1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25
26 #include "disasm.h"
27
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38
39 /* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 *
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
162 */
163
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
176 };
177
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179 #define BPF_COMPLEXITY_LIMIT_STATES 64
180
181 #define BPF_MAP_KEY_POISON (1ULL << 63)
182 #define BPF_MAP_KEY_SEEN (1ULL << 62)
183
184 #define BPF_MAP_PTR_UNPRIV 1UL
185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201 {
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230
231 struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
233 bool raw_mode;
234 bool pkt_access;
235 int regno;
236 int access_size;
237 int mem_size;
238 u64 msize_max_value;
239 int ref_obj_id;
240 int func_id;
241 u32 btf_id;
242 u32 ret_btf_id;
243 };
244
245 struct btf *btf_vmlinux;
246
247 static DEFINE_MUTEX(bpf_verifier_lock);
248
249 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)250 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
251 {
252 const struct bpf_line_info *linfo;
253 const struct bpf_prog *prog;
254 u32 i, nr_linfo;
255
256 prog = env->prog;
257 nr_linfo = prog->aux->nr_linfo;
258
259 if (!nr_linfo || insn_off >= prog->len)
260 return NULL;
261
262 linfo = prog->aux->linfo;
263 for (i = 1; i < nr_linfo; i++)
264 if (insn_off < linfo[i].insn_off)
265 break;
266
267 return &linfo[i - 1];
268 }
269
bpf_verifier_vlog(struct bpf_verifier_log * log,const char * fmt,va_list args)270 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
271 va_list args)
272 {
273 unsigned int n;
274
275 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
276
277 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
278 "verifier log line truncated - local buffer too short\n");
279
280 n = min(log->len_total - log->len_used - 1, n);
281 log->kbuf[n] = '\0';
282
283 if (log->level == BPF_LOG_KERNEL) {
284 pr_err("BPF:%s\n", log->kbuf);
285 return;
286 }
287 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
288 log->len_used += n;
289 else
290 log->ubuf = NULL;
291 }
292
bpf_vlog_reset(struct bpf_verifier_log * log,u32 new_pos)293 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
294 {
295 char zero = 0;
296
297 if (!bpf_verifier_log_needed(log))
298 return;
299
300 log->len_used = new_pos;
301 if (put_user(zero, log->ubuf + new_pos))
302 log->ubuf = NULL;
303 }
304
305 /* log_level controls verbosity level of eBPF verifier.
306 * bpf_verifier_log_write() is used to dump the verification trace to the log,
307 * so the user can figure out what's wrong with the program
308 */
bpf_verifier_log_write(struct bpf_verifier_env * env,const char * fmt,...)309 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
310 const char *fmt, ...)
311 {
312 va_list args;
313
314 if (!bpf_verifier_log_needed(&env->log))
315 return;
316
317 va_start(args, fmt);
318 bpf_verifier_vlog(&env->log, fmt, args);
319 va_end(args);
320 }
321 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
322
verbose(void * private_data,const char * fmt,...)323 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
324 {
325 struct bpf_verifier_env *env = private_data;
326 va_list args;
327
328 if (!bpf_verifier_log_needed(&env->log))
329 return;
330
331 va_start(args, fmt);
332 bpf_verifier_vlog(&env->log, fmt, args);
333 va_end(args);
334 }
335
bpf_log(struct bpf_verifier_log * log,const char * fmt,...)336 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
337 const char *fmt, ...)
338 {
339 va_list args;
340
341 if (!bpf_verifier_log_needed(log))
342 return;
343
344 va_start(args, fmt);
345 bpf_verifier_vlog(log, fmt, args);
346 va_end(args);
347 }
348
ltrim(const char * s)349 static const char *ltrim(const char *s)
350 {
351 while (isspace(*s))
352 s++;
353
354 return s;
355 }
356
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)357 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
358 u32 insn_off,
359 const char *prefix_fmt, ...)
360 {
361 const struct bpf_line_info *linfo;
362
363 if (!bpf_verifier_log_needed(&env->log))
364 return;
365
366 linfo = find_linfo(env, insn_off);
367 if (!linfo || linfo == env->prev_linfo)
368 return;
369
370 if (prefix_fmt) {
371 va_list args;
372
373 va_start(args, prefix_fmt);
374 bpf_verifier_vlog(&env->log, prefix_fmt, args);
375 va_end(args);
376 }
377
378 verbose(env, "%s\n",
379 ltrim(btf_name_by_offset(env->prog->aux->btf,
380 linfo->line_off)));
381
382 env->prev_linfo = linfo;
383 }
384
type_is_pkt_pointer(enum bpf_reg_type type)385 static bool type_is_pkt_pointer(enum bpf_reg_type type)
386 {
387 return type == PTR_TO_PACKET ||
388 type == PTR_TO_PACKET_META;
389 }
390
type_is_sk_pointer(enum bpf_reg_type type)391 static bool type_is_sk_pointer(enum bpf_reg_type type)
392 {
393 return type == PTR_TO_SOCKET ||
394 type == PTR_TO_SOCK_COMMON ||
395 type == PTR_TO_TCP_SOCK ||
396 type == PTR_TO_XDP_SOCK;
397 }
398
reg_type_not_null(enum bpf_reg_type type)399 static bool reg_type_not_null(enum bpf_reg_type type)
400 {
401 return type == PTR_TO_SOCKET ||
402 type == PTR_TO_TCP_SOCK ||
403 type == PTR_TO_MAP_VALUE ||
404 type == PTR_TO_SOCK_COMMON;
405 }
406
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)407 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
408 {
409 return reg->type == PTR_TO_MAP_VALUE &&
410 map_value_has_spin_lock(reg->map_ptr);
411 }
412
reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)413 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
414 {
415 return base_type(type) == PTR_TO_SOCKET ||
416 base_type(type) == PTR_TO_TCP_SOCK ||
417 base_type(type) == PTR_TO_MEM;
418 }
419
type_is_rdonly_mem(u32 type)420 static bool type_is_rdonly_mem(u32 type)
421 {
422 return type & MEM_RDONLY;
423 }
424
arg_type_may_be_refcounted(enum bpf_arg_type type)425 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
426 {
427 return type == ARG_PTR_TO_SOCK_COMMON;
428 }
429
type_may_be_null(u32 type)430 static bool type_may_be_null(u32 type)
431 {
432 return type & PTR_MAYBE_NULL;
433 }
434
435 /* Determine whether the function releases some resources allocated by another
436 * function call. The first reference type argument will be assumed to be
437 * released by release_reference().
