dev_xmit_recursion_inc();
2117 	ret = dev_queue_xmit(skb);
2118 	dev_xmit_recursion_dec();
2119 
2120 	return ret;
2121 }
2122 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2123 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2124 				 u32 flags)
2125 {
2126 	unsigned int mlen = skb_network_offset(skb);
2127 
2128 	if (unlikely(skb->len <= mlen)) {
2129 		kfree_skb(skb);
2130 		return -ERANGE;
2131 	}
2132 
2133 	if (mlen) {
2134 		__skb_pull(skb, mlen);
2135 		if (unlikely(!skb->len)) {
2136 			kfree_skb(skb);
2137 			return -ERANGE;
2138 		}
2139 
2140 		/* At ingress, the mac header has already been pulled once.
2141 		 * At egress, skb_pospull_rcsum has to be done in case that
2142 		 * the skb is originated from ingress (i.e. a forwarded skb)
2143 		 * to ensure that rcsum starts at net header.
2144 		 */
2145 		if (!skb_at_tc_ingress(skb))
2146 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2147 	}
2148 	skb_pop_mac_header(skb);
2149 	skb_reset_mac_len(skb);
2150 	return flags & BPF_F_INGRESS ?
2151 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2152 }
2153 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2154 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2155 				 u32 flags)
2156 {
2157 	/* Verify that a link layer header is carried */
2158 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2159 		kfree_skb(skb);
2160 		return -ERANGE;
2161 	}
2162 
2163 	bpf_push_mac_rcsum(skb);
2164 	return flags & BPF_F_INGRESS ?
2165 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2166 }
2167 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2168 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2169 			  u32 flags)
2170 {
2171 	if (dev_is_mac_header_xmit(dev))
2172 		return __bpf_redirect_common(skb, dev, flags);
2173 	else
2174 		return __bpf_redirect_no_mac(skb, dev, flags);
2175 }
2176 
2177 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2178 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2179 			    struct net_device *dev, struct bpf_nh_params *nh)
2180 {
2181 	u32 hh_len = LL_RESERVED_SPACE(dev);
2182 	const struct in6_addr *nexthop;
2183 	struct dst_entry *dst = NULL;
2184 	struct neighbour *neigh;
2185 
2186 	if (dev_xmit_recursion()) {
2187 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2188 		goto out_drop;
2189 	}
2190 
2191 	skb->dev = dev;
2192 	skb->tstamp = 0;
2193 
2194 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2195 		struct sk_buff *skb2;
2196 
2197 		skb2 = skb_realloc_headroom(skb, hh_len);
2198 		if (unlikely(!skb2)) {
2199 			kfree_skb(skb);
2200 			return -ENOMEM;
2201 		}
2202 		if (skb->sk)
2203 			skb_set_owner_w(skb2, skb->sk);
2204 		consume_skb(skb);
2205 		skb = skb2;
2206 	}
2207 
2208 	rcu_read_lock_bh();
2209 	if (!nh) {
2210 		dst = skb_dst(skb);
2211 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2212 				      &ipv6_hdr(skb)->daddr);
2213 	} else {
2214 		nexthop = &nh->ipv6_nh;
2215 	}
2216 	neigh = ip_neigh_gw6(dev, nexthop);
2217 	if (likely(!IS_ERR(neigh))) {
2218 		int ret;
2219 
2220 		sock_confirm_neigh(skb, neigh);
2221 		dev_xmit_recursion_inc();
2222 		ret = neigh_output(neigh, skb, false);
2223 		dev_xmit_recursion_dec();
2224 		rcu_read_unlock_bh();
2225 		return ret;
2226 	}
2227 	rcu_read_unlock_bh();
2228 	if (dst)
2229 		IP6_INC_STATS(dev_net(dst->dev),
2230 			      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2231 out_drop:
2232 	kfree_skb(skb);
2233 	return -ENETDOWN;
2234 }
2235 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2236 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2237 				   struct bpf_nh_params *nh)
2238 {
2239 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2240 	struct net *net = dev_net(dev);
2241 	int err, ret = NET_XMIT_DROP;
2242 
2243 	if (!nh) {
2244 		struct dst_entry *dst;
2245 		struct flowi6 fl6 = {
2246 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2247 			.flowi6_mark  = skb->mark,
2248 			.flowlabel    = ip6_flowinfo(ip6h),
2249 			.flowi6_oif   = dev->ifindex,
2250 			.flowi6_proto = ip6h->nexthdr,
2251 			.daddr	      = ip6h->daddr,
2252 			.saddr	      = ip6h->saddr,
2253 		};
2254 
2255 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2256 		if (IS_ERR(dst))
2257 			goto out_drop;
2258 
2259 		skb_dst_set(skb, dst);
2260 	} else if (nh->nh_family != AF_INET6) {
2261 		goto out_drop;
2262 	}
2263 
2264 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2265 	if (unlikely(net_xmit_eval(err)))
2266 		dev->stats.tx_errors++;
2267 	else
2268 		ret = NET_XMIT_SUCCESS;
2269 	goto out_xmit;
2270 out_drop:
2271 	dev->stats.tx_errors++;
2272 	kfree_skb(skb);
2273 out_xmit:
2274 	return ret;
2275 }
2276 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2277 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2278 				   struct bpf_nh_params *nh)
2279 {
2280 	kfree_skb(skb);
2281 	return NET_XMIT_DROP;
2282 }
2283 #endif /* CONFIG_IPV6 */
2284 
2285 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2286 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2287 			    struct net_device *dev, struct bpf_nh_params *nh)
2288 {
2289 	u32 hh_len = LL_RESERVED_SPACE(dev);
2290 	struct neighbour *neigh;
2291 	bool is_v6gw = false;
2292 
2293 	if (dev_xmit_recursion()) {
2294 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2295 		goto out_drop;
2296 	}
2297 
2298 	skb->dev = dev;
2299 	skb->tstamp = 0;
2300 
2301 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2302 		struct sk_buff *skb2;
2303 
2304 		skb2 = skb_realloc_headroom(skb, hh_len);
2305 		if (unlikely(!skb2)) {
2306 			kfree_skb(skb);
2307 			return -ENOMEM;
2308 		}
2309 		if (skb->sk)
2310 			skb_set_owner_w(skb2, skb->sk);
2311 		consume_skb(skb);
2312 		skb = skb2;
2313 	}
2314 
2315 	rcu_read_lock_bh();
2316 	if (!nh) {
2317 		struct dst_entry *dst = skb_dst(skb);
2318 		struct rtable *rt = container_of(dst, struct rtable, dst);
2319 
2320 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2321 	} else if (nh->nh_family == AF_INET6) {
2322 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2323 		is_v6gw = true;
2324 	} else if (nh->nh_family == AF_INET) {
2325 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2326 	} else {
2327 		rcu_read_unlock_bh();
2328 		goto out_drop;
2329 	}
2330 
2331 	if (likely(!IS_ERR(neigh))) {
2332 		int ret;
2333 
2334 		sock_confirm_neigh(skb, neigh);
2335 		dev_xmit_recursion_inc();
2336 		ret = neigh_output(neigh, skb, is_v6gw);
2337 		dev_xmit_recursion_dec();
2338 		rcu_read_unlock_bh();
2339 		return ret;
2340 	}
2341 	rcu_read_unlock_bh();
2342 out_drop:
2343 	kfree_skb(skb);
2344 	return -ENETDOWN;
2345 }
2346 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2347 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2348 				   struct bpf_nh_params *nh)
2349 {
2350 	const struct iphdr *ip4h = ip_hdr(skb);
2351 	struct net *net = dev_net(dev);
2352 	int err, ret = NET_XMIT_DROP;
2353 
2354 	if (!nh) {
2355 		struct flowi4 fl4 = {
2356 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2357 			.flowi4_mark  = skb->mark,
2358 			.flowi4_tos   = RT_TOS(ip4h->tos),
2359 			.flowi4_oif   = dev->ifindex,
2360 			.flowi4_proto = ip4h->protocol,
2361 			.daddr	      = ip4h->daddr,
2362 			.saddr	      = ip4h->saddr,
2363 		};
2364 		struct rtable *rt;
2365 
2366 		rt = ip_route_output_flow(net, &fl4, NULL);
2367 		if (IS_ERR(rt))
2368 			goto out_drop;
2369 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2370 			ip_rt_put(rt);
2371 			goto out_drop;
2372 		}
2373 
2374 		skb_dst_set(skb, &rt->dst);
2375 	}
2376 
2377 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2378 	if (unlikely(net_xmit_eval(err)))
2379 		dev->stats.tx_errors++;
2380 	else
2381 		ret = NET_XMIT_SUCCESS;
2382 	goto out_xmit;
2383 out_drop:
2384 	dev->stats.tx_errors++;
2385 	kfree_skb(skb);
2386 out_xmit:
2387 	return ret;
2388 }
2389 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2390 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2391 				   struct bpf_nh_params *nh)
2392 {
2393 	kfree_skb(skb);
2394 	return NET_XMIT_DROP;
2395 }
2396 #endif /* CONFIG_INET */
2397 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2398 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2399 				struct bpf_nh_params *nh)
2400 {
2401 	struct ethhdr *ethh = eth_hdr(skb);
2402 
2403 	if (unlikely(skb->mac_header >= skb->network_header))
2404 		goto out;
2405 	bpf_push_mac_rcsum(skb);
2406 	if (is_multicast_ether_addr(ethh->h_dest))
2407 		goto out;
2408 
2409 	skb_pull(skb, sizeof(*ethh));
2410 	skb_unset_mac_header(skb);
2411 	skb_reset_network_header(skb);
2412 
2413 	if (skb->protocol == htons(ETH_P_IP))
2414 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2415 	else if (skb->protocol == htons(ETH_P_IPV6))
2416 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2417 out:
2418 	kfree_skb(skb);
2419 	return -ENOTSUPP;
2420 }
2421 
2422 /* Internal, non-exposed redirect flags. */
2423 enum {
2424 	BPF_F_NEIGH	= (1ULL << 1),
2425 	BPF_F_PEER	= (1ULL << 2),
2426 	BPF_F_NEXTHOP	= (1ULL << 3),
2427 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2428 };
2429 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2430 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2431 {
2432 	struct net_device *dev;
2433 	struct sk_buff *clone;
2434 	int ret;
2435 
2436 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2437 		return -EINVAL;
2438 
2439 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2440 	if (unlikely(!dev))
2441 		return -EINVAL;
2442 
2443 	clone = skb_clone(skb, GFP_ATOMIC);
2444 	if (unlikely(!clone))
2445 		return -ENOMEM;
2446 
2447 	/* For direct write, we need to keep the invariant that the skbs
2448 	 * we're dealing with need to be uncloned. Should uncloning fail
2449 	 * here, we need to free the just generated clone to unclone once
2450 	 * again.
2451 	 */
2452 	ret = bpf_try_make_head_writable(skb);
2453 	if (unlikely(ret)) {
2454 		kfree_skb(clone);
2455 		return -ENOMEM;
2456 	}
2457 
2458 	return __bpf_redirect(clone, dev, flags);
2459 }
2460 
2461 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2462 	.func           = bpf_clone_redirect,
2463 	.gpl_only       = false,
2464 	.ret_type       = RET_INTEGER,
2465 	.arg1_type      = ARG_PTR_TO_CTX,
2466 	.arg2_type      = ARG_ANYTHING,
2467 	.arg3_type      = ARG_ANYTHING,
2468 };
2469 
2470 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2471 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2472 
skb_do_redirect(struct sk_buff * skb)2473 int skb_do_redirect(struct sk_buff *skb)
2474 {
2475 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2476 	struct net *net = dev_net(skb->dev);
2477 	struct net_device *dev;
2478 	u32 flags = ri->flags;
2479 
2480 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2481 	ri->tgt_index = 0;
2482 	ri->flags = 0;
2483 	if (unlikely(!dev))
2484 		goto out_drop;
2485 	if (flags & BPF_F_PEER) {
2486 		const struct net_device_ops *ops = dev->netdev_ops;
2487 
2488 		if (unlikely(!ops->ndo_get_peer_dev ||
2489 			     !skb_at_tc_ingress(skb)))
2490 			goto out_drop;
2491 		dev = ops->ndo_get_peer_dev(dev);
2492 		if (unlikely(!dev ||
2493 			     !is_skb_forwardable(dev, skb) ||
2494 			     net_eq(net, dev_net(dev))))
2495 			goto out_drop;
2496 		skb->dev = dev;
2497 		return -EAGAIN;
2498 	}
2499 	return flags & BPF_F_NEIGH ?
2500 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2501 				    &ri->nh : NULL) :
2502 	       __bpf_redirect(skb, dev, flags);
2503 out_drop:
2504 	kfree_skb(skb);
2505 	return -EINVAL;
2506 }
2507 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2508 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2509 {
2510 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2511 
2512 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2513 		return TC_ACT_SHOT;
2514 
2515 	ri->flags = flags;
2516 	ri->tgt_index = ifindex;
2517 
2518 	return TC_ACT_REDIRECT;
2519 }
2520 
2521 static const struct bpf_func_proto bpf_redirect_proto = {
2522 	.func           = bpf_redirect,
2523 	.gpl_only       = false,
2524 	.ret_type       = RET_INTEGER,
2525 	.arg1_type      = ARG_ANYTHING,
2526 	.arg2_type      = ARG_ANYTHING,
2527 };
2528 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2529 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2530 {
2531 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2532 
2533 	if (unlikely(flags))
2534 		return TC_ACT_SHOT;
2535 
2536 	ri->flags = BPF_F_PEER;
2537 	ri->tgt_index = ifindex;
2538 
2539 	return TC_ACT_REDIRECT;
2540 }
2541 
2542 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2543 	.func           = bpf_redirect_peer,
2544 	.gpl_only       = false,
2545 	.ret_type       = RET_INTEGER,
2546 	.arg1_type      = ARG_ANYTHING,
2547 	.arg2_type      = ARG_ANYTHING,
2548 };
2549 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2550 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2551 	   int, plen, u64, flags)
2552 {
2553 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2554 
2555 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2556 		return TC_ACT_SHOT;
2557 
2558 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2559 	ri->tgt_index = ifindex;
2560 
2561 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2562 	if (plen)
2563 		memcpy(&ri->nh, params, sizeof(ri->nh));
2564 
2565 	return TC_ACT_REDIRECT;
2566 }
2567 
2568 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2569 	.func		= bpf_redirect_neigh,
2570 	.gpl_only	= false,
2571 	.ret_type	= RET_INTEGER,
2572 	.arg1_type	= ARG_ANYTHING,
2573 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2574 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2575 	.arg4_type	= ARG_ANYTHING,
2576 };
2577 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2578 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2579 {
2580 	msg->apply_bytes = bytes;
2581 	return 0;
2582 }
2583 
2584 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2585 	.func           = bpf_msg_apply_bytes,
2586 	.gpl_only       = false,
2587 	.ret_type       = RET_INTEGER,
2588 	.arg1_type	= ARG_PTR_TO_CTX,
2589 	.arg2_type      = ARG_ANYTHING,
2590 };
2591 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2592 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2593 {
2594 	msg->cork_bytes = bytes;
2595 	return 0;
2596 }
2597 
2598 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2599 	.func           = bpf_msg_cork_bytes,
2600 	.gpl_only       = false,
2601 	.ret_type       = RET_INTEGER,
2602 	.arg1_type	= ARG_PTR_TO_CTX,
2603 	.arg2_type      = ARG_ANYTHING,
2604 };
2605 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2606 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2607 	   u32, end, u64, flags)
2608 {
2609 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2610 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2611 	struct scatterlist *sge;
2612 	u8 *raw, *to, *from;
2613 	struct page *page;
2614 
2615 	if (unlikely(flags || end <= start))
2616 		return -EINVAL;
2617 
2618 	/* First find the starting scatterlist element */
2619 	i = msg->sg.start;
2620 	do {
2621 		offset += len;
2622 		len = sk_msg_elem(msg, i)->length;
2623 		if (start < offset + len)
2624 			break;
2625 		sk_msg_iter_var_next(i);
2626 	} while (i != msg->sg.end);
2627 
2628 	if (unlikely(start >= offset + len))
2629 		return -EINVAL;
2630 
2631 	first_sge = i;
2632 	/* The start may point into the sg element so we need to also
2633 	 * account for the headroom.
2634 	 */
2635 	bytes_sg_total = start - offset + bytes;
2636 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2637 		goto out;
2638 
2639 	/* At this point we need to linearize multiple scatterlist
2640 	 * elements or a single shared page. Either way we need to
2641 	 * copy into a linear buffer exclusively owned by BPF. Then
2642 	 * place the buffer in the scatterlist and fixup the original
2643 	 * entries by removing the entries now in the linear buffer
2644 	 * and shifting the remaining entries. For now we do not try
2645 	 * to copy partial entries to avoid complexity of running out
2646 	 * of sg_entry slots. The downside is reading a single byte
2647 	 * will copy the entire sg entry.
2648 	 */
2649 	do {
2650 		copy += sk_msg_elem(msg, i)->length;
2651 		sk_msg_iter_var_next(i);
2652 		if (bytes_sg_total <= copy)
2653 			break;
2654 	} while (i != msg->sg.end);
2655 	last_sge = i;
2656 
2657 	if (unlikely(bytes_sg_total > copy))
2658 		return -EINVAL;
2659 
2660 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2661 			   get_order(copy));
2662 	if (unlikely(!page))
2663 		return -ENOMEM;
2664 
2665 	raw = page_address(page);
2666 	i = first_sge;
2667 	do {
2668 		sge = sk_msg_elem(msg, i);
2669 		from = sg_virt(sge);
2670 		len = sge->length;
2671 		to = raw + poffset;
2672 
2673 		memcpy(to, from, len);
2674 		poffset += len;
2675 		sge->length = 0;
2676 		put_page(sg_page(sge));
2677 
2678 		sk_msg_iter_var_next(i);
2679 	} while (i != last_sge);
2680 
2681 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2682 
2683 	/* To repair sg ring we need to shift entries. If we only
2684 	 * had a single entry though we can just replace it and
2685 	 * be done. Otherwise walk the ring and shift the entries.
2686 	 */
2687 	WARN_ON_ONCE(last_sge == first_sge);
2688 	shift = last_sge > first_sge ?
2689 		last_sge - first_sge - 1 :
2690 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2691 	if (!shift)
2692 		goto out;
2693 
2694 	i = first_sge;
2695 	sk_msg_iter_var_next(i);
2696 	do {
2697 		u32 move_from;
2698 
2699 		if (i + shift >= NR_MSG_FRAG_IDS)
2700 			move_from = i + shift - NR_MSG_FRAG_IDS;
2701 		else
2702 			move_from = i + shift;
2703 		if (move_from == msg->sg.end)
2704 			break;
2705 
2706 		msg->sg.data[i] = msg->sg.data[move_from];
2707 		msg->sg.data[move_from].length = 0;
2708 		msg->sg.data[move_from].page_link = 0;
2709 		msg->sg.data[move_from].offset = 0;
2710 		sk_msg_iter_var_next(i);
2711 	} while (1);
2712 
2713 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2714 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2715 		      msg->sg.end - shift;
2716 out:
2717 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2718 	msg->data_end = msg->data + bytes;
2719 	return 0;
2720 }
2721 
2722 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2723 	.func		= bpf_msg_pull_data,
2724 	.gpl_only	= false,
2725 	.ret_type	= RET_INTEGER,
2726 	.arg1_type	= ARG_PTR_TO_CTX,
2727 	.arg2_type	= ARG_ANYTHING,
2728 	.arg3_type	= ARG_ANYTHING,
2729 	.arg4_type	= ARG_ANYTHING,
2730 };
2731 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2732 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2733 	   u32, len, u64, flags)
2734 {
2735 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2736 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2737 	u8 *raw, *to, *from;
2738 	struct page *page;
2739 
2740 	if (unlikely(flags))
2741 		return -EINVAL;
2742 
2743 	if (unlikely(len == 0))
2744 		return 0;
2745 
2746 	/* First find the starting scatterlist element */
2747 	i = msg->sg.start;
2748 	do {
2749 		offset += l;
2750 		l = sk_msg_elem(msg, i)->length;
2751 
2752 		if (start < offset + l)
2753 			break;
2754 		sk_msg_iter_var_next(i);
2755 	} while (i != msg->sg.end);
2756 
2757 	if (start >= offset + l)
2758 		return -EINVAL;
2759 
2760 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2761 
2762 	/* If no space available will fallback to copy, we need at
2763 	 * least one scatterlist elem available to push data into
2764 	 * when start aligns to the beginning of an element or two
2765 	 * when it falls inside an element. We handle the start equals
2766 	 * offset case because its the common case for inserting a
2767 	 * header.
2768 	 */
2769 	if (!space || (space == 1 && start != offset))
2770 		copy = msg->sg.data[i].length;
2771 
2772 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2773 			   get_order(copy + len));
2774 	if (unlikely(!page))
2775 		return -ENOMEM;
2776 
2777 	if (copy) {
2778 		int front, back;
2779 
2780 		raw = page_address(page);
2781 
2782 		psge = sk_msg_elem(msg, i);
2783 		front = start - offset;
2784 		back = psge->length - front;
2785 		from = sg_virt(psge);
2786 
2787 		if (front)
2788 			memcpy(raw, from, front);
2789 
2790 		if (back) {
2791 			from += front;
2792 			to = raw + front + len;
2793 
2794 			memcpy(to, from, back);
2795 		}
2796 
2797 		put_page(sg_page(psge));
2798 	} else if (start - offset) {
2799 		psge = sk_msg_elem(msg, i);
2800 		rsge = sk_msg_elem_cpy(msg, i);
2801 
2802 		psge->length = start - offset;
2803 		rsge.length -= psge->length;
2804 		rsge.offset += start;
2805 
2806 		sk_msg_iter_var_next(i);
2807 		sg_unmark_end(psge);
2808 		sg_unmark_end(&rsge);
2809 		sk_msg_iter_next(msg, end);
2810 	}
2811 
2812 	/* Slot(s) to place newly allocated data */
2813 	new = i;
2814 
2815 	/* Shift one or two slots as needed */
2816 	if (!copy) {
2817 		sge = sk_msg_elem_cpy(msg, i);
2818 
2819 		sk_msg_iter_var_next(i);
2820 		sg_unmark_end(&sge);
2821 		sk_msg_iter_next(msg, end);
2822 
2823 		nsge = sk_msg_elem_cpy(msg, i);
2824 		if (rsge.length) {
2825 			sk_msg_iter_var_next(i);
2826 			nnsge = sk_msg_elem_cpy(msg, i);
2827 		}
2828 
2829 		while (i != msg->sg.end) {
2830 			msg->sg.data[i] = sge;
2831 			sge = nsge;
2832 			sk_msg_iter_var_next(i);
2833 			if (rsge.length) {
2834 				nsge = nnsge;
2835 				nnsge = sk_msg_elem_cpy(msg, i);
2836 			} else {
2837 				nsge = sk_msg_elem_cpy(msg, i);
2838 			}
2839 		}
2840 	}
2841 
2842 	/* Place newly allocated data buffer */
2843 	sk_mem_charge(msg->sk, len);
2844 	msg->sg.size += len;
2845 	__clear_bit(new, &msg->sg.copy);
2846 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2847 	if (rsge.length) {
2848 		get_page(sg_page(&rsge));
2849 		sk_msg_iter_var_next(new);
2850 		msg->sg.data[new] = rsge;
2851 	}
2852 
2853 	sk_msg_compute_data_pointers(msg);
2854 	return 0;
2855 }
2856 
2857 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2858 	.func		= bpf_msg_push_data,
2859 	.gpl_only	= false,
2860 	.ret_type	= RET_INTEGER,
2861 	.arg1_type	= ARG_PTR_TO_CTX,
2862 	.arg2_type	= ARG_ANYTHING,
2863 	.arg3_type	= ARG_ANYTHING,
2864 	.arg4_type	= ARG_ANYTHING,
2865 };
2866 
sk_msg_shift_left(struct sk_msg * msg,int i)2867 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2868 {
2869 	int prev;
2870 
2871 	do {
2872 		prev = i;
2873 		sk_msg_iter_var_next(i);
2874 		msg->sg.data[prev] = msg->sg.data[i];
2875 	} while (i != msg->sg.end);
2876 
2877 	sk_msg_iter_prev(msg, end);
2878 }
2879 
sk_msg_shift_right(struct sk_msg * msg,int i)2880 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2881 {
2882 	struct scatterlist tmp, sge;
2883 
2884 	sk_msg_iter_next(msg, end);
2885 	sge = sk_msg_elem_cpy(msg, i);
2886 	sk_msg_iter_var_next(i);
2887 	tmp = sk_msg_elem_cpy(msg, i);
2888 
2889 	while (i != msg->sg.end) {
2890 		msg->sg.data[i] = sge;
2891 		sk_msg_iter_var_next(i);
2892 		sge = tmp;
2893 		tmp = sk_msg_elem_cpy(msg, i);
2894 	}
2895 }
2896 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2897 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2898 	   u32, len, u64, flags)
2899 {
2900 	u32 i = 0, l = 0, space, offset = 0;
2901 	u64 last = start + len;
2902 	int pop;
2903 
2904 	if (unlikely(flags))
2905 		return -EINVAL;
2906 
2907 	/* First find the starting scatterlist element */
2908 	i = msg->sg.start;
2909 	do {
2910 		offset += l;
2911 		l = sk_msg_elem(msg, i)->length;
2912 
2913 		if (start < offset + l)
2914 			break;
2915 		sk_msg_iter_var_next(i);
2916 	} while (i != msg->sg.end);
2917 
2918 	/* Bounds checks: start and pop must be inside message */
2919 	if (start >= offset + l || last >= msg->sg.size)
2920 		return -EINVAL;
2921 
2922 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2923 
2924 	pop = len;
2925 	/* --------------| offset
2926 	 * -| start      |-------- len -------|
2927 	 *
2928 	 *  |----- a ----|-------- pop -------|----- b ----|
2929 	 *  |______________________________________________| length
2930 	 *
2931 	 *
2932 	 * a:   region at front of scatter element to save
2933 	 * b:   region at back of scatter element to save when length > A + pop
2934 	 * pop: region to pop from element, same as input 'pop' here will be
2935 	 *      decremented below per iteration.
2936 	 *
2937 	 * Two top-level cases to handle when start != offset, first B is non
2938 	 * zero and second B is zero corresponding to when a pop includes more
2939 	 * than one element.
2940 	 *
2941 	 * Then if B is non-zero AND there is no space allocate space and
2942 	 * compact A, B regions into page. If there is space shift ring to
2943 	 * the rigth free'ing the next element in ring to place B, leaving
2944 	 * A untouched except to reduce length.
2945 	 */
2946 	if (start != offset) {
2947 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2948 		int a = start;
2949 		int b = sge->length - pop - a;
2950 
2951 		sk_msg_iter_var_next(i);
2952 
2953 		if (pop < sge->length - a) {
2954 			if (space) {
2955 				sge->length = a;
2956 				sk_msg_shift_right(msg, i);
2957 				nsge = sk_msg_elem(msg, i);
2958 				get_page(sg_page(sge));
2959 				sg_set_page(nsge,
2960 					    sg_page(sge),
2961 					    b, sge->offset + pop + a);
2962 			} else {
2963 				struct page *page, *orig;
2964 				u8 *to, *from;
2965 
2966 				page = alloc_pages(__GFP_NOWARN |
2967 						   __GFP_COMP   | GFP_ATOMIC,
2968 						   get_order(a + b));
2969 				if (unlikely(!page))
2970 					return -ENOMEM;
2971 
2972 				sge->length = a;
2973 				orig = sg_page(sge);
2974 				from = sg_virt(sge);
2975 				to = page_address(page);
2976 				memcpy(to, from, a);
2977 				memcpy(to + a, from + a + pop, b);
2978 				sg_set_page(sge, page, a + b, 0);
2979 				put_page(orig);
2980 			}
2981 			pop = 0;
2982 		} else if (pop >= sge->length - a) {
2983 			pop -= (sge->length - a);
2984 			sge->length = a;
2985 		}
2986 	}
2987 
2988 	/* From above the current layout _must_ be as follows,
2989 	 *
2990 	 * -| offset
2991 	 * -| start
2992 	 *
2993 	 *  |---- pop ---|---------------- b ------------|
2994 	 *  |____________________________________________| length
2995 	 *
2996 	 * Offset and start of the current msg elem are equal because in the
2997 	 * previous case we handled offset != start and either consumed the
2998 	 * entire element and advanced to the next element OR pop == 0.
2999 	 *
3000 	 * Two cases to handle here are first pop is less than the length
3001 	 * leaving some remainder b above. Simply adjust the element's layout
3002 	 * in this case. Or pop >= length of the element so that b = 0. In this
3003 	 * case advance to next element decrementing pop.
3004 	 */
3005 	while (pop) {
3006 		struct scatterlist *sge = sk_msg_elem(msg, i);
3007 
3008 		if (pop < sge->length) {
3009 			sge->length -= pop;
3010 			sge->offset += pop;
3011 			pop = 0;
3012 		} else {
3013 			pop -= sge->length;
3014 			sk_msg_shift_left(msg, i);
3015 		}
3016 		sk_msg_iter_var_next(i);
3017 	}
3018 
3019 	sk_mem_uncharge(msg->sk, len - pop);
3020 	msg->sg.size -= (len - pop);
3021 	sk_msg_compute_data_pointers(msg);
3022 	return 0;
3023 }
3024 
3025 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3026 	.func		= bpf_msg_pop_data,
3027 	.gpl_only	= false,
3028 	.ret_type	= RET_INTEGER,
3029 	.arg1_type	= ARG_PTR_TO_CTX,
3030 	.arg2_type	= ARG_ANYTHING,
3031 	.arg3_type	= ARG_ANYTHING,
3032 	.arg4_type	= ARG_ANYTHING,
3033 };
3034 
3035 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3036 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3037 {
3038 	return __task_get_classid(current);
3039 }
3040 
3041 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3042 	.func		= bpf_get_cgroup_classid_curr,
3043 	.gpl_only	= false,
3044 	.ret_type	= RET_INTEGER,
3045 };
3046 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3047 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3048 {
3049 	struct sock *sk = skb_to_full_sk(skb);
3050 
3051 	if (!sk || !sk_fullsock(sk))
3052 		return 0;
3053 
3054 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3055 }
3056 
3057 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3058 	.func		= bpf_skb_cgroup_classid,
3059 	.gpl_only	= false,
3060 	.ret_type	= RET_INTEGER,
3061 	.arg1_type	= ARG_PTR_TO_CTX,
3062 };
3063 #endif
3064 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3065 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3066 {
3067 	return task_get_classid(skb);
3068 }
3069 
3070 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3071 	.func           = bpf_get_cgroup_classid,
3072 	.gpl_only       = false,
3073 	.ret_type       = RET_INTEGER,
3074 	.arg1_type      = ARG_PTR_TO_CTX,
3075 };
3076 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3077 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3078 {
3079 	return dst_tclassid(skb);
3080 }
3081 
3082 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3083 	.func           = bpf_get_route_realm,
3084 	.gpl_only       = false,
3085 	.ret_type       = RET_INTEGER,
3086 	.arg1_type      = ARG_PTR_TO_CTX,
3087 };
3088 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3089 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3090 {
3091 	/* If skb_clear_hash() was called due to mangling, we can
3092 	 * trigger SW recalculation here. Later access to hash
3093 	 * can then use the inline skb->hash via context directly
3094 	 * instead of calling this helper again.
3095 	 */
3096 	return skb_get_hash(skb);
3097 }
3098 
3099 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3100 	.func		= bpf_get_hash_recalc,
3101 	.gpl_only	= false,
3102 	.ret_type	= RET_INTEGER,
3103 	.arg1_type	= ARG_PTR_TO_CTX,
3104 };
3105 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3106 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3107 {
3108 	/* After all direct packet write, this can be used once for
3109 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3110 	 */
3111 	skb_clear_hash(skb);
3112 	return 0;
3113 }
3114 
3115 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3116 	.func		= bpf_set_hash_invalid,
3117 	.gpl_only	= false,
3118 	.ret_type	= RET_INTEGER,
3119 	.arg1_type	= ARG_PTR_TO_CTX,
3120 };
3121 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3122 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3123 {
3124 	/* Set user specified hash as L4(+), so that it gets returned
3125 	 * on skb_get_hash() call unless BPF prog later on triggers a
3126 	 * skb_clear_hash().
3127 	 */
3128 	__skb_set_sw_hash(skb, hash, true);
3129 	return 0;
3130 }
3131 
3132 static const struct bpf_func_proto bpf_set_hash_proto = {
3133 	.func		= bpf_set_hash,
3134 	.gpl_only	= false,
3135 	.ret_type	= RET_INTEGER,
3136 	.arg1_type	= ARG_PTR_TO_CTX,
3137 	.arg2_type	= ARG_ANYTHING,
3138 };
3139 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3140 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3141 	   u16, vlan_tci)
3142 {
3143 	int ret;
3144 
3145 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3146 		     vlan_proto != htons(ETH_P_8021AD)))
3147 		vlan_proto = htons(ETH_P_8021Q);
3148 
3149 	bpf_push_mac_rcsum(skb);
3150 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3151 	bpf_pull_mac_rcsum(skb);
3152 
3153 	bpf_compute_data_pointers(skb);
3154 	return ret;
3155 }
3156 
3157 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3158 	.func           = bpf_skb_vlan_push,
3159 	.gpl_only       = false,
3160 	.ret_type       = RET_INTEGER,
3161 	.arg1_type      = ARG_PTR_TO_CTX,
3162 	.arg2_type      = ARG_ANYTHING,
3163 	.arg3_type      = ARG_ANYTHING,
3164 };
3165 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3166 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3167 {
3168 	int ret;
3169 
3170 	bpf_push_mac_rcsum(skb);
3171 	ret = skb_vlan_pop(skb);
3172 	bpf_pull_mac_rcsum(skb);
3173 
3174 	bpf_compute_data_pointers(skb);
3175 	return ret;
3176 }
3177 
3178 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3179 	.func           = bpf_skb_vlan_pop,
3180 	.gpl_only       = false,
3181 	.ret_type       = RET_INTEGER,
3182 	.arg1_type      = ARG_PTR_TO_CTX,
3183 };
3184 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3185 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3186 {
3187 	/* Caller already did skb_cow() with len as headroom,
3188 	 * so no need to do it here.