438 */
is_release_function(enum bpf_func_id func_id)439 static bool is_release_function(enum bpf_func_id func_id)
440 {
441 return func_id == BPF_FUNC_sk_release ||
442 func_id == BPF_FUNC_ringbuf_submit ||
443 func_id == BPF_FUNC_ringbuf_discard;
444 }
445
may_be_acquire_function(enum bpf_func_id func_id)446 static bool may_be_acquire_function(enum bpf_func_id func_id)
447 {
448 return func_id == BPF_FUNC_sk_lookup_tcp ||
449 func_id == BPF_FUNC_sk_lookup_udp ||
450 func_id == BPF_FUNC_skc_lookup_tcp ||
451 func_id == BPF_FUNC_map_lookup_elem ||
452 func_id == BPF_FUNC_ringbuf_reserve;
453 }
454
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)455 static bool is_acquire_function(enum bpf_func_id func_id,
456 const struct bpf_map *map)
457 {
458 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
459
460 if (func_id == BPF_FUNC_sk_lookup_tcp ||
461 func_id == BPF_FUNC_sk_lookup_udp ||
462 func_id == BPF_FUNC_skc_lookup_tcp ||
463 func_id == BPF_FUNC_ringbuf_reserve)
464 return true;
465
466 if (func_id == BPF_FUNC_map_lookup_elem &&
467 (map_type == BPF_MAP_TYPE_SOCKMAP ||
468 map_type == BPF_MAP_TYPE_SOCKHASH))
469 return true;
470
471 return false;
472 }
473
is_ptr_cast_function(enum bpf_func_id func_id)474 static bool is_ptr_cast_function(enum bpf_func_id func_id)
475 {
476 return func_id == BPF_FUNC_tcp_sock ||
477 func_id == BPF_FUNC_sk_fullsock ||
478 func_id == BPF_FUNC_skc_to_tcp_sock ||
479 func_id == BPF_FUNC_skc_to_tcp6_sock ||
480 func_id == BPF_FUNC_skc_to_udp6_sock ||
481 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
482 func_id == BPF_FUNC_skc_to_tcp_request_sock;
483 }
484
485 /* string representation of 'enum bpf_reg_type'
486 *
487 * Note that reg_type_str() can not appear more than once in a single verbose()
488 * statement.
489 */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)490 static const char *reg_type_str(struct bpf_verifier_env *env,
491 enum bpf_reg_type type)
492 {
493 char postfix[16] = {0}, prefix[16] = {0};
494 static const char * const str[] = {
495 [NOT_INIT] = "?",
496 [SCALAR_VALUE] = "inv",
497 [PTR_TO_CTX] = "ctx",
498 [CONST_PTR_TO_MAP] = "map_ptr",
499 [PTR_TO_MAP_VALUE] = "map_value",
500 [PTR_TO_STACK] = "fp",
501 [PTR_TO_PACKET] = "pkt",
502 [PTR_TO_PACKET_META] = "pkt_meta",
503 [PTR_TO_PACKET_END] = "pkt_end",
504 [PTR_TO_FLOW_KEYS] = "flow_keys",
505 [PTR_TO_SOCKET] = "sock",
506 [PTR_TO_SOCK_COMMON] = "sock_common",
507 [PTR_TO_TCP_SOCK] = "tcp_sock",
508 [PTR_TO_TP_BUFFER] = "tp_buffer",
509 [PTR_TO_XDP_SOCK] = "xdp_sock",
510 [PTR_TO_BTF_ID] = "ptr_",
511 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
512 [PTR_TO_MEM] = "mem",
513 [PTR_TO_BUF] = "buf",
514 };
515
516 if (type & PTR_MAYBE_NULL) {
517 if (base_type(type) == PTR_TO_BTF_ID ||
518 base_type(type) == PTR_TO_PERCPU_BTF_ID)
519 strncpy(postfix, "or_null_", 16);
520 else
521 strncpy(postfix, "_or_null", 16);
522 }
523
524 if (type & MEM_RDONLY)
525 strncpy(prefix, "rdonly_", 16);
526 if (type & MEM_ALLOC)
527 strncpy(prefix, "alloc_", 16);
528
529 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
530 prefix, str[base_type(type)], postfix);
531 return env->type_str_buf;
532 }
533
534 static char slot_type_char[] = {
535 [STACK_INVALID] = '?',
536 [STACK_SPILL] = 'r',
537 [STACK_MISC] = 'm',
538 [STACK_ZERO] = '0',
539 };
540
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)541 static void print_liveness(struct bpf_verifier_env *env,
542 enum bpf_reg_liveness live)
543 {
544 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
545 verbose(env, "_");
546 if (live & REG_LIVE_READ)
547 verbose(env, "r");
548 if (live & REG_LIVE_WRITTEN)
549 verbose(env, "w");
550 if (live & REG_LIVE_DONE)
551 verbose(env, "D");
552 }
553
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)554 static struct bpf_func_state *func(struct bpf_verifier_env *env,
555 const struct bpf_reg_state *reg)
556 {
557 struct bpf_verifier_state *cur = env->cur_state;
558
559 return cur->frame[reg->frameno];
560 }
561
kernel_type_name(u32 id)562 const char *kernel_type_name(u32 id)
563 {
564 return btf_name_by_offset(btf_vmlinux,
565 btf_type_by_id(btf_vmlinux, id)->name_off);
566 }
567
568 /* The reg state of a pointer or a bounded scalar was saved when
569 * it was spilled to the stack.