3189 	 */
3190 	skb_push(skb, len);
3191 	memmove(skb->data, skb->data + len, off);
3192 	memset(skb->data + off, 0, len);
3193 
3194 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3195 	 * needed here as it does not change the skb->csum
3196 	 * result for checksum complete when summing over
3197 	 * zeroed blocks.
3198 	 */
3199 	return 0;
3200 }
3201 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3202 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3203 {
3204 	void *old_data;
3205 
3206 	/* skb_ensure_writable() is not needed here, as we're
3207 	 * already working on an uncloned skb.
3208 	 */
3209 	if (unlikely(!pskb_may_pull(skb, off + len)))
3210 		return -ENOMEM;
3211 
3212 	old_data = skb->data;
3213 	__skb_pull(skb, len);
3214 	skb_postpull_rcsum(skb, old_data + off, len);
3215 	memmove(skb->data, old_data, off);
3216 
3217 	return 0;
3218 }
3219 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3220 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3221 {
3222 	bool trans_same = skb->transport_header == skb->network_header;
3223 	int ret;
3224 
3225 	/* There's no need for __skb_push()/__skb_pull() pair to
3226 	 * get to the start of the mac header as we're guaranteed
3227 	 * to always start from here under eBPF.
3228 	 */
3229 	ret = bpf_skb_generic_push(skb, off, len);
3230 	if (likely(!ret)) {
3231 		skb->mac_header -= len;
3232 		skb->network_header -= len;
3233 		if (trans_same)
3234 			skb->transport_header = skb->network_header;
3235 	}
3236 
3237 	return ret;
3238 }
3239 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3240 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3241 {
3242 	bool trans_same = skb->transport_header == skb->network_header;
3243 	int ret;
3244 
3245 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3246 	ret = bpf_skb_generic_pop(skb, off, len);
3247 	if (likely(!ret)) {
3248 		skb->mac_header += len;
3249 		skb->network_header += len;
3250 		if (trans_same)
3251 			skb->transport_header = skb->network_header;
3252 	}
3253 
3254 	return ret;
3255 }
3256 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3257 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3258 {
3259 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3260 	u32 off = skb_mac_header_len(skb);
3261 	int ret;
3262 
3263 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3264 		return -ENOTSUPP;
3265 
3266 	ret = skb_cow(skb, len_diff);
3267 	if (unlikely(ret < 0))
3268 		return ret;
3269 
3270 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3271 	if (unlikely(ret < 0))
3272 		return ret;
3273 
3274 	if (skb_is_gso(skb)) {
3275 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3276 
3277 		/* SKB_GSO_TCPV4 needs to be changed into
3278 		 * SKB_GSO_TCPV6.
3279 		 */
3280 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3281 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3282 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3283 		}
3284 
3285 		/* Header must be checked, and gso_segs recomputed. */
3286 		shinfo->gso_type |= SKB_GSO_DODGY;
3287 		shinfo->gso_segs = 0;
3288 	}
3289 
3290 	skb->protocol = htons(ETH_P_IPV6);
3291 	skb_clear_hash(skb);
3292 
3293 	return 0;
3294 }
3295 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3296 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3297 {
3298 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3299 	u32 off = skb_mac_header_len(skb);
3300 	int ret;
3301 
3302 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3303 		return -ENOTSUPP;
3304 
3305 	ret = skb_unclone(skb, GFP_ATOMIC);
3306 	if (unlikely(ret < 0))
3307 		return ret;
3308 
3309 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3310 	if (unlikely(ret < 0))
3311 		return ret;
3312 
3313 	if (skb_is_gso(skb)) {
3314 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3315 
3316 		/* SKB_GSO_TCPV6 needs to be changed into
3317 		 * SKB_GSO_TCPV4.
3318 		 */
3319 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3320 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3321 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3322 		}
3323 
3324 		/* Header must be checked, and gso_segs recomputed. */
3325 		shinfo->gso_type |= SKB_GSO_DODGY;
3326 		shinfo->gso_segs = 0;
3327 	}
3328 
3329 	skb->protocol = htons(ETH_P_IP);
3330 	skb_clear_hash(skb);
3331 
3332 	return 0;
3333 }
3334 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3335 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3336 {
3337 	__be16 from_proto = skb->protocol;
3338 
3339 	if (from_proto == htons(ETH_P_IP) &&
3340 	      to_proto == htons(ETH_P_IPV6))
3341 		return bpf_skb_proto_4_to_6(skb);
3342 
3343 	if (from_proto == htons(ETH_P_IPV6) &&
3344 	      to_proto == htons(ETH_P_IP))
3345 		return bpf_skb_proto_6_to_4(skb);
3346 
3347 	return -ENOTSUPP;
3348 }
3349 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3350 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3351 	   u64, flags)
3352 {
3353 	int ret;
3354 
3355 	if (unlikely(flags))
3356 		return -EINVAL;
3357 
3358 	/* General idea is that this helper does the basic groundwork
3359 	 * needed for changing the protocol, and eBPF program fills the
3360 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3361 	 * and other helpers, rather than passing a raw buffer here.
3362 	 *
3363 	 * The rationale is to keep this minimal and without a need to
3364 	 * deal with raw packet data. F.e. even if we would pass buffers
3365 	 * here, the program still needs to call the bpf_lX_csum_replace()
3366 	 * helpers anyway. Plus, this way we keep also separation of
3367 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3368 	 * care of stores.
3369 	 *
3370 	 * Currently, additional options and extension header space are
3371 	 * not supported, but flags register is reserved so we can adapt
3372 	 * that. For offloads, we mark packet as dodgy, so that headers
3373 	 * need to be verified first.
3374 	 */
3375 	ret = bpf_skb_proto_xlat(skb, proto);
3376 	bpf_compute_data_pointers(skb);
3377 	return ret;
3378 }
3379 
3380 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3381 	.func		= bpf_skb_change_proto,
3382 	.gpl_only	= false,
3383 	.ret_type	= RET_INTEGER,
3384 	.arg1_type	= ARG_PTR_TO_CTX,
3385 	.arg2_type	= ARG_ANYTHING,
3386 	.arg3_type	= ARG_ANYTHING,
3387 };
3388 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3389 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3390 {
3391 	/* We only allow a restricted subset to be changed for now. */
3392 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3393 		     !skb_pkt_type_ok(pkt_type)))
3394 		return -EINVAL;
3395 
3396 	skb->pkt_type = pkt_type;
3397 	return 0;
3398 }
3399 
3400 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3401 	.func		= bpf_skb_change_type,
3402 	.gpl_only	= false,
3403 	.ret_type	= RET_INTEGER,
3404 	.arg1_type	= ARG_PTR_TO_CTX,
3405 	.arg2_type	= ARG_ANYTHING,
3406 };
3407 
bpf_skb_net_base_len(const struct sk_buff * skb)3408 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3409 {
3410 	switch (skb->protocol) {
3411 	case htons(ETH_P_IP):
3412 		return sizeof(struct iphdr);
3413 	case htons(ETH_P_IPV6):
3414 		return sizeof(struct ipv6hdr);
3415 	default:
3416 		return ~0U;
3417 	}
3418 }
3419 
3420 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3421 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3422 
3423 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3424 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3425 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3426 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3427 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3428 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3429 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3430 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3431 			    u64 flags)
3432 {
3433 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3434 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3435 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3436 	unsigned int gso_type = SKB_GSO_DODGY;
3437 	int ret;
3438 
3439 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3440 		/* udp gso_size delineates datagrams, only allow if fixed */
3441 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3442 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3443 			return -ENOTSUPP;
3444 	}
3445 
3446 	ret = skb_cow_head(skb, len_diff);
3447 	if (unlikely(ret < 0))
3448 		return ret;
3449 
3450 	if (encap) {
3451 		if (skb->protocol != htons(ETH_P_IP) &&
3452 		    skb->protocol != htons(ETH_P_IPV6))
3453 			return -ENOTSUPP;
3454 
3455 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3456 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3457 			return -EINVAL;
3458 
3459 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3460 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3461 			return -EINVAL;
3462 
3463 		if (skb->encapsulation)
3464 			return -EALREADY;
3465 
3466 		mac_len = skb->network_header - skb->mac_header;
3467 		inner_net = skb->network_header;
3468 		if (inner_mac_len > len_diff)
3469 			return -EINVAL;
3470 		inner_trans = skb->transport_header;
3471 	}
3472 
3473 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3474 	if (unlikely(ret < 0))
3475 		return ret;
3476 
3477 	if (encap) {
3478 		skb->inner_mac_header = inner_net - inner_mac_len;
3479 		skb->inner_network_header = inner_net;
3480 		skb->inner_transport_header = inner_trans;
3481 		skb_set_inner_protocol(skb, skb->protocol);
3482 
3483 		skb->encapsulation = 1;
3484 		skb_set_network_header(skb, mac_len);
3485 
3486 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3487 			gso_type |= SKB_GSO_UDP_TUNNEL;
3488 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3489 			gso_type |= SKB_GSO_GRE;
3490 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3491 			gso_type |= SKB_GSO_IPXIP6;
3492 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3493 			gso_type |= SKB_GSO_IPXIP4;
3494 
3495 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3496 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3497 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3498 					sizeof(struct ipv6hdr) :
3499 					sizeof(struct iphdr);
3500 
3501 			skb_set_transport_header(skb, mac_len + nh_len);
3502 		}
3503 
3504 		/* Match skb->protocol to new outer l3 protocol */
3505 		if (skb->protocol == htons(ETH_P_IP) &&
3506 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3507 			skb->protocol = htons(ETH_P_IPV6);
3508 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3509 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3510 			skb->protocol = htons(ETH_P_IP);
3511 	}
3512 
3513 	if (skb_is_gso(skb)) {
3514 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3515 
3516 		/* Due to header grow, MSS needs to be downgraded. */
3517 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3518 			skb_decrease_gso_size(shinfo, len_diff);
3519 
3520 		/* Header must be checked, and gso_segs recomputed. */
3521 		shinfo->gso_type |= gso_type;
3522 		shinfo->gso_segs = 0;
3523 	}
3524 
3525 	return 0;
3526 }
3527 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3528 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3529 			      u64 flags)
3530 {
3531 	int ret;
3532 
3533 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3534 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3535 		return -EINVAL;
3536 
3537 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3538 		/* udp gso_size delineates datagrams, only allow if fixed */
3539 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3540 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3541 			return -ENOTSUPP;
3542 	}
3543 
3544 	ret = skb_unclone(skb, GFP_ATOMIC);
3545 	if (unlikely(ret < 0))
3546 		return ret;
3547 
3548 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3549 	if (unlikely(ret < 0))
3550 		return ret;
3551 
3552 	if (skb_is_gso(skb)) {
3553 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3554 
3555 		/* Due to header shrink, MSS can be upgraded. */
3556 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3557 			skb_increase_gso_size(shinfo, len_diff);
3558 
3559 		/* Header must be checked, and gso_segs recomputed. */
3560 		shinfo->gso_type |= SKB_GSO_DODGY;
3561 		shinfo->gso_segs = 0;
3562 	}
3563 
3564 	return 0;
3565 }
3566 
3567 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3568 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3569 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3570 	   u32, mode, u64, flags)
3571 {
3572 	u32 len_diff_abs = abs(len_diff);
3573 	bool shrink = len_diff < 0;
3574 	int ret = 0;
3575 
3576 	if (unlikely(flags || mode))
3577 		return -EINVAL;
3578 	if (unlikely(len_diff_abs > 0xfffU))
3579 		return -EFAULT;
3580 
3581 	if (!shrink) {
3582 		ret = skb_cow(skb, len_diff);
3583 		if (unlikely(ret < 0))
3584 			return ret;
3585 		__skb_push(skb, len_diff_abs);
3586 		memset(skb->data, 0, len_diff_abs);
3587 	} else {
3588 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3589 			return -ENOMEM;
3590 		__skb_pull(skb, len_diff_abs);
3591 	}
3592 	bpf_compute_data_end_sk_skb(skb);
3593 	if (tls_sw_has_ctx_rx(skb->sk)) {
3594 		struct strp_msg *rxm = strp_msg(skb);
3595 
3596 		rxm->full_len += len_diff;
3597 	}
3598 	return ret;
3599 }
3600 
3601 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3602 	.func		= sk_skb_adjust_room,
3603 	.gpl_only	= false,
3604 	.ret_type	= RET_INTEGER,
3605 	.arg1_type	= ARG_PTR_TO_CTX,
3606 	.arg2_type	= ARG_ANYTHING,
3607 	.arg3_type	= ARG_ANYTHING,
3608 	.arg4_type	= ARG_ANYTHING,
3609 };
3610 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3611 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3612 	   u32, mode, u64, flags)
3613 {
3614 	u32 len_cur, len_diff_abs = abs(len_diff);
3615 	u32 len_min = bpf_skb_net_base_len(skb);
3616 	u32 len_max = BPF_SKB_MAX_LEN;
3617 	__be16 proto = skb->protocol;
3618 	bool shrink = len_diff < 0;
3619 	u32 off;
3620 	int ret;
3621 
3622 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3623 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3624 		return -EINVAL;
3625 	if (unlikely(len_diff_abs > 0xfffU))
3626 		return -EFAULT;
3627 	if (unlikely(proto != htons(ETH_P_IP) &&
3628 		     proto != htons(ETH_P_IPV6)))
3629 		return -ENOTSUPP;
3630 
3631 	off = skb_mac_header_len(skb);
3632 	switch (mode) {
3633 	case BPF_ADJ_ROOM_NET:
3634 		off += bpf_skb_net_base_len(skb);
3635 		break;
3636 	case BPF_ADJ_ROOM_MAC:
3637 		break;
3638 	default:
3639 		return -ENOTSUPP;
3640 	}
3641 
3642 	len_cur = skb->len - skb_network_offset(skb);
3643 	if ((shrink && (len_diff_abs >= len_cur ||
3644 			len_cur - len_diff_abs < len_min)) ||
3645 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3646 			 !skb_is_gso(skb))))
3647 		return -ENOTSUPP;
3648 
3649 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3650 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3651 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3652 		__skb_reset_checksum_unnecessary(skb);
3653 
3654 	bpf_compute_data_pointers(skb);
3655 	return ret;
3656 }
3657 
3658 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3659 	.func		= bpf_skb_adjust_room,
3660 	.gpl_only	= false,
3661 	.ret_type	= RET_INTEGER,
3662 	.arg1_type	= ARG_PTR_TO_CTX,
3663 	.arg2_type	= ARG_ANYTHING,
3664 	.arg3_type	= ARG_ANYTHING,
3665 	.arg4_type	= ARG_ANYTHING,
3666 };
3667 
__bpf_skb_min_len(const struct sk_buff * skb)3668 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3669 {
3670 	u32 min_len = skb_network_offset(skb);
3671 
3672 	if (skb_transport_header_was_set(skb))
3673 		min_len = skb_transport_offset(skb);
3674 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3675 		min_len = skb_checksum_start_offset(skb) +
3676 			  skb->csum_offset + sizeof(__sum16);
3677 	return min_len;
3678 }
3679 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3680 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3681 {
3682 	unsigned int old_len = skb->len;
3683 	int ret;
3684 
3685 	ret = __skb_grow_rcsum(skb, new_len);
3686 	if (!ret)
3687 		memset(skb->data + old_len, 0, new_len - old_len);
3688 	return ret;
3689 }
3690 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3691 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3692 {
3693 	return __skb_trim_rcsum(skb, new_len);
3694 }
3695 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3696 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3697 					u64 flags)
3698 {
3699 	u32 max_len = BPF_SKB_MAX_LEN;
3700 	u32 min_len = __bpf_skb_min_len(skb);
3701 	int ret;
3702 
3703 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3704 		return -EINVAL;
3705 	if (skb->encapsulation)
3706 		return -ENOTSUPP;
3707 
3708 	/* The basic idea of this helper is that it's performing the
3709 	 * needed work to either grow or trim an skb, and eBPF program
3710 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3711 	 * bpf_lX_csum_replace() and others rather than passing a raw
3712 	 * buffer here. This one is a slow path helper and intended
3713 	 * for replies with control messages.
3714 	 *
3715 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3716 	 * minimal and without protocol specifics so that we are able
3717 	 * to separate concerns as in bpf_skb_store_bytes() should only
3718 	 * be the one responsible for writing buffers.
3719 	 *
3720 	 * It's really expected to be a slow path operation here for
3721 	 * control message replies, so we're implicitly linearizing,
3722 	 * uncloning and drop offloads from the skb by this.
3723 	 */
3724 	ret = __bpf_try_make_writable(skb, skb->len);
3725 	if (!ret) {
3726 		if (new_len > skb->len)
3727 			ret = bpf_skb_grow_rcsum(skb, new_len);
3728 		else if (new_len < skb->len)
3729 			ret = bpf_skb_trim_rcsum(skb, new_len);
3730 		if (!ret && skb_is_gso(skb))
3731 			skb_gso_reset(skb);
3732 	}
3733 	return ret;
3734 }
3735 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3736 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3737 	   u64, flags)
3738 {
3739 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3740 
3741 	bpf_compute_data_pointers(skb);
3742 	return ret;
3743 }
3744 
3745 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3746 	.func		= bpf_skb_change_tail,
3747 	.gpl_only	= false,
3748 	.ret_type	= RET_INTEGER,
3749 	.arg1_type	= ARG_PTR_TO_CTX,
3750 	.arg2_type	= ARG_ANYTHING,
3751 	.arg3_type	= ARG_ANYTHING,
3752 };
3753 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3754 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3755 	   u64, flags)
3756 {
3757 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3758 
3759 	bpf_compute_data_end_sk_skb(skb);
3760 	return ret;
3761 }
3762 
3763 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3764 	.func		= sk_skb_change_tail,
3765 	.gpl_only	= false,
3766 	.ret_type	= RET_INTEGER,
3767 	.arg1_type	= ARG_PTR_TO_CTX,
3768 	.arg2_type	= ARG_ANYTHING,
3769 	.arg3_type	= ARG_ANYTHING,
3770 };
3771 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3772 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3773 					u64 flags)
3774 {
3775 	u32 max_len = BPF_SKB_MAX_LEN;
3776 	u32 new_len = skb->len + head_room;
3777 	int ret;
3778 
3779 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3780 		     new_len < skb->len))
3781 		return -EINVAL;
3782 
3783 	ret = skb_cow(skb, head_room);
3784 	if (likely(!ret)) {
3785 		/* Idea for this helper is that we currently only
3786 		 * allow to expand on mac header. This means that
3787 		 * skb->protocol network header, etc, stay as is.
3788 		 * Compared to bpf_skb_change_tail(), we're more
3789 		 * flexible due to not needing to linearize or
3790 		 * reset GSO. Intention for this helper is to be
3791 		 * used by an L3 skb that needs to push mac header
3792 		 * for redirection into L2 device.
3793 		 */
3794 		__skb_push(skb, head_room);
3795 		memset(skb->data, 0, head_room);
3796 		skb_reset_mac_header(skb);
3797 		skb_reset_mac_len(skb);
3798 	}
3799 
3800 	return ret;
3801 }
3802 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3803 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3804 	   u64, flags)
3805 {
3806 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3807 
3808 	bpf_compute_data_pointers(skb);
3809 	return ret;
3810 }
3811 
3812 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3813 	.func		= bpf_skb_change_head,
3814 	.gpl_only	= false,
3815 	.ret_type	= RET_INTEGER,
3816 	.arg1_type	= ARG_PTR_TO_CTX,
3817 	.arg2_type	= ARG_ANYTHING,
3818 	.arg3_type	= ARG_ANYTHING,
3819 };
3820 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3821 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3822 	   u64, flags)
3823 {
3824 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3825 
3826 	bpf_compute_data_end_sk_skb(skb);
3827 	return ret;
3828 }
3829 
3830 static const struct bpf_func_proto sk_skb_change_head_proto = {
3831 	.func		= sk_skb_change_head,
3832 	.gpl_only	= false,
3833 	.ret_type	= RET_INTEGER,
3834 	.arg1_type	= ARG_PTR_TO_CTX,
3835 	.arg2_type	= ARG_ANYTHING,
3836 	.arg3_type	= ARG_ANYTHING,
3837 };
xdp_get_metalen(const struct xdp_buff * xdp)3838 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3839 {
3840 	return xdp_data_meta_unsupported(xdp) ? 0 :
3841 	       xdp->data - xdp->data_meta;
3842 }
3843 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3844 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3845 {
3846 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3847 	unsigned long metalen = xdp_get_metalen(xdp);
3848 	void *data_start = xdp_frame_end + metalen;
3849 	void *data = xdp->data + offset;
3850 
3851 	if (unlikely(data < data_start ||
3852 		     data > xdp->data_end - ETH_HLEN))
3853 		return -EINVAL;
3854 
3855 	if (metalen)
3856 		memmove(xdp->data_meta + offset,
3857 			xdp->data_meta, metalen);
3858 	xdp->data_meta += offset;
3859 	xdp->data = data;
3860 
3861 	return 0;
3862 }
3863 
3864 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3865 	.func		= bpf_xdp_adjust_head,
3866 	.gpl_only	= false,
3867 	.ret_type	= RET_INTEGER,
3868 	.arg1_type	= ARG_PTR_TO_CTX,
3869 	.arg2_type	= ARG_ANYTHING,
3870 };
3871 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)3872 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3873 {
3874 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3875 	void *data_end = xdp->data_end + offset;
3876 
3877 	/* Notice that xdp_data_hard_end have reserved some tailroom */
3878 	if (unlikely(data_end > data_hard_end))
3879 		return -EINVAL;
3880 
3881 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
3882 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3883 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3884 		return -EINVAL;
3885 	}
3886 
3887 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3888 		return -EINVAL;
3889 
3890 	/* Clear memory area on grow, can contain uninit kernel memory */
3891 	if (offset > 0)
3892 		memset(xdp->data_end, 0, offset);
3893 
3894 	xdp->data_end = data_end;
3895 
3896 	return 0;
3897 }
3898 
3899 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3900 	.func		= bpf_xdp_adjust_tail,
3901 	.gpl_only	= false,
3902 	.ret_type	= RET_INTEGER,
3903 	.arg1_type	= ARG_PTR_TO_CTX,
3904 	.arg2_type	= ARG_ANYTHING,
3905 };
3906 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)3907 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3908 {
3909 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3910 	void *meta = xdp->data_meta + offset;
3911 	unsigned long metalen = xdp->data - meta;
3912 
3913 	if (xdp_data_meta_unsupported(xdp))
3914 		return -ENOTSUPP;
3915 	if (unlikely(meta < xdp_frame_end ||
3916 		     meta > xdp->data))
3917 		return -EINVAL;
3918 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3919 		     (metalen > 32)))
3920 		return -EACCES;
3921 
3922 	xdp->data_meta = meta;
3923 
3924 	return 0;
3925 }
3926 
3927 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3928 	.func		= bpf_xdp_adjust_meta,
3929 	.gpl_only	= false,
3930 	.ret_type	= RET_INTEGER,
3931 	.arg1_type	= ARG_PTR_TO_CTX,
3932 	.arg2_type	= ARG_ANYTHING,
3933 };
3934 
__bpf_tx_xdp_map(struct net_device * dev_rx,void * fwd,struct bpf_map * map,struct xdp_buff * xdp)3935 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3936 			    struct bpf_map *map, struct xdp_buff *xdp)
3937 {
3938 	switch (map->map_type) {
3939 	case BPF_MAP_TYPE_DEVMAP:
3940 	case BPF_MAP_TYPE_DEVMAP_HASH:
3941 		return dev_map_enqueue(fwd, xdp, dev_rx);
3942 	case BPF_MAP_TYPE_CPUMAP:
3943 		return cpu_map_enqueue(fwd, xdp, dev_rx);
3944 	case BPF_MAP_TYPE_XSKMAP:
3945 		return __xsk_map_redirect(fwd, xdp);
3946 	default:
3947 		return -EBADRQC;
3948 	}
3949 	return 0;
3950 }
3951 
xdp_do_flush(void)3952 void xdp_do_flush(void)
3953 {
3954 	__dev_flush();
3955 	__cpu_map_flush();
3956 	__xsk_map_flush();
3957 }
3958 EXPORT_SYMBOL_GPL(xdp_do_flush);
3959 
__xdp_map_lookup_elem(struct bpf_map * map,u32 index)3960 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3961 {
3962 	switch (map->map_type) {
3963 	case BPF_MAP_TYPE_DEVMAP:
3964 		return __dev_map_lookup_elem(map, index);
3965 	case BPF_MAP_TYPE_DEVMAP_HASH:
3966 		return __dev_map_hash_lookup_elem(map, index);
3967 	case BPF_MAP_TYPE_CPUMAP:
3968 		return __cpu_map_lookup_elem(map, index);
3969 	case BPF_MAP_TYPE_XSKMAP:
3970 		return __xsk_map_lookup_elem(map, index);
3971 	default:
3972 		return NULL;
3973 	}
3974 }
3975 
bpf_clear_redirect_map(struct bpf_map * map)3976 void bpf_clear_redirect_map(struct bpf_map *map)
3977 {
3978 	struct bpf_redirect_info *ri;
3979 	int cpu;
3980 
3981 	for_each_possible_cpu(cpu) {
3982 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3983 		/* Avoid polluting remote cacheline due to writes if
3984 		 * not needed. Once we pass this test, we need the
3985 		 * cmpxchg() to make sure it hasn't been changed in
3986 		 * the meantime by remote CPU.
3987 		 */
3988 		if (unlikely(READ_ONCE(ri->map) == map))
3989 			cmpxchg(&ri->map, map, NULL);
3990 	}
3991 }
3992 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3993 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3994 		    struct bpf_prog *xdp_prog)
3995 {
3996 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3997 	struct bpf_map *map = READ_ONCE(ri->map);
3998 	u32 index = ri->tgt_index;
3999 	void *fwd = ri->tgt_value;
4000 	int err;
4001 
4002 	ri->tgt_index = 0;
4003 	ri->tgt_value = NULL;
4004 	WRITE_ONCE(ri->map, NULL);
4005 
4006 	if (unlikely(!map)) {
4007 		fwd = dev_get_by_index_rcu(dev_net(dev), index);
4008 		if (unlikely(!fwd)) {
4009 			err = -EINVAL;
4010 			goto err;
4011 		}
4012 
4013 		err = dev_xdp_enqueue(fwd, xdp, dev);
4014 	} else {
4015 		err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
4016 	}
4017 
4018 	if (unlikely(err))
4019 		goto err;
4020 
4021 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4022 	return 0;
4023 err:
4024 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4025 	return err;
4026 }
4027 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4028 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_map * map)4029 static int xdp_do_generic_redirect_map(struct net_device *dev,
4030 				       struct sk_buff *skb,
4031 				       struct xdp_buff *xdp,
4032 				       struct bpf_prog *xdp_prog,
4033 				       struct bpf_map *map)
4034 {
4035 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4036 	u32 index = ri->tgt_index;
4037 	void *fwd = ri->tgt_value;
4038 	int err = 0;
4039 
4040 	ri->tgt_index = 0;
4041 	ri->tgt_value = NULL;
4042 	WRITE_ONCE(ri->map, NULL);
4043 
4044 	if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
4045 	    map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
4046 		struct bpf_dtab_netdev *dst = fwd;
4047 
4048 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
4049 		if (unlikely(err))
4050 			goto err;
4051 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
4052 		struct xdp_sock *xs = fwd;
4053 
4054 		err = xsk_generic_rcv(xs, xdp);
4055 		if (err)
4056 			goto err;
4057 		consume_skb(skb);
4058 	} else {
4059 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
4060 		err = -EBADRQC;
4061 		goto err;
4062 	}
4063 
4064 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4065 	return 0;
4066 err:
4067 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4068 	return err;
4069 }
4070 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4071 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4072 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4073 {
4074 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4075 	struct bpf_map *map = READ_ONCE(ri->map);
4076 	u32 index = ri->tgt_index;
4077 	struct net_device *fwd;
4078 	int err = 0;
4079 
4080 	if (map)
4081 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
4082 						   map);
4083 	ri->tgt_index = 0;
4084 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
4085 	if (unlikely(!fwd)) {
4086 		err = -EINVAL;
4087 		goto err;
4088 	}
4089 
4090 	err = xdp_ok_fwd_dev(fwd, skb->len);
4091 	if (unlikely(err))
4092 		goto err;
4093 
4094 	skb->dev = fwd;
4095 	_trace_xdp_redirect(dev, xdp_prog, index);
4096 	generic_xdp_tx(skb, xdp_prog);
4097 	return 0;
4098 err:
4099 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
4100 	return err;
4101 }
4102 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4103 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4104 {
4105 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4106 
4107 	if (unlikely(flags))
4108 		return XDP_ABORTED;
4109 
4110 	ri->flags = flags;
4111 	ri->tgt_index = ifindex;
4112 	ri->tgt_value = NULL;
4113 	WRITE_ONCE(ri->map, NULL);
4114 
4115 	return XDP_REDIRECT;
4116 }
4117 
4118 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4119 	.func           = bpf_xdp_redirect,
4120 	.gpl_only       = false,
4121 	.ret_type       = RET_INTEGER,
4122 	.arg1_type      = ARG_ANYTHING,
4123 	.arg2_type      = ARG_ANYTHING,
4124 };
4125 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)4126 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4127 	   u64, flags)
4128 {
4129 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4130 
4131 	/* Lower bits of the flags are used as return code on lookup failure */
4132 	if (unlikely(flags > XDP_TX))
4133 		return XDP_ABORTED;
4134 
4135 	ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
4136 	if (unlikely(!ri->tgt_value)) {
4137 		/* If the lookup fails we want to clear out the state in the
4138 		 * redirect_info struct completely, so that if an eBPF program
4139 		 * performs multiple lookups, the last one always takes
4140 		 * precedence.
4141 		 */
4142 		WRITE_ONCE(ri->map, NULL);
4143 		return flags;
4144 	}
4145 
4146 	ri->flags = flags;
4147 	ri->tgt_index = ifindex;
4148 	WRITE_ONCE(ri->map, map);
4149 
4150 	return XDP_REDIRECT;
4151 }
4152 
4153 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4154 	.func           = bpf_xdp_redirect_map,
4155 	.gpl_only       = false,
4156 	.ret_type       = RET_INTEGER,
4157 	.arg1_type      = ARG_CONST_MAP_PTR,
4158 	.arg2_type      = ARG_ANYTHING,
4159 	.arg3_type      = ARG_ANYTHING,
4160 };
4161 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4162 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4163 				  unsigned long off, unsigned long len)
4164 {
4165 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4166 
4167 	if (unlikely(!ptr))
4168 		return len;
4169 	if (ptr != dst_buff)
4170 		memcpy(dst_buff, ptr, len);
4171 
4172 	return 0;
4173 }
4174 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4175 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4176 	   u64, flags, void *, meta, u64, meta_size)
4177 {
4178 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4179 
4180 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4181 		return -EINVAL;
4182 	if (unlikely(!skb || skb_size > skb->len))
4183 		return -EFAULT;
4184 
4185 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4186 				bpf_skb_copy);
4187 }
4188 
4189 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4190 	.func		= bpf_skb_event_output,
4191 	.gpl_only	= true,
4192 	.ret_type	= RET_INTEGER,
4193 	.arg1_type	= ARG_PTR_TO_CTX,
4194 	.arg2_type	= ARG_CONST_MAP_PTR,
4195 	.arg3_type	= ARG_ANYTHING,
4196 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4197 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4198 };
4199 
4200 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4201 
4202 const struct bpf_func_proto bpf_skb_output_proto = {
4203 	.func		= bpf_skb_event_output,
4204 	.gpl_only	= true,
4205 	.ret_type	= RET_INTEGER,
4206 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4207 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4208 	.arg2_type	= ARG_CONST_MAP_PTR,
4209 	.arg3_type	= ARG_ANYTHING,
4210 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4211 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4212 };
4213 
bpf_tunnel_key_af(u64 flags)4214 static unsigned short bpf_tunnel_key_af(u64 flags)
4215 {
4216 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4217 }
4218 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4219 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4220 	   u32, size, u64, flags)
4221 {
4222 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4223 	u8 compat[sizeof(struct bpf_tunnel_key)];
4224 	void *to_orig = to;
4225 	int err;
4226 
4227 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4228 		err = -EINVAL;
4229 		goto err_clear;
4230 	}
4231 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4232 		err = -EPROTO;
4233 		goto err_clear;
4234 	}
4235 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4236 		err = -EINVAL;
4237 		switch (size) {
4238 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4239 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4240 			goto set_compat;
4241 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4242 			/* Fixup deprecated structure layouts here, so we have
4243 			 * a common path later on.
4244 			 */
4245 			if (ip_tunnel_info_af(info) != AF_INET)
4246 				goto err_clear;
4247 set_compat:
4248 			to = (struct bpf_tunnel_key *)compat;
4249 			break;
4250 		default:
4251 			goto err_clear;
4252 		}
4253 	}
4254 
4255 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4256 	to->tunnel_tos = info->key.tos;
4257 	to->tunnel_ttl = info->key.ttl;
4258 	to->tunnel_ext = 0;
4259 
4260 	if (flags & BPF_F_TUNINFO_IPV6) {
4261 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4262 		       sizeof(to->remote_ipv6));
4263 		to->tunnel_label = be32_to_cpu(info->key.label);
4264 	} else {
4265 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4266 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4267 		to->tunnel_label = 0;
4268 	}
4269 
4270 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4271 		memcpy(to_orig, to, size);
4272 
4273 	return 0;
4274 err_clear:
4275 	memset(to_orig, 0, size);
4276 	return err;
4277 }
4278 
4279 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4280 	.func		= bpf_skb_get_tunnel_key,
4281 	.gpl_only	= false,
4282 	.ret_type	= RET_INTEGER,
4283 	.arg1_type	= ARG_PTR_TO_CTX,
4284 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4285 	.arg3_type	= ARG_CONST_SIZE,
4286 	.arg4_type	= ARG_ANYTHING,
4287 };
4288 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4289 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4290 {
4291 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4292 	int err;
4293 
4294 	if (unlikely(!info ||
4295 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4296 		err = -ENOENT;
4297 		goto err_clear;
4298 	}
4299 	if (unlikely(size < info->options_len)) {
4300 		err = -ENOMEM;
4301 		goto err_clear;
4302 	}
4303 
4304 	ip_tunnel_info_opts_get(to, info);
4305 	if (size > info->options_len)
4306 		memset(to + info->options_len, 0, size - info->options_len);
4307 
4308 	return info->options_len;
4309 err_clear:
4310 	memset(to, 0, size);
4311 	return err;
4312 }
4313 
4314 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4315 	.func		= bpf_skb_get_tunnel_opt,
4316 	.gpl_only	= false,
4317 	.ret_type	= RET_INTEGER,
4318 	.arg1_type	= ARG_PTR_TO_CTX,
4319 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4320 	.arg3_type	= ARG_CONST_SIZE,
4321 };
4322 
4323 static struct metadata_dst __percpu *md_dst;
4324 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4325 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4326 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4327 {
4328 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4329 	u8 compat[sizeof(struct bpf_tunnel_key)];
4330 	struct ip_tunnel_info *info;
4331 
4332 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4333 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4334 		return -EINVAL;
4335 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4336 		switch (size) {
4337 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4338 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4339 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4340 			/* Fixup deprecated structure layouts here, so we have
4341 			 * a common path later on.
4342 			 */
4343 			memcpy(compat, from, size);
4344 			memset(compat + size, 0, sizeof(compat) - size);
4345 			from = (const struct bpf_tunnel_key *) compat;
4346 			break;
4347 		default:
4348 			return -EINVAL;
4349 		}
4350 	}
4351 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4352 		     from->tunnel_ext))
4353 		return -EINVAL;
4354 
4355 	skb_dst_drop(skb);
4356 	dst_hold((struct dst_entry *) md);
4357 	skb_dst_set(skb, (struct dst_entry *) md);
4358 
4359 	info = &md->u.tun_info;
4360 	memset(info, 0, sizeof(*info));
4361 	info->mode = IP_TUNNEL_INFO_TX;
4362 
4363 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4364 	if (flags & BPF_F_DONT_FRAGMENT)
4365 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4366 	if (flags & BPF_F_ZERO_CSUM_TX)
4367 		info->key.tun_flags &= ~TUNNEL_CSUM;
4368 	if (flags & BPF_F_SEQ_NUMBER)
4369 		info->key.tun_flags |= TUNNEL_SEQ;
4370 
4371 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4372 	info->key.tos = from->tunnel_tos;
4373 	info->key.ttl = from->tunnel_ttl;
4374 
4375 	if (flags & BPF_F_TUNINFO_IPV6) {
4376 		info->mode |= IP_TUNNEL_INFO_IPV6;
4377 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4378 		       sizeof(from->remote_ipv6));
4379 		info->key.label = cpu_to_be32(from->tunnel_label) &
4380 				  IPV6_FLOWLABEL_MASK;
4381 	} else {
4382 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4383 	}
4384 
4385 	return 0;
4386 }
4387 
4388 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4389 	.func		= bpf_skb_set_tunnel_key,
4390 	.gpl_only	= false,
4391 	.ret_type	= RET_INTEGER,
4392 	.arg1_type	= ARG_PTR_TO_CTX,
4393 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4394 	.arg3_type	= ARG_CONST_SIZE,
4395 	.arg4_type	= ARG_ANYTHING,
4396 };
4397 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4398 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4399 	   const u8 *, from, u32, size)
4400 {
4401 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4402 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4403 
4404 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4405 		return -EINVAL;
4406 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4407 		return -ENOMEM;
4408 
4409 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4410 
4411 	return 0;
4412 }
4413 
4414 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4415 	.func		= bpf_skb_set_tunnel_opt,
4416 	.gpl_only	= false,
4417 	.ret_type	= RET_INTEGER,
4418 	.arg1_type	= ARG_PTR_TO_CTX,
4419 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4420 	.arg3_type	= ARG_CONST_SIZE,
4421 };
4422 
4423 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4424 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4425 {
4426 	if (!md_dst) {
4427 		struct metadata_dst __percpu *tmp;
4428 
4429 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4430 						METADATA_IP_TUNNEL,
4431 						GFP_KERNEL);
4432 		if (!tmp)
4433 			return NULL;
4434 		if (cmpxchg(&md_dst, NULL, tmp))
4435 			metadata_dst_free_percpu(tmp);
4436 	}
4437 
4438 	switch (which) {
4439 	case BPF_FUNC_skb_set_tunnel_key:
4440 		return &bpf_skb_set_tunnel_key_proto;
4441 	case BPF_FUNC_skb_set_tunnel_opt:
4442 		return &bpf_skb_set_tunnel_opt_proto;
4443 	default:
4444 		return NULL;
4445 	}
4446 }
4447 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4448 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4449 	   u32, idx)
4450 {
4451 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4452 	struct cgroup *cgrp;
4453 	struct sock *sk;
4454 
4455 	sk = skb_to_full_sk(skb);
4456 	if (!sk || !sk_fullsock(sk))
4457 		return -ENOENT;
4458 	if (unlikely(idx >= array->map.max_entries))
4459 		return -E2BIG;
4460 
4461 	cgrp = READ_ONCE(array->ptrs[idx]);
4462 	if (unlikely(!cgrp))
4463 		return -EAGAIN;
4464 
4465 	return sk_under_cgroup_hierarchy(sk, cgrp);
4466 }
4467 
4468 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4469 	.func		= bpf_skb_under_cgroup,
4470 	.gpl_only	= false,
4471 	.ret_type	= RET_INTEGER,
4472 	.arg1_type	= ARG_PTR_TO_CTX,
4473 	.arg2_type	= ARG_CONST_MAP_PTR,
4474 	.arg3_type	= ARG_ANYTHING,
4475 };
4476 
4477 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4478 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4479 {
4480 	struct cgroup *cgrp;
4481 
4482 	sk = sk_to_full_sk(sk);
4483 	if (!sk || !sk_fullsock(sk))
4484 		return 0;
4485 
4486 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4487 	return cgroup_id(cgrp);
4488 }
4489 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4490 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4491 {
4492 	return __bpf_sk_cgroup_id(skb->sk);
4493 }
4494 
4495 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4496 	.func           = bpf_skb_cgroup_id,
4497 	.gpl_only       = false,
4498 	.ret_type       = RET_INTEGER,
4499 	.arg1_type      = ARG_PTR_TO_CTX,
4500 };
4501 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4502 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4503 					      int ancestor_level)
4504 {
4505 	struct cgroup *ancestor;
4506 	struct cgroup *cgrp;
4507 
4508 	sk = sk_to_full_sk(sk);
4509 	if (!sk || !sk_fullsock(sk))
4510 		return 0;
4511 
4512 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4513 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4514 	if (!ancestor)
4515 		return 0;
4516 
4517 	return cgroup_id(ancestor);
4518 }
4519 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4520 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4521 	   ancestor_level)
4522 {
4523 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4524 }
4525 
4526 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4527 	.func           = bpf_skb_ancestor_cgroup_id,
4528 	.gpl_only       = false,
4529 	.ret_type       = RET_INTEGER,
4530 	.arg1_type      = ARG_PTR_TO_CTX,
4531 	.arg2_type      = ARG_ANYTHING,
4532 };
4533 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4534 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4535 {
4536 	return __bpf_sk_cgroup_id(sk);
4537 }
4538 
4539 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4540 	.func           = bpf_sk_cgroup_id,
4541 	.gpl_only       = false,
4542 	.ret_type       = RET_INTEGER,
4543 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4544 };
4545 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4546 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4547 {
4548 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4549 }
4550 
4551 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4552 	.func           = bpf_sk_ancestor_cgroup_id,
4553 	.gpl_only       = false,
4554 	.ret_type       = RET_INTEGER,
4555 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4556 	.arg2_type      = ARG_ANYTHING,
4557 };
4558 #endif
4559 
bpf_xdp_copy(void * dst_buff,const void * src_buff,unsigned long off,unsigned long len)4560 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4561 				  unsigned long off, unsigned long len)
4562 {
4563 	memcpy(dst_buff, src_buff + off, len);
4564 	return 0;
4565 }
4566 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4567 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4568 	   u64, flags, void *, meta, u64, meta_size)
4569 {
4570 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4571 
4572 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4573 		return -EINVAL;
4574 	if (unlikely(!xdp ||
4575 		     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4576 		return -EFAULT;
4577 
4578 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4579 				xdp_size, bpf_xdp_copy);
4580 }
4581 
4582 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4583 	.func		= bpf_xdp_event_output,
4584 	.gpl_only	= true,
4585 	.ret_type	= RET_INTEGER,
4586 	.arg1_type	= ARG_PTR_TO_CTX,
4587 	.arg2_type	= ARG_CONST_MAP_PTR,
4588 	.arg3_type	= ARG_ANYTHING,
4589 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4590 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4591 };
4592 
4593 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4594 
4595 const struct bpf_func_proto bpf_xdp_output_proto = {
4596 	.func		= bpf_xdp_event_output,
4597 	.gpl_only	= true,
4598 	.ret_type	= RET_INTEGER,
4599 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4600 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4601 	.arg2_type	= ARG_CONST_MAP_PTR,
4602 	.arg3_type	= ARG_ANYTHING,
4603 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4604 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4605 };
4606 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)4607 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4608 {
4609 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4610 }
4611 
4612 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4613 	.func           = bpf_get_socket_cookie,
4614 	.gpl_only       = false,
4615 	.ret_type       = RET_INTEGER,
4616 	.arg1_type      = ARG_PTR_TO_CTX,
4617 };
4618 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4619 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4620 {
4621 	return __sock_gen_cookie(ctx->sk);
4622 }
4623 
4624 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4625 	.func		= bpf_get_socket_cookie_sock_addr,
4626 	.gpl_only	= false,
4627 	.ret_type	= RET_INTEGER,
4628 	.arg1_type	= ARG_PTR_TO_CTX,
4629 };
4630 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)4631 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4632 {
4633 	return __sock_gen_cookie(ctx);
4634 }
4635 
4636 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4637 	.func		= bpf_get_socket_cookie_sock,
4638 	.gpl_only	= false,
4639 	.ret_type	= RET_INTEGER,
4640 	.arg1_type	= ARG_PTR_TO_CTX,
4641 };
4642 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4643 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4644 {
4645 	return __sock_gen_cookie(ctx->sk);
4646 }
4647 
4648 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4649 	.func		= bpf_get_socket_cookie_sock_ops,
4650 	.gpl_only	= false,
4651 	.ret_type	= RET_INTEGER,
4652 	.arg1_type	= ARG_PTR_TO_CTX,
4653 };
4654 
__bpf_get_netns_cookie(struct sock * sk)4655 static u64 __bpf_get_netns_cookie(struct sock *sk)
4656 {
4657 #ifdef CONFIG_NET_NS
4658 	return __net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4659 #else
4660 	return 0;
4661 #endif
4662 }
4663 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)4664 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4665 {
4666 	return __bpf_get_netns_cookie(ctx);
4667 }
4668 
4669 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4670 	.func		= bpf_get_netns_cookie_sock,
4671 	.gpl_only	= false,
4672 	.ret_type	= RET_INTEGER,
4673 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4674 };
4675 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4676 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4677 {
4678 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4679 }
4680 
4681 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4682 	.func		= bpf_get_netns_cookie_sock_addr,
4683 	.gpl_only	= false,
4684 	.ret_type	= RET_INTEGER,
4685 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4686 };
4687 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)4688 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4689 {
4690 	struct sock *sk = sk_to_full_sk(skb->sk);
4691 	kuid_t kuid;
4692 
4693 	if (!sk || !sk_fullsock(sk))
4694 		return overflowuid;
4695 	kuid = sock_net_uid(sock_net(sk), sk);
4696 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4697 }
4698 
4699 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4700 	.func           = bpf_get_socket_uid,
4701 	.gpl_only       = false,
4702 	.ret_type       = RET_INTEGER,
4703 	.arg1_type      = ARG_PTR_TO_CTX,
4704 };
4705 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4706 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4707 			   char *optval, int optlen)
4708 {
4709 	char devname[IFNAMSIZ];
4710 	int val, valbool;
4711 	struct net *net;
4712 	int ifindex;
4713 	int ret = 0;
4714 
4715 	if (!sk_fullsock(sk))
4716 		return -EINVAL;
4717 
4718 	sock_owned_by_me(sk);
4719 
4720 	if (level == SOL_SOCKET) {
4721 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4722 			return -EINVAL;
4723 		val = *((int *)optval);
4724 		valbool = val ? 1 : 0;
4725 
4726 		/* Only some socketops are supported */
4727 		switch (optname) {
4728 		case SO_RCVBUF:
4729 			val = min_t(u32, val, READ_ONCE(sysctl_rmem_max));
4730 			val = min_t(int, val, INT_MAX / 2);
4731 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4732 			WRITE_ONCE(sk->sk_rcvbuf,
4733 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4734 			break;
4735 		case SO_SNDBUF:
4736 			val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
4737 			val = min_t(int, val, INT_MAX / 2);
4738 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4739 			WRITE_ONCE(sk->sk_sndbuf,
4740 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4741 			break;
4742 		case SO_MAX_PACING_RATE: /* 32bit version */
4743 			if (val != ~0U)
4744 				cmpxchg(&sk->sk_pacing_status,
4745 					SK_PACING_NONE,
4746 					SK_PACING_NEEDED);
4747 			sk->sk_max_pacing_rate = (val == ~0U) ?
4748 						 ~0UL : (unsigned int)val;
4749 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4750 						 sk->sk_max_pacing_rate);
4751 			break;
4752 		case SO_PRIORITY:
4753 			sk->sk_priority = val;
4754 			break;
4755 		case SO_RCVLOWAT:
4756 			if (val < 0)
4757 				val = INT_MAX;
4758 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4759 			break;
4760 		case SO_MARK:
4761 			if (sk->sk_mark != val) {
4762 				sk->sk_mark = val;
4763 				sk_dst_reset(sk);
4764 			}
4765 			break;
4766 		case SO_BINDTODEVICE:
4767 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
4768 			strncpy(devname, optval, optlen);
4769 			devname[optlen] = 0;
4770 
4771 			ifindex = 0;
4772 			if (devname[0] != '\0') {
4773 				struct net_device *dev;
4774 
4775 				ret = -ENODEV;
4776 
4777 				net = sock_net(sk);
4778 				dev = dev_get_by_name(net, devname);
4779 				if (!dev)
4780 					break;
4781 				ifindex = dev->ifindex;
4782 				dev_put(dev);
4783 			}
4784 			ret = sock_bindtoindex(sk, ifindex, false);
4785 			break;
4786 		case SO_KEEPALIVE:
4787 			if (sk->sk_prot->keepalive)
4788 				sk->sk_prot->keepalive(sk, valbool);
4789 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4790 			break;
4791 		default:
4792 			ret = -EINVAL;
4793 		}
4794 #ifdef CONFIG_INET
4795 	} else if (level == SOL_IP) {
4796 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4797 			return -EINVAL;
4798 
4799 		val = *((int *)optval);
4800 		/* Only some options are supported */
4801 		switch (optname) {
4802 		case IP_TOS:
4803 			if (val < -1 || val > 0xff) {
4804 				ret = -EINVAL;
4805 			} else {
4806 				struct inet_sock *inet = inet_sk(sk);
4807 
4808 				if (val == -1)
4809 					val = 0;
4810 				inet->tos = val;
4811 			}
4812 			break;
4813 		default:
4814 			ret = -EINVAL;
4815 		}
4816 #if IS_ENABLED(CONFIG_IPV6)
4817 	} else if (level == SOL_IPV6) {
4818 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4819 			return -EINVAL;
4820 
4821 		val = *((int *)optval);
4822 		/* Only some options are supported */
4823 		switch (optname) {
4824 		case IPV6_TCLASS:
4825 			if (val < -1 || val > 0xff) {
4826 				ret = -EINVAL;
4827 			} else {
4828 				struct ipv6_pinfo *np = inet6_sk(sk);
4829 
4830 				if (val == -1)
4831 					val = 0;
4832 				np->tclass = val;
4833 			}
4834 			break;
4835 		default:
4836 			ret = -EINVAL;
4837 		}
4838 #endif
4839 	} else if (level == SOL_TCP &&
4840 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4841 		if (optname == TCP_CONGESTION) {
4842 			char name[TCP_CA_NAME_MAX];
4843 
4844 			strncpy(name, optval, min_t(long, optlen,
4845 						    TCP_CA_NAME_MAX-1));
4846 			name[TCP_CA_NAME_MAX-1] = 0;
4847 			ret = tcp_set_congestion_control(sk, name, false, true);
4848 		} else {
4849 			struct inet_connection_sock *icsk = inet_csk(sk);
4850 			struct tcp_sock *tp = tcp_sk(sk);
4851 			unsigned long timeout;
4852 
4853 			if (optlen != sizeof(int))
4854 				return -EINVAL;
4855 
4856 			val = *((int *)optval);
4857 			/* Only some options are supported */
4858 			switch (optname) {
4859 			case TCP_BPF_IW:
4860 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4861 					ret = -EINVAL;
4862 				else
4863 					tp->snd_cwnd = val;
4864 				break;
4865 			case TCP_BPF_SNDCWND_CLAMP:
4866 				if (val <= 0) {
4867 					ret = -EINVAL;
4868 				} else {
4869 					tp->snd_cwnd_clamp = val;
4870 					tp->snd_ssthresh = val;
4871 				}
4872 				break;
4873 			case TCP_BPF_DELACK_MAX:
4874 				timeout = usecs_to_jiffies(val);
4875 				if (timeout > TCP_DELACK_MAX ||
4876 				    timeout < TCP_TIMEOUT_MIN)
4877 					return -EINVAL;
4878 				inet_csk(sk)->icsk_delack_max = timeout;
4879 				break;
4880 			case TCP_BPF_RTO_MIN:
4881 				timeout = usecs_to_jiffies(val);
4882 				if (timeout > TCP_RTO_MIN ||
4883 				    timeout < TCP_TIMEOUT_MIN)
4884 					return -EINVAL;
4885 				inet_csk(sk)->icsk_rto_min = timeout;
4886 				break;
4887 			case TCP_SAVE_SYN:
4888 				if (val < 0 || val > 1)
4889 					ret = -EINVAL;
4890 				else
4891 					tp->save_syn = val;
4892 				break;
4893 			case TCP_KEEPIDLE:
4894 				ret = tcp_sock_set_keepidle_locked(sk, val);
4895 				break;
4896 			case TCP_KEEPINTVL:
4897 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
4898 					ret = -EINVAL;
4899 				else
4900 					tp->keepalive_intvl = val * HZ;
4901 				break;
4902 			case TCP_KEEPCNT:
4903 				if (val < 1 || val > MAX_TCP_KEEPCNT)
4904 					ret = -EINVAL;
4905 				else
4906 					tp->keepalive_probes = val;
4907 				break;
4908 			case TCP_SYNCNT:
4909 				if (val < 1 || val > MAX_TCP_SYNCNT)
4910 					ret = -EINVAL;
4911 				else
4912 					icsk->icsk_syn_retries = val;
4913 				break;
4914 			case TCP_USER_TIMEOUT:
4915 				if (val < 0)
4916 					ret = -EINVAL;
4917 				else
4918 					icsk->icsk_user_timeout = val;
4919 				break;
4920 			case TCP_NOTSENT_LOWAT:
4921 				tp->notsent_lowat = val;
4922 				sk->sk_write_space(sk);
4923 				break;
4924 			default:
4925 				ret = -EINVAL;
4926 			}
4927 		}
4928 #endif
4929 	} else {
4930 		ret = -EINVAL;
4931 	}
4932 	return ret;
4933 }
4934 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4935 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4936 			   char *optval, int optlen)
4937 {
4938 	if (!sk_fullsock(sk))
4939 		goto err_clear;
4940 
4941 	sock_owned_by_me(sk);
4942 
4943 #ifdef CONFIG_INET
4944 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4945 		struct inet_connection_sock *icsk;
4946 		struct tcp_sock *tp;
4947 
4948 		switch (optname) {
4949 		case TCP_CONGESTION:
4950 			icsk = inet_csk(sk);
4951 
4952 			if (!icsk->icsk_ca_ops || optlen <= 1)
4953 				goto err_clear;
4954 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4955 			optval[optlen - 1] = 0;
4956 			break;
4957 		case TCP_SAVED_SYN:
4958 			tp = tcp_sk(sk);
4959 
4960 			if (optlen <= 0 || !tp->saved_syn ||
4961 			    optlen > tcp_saved_syn_len(tp->saved_syn))
4962 				goto err_clear;
4963 			memcpy(optval, tp->saved_syn->data, optlen);
4964 			break;
4965 		default:
4966 			goto err_clear;
4967 		}
4968 	} else if (level == SOL_IP) {
4969 		struct inet_sock *inet = inet_sk(sk);
4970 
4971 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4972 			goto err_clear;
4973 
4974 		/* Only some options are supported */
4975 		switch (optname) {
4976 		case IP_TOS:
4977 			*((int *)optval) = (int)inet->tos;
4978 			break;
4979 		default:
4980 			goto err_clear;
4981 		}
4982 #if IS_ENABLED(CONFIG_IPV6)
4983 	} else if (level == SOL_IPV6) {
4984 		struct ipv6_pinfo *np = inet6_sk(sk);
4985 
4986 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4987 			goto err_clear;
4988 
4989 		/* Only some options are supported */
4990 		switch (optname) {
4991 		case IPV6_TCLASS:
4992 			*((int *)optval) = (int)np->tclass;
4993 			break;
4994 		default:
4995 			goto err_clear;
4996 		}
4997 #endif
4998 	} else {
4999 		goto err_clear;
5000 	}
5001 	return 0;
5002 #endif
5003 err_clear:
5004 	memset(optval, 0, optlen);
5005 	return -EINVAL;
5006 }
5007 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5008 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5009 	   int, level, int, optname, char *, optval, int, optlen)
5010 {
5011 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5012 }
5013 
5014 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5015 	.func		= bpf_sock_addr_setsockopt,
5016 	.gpl_only	= false,
5017 	.ret_type	= RET_INTEGER,
5018 	.arg1_type	= ARG_PTR_TO_CTX,
5019 	.arg2_type	= ARG_ANYTHING,
5020 	.arg3_type	= ARG_ANYTHING,
5021 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5022 	.arg5_type	= ARG_CONST_SIZE,
5023 };
5024 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5025 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5026 	   int, level, int, optname, char *, optval, int, optlen)
5027 {
5028 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5029 }
5030 
5031 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5032 	.func		= bpf_sock_addr_getsockopt,
5033 	.gpl_only	= false,
5034 	.ret_type	= RET_INTEGER,
5035 	.arg1_type	= ARG_PTR_TO_CTX,
5036 	.arg2_type	= ARG_ANYTHING,
5037 	.arg3_type	= ARG_ANYTHING,
5038 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5039 	.arg5_type	= ARG_CONST_SIZE,
5040 };
5041 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5042 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5043 	   int, level, int, optname, char *, optval, int, optlen)
5044 {
5045 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5046 }
5047 
5048 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5049 	.func		= bpf_sock_ops_setsockopt,
5050 	.gpl_only	= false,
5051 	.ret_type	= RET_INTEGER,
5052 	.arg1_type	= ARG_PTR_TO_CTX,
5053 	.arg2_type	= ARG_ANYTHING,
5054 	.arg3_type	= ARG_ANYTHING,
5055 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5056 	.arg5_type	= ARG_CONST_SIZE,
5057 };
5058 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5059 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5060 				int optname, const u8 **start)
5061 {
5062 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5063 	const u8 *hdr_start;
5064 	int ret;
5065 
5066 	if (syn_skb) {
5067 		/* sk is a request_sock here */
5068 
5069 		if (optname == TCP_BPF_SYN) {
5070 			hdr_start = syn_skb->data;
5071 			ret = tcp_hdrlen(syn_skb);
5072 		} else if (optname == TCP_BPF_SYN_IP) {
5073 			hdr_start = skb_network_header(syn_skb);
5074 			ret = skb_network_header_len(syn_skb) +
5075 				tcp_hdrlen(syn_skb);
5076 		} else {
5077 			/* optname == TCP_BPF_SYN_MAC */
5078 			hdr_start = skb_mac_header(syn_skb);
5079 			ret = skb_mac_header_len(syn_skb) +
5080 				skb_network_header_len(syn_skb) +
5081 				tcp_hdrlen(syn_skb);
5082 		}
5083 	} else {
5084 		struct sock *sk = bpf_sock->sk;
5085 		struct saved_syn *saved_syn;
5086 
5087 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5088 			/* synack retransmit. bpf_sock->syn_skb will
5089 			 * not be available.  It has to resort to
5090 			 * saved_syn (if it is saved).
5091 			 */
5092 			saved_syn = inet_reqsk(sk)->saved_syn;
5093 		else
5094 			saved_syn = tcp_sk(sk)->saved_syn;
5095 
5096 		if (!saved_syn)
5097 			return -ENOENT;
5098 
5099 		if (optname == TCP_BPF_SYN) {
5100 			hdr_start = saved_syn->data +
5101 				saved_syn->mac_hdrlen +
5102 				saved_syn->network_hdrlen;
5103 			ret = saved_syn->tcp_hdrlen;
5104 		} else if (optname == TCP_BPF_SYN_IP) {
5105 			hdr_start = saved_syn->data +
5106 				saved_syn->mac_hdrlen;
5107 			ret = saved_syn->network_hdrlen +
5108 				saved_syn->tcp_hdrlen;
5109 		} else {
5110 			/* optname == TCP_BPF_SYN_MAC */
5111 
5112 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5113 			if (!saved_syn->mac_hdrlen)
5114 				return -ENOENT;
5115 
5116 			hdr_start = saved_syn->data;
5117 			ret = saved_syn->mac_hdrlen +
5118 				saved_syn->network_hdrlen +
5119 				saved_syn->tcp_hdrlen;
5120 		}
5121 	}
5122 
5123 	*start = hdr_start;
5124 	return ret;
5125 }
5126 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5127 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5128 	   int, level, int, optname, char *, optval, int, optlen)
5129 {
5130 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5131 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5132 		int ret, copy_len = 0;
5133 		const u8 *start;
5134 
5135 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5136 		if (ret > 0) {
5137 			copy_len = ret;
5138 			if (optlen < copy_len) {
5139 				copy_len = optlen;
5140 				ret = -ENOSPC;
5141 			}
5142 
5143 			memcpy(optval, start, copy_len);
5144 		}
5145 
5146 		/* Zero out unused buffer at the end */
5147 		memset(optval + copy_len, 0, optlen - copy_len);
5148 
5149 		return ret;
5150 	}
5151 
5152 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5153 }
5154 
5155 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5156 	.func		= bpf_sock_ops_getsockopt,
5157 	.gpl_only	= false,
5158 	.ret_type	= RET_INTEGER,
5159 	.arg1_type	= ARG_PTR_TO_CTX,
5160 	.arg2_type	= ARG_ANYTHING,
5161 	.arg3_type	= ARG_ANYTHING,
5162 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5163 	.arg5_type	= ARG_CONST_SIZE,
5164 };
5165 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5166 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5167 	   int, argval)
5168 {
5169 	struct sock *sk = bpf_sock->sk;
5170 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5171 
5172 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5173 		return -EINVAL;
5174 
5175 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5176 
5177 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5178 }
5179 
5180 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5181 	.func		= bpf_sock_ops_cb_flags_set,
5182 	.gpl_only	= false,
5183 	.ret_type	= RET_INTEGER,
5184 	.arg1_type	= ARG_PTR_TO_CTX,
5185 	.arg2_type	= ARG_ANYTHING,
5186 };
5187 
5188 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5189 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5190 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5191 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5192 	   int, addr_len)
5193 {
5194 #ifdef CONFIG_INET
5195 	struct sock *sk = ctx->sk;
5196 	u32 flags = BIND_FROM_BPF;
5197 	int err;
5198 
5199 	err = -EINVAL;
5200 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5201 		return err;
5202 	if (addr->sa_family == AF_INET) {
5203 		if (addr_len < sizeof(struct sockaddr_in))
5204 			return err;
5205 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5206 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5207 		return __inet_bind(sk, addr, addr_len, flags);
5208 #if IS_ENABLED(CONFIG_IPV6)
5209 	} else if (addr->sa_family == AF_INET6) {
5210 		if (addr_len < SIN6_LEN_RFC2133)
5211 			return err;
5212 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5213 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5214 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5215 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5216 		 */
5217 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5218 #endif /* CONFIG_IPV6 */
5219 	}
5220 #endif /* CONFIG_INET */
5221 
5222 	return -EAFNOSUPPORT;
5223 }
5224 
5225 static const struct bpf_func_proto bpf_bind_proto = {
5226 	.func		= bpf_bind,
5227 	.gpl_only	= false,
5228 	.ret_type	= RET_INTEGER,
5229 	.arg1_type	= ARG_PTR_TO_CTX,
5230 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5231 	.arg3_type	= ARG_CONST_SIZE,
5232 };
5233 
5234 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5235 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5236 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5237 {
5238 	const struct sec_path *sp = skb_sec_path(skb);
5239 	const struct xfrm_state *x;
5240 
5241 	if (!sp || unlikely(index >= sp->len || flags))
5242 		goto err_clear;
5243 
5244 	x = sp->xvec[index];
5245 
5246 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5247 		goto err_clear;
5248 
5249 	to->reqid = x->props.reqid;
5250 	to->spi = x->id.spi;
5251 	to->family = x->props.family;
5252 	to->ext = 0;
5253 
5254 	if (to->family == AF_INET6) {
5255 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5256 		       sizeof(to->remote_ipv6));
5257 	} else {
5258 		to->remote_ipv4 = x->props.saddr.a4;
5259 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5260 	}
5261 
5262 	return 0;
5263 err_clear:
5264 	memset(to, 0, size);
5265 	return -EINVAL;
5266 }
5267 
5268 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5269 	.func		= bpf_skb_get_xfrm_state,
5270 	.gpl_only	= false,
5271 	.ret_type	= RET_INTEGER,
5272 	.arg1_type	= ARG_PTR_TO_CTX,
5273 	.arg2_type	= ARG_ANYTHING,
5274 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5275 	.arg4_type	= ARG_CONST_SIZE,
5276 	.arg5_type	= ARG_ANYTHING,
5277 };
5278 #endif
5279 
5280 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,const struct neighbour * neigh,const struct net_device * dev)5281 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5282 				  const struct neighbour *neigh,
5283 				  const struct net_device *dev)
5284 {
5285 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5286 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5287 	params->h_vlan_TCI = 0;
5288 	params->h_vlan_proto = 0;
5289 
5290 	return 0;
5291 }
5292 #endif
5293 
5294 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5295 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5296 			       u32 flags, bool check_mtu)
5297 {
5298 	struct fib_nh_common *nhc;
5299 	struct in_device *in_dev;
5300 	struct neighbour *neigh;
5301 	struct net_device *dev;
5302 	struct fib_result res;
5303 	struct flowi4 fl4;
5304 	int err;
5305 	u32 mtu;
5306 
5307 	dev = dev_get_by_index_rcu(net, params->ifindex);
5308 	if (unlikely(!dev))
5309 		return -ENODEV;
5310 
5311 	/* verify forwarding is enabled on this interface */
5312 	in_dev = __in_dev_get_rcu(dev);
5313 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5314 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5315 
5316 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5317 		fl4.flowi4_iif = 1;
5318 		fl4.flowi4_oif = params->ifindex;
5319 	} else {
5320 		fl4.flowi4_iif = params->ifindex;
5321 		fl4.flowi4_oif = 0;
5322 	}
5323 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5324 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5325 	fl4.flowi4_flags = 0;
5326 
5327 	fl4.flowi4_proto = params->l4_protocol;
5328 	fl4.daddr = params->ipv4_dst;
5329 	fl4.saddr = params->ipv4_src;
5330 	fl4.fl4_sport = params->sport;
5331 	fl4.fl4_dport = params->dport;
5332 	fl4.flowi4_multipath_hash = 0;
5333 
5334 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5335 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5336 		struct fib_table *tb;
5337 
5338 		tb = fib_get_table(net, tbid);
5339 		if (unlikely(!tb))
5340 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5341 
5342 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5343 	} else {
5344 		fl4.flowi4_mark = 0;
5345 		fl4.flowi4_secid = 0;
5346 		fl4.flowi4_tun_key.tun_id = 0;
5347 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5348 
5349 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5350 	}
5351 
5352 	if (err) {
5353 		/* map fib lookup errors to RTN_ type */
5354 		if (err == -EINVAL)
5355 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5356 		if (err == -EHOSTUNREACH)
5357 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5358 		if (err == -EACCES)
5359 			return BPF_FIB_LKUP_RET_PROHIBIT;
5360 
5361 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5362 	}
5363 
5364 	if (res.type != RTN_UNICAST)
5365 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5366 
5367 	if (fib_info_num_path(res.fi) > 1)
5368 		fib_select_path(net, &res, &fl4, NULL);
5369 
5370 	if (check_mtu) {
5371 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5372 		if (params->tot_len > mtu)
5373 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5374 	}
5375 
5376 	nhc = res.nhc;
5377 
5378 	/* do not handle lwt encaps right now */
5379 	if (nhc->nhc_lwtstate)
5380 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5381 
5382 	dev = nhc->nhc_dev;
5383 
5384 	params->rt_metric = res.fi->fib_priority;
5385 	params->ifindex = dev->ifindex;
5386 
5387 	/* xdp and cls_bpf programs are run in RCU-bh so
5388 	 * rcu_read_lock_bh is not needed here
5389 	 */
5390 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5391 		if (nhc->nhc_gw_family)
5392 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5393 
5394 		neigh = __ipv4_neigh_lookup_noref(dev,
5395 						 (__force u32)params->ipv4_dst);
5396 	} else {
5397 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5398 
5399 		params->family = AF_INET6;
5400 		*dst = nhc->nhc_gw.ipv6;
5401 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5402 	}
5403 
5404 	if (!neigh)
5405 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5406 
5407 	return bpf_fib_set_fwd_params(params, neigh, dev);
5408 }
5409 #endif
5410 
5411 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5412 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5413 			       u32 flags, bool check_mtu)
5414 {
5415 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5416 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5417 	struct fib6_result res = {};
5418 	struct neighbour *neigh;
5419 	struct net_device *dev;
5420 	struct inet6_dev *idev;
5421 	struct flowi6 fl6;
5422 	int strict = 0;
5423 	int oif, err;
5424 	u32 mtu;
5425 
5426 	/* link local addresses are never forwarded */
5427 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5428 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5429 
5430 	dev = dev_get_by_index_rcu(net, params->ifindex);
5431 	if (unlikely(!dev))
5432 		return -ENODEV;
5433 
5434 	idev = __in6_dev_get_safely(dev);
5435 	if (unlikely(!idev || !idev->cnf.forwarding))
5436 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5437 
5438 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5439 		fl6.flowi6_iif = 1;
5440 		oif = fl6.flowi6_oif = params->ifindex;
5441 	} else {
5442 		oif = fl6.flowi6_iif = params->ifindex;
5443 		fl6.flowi6_oif = 0;
5444 		strict = RT6_LOOKUP_F_HAS_SADDR;
5445 	}
5446 	fl6.flowlabel = params->flowinfo;
5447 	fl6.flowi6_scope = 0;
5448 	fl6.flowi6_flags = 0;
5449 	fl6.mp_hash = 0;
5450 
5451 	fl6.flowi6_proto = params->l4_protocol;
5452 	fl6.daddr = *dst;
5453 	fl6.saddr = *src;
5454 	fl6.fl6_sport = params->sport;
5455 	fl6.fl6_dport = params->dport;
5456 
5457 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5458 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5459 		struct fib6_table *tb;
5460 
5461 		tb = ipv6_stub->fib6_get_table(net, tbid);
5462 		if (unlikely(!tb))
5463 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5464 
5465 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5466 						   strict);
5467 	} else {
5468 		fl6.flowi6_mark = 0;
5469 		fl6.flowi6_secid = 0;
5470 		fl6.flowi6_tun_key.tun_id = 0;
5471 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5472 
5473 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5474 	}
5475 
5476 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5477 		     res.f6i == net->ipv6.fib6_null_entry))
5478 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5479 
5480 	switch (res.fib6_type) {
5481 	/* only unicast is forwarded */
5482 	case RTN_UNICAST:
5483 		break;
5484 	case RTN_BLACKHOLE:
5485 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5486 	case RTN_UNREACHABLE:
5487 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5488 	case RTN_PROHIBIT:
5489 		return BPF_FIB_LKUP_RET_PROHIBIT;
5490 	default:
5491 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5492 	}
5493 
5494 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5495 				    fl6.flowi6_oif != 0, NULL, strict);
5496 
5497 	if (check_mtu) {
5498 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5499 		if (params->tot_len > mtu)
5500 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5501 	}
5502 
5503 	if (res.nh->fib_nh_lws)
5504 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5505 
5506 	if (res.nh->fib_nh_gw_family)
5507 		*dst = res.nh->fib_nh_gw6;
5508 
5509 	dev = res.nh->fib_nh_dev;
5510 	params->rt_metric = res.f6i->fib6_metric;
5511 	params->ifindex = dev->ifindex;
5512 
5513 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5514 	 * not needed here.