570 */
is_spilled_reg(const struct bpf_stack_state * stack)571 static bool is_spilled_reg(const struct bpf_stack_state *stack)
572 {
573 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
574 }
575
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)576 static void print_verifier_state(struct bpf_verifier_env *env,
577 const struct bpf_func_state *state)
578 {
579 const struct bpf_reg_state *reg;
580 enum bpf_reg_type t;
581 int i;
582
583 if (state->frameno)
584 verbose(env, " frame%d:", state->frameno);
585 for (i = 0; i < MAX_BPF_REG; i++) {
586 reg = &state->regs[i];
587 t = reg->type;
588 if (t == NOT_INIT)
589 continue;
590 verbose(env, " R%d", i);
591 print_liveness(env, reg->live);
592 verbose(env, "=%s", reg_type_str(env, t));
593 if (t == SCALAR_VALUE && reg->precise)
594 verbose(env, "P");
595 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
596 tnum_is_const(reg->var_off)) {
597 /* reg->off should be 0 for SCALAR_VALUE */
598 verbose(env, "%lld", reg->var_off.value + reg->off);
599 } else {
600 if (base_type(t) == PTR_TO_BTF_ID ||
601 base_type(t) == PTR_TO_PERCPU_BTF_ID)
602 verbose(env, "%s", kernel_type_name(reg->btf_id));
603 verbose(env, "(id=%d", reg->id);
604 if (reg_type_may_be_refcounted_or_null(t))
605 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
606 if (t != SCALAR_VALUE)
607 verbose(env, ",off=%d", reg->off);
608 if (type_is_pkt_pointer(t))
609 verbose(env, ",r=%d", reg->range);
610 else if (base_type(t) == CONST_PTR_TO_MAP ||
611 base_type(t) == PTR_TO_MAP_VALUE)
612 verbose(env, ",ks=%d,vs=%d",
613 reg->map_ptr->key_size,
614 reg->map_ptr->value_size);
615 if (tnum_is_const(reg->var_off)) {
616 /* Typically an immediate SCALAR_VALUE, but
617 * could be a pointer whose offset is too big
618 * for reg->off
619 */
620 verbose(env, ",imm=%llx", reg->var_off.value);
621 } else {
622 if (reg->smin_value != reg->umin_value &&
623 reg->smin_value != S64_MIN)
624 verbose(env, ",smin_value=%lld",
625 (long long)reg->smin_value);
626 if (reg->smax_value != reg->umax_value &&
627 reg->smax_value != S64_MAX)
628 verbose(env, ",smax_value=%lld",
629 (long long)reg->smax_value);
630 if (reg->umin_value != 0)
631 verbose(env, ",umin_value=%llu",
632 (unsigned long long)reg->umin_value);
633 if (reg->umax_value != U64_MAX)
634 verbose(env, ",umax_value=%llu",
635 (unsigned long long)reg->umax_value);
636 if (!tnum_is_unknown(reg->var_off)) {
637 char tn_buf[48];
638
639 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
640 verbose(env, ",var_off=%s", tn_buf);
641 }
642 if (reg->s32_min_value != reg->smin_value &&
643 reg->s32_min_value != S32_MIN)
644 verbose(env, ",s32_min_value=%d",
645 (int)(reg->s32_min_value));
646 if (reg->s32_max_value != reg->smax_value &&
647 reg->s32_max_value != S32_MAX)
648 verbose(env, ",s32_max_value=%d",
649 (int)(reg->s32_max_value));
650 if (reg->u32_min_value != reg->umin_value &&
651 reg->u32_min_value != U32_MIN)
652 verbose(env, ",u32_min_value=%d",
653 (int)(reg->u32_min_value));
654 if (reg->u32_max_value != reg->umax_value &&
655 reg->u32_max_value != U32_MAX)
656 verbose(env, ",u32_max_value=%d",
657 (int)(reg->u32_max_value));
658 }
659 verbose(env, ")");
660 }
661 }
662 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
663 char types_buf[BPF_REG_SIZE + 1];
664 bool valid = false;
665 int j;
666
667 for (j = 0; j < BPF_REG_SIZE; j++) {
668 if (state->stack[i].slot_type[j] != STACK_INVALID)
669 valid = true;
670 types_buf[j] = slot_type_char[
671 state->stack[i].slot_type[j]];
672 }
673 types_buf[BPF_REG_SIZE] = 0;
674 if (!valid)
675 continue;
676 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
677 print_liveness(env, state->stack[i].spilled_ptr.live);
678 if (is_spilled_reg(&state->stack[i])) {
679 reg = &state->stack[i].spilled_ptr;
680 t = reg->type;
681 verbose(env, "=%s", reg_type_str(env, t));
682 if (t == SCALAR_VALUE && reg->precise)
683 verbose(env, "P");
684 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
685 verbose(env, "%lld", reg->var_off.value + reg->off);
686 } else {
687 verbose(env, "=%s", types_buf);
688 }
689 }
690 if (state->acquired_refs && state->refs[0].id) {
691 verbose(env, " refs=%d", state->refs[0].id);
692 for (i = 1; i < state->acquired_refs; i++)
693 if (state->refs[i].id)
694 verbose(env, ",%d", state->refs[i].id);
695 }
696 verbose(env, "\n");
697 }
698
699 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
700 static int copy_##NAME##_state(struct bpf_func_state *dst, \
701 const struct bpf_func_state *src) \
702 { \
703 if (!src->FIELD) \
704 return 0; \
705 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
706 /* internal bug, make state invalid to reject the program */ \
707 memset(dst, 0, sizeof(*dst)); \
708 return -EFAULT; \
709 } \
710 memcpy(dst->FIELD, src->FIELD, \
711 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
712 return 0; \
713 }
714 /* copy_reference_state() */
715 COPY_STATE_FN(reference, acquired_refs, refs, 1)
716 /* copy_stack_state() */
COPY_STATE_FN(stack,allocated_stack,stack,BPF_REG_SIZE)717 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
718 #undef COPY_STATE_FN
719
720 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
721 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
722 bool copy_old) \
723 { \
724 u32 old_size = state->COUNT; \
725 struct bpf_##NAME##_state *new_##FIELD; \
726 int slot = size / SIZE; \
727 \
728 if (size <= old_size || !size) { \
729 if (copy_old) \
730 return 0; \
731 state->COUNT = slot * SIZE; \
732 if (!size && old_size) { \
733 kfree(state->FIELD); \
734 state->FIELD = NULL; \
735 } \
736 return 0; \
737 } \
738 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
739 GFP_KERNEL); \
740 if (!new_##FIELD) \
741 return -ENOMEM; \
742 if (copy_old) { \
743 if (state->FIELD) \
744 memcpy(new_##FIELD, state->FIELD, \
745 sizeof(*new_##FIELD) * (old_size / SIZE)); \
746 memset(new_##FIELD + old_size / SIZE, 0, \
747 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
748 } \
749 state->COUNT = slot * SIZE; \
750 kfree(state->FIELD); \
751 state->FIELD = new_##FIELD; \
752 return 0; \
753 }
754 /* realloc_reference_state() */
755 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
756 /* realloc_stack_state() */
757 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
758 #undef REALLOC_STATE_FN
759
760 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
761 * make it consume minimal amount of memory. check_stack_write() access from
762 * the program calls into realloc_func_state() to grow the stack size.
763 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
764 * which realloc_stack_state() copies over. It points to previous
765 * bpf_verifier_state which is never reallocated.
766 */
767 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
768 int refs_size, bool copy_old)
769 {
770 int err = realloc_reference_state(state, refs_size, copy_old);
771 if (err)
772 return err;
773 return realloc_stack_state(state, stack_size, copy_old);
774 }
775
776 /* Acquire a pointer id from the env and update the state->refs to include
777 * this new pointer reference.
778 * On success, returns a valid pointer id to associate with the register
779 * On failure, returns a negative errno.
780 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)781 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
782 {
783 struct bpf_func_state *state = cur_func(env);
784 int new_ofs = state->acquired_refs;
785 int id, err;
786
787 err = realloc_reference_state(state, state->acquired_refs + 1, true);
788 if (err)
789 return err;
790 id = ++env->id_gen;
791 state->refs[new_ofs].id = id;
792 state->refs[new_ofs].insn_idx = insn_idx;
793
794 return id;
795 }
796
797 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)798 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
799 {
800 int i, last_idx;
801
802 last_idx = state->acquired_refs - 1;
803 for (i = 0; i < state->acquired_refs; i++) {
804 if (state->refs[i].id == ptr_id) {
805 if (last_idx && i != last_idx)
806 memcpy(&state->refs[i], &state->refs[last_idx],
807 sizeof(*state->refs));
808 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
809 state->acquired_refs--;
810 return 0;
811 }
812 }
813 return -EINVAL;
814 }
815
transfer_reference_state(struct bpf_func_state * dst,struct bpf_func_state * src)816 static int transfer_reference_state(struct bpf_func_state *dst,
817 struct bpf_func_state *src)
818 {
819 int err = realloc_reference_state(dst, src->acquired_refs, false);
820 if (err)
821 return err;
822 err = copy_reference_state(dst, src);
823 if (err)
824 return err;
825 return 0;
826 }
827
free_func_state(struct bpf_func_state * state)828 static void free_func_state(struct bpf_func_state *state)
829 {
830 if (!state)
831 return;
832 kfree(state->refs);
833 kfree(state->stack);
834 kfree(state);
835 }
836
clear_jmp_history(struct bpf_verifier_state * state)837 static void clear_jmp_history(struct bpf_verifier_state *state)
838 {
839 kfree(state->jmp_history);
840 state->jmp_history = NULL;
841 state->jmp_history_cnt = 0;
842 }
843
free_verifier_state(struct bpf_verifier_state * state,bool free_self)844 static void free_verifier_state(struct bpf_verifier_state *state,
845 bool free_self)
846 {
847 int i;
848
849 for (i = 0; i <= state->curframe; i++) {
850 free_func_state(state->frame[i]);
851 state->frame[i] = NULL;
852 }
853 clear_jmp_history(state);
854 if (free_self)
855 kfree(state);
856 }
857
858 /* copy verifier state from src to dst growing dst stack space
859 * when necessary to accommodate larger src stack
860 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)861 static int copy_func_state(struct bpf_func_state *dst,
862 const struct bpf_func_state *src)
863 {
864 int err;
865
866 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
867 false);
868 if (err)
869 return err;
870 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
871 err = copy_reference_state(dst, src);
872 if (err)
873 return err;
874 return copy_stack_state(dst, src);
875 }
876
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)877 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
878 const struct bpf_verifier_state *src)
879 {
880 struct bpf_func_state *dst;
881 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
882 int i, err;
883
884 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
885 kfree(dst_state->jmp_history);
886 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
887 if (!dst_state->jmp_history)
888 return -ENOMEM;
889 }
890 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
891 dst_state->jmp_history_cnt = src->jmp_history_cnt;
892
893 /* if dst has more stack frames then src frame, free them */
894 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
895 free_func_state(dst_state->frame[i]);
896 dst_state->frame[i] = NULL;
897 }
898 dst_state->speculative = src->speculative;
899 dst_state->curframe = src->curframe;
900 dst_state->active_spin_lock = src->active_spin_lock;
901 dst_state->branches = src->branches;
902 dst_state->parent = src->parent;
903 dst_state->first_insn_idx = src->first_insn_idx;
904 dst_state->last_insn_idx = src->last_insn_idx;
905 for (i = 0; i <= src->curframe; i++) {
906 dst = dst_state->frame[i];
907 if (!dst) {
908 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
909 if (!dst)
910 return -ENOMEM;
911 dst_state->frame[i] = dst;
912 }
913 err = copy_func_state(dst, src->frame[i]);
914 if (err)
915 return err;
916 }
917 return 0;
918 }
919
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)920 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
921 {
922 while (st) {
923 u32 br = --st->branches;
924
925 /* WARN_ON(br > 1) technically makes sense here,
926 * but see comment in push_stack(), hence:
927 */
928 WARN_ONCE((int)br < 0,
929 "BUG update_branch_counts:branches_to_explore=%d\n",
930 br);
931 if (br)
932 break;
933 st = st->parent;
934 }
935 }
936
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)937 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
938 int *insn_idx, bool pop_log)
939 {
940 struct bpf_verifier_state *cur = env->cur_state;
941 struct bpf_verifier_stack_elem *elem, *head = env->head;
942 int err;
943
944 if (env->head == NULL)
945 return -ENOENT;
946
947 if (cur) {
948 err = copy_verifier_state(cur, &head->st);
949 if (err)
950 return err;
951 }
952 if (pop_log)
953 bpf_vlog_reset(&env->log, head->log_pos);
954 if (insn_idx)
955 *insn_idx = head->insn_idx;
956 if (prev_insn_idx)
957 *prev_insn_idx = head->prev_insn_idx;
958 elem = head->next;
959 free_verifier_state(&head->st, false);
960 kfree(head);
961 env->head = elem;
962 env->stack_size--;
963 return 0;
964 }
965
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)966 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
967 int insn_idx, int prev_insn_idx,
968 bool speculative)
969 {
970 struct bpf_verifier_state *cur = env->cur_state;
971 struct bpf_verifier_stack_elem *elem;
972 int err;
973
974 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
975 if (!elem)
976 goto err;
977
978 elem->insn_idx = insn_idx;
979 elem->prev_insn_idx = prev_insn_idx;
980 elem->next = env->head;
981 elem->log_pos = env->log.len_used;
982 env->head = elem;
983 env->stack_size++;
984 err = copy_verifier_state(&elem->st, cur);
985 if (err)
986 goto err;
987 elem->st.speculative |= speculative;
988 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
989 verbose(env, "The sequence of %d jumps is too complex.\n",
990 env->stack_size);
991 goto err;
992 }
993 if (elem->st.parent) {
994 ++elem->st.parent->branches;
995 /* WARN_ON(branches > 2) technically makes sense here,
996 * but
997 * 1. speculative states will bump 'branches' for non-branch
998 * instructions
999 * 2. is_state_visited() heuristics may decide not to create
1000 * a new state for a sequence of branches and all such current
1001 * and cloned states will be pointing to a single parent state
1002 * which might have large 'branches' count.
1003 */
1004 }
1005 return &elem->st;
1006 err:
1007 free_verifier_state(env->cur_state, true);
1008 env->cur_state = NULL;
1009 /* pop all elements and return */
1010 while (!pop_stack(env, NULL, NULL, false));
1011 return NULL;
1012 }
1013
1014 #define CALLER_SAVED_REGS 6
1015 static const int caller_saved[CALLER_SAVED_REGS] = {
1016 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1017 };
1018
1019 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1020 struct bpf_reg_state *reg);
1021
1022 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)1023 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1024 {
1025 reg->var_off = tnum_const(imm);
1026 reg->smin_value = (s64)imm;
1027 reg->smax_value = (s64)imm;
1028 reg->umin_value = imm;
1029 reg->umax_value = imm;
1030
1031 reg->s32_min_value = (s32)imm;
1032 reg->s32_max_value = (s32)imm;
1033 reg->u32_min_value = (u32)imm;
1034 reg->u32_max_value = (u32)imm;
1035 }
1036
1037 /* Mark the unknown part of a register (variable offset or scalar value) as
1038 * known to have the value @imm.