5515 	 */
5516 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5517 	if (!neigh)
5518 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5519 
5520 	return bpf_fib_set_fwd_params(params, neigh, dev);
5521 }
5522 #endif
5523 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)5524 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5525 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5526 {
5527 	if (plen < sizeof(*params))
5528 		return -EINVAL;
5529 
5530 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5531 		return -EINVAL;
5532 
5533 	switch (params->family) {
5534 #if IS_ENABLED(CONFIG_INET)
5535 	case AF_INET:
5536 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5537 					   flags, true);
5538 #endif
5539 #if IS_ENABLED(CONFIG_IPV6)
5540 	case AF_INET6:
5541 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5542 					   flags, true);
5543 #endif
5544 	}
5545 	return -EAFNOSUPPORT;
5546 }
5547 
5548 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5549 	.func		= bpf_xdp_fib_lookup,
5550 	.gpl_only	= true,
5551 	.ret_type	= RET_INTEGER,
5552 	.arg1_type      = ARG_PTR_TO_CTX,
5553 	.arg2_type      = ARG_PTR_TO_MEM,
5554 	.arg3_type      = ARG_CONST_SIZE,
5555 	.arg4_type	= ARG_ANYTHING,
5556 };
5557 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)5558 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5559 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5560 {
5561 	struct net *net = dev_net(skb->dev);
5562 	int rc = -EAFNOSUPPORT;
5563 	bool check_mtu = false;
5564 
5565 	if (plen < sizeof(*params))
5566 		return -EINVAL;
5567 
5568 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5569 		return -EINVAL;
5570 
5571 	if (params->tot_len)
5572 		check_mtu = true;
5573 
5574 	switch (params->family) {
5575 #if IS_ENABLED(CONFIG_INET)
5576 	case AF_INET:
5577 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5578 		break;
5579 #endif
5580 #if IS_ENABLED(CONFIG_IPV6)
5581 	case AF_INET6:
5582 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5583 		break;
5584 #endif
5585 	}
5586 
5587 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5588 		struct net_device *dev;
5589 
5590 		/* When tot_len isn't provided by user, check skb
5591 		 * against MTU of FIB lookup resulting net_device
5592 		 */
5593 		dev = dev_get_by_index_rcu(net, params->ifindex);
5594 		if (!is_skb_forwardable(dev, skb))
5595 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5596 	}
5597 
5598 	return rc;
5599 }
5600 
5601 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5602 	.func		= bpf_skb_fib_lookup,
5603 	.gpl_only	= true,
5604 	.ret_type	= RET_INTEGER,
5605 	.arg1_type      = ARG_PTR_TO_CTX,
5606 	.arg2_type      = ARG_PTR_TO_MEM,
5607 	.arg3_type      = ARG_CONST_SIZE,
5608 	.arg4_type	= ARG_ANYTHING,
5609 };
5610 
5611 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)5612 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5613 {
5614 	int err;
5615 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5616 
5617 	if (!seg6_validate_srh(srh, len, false))
5618 		return -EINVAL;
5619 
5620 	switch (type) {
5621 	case BPF_LWT_ENCAP_SEG6_INLINE:
5622 		if (skb->protocol != htons(ETH_P_IPV6))
5623 			return -EBADMSG;
5624 
5625 		err = seg6_do_srh_inline(skb, srh);
5626 		break;
5627 	case BPF_LWT_ENCAP_SEG6:
5628 		skb_reset_inner_headers(skb);
5629 		skb->encapsulation = 1;
5630 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5631 		break;
5632 	default:
5633 		return -EINVAL;
5634 	}
5635 
5636 	bpf_compute_data_pointers(skb);
5637 	if (err)
5638 		return err;
5639 
5640 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5641 
5642 	return seg6_lookup_nexthop(skb, NULL, 0);
5643 }
5644 #endif /* CONFIG_IPV6_SEG6_BPF */
5645 
5646 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)5647 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5648 			     bool ingress)
5649 {
5650 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5651 }
5652 #endif
5653 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5654 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5655 	   u32, len)
5656 {
5657 	switch (type) {
5658 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5659 	case BPF_LWT_ENCAP_SEG6:
5660 	case BPF_LWT_ENCAP_SEG6_INLINE:
5661 		return bpf_push_seg6_encap(skb, type, hdr, len);
5662 #endif
5663 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5664 	case BPF_LWT_ENCAP_IP:
5665 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5666 #endif
5667 	default:
5668 		return -EINVAL;
5669 	}
5670 }
5671 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5672 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5673 	   void *, hdr, u32, len)
5674 {
5675 	switch (type) {
5676 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5677 	case BPF_LWT_ENCAP_IP:
5678 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5679 #endif
5680 	default:
5681 		return -EINVAL;
5682 	}
5683 }
5684 
5685 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5686 	.func		= bpf_lwt_in_push_encap,
5687 	.gpl_only	= false,
5688 	.ret_type	= RET_INTEGER,
5689 	.arg1_type	= ARG_PTR_TO_CTX,
5690 	.arg2_type	= ARG_ANYTHING,
5691 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5692 	.arg4_type	= ARG_CONST_SIZE
5693 };
5694 
5695 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5696 	.func		= bpf_lwt_xmit_push_encap,
5697 	.gpl_only	= false,
5698 	.ret_type	= RET_INTEGER,
5699 	.arg1_type	= ARG_PTR_TO_CTX,
5700 	.arg2_type	= ARG_ANYTHING,
5701 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5702 	.arg4_type	= ARG_CONST_SIZE
5703 };
5704 
5705 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)5706 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5707 	   const void *, from, u32, len)
5708 {
5709 	struct seg6_bpf_srh_state *srh_state =
5710 		this_cpu_ptr(&seg6_bpf_srh_states);
5711 	struct ipv6_sr_hdr *srh = srh_state->srh;
5712 	void *srh_tlvs, *srh_end, *ptr;
5713 	int srhoff = 0;
5714 
5715 	if (srh == NULL)
5716 		return -EINVAL;
5717 
5718 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5719 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5720 
5721 	ptr = skb->data + offset;
5722 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5723 		srh_state->valid = false;
5724 	else if (ptr < (void *)&srh->flags ||
5725 		 ptr + len > (void *)&srh->segments)
5726 		return -EFAULT;
5727 
5728 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5729 		return -EFAULT;
5730 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5731 		return -EINVAL;
5732 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5733 
5734 	memcpy(skb->data + offset, from, len);
5735 	return 0;
5736 }
5737 
5738 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5739 	.func		= bpf_lwt_seg6_store_bytes,
5740 	.gpl_only	= false,
5741 	.ret_type	= RET_INTEGER,
5742 	.arg1_type	= ARG_PTR_TO_CTX,
5743 	.arg2_type	= ARG_ANYTHING,
5744 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5745 	.arg4_type	= ARG_CONST_SIZE
5746 };
5747 
bpf_update_srh_state(struct sk_buff * skb)5748 static void bpf_update_srh_state(struct sk_buff *skb)
5749 {
5750 	struct seg6_bpf_srh_state *srh_state =
5751 		this_cpu_ptr(&seg6_bpf_srh_states);
5752 	int srhoff = 0;
5753 
5754 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5755 		srh_state->srh = NULL;
5756 	} else {
5757 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5758 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5759 		srh_state->valid = true;
5760 	}
5761 }
5762 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)5763 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5764 	   u32, action, void *, param, u32, param_len)
5765 {
5766 	struct seg6_bpf_srh_state *srh_state =
5767 		this_cpu_ptr(&seg6_bpf_srh_states);
5768 	int hdroff = 0;
5769 	int err;
5770 
5771 	switch (action) {
5772 	case SEG6_LOCAL_ACTION_END_X:
5773 		if (!seg6_bpf_has_valid_srh(skb))
5774 			return -EBADMSG;
5775 		if (param_len != sizeof(struct in6_addr))
5776 			return -EINVAL;
5777 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5778 	case SEG6_LOCAL_ACTION_END_T:
5779 		if (!seg6_bpf_has_valid_srh(skb))
5780 			return -EBADMSG;
5781 		if (param_len != sizeof(int))
5782 			return -EINVAL;
5783 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5784 	case SEG6_LOCAL_ACTION_END_DT6:
5785 		if (!seg6_bpf_has_valid_srh(skb))
5786 			return -EBADMSG;
5787 		if (param_len != sizeof(int))
5788 			return -EINVAL;
5789 
5790 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5791 			return -EBADMSG;
5792 		if (!pskb_pull(skb, hdroff))
5793 			return -EBADMSG;
5794 
5795 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5796 		skb_reset_network_header(skb);
5797 		skb_reset_transport_header(skb);
5798 		skb->encapsulation = 0;
5799 
5800 		bpf_compute_data_pointers(skb);
5801 		bpf_update_srh_state(skb);
5802 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5803 	case SEG6_LOCAL_ACTION_END_B6:
5804 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5805 			return -EBADMSG;
5806 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5807 					  param, param_len);
5808 		if (!err)
5809 			bpf_update_srh_state(skb);
5810 
5811 		return err;
5812 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5813 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5814 			return -EBADMSG;
5815 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5816 					  param, param_len);
5817 		if (!err)
5818 			bpf_update_srh_state(skb);
5819 
5820 		return err;
5821 	default:
5822 		return -EINVAL;
5823 	}
5824 }
5825 
5826 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5827 	.func		= bpf_lwt_seg6_action,
5828 	.gpl_only	= false,
5829 	.ret_type	= RET_INTEGER,
5830 	.arg1_type	= ARG_PTR_TO_CTX,
5831 	.arg2_type	= ARG_ANYTHING,
5832 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5833 	.arg4_type	= ARG_CONST_SIZE
5834 };
5835 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)5836 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5837 	   s32, len)
5838 {
5839 	struct seg6_bpf_srh_state *srh_state =
5840 		this_cpu_ptr(&seg6_bpf_srh_states);
5841 	struct ipv6_sr_hdr *srh = srh_state->srh;
5842 	void *srh_end, *srh_tlvs, *ptr;
5843 	struct ipv6hdr *hdr;
5844 	int srhoff = 0;
5845 	int ret;
5846 
5847 	if (unlikely(srh == NULL))
5848 		return -EINVAL;
5849 
5850 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5851 			((srh->first_segment + 1) << 4));
5852 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5853 			srh_state->hdrlen);
5854 	ptr = skb->data + offset;
5855 
5856 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5857 		return -EFAULT;
5858 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5859 		return -EFAULT;
5860 
5861 	if (len > 0) {
5862 		ret = skb_cow_head(skb, len);
5863 		if (unlikely(ret < 0))
5864 			return ret;
5865 
5866 		ret = bpf_skb_net_hdr_push(skb, offset, len);
5867 	} else {
5868 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5869 	}
5870 
5871 	bpf_compute_data_pointers(skb);
5872 	if (unlikely(ret < 0))
5873 		return ret;
5874 
5875 	hdr = (struct ipv6hdr *)skb->data;
5876 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5877 
5878 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5879 		return -EINVAL;
5880 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5881 	srh_state->hdrlen += len;
5882 	srh_state->valid = false;
5883 	return 0;
5884 }
5885 
5886 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5887 	.func		= bpf_lwt_seg6_adjust_srh,
5888 	.gpl_only	= false,
5889 	.ret_type	= RET_INTEGER,
5890 	.arg1_type	= ARG_PTR_TO_CTX,
5891 	.arg2_type	= ARG_ANYTHING,
5892 	.arg3_type	= ARG_ANYTHING,
5893 };
5894 #endif /* CONFIG_IPV6_SEG6_BPF */
5895 
5896 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)5897 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5898 			      int dif, int sdif, u8 family, u8 proto)
5899 {
5900 	bool refcounted = false;
5901 	struct sock *sk = NULL;
5902 
5903 	if (family == AF_INET) {
5904 		__be32 src4 = tuple->ipv4.saddr;
5905 		__be32 dst4 = tuple->ipv4.daddr;
5906 
5907 		if (proto == IPPROTO_TCP)
5908 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5909 					   src4, tuple->ipv4.sport,
5910 					   dst4, tuple->ipv4.dport,
5911 					   dif, sdif, &refcounted);
5912 		else
5913 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5914 					       dst4, tuple->ipv4.dport,
5915 					       dif, sdif, &udp_table, NULL);
5916 #if IS_ENABLED(CONFIG_IPV6)
5917 	} else {
5918 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5919 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5920 
5921 		if (proto == IPPROTO_TCP)
5922 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5923 					    src6, tuple->ipv6.sport,
5924 					    dst6, ntohs(tuple->ipv6.dport),
5925 					    dif, sdif, &refcounted);
5926 		else if (likely(ipv6_bpf_stub))
5927 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5928 							    src6, tuple->ipv6.sport,
5929 							    dst6, tuple->ipv6.dport,
5930 							    dif, sdif,
5931 							    &udp_table, NULL);
5932 #endif
5933 	}
5934 
5935 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5936 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5937 		sk = NULL;
5938 	}
5939 	return sk;
5940 }
5941 
5942 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5943  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5944  * Returns the socket as an 'unsigned long' to simplify the casting in the
5945  * callers to satisfy BPF_CALL declarations.
5946  */
5947 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5948 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5949 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5950 		 u64 flags)
5951 {
5952 	struct sock *sk = NULL;
5953 	u8 family = AF_UNSPEC;
5954 	struct net *net;
5955 	int sdif;
5956 
5957 	if (len == sizeof(tuple->ipv4))
5958 		family = AF_INET;
5959 	else if (len == sizeof(tuple->ipv6))
5960 		family = AF_INET6;
5961 	else
5962 		return NULL;
5963 
5964 	if (unlikely(family == AF_UNSPEC || flags ||
5965 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5966 		goto out;
5967 
5968 	if (family == AF_INET)
5969 		sdif = inet_sdif(skb);
5970 	else
5971 		sdif = inet6_sdif(skb);
5972 
5973 	if ((s32)netns_id < 0) {
5974 		net = caller_net;
5975 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5976 	} else {
5977 		net = get_net_ns_by_id(caller_net, netns_id);
5978 		if (unlikely(!net))
5979 			goto out;
5980 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5981 		put_net(net);
5982 	}
5983 
5984 out:
5985 	return sk;
5986 }
5987 
5988 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5989 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5990 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5991 		u64 flags)
5992 {
5993 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5994 					   ifindex, proto, netns_id, flags);
5995 
5996 	if (sk) {
5997 		struct sock *sk2 = sk_to_full_sk(sk);
5998 
5999 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6000 		 * sock refcnt is decremented to prevent a request_sock leak.
6001 		 */
6002 		if (!sk_fullsock(sk2))
6003 			sk2 = NULL;
6004 		if (sk2 != sk) {
6005 			sock_gen_put(sk);
6006 			/* Ensure there is no need to bump sk2 refcnt */
6007 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6008 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6009 				return NULL;
6010 			}
6011 			sk = sk2;
6012 		}
6013 	}
6014 
6015 	return sk;
6016 }
6017 
6018 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6019 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6020 	       u8 proto, u64 netns_id, u64 flags)
6021 {
6022 	struct net *caller_net;
6023 	int ifindex;
6024 
6025 	if (skb->dev) {
6026 		caller_net = dev_net(skb->dev);
6027 		ifindex = skb->dev->ifindex;
6028 	} else {
6029 		caller_net = sock_net(skb->sk);
6030 		ifindex = 0;
6031 	}
6032 
6033 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6034 				netns_id, flags);
6035 }
6036 
6037 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6038 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6039 	      u8 proto, u64 netns_id, u64 flags)
6040 {
6041 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6042 					 flags);
6043 
6044 	if (sk) {
6045 		struct sock *sk2 = sk_to_full_sk(sk);
6046 
6047 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6048 		 * sock refcnt is decremented to prevent a request_sock leak.
6049 		 */
6050 		if (!sk_fullsock(sk2))
6051 			sk2 = NULL;
6052 		if (sk2 != sk) {
6053 			sock_gen_put(sk);
6054 			/* Ensure there is no need to bump sk2 refcnt */
6055 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6056 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6057 				return NULL;
6058 			}
6059 			sk = sk2;
6060 		}
6061 	}
6062 
6063 	return sk;
6064 }
6065 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6066 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6067 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6068 {
6069 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6070 					     netns_id, flags);
6071 }
6072 
6073 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6074 	.func		= bpf_skc_lookup_tcp,
6075 	.gpl_only	= false,
6076 	.pkt_access	= true,
6077 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6078 	.arg1_type	= ARG_PTR_TO_CTX,
6079 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6080 	.arg3_type	= ARG_CONST_SIZE,
6081 	.arg4_type	= ARG_ANYTHING,
6082 	.arg5_type	= ARG_ANYTHING,
6083 };
6084 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6085 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6086 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6087 {
6088 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6089 					    netns_id, flags);
6090 }
6091 
6092 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6093 	.func		= bpf_sk_lookup_tcp,
6094 	.gpl_only	= false,
6095 	.pkt_access	= true,
6096 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6097 	.arg1_type	= ARG_PTR_TO_CTX,
6098 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6099 	.arg3_type	= ARG_CONST_SIZE,
6100 	.arg4_type	= ARG_ANYTHING,
6101 	.arg5_type	= ARG_ANYTHING,
6102 };
6103 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6104 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6105 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6106 {
6107 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6108 					    netns_id, flags);
6109 }
6110 
6111 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6112 	.func		= bpf_sk_lookup_udp,
6113 	.gpl_only	= false,
6114 	.pkt_access	= true,
6115 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6116 	.arg1_type	= ARG_PTR_TO_CTX,
6117 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6118 	.arg3_type	= ARG_CONST_SIZE,
6119 	.arg4_type	= ARG_ANYTHING,
6120 	.arg5_type	= ARG_ANYTHING,
6121 };
6122 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6123 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6124 {
6125 	if (sk && sk_is_refcounted(sk))
6126 		sock_gen_put(sk);
6127 	return 0;
6128 }
6129 
6130 static const struct bpf_func_proto bpf_sk_release_proto = {
6131 	.func		= bpf_sk_release,
6132 	.gpl_only	= false,
6133 	.ret_type	= RET_INTEGER,
6134 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6135 };
6136 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6137 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6138 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6139 {
6140 	struct net *caller_net = dev_net(ctx->rxq->dev);
6141 	int ifindex = ctx->rxq->dev->ifindex;
6142 
6143 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6144 					      ifindex, IPPROTO_UDP, netns_id,
6145 					      flags);
6146 }
6147 
6148 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6149 	.func           = bpf_xdp_sk_lookup_udp,
6150 	.gpl_only       = false,
6151 	.pkt_access     = true,
6152 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6153 	.arg1_type      = ARG_PTR_TO_CTX,
6154 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6155 	.arg3_type      = ARG_CONST_SIZE,
6156 	.arg4_type      = ARG_ANYTHING,
6157 	.arg5_type      = ARG_ANYTHING,
6158 };
6159 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6160 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6161 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6162 {
6163 	struct net *caller_net = dev_net(ctx->rxq->dev);
6164 	int ifindex = ctx->rxq->dev->ifindex;
6165 
6166 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6167 					       ifindex, IPPROTO_TCP, netns_id,
6168 					       flags);
6169 }
6170 
6171 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6172 	.func           = bpf_xdp_skc_lookup_tcp,
6173 	.gpl_only       = false,
6174 	.pkt_access     = true,
6175 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6176 	.arg1_type      = ARG_PTR_TO_CTX,
6177 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6178 	.arg3_type      = ARG_CONST_SIZE,
6179 	.arg4_type      = ARG_ANYTHING,
6180 	.arg5_type      = ARG_ANYTHING,
6181 };
6182 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6183 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6184 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6185 {
6186 	struct net *caller_net = dev_net(ctx->rxq->dev);
6187 	int ifindex = ctx->rxq->dev->ifindex;
6188 
6189 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6190 					      ifindex, IPPROTO_TCP, netns_id,
6191 					      flags);
6192 }
6193 
6194 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6195 	.func           = bpf_xdp_sk_lookup_tcp,
6196 	.gpl_only       = false,
6197 	.pkt_access     = true,
6198 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6199 	.arg1_type      = ARG_PTR_TO_CTX,
6200 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6201 	.arg3_type      = ARG_CONST_SIZE,
6202 	.arg4_type      = ARG_ANYTHING,
6203 	.arg5_type      = ARG_ANYTHING,
6204 };
6205 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6206 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6207 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6208 {
6209 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6210 					       sock_net(ctx->sk), 0,
6211 					       IPPROTO_TCP, netns_id, flags);
6212 }
6213 
6214 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6215 	.func		= bpf_sock_addr_skc_lookup_tcp,
6216 	.gpl_only	= false,
6217 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6218 	.arg1_type	= ARG_PTR_TO_CTX,
6219 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6220 	.arg3_type	= ARG_CONST_SIZE,
6221 	.arg4_type	= ARG_ANYTHING,
6222 	.arg5_type	= ARG_ANYTHING,
6223 };
6224 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6225 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6226 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6227 {
6228 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6229 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6230 					      netns_id, flags);
6231 }
6232 
6233 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6234 	.func		= bpf_sock_addr_sk_lookup_tcp,
6235 	.gpl_only	= false,
6236 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6237 	.arg1_type	= ARG_PTR_TO_CTX,
6238 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6239 	.arg3_type	= ARG_CONST_SIZE,
6240 	.arg4_type	= ARG_ANYTHING,
6241 	.arg5_type	= ARG_ANYTHING,
6242 };
6243 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6244 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6245 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6246 {
6247 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6248 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6249 					      netns_id, flags);
6250 }
6251 
6252 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6253 	.func		= bpf_sock_addr_sk_lookup_udp,
6254 	.gpl_only	= false,
6255 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6256 	.arg1_type	= ARG_PTR_TO_CTX,
6257 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6258 	.arg3_type	= ARG_CONST_SIZE,
6259 	.arg4_type	= ARG_ANYTHING,
6260 	.arg5_type	= ARG_ANYTHING,
6261 };
6262 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6263 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6264 				  struct bpf_insn_access_aux *info)
6265 {
6266 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6267 					  icsk_retransmits))
6268 		return false;
6269 
6270 	if (off % size != 0)
6271 		return false;
6272 
6273 	switch (off) {
6274 	case offsetof(struct bpf_tcp_sock, bytes_received):
6275 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6276 		return size == sizeof(__u64);
6277 	default:
6278 		return size == sizeof(__u32);
6279 	}
6280 }
6281 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6282 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6283 				    const struct bpf_insn *si,
6284 				    struct bpf_insn *insn_buf,
6285 				    struct bpf_prog *prog, u32 *target_size)
6286 {
6287 	struct bpf_insn *insn = insn_buf;
6288 
6289 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6290 	do {								\
6291 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6292 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6293 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6294 				      si->dst_reg, si->src_reg,		\
6295 				      offsetof(struct tcp_sock, FIELD)); \
6296 	} while (0)
6297 
6298 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6299 	do {								\
6300 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6301 					  FIELD) >			\
6302 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6303 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6304 					struct inet_connection_sock,	\
6305 					FIELD),				\
6306 				      si->dst_reg, si->src_reg,		\
6307 				      offsetof(				\
6308 					struct inet_connection_sock,	\
6309 					FIELD));			\
6310 	} while (0)
6311 
6312 	if (insn > insn_buf)
6313 		return insn - insn_buf;
6314 
6315 	switch (si->off) {
6316 	case offsetof(struct bpf_tcp_sock, rtt_min):
6317 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6318 			     sizeof(struct minmax));
6319 		BUILD_BUG_ON(sizeof(struct minmax) <
6320 			     sizeof(struct minmax_sample));
6321 
6322 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6323 				      offsetof(struct tcp_sock, rtt_min) +
6324 				      offsetof(struct minmax_sample, v));
6325 		break;
6326 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6327 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6328 		break;
6329 	case offsetof(struct bpf_tcp_sock, srtt_us):
6330 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6331 		break;
6332 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6333 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6334 		break;
6335 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6336 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6337 		break;
6338 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6339 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6340 		break;
6341 	case offsetof(struct bpf_tcp_sock, snd_una):
6342 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6343 		break;
6344 	case offsetof(struct bpf_tcp_sock, mss_cache):
6345 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6346 		break;
6347 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6348 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6349 		break;
6350 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6351 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6352 		break;
6353 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6354 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6355 		break;
6356 	case offsetof(struct bpf_tcp_sock, packets_out):
6357 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6358 		break;
6359 	case offsetof(struct bpf_tcp_sock, retrans_out):
6360 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6361 		break;
6362 	case offsetof(struct bpf_tcp_sock, total_retrans):
6363 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6364 		break;
6365 	case offsetof(struct bpf_tcp_sock, segs_in):
6366 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6367 		break;
6368 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6369 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6370 		break;
6371 	case offsetof(struct bpf_tcp_sock, segs_out):
6372 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6373 		break;
6374 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6375 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6376 		break;
6377 	case offsetof(struct bpf_tcp_sock, lost_out):
6378 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6379 		break;
6380 	case offsetof(struct bpf_tcp_sock, sacked_out):
6381 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6382 		break;
6383 	case offsetof(struct bpf_tcp_sock, bytes_received):
6384 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6385 		break;
6386 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6387 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6388 		break;
6389 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6390 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6391 		break;
6392 	case offsetof(struct bpf_tcp_sock, delivered):
6393 		BPF_TCP_SOCK_GET_COMMON(delivered);
6394 		break;
6395 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6396 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6397 		break;
6398 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6399 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6400 		break;
6401 	}
6402 
6403 	return insn - insn_buf;
6404 }
6405 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)6406 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6407 {
6408 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6409 		return (unsigned long)sk;
6410 
6411 	return (unsigned long)NULL;
6412 }
6413 
6414 const struct bpf_func_proto bpf_tcp_sock_proto = {
6415 	.func		= bpf_tcp_sock,
6416 	.gpl_only	= false,
6417 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6418 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6419 };
6420 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)6421 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6422 {
6423 	sk = sk_to_full_sk(sk);
6424 
6425 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6426 		return (unsigned long)sk;
6427 
6428 	return (unsigned long)NULL;
6429 }
6430 
6431 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6432 	.func		= bpf_get_listener_sock,
6433 	.gpl_only	= false,
6434 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6435 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6436 };
6437 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)6438 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6439 {
6440 	unsigned int iphdr_len;
6441 
6442 	switch (skb_protocol(skb, true)) {
6443 	case cpu_to_be16(ETH_P_IP):
6444 		iphdr_len = sizeof(struct iphdr);
6445 		break;
6446 	case cpu_to_be16(ETH_P_IPV6):
6447 		iphdr_len = sizeof(struct ipv6hdr);
6448 		break;
6449 	default:
6450 		return 0;
6451 	}
6452 
6453 	if (skb_headlen(skb) < iphdr_len)
6454 		return 0;
6455 
6456 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6457 		return 0;
6458 
6459 	return INET_ECN_set_ce(skb);
6460 }
6461 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6462 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6463 				  struct bpf_insn_access_aux *info)
6464 {
6465 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6466 		return false;
6467 
6468 	if (off % size != 0)
6469 		return false;
6470 
6471 	switch (off) {
6472 	default:
6473 		return size == sizeof(__u32);
6474 	}
6475 }
6476 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6477 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6478 				    const struct bpf_insn *si,
6479 				    struct bpf_insn *insn_buf,
6480 				    struct bpf_prog *prog, u32 *target_size)
6481 {
6482 	struct bpf_insn *insn = insn_buf;
6483 
6484 #define BPF_XDP_SOCK_GET(FIELD)						\
6485 	do {								\
6486 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6487 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6488 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6489 				      si->dst_reg, si->src_reg,		\
6490 				      offsetof(struct xdp_sock, FIELD)); \
6491 	} while (0)
6492 
6493 	switch (si->off) {
6494 	case offsetof(struct bpf_xdp_sock, queue_id):
6495 		BPF_XDP_SOCK_GET(queue_id);
6496 		break;
6497 	}
6498 
6499 	return insn - insn_buf;
6500 }
6501 
6502 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6503 	.func           = bpf_skb_ecn_set_ce,
6504 	.gpl_only       = false,
6505 	.ret_type       = RET_INTEGER,
6506 	.arg1_type      = ARG_PTR_TO_CTX,
6507 };
6508 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6509 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6510 	   struct tcphdr *, th, u32, th_len)
6511 {
6512 #ifdef CONFIG_SYN_COOKIES
6513 	u32 cookie;
6514 	int ret;
6515 
6516 	if (unlikely(!sk || th_len < sizeof(*th)))
6517 		return -EINVAL;
6518 
6519 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6520 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6521 		return -EINVAL;
6522 
6523 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6524 		return -EINVAL;
6525 
6526 	if (!th->ack || th->rst || th->syn)
6527 		return -ENOENT;
6528 
6529 	if (unlikely(iph_len < sizeof(struct iphdr)))
6530 		return -EINVAL;
6531 
6532 	if (tcp_synq_no_recent_overflow(sk))
6533 		return -ENOENT;
6534 
6535 	cookie = ntohl(th->ack_seq) - 1;
6536 
6537 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6538 	 * same offset so we can cast to the shorter header (struct iphdr).