1039 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)1040 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1041 {
1042 /* Clear id, off, and union(map_ptr, range) */
1043 memset(((u8 *)reg) + sizeof(reg->type), 0,
1044 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1045 ___mark_reg_known(reg, imm);
1046 }
1047
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)1048 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1049 {
1050 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1051 reg->s32_min_value = (s32)imm;
1052 reg->s32_max_value = (s32)imm;
1053 reg->u32_min_value = (u32)imm;
1054 reg->u32_max_value = (u32)imm;
1055 }
1056
1057 /* Mark the 'variable offset' part of a register as zero. This should be
1058 * used only on registers holding a pointer type.
1059 */
__mark_reg_known_zero(struct bpf_reg_state * reg)1060 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1061 {
1062 __mark_reg_known(reg, 0);
1063 }
1064
__mark_reg_const_zero(struct bpf_reg_state * reg)1065 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1066 {
1067 __mark_reg_known(reg, 0);
1068 reg->type = SCALAR_VALUE;
1069 }
1070
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1071 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1072 struct bpf_reg_state *regs, u32 regno)
1073 {
1074 if (WARN_ON(regno >= MAX_BPF_REG)) {
1075 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1076 /* Something bad happened, let's kill all regs */
1077 for (regno = 0; regno < MAX_BPF_REG; regno++)
1078 __mark_reg_not_init(env, regs + regno);
1079 return;
1080 }
1081 __mark_reg_known_zero(regs + regno);
1082 }
1083
reg_is_pkt_pointer(const struct bpf_reg_state * reg)1084 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1085 {
1086 return type_is_pkt_pointer(reg->type);
1087 }
1088
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)1089 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1090 {
1091 return reg_is_pkt_pointer(reg) ||
1092 reg->type == PTR_TO_PACKET_END;
1093 }
1094
1095 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)1096 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1097 enum bpf_reg_type which)
1098 {
1099 /* The register can already have a range from prior markings.
1100 * This is fine as long as it hasn't been advanced from its
1101 * origin.
1102 */
1103 return reg->type == which &&
1104 reg->id == 0 &&
1105 reg->off == 0 &&
1106 tnum_equals_const(reg->var_off, 0);
1107 }
1108
1109 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)1110 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1111 {
1112 reg->smin_value = S64_MIN;
1113 reg->smax_value = S64_MAX;
1114 reg->umin_value = 0;
1115 reg->umax_value = U64_MAX;
1116
1117 reg->s32_min_value = S32_MIN;
1118 reg->s32_max_value = S32_MAX;
1119 reg->u32_min_value = 0;
1120 reg->u32_max_value = U32_MAX;
1121 }
1122
__mark_reg64_unbounded(struct bpf_reg_state * reg)1123 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1124 {
1125 reg->smin_value = S64_MIN;
1126 reg->smax_value = S64_MAX;
1127 reg->umin_value = 0;
1128 reg->umax_value = U64_MAX;
1129 }
1130
__mark_reg32_unbounded(struct bpf_reg_state * reg)1131 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1132 {
1133 reg->s32_min_value = S32_MIN;
1134 reg->s32_max_value = S32_MAX;
1135 reg->u32_min_value = 0;
1136 reg->u32_max_value = U32_MAX;
1137 }
1138
__update_reg32_bounds(struct bpf_reg_state * reg)1139 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1140 {
1141 struct tnum var32_off = tnum_subreg(reg->var_off);
1142
1143 /* min signed is max(sign bit) | min(other bits) */
1144 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1145 var32_off.value | (var32_off.mask & S32_MIN));
1146 /* max signed is min(sign bit) | max(other bits) */
1147 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1148 var32_off.value | (var32_off.mask & S32_MAX));
1149 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1150 reg->u32_max_value = min(reg->u32_max_value,
1151 (u32)(var32_off.value | var32_off.mask));
1152 }
1153
__update_reg64_bounds(struct bpf_reg_state * reg)1154 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1155 {
1156 /* min signed is max(sign bit) | min(other bits) */
1157 reg->smin_value = max_t(s64, reg->smin_value,
1158 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1159 /* max signed is min(sign bit) | max(other bits) */
1160 reg->smax_value = min_t(s64, reg->smax_value,
1161 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1162 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1163 reg->umax_value = min(reg->umax_value,
1164 reg->var_off.value | reg->var_off.mask);
1165 }
1166
__update_reg_bounds(struct bpf_reg_state * reg)1167 static void __update_reg_bounds(struct bpf_reg_state *reg)
1168 {
1169 __update_reg32_bounds(reg);
1170 __update_reg64_bounds(reg);
1171 }
1172
1173 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)1174 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1175 {
1176 /* Learn sign from signed bounds.
1177 * If we cannot cross the sign boundary, then signed and unsigned bounds
1178 * are the same, so combine. This works even in the negative case, e.g.
1179 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1180 */
1181 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1182 reg->s32_min_value = reg->u32_min_value =
1183 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1184 reg->s32_max_value = reg->u32_max_value =
1185 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1186 return;
1187 }
1188 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1189 * boundary, so we must be careful.
1190 */
1191 if ((s32)reg->u32_max_value >= 0) {
1192 /* Positive. We can't learn anything from the smin, but smax
1193 * is positive, hence safe.
1194 */
1195 reg->s32_min_value = reg->u32_min_value;
1196 reg->s32_max_value = reg->u32_max_value =
1197 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1198 } else if ((s32)reg->u32_min_value < 0) {
1199 /* Negative. We can't learn anything from the smax, but smin
1200 * is negative, hence safe.
1201 */
1202 reg->s32_min_value = reg->u32_min_value =
1203 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1204 reg->s32_max_value = reg->u32_max_value;
1205 }
1206 }
1207
__reg64_deduce_bounds(struct bpf_reg_state * reg)1208 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1209 {
1210 /* Learn sign from signed bounds.
1211 * If we cannot cross the sign boundary, then signed and unsigned bounds
1212 * are the same, so combine. This works even in the negative case, e.g.
1213 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1214 */
1215 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1216 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1217 reg->umin_value);
1218 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1219 reg->umax_value);
1220 return;
1221 }
1222 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1223 * boundary, so we must be careful.
1224 */
1225 if ((s64)reg->umax_value >= 0) {
1226 /* Positive. We can't learn anything from the smin, but smax
1227 * is positive, hence safe.
1228 */
1229 reg->smin_value = reg->umin_value;
1230 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1231 reg->umax_value);
1232 } else if ((s64)reg->umin_value < 0) {
1233 /* Negative. We can't learn anything from the smax, but smin
1234 * is negative, hence safe.
1235 */
1236 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1237 reg->umin_value);
1238 reg->smax_value = reg->umax_value;
1239 }
1240 }
1241
__reg_deduce_bounds(struct bpf_reg_state * reg)1242 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1243 {
1244 __reg32_deduce_bounds(reg);
1245 __reg64_deduce_bounds(reg);
1246 }
1247
1248 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)1249 static void __reg_bound_offset(struct bpf_reg_state *reg)
1250 {
1251 struct tnum var64_off = tnum_intersect(reg->var_off,
1252 tnum_range(reg->umin_value,
1253 reg->umax_value));
1254 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1255 tnum_range(reg->u32_min_value,
1256 reg->u32_max_value));
1257
1258 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1259 }
1260
reg_bounds_sync(struct bpf_reg_state * reg)1261 static void reg_bounds_sync(struct bpf_reg_state *reg)
1262 {
1263 /* We might have learned new bounds from the var_off. */
1264 __update_reg_bounds(reg);
1265 /* We might have learned something about the sign bit. */
1266 __reg_deduce_bounds(reg);
1267 /* We might have learned some bits from the bounds. */
1268 __reg_bound_offset(reg);
1269 /* Intersecting with the old var_off might have improved our bounds
1270 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1271 * then new var_off is (0; 0x7f...fc) which improves our umax.
1272 */
1273 __update_reg_bounds(reg);
1274 }
1275
__reg32_bound_s64(s32 a)1276 static bool __reg32_bound_s64(s32 a)
1277 {
1278 return a >= 0 && a <= S32_MAX;
1279 }
1280
__reg_assign_32_into_64(struct bpf_reg_state * reg)1281 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1282 {
1283 reg->umin_value = reg->u32_min_value;
1284 reg->umax_value = reg->u32_max_value;
1285
1286 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1287 * be positive otherwise set to worse case bounds and refine later
1288 * from tnum.
1289 */
1290 if (__reg32_bound_s64(reg->s32_min_value) &&
1291 __reg32_bound_s64(reg->s32_max_value)) {
1292 reg->smin_value = reg->s32_min_value;
1293 reg->smax_value = reg->s32_max_value;
1294 } else {
1295 reg->smin_value = 0;
1296 reg->smax_value = U32_MAX;
1297 }
1298 }
1299
__reg_combine_32_into_64(struct bpf_reg_state * reg)1300 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1301 {
1302 /* special case when 64-bit register has upper 32-bit register
1303 * zeroed. Typically happens after zext or <<32, >>32 sequence
1304 * allowing us to use 32-bit bounds directly,
1305 */
1306 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1307 __reg_assign_32_into_64(reg);
1308 } else {
1309 /* Otherwise the best we can do is push lower 32bit known and
1310 * unknown bits into register (var_off set from jmp logic)
1311 * then learn as much as possible from the 64-bit tnum
1312 * known and unknown bits. The previous smin/smax bounds are
1313 * invalid here because of jmp32 compare so mark them unknown
1314 * so they do not impact tnum bounds calculation.
1315 */
1316 __mark_reg64_unbounded(reg);
1317 }
1318 reg_bounds_sync(reg);
1319 }
1320
__reg64_bound_s32(s64 a)1321 static bool __reg64_bound_s32(s64 a)
1322 {
1323 return a >= S32_MIN && a <= S32_MAX;
1324 }
1325
__reg64_bound_u32(u64 a)1326 static bool __reg64_bound_u32(u64 a)
1327 {
1328 return a >= U32_MIN && a <= U32_MAX;
1329 }
1330
__reg_combine_64_into_32(struct bpf_reg_state * reg)1331 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1332 {
1333 __mark_reg32_unbounded(reg);
1334 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1335 reg->s32_min_value = (s32)reg->smin_value;
1336 reg->s32_max_value = (s32)reg->smax_value;
1337 }
1338 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1339 reg->u32_min_value = (u32)reg->umin_value;
1340 reg->u32_max_value = (u32)reg->umax_value;
1341 }
1342 reg_bounds_sync(reg);
1343 }
1344
1345 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1346 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1347 struct bpf_reg_state *reg)
1348 {
1349 /*
1350 * Clear type, id, off, and union(map_ptr, range) and
1351 * padding between 'type' and union
1352 */
1353 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1354 reg->type = SCALAR_VALUE;
1355 reg->var_off = tnum_unknown;
1356 reg->frameno = 0;
1357 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1358 __mark_reg_unbounded(reg);
1359 }
1360
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1361 static void mark_reg_unknown(struct bpf_verifier_env *env,
1362 struct bpf_reg_state *regs, u32 regno)
1363 {
1364 if (WARN_ON(regno >= MAX_BPF_REG)) {
1365 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1366 /* Something bad happened, let's kill all regs except FP */
1367 for (regno = 0; regno < BPF_REG_FP; regno++)
1368 __mark_reg_not_init(env, regs + regno);
1369 return;
1370 }
1371 __mark_reg_unknown(env, regs + regno);
1372 }
1373
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1374 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1375 struct bpf_reg_state *reg)
1376 {
1377 __mark_reg_unknown(env, reg);
1378 reg->type = NOT_INIT;
1379 }
1380
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1381 static void mark_reg_not_init(struct bpf_verifier_env *env,
1382 struct bpf_reg_state *regs, u32 regno)
1383 {
1384 if (WARN_ON(regno >= MAX_BPF_REG)) {
1385 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1386 /* Something bad happened, let's kill all regs except FP */
1387 for (regno = 0; regno < BPF_REG_FP; regno++)
1388 __mark_reg_not_init(env, regs + regno);
1389 return;
1390 }
1391 __mark_reg_not_init(env, regs + regno);
1392 }
1393
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,u32 btf_id)1394 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1395 struct bpf_reg_state *regs, u32 regno,
1396 enum bpf_reg_type reg_type, u32 btf_id)
1397 {
1398 if (reg_type == SCALAR_VALUE) {
1399 mark_reg_unknown(env, regs, regno);
1400 return;
1401 }
1402 mark_reg_known_zero(env, regs, regno);
1403 regs[regno].type = PTR_TO_BTF_ID;
1404 regs[regno].btf_id = btf_id;
1405 }
1406
1407 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)1408 static void init_reg_state(struct bpf_verifier_env *env,