6539 	 */
6540 	switch (((struct iphdr *)iph)->version) {
6541 	case 4:
6542 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
6543 			return -EINVAL;
6544 
6545 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6546 		break;
6547 
6548 #if IS_BUILTIN(CONFIG_IPV6)
6549 	case 6:
6550 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6551 			return -EINVAL;
6552 
6553 		if (sk->sk_family != AF_INET6)
6554 			return -EINVAL;
6555 
6556 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6557 		break;
6558 #endif /* CONFIG_IPV6 */
6559 
6560 	default:
6561 		return -EPROTONOSUPPORT;
6562 	}
6563 
6564 	if (ret > 0)
6565 		return 0;
6566 
6567 	return -ENOENT;
6568 #else
6569 	return -ENOTSUPP;
6570 #endif
6571 }
6572 
6573 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6574 	.func		= bpf_tcp_check_syncookie,
6575 	.gpl_only	= true,
6576 	.pkt_access	= true,
6577 	.ret_type	= RET_INTEGER,
6578 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6579 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6580 	.arg3_type	= ARG_CONST_SIZE,
6581 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6582 	.arg5_type	= ARG_CONST_SIZE,
6583 };
6584 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6585 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6586 	   struct tcphdr *, th, u32, th_len)
6587 {
6588 #ifdef CONFIG_SYN_COOKIES
6589 	u32 cookie;
6590 	u16 mss;
6591 
6592 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6593 		return -EINVAL;
6594 
6595 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6596 		return -EINVAL;
6597 
6598 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6599 		return -ENOENT;
6600 
6601 	if (!th->syn || th->ack || th->fin || th->rst)
6602 		return -EINVAL;
6603 
6604 	if (unlikely(iph_len < sizeof(struct iphdr)))
6605 		return -EINVAL;
6606 
6607 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6608 	 * same offset so we can cast to the shorter header (struct iphdr).
6609 	 */
6610 	switch (((struct iphdr *)iph)->version) {
6611 	case 4:
6612 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6613 			return -EINVAL;
6614 
6615 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6616 		break;
6617 
6618 #if IS_BUILTIN(CONFIG_IPV6)
6619 	case 6:
6620 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6621 			return -EINVAL;
6622 
6623 		if (sk->sk_family != AF_INET6)
6624 			return -EINVAL;
6625 
6626 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6627 		break;
6628 #endif /* CONFIG_IPV6 */
6629 
6630 	default:
6631 		return -EPROTONOSUPPORT;
6632 	}
6633 	if (mss == 0)
6634 		return -ENOENT;
6635 
6636 	return cookie | ((u64)mss << 32);
6637 #else
6638 	return -EOPNOTSUPP;
6639 #endif /* CONFIG_SYN_COOKIES */
6640 }
6641 
6642 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6643 	.func		= bpf_tcp_gen_syncookie,
6644 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
6645 	.pkt_access	= true,
6646 	.ret_type	= RET_INTEGER,
6647 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6648 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6649 	.arg3_type	= ARG_CONST_SIZE,
6650 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6651 	.arg5_type	= ARG_CONST_SIZE,
6652 };
6653 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)6654 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6655 {
6656 	if (!sk || flags != 0)
6657 		return -EINVAL;
6658 	if (!skb_at_tc_ingress(skb))
6659 		return -EOPNOTSUPP;
6660 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6661 		return -ENETUNREACH;
6662 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6663 		return -ESOCKTNOSUPPORT;
6664 	if (sk_is_refcounted(sk) &&
6665 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6666 		return -ENOENT;
6667 
6668 	skb_orphan(skb);
6669 	skb->sk = sk;
6670 	skb->destructor = sock_pfree;
6671 
6672 	return 0;
6673 }
6674 
6675 static const struct bpf_func_proto bpf_sk_assign_proto = {
6676 	.func		= bpf_sk_assign,
6677 	.gpl_only	= false,
6678 	.ret_type	= RET_INTEGER,
6679 	.arg1_type      = ARG_PTR_TO_CTX,
6680 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6681 	.arg3_type	= ARG_ANYTHING,
6682 };
6683 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)6684 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6685 				    u8 search_kind, const u8 *magic,
6686 				    u8 magic_len, bool *eol)
6687 {
6688 	u8 kind, kind_len;
6689 
6690 	*eol = false;
6691 
6692 	while (op < opend) {
6693 		kind = op[0];
6694 
6695 		if (kind == TCPOPT_EOL) {
6696 			*eol = true;
6697 			return ERR_PTR(-ENOMSG);
6698 		} else if (kind == TCPOPT_NOP) {
6699 			op++;
6700 			continue;
6701 		}
6702 
6703 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6704 			/* Something is wrong in the received header.
6705 			 * Follow the TCP stack's tcp_parse_options()
6706 			 * and just bail here.
6707 			 */
6708 			return ERR_PTR(-EFAULT);
6709 
6710 		kind_len = op[1];
6711 		if (search_kind == kind) {
6712 			if (!magic_len)
6713 				return op;
6714 
6715 			if (magic_len > kind_len - 2)
6716 				return ERR_PTR(-ENOMSG);
6717 
6718 			if (!memcmp(&op[2], magic, magic_len))
6719 				return op;
6720 		}
6721 
6722 		op += kind_len;
6723 	}
6724 
6725 	return ERR_PTR(-ENOMSG);
6726 }
6727 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)6728 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6729 	   void *, search_res, u32, len, u64, flags)
6730 {
6731 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6732 	const u8 *op, *opend, *magic, *search = search_res;
6733 	u8 search_kind, search_len, copy_len, magic_len;
6734 	int ret;
6735 
6736 	/* 2 byte is the minimal option len except TCPOPT_NOP and
6737 	 * TCPOPT_EOL which are useless for the bpf prog to learn
6738 	 * and this helper disallow loading them also.
6739 	 */
6740 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6741 		return -EINVAL;
6742 
6743 	search_kind = search[0];
6744 	search_len = search[1];
6745 
6746 	if (search_len > len || search_kind == TCPOPT_NOP ||
6747 	    search_kind == TCPOPT_EOL)
6748 		return -EINVAL;
6749 
6750 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
6751 		/* 16 or 32 bit magic.  +2 for kind and kind length */
6752 		if (search_len != 4 && search_len != 6)
6753 			return -EINVAL;
6754 		magic = &search[2];
6755 		magic_len = search_len - 2;
6756 	} else {
6757 		if (search_len)
6758 			return -EINVAL;
6759 		magic = NULL;
6760 		magic_len = 0;
6761 	}
6762 
6763 	if (load_syn) {
6764 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6765 		if (ret < 0)
6766 			return ret;
6767 
6768 		opend = op + ret;
6769 		op += sizeof(struct tcphdr);
6770 	} else {
6771 		if (!bpf_sock->skb ||
6772 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6773 			/* This bpf_sock->op cannot call this helper */
6774 			return -EPERM;
6775 
6776 		opend = bpf_sock->skb_data_end;
6777 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
6778 	}
6779 
6780 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6781 				&eol);
6782 	if (IS_ERR(op))
6783 		return PTR_ERR(op);
6784 
6785 	copy_len = op[1];
6786 	ret = copy_len;
6787 	if (copy_len > len) {
6788 		ret = -ENOSPC;
6789 		copy_len = len;
6790 	}
6791 
6792 	memcpy(search_res, op, copy_len);
6793 	return ret;
6794 }
6795 
6796 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6797 	.func		= bpf_sock_ops_load_hdr_opt,
6798 	.gpl_only	= false,
6799 	.ret_type	= RET_INTEGER,
6800 	.arg1_type	= ARG_PTR_TO_CTX,
6801 	.arg2_type	= ARG_PTR_TO_MEM,
6802 	.arg3_type	= ARG_CONST_SIZE,
6803 	.arg4_type	= ARG_ANYTHING,
6804 };
6805 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)6806 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6807 	   const void *, from, u32, len, u64, flags)
6808 {
6809 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
6810 	const u8 *op, *new_op, *magic = NULL;
6811 	struct sk_buff *skb;
6812 	bool eol;
6813 
6814 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6815 		return -EPERM;
6816 
6817 	if (len < 2 || flags)
6818 		return -EINVAL;
6819 
6820 	new_op = from;
6821 	new_kind = new_op[0];
6822 	new_kind_len = new_op[1];
6823 
6824 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6825 	    new_kind == TCPOPT_EOL)
6826 		return -EINVAL;
6827 
6828 	if (new_kind_len > bpf_sock->remaining_opt_len)
6829 		return -ENOSPC;
6830 
6831 	/* 253 is another experimental kind */
6832 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6833 		if (new_kind_len < 4)
6834 			return -EINVAL;
6835 		/* Match for the 2 byte magic also.
6836 		 * RFC 6994: the magic could be 2 or 4 bytes.
6837 		 * Hence, matching by 2 byte only is on the
6838 		 * conservative side but it is the right
6839 		 * thing to do for the 'search-for-duplication'
6840 		 * purpose.
6841 		 */
6842 		magic = &new_op[2];
6843 		magic_len = 2;
6844 	}
6845 
6846 	/* Check for duplication */
6847 	skb = bpf_sock->skb;
6848 	op = skb->data + sizeof(struct tcphdr);
6849 	opend = bpf_sock->skb_data_end;
6850 
6851 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6852 				&eol);
6853 	if (!IS_ERR(op))
6854 		return -EEXIST;
6855 
6856 	if (PTR_ERR(op) != -ENOMSG)
6857 		return PTR_ERR(op);
6858 
6859 	if (eol)
6860 		/* The option has been ended.  Treat it as no more
6861 		 * header option can be written.
6862 		 */
6863 		return -ENOSPC;
6864 
6865 	/* No duplication found.  Store the header option. */
6866 	memcpy(opend, from, new_kind_len);
6867 
6868 	bpf_sock->remaining_opt_len -= new_kind_len;
6869 	bpf_sock->skb_data_end += new_kind_len;
6870 
6871 	return 0;
6872 }
6873 
6874 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6875 	.func		= bpf_sock_ops_store_hdr_opt,
6876 	.gpl_only	= false,
6877 	.ret_type	= RET_INTEGER,
6878 	.arg1_type	= ARG_PTR_TO_CTX,
6879 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6880 	.arg3_type	= ARG_CONST_SIZE,
6881 	.arg4_type	= ARG_ANYTHING,
6882 };
6883 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)6884 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6885 	   u32, len, u64, flags)
6886 {
6887 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6888 		return -EPERM;
6889 
6890 	if (flags || len < 2)
6891 		return -EINVAL;
6892 
6893 	if (len > bpf_sock->remaining_opt_len)
6894 		return -ENOSPC;
6895 
6896 	bpf_sock->remaining_opt_len -= len;
6897 
6898 	return 0;
6899 }
6900 
6901 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
6902 	.func		= bpf_sock_ops_reserve_hdr_opt,
6903 	.gpl_only	= false,
6904 	.ret_type	= RET_INTEGER,
6905 	.arg1_type	= ARG_PTR_TO_CTX,
6906 	.arg2_type	= ARG_ANYTHING,
6907 	.arg3_type	= ARG_ANYTHING,
6908 };
6909 
6910 #endif /* CONFIG_INET */
6911 
bpf_helper_changes_pkt_data(void * func)6912 bool bpf_helper_changes_pkt_data(void *func)
6913 {
6914 	if (func == bpf_skb_vlan_push ||
6915 	    func == bpf_skb_vlan_pop ||
6916 	    func == bpf_skb_store_bytes ||
6917 	    func == bpf_skb_change_proto ||
6918 	    func == bpf_skb_change_head ||
6919 	    func == sk_skb_change_head ||
6920 	    func == bpf_skb_change_tail ||
6921 	    func == sk_skb_change_tail ||
6922 	    func == bpf_skb_adjust_room ||
6923 	    func == sk_skb_adjust_room ||
6924 	    func == bpf_skb_pull_data ||
6925 	    func == sk_skb_pull_data ||
6926 	    func == bpf_clone_redirect ||
6927 	    func == bpf_l3_csum_replace ||
6928 	    func == bpf_l4_csum_replace ||
6929 	    func == bpf_xdp_adjust_head ||
6930 	    func == bpf_xdp_adjust_meta ||
6931 	    func == bpf_msg_pull_data ||
6932 	    func == bpf_msg_push_data ||
6933 	    func == bpf_msg_pop_data ||
6934 	    func == bpf_xdp_adjust_tail ||
6935 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6936 	    func == bpf_lwt_seg6_store_bytes ||
6937 	    func == bpf_lwt_seg6_adjust_srh ||
6938 	    func == bpf_lwt_seg6_action ||
6939 #endif
6940 #ifdef CONFIG_INET
6941 	    func == bpf_sock_ops_store_hdr_opt ||
6942 #endif
6943 	    func == bpf_lwt_in_push_encap ||
6944 	    func == bpf_lwt_xmit_push_encap)
6945 		return true;
6946 
6947 	return false;
6948 }
6949 
6950 const struct bpf_func_proto bpf_event_output_data_proto __weak;
6951 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
6952 
6953 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6954 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6955 {
6956 	switch (func_id) {
6957 	/* inet and inet6 sockets are created in a process
6958 	 * context so there is always a valid uid/gid
6959 	 */
6960 	case BPF_FUNC_get_current_uid_gid:
6961 		return &bpf_get_current_uid_gid_proto;
6962 	case BPF_FUNC_get_local_storage:
6963 		return &bpf_get_local_storage_proto;
6964 	case BPF_FUNC_get_socket_cookie:
6965 		return &bpf_get_socket_cookie_sock_proto;
6966 	case BPF_FUNC_get_netns_cookie:
6967 		return &bpf_get_netns_cookie_sock_proto;
6968 	case BPF_FUNC_perf_event_output:
6969 		return &bpf_event_output_data_proto;
6970 	case BPF_FUNC_get_current_pid_tgid:
6971 		return &bpf_get_current_pid_tgid_proto;
6972 	case BPF_FUNC_get_current_comm:
6973 		return &bpf_get_current_comm_proto;
6974 #ifdef CONFIG_CGROUPS
6975 	case BPF_FUNC_get_current_cgroup_id:
6976 		return &bpf_get_current_cgroup_id_proto;
6977 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6978 		return &bpf_get_current_ancestor_cgroup_id_proto;
6979 #endif
6980 #ifdef CONFIG_CGROUP_NET_CLASSID
6981 	case BPF_FUNC_get_cgroup_classid:
6982 		return &bpf_get_cgroup_classid_curr_proto;
6983 #endif
6984 	case BPF_FUNC_sk_storage_get:
6985 		return &bpf_sk_storage_get_cg_sock_proto;
6986 	default:
6987 		return bpf_base_func_proto(func_id);
6988 	}
6989 }
6990 
6991 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6992 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6993 {
6994 	switch (func_id) {
6995 	/* inet and inet6 sockets are created in a process
6996 	 * context so there is always a valid uid/gid
6997 	 */
6998 	case BPF_FUNC_get_current_uid_gid:
6999 		return &bpf_get_current_uid_gid_proto;
7000 	case BPF_FUNC_bind:
7001 		switch (prog->expected_attach_type) {
7002 		case BPF_CGROUP_INET4_CONNECT:
7003 		case BPF_CGROUP_INET6_CONNECT:
7004 			return &bpf_bind_proto;
7005 		default:
7006 			return NULL;
7007 		}
7008 	case BPF_FUNC_get_socket_cookie:
7009 		return &bpf_get_socket_cookie_sock_addr_proto;
7010 	case BPF_FUNC_get_netns_cookie:
7011 		return &bpf_get_netns_cookie_sock_addr_proto;
7012 	case BPF_FUNC_get_local_storage:
7013 		return &bpf_get_local_storage_proto;
7014 	case BPF_FUNC_perf_event_output:
7015 		return &bpf_event_output_data_proto;
7016 	case BPF_FUNC_get_current_pid_tgid:
7017 		return &bpf_get_current_pid_tgid_proto;
7018 	case BPF_FUNC_get_current_comm:
7019 		return &bpf_get_current_comm_proto;
7020 #ifdef CONFIG_CGROUPS
7021 	case BPF_FUNC_get_current_cgroup_id:
7022 		return &bpf_get_current_cgroup_id_proto;
7023 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7024 		return &bpf_get_current_ancestor_cgroup_id_proto;
7025 #endif
7026 #ifdef CONFIG_CGROUP_NET_CLASSID
7027 	case BPF_FUNC_get_cgroup_classid:
7028 		return &bpf_get_cgroup_classid_curr_proto;
7029 #endif
7030 #ifdef CONFIG_INET
7031 	case BPF_FUNC_sk_lookup_tcp:
7032 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7033 	case BPF_FUNC_sk_lookup_udp:
7034 		return &bpf_sock_addr_sk_lookup_udp_proto;
7035 	case BPF_FUNC_sk_release:
7036 		return &bpf_sk_release_proto;
7037 	case BPF_FUNC_skc_lookup_tcp:
7038 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7039 #endif /* CONFIG_INET */
7040 	case BPF_FUNC_sk_storage_get:
7041 		return &bpf_sk_storage_get_proto;
7042 	case BPF_FUNC_sk_storage_delete:
7043 		return &bpf_sk_storage_delete_proto;
7044 	case BPF_FUNC_setsockopt:
7045 		switch (prog->expected_attach_type) {
7046 		case BPF_CGROUP_INET4_CONNECT:
7047 		case BPF_CGROUP_INET6_CONNECT:
7048 			return &bpf_sock_addr_setsockopt_proto;
7049 		default:
7050 			return NULL;
7051 		}
7052 	case BPF_FUNC_getsockopt:
7053 		switch (prog->expected_attach_type) {
7054 		case BPF_CGROUP_INET4_CONNECT:
7055 		case BPF_CGROUP_INET6_CONNECT:
7056 			return &bpf_sock_addr_getsockopt_proto;
7057 		default:
7058 			return NULL;
7059 		}
7060 	default:
7061 		return bpf_sk_base_func_proto(func_id);
7062 	}
7063 }
7064 
7065 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7066 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7067 {
7068 	switch (func_id) {
7069 	case BPF_FUNC_skb_load_bytes:
7070 		return &bpf_skb_load_bytes_proto;
7071 	case BPF_FUNC_skb_load_bytes_relative:
7072 		return &bpf_skb_load_bytes_relative_proto;
7073 	case BPF_FUNC_get_socket_cookie:
7074 		return &bpf_get_socket_cookie_proto;
7075 	case BPF_FUNC_get_socket_uid:
7076 		return &bpf_get_socket_uid_proto;
7077 	case BPF_FUNC_perf_event_output:
7078 		return &bpf_skb_event_output_proto;
7079 	default:
7080 		return bpf_sk_base_func_proto(func_id);
7081 	}
7082 }
7083 
7084 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7085 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7086 
7087 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7088 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7089 {
7090 	switch (func_id) {
7091 	case BPF_FUNC_get_local_storage:
7092 		return &bpf_get_local_storage_proto;
7093 	case BPF_FUNC_sk_fullsock:
7094 		return &bpf_sk_fullsock_proto;
7095 	case BPF_FUNC_sk_storage_get:
7096 		return &bpf_sk_storage_get_proto;
7097 	case BPF_FUNC_sk_storage_delete:
7098 		return &bpf_sk_storage_delete_proto;
7099 	case BPF_FUNC_perf_event_output:
7100 		return &bpf_skb_event_output_proto;
7101 #ifdef CONFIG_SOCK_CGROUP_DATA
7102 	case BPF_FUNC_skb_cgroup_id:
7103 		return &bpf_skb_cgroup_id_proto;
7104 	case BPF_FUNC_skb_ancestor_cgroup_id:
7105 		return &bpf_skb_ancestor_cgroup_id_proto;
7106 	case BPF_FUNC_sk_cgroup_id:
7107 		return &bpf_sk_cgroup_id_proto;
7108 	case BPF_FUNC_sk_ancestor_cgroup_id:
7109 		return &bpf_sk_ancestor_cgroup_id_proto;
7110 #endif
7111 #ifdef CONFIG_INET
7112 	case BPF_FUNC_sk_lookup_tcp:
7113 		return &bpf_sk_lookup_tcp_proto;
7114 	case BPF_FUNC_sk_lookup_udp:
7115 		return &bpf_sk_lookup_udp_proto;
7116 	case BPF_FUNC_sk_release:
7117 		return &bpf_sk_release_proto;
7118 	case BPF_FUNC_skc_lookup_tcp:
7119 		return &bpf_skc_lookup_tcp_proto;
7120 	case BPF_FUNC_tcp_sock:
7121 		return &bpf_tcp_sock_proto;
7122 	case BPF_FUNC_get_listener_sock:
7123 		return &bpf_get_listener_sock_proto;
7124 	case BPF_FUNC_skb_ecn_set_ce:
7125 		return &bpf_skb_ecn_set_ce_proto;
7126 #endif
7127 	default:
7128 		return sk_filter_func_proto(func_id, prog);
7129 	}
7130 }
7131 
7132 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7133 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7134 {
7135 	switch (func_id) {
7136 	case BPF_FUNC_skb_store_bytes:
7137 		return &bpf_skb_store_bytes_proto;
7138 	case BPF_FUNC_skb_load_bytes:
7139 		return &bpf_skb_load_bytes_proto;
7140 	case BPF_FUNC_skb_load_bytes_relative:
7141 		return &bpf_skb_load_bytes_relative_proto;
7142 	case BPF_FUNC_skb_pull_data:
7143 		return &bpf_skb_pull_data_proto;
7144 	case BPF_FUNC_csum_diff:
7145 		return &bpf_csum_diff_proto;
7146 	case BPF_FUNC_csum_update:
7147 		return &bpf_csum_update_proto;
7148 	case BPF_FUNC_csum_level:
7149 		return &bpf_csum_level_proto;
7150 	case BPF_FUNC_l3_csum_replace:
7151 		return &bpf_l3_csum_replace_proto;
7152 	case BPF_FUNC_l4_csum_replace:
7153 		return &bpf_l4_csum_replace_proto;
7154 	case BPF_FUNC_clone_redirect:
7155 		return &bpf_clone_redirect_proto;
7156 	case BPF_FUNC_get_cgroup_classid:
7157 		return &bpf_get_cgroup_classid_proto;
7158 	case BPF_FUNC_skb_vlan_push:
7159 		return &bpf_skb_vlan_push_proto;
7160 	case BPF_FUNC_skb_vlan_pop:
7161 		return &bpf_skb_vlan_pop_proto;
7162 	case BPF_FUNC_skb_change_proto:
7163 		return &bpf_skb_change_proto_proto;
7164 	case BPF_FUNC_skb_change_type:
7165 		return &bpf_skb_change_type_proto;
7166 	case BPF_FUNC_skb_adjust_room:
7167 		return &bpf_skb_adjust_room_proto;
7168 	case BPF_FUNC_skb_change_tail:
7169 		return &bpf_skb_change_tail_proto;
7170 	case BPF_FUNC_skb_change_head:
7171 		return &bpf_skb_change_head_proto;
7172 	case BPF_FUNC_skb_get_tunnel_key:
7173 		return &bpf_skb_get_tunnel_key_proto;
7174 	case BPF_FUNC_skb_set_tunnel_key:
7175 		return bpf_get_skb_set_tunnel_proto(func_id);
7176 	case BPF_FUNC_skb_get_tunnel_opt:
7177 		return &bpf_skb_get_tunnel_opt_proto;
7178 	case BPF_FUNC_skb_set_tunnel_opt:
7179 		return bpf_get_skb_set_tunnel_proto(func_id);
7180 	case BPF_FUNC_redirect:
7181 		return &bpf_redirect_proto;
7182 	case BPF_FUNC_redirect_neigh:
7183 		return &bpf_redirect_neigh_proto;
7184 	case BPF_FUNC_redirect_peer:
7185 		return &bpf_redirect_peer_proto;
7186 	case BPF_FUNC_get_route_realm:
7187 		return &bpf_get_route_realm_proto;
7188 	case BPF_FUNC_get_hash_recalc:
7189 		return &bpf_get_hash_recalc_proto;
7190 	case BPF_FUNC_set_hash_invalid:
7191 		return &bpf_set_hash_invalid_proto;
7192 	case BPF_FUNC_set_hash:
7193 		return &bpf_set_hash_proto;
7194 	case BPF_FUNC_perf_event_output:
7195 		return &bpf_skb_event_output_proto;
7196 	case BPF_FUNC_get_smp_processor_id:
7197 		return &bpf_get_smp_processor_id_proto;
7198 	case BPF_FUNC_skb_under_cgroup:
7199 		return &bpf_skb_under_cgroup_proto;
7200 	case BPF_FUNC_get_socket_cookie:
7201 		return &bpf_get_socket_cookie_proto;
7202 	case BPF_FUNC_get_socket_uid:
7203 		return &bpf_get_socket_uid_proto;
7204 	case BPF_FUNC_fib_lookup:
7205 		return &bpf_skb_fib_lookup_proto;
7206 	case BPF_FUNC_sk_fullsock:
7207 		return &bpf_sk_fullsock_proto;
7208 	case BPF_FUNC_sk_storage_get:
7209 		return &bpf_sk_storage_get_proto;
7210 	case BPF_FUNC_sk_storage_delete:
7211 		return &bpf_sk_storage_delete_proto;
7212 #ifdef CONFIG_XFRM
7213 	case BPF_FUNC_skb_get_xfrm_state:
7214 		return &bpf_skb_get_xfrm_state_proto;
7215 #endif
7216 #ifdef CONFIG_CGROUP_NET_CLASSID
7217 	case BPF_FUNC_skb_cgroup_classid:
7218 		return &bpf_skb_cgroup_classid_proto;
7219 #endif
7220 #ifdef CONFIG_SOCK_CGROUP_DATA
7221 	case BPF_FUNC_skb_cgroup_id:
7222 		return &bpf_skb_cgroup_id_proto;
7223 	case BPF_FUNC_skb_ancestor_cgroup_id:
7224 		return &bpf_skb_ancestor_cgroup_id_proto;
7225 #endif
7226 #ifdef CONFIG_INET
7227 	case BPF_FUNC_sk_lookup_tcp:
7228 		return &bpf_sk_lookup_tcp_proto;
7229 	case BPF_FUNC_sk_lookup_udp:
7230 		return &bpf_sk_lookup_udp_proto;
7231 	case BPF_FUNC_sk_release:
7232 		return &bpf_sk_release_proto;
7233 	case BPF_FUNC_tcp_sock:
7234 		return &bpf_tcp_sock_proto;
7235 	case BPF_FUNC_get_listener_sock:
7236 		return &bpf_get_listener_sock_proto;
7237 	case BPF_FUNC_skc_lookup_tcp:
7238 		return &bpf_skc_lookup_tcp_proto;
7239 	case BPF_FUNC_tcp_check_syncookie:
7240 		return &bpf_tcp_check_syncookie_proto;
7241 	case BPF_FUNC_skb_ecn_set_ce:
7242 		return &bpf_skb_ecn_set_ce_proto;
7243 	case BPF_FUNC_tcp_gen_syncookie:
7244 		return &bpf_tcp_gen_syncookie_proto;
7245 	case BPF_FUNC_sk_assign:
7246 		return &bpf_sk_assign_proto;
7247 #endif
7248 	default:
7249 		return bpf_sk_base_func_proto(func_id);
7250 	}
7251 }
7252 
7253 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7254 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7255 {
7256 	switch (func_id) {
7257 	case BPF_FUNC_perf_event_output:
7258 		return &bpf_xdp_event_output_proto;
7259 	case BPF_FUNC_get_smp_processor_id:
7260 		return &bpf_get_smp_processor_id_proto;
7261 	case BPF_FUNC_csum_diff:
7262 		return &bpf_csum_diff_proto;
7263 	case BPF_FUNC_xdp_adjust_head:
7264 		return &bpf_xdp_adjust_head_proto;
7265 	case BPF_FUNC_xdp_adjust_meta:
7266 		return &bpf_xdp_adjust_meta_proto;
7267 	case BPF_FUNC_redirect:
7268 		return &bpf_xdp_redirect_proto;
7269 	case BPF_FUNC_redirect_map:
7270 		return &bpf_xdp_redirect_map_proto;
7271 	case BPF_FUNC_xdp_adjust_tail:
7272 		return &bpf_xdp_adjust_tail_proto;
7273 	case BPF_FUNC_fib_lookup:
7274 		return &bpf_xdp_fib_lookup_proto;
7275 #ifdef CONFIG_INET
7276 	case BPF_FUNC_sk_lookup_udp:
7277 		return &bpf_xdp_sk_lookup_udp_proto;
7278 	case BPF_FUNC_sk_lookup_tcp:
7279 		return &bpf_xdp_sk_lookup_tcp_proto;
7280 	case BPF_FUNC_sk_release:
7281 		return &bpf_sk_release_proto;
7282 	case BPF_FUNC_skc_lookup_tcp:
7283 		return &bpf_xdp_skc_lookup_tcp_proto;
7284 	case BPF_FUNC_tcp_check_syncookie:
7285 		return &bpf_tcp_check_syncookie_proto;
7286 	case BPF_FUNC_tcp_gen_syncookie:
7287 		return &bpf_tcp_gen_syncookie_proto;
7288 #endif
7289 	default:
7290 		return bpf_sk_base_func_proto(func_id);
7291 	}
7292 }
7293 
7294 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7295 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7296 
7297 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7298 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7299 {
7300 	switch (func_id) {
7301 	case BPF_FUNC_setsockopt:
7302 		return &bpf_sock_ops_setsockopt_proto;
7303 	case BPF_FUNC_getsockopt:
7304 		return &bpf_sock_ops_getsockopt_proto;
7305 	case BPF_FUNC_sock_ops_cb_flags_set:
7306 		return &bpf_sock_ops_cb_flags_set_proto;
7307 	case BPF_FUNC_sock_map_update:
7308 		return &bpf_sock_map_update_proto;
7309 	case BPF_FUNC_sock_hash_update:
7310 		return &bpf_sock_hash_update_proto;
7311 	case BPF_FUNC_get_socket_cookie:
7312 		return &bpf_get_socket_cookie_sock_ops_proto;
7313 	case BPF_FUNC_get_local_storage:
7314 		return &bpf_get_local_storage_proto;
7315 	case BPF_FUNC_perf_event_output:
7316 		return &bpf_event_output_data_proto;
7317 	case BPF_FUNC_sk_storage_get:
7318 		return &bpf_sk_storage_get_proto;
7319 	case BPF_FUNC_sk_storage_delete:
7320 		return &bpf_sk_storage_delete_proto;
7321 #ifdef CONFIG_INET
7322 	case BPF_FUNC_load_hdr_opt:
7323 		return &bpf_sock_ops_load_hdr_opt_proto;
7324 	case BPF_FUNC_store_hdr_opt:
7325 		return &bpf_sock_ops_store_hdr_opt_proto;
7326 	case BPF_FUNC_reserve_hdr_opt:
7327 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7328 	case BPF_FUNC_tcp_sock:
7329 		return &bpf_tcp_sock_proto;
7330 #endif /* CONFIG_INET */
7331 	default:
7332 		return bpf_sk_base_func_proto(func_id);
7333 	}
7334 }
7335 
7336 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7337 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7338 
7339 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7340 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7341 {
7342 	switch (func_id) {
7343 	case BPF_FUNC_msg_redirect_map:
7344 		return &bpf_msg_redirect_map_proto;
7345 	case BPF_FUNC_msg_redirect_hash:
7346 		return &bpf_msg_redirect_hash_proto;
7347 	case BPF_FUNC_msg_apply_bytes:
7348 		return &bpf_msg_apply_bytes_proto;
7349 	case BPF_FUNC_msg_cork_bytes:
7350 		return &bpf_msg_cork_bytes_proto;
7351 	case BPF_FUNC_msg_pull_data:
7352 		return &bpf_msg_pull_data_proto;
7353 	case BPF_FUNC_msg_push_data:
7354 		return &bpf_msg_push_data_proto;
7355 	case BPF_FUNC_msg_pop_data:
7356 		return &bpf_msg_pop_data_proto;
7357 	case BPF_FUNC_perf_event_output:
7358 		return &bpf_event_output_data_proto;
7359 	case BPF_FUNC_get_current_uid_gid:
7360 		return &bpf_get_current_uid_gid_proto;
7361 	case BPF_FUNC_get_current_pid_tgid:
7362 		return &bpf_get_current_pid_tgid_proto;
7363 	case BPF_FUNC_sk_storage_get:
7364 		return &bpf_sk_storage_get_proto;
7365 	case BPF_FUNC_sk_storage_delete:
7366 		return &bpf_sk_storage_delete_proto;
7367 #ifdef CONFIG_CGROUPS
7368 	case BPF_FUNC_get_current_cgroup_id:
7369 		return &bpf_get_current_cgroup_id_proto;
7370 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7371 		return &bpf_get_current_ancestor_cgroup_id_proto;
7372 #endif
7373 #ifdef CONFIG_CGROUP_NET_CLASSID
7374 	case BPF_FUNC_get_cgroup_classid:
7375 		return &bpf_get_cgroup_classid_curr_proto;
7376 #endif
7377 	default:
7378 		return bpf_sk_base_func_proto(func_id);
7379 	}
7380 }
7381 
7382 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7383 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7384 
7385 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7386 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7387 {
7388 	switch (func_id) {
7389 	case BPF_FUNC_skb_store_bytes:
7390 		return &bpf_skb_store_bytes_proto;
7391 	case BPF_FUNC_skb_load_bytes:
7392 		return &bpf_skb_load_bytes_proto;
7393 	case BPF_FUNC_skb_pull_data:
7394 		return &sk_skb_pull_data_proto;
7395 	case BPF_FUNC_skb_change_tail:
7396 		return &sk_skb_change_tail_proto;
7397 	case BPF_FUNC_skb_change_head:
7398 		return &sk_skb_change_head_proto;
7399 	case BPF_FUNC_skb_adjust_room:
7400 		return &sk_skb_adjust_room_proto;
7401 	case BPF_FUNC_get_socket_cookie:
7402 		return &bpf_get_socket_cookie_proto;
7403 	case BPF_FUNC_get_socket_uid:
7404 		return &bpf_get_socket_uid_proto;
7405 	case BPF_FUNC_sk_redirect_map:
7406 		return &bpf_sk_redirect_map_proto;
7407 	case BPF_FUNC_sk_redirect_hash:
7408 		return &bpf_sk_redirect_hash_proto;
7409 	case BPF_FUNC_perf_event_output:
7410 		return &bpf_skb_event_output_proto;
7411 #ifdef CONFIG_INET
7412 	case BPF_FUNC_sk_lookup_tcp:
7413 		return &bpf_sk_lookup_tcp_proto;
7414 	case BPF_FUNC_sk_lookup_udp:
7415 		return &bpf_sk_lookup_udp_proto;
7416 	case BPF_FUNC_sk_release:
7417 		return &bpf_sk_release_proto;
7418 	case BPF_FUNC_skc_lookup_tcp:
7419 		return &bpf_skc_lookup_tcp_proto;
7420 #endif
7421 	default:
7422 		return bpf_sk_base_func_proto(func_id);
7423 	}
7424 }
7425 
7426 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7427 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7428 {
7429 	switch (func_id) {
7430 	case BPF_FUNC_skb_load_bytes:
7431 		return &bpf_flow_dissector_load_bytes_proto;
7432 	default:
7433 		return bpf_sk_base_func_proto(func_id);
7434 	}
7435 }
7436 
7437 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7438 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7439 {
7440 	switch (func_id) {
7441 	case BPF_FUNC_skb_load_bytes:
7442 		return &bpf_skb_load_bytes_proto;
7443 	case BPF_FUNC_skb_pull_data:
7444 		return &bpf_skb_pull_data_proto;
7445 	case BPF_FUNC_csum_diff:
7446 		return &bpf_csum_diff_proto;
7447 	case BPF_FUNC_get_cgroup_classid:
7448 		return &bpf_get_cgroup_classid_proto;
7449 	case BPF_FUNC_get_route_realm:
7450 		return &bpf_get_route_realm_proto;
7451 	case BPF_FUNC_get_hash_recalc:
7452 		return &bpf_get_hash_recalc_proto;
7453 	case BPF_FUNC_perf_event_output:
7454 		return &bpf_skb_event_output_proto;
7455 	case BPF_FUNC_get_smp_processor_id:
7456 		return &bpf_get_smp_processor_id_proto;
7457 	case BPF_FUNC_skb_under_cgroup:
7458 		return &bpf_skb_under_cgroup_proto;
7459 	default:
7460 		return bpf_sk_base_func_proto(func_id);
7461 	}
7462 }
7463 
7464 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7465 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7466 {
7467 	switch (func_id) {
7468 	case BPF_FUNC_lwt_push_encap:
7469 		return &bpf_lwt_in_push_encap_proto;
7470 	default:
7471 		return lwt_out_func_proto(func_id, prog);
7472 	}
7473 }
7474 
7475 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7476 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7477 {
7478 	switch (func_id) {
7479 	case BPF_FUNC_skb_get_tunnel_key:
7480 		return &bpf_skb_get_tunnel_key_proto;
7481 	case BPF_FUNC_skb_set_tunnel_key:
7482 		return bpf_get_skb_set_tunnel_proto(func_id);
7483 	case BPF_FUNC_skb_get_tunnel_opt:
7484 		return &bpf_skb_get_tunnel_opt_proto;
7485 	case BPF_FUNC_skb_set_tunnel_opt:
7486 		return bpf_get_skb_set_tunnel_proto(func_id);
7487 	case BPF_FUNC_redirect:
7488 		return &bpf_redirect_proto;
7489 	case BPF_FUNC_clone_redirect:
7490 		return &bpf_clone_redirect_proto;