1409 struct bpf_func_state *state)
1410 {
1411 struct bpf_reg_state *regs = state->regs;
1412 int i;
1413
1414 for (i = 0; i < MAX_BPF_REG; i++) {
1415 mark_reg_not_init(env, regs, i);
1416 regs[i].live = REG_LIVE_NONE;
1417 regs[i].parent = NULL;
1418 regs[i].subreg_def = DEF_NOT_SUBREG;
1419 }
1420
1421 /* frame pointer */
1422 regs[BPF_REG_FP].type = PTR_TO_STACK;
1423 mark_reg_known_zero(env, regs, BPF_REG_FP);
1424 regs[BPF_REG_FP].frameno = state->frameno;
1425 }
1426
1427 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)1428 static void init_func_state(struct bpf_verifier_env *env,
1429 struct bpf_func_state *state,
1430 int callsite, int frameno, int subprogno)
1431 {
1432 state->callsite = callsite;
1433 state->frameno = frameno;
1434 state->subprogno = subprogno;
1435 init_reg_state(env, state);
1436 }
1437
1438 enum reg_arg_type {
1439 SRC_OP, /* register is used as source operand */
1440 DST_OP, /* register is used as destination operand */
1441 DST_OP_NO_MARK /* same as above, check only, don't mark */
1442 };
1443
cmp_subprogs(const void * a,const void * b)1444 static int cmp_subprogs(const void *a, const void *b)
1445 {
1446 return ((struct bpf_subprog_info *)a)->start -
1447 ((struct bpf_subprog_info *)b)->start;
1448 }
1449
find_subprog(struct bpf_verifier_env * env,int off)1450 static int find_subprog(struct bpf_verifier_env *env, int off)
1451 {
1452 struct bpf_subprog_info *p;
1453
1454 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1455 sizeof(env->subprog_info[0]), cmp_subprogs);
1456 if (!p)
1457 return -ENOENT;
1458 return p - env->subprog_info;
1459
1460 }
1461
add_subprog(struct bpf_verifier_env * env,int off)1462 static int add_subprog(struct bpf_verifier_env *env, int off)
1463 {
1464 int insn_cnt = env->prog->len;
1465 int ret;
1466
1467 if (off >= insn_cnt || off < 0) {
1468 verbose(env, "call to invalid destination\n");
1469 return -EINVAL;
1470 }
1471 ret = find_subprog(env, off);
1472 if (ret >= 0)
1473 return 0;
1474 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1475 verbose(env, "too many subprograms\n");
1476 return -E2BIG;
1477 }
1478 env->subprog_info[env->subprog_cnt++].start = off;
1479 sort(env->subprog_info, env->subprog_cnt,
1480 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1481 return 0;
1482 }
1483
check_subprogs(struct bpf_verifier_env * env)1484 static int check_subprogs(struct bpf_verifier_env *env)
1485 {
1486 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1487 struct bpf_subprog_info *subprog = env->subprog_info;
1488 struct bpf_insn *insn = env->prog->insnsi;
1489 int insn_cnt = env->prog->len;
1490
1491 /* Add entry function. */
1492 ret = add_subprog(env, 0);
1493 if (ret < 0)
1494 return ret;
1495
1496 /* determine subprog starts. The end is one before the next starts */
1497 for (i = 0; i < insn_cnt; i++) {
1498 if (insn[i].code != (BPF_JMP | BPF_CALL))
1499 continue;
1500 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1501 continue;
1502 if (!env->bpf_capable) {
1503 verbose(env,
1504 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1505 return -EPERM;
1506 }
1507 ret = add_subprog(env, i + insn[i].imm + 1);
1508 if (ret < 0)
1509 return ret;
1510 }
1511
1512 /* Add a fake 'exit' subprog which could simplify subprog iteration
1513 * logic. 'subprog_cnt' should not be increased.
1514 */
1515 subprog[env->subprog_cnt].start = insn_cnt;
1516
1517 if (env->log.level & BPF_LOG_LEVEL2)
1518 for (i = 0; i < env->subprog_cnt; i++)
1519 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1520
1521 /* now check that all jumps are within the same subprog */
1522 subprog_start = subprog[cur_subprog].start;
1523 subprog_end = subprog[cur_subprog + 1].start;
1524 for (i = 0; i < insn_cnt; i++) {
1525 u8 code = insn[i].code;
1526
1527 if (code == (BPF_JMP | BPF_CALL) &&
1528 insn[i].imm == BPF_FUNC_tail_call &&
1529 insn[i].src_reg != BPF_PSEUDO_CALL)
1530 subprog[cur_subprog].has_tail_call = true;
1531 if (BPF_CLASS(code) == BPF_LD &&
1532 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1533 subprog[cur_subprog].has_ld_abs = true;
1534 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1535 goto next;
1536 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1537 goto next;
1538 off = i + insn[i].off + 1;
1539 if (off < subprog_start || off >= subprog_end) {
1540 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1541 return -EINVAL;
1542 }
1543 next:
1544 if (i == subprog_end - 1) {
1545 /* to avoid fall-through from one subprog into another
1546 * the last insn of the subprog should be either exit
1547 * or unconditional jump back
1548 */
1549 if (code != (BPF_JMP | BPF_EXIT) &&
1550 code != (BPF_JMP | BPF_JA)) {
1551 verbose(env, "last insn is not an exit or jmp\n");
1552 return -EINVAL;
1553 }
1554 subprog_start = subprog_end;
1555 cur_subprog++;
1556 if (cur_subprog < env->subprog_cnt)
1557 subprog_end = subprog[cur_subprog + 1].start;
1558 }
1559 }
1560 return 0;
1561 }
1562
1563 /* Parentage chain of this register (or stack slot) should take care of all
1564 * issues like callee-saved registers, stack slot allocation time, etc.
1565 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)1566 static int mark_reg_read(struct bpf_verifier_env *env,
1567 const struct bpf_reg_state *state,
1568 struct bpf_reg_state *parent, u8 flag)
1569 {
1570 bool writes = parent == state->parent; /* Observe write marks */
1571 int cnt = 0;
1572
1573 while (parent) {
1574 /* if read wasn't screened by an earlier write ... */
1575 if (writes && state->live & REG_LIVE_WRITTEN)
1576 break;
1577 if (parent->live & REG_LIVE_DONE) {
1578 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1579 reg_type_str(env, parent->type),
1580 parent->var_off.value, parent->off);
1581 return -EFAULT;
1582 }
1583 /* The first condition is more likely to be true than the
1584 * second, checked it first.
1585 */
1586 if ((parent->live & REG_LIVE_READ) == flag ||
1587 parent->live & REG_LIVE_READ64)
1588 /* The parentage chain never changes and
1589 * this parent was already marked as LIVE_READ.
1590 * There is no need to keep walking the chain again and
1591 * keep re-marking all parents as LIVE_READ.
1592 * This case happens when the same register is read
1593 * multiple times without writes into it in-between.
1594 * Also, if parent has the stronger REG_LIVE_READ64 set,
1595 * then no need to set the weak REG_LIVE_READ32.