7491 	case BPF_FUNC_skb_change_tail:
7492 		return &bpf_skb_change_tail_proto;
7493 	case BPF_FUNC_skb_change_head:
7494 		return &bpf_skb_change_head_proto;
7495 	case BPF_FUNC_skb_store_bytes:
7496 		return &bpf_skb_store_bytes_proto;
7497 	case BPF_FUNC_csum_update:
7498 		return &bpf_csum_update_proto;
7499 	case BPF_FUNC_csum_level:
7500 		return &bpf_csum_level_proto;
7501 	case BPF_FUNC_l3_csum_replace:
7502 		return &bpf_l3_csum_replace_proto;
7503 	case BPF_FUNC_l4_csum_replace:
7504 		return &bpf_l4_csum_replace_proto;
7505 	case BPF_FUNC_set_hash_invalid:
7506 		return &bpf_set_hash_invalid_proto;
7507 	case BPF_FUNC_lwt_push_encap:
7508 		return &bpf_lwt_xmit_push_encap_proto;
7509 	default:
7510 		return lwt_out_func_proto(func_id, prog);
7511 	}
7512 }
7513 
7514 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7515 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7516 {
7517 	switch (func_id) {
7518 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7519 	case BPF_FUNC_lwt_seg6_store_bytes:
7520 		return &bpf_lwt_seg6_store_bytes_proto;
7521 	case BPF_FUNC_lwt_seg6_action:
7522 		return &bpf_lwt_seg6_action_proto;
7523 	case BPF_FUNC_lwt_seg6_adjust_srh:
7524 		return &bpf_lwt_seg6_adjust_srh_proto;
7525 #endif
7526 	default:
7527 		return lwt_out_func_proto(func_id, prog);
7528 	}
7529 }
7530 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7531 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7532 				    const struct bpf_prog *prog,
7533 				    struct bpf_insn_access_aux *info)
7534 {
7535 	const int size_default = sizeof(__u32);
7536 
7537 	if (off < 0 || off >= sizeof(struct __sk_buff))
7538 		return false;
7539 
7540 	/* The verifier guarantees that size > 0. */
7541 	if (off % size != 0)
7542 		return false;
7543 
7544 	switch (off) {
7545 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7546 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
7547 			return false;
7548 		break;
7549 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7550 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7551 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7552 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7553 	case bpf_ctx_range(struct __sk_buff, data):
7554 	case bpf_ctx_range(struct __sk_buff, data_meta):
7555 	case bpf_ctx_range(struct __sk_buff, data_end):
7556 		if (size != size_default)
7557 			return false;
7558 		break;
7559 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7560 		return false;
7561 	case bpf_ctx_range(struct __sk_buff, tstamp):
7562 		if (size != sizeof(__u64))
7563 			return false;
7564 		break;
7565 	case offsetof(struct __sk_buff, sk):
7566 		if (type == BPF_WRITE || size != sizeof(__u64))
7567 			return false;
7568 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7569 		break;
7570 	default:
7571 		/* Only narrow read access allowed for now. */
7572 		if (type == BPF_WRITE) {
7573 			if (size != size_default)
7574 				return false;
7575 		} else {
7576 			bpf_ctx_record_field_size(info, size_default);
7577 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7578 				return false;
7579 		}
7580 	}
7581 
7582 	return true;
7583 }
7584 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7585 static bool sk_filter_is_valid_access(int off, int size,
7586 				      enum bpf_access_type type,
7587 				      const struct bpf_prog *prog,
7588 				      struct bpf_insn_access_aux *info)
7589 {
7590 	switch (off) {
7591 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7592 	case bpf_ctx_range(struct __sk_buff, data):
7593 	case bpf_ctx_range(struct __sk_buff, data_meta):
7594 	case bpf_ctx_range(struct __sk_buff, data_end):
7595 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7596 	case bpf_ctx_range(struct __sk_buff, tstamp):
7597 	case bpf_ctx_range(struct __sk_buff, wire_len):
7598 		return false;
7599 	}
7600 
7601 	if (type == BPF_WRITE) {
7602 		switch (off) {
7603 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7604 			break;
7605 		default:
7606 			return false;
7607 		}
7608 	}
7609 
7610 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7611 }
7612 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7613 static bool cg_skb_is_valid_access(int off, int size,
7614 				   enum bpf_access_type type,
7615 				   const struct bpf_prog *prog,
7616 				   struct bpf_insn_access_aux *info)
7617 {
7618 	switch (off) {
7619 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7620 	case bpf_ctx_range(struct __sk_buff, data_meta):
7621 	case bpf_ctx_range(struct __sk_buff, wire_len):
7622 		return false;
7623 	case bpf_ctx_range(struct __sk_buff, data):
7624 	case bpf_ctx_range(struct __sk_buff, data_end):
7625 		if (!bpf_capable())
7626 			return false;
7627 		break;
7628 	}
7629 
7630 	if (type == BPF_WRITE) {
7631 		switch (off) {
7632 		case bpf_ctx_range(struct __sk_buff, mark):
7633 		case bpf_ctx_range(struct __sk_buff, priority):
7634 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7635 			break;
7636 		case bpf_ctx_range(struct __sk_buff, tstamp):
7637 			if (!bpf_capable())
7638 				return false;
7639 			break;
7640 		default:
7641 			return false;
7642 		}
7643 	}
7644 
7645 	switch (off) {
7646 	case bpf_ctx_range(struct __sk_buff, data):
7647 		info->reg_type = PTR_TO_PACKET;
7648 		break;
7649 	case bpf_ctx_range(struct __sk_buff, data_end):
7650 		info->reg_type = PTR_TO_PACKET_END;
7651 		break;
7652 	}
7653 
7654 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7655 }
7656 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7657 static bool lwt_is_valid_access(int off, int size,
7658 				enum bpf_access_type type,
7659 				const struct bpf_prog *prog,
7660 				struct bpf_insn_access_aux *info)
7661 {
7662 	switch (off) {
7663 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7664 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7665 	case bpf_ctx_range(struct __sk_buff, data_meta):
7666 	case bpf_ctx_range(struct __sk_buff, tstamp):
7667 	case bpf_ctx_range(struct __sk_buff, wire_len):
7668 		return false;
7669 	}
7670 
7671 	if (type == BPF_WRITE) {
7672 		switch (off) {
7673 		case bpf_ctx_range(struct __sk_buff, mark):
7674 		case bpf_ctx_range(struct __sk_buff, priority):
7675 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7676 			break;
7677 		default:
7678 			return false;
7679 		}
7680 	}
7681 
7682 	switch (off) {
7683 	case bpf_ctx_range(struct __sk_buff, data):
7684 		info->reg_type = PTR_TO_PACKET;
7685 		break;
7686 	case bpf_ctx_range(struct __sk_buff, data_end):
7687 		info->reg_type = PTR_TO_PACKET_END;
7688 		break;
7689 	}
7690 
7691 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7692 }
7693 
7694 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)7695 static bool __sock_filter_check_attach_type(int off,
7696 					    enum bpf_access_type access_type,
7697 					    enum bpf_attach_type attach_type)
7698 {
7699 	switch (off) {
7700 	case offsetof(struct bpf_sock, bound_dev_if):
7701 	case offsetof(struct bpf_sock, mark):
7702 	case offsetof(struct bpf_sock, priority):
7703 		switch (attach_type) {
7704 		case BPF_CGROUP_INET_SOCK_CREATE:
7705 		case BPF_CGROUP_INET_SOCK_RELEASE:
7706 			goto full_access;
7707 		default:
7708 			return false;
7709 		}
7710 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7711 		switch (attach_type) {
7712 		case BPF_CGROUP_INET4_POST_BIND:
7713 			goto read_only;
7714 		default:
7715 			return false;
7716 		}
7717 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7718 		switch (attach_type) {
7719 		case BPF_CGROUP_INET6_POST_BIND:
7720 			goto read_only;
7721 		default:
7722 			return false;
7723 		}
7724 	case bpf_ctx_range(struct bpf_sock, src_port):
7725 		switch (attach_type) {
7726 		case BPF_CGROUP_INET4_POST_BIND:
7727 		case BPF_CGROUP_INET6_POST_BIND:
7728 			goto read_only;
7729 		default:
7730 			return false;
7731 		}
7732 	}
7733 read_only:
7734 	return access_type == BPF_READ;
7735 full_access:
7736 	return true;
7737 }
7738 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7739 bool bpf_sock_common_is_valid_access(int off, int size,
7740 				     enum bpf_access_type type,
7741 				     struct bpf_insn_access_aux *info)
7742 {
7743 	switch (off) {
7744 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
7745 		return false;
7746 	default:
7747 		return bpf_sock_is_valid_access(off, size, type, info);
7748 	}
7749 }
7750 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7751 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7752 			      struct bpf_insn_access_aux *info)
7753 {
7754 	const int size_default = sizeof(__u32);
7755 	int field_size;
7756 
7757 	if (off < 0 || off >= sizeof(struct bpf_sock))
7758 		return false;
7759 	if (off % size != 0)
7760 		return false;
7761 
7762 	switch (off) {
7763 	case offsetof(struct bpf_sock, state):
7764 	case offsetof(struct bpf_sock, family):
7765 	case offsetof(struct bpf_sock, type):
7766 	case offsetof(struct bpf_sock, protocol):
7767 	case offsetof(struct bpf_sock, src_port):
7768 	case offsetof(struct bpf_sock, rx_queue_mapping):
7769 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7770 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7771 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
7772 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7773 		bpf_ctx_record_field_size(info, size_default);
7774 		return bpf_ctx_narrow_access_ok(off, size, size_default);
7775 	case bpf_ctx_range(struct bpf_sock, dst_port):
7776 		field_size = size == size_default ?
7777 			size_default : sizeof_field(struct bpf_sock, dst_port);
7778 		bpf_ctx_record_field_size(info, field_size);
7779 		return bpf_ctx_narrow_access_ok(off, size, field_size);
7780 	case offsetofend(struct bpf_sock, dst_port) ...
7781 	     offsetof(struct bpf_sock, dst_ip4) - 1:
7782 		return false;
7783 	}
7784 
7785 	return size == size_default;
7786 }
7787 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7788 static bool sock_filter_is_valid_access(int off, int size,
7789 					enum bpf_access_type type,
7790 					const struct bpf_prog *prog,
7791 					struct bpf_insn_access_aux *info)
7792 {
7793 	if (!bpf_sock_is_valid_access(off, size, type, info))
7794 		return false;
7795 	return __sock_filter_check_attach_type(off, type,
7796 					       prog->expected_attach_type);
7797 }
7798 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)7799 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7800 			     const struct bpf_prog *prog)
7801 {
7802 	/* Neither direct read nor direct write requires any preliminary
7803 	 * action.
7804 	 */
7805 	return 0;
7806 }
7807 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)7808 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7809 				const struct bpf_prog *prog, int drop_verdict)
7810 {
7811 	struct bpf_insn *insn = insn_buf;
7812 
7813 	if (!direct_write)
7814 		return 0;
7815 
7816 	/* if (!skb->cloned)
7817 	 *       goto start;
7818 	 *
7819 	 * (Fast-path, otherwise approximation that we might be
7820 	 *  a clone, do the rest in helper.)
7821 	 */
7822 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7823 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7824 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7825 
7826 	/* ret = bpf_skb_pull_data(skb, 0); */
7827 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7828 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7829 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7830 			       BPF_FUNC_skb_pull_data);
7831 	/* if (!ret)
7832 	 *      goto restore;
7833 	 * return TC_ACT_SHOT;
7834 	 */
7835 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7836 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7837 	*insn++ = BPF_EXIT_INSN();
7838 
7839 	/* restore: */
7840 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7841 	/* start: */
7842 	*insn++ = prog->insnsi[0];
7843 
7844 	return insn - insn_buf;
7845 }
7846 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)7847 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7848 			  struct bpf_insn *insn_buf)
7849 {
7850 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
7851 	struct bpf_insn *insn = insn_buf;
7852 
7853 	if (!indirect) {
7854 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7855 	} else {
7856 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7857 		if (orig->imm)
7858 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7859 	}
7860 	/* We're guaranteed here that CTX is in R6. */
7861 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7862 
7863 	switch (BPF_SIZE(orig->code)) {
7864 	case BPF_B:
7865 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7866 		break;
7867 	case BPF_H:
7868 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7869 		break;
7870 	case BPF_W:
7871 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7872 		break;
7873 	}
7874 
7875 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7876 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7877 	*insn++ = BPF_EXIT_INSN();
7878 
7879 	return insn - insn_buf;
7880 }
7881 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)7882 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7883 			       const struct bpf_prog *prog)
7884 {
7885 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7886 }
7887 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7888 static bool tc_cls_act_is_valid_access(int off, int size,
7889 				       enum bpf_access_type type,
7890 				       const struct bpf_prog *prog,
7891 				       struct bpf_insn_access_aux *info)
7892 {
7893 	if (type == BPF_WRITE) {
7894 		switch (off) {
7895 		case bpf_ctx_range(struct __sk_buff, mark):
7896 		case bpf_ctx_range(struct __sk_buff, tc_index):
7897 		case bpf_ctx_range(struct __sk_buff, priority):
7898 		case bpf_ctx_range(struct __sk_buff, tc_classid):
7899 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7900 		case bpf_ctx_range(struct __sk_buff, tstamp):
7901 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
7902 			break;
7903 		default:
7904 			return false;
7905 		}
7906 	}
7907 
7908 	switch (off) {
7909 	case bpf_ctx_range(struct __sk_buff, data):
7910 		info->reg_type = PTR_TO_PACKET;
7911 		break;
7912 	case bpf_ctx_range(struct __sk_buff, data_meta):
7913 		info->reg_type = PTR_TO_PACKET_META;
7914 		break;
7915 	case bpf_ctx_range(struct __sk_buff, data_end):
7916 		info->reg_type = PTR_TO_PACKET_END;
7917 		break;
7918 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7919 		return false;
7920 	}
7921 
7922 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7923 }
7924 
__is_valid_xdp_access(int off,int size)7925 static bool __is_valid_xdp_access(int off, int size)
7926 {
7927 	if (off < 0 || off >= sizeof(struct xdp_md))
7928 		return false;
7929 	if (off % size != 0)
7930 		return false;
7931 	if (size != sizeof(__u32))
7932 		return false;
7933 
7934 	return true;
7935 }
7936 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7937 static bool xdp_is_valid_access(int off, int size,
7938 				enum bpf_access_type type,
7939 				const struct bpf_prog *prog,
7940 				struct bpf_insn_access_aux *info)
7941 {
7942 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7943 		switch (off) {
7944 		case offsetof(struct xdp_md, egress_ifindex):
7945 			return false;
7946 		}
7947 	}
7948 
7949 	if (type == BPF_WRITE) {
7950 		if (bpf_prog_is_dev_bound(prog->aux)) {
7951 			switch (off) {
7952 			case offsetof(struct xdp_md, rx_queue_index):
7953 				return __is_valid_xdp_access(off, size);
7954 			}
7955 		}
7956 		return false;
7957 	}
7958 
7959 	switch (off) {
7960 	case offsetof(struct xdp_md, data):
7961 		info->reg_type = PTR_TO_PACKET;
7962 		break;
7963 	case offsetof(struct xdp_md, data_meta):
7964 		info->reg_type = PTR_TO_PACKET_META;
7965 		break;
7966 	case offsetof(struct xdp_md, data_end):
7967 		info->reg_type = PTR_TO_PACKET_END;
7968 		break;
7969 	}
7970 
7971 	return __is_valid_xdp_access(off, size);
7972 }
7973 
bpf_warn_invalid_xdp_action(u32 act)7974 void bpf_warn_invalid_xdp_action(u32 act)
7975 {
7976 	const u32 act_max = XDP_REDIRECT;
7977 
7978 	pr_warn_once("%s XDP return value %u, expect packet loss!\n",
7979 		     act > act_max ? "Illegal" : "Driver unsupported",
7980 		     act);
7981 }
7982 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7983 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7984 static bool sock_addr_is_valid_access(int off, int size,
7985 				      enum bpf_access_type type,
7986 				      const struct bpf_prog *prog,
7987 				      struct bpf_insn_access_aux *info)
7988 {
7989 	const int size_default = sizeof(__u32);
7990 
7991 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7992 		return false;
7993 	if (off % size != 0)
7994 		return false;
7995 
7996 	/* Disallow access to IPv6 fields from IPv4 contex and vise
7997 	 * versa.
7998 	 */
7999 	switch (off) {
8000 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8001 		switch (prog->expected_attach_type) {
8002 		case BPF_CGROUP_INET4_BIND:
8003 		case BPF_CGROUP_INET4_CONNECT:
8004 		case BPF_CGROUP_INET4_GETPEERNAME:
8005 		case BPF_CGROUP_INET4_GETSOCKNAME:
8006 		case BPF_CGROUP_UDP4_SENDMSG:
8007 		case BPF_CGROUP_UDP4_RECVMSG:
8008 			break;
8009 		default:
8010 			return false;
8011 		}
8012 		break;
8013 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8014 		switch (prog->expected_attach_type) {
8015 		case BPF_CGROUP_INET6_BIND:
8016 		case BPF_CGROUP_INET6_CONNECT:
8017 		case BPF_CGROUP_INET6_GETPEERNAME:
8018 		case BPF_CGROUP_INET6_GETSOCKNAME:
8019 		case BPF_CGROUP_UDP6_SENDMSG:
8020 		case BPF_CGROUP_UDP6_RECVMSG:
8021 			break;
8022 		default:
8023 			return false;
8024 		}
8025 		break;
8026 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8027 		switch (prog->expected_attach_type) {
8028 		case BPF_CGROUP_UDP4_SENDMSG:
8029 			break;
8030 		default:
8031 			return false;
8032 		}
8033 		break;
8034 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8035 				msg_src_ip6[3]):
8036 		switch (prog->expected_attach_type) {
8037 		case BPF_CGROUP_UDP6_SENDMSG:
8038 			break;
8039 		default:
8040 			return false;
8041 		}
8042 		break;
8043 	}
8044 
8045 	switch (off) {
8046 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8047 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8048 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8049 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8050 				msg_src_ip6[3]):
8051 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8052 		if (type == BPF_READ) {
8053 			bpf_ctx_record_field_size(info, size_default);
8054 
8055 			if (bpf_ctx_wide_access_ok(off, size,
8056 						   struct bpf_sock_addr,
8057 						   user_ip6))
8058 				return true;
8059 
8060 			if (bpf_ctx_wide_access_ok(off, size,
8061 						   struct bpf_sock_addr,
8062 						   msg_src_ip6))
8063 				return true;
8064 
8065 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8066 				return false;
8067 		} else {
8068 			if (bpf_ctx_wide_access_ok(off, size,
8069 						   struct bpf_sock_addr,
8070 						   user_ip6))
8071 				return true;
8072 
8073 			if (bpf_ctx_wide_access_ok(off, size,
8074 						   struct bpf_sock_addr,
8075 						   msg_src_ip6))
8076 				return true;
8077 
8078 			if (size != size_default)
8079 				return false;
8080 		}
8081 		break;
8082 	case offsetof(struct bpf_sock_addr, sk):
8083 		if (type != BPF_READ)
8084 			return false;
8085 		if (size != sizeof(__u64))
8086 			return false;
8087 		info->reg_type = PTR_TO_SOCKET;
8088 		break;
8089 	default:
8090 		if (type == BPF_READ) {
8091 			if (size != size_default)
8092 				return false;
8093 		} else {
8094 			return false;
8095 		}
8096 	}
8097 
8098 	return true;
8099 }
8100 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8101 static bool sock_ops_is_valid_access(int off, int size,
8102 				     enum bpf_access_type type,
8103 				     const struct bpf_prog *prog,
8104 				     struct bpf_insn_access_aux *info)
8105 {
8106 	const int size_default = sizeof(__u32);
8107 
8108 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8109 		return false;
8110 
8111 	/* The verifier guarantees that size > 0. */
8112 	if (off % size != 0)
8113 		return false;
8114 
8115 	if (type == BPF_WRITE) {
8116 		switch (off) {
8117 		case offsetof(struct bpf_sock_ops, reply):
8118 		case offsetof(struct bpf_sock_ops, sk_txhash):
8119 			if (size != size_default)
8120 				return false;
8121 			break;
8122 		default:
8123 			return false;
8124 		}
8125 	} else {
8126 		switch (off) {
8127 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8128 					bytes_acked):
8129 			if (size != sizeof(__u64))
8130 				return false;
8131 			break;
8132 		case offsetof(struct bpf_sock_ops, sk):
8133 			if (size != sizeof(__u64))
8134 				return false;
8135 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8136 			break;
8137 		case offsetof(struct bpf_sock_ops, skb_data):
8138 			if (size != sizeof(__u64))
8139 				return false;
8140 			info->reg_type = PTR_TO_PACKET;
8141 			break;
8142 		case offsetof(struct bpf_sock_ops, skb_data_end):
8143 			if (size != sizeof(__u64))
8144 				return false;
8145 			info->reg_type = PTR_TO_PACKET_END;
8146 			break;
8147 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8148 			bpf_ctx_record_field_size(info, size_default);
8149 			return bpf_ctx_narrow_access_ok(off, size,
8150 							size_default);
8151 		default:
8152 			if (size != size_default)
8153 				return false;
8154 			break;
8155 		}
8156 	}
8157 
8158 	return true;
8159 }
8160 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8161 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8162 			   const struct bpf_prog *prog)
8163 {
8164 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8165 }
8166 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8167 static bool sk_skb_is_valid_access(int off, int size,
8168 				   enum bpf_access_type type,
8169 				   const struct bpf_prog *prog,
8170 				   struct bpf_insn_access_aux *info)
8171 {
8172 	switch (off) {
8173 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8174 	case bpf_ctx_range(struct __sk_buff, data_meta):
8175 	case bpf_ctx_range(struct __sk_buff, tstamp):
8176 	case bpf_ctx_range(struct __sk_buff, wire_len):
8177 		return false;
8178 	}
8179 
8180 	if (type == BPF_WRITE) {
8181 		switch (off) {
8182 		case bpf_ctx_range(struct __sk_buff, tc_index):
8183 		case bpf_ctx_range(struct __sk_buff, priority):
8184 			break;
8185 		default:
8186 			return false;
8187 		}
8188 	}
8189 
8190 	switch (off) {
8191 	case bpf_ctx_range(struct __sk_buff, mark):
8192 		return false;
8193 	case bpf_ctx_range(struct __sk_buff, data):
8194 		info->reg_type = PTR_TO_PACKET;
8195 		break;
8196 	case bpf_ctx_range(struct __sk_buff, data_end):
8197 		info->reg_type = PTR_TO_PACKET_END;
8198 		break;
8199 	}
8200 
8201 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8202 }
8203 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8204 static bool sk_msg_is_valid_access(int off, int size,
8205 				   enum bpf_access_type type,
8206 				   const struct bpf_prog *prog,
8207 				   struct bpf_insn_access_aux *info)
8208 {
8209 	if (type == BPF_WRITE)
8210 		return false;
8211 
8212 	if (off % size != 0)
8213 		return false;
8214 
8215 	switch (off) {
8216 	case offsetof(struct sk_msg_md, data):
8217 		info->reg_type = PTR_TO_PACKET;
8218 		if (size != sizeof(__u64))
8219 			return false;
8220 		break;
8221 	case offsetof(struct sk_msg_md, data_end):
8222 		info->reg_type = PTR_TO_PACKET_END;
8223 		if (size != sizeof(__u64))
8224 			return false;
8225 		break;
8226 	case offsetof(struct sk_msg_md, sk):
8227 		if (size != sizeof(__u64))
8228 			return false;
8229 		info->reg_type = PTR_TO_SOCKET;
8230 		break;
8231 	case bpf_ctx_range(struct sk_msg_md, family):
8232 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8233 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8234 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8235 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8236 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8237 	case bpf_ctx_range(struct sk_msg_md, local_port):
8238 	case bpf_ctx_range(struct sk_msg_md, size):
8239 		if (size != sizeof(__u32))
8240 			return false;
8241 		break;
8242 	default:
8243 		return false;
8244 	}
8245 	return true;
8246 }
8247 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8248 static bool flow_dissector_is_valid_access(int off, int size,
8249 					   enum bpf_access_type type,
8250 					   const struct bpf_prog *prog,
8251 					   struct bpf_insn_access_aux *info)
8252 {
8253 	const int size_default = sizeof(__u32);
8254 
8255 	if (off < 0 || off >= sizeof(struct __sk_buff))
8256 		return false;
8257 
8258 	if (type == BPF_WRITE)
8259 		return false;
8260 
8261 	switch (off) {
8262 	case bpf_ctx_range(struct __sk_buff, data):
8263 		if (size != size_default)
8264 			return false;
8265 		info->reg_type = PTR_TO_PACKET;
8266 		return true;
8267 	case bpf_ctx_range(struct __sk_buff, data_end):
8268 		if (size != size_default)
8269 			return false;
8270 		info->reg_type = PTR_TO_PACKET_END;
8271 		return true;
8272 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8273 		if (size != sizeof(__u64))
8274 			return false;
8275 		info->reg_type = PTR_TO_FLOW_KEYS;
8276 		return true;
8277 	default:
8278 		return false;
8279 	}
8280 }
8281 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8282 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8283 					     const struct bpf_insn *si,
8284 					     struct bpf_insn *insn_buf,
8285 					     struct bpf_prog *prog,
8286 					     u32 *target_size)
8287 
8288 {
8289 	struct bpf_insn *insn = insn_buf;
8290 
8291 	switch (si->off) {
8292 	case offsetof(struct __sk_buff, data):
8293 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8294 				      si->dst_reg, si->src_reg,
8295 				      offsetof(struct bpf_flow_dissector, data));
8296 		break;
8297 
8298 	case offsetof(struct __sk_buff, data_end):
8299 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8300 				      si->dst_reg, si->src_reg,
8301 				      offsetof(struct bpf_flow_dissector, data_end));
8302 		break;
8303 
8304 	case offsetof(struct __sk_buff, flow_keys):
8305 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8306 				      si->dst_reg, si->src_reg,
8307 				      offsetof(struct bpf_flow_dissector, flow_keys));
8308 		break;
8309 	}
8310 
8311 	return insn - insn_buf;
8312 }
8313 
bpf_convert_shinfo_access(const struct bpf_insn * si,struct bpf_insn * insn)8314 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8315 						  struct bpf_insn *insn)
8316 {
8317 	/* si->dst_reg = skb_shinfo(SKB); */
8318 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8319 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8320 			      BPF_REG_AX, si->src_reg,
8321 			      offsetof(struct sk_buff, end));
8322 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8323 			      si->dst_reg, si->src_reg,
8324 			      offsetof(struct sk_buff, head));
8325 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8326 #else
8327 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8328 			      si->dst_reg, si->src_reg,
8329 			      offsetof(struct sk_buff, end));
8330 #endif
8331 
8332 	return insn;
8333 }
8334 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8335 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8336 				  const struct bpf_insn *si,
8337 				  struct bpf_insn *insn_buf,
8338 				  struct bpf_prog *prog, u32 *target_size)
8339 {
8340 	struct bpf_insn *insn = insn_buf;
8341 	int off;
8342 
8343 	switch (si->off) {
8344 	case offsetof(struct __sk_buff, len):
8345 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8346 				      bpf_target_off(struct sk_buff, len, 4,
8347 						     target_size));
8348 		break;
8349 
8350 	case offsetof(struct __sk_buff, protocol):
8351 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8352 				      bpf_target_off(struct sk_buff, protocol, 2,
8353 						     target_size));
8354 		break;
8355 
8356 	case offsetof(struct __sk_buff, vlan_proto):
8357 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8358 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
8359 						     target_size));
8360 		break;
8361 
8362 	case offsetof(struct __sk_buff, priority):
8363 		if (type == BPF_WRITE)
8364 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8365 					      bpf_target_off(struct sk_buff, priority, 4,
8366 							     target_size));
8367 		else
8368 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8369 					      bpf_target_off(struct sk_buff, priority, 4,
8370 							     target_size));
8371 		break;
8372 
8373 	case offsetof(struct __sk_buff, ingress_ifindex):
8374 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8375 				      bpf_target_off(struct sk_buff, skb_iif, 4,
8376 						     target_size));
8377 		break;
8378 
8379 	case offsetof(struct __sk_buff, ifindex):
8380 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8381 				      si->dst_reg, si->src_reg,
8382 				      offsetof(struct sk_buff, dev));
8383 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8384 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8385 				      bpf_target_off(struct net_device, ifindex, 4,
8386 						     target_size));
8387 		break;
8388 
8389 	case offsetof(struct __sk_buff, hash):
8390 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8391 				      bpf_target_off(struct sk_buff, hash, 4,
8392 						     target_size));
8393 		break;
8394 
8395 	case offsetof(struct __sk_buff, mark):
8396 		if (type == BPF_WRITE)
8397 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8398 					      bpf_target_off(struct sk_buff, mark, 4,
8399 							     target_size));
8400 		else
8401 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8402 					      bpf_target_off(struct sk_buff, mark, 4,
8403 							     target_size));
8404 		break;
8405 
8406 	case offsetof(struct __sk_buff, pkt_type):
8407 		*target_size = 1;
8408 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8409 				      PKT_TYPE_OFFSET());
8410 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8411 #ifdef __BIG_ENDIAN_BITFIELD
8412 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8413 #endif
8414 		break;
8415 
8416 	case offsetof(struct __sk_buff, queue_mapping):
8417 		if (type == BPF_WRITE) {
8418 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8419 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8420 					      bpf_target_off(struct sk_buff,
8421 							     queue_mapping,
8422 							     2, target_size));
8423 		} else {
8424 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8425 					      bpf_target_off(struct sk_buff,
8426 							     queue_mapping,
8427 							     2, target_size));
8428 		}
8429 		break;
8430 
8431 	case offsetof(struct __sk_buff, vlan_present):
8432 		*target_size = 1;
8433 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8434 				      PKT_VLAN_PRESENT_OFFSET());
8435 		if (PKT_VLAN_PRESENT_BIT)
8436 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8437 		if (PKT_VLAN_PRESENT_BIT < 7)
8438 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8439 		break;
8440 
8441 	case offsetof(struct __sk_buff, vlan_tci):
8442 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8443 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
8444 						     target_size));
8445 		break;
8446 
8447 	case offsetof(struct __sk_buff, cb[0]) ...
8448 	     offsetofend(struct __sk_buff, cb[4]) - 1:
8449 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8450 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8451 			      offsetof(struct qdisc_skb_cb, data)) %
8452 			     sizeof(__u64));
8453 
8454 		prog->cb_access = 1;
8455 		off  = si->off;
8456 		off -= offsetof(struct __sk_buff, cb[0]);
8457 		off += offsetof(struct sk_buff, cb);
8458 		off += offsetof(struct qdisc_skb_cb, data);
8459 		if (type == BPF_WRITE)
8460 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8461 					      si->src_reg, off);
8462 		else
8463 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8464 					      si->src_reg, off);
8465 		break;
8466 
8467 	case offsetof(struct __sk_buff, tc_classid):
8468 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8469 
8470 		off  = si->off;
8471 		off -= offsetof(struct __sk_buff, tc_classid);
8472 		off += offsetof(struct sk_buff, cb);
8473 		off += offsetof(struct qdisc_skb_cb, tc_classid);
8474 		*target_size = 2;
8475 		if (type == BPF_WRITE)
8476 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8477 					      si->src_reg, off);
8478 		else
8479 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8480 					      si->src_reg, off);
8481 		break;
8482 
8483 	case offsetof(struct __sk_buff, data):
8484 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8485 				      si->dst_reg, si->src_reg,
8486 				      offsetof(struct sk_buff, data));
8487 		break;
8488 
8489 	case offsetof(struct __sk_buff, data_meta):
8490 		off  = si->off;
8491 		off -= offsetof(struct __sk_buff, data_meta);
8492 		off += offsetof(struct sk_buff, cb);
8493 		off += offsetof(struct bpf_skb_data_end, data_meta);
8494 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8495 				      si->src_reg, off);
8496 		break;
8497 
8498 	case offsetof(struct __sk_buff, data_end):
8499 		off  = si->off;
8500 		off -= offsetof(struct __sk_buff, data_end);
8501 		off += offsetof(struct sk_buff, cb);
8502 		off += offsetof(struct bpf_skb_data_end, data_end);
8503 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8504 				      si->src_reg, off);
8505 		break;
8506 
8507 	case offsetof(struct __sk_buff, tc_index):
8508 #ifdef CONFIG_NET_SCHED
8509 		if (type == BPF_WRITE)
8510 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8511 					      bpf_target_off(struct sk_buff, tc_index, 2,
8512 							     target_size));
8513 		else
8514 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8515 					      bpf_target_off(struct sk_buff, tc_index, 2,
8516 							     target_size));
8517 #else
8518 		*target_size = 2;
8519 		if (type == BPF_WRITE)
8520 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8521 		else
8522 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8523 #endif
8524 		break;
8525 
8526 	case offsetof(struct __sk_buff, napi_id):
8527 #if defined(CONFIG_NET_RX_BUSY_POLL)
8528 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8529 				      bpf_target_off(struct sk_buff, napi_id, 4,
8530 						     target_size));
8531 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8532 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8533 #else
8534 		*target_size = 4;
8535 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8536 #endif
8537 		break;
8538 	case offsetof(struct __sk_buff, family):
8539 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8540 
8541 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8542 				      si->dst_reg, si->src_reg,
8543 				      offsetof(struct sk_buff, sk));
8544 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8545 				      bpf_target_off(struct sock_common,
8546 						     skc_family,
8547 						     2, target_size));
8548 		break;
8549 	case offsetof(struct __sk_buff, remote_ip4):
8550 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8551 
8552 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8553 				      si->dst_reg, si->src_reg,
8554 				      offsetof(struct sk_buff, sk));
8555 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8556 				      bpf_target_off(struct sock_common,
8557 						     skc_daddr,
8558 						     4, target_size));
8559 		break;
8560 	case offsetof(struct __sk_buff, local_ip4):
8561 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8562 					  skc_rcv_saddr) != 4);
8563 
8564 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8565 				      si->dst_reg, si->src_reg,
8566 				      offsetof(struct sk_buff, sk));
8567 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8568 				      bpf_target_off(struct sock_common,
8569 						     skc_rcv_saddr,
8570 						     4, target_size));
8571 		break;
8572 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
8573 	     offsetof(struct __sk_buff, remote_ip6[3]):
8574 #if IS_ENABLED(CONFIG_IPV6)
8575 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8576 					  skc_v6_daddr.s6_addr32[0]) != 4);
8577 
8578 		off = si->off;
8579 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
8580 
8581 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8582 				      si->dst_reg, si->src_reg,
8583 				      offsetof(struct sk_buff, sk));
8584 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8585 				      offsetof(struct sock_common,
8586 					       skc_v6_daddr.s6_addr32[0]) +
8587 				      off);
8588 #else
8589 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8590 #endif
8591 		break;
8592 	case offsetof(struct __sk_buff, local_ip6[0]) ...
8593 	     offsetof(struct __sk_buff, local_ip6[3]):
8594 #if IS_ENABLED(CONFIG_IPV6)
8595 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8596 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8597 
8598 		off = si->off;
8599 		off -= offsetof(struct __sk_buff, local_ip6[0]);
8600 
8601 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8602 				      si->dst_reg, si->src_reg,
8603 				      offsetof(struct sk_buff, sk));
8604 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8605 				      offsetof(struct sock_common,
8606 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8607 				      off);
8608 #else
8609 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8610 #endif
8611 		break;
8612 
8613 	case offsetof(struct __sk_buff, remote_port):
8614 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8615 
8616 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8617 				      si->dst_reg, si->src_reg,
8618 				      offsetof(struct sk_buff, sk));
8619 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8620 				      bpf_target_off(struct sock_common,
8621 						     skc_dport,
8622 						     2, target_size));
8623 #ifndef __BIG_ENDIAN_BITFIELD
8624 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8625 #endif
8626 		break;
8627 
8628 	case offsetof(struct __sk_buff, local_port):
8629 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8630 
8631 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8632 				      si->dst_reg, si->src_reg,
8633 				      offsetof(struct sk_buff, sk));
8634 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8635 				      bpf_target_off(struct sock_common,
8636 						     skc_num, 2, target_size));
8637 		break;
8638 
8639 	case offsetof(struct __sk_buff, tstamp):
8640 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8641 
8642 		if (type == BPF_WRITE)
8643 			*insn++ = BPF_STX_MEM(BPF_DW,
8644 					      si->dst_reg, si->src_reg,
8645 					      bpf_target_off(struct sk_buff,
8646 							     tstamp, 8,
8647 							     target_size));
8648 		else
8649 			*insn++ = BPF_LDX_MEM(BPF_DW,
8650 					      si->dst_reg, si->src_reg,
8651 					      bpf_target_off(struct sk_buff,
8652 							     tstamp, 8,
8653 							     target_size));
8654 		break;
8655 
8656 	case offsetof(struct __sk_buff, gso_segs):
8657 		insn = bpf_convert_shinfo_access(si, insn);
8658 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8659 				      si->dst_reg, si->dst_reg,
8660 				      bpf_target_off(struct skb_shared_info,
8661 						     gso_segs, 2,
8662 						     target_size));
8663 		break;
8664 	case offsetof(struct __sk_buff, gso_size):
8665 		insn = bpf_convert_shinfo_access(si, insn);
8666 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8667 				      si->dst_reg, si->dst_reg,
8668 				      bpf_target_off(struct skb_shared_info,
8669 						     gso_size, 2,
8670 						     target_size));
8671 		break;
8672 	case offsetof(struct __sk_buff, wire_len):
8673 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8674 
8675 		off = si->off;
8676 		off -= offsetof(struct __sk_buff, wire_len);
8677 		off += offsetof(struct sk_buff, cb);
8678 		off += offsetof(struct qdisc_skb_cb, pkt_len);
8679 		*target_size = 4;
8680 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8681 		break;
8682 
8683 	case offsetof(struct __sk_buff, sk):
8684 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8685 				      si->dst_reg, si->src_reg,
8686 				      offsetof(struct sk_buff, sk));
8687 		break;
8688 	}
8689 
8690 	return insn - insn_buf;
8691 }
8692 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8693 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8694 				const struct bpf_insn *si,
8695 				struct bpf_insn *insn_buf,
8696 				struct bpf_prog *prog, u32 *target_size)
8697 {
8698 	struct bpf_insn *insn = insn_buf;
8699 	int off;
8700 
8701 	switch (si->off) {
8702 	case offsetof(struct bpf_sock, bound_dev_if):
8703 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8704 
8705 		if (type == BPF_WRITE)
8706 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8707 					offsetof(struct sock, sk_bound_dev_if));
8708 		else
8709 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8710 				      offsetof(struct sock, sk_bound_dev_if));
8711 		break;
8712 
8713 	case offsetof(struct bpf_sock, mark):
8714 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8715 
8716 		if (type == BPF_WRITE)
8717 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8718 					offsetof(struct sock, sk_mark));
8719 		else
8720 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8721 				      offsetof(struct sock, sk_mark));
8722 		break;
8723 
8724 	case offsetof(struct bpf_sock, priority):
8725 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8726 
8727 		if (type == BPF_WRITE)
8728 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8729 					offsetof(struct sock, sk_priority));
8730 		else
8731 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8732 				      offsetof(struct sock, sk_priority));
8733 		break;
8734 
8735 	case offsetof(struct bpf_sock, family):
8736 		*insn++ = BPF_LDX_MEM(
8737 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8738 			si->dst_reg, si->src_reg,
8739 			bpf_target_off(struct sock_common,
8740 				       skc_family,
8741 				       sizeof_field(struct sock_common,
8742 						    skc_family),
8743 				       target_size));
8744 		break;
8745 
8746 	case offsetof(struct bpf_sock, type):
8747 		*insn++ = BPF_LDX_MEM(
8748 			BPF_FIELD_SIZEOF(struct sock, sk_type),
8749 			si->dst_reg, si->src_reg,
8750 			bpf_target_off(struct sock, sk_type,
8751 				       sizeof_field(struct sock, sk_type),
8752 				       target_size));
8753 		break;
8754 
8755 	case offsetof(struct bpf_sock, protocol):
8756 		*insn++ = BPF_LDX_MEM(
8757 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8758 			si->dst_reg, si->src_reg,
8759 			bpf_target_off(struct sock, sk_protocol,
8760 				       sizeof_field(struct sock, sk_protocol),
8761 				       target_size));
8762 		break;
8763 
8764 	case offsetof(struct bpf_sock, src_ip4):
8765 		*insn++ = BPF_LDX_MEM(
8766 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8767 			bpf_target_off(struct sock_common, skc_rcv_saddr,
8768 				       sizeof_field(struct sock_common,
8769 						    skc_rcv_saddr),
8770 				       target_size));
8771 		break;
8772 
8773 	case offsetof(struct bpf_sock, dst_ip4):
8774 		*insn++ = BPF_LDX_MEM(
8775 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8776 			bpf_target_off(struct sock_common, skc_daddr,
8777 				       sizeof_field(struct sock_common,
8778 						    skc_daddr),
8779 				       target_size));
8780 		break;
8781 
8782 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8783 #if IS_ENABLED(CONFIG_IPV6)
8784 		off = si->off;
8785 		off -= offsetof(struct bpf_sock, src_ip6[0]);
8786 		*insn++ = BPF_LDX_MEM(
8787 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8788 			bpf_target_off(
8789 				struct sock_common,
8790 				skc_v6_rcv_saddr.s6_addr32[0],
8791 				sizeof_field(struct sock_common,
8792 					     skc_v6_rcv_saddr.s6_addr32[0]),
8793 				target_size) + off);
8794 #else
8795 		(void)off;
8796 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8797 #endif
8798 		break;
8799 
8800 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8801 #if IS_ENABLED(CONFIG_IPV6)
8802 		off = si->off;
8803 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
8804 		*insn++ = BPF_LDX_MEM(
8805 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8806 			bpf_target_off(struct sock_common,
8807 				       skc_v6_daddr.s6_addr32[0],
8808 				       sizeof_field(struct sock_common,
8809 						    skc_v6_daddr.s6_addr32[0]),
8810 				       target_size) + off);
8811 #else
8812 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8813 		*target_size = 4;
8814 #endif
8815 		break;
8816 
8817 	case offsetof(struct bpf_sock, src_port):
8818 		*insn++ = BPF_LDX_MEM(
8819 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8820 			si->dst_reg, si->src_reg,
8821 			bpf_target_off(struct sock_common, skc_num,
8822 				       sizeof_field(struct sock_common,
8823 						    skc_num),
8824 				       target_size));
8825 		break;
8826 
8827 	case offsetof(struct bpf_sock, dst_port):
8828 		*insn++ = BPF_LDX_MEM(
8829 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8830 			si->dst_reg, si->src_reg,
8831 			bpf_target_off(struct sock_common, skc_dport,
8832 				       sizeof_field(struct sock_common,
8833 						    skc_dport),
8834 				       target_size));
8835 		break;
8836 
8837 	case offsetof(struct bpf_sock, state):
8838 		*insn++ = BPF_LDX_MEM(
8839 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8840 			si->dst_reg, si->src_reg,
8841 			bpf_target_off(struct sock_common, skc_state,
8842 				       sizeof_field(struct sock_common,
8843 						    skc_state),
8844 				       target_size));
8845 		break;
8846 	case offsetof(struct bpf_sock, rx_queue_mapping):
8847 #ifdef CONFIG_XPS
8848 		*insn++ = BPF_LDX_MEM(
8849 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8850 			si->dst_reg, si->src_reg,
8851 			bpf_target_off(struct sock, sk_rx_queue_mapping,
8852 				       sizeof_field(struct sock,
8853 						    sk_rx_queue_mapping),
8854 				       target_size));
8855 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8856 				      1);
8857 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8858 #else
8859 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8860 		*target_size = 2;
8861 #endif
8862 		break;
8863 	}
8864 
8865 	return insn - insn_buf;
8866 }
8867 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8868 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8869 					 const struct bpf_insn *si,
8870 					 struct bpf_insn *insn_buf,
8871 					 struct bpf_prog *prog, u32 *target_size)
8872 {
8873 	struct bpf_insn *insn = insn_buf;
8874 
8875 	switch (si->off) {
8876 	case offsetof(struct __sk_buff, ifindex):
8877 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8878 				      si->dst_reg, si->src_reg,
8879 				      offsetof(struct sk_buff, dev));
8880 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8881 				      bpf_target_off(struct net_device, ifindex, 4,
8882 						     target_size));
8883 		break;
8884 	default:
8885 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
8886 					      target_size);
8887 	}
8888 
8889 	return insn - insn_buf;
8890 }
8891 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8892 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8893 				  const struct bpf_insn *si,
8894 				  struct bpf_insn *insn_buf,
8895 				  struct bpf_prog *prog, u32 *target_size)
8896 {
8897 	struct bpf_insn *insn = insn_buf;
8898 
8899 	switch (si->off) {
8900 	case offsetof(struct xdp_md, data):
8901 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8902 				      si->dst_reg, si->src_reg,
8903 				      offsetof(struct xdp_buff, data));
8904 		break;
8905 	case offsetof(struct xdp_md, data_meta):
8906 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8907 				      si->dst_reg, si->src_reg,
8908 				      offsetof(struct xdp_buff, data_meta));
8909 		break;
8910 	case offsetof(struct xdp_md, data_end):
8911 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8912 				      si->dst_reg, si->src_reg,
8913 				      offsetof(struct xdp_buff, data_end));
8914 		break;
8915 	case offsetof(struct xdp_md, ingress_ifindex):
8916 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8917 				      si->dst_reg, si->src_reg,
8918 				      offsetof(struct xdp_buff, rxq));
8919 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8920 				      si->dst_reg, si->dst_reg,
8921 				      offsetof(struct xdp_rxq_info, dev));
8922 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8923 				      offsetof(struct net_device, ifindex));
8924 		break;
8925 	case offsetof(struct xdp_md, rx_queue_index):
8926 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8927 				      si->dst_reg, si->src_reg,
8928 				      offsetof(struct xdp_buff, rxq));
8929 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8930 				      offsetof(struct xdp_rxq_info,
8931 					       queue_index));
8932 		break;
8933 	case offsetof(struct xdp_md, egress_ifindex):
8934 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8935 				      si->dst_reg, si->src_reg,
8936 				      offsetof(struct xdp_buff, txq));
8937 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8938 				      si->dst_reg, si->dst_reg,
8939 				      offsetof(struct xdp_txq_info, dev));
8940 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8941 				      offsetof(struct net_device, ifindex));
8942 		break;
8943 	}
8944 
8945 	return insn - insn_buf;
8946 }
8947 
8948 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8949  * context Structure, F is Field in context structure that contains a pointer
8950  * to Nested Structure of type NS that has the field NF.
8951  *
8952  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8953  * sure that SIZE is not greater than actual size of S.F.NF.
8954  *
8955  * If offset OFF is provided, the load happens from that offset relative to
8956  * offset of NF.
8957  */
8958 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
8959 	do {								       \
8960 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
8961 				      si->src_reg, offsetof(S, F));	       \
8962 		*insn++ = BPF_LDX_MEM(					       \
8963 			SIZE, si->dst_reg, si->dst_reg,			       \
8964 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8965 				       target_size)			       \
8966 				+ OFF);					       \
8967 	} while (0)
8968 
8969 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
8970 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
8971 					     BPF_FIELD_SIZEOF(NS, NF), 0)
8972 
8973 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8974  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8975  *
8976  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8977  * "register" since two registers available in convert_ctx_access are not
8978  * enough: we can't override neither SRC, since it contains value to store, nor
8979  * DST since it contains pointer to context that may be used by later
8980  * instructions. But we need a temporary place to save pointer to nested
8981  * structure whose field we want to store to.
8982  */
8983 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
8984 	do {								       \
8985 		int tmp_reg = BPF_REG_9;				       \
8986 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8987 			--tmp_reg;					       \
8988 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8989 			--tmp_reg;					       \
8990 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
8991 				      offsetof(S, TF));			       \
8992 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
8993 				      si->dst_reg, offsetof(S, F));	       \
8994 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
8995 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8996 				       target_size)			       \
8997 				+ OFF);					       \
8998 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
8999 				      offsetof(S, TF));			       \
9000 	} while (0)
9001 
9002 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9003 						      TF)		       \
9004 	do {								       \
9005 		if (type == BPF_WRITE) {				       \
9006 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9007 							 OFF, TF);	       \
9008 		} else {						       \
9009 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9010 				S, NS, F, NF, SIZE, OFF);  \
9011 		}							       \
9012 	} while (0)
9013 
9014 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9015 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9016 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9017 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9018 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9019 					const struct bpf_insn *si,
9020 					struct bpf_insn *insn_buf,
9021 					struct bpf_prog *prog, u32 *target_size)
9022 {
9023 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9024 	struct bpf_insn *insn = insn_buf;
9025 
9026 	switch (si->off) {
9027 	case offsetof(struct bpf_sock_addr, user_family):
9028 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9029 					    struct sockaddr, uaddr, sa_family);
9030 		break;
9031 
9032 	case offsetof(struct bpf_sock_addr, user_ip4):
9033 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9034 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9035 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9036 		break;
9037 
9038 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9039 		off = si->off;
9040 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9041 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9042 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9043 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9044 			tmp_reg);
9045 		break;
9046 
9047 	case offsetof(struct bpf_sock_addr, user_port):
9048 		/* To get port we need to know sa_family first and then treat
9049 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9050 		 * Though we can simplify since port field has same offset and
9051 		 * size in both structures.
9052 		 * Here we check this invariant and use just one of the
9053 		 * structures if it's true.
9054 		 */
9055 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9056 			     offsetof(struct sockaddr_in6, sin6_port));
9057 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9058 			     sizeof_field(struct sockaddr_in6, sin6_port));
9059 		/* Account for sin6_port being smaller than user_port. */
9060 		port_size = min(port_size, BPF_LDST_BYTES(si));
9061 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9062 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9063 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9064 		break;
9065 
9066 	case offsetof(struct bpf_sock_addr, family):
9067 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9068 					    struct sock, sk, sk_family);
9069 		break;
9070 
9071 	case offsetof(struct bpf_sock_addr, type):
9072 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9073 					    struct sock, sk, sk_type);
9074 		break;
9075 
9076 	case offsetof(struct bpf_sock_addr, protocol):
9077 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9078 					    struct sock, sk, sk_protocol);
9079 		break;
9080 
9081 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9082 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9083 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9084 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9085 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9086 		break;
9087 
9088 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9089 				msg_src_ip6[3]):
9090 		off = si->off;
9091 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9092 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9093 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9094 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9095 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9096 		break;
9097 	case offsetof(struct bpf_sock_addr, sk):
9098 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9099 				      si->dst_reg, si->src_reg,
9100 				      offsetof(struct bpf_sock_addr_kern, sk));
9101 		break;
9102 	}
9103 
9104 	return insn - insn_buf;
9105 }
9106 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9107 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9108 				       const struct bpf_insn *si,
9109 				       struct bpf_insn *insn_buf,
9110 				       struct bpf_prog *prog,
9111 				       u32 *target_size)
9112 {
9113 	struct bpf_insn *insn = insn_buf;
9114 	int off;
9115 
9116 /* Helper macro for adding read access to tcp_sock or sock fields. */
9117 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9118 	do {								      \
9119 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9120 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9121 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9122 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9123 			reg--;						      \
9124 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9125 			reg--;						      \
9126 		if (si->dst_reg == si->src_reg) {			      \
9127 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9128 					  offsetof(struct bpf_sock_ops_kern,  \
9129 					  temp));			      \
9130 			fullsock_reg = reg;				      \
9131 			jmp += 2;					      \
9132 		}							      \
9133 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9134 						struct bpf_sock_ops_kern,     \
9135 						is_fullsock),		      \
9136 				      fullsock_reg, si->src_reg,	      \
9137 				      offsetof(struct bpf_sock_ops_kern,      \
9138 					       is_fullsock));		      \
9139 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9140 		if (si->dst_reg == si->src_reg)				      \
9141 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9142 				      offsetof(struct bpf_sock_ops_kern,      \
9143 				      temp));				      \
9144 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9145 						struct bpf_sock_ops_kern, sk),\
9146 				      si->dst_reg, si->src_reg,		      \
9147 				      offsetof(struct bpf_sock_ops_kern, sk));\
9148 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9149 						       OBJ_FIELD),	      \
9150 				      si->dst_reg, si->dst_reg,		      \
9151 				      offsetof(OBJ, OBJ_FIELD));	      \
9152 		if (si->dst_reg == si->src_reg)	{			      \
9153 			*insn++ = BPF_JMP_A(1);				      \
9154 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9155 				      offsetof(struct bpf_sock_ops_kern,      \
9156 				      temp));				      \
9157 		}							      \
9158 	} while (0)
9159 
9160 #define SOCK_OPS_GET_SK()							      \
9161 	do {								      \
9162 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9163 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9164 			reg--;						      \
9165 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9166 			reg--;						      \
9167 		if (si->dst_reg == si->src_reg) {			      \
9168 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9169 					  offsetof(struct bpf_sock_ops_kern,  \
9170 					  temp));			      \
9171 			fullsock_reg = reg;				      \
9172 			jmp += 2;					      \
9173 		}							      \
9174 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9175 						struct bpf_sock_ops_kern,     \
9176 						is_fullsock),		      \
9177 				      fullsock_reg, si->src_reg,	      \
9178 				      offsetof(struct bpf_sock_ops_kern,      \
9179 					       is_fullsock));		      \
9180 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9181 		if (si->dst_reg == si->src_reg)				      \
9182 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9183 				      offsetof(struct bpf_sock_ops_kern,      \
9184 				      temp));				      \
9185 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9186 						struct bpf_sock_ops_kern, sk),\
9187 				      si->dst_reg, si->src_reg,		      \
9188 				      offsetof(struct bpf_sock_ops_kern, sk));\
9189 		if (si->dst_reg == si->src_reg)	{			      \
9190 			*insn++ = BPF_JMP_A(1);				      \
9191 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9192 				      offsetof(struct bpf_sock_ops_kern,      \
9193 				      temp));				      \
9194 		}							      \
9195 	} while (0)
9196 
9197 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9198 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9199 
9200 /* Helper macro for adding write access to tcp_sock or sock fields.
9201  * The macro is called with two registers, dst_reg which contains a pointer
9202  * to ctx (context) and src_reg which contains the value that should be
9203  * stored. However, we need an additional register since we cannot overwrite
9204  * dst_reg because it may be used later in the program.
9205  * Instead we "borrow" one of the other register. We first save its value
9206  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9207  * it at the end of the macro.
9208  */
9209 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9210 	do {								      \
9211 		int reg = BPF_REG_9;					      \
9212 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9213 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9214 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9215 			reg--;						      \
9216 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9217 			reg--;						      \
9218 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9219 				      offsetof(struct bpf_sock_ops_kern,      \
9220 					       temp));			      \
9221 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9222 						struct bpf_sock_ops_kern,     \
9223 						is_fullsock),		      \
9224 				      reg, si->dst_reg,			      \
9225 				      offsetof(struct bpf_sock_ops_kern,      \
9226 					       is_fullsock));		      \
9227 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
9228 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9229 						struct bpf_sock_ops_kern, sk),\
9230 				      reg, si->dst_reg,			      \
9231 				      offsetof(struct bpf_sock_ops_kern, sk));\
9232 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
9233 				      reg, si->src_reg,			      \
9234 				      offsetof(OBJ, OBJ_FIELD));	      \
9235 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
9236 				      offsetof(struct bpf_sock_ops_kern,      \
9237 					       temp));			      \
9238 	} while (0)
9239 
9240 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
9241 	do {								      \
9242 		if (TYPE == BPF_WRITE)					      \
9243 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9244 		else							      \
9245 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9246 	} while (0)
9247 
9248 	if (insn > insn_buf)
9249 		return insn - insn_buf;
9250 
9251 	switch (si->off) {
9252 	case offsetof(struct bpf_sock_ops, op):
9253 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9254 						       op),
9255 				      si->dst_reg, si->src_reg,
9256 				      offsetof(struct bpf_sock_ops_kern, op));
9257 		break;
9258 
9259 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
9260 	     offsetof(struct bpf_sock_ops, replylong[3]):
9261 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9262 			     sizeof_field(struct bpf_sock_ops_kern, reply));
9263 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9264 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
9265 		off = si->off;
9266 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
9267 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9268 		if (type == BPF_WRITE)
9269 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9270 					      off);
9271 		else
9272 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9273 					      off);
9274 		break;
9275 
9276 	case offsetof(struct bpf_sock_ops, family):
9277 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9278 
9279 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9280 					      struct bpf_sock_ops_kern, sk),
9281 				      si->dst_reg, si->src_reg,
9282 				      offsetof(struct bpf_sock_ops_kern, sk));
9283 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9284 				      offsetof(struct sock_common, skc_family));
9285 		break;
9286 
9287 	case offsetof(struct bpf_sock_ops, remote_ip4):
9288 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9289 
9290 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9291 						struct bpf_sock_ops_kern, sk),
9292 				      si->dst_reg, si->src_reg,
9293 				      offsetof(struct bpf_sock_ops_kern, sk));
9294 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9295 				      offsetof(struct sock_common, skc_daddr));
9296 		break;
9297 
9298 	case offsetof(struct bpf_sock_ops, local_ip4):
9299 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9300 					  skc_rcv_saddr) != 4);
9301 
9302 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9303 					      struct bpf_sock_ops_kern, sk),
9304 				      si->dst_reg, si->src_reg,
9305 				      offsetof(struct bpf_sock_ops_kern, sk));
9306 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9307 				      offsetof(struct sock_common,
9308 					       skc_rcv_saddr));
9309 		break;
9310 
9311 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9312 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
9313 #if IS_ENABLED(CONFIG_IPV6)
9314 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9315 					  skc_v6_daddr.s6_addr32[0]) != 4);
9316 
9317 		off = si->off;
9318 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9319 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9320 						struct bpf_sock_ops_kern, sk),
9321 				      si->dst_reg, si->src_reg,
9322 				      offsetof(struct bpf_sock_ops_kern, sk));
9323 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9324 				      offsetof(struct sock_common,
9325 					       skc_v6_daddr.s6_addr32[0]) +
9326 				      off);
9327 #else
9328 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9329 #endif
9330 		break;
9331 
9332 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9333 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
9334 #if IS_ENABLED(CONFIG_IPV6)
9335 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9336 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9337 
9338 		off = si->off;
9339 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9340 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9341 						struct bpf_sock_ops_kern, sk),
9342 				      si->dst_reg, si->src_reg,
9343 				      offsetof(struct bpf_sock_ops_kern, sk));
9344 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9345 				      offsetof(struct sock_common,
9346 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9347 				      off);
9348 #else
9349 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9350 #endif
9351 		break;
9352 
9353 	case offsetof(struct bpf_sock_ops, remote_port):
9354 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9355 
9356 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9357 						struct bpf_sock_ops_kern, sk),
9358 				      si->dst_reg, si->src_reg,
9359 				      offsetof(struct bpf_sock_ops_kern, sk));
9360 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9361 				      offsetof(struct sock_common, skc_dport));
9362 #ifndef __BIG_ENDIAN_BITFIELD
9363 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9364 #endif
9365 		break;
9366 
9367 	case offsetof(struct bpf_sock_ops, local_port):
9368 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9369 
9370 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9371 						struct bpf_sock_ops_kern, sk),
9372 				      si->dst_reg, si->src_reg,
9373 				      offsetof(struct bpf_sock_ops_kern, sk));
9374 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9375 				      offsetof(struct sock_common, skc_num));
9376 		break;
9377 
9378 	case offsetof(struct bpf_sock_ops, is_fullsock):
9379 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9380 						struct bpf_sock_ops_kern,
9381 						is_fullsock),
9382 				      si->dst_reg, si->src_reg,
9383 				      offsetof(struct bpf_sock_ops_kern,
9384 					       is_fullsock));
9385 		break;
9386 
9387 	case offsetof(struct bpf_sock_ops, state):
9388 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9389 
9390 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9391 						struct bpf_sock_ops_kern, sk),
9392 				      si->dst_reg, si->src_reg,
9393 				      offsetof(struct bpf_sock_ops_kern, sk));
9394 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9395 				      offsetof(struct sock_common, skc_state));
9396 		break;
9397 
9398 	case offsetof(struct bpf_sock_ops, rtt_min):
9399 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9400 			     sizeof(struct minmax));
9401 		BUILD_BUG_ON(sizeof(struct minmax) <
9402 			     sizeof(struct minmax_sample));
9403 
9404 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9405 						struct bpf_sock_ops_kern, sk),
9406 				      si->dst_reg, si->src_reg,
9407 				      offsetof(struct bpf_sock_ops_kern, sk));
9408 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9409 				      offsetof(struct tcp_sock, rtt_min) +
9410 				      sizeof_field(struct minmax_sample, t));
9411 		break;
9412 
9413 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9414 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9415 				   struct tcp_sock);
9416 		break;
9417 
9418 	case offsetof(struct bpf_sock_ops, sk_txhash):
9419 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9420 					  struct sock, type);
9421 		break;
9422 	case offsetof(struct bpf_sock_ops, snd_cwnd):
9423 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9424 		break;
9425 	case offsetof(struct bpf_sock_ops, srtt_us):
9426 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9427 		break;
9428 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
9429 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9430 		break;
9431 	case offsetof(struct bpf_sock_ops, rcv_nxt):
9432 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9433 		break;
9434 	case offsetof(struct bpf_sock_ops, snd_nxt):
9435 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9436 		break;
9437 	case offsetof(struct bpf_sock_ops, snd_una):
9438 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9439 		break;
9440 	case offsetof(struct bpf_sock_ops, mss_cache):
9441 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9442 		break;
9443 	case offsetof(struct bpf_sock_ops, ecn_flags):
9444 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9445 		break;
9446 	case offsetof(struct bpf_sock_ops, rate_delivered):
9447 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9448 		break;
9449 	case offsetof(struct bpf_sock_ops, rate_interval_us):
9450 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9451 		break;
9452 	case offsetof(struct bpf_sock_ops, packets_out):
9453 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9454 		break;
9455 	case offsetof(struct bpf_sock_ops, retrans_out):
9456 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9457 		break;
9458 	case offsetof(struct bpf_sock_ops, total_retrans):
9459 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9460 		break;
9461 	case offsetof(struct bpf_sock_ops, segs_in):
9462 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9463 		break;
9464 	case offsetof(struct bpf_sock_ops, data_segs_in):
9465 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9466 		break;
9467 	case offsetof(struct bpf_sock_ops, segs_out):
9468 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9469 		break;
9470 	case offsetof(struct bpf_sock_ops, data_segs_out):
9471 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9472 		break;
9473 	case offsetof(struct bpf_sock_ops, lost_out):
9474 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9475 		break;
9476 	case offsetof(struct bpf_sock_ops, sacked_out):
9477 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9478 		break;
9479 	case offsetof(struct bpf_sock_ops, bytes_received):
9480 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9481 		break;
9482 	case offsetof(struct bpf_sock_ops, bytes_acked):
9483 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9484 		break;
9485 	case offsetof(struct bpf_sock_ops, sk):
9486 		SOCK_OPS_GET_SK();
9487 		break;
9488 	case offsetof(struct bpf_sock_ops, skb_data_end):
9489 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9490 						       skb_data_end),
9491 				      si->dst_reg, si->src_reg,
9492 				      offsetof(struct bpf_sock_ops_kern,
9493 					       skb_data_end));
9494 		break;
9495 	case offsetof(struct bpf_sock_ops, skb_data):
9496 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9497 						       skb),
9498 				      si->dst_reg, si->src_reg,
9499 				      offsetof(struct bpf_sock_ops_kern,
9500 					       skb));
9501 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9502 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9503 				      si->dst_reg, si->dst_reg,
9504 				      offsetof(struct sk_buff, data));
9505 		break;
9506 	case offsetof(struct bpf_sock_ops, skb_len):
9507 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9508 						       skb),
9509 				      si->dst_reg, si->src_reg,
9510 				      offsetof(struct bpf_sock_ops_kern,
9511 					       skb));
9512 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9513 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9514 				      si->dst_reg, si->dst_reg,
9515 				      offsetof(struct sk_buff, len));
9516 		break;
9517 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9518 		off = offsetof(struct sk_buff, cb);
9519 		off += offsetof(struct tcp_skb_cb, tcp_flags);
9520 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9521 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9522 						       skb),
9523 				      si->dst_reg, si->src_reg,
9524 				      offsetof(struct bpf_sock_ops_kern,
9525 					       skb));
9526 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9527 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9528 						       tcp_flags),
9529 				      si->dst_reg, si->dst_reg, off);
9530 		break;
9531 	}
9532 	return insn - insn_buf;
9533 }
9534 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9535 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9536 				     const struct bpf_insn *si,
9537 				     struct bpf_insn *insn_buf,
9538 				     struct bpf_prog *prog, u32 *target_size)
9539 {
9540 	struct bpf_insn *insn = insn_buf;
9541 	int off;
9542 
9543 	switch (si->off) {
9544 	case offsetof(struct __sk_buff, data_end):
9545 		off  = si->off;
9546 		off -= offsetof(struct __sk_buff, data_end);
9547 		off += offsetof(struct sk_buff, cb);
9548 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
9549 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9550 				      si->src_reg, off);
9551 		break;
9552 	case offsetof(struct __sk_buff, cb[0]) ...
9553 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9554 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
9555 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9556 			      offsetof(struct sk_skb_cb, data)) %
9557 			     sizeof(__u64));
9558 
9559 		prog->cb_access = 1;
9560 		off  = si->off;
9561 		off -= offsetof(struct __sk_buff, cb[0]);
9562 		off += offsetof(struct sk_buff, cb);
9563 		off += offsetof(struct sk_skb_cb, data);
9564 		if (type == BPF_WRITE)
9565 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9566 					      si->src_reg, off);
9567 		else
9568 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9569 					      si->src_reg, off);
9570 		break;
9571 
9572 
9573 	default:
9574 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9575 					      target_size);
9576 	}
9577 
9578 	return insn - insn_buf;
9579 }
9580 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9581 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9582 				     const struct bpf_insn *si,
9583 				     struct bpf_insn *insn_buf,
9584 				     struct bpf_prog *prog, u32 *target_size)
9585 {
9586 	struct bpf_insn *insn = insn_buf;
9587 #if IS_ENABLED(CONFIG_IPV6)
9588 	int off;
9589 #endif
9590 
9591 	/* convert ctx uses the fact sg element is first in struct */
9592 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9593 
9594 	switch (si->off) {
9595 	case offsetof(struct sk_msg_md, data):
9596 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9597 				      si->dst_reg, si->src_reg,
9598 				      offsetof(struct sk_msg, data));
9599 		break;
9600 	case offsetof(struct sk_msg_md, data_end):
9601 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9602 				      si->dst_reg, si->src_reg,
9603 				      offsetof(struct sk_msg, data_end));
9604 		break;
9605 	case offsetof(struct sk_msg_md, family):
9606 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9607 
9608 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9609 					      struct sk_msg, sk),
9610 				      si->dst_reg, si->src_reg,
9611 				      offsetof(struct sk_msg, sk));
9612 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9613 				      offsetof(struct sock_common, skc_family));
9614 		break;
9615 
9616 	case offsetof(struct sk_msg_md, remote_ip4):
9617 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9618 
9619 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9620 						struct sk_msg, sk),
9621 				      si->dst_reg, si->src_reg,
9622 				      offsetof(struct sk_msg, sk));
9623 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9624 				      offsetof(struct sock_common, skc_daddr));
9625 		break;
9626 
9627 	case offsetof(struct sk_msg_md, local_ip4):
9628 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9629 					  skc_rcv_saddr) != 4);
9630 
9631 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9632 					      struct sk_msg, sk),
9633 				      si->dst_reg, si->src_reg,
9634 				      offsetof(struct sk_msg, sk));
9635 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9636 				      offsetof(struct sock_common,
9637 					       skc_rcv_saddr));
9638 		break;
9639 
9640 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9641 	     offsetof(struct sk_msg_md, remote_ip6[3]):
9642 #if IS_ENABLED(CONFIG_IPV6)
9643 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9644 					  skc_v6_daddr.s6_addr32[0]) != 4);
9645 
9646 		off = si->off;
9647 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9648 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9649 						struct sk_msg, sk),
9650 				      si->dst_reg, si->src_reg,
9651 				      offsetof(struct sk_msg, sk));
9652 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9653 				      offsetof(struct sock_common,
9654 					       skc_v6_daddr.s6_addr32[0]) +
9655 				      off);
9656 #else
9657 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9658 #endif
9659 		break;
9660 
9661 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
9662 	     offsetof(struct sk_msg_md, local_ip6[3]):
9663 #if IS_ENABLED(CONFIG_IPV6)
9664 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9665 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9666 
9667 		off = si->off;
9668 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
9669 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9670 						struct sk_msg, sk),
9671 				      si->dst_reg, si->src_reg,
9672 				      offsetof(struct sk_msg, sk));
9673 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9674 				      offsetof(struct sock_common,
9675 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9676 				      off);
9677 #else
9678 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9679 #endif
9680 		break;
9681 
9682 	case offsetof(struct sk_msg_md, remote_port):
9683 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9684 
9685 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9686 						struct sk_msg, sk),
9687 				      si->dst_reg, si->src_reg,
9688 				      offsetof(struct sk_msg, sk));
9689 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9690 				      offsetof(struct sock_common, skc_dport));
9691 #ifndef __BIG_ENDIAN_BITFIELD
9692 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9693 #endif
9694 		break;
9695 
9696 	case offsetof(struct sk_msg_md, local_port):
9697 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9698 
9699 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9700 						struct sk_msg, sk),
9701 				      si->dst_reg, si->src_reg,
9702 				      offsetof(struct sk_msg, sk));
9703 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9704 				      offsetof(struct sock_common, skc_num));
9705 		break;
9706 
9707 	case offsetof(struct sk_msg_md, size):
9708 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9709 				      si->dst_reg, si->src_reg,
9710 				      offsetof(struct sk_msg_sg, size));
9711 		break;
9712 
9713 	case offsetof(struct sk_msg_md, sk):
9714 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9715 				      si->dst_reg, si->src_reg,
9716 				      offsetof(struct sk_msg, sk));
9717 		break;
9718 	}
9719 
9720 	return insn - insn_buf;
9721 }
9722 
9723 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9724 	.get_func_proto		= sk_filter_func_proto,
9725 	.is_valid_access	= sk_filter_is_valid_access,
9726 	.convert_ctx_access	= bpf_convert_ctx_access,
9727 	.gen_ld_abs		= bpf_gen_ld_abs,
9728 };
9729 
9730 const struct bpf_prog_ops sk_filter_prog_ops = {
9731 	.test_run		= bpf_prog_test_run_skb,
9732 };
9733 
9734 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9735 	.get_func_proto		= tc_cls_act_func_proto,
9736 	.is_valid_access	= tc_cls_act_is_valid_access,
9737 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
9738 	.gen_prologue		= tc_cls_act_prologue,
9739 	.gen_ld_abs		= bpf_gen_ld_abs,
9740 };
9741 
9742 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9743 	.test_run		= bpf_prog_test_run_skb,
9744 };
9745 
9746 const struct bpf_verifier_ops xdp_verifier_ops = {
9747 	.get_func_proto		= xdp_func_proto,
9748 	.is_valid_access	= xdp_is_valid_access,
9749 	.convert_ctx_access	= xdp_convert_ctx_access,
9750 	.gen_prologue		= bpf_noop_prologue,
9751 };
9752 
9753 const struct bpf_prog_ops xdp_prog_ops = {
9754 	.test_run		= bpf_prog_test_run_xdp,
9755 };
9756 
9757 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9758 	.get_func_proto		= cg_skb_func_proto,
9759 	.is_valid_access	= cg_skb_is_valid_access,
9760 	.convert_ctx_access	= bpf_convert_ctx_access,
9761 };
9762 
9763 const struct bpf_prog_ops cg_skb_prog_ops = {
9764 	.test_run		= bpf_prog_test_run_skb,
9765 };
9766 
9767 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9768 	.get_func_proto		= lwt_in_func_proto,
9769 	.is_valid_access	= lwt_is_valid_access,
9770 	.convert_ctx_access	= bpf_convert_ctx_access,
9771 };
9772 
9773 const struct bpf_prog_ops lwt_in_prog_ops = {
9774 	.test_run		= bpf_prog_test_run_skb,
9775 };
9776 
9777 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9778 	.get_func_proto		= lwt_out_func_proto,
9779 	.is_valid_access	= lwt_is_valid_access,
9780 	.convert_ctx_access	= bpf_convert_ctx_access,
9781 };
9782 
9783 const struct bpf_prog_ops lwt_out_prog_ops = {
9784 	.test_run		= bpf_prog_test_run_skb,
9785 };
9786 
9787 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9788 	.get_func_proto		= lwt_xmit_func_proto,
9789 	.is_valid_access	= lwt_is_valid_access,
9790 	.convert_ctx_access	= bpf_convert_ctx_access,
9791 	.gen_prologue		= tc_cls_act_prologue,
9792 };
9793 
9794 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9795 	.test_run		= bpf_prog_test_run_skb,
9796 };
9797 
9798 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9799 	.get_func_proto		= lwt_seg6local_func_proto,
9800 	.is_valid_access	= lwt_is_valid_access,
9801 	.convert_ctx_access	= bpf_convert_ctx_access,
9802 };
9803 
9804 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9805 	.test_run		= bpf_prog_test_run_skb,
9806 };
9807 
9808 const struct bpf_verifier_ops cg_sock_verifier_ops = {
9809 	.get_func_proto		= sock_filter_func_proto,
9810 	.is_valid_access	= sock_filter_is_valid_access,
9811 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
9812 };
9813 
9814 const struct bpf_prog_ops cg_sock_prog_ops = {
9815 };
9816 
9817 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9818 	.get_func_proto		= sock_addr_func_proto,
9819 	.is_valid_access	= sock_addr_is_valid_access,
9820 	.convert_ctx_access	= sock_addr_convert_ctx_access,
9821 };
9822 
9823 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9824 };
9825 
9826 const struct bpf_verifier_ops sock_ops_verifier_ops = {
9827 	.get_func_proto		= sock_ops_func_proto,
9828 	.is_valid_access	= sock_ops_is_valid_access,
9829 	.convert_ctx_access	= sock_ops_convert_ctx_access,
9830 };
9831 
9832 const struct bpf_prog_ops sock_ops_prog_ops = {
9833 };
9834 
9835 const struct bpf_verifier_ops sk_skb_verifier_ops = {
9836 	.get_func_proto		= sk_skb_func_proto,
9837 	.is_valid_access	= sk_skb_is_valid_access,
9838 	.convert_ctx_access	= sk_skb_convert_ctx_access,
9839 	.gen_prologue		= sk_skb_prologue,
9840 };
9841 
9842 const struct bpf_prog_ops sk_skb_prog_ops = {
9843 };
9844 
9845 const struct bpf_verifier_ops sk_msg_verifier_ops = {
9846 	.get_func_proto		= sk_msg_func_proto,
9847 	.is_valid_access	= sk_msg_is_valid_access,
9848 	.convert_ctx_access	= sk_msg_convert_ctx_access,
9849 	.gen_prologue		= bpf_noop_prologue,
9850 };
9851 
9852 const struct bpf_prog_ops sk_msg_prog_ops = {
9853 };
9854 
9855 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9856 	.get_func_proto		= flow_dissector_func_proto,
9857 	.is_valid_access	= flow_dissector_is_valid_access,
9858 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
9859 };
9860 
9861 const struct bpf_prog_ops flow_dissector_prog_ops = {
9862 	.test_run		= bpf_prog_test_run_flow_dissector,
9863 };
9864 
sk_detach_filter(struct sock * sk)9865 int sk_detach_filter(struct sock *sk)
9866 {
9867 	int ret = -ENOENT;
9868 	struct sk_filter *filter;
9869 
9870 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
9871 		return -EPERM;
9872 
9873 	filter = rcu_dereference_protected(sk->sk_filter,
9874 					   lockdep_sock_is_held(sk));
9875 	if (filter) {
9876 		RCU_INIT_POINTER(sk->sk_filter, NULL);
9877 		sk_filter_uncharge(sk, filter);
9878 		ret = 0;
9879 	}
9880 
9881 	return ret;
9882 }
9883 EXPORT_SYMBOL_GPL(sk_detach_filter);
9884 
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)9885 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
9886 		  unsigned int len)
9887 {
9888 	struct sock_fprog_kern *fprog;
9889 	struct sk_filter *filter;
9890 	int ret = 0;
9891 
9892 	lock_sock(sk);
9893 	filter = rcu_dereference_protected(sk->sk_filter,
9894 					   lockdep_sock_is_held(sk));
9895 	if (!filter)
9896 		goto out;
9897 
9898 	/* We're copying the filter that has been originally attached,
9899 	 * so no conversion/decode needed anymore. eBPF programs that
9900 	 * have no original program cannot be dumped through this.
9901 	 */
9902 	ret = -EACCES;
9903 	fprog = filter->prog->orig_prog;
9904 	if (!fprog)
9905 		goto out;
9906 
9907 	ret = fprog->len;
9908 	if (!len)
9909 		/* User space only enquires number of filter blocks. */
9910 		goto out;
9911 
9912 	ret = -EINVAL;
9913 	if (len < fprog->len)
9914 		goto out;
9915 
9916 	ret = -EFAULT;
9917 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
9918 		goto out;
9919 
9920 	/* Instead of bytes, the API requests to return the number
9921 	 * of filter blocks.
9922 	 */
9923 	ret = fprog->len;
9924 out:
9925 	release_sock(sk);
9926 	return ret;
9927 }
9928 
9929 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,u32 hash)9930 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
9931 				    struct sock_reuseport *reuse,
9932 				    struct sock *sk, struct sk_buff *skb,
9933 				    u32 hash)
9934 {
9935 	reuse_kern->skb = skb;
9936 	reuse_kern->sk = sk;
9937 	reuse_kern->selected_sk = NULL;
9938 	reuse_kern->data_end = skb->data + skb_headlen(skb);
9939 	reuse_kern->hash = hash;
9940 	reuse_kern->reuseport_id = reuse->reuseport_id;
9941 	reuse_kern->bind_inany = reuse->bind_inany;
9942 }
9943 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,u32 hash)9944 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
9945 				  struct bpf_prog *prog, struct sk_buff *skb,
9946 				  u32 hash)
9947 {
9948 	struct sk_reuseport_kern reuse_kern;
9949 	enum sk_action action;
9950 
9951 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
9952 	action = BPF_PROG_RUN(prog, &reuse_kern);
9953 
9954 	if (action == SK_PASS)
9955 		return reuse_kern.selected_sk;
9956 	else
9957 		return ERR_PTR(-ECONNREFUSED);
9958 }
9959 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)9960 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
9961 	   struct bpf_map *, map, void *, key, u32, flags)
9962 {
9963 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
9964 	struct sock_reuseport *reuse;
9965 	struct sock *selected_sk;
9966 
9967 	selected_sk = map->ops->map_lookup_elem(map, key);
9968 	if (!selected_sk)
9969 		return -ENOENT;
9970 
9971 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
9972 	if (!reuse) {
9973 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
9974 		if (sk_is_refcounted(selected_sk))
9975 			sock_put(selected_sk);
9976 
9977 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
9978 		 * The only (!reuse) case here is - the sk has already been
9979 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
9980 		 *
9981 		 * Other maps (e.g. sock_map) do not provide this guarantee and
9982 		 * the sk may never be in the reuseport group to begin with.
9983 		 */
9984 		return is_sockarray ? -ENOENT : -EINVAL;
9985 	}
9986 
9987 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
9988 		struct sock *sk = reuse_kern->sk;
9989 
9990 		if (sk->sk_protocol != selected_sk->sk_protocol)
9991 			return -EPROTOTYPE;
9992 		else if (sk->sk_family != selected_sk->sk_family)
9993 			return -EAFNOSUPPORT;
9994 
9995 		/* Catch all. Likely bound to a different sockaddr. */
9996 		return -EBADFD;
9997 	}
9998 
9999 	reuse_kern->selected_sk = selected_sk;
10000 
10001 	return 0;
10002 }
10003 
10004 static const struct bpf_func_proto sk_select_reuseport_proto = {
10005 	.func           = sk_select_reuseport,
10006 	.gpl_only       = false,
10007 	.ret_type       = RET_INTEGER,
10008 	.arg1_type	= ARG_PTR_TO_CTX,
10009 	.arg2_type      = ARG_CONST_MAP_PTR,
10010 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10011 	.arg4_type	= ARG_ANYTHING,
10012 };
10013 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)10014 BPF_CALL_4(sk_reuseport_load_bytes,
10015 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10016 	   void *, to, u32, len)
10017 {
10018 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10019 }
10020 
10021 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10022 	.func		= sk_reuseport_load_bytes,
10023 	.gpl_only	= false,
10024 	.ret_type	= RET_INTEGER,
10025 	.arg1_type	= ARG_PTR_TO_CTX,
10026 	.arg2_type	= ARG_ANYTHING,
10027 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10028 	.arg4_type	= ARG_CONST_SIZE,
10029 };
10030 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)10031 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10032 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10033 	   void *, to, u32, len, u32, start_header)
10034 {
10035 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10036 					       len, start_header);
10037 }
10038 
10039 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10040 	.func		= sk_reuseport_load_bytes_relative,
10041 	.gpl_only	= false,
10042 	.ret_type	= RET_INTEGER,
10043 	.arg1_type	= ARG_PTR_TO_CTX,
10044 	.arg2_type	= ARG_ANYTHING,
10045 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10046 	.arg4_type	= ARG_CONST_SIZE,
10047 	.arg5_type	= ARG_ANYTHING,
10048 };
10049 
10050 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)10051 sk_reuseport_func_proto(enum bpf_func_id func_id,
10052 			const struct bpf_prog *prog)
10053 {
10054 	switch (func_id) {
10055 	case BPF_FUNC_sk_select_reuseport:
10056 		return &sk_select_reuseport_proto;
10057 	case BPF_FUNC_skb_load_bytes:
10058 		return &sk_reuseport_load_bytes_proto;
10059 	case BPF_FUNC_skb_load_bytes_relative:
10060 		return &sk_reuseport_load_bytes_relative_proto;
10061 	default:
10062 		return bpf_base_func_proto(func_id);
10063 	}
10064 }
10065 
10066 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)10067 sk_reuseport_is_valid_access(int off, int size,
10068 			     enum bpf_access_type type,
10069 			     const struct bpf_prog *prog,
10070 			     struct bpf_insn_access_aux *info)
10071 {
10072 	const u32 size_default = sizeof(__u32);
10073 
10074 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10075 	    off % size || type != BPF_READ)
10076 		return false;
10077 
10078 	switch (off) {
10079 	case offsetof(struct sk_reuseport_md, data):
10080 		info->reg_type = PTR_TO_PACKET;
10081 		return size == sizeof(__u64);
10082 
10083 	case offsetof(struct sk_reuseport_md, data_end):
10084 		info->reg_type = PTR_TO_PACKET_END;
10085 		return size == sizeof(__u64);
10086 
10087 	case offsetof(struct sk_reuseport_md, hash):
10088 		return size == size_default;
10089 
10090 	/* Fields that allow narrowing */
10091 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10092 		if (size < sizeof_field(struct sk_buff, protocol))
10093 			return false;
10094 		fallthrough;
10095 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10096 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10097 	case bpf_ctx_range(struct sk_reuseport_md, len):
10098 		bpf_ctx_record_field_size(info, size_default);
10099 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10100 
10101 	default:
10102 		return false;
10103 	}
10104 }
10105 
10106 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10107 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10108 			      si->dst_reg, si->src_reg,			\
10109 			      bpf_target_off(struct sk_reuseport_kern, F, \
10110 					     sizeof_field(struct sk_reuseport_kern, F), \
10111 					     target_size));		\
10112 	})
10113 
10114 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10115 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10116 				    struct sk_buff,			\
10117 				    skb,				\
10118 				    SKB_FIELD)
10119 
10120 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10121 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10122 				    struct sock,			\
10123 				    sk,					\
10124 				    SK_FIELD)
10125 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10126 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10127 					   const struct bpf_insn *si,
10128 					   struct bpf_insn *insn_buf,
10129 					   struct bpf_prog *prog,
10130 					   u32 *target_size)
10131 {
10132 	struct bpf_insn *insn = insn_buf;
10133 
10134 	switch (si->off) {
10135 	case offsetof(struct sk_reuseport_md, data):
10136 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10137 		break;
10138 
10139 	case offsetof(struct sk_reuseport_md, len):
10140 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10141 		break;
10142 
10143 	case offsetof(struct sk_reuseport_md, eth_protocol):
10144 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10145 		break;
10146 
10147 	case offsetof(struct sk_reuseport_md, ip_protocol):
10148 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10149 		break;
10150 
10151 	case offsetof(struct sk_reuseport_md, data_end):
10152 		SK_REUSEPORT_LOAD_FIELD(data_end);
10153 		break;
10154 
10155 	case offsetof(struct sk_reuseport_md, hash):
10156 		SK_REUSEPORT_LOAD_FIELD(hash);
10157 		break;
10158 
10159 	case offsetof(struct sk_reuseport_md, bind_inany):
10160 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10161 		break;
10162 	}
10163 
10164 	return insn - insn_buf;
10165 }
10166 
10167 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10168 	.get_func_proto		= sk_reuseport_func_proto,
10169 	.is_valid_access	= sk_reuseport_is_valid_access,
10170 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
10171 };
10172 
10173 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10174 };
10175 
10176 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10177 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10178 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)10179 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10180 	   struct sock *, sk, u64, flags)
10181 {
10182 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10183 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10184 		return -EINVAL;
10185 	if (unlikely(sk && sk_is_refcounted(sk)))
10186 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10187 	if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10188 		return -ESOCKTNOSUPPORT; /* reject connected sockets */
10189 
10190 	/* Check if socket is suitable for packet L3/L4 protocol */
10191 	if (sk && sk->sk_protocol != ctx->protocol)
10192 		return -EPROTOTYPE;
10193 	if (sk && sk->sk_family != ctx->family &&
10194 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10195 		return -EAFNOSUPPORT;
10196 
10197 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10198 		return -EEXIST;
10199 
10200 	/* Select socket as lookup result */
10201 	ctx->selected_sk = sk;
10202 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10203 	return 0;
10204 }
10205 
10206 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10207 	.func		= bpf_sk_lookup_assign,
10208 	.gpl_only	= false,
10209 	.ret_type	= RET_INTEGER,
10210 	.arg1_type	= ARG_PTR_TO_CTX,
10211 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
10212 	.arg3_type	= ARG_ANYTHING,
10213 };
10214 
10215 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)10216 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10217 {
10218 	switch (func_id) {
10219 	case BPF_FUNC_perf_event_output:
10220 		return &bpf_event_output_data_proto;
10221 	case BPF_FUNC_sk_assign:
10222 		return &bpf_sk_lookup_assign_proto;
10223 	case BPF_FUNC_sk_release:
10224 		return &bpf_sk_release_proto;
10225 	default:
10226 		return bpf_sk_base_func_proto(func_id);
10227 	}
10228 }
10229 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)10230 static bool sk_lookup_is_valid_access(int off, int size,
10231 				      enum bpf_access_type type,
10232 				      const struct bpf_prog *prog,
10233 				      struct bpf_insn_access_aux *info)
10234 {
10235 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10236 		return false;
10237 	if (off % size != 0)
10238 		return false;
10239 	if (type != BPF_READ)
10240 		return false;
10241 
10242 	switch (off) {
10243 	case offsetof(struct bpf_sk_lookup, sk):
10244 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
10245 		return size == sizeof(__u64);
10246 
10247 	case bpf_ctx_range(struct bpf_sk_lookup, family):
10248 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10249 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10250 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10251 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10252 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10253 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10254 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10255 		bpf_ctx_record_field_size(info, sizeof(__u32));
10256 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10257 
10258 	default:
10259 		return false;
10260 	}
10261 }
10262 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10263 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10264 					const struct bpf_insn *si,
10265 					struct bpf_insn *insn_buf,
10266 					struct bpf_prog *prog,
10267 					u32 *target_size)
10268 {
10269 	struct bpf_insn *insn = insn_buf;
10270 
10271 	switch (si->off) {
10272 	case offsetof(struct bpf_sk_lookup, sk):
10273 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10274 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
10275 		break;
10276 
10277 	case offsetof(struct bpf_sk_lookup, family):
10278 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10279 				      bpf_target_off(struct bpf_sk_lookup_kern,
10280 						     family, 2, target_size));
10281 		break;
10282 
10283 	case offsetof(struct bpf_sk_lookup, protocol):
10284 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10285 				      bpf_target_off(struct bpf_sk_lookup_kern,
10286 						     protocol, 2, target_size));
10287 		break;
10288 
10289 	case offsetof(struct bpf_sk_lookup, remote_ip4):
10290 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10291 				      bpf_target_off(struct bpf_sk_lookup_kern,
10292 						     v4.saddr, 4, target_size));
10293 		break;
10294 
10295 	case offsetof(struct bpf_sk_lookup, local_ip4):
10296 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10297 				      bpf_target_off(struct bpf_sk_lookup_kern,
10298 						     v4.daddr, 4, target_size));
10299 		break;
10300 
10301 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10302 				remote_ip6[0], remote_ip6[3]): {
10303 #if IS_ENABLED(CONFIG_IPV6)
10304 		int off = si->off;
10305 
10306 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10307 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10308 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10309 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10310 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10311 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10312 #else
10313 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10314 #endif
10315 		break;
10316 	}
10317 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10318 				local_ip6[0], local_ip6[3]): {
10319 #if IS_ENABLED(CONFIG_IPV6)
10320 		int off = si->off;
10321 
10322 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10323 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10324 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10325 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10326 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10327 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10328 #else
10329 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10330 #endif
10331 		break;
10332 	}
10333 	case offsetof(struct bpf_sk_lookup, remote_port):
10334 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10335 				      bpf_target_off(struct bpf_sk_lookup_kern,
10336 						     sport, 2, target_size));
10337 		break;
10338 
10339 	case offsetof(struct bpf_sk_lookup, local_port):
10340 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10341 				      bpf_target_off(struct bpf_sk_lookup_kern,
10342 						     dport, 2, target_size));
10343 		break;
10344 	}
10345 
10346 	return insn - insn_buf;
10347 }
10348 
10349 const struct bpf_prog_ops sk_lookup_prog_ops = {
10350 };
10351 
10352 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10353 	.get_func_proto		= sk_lookup_func_proto,
10354 	.is_valid_access	= sk_lookup_is_valid_access,
10355 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
10356 };
10357 
10358 #endif /* CONFIG_INET */
10359 
DEFINE_BPF_DISPATCHER(xdp)10360 DEFINE_BPF_DISPATCHER(xdp)
10361 
10362 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10363 {
10364 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10365 }
10366 
10367 #ifdef CONFIG_DEBUG_INFO_BTF
BTF_ID_LIST_GLOBAL(btf_sock_ids)10368 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10369 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10370 BTF_SOCK_TYPE_xxx
10371 #undef BTF_SOCK_TYPE
10372 #else
10373 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10374 #endif
10375 
10376 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10377 {
10378 	/* tcp6_sock type is not generated in dwarf and hence btf,
10379 	 * trigger an explicit type generation here.
10380 	 */
10381 	BTF_TYPE_EMIT(struct tcp6_sock);
10382 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10383 	    sk->sk_family == AF_INET6)
10384 		return (unsigned long)sk;
10385 
10386 	return (unsigned long)NULL;
10387 }
10388 
10389 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10390 	.func			= bpf_skc_to_tcp6_sock,
10391 	.gpl_only		= false,
10392 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10393 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10394 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10395 };
10396 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)10397 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10398 {
10399 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10400 		return (unsigned long)sk;
10401 
10402 	return (unsigned long)NULL;
10403 }
10404 
10405 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10406 	.func			= bpf_skc_to_tcp_sock,
10407 	.gpl_only		= false,
10408 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10409 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10410 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10411 };
10412 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)10413 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10414 {
10415 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10416 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
10417 	 */
10418 	BTF_TYPE_EMIT(struct inet_timewait_sock);
10419 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
10420 
10421 #ifdef CONFIG_INET
10422 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10423 		return (unsigned long)sk;
10424 #endif
10425 
10426 #if IS_BUILTIN(CONFIG_IPV6)
10427 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10428 		return (unsigned long)sk;
10429 #endif
10430 
10431 	return (unsigned long)NULL;
10432 }
10433 
10434 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10435 	.func			= bpf_skc_to_tcp_timewait_sock,
10436 	.gpl_only		= false,
10437 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10438 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10439 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10440 };
10441 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)10442 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10443 {
10444 #ifdef CONFIG_INET
10445 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10446 		return (unsigned long)sk;
10447 #endif
10448 
10449 #if IS_BUILTIN(CONFIG_IPV6)
10450 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10451 		return (unsigned long)sk;
10452 #endif
10453 
10454 	return (unsigned long)NULL;
10455 }
10456 
10457 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10458 	.func			= bpf_skc_to_tcp_request_sock,
10459 	.gpl_only		= false,
10460 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10461 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10462 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10463 };
10464 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)10465 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10466 {
10467 	/* udp6_sock type is not generated in dwarf and hence btf,
10468 	 * trigger an explicit type generation here.
10469 	 */
10470 	BTF_TYPE_EMIT(struct udp6_sock);
10471 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10472 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10473 		return (unsigned long)sk;
10474 
10475 	return (unsigned long)NULL;
10476 }
10477 
10478 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10479 	.func			= bpf_skc_to_udp6_sock,
10480 	.gpl_only		= false,
10481 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10482 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10483 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10484 };
10485 
10486 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)10487 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10488 {
10489 	const struct bpf_func_proto *func;
10490 
10491 	switch (func_id) {
10492 	case BPF_FUNC_skc_to_tcp6_sock:
10493 		func = &bpf_skc_to_tcp6_sock_proto;
10494 		break;
10495 	case BPF_FUNC_skc_to_tcp_sock:
10496 		func = &bpf_skc_to_tcp_sock_proto;
10497 		break;
10498 	case BPF_FUNC_skc_to_tcp_timewait_sock:
10499 		func = &bpf_skc_to_tcp_timewait_sock_proto;
10500 		break;
10501 	case BPF_FUNC_skc_to_tcp_request_sock:
10502 		func = &bpf_skc_to_tcp_request_sock_proto;
10503 		break;
10504 	case BPF_FUNC_skc_to_udp6_sock:
10505 		func = &bpf_skc_to_udp6_sock_proto;
10506 		break;
10507 	default:
10508 		return bpf_base_func_proto(func_id);
10509 	}
10510 
10511 	if (!perfmon_capable())
10512 		return NULL;
10513 
10514 	return func;
10515 }
10516