1596 */
1597 break;
1598 /* ... then we depend on parent's value */
1599 parent->live |= flag;
1600 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1601 if (flag == REG_LIVE_READ64)
1602 parent->live &= ~REG_LIVE_READ32;
1603 state = parent;
1604 parent = state->parent;
1605 writes = true;
1606 cnt++;
1607 }
1608
1609 if (env->longest_mark_read_walk < cnt)
1610 env->longest_mark_read_walk = cnt;
1611 return 0;
1612 }
1613
1614 /* This function is supposed to be used by the following 32-bit optimization
1615 * code only. It returns TRUE if the source or destination register operates
1616 * on 64-bit, otherwise return FALSE.
1617 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)1618 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1619 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1620 {
1621 u8 code, class, op;
1622
1623 code = insn->code;
1624 class = BPF_CLASS(code);
1625 op = BPF_OP(code);
1626 if (class == BPF_JMP) {
1627 /* BPF_EXIT for "main" will reach here. Return TRUE
1628 * conservatively.
1629 */
1630 if (op == BPF_EXIT)
1631 return true;
1632 if (op == BPF_CALL) {
1633 /* BPF to BPF call will reach here because of marking
1634 * caller saved clobber with DST_OP_NO_MARK for which we
1635 * don't care the register def because they are anyway
1636 * marked as NOT_INIT already.
1637 */
1638 if (insn->src_reg == BPF_PSEUDO_CALL)
1639 return false;
1640 /* Helper call will reach here because of arg type
1641 * check, conservatively return TRUE.
1642 */
1643 if (t == SRC_OP)
1644 return true;
1645
1646 return false;
1647 }
1648 }
1649
1650 if (class == BPF_ALU64 || class == BPF_JMP ||
1651 /* BPF_END always use BPF_ALU class. */
1652 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1653 return true;
1654
1655 if (class == BPF_ALU || class == BPF_JMP32)
1656 return false;
1657
1658 if (class == BPF_LDX) {
1659 if (t != SRC_OP)
1660 return BPF_SIZE(code) == BPF_DW;
1661 /* LDX source must be ptr. */
1662 return true;
1663 }
1664
1665 if (class == BPF_STX) {
1666 if (reg->type != SCALAR_VALUE)
1667 return true;
1668 return BPF_SIZE(code) == BPF_DW;
1669 }
1670
1671 if (class == BPF_LD) {
1672 u8 mode = BPF_MODE(code);
1673
1674 /* LD_IMM64 */
1675 if (mode == BPF_IMM)
1676 return true;
1677
1678 /* Both LD_IND and LD_ABS return 32-bit data. */
1679 if (t != SRC_OP)
1680 return false;
1681
1682 /* Implicit ctx ptr. */
1683 if (regno == BPF_REG_6)
1684 return true;
1685
1686 /* Explicit source could be any width. */
1687 return true;
1688 }
1689
1690 if (class == BPF_ST)
1691 /* The only source register for BPF_ST is a ptr. */
1692 return true;
1693
1694 /* Conservatively return true at default. */
1695 return true;
1696 }
1697
1698 /* Return TRUE if INSN doesn't have explicit value define. */
insn_no_def(struct bpf_insn * insn)1699 static bool insn_no_def(struct bpf_insn *insn)
1700 {
1701 u8 class = BPF_CLASS(insn->code);
1702
1703 return (class == BPF_JMP || class == BPF_JMP32 ||
1704 class == BPF_STX || class == BPF_ST);
1705 }
1706
1707 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)1708 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1709 {
1710 if (insn_no_def(insn))
1711 return false;
1712
1713 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1714 }
1715
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1716 static void mark_insn_zext(struct bpf_verifier_env *env,
1717 struct bpf_reg_state *reg)
1718 {
1719 s32 def_idx = reg->subreg_def;
1720
1721 if (def_idx == DEF_NOT_SUBREG)
1722 return;
1723
1724 env->insn_aux_data[def_idx - 1].zext_dst = true;
1725 /* The dst will be zero extended, so won't be sub-register anymore. */
1726 reg->subreg_def = DEF_NOT_SUBREG;
1727 }
1728
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)1729 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1730 enum reg_arg_type t)
1731 {
1732 struct bpf_verifier_state *vstate = env->cur_state;
1733 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1734 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1735 struct bpf_reg_state *reg, *regs = state->regs;
1736 bool rw64;
1737
1738 if (regno >= MAX_BPF_REG) {
1739 verbose(env, "R%d is invalid\n", regno);
1740 return -EINVAL;
1741 }
1742
1743 reg = ®s[regno];
1744 rw64 = is_reg64(env, insn, regno, reg, t);
1745 if (t == SRC_OP) {
1746 /* check whether register used as source operand can be read */
1747 if (reg->type == NOT_INIT) {
1748 verbose(env, "R%d !read_ok\n", regno);
1749 return -EACCES;
1750 }
1751 /* We don't need to worry about FP liveness because it's read-only */
1752 if (regno == BPF_REG_FP)
1753 return 0;
1754
1755 if (rw64)
1756 mark_insn_zext(env, reg);
1757
1758 return mark_reg_read(env, reg, reg->parent,
1759 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1760 } else {
1761 /* check whether register used as dest operand can be written to */
1762 if (regno == BPF_REG_FP) {
1763 verbose(env, "frame pointer is read only\n");
1764 return -EACCES;
1765 }
1766 reg->live |= REG_LIVE_WRITTEN;
1767 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1768 if (t == DST_OP)
1769 mark_reg_unknown(env, regs, regno);
1770 }
1771 return 0;
1772 }
1773
1774 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)1775 static int push_jmp_history(struct bpf_verifier_env *env,
1776 struct bpf_verifier_state *cur)
1777 {
1778 u32 cnt = cur->jmp_history_cnt;
1779 struct bpf_idx_pair *p;
1780
1781 cnt++;
1782 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1783 if (!p)
1784 return -ENOMEM;
1785 p[cnt - 1].idx = env->insn_idx;
1786 p[cnt - 1].prev_idx = env->prev_insn_idx;
1787 cur->jmp_history = p;
1788 cur->jmp_history_cnt = cnt;
1789 return 0;
1790 }
1791
1792 /* Backtrack one insn at a time. If idx is not at the top of recorded
1793 * history then previous instruction came from straight line execution.
1794 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)1795 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1796 u32 *history)
1797 {
1798 u32 cnt = *history;
1799
1800 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1801 i = st->jmp_history[cnt - 1].prev_idx;
1802 (*history)--;
1803 } else {
1804 i--;
1805 }
1806 return i;
1807 }
1808
1809 /* For given verifier state backtrack_insn() is called from the last insn to
1810 * the first insn. Its purpose is to compute a bitmask of registers and
1811 * stack slots that needs precision in the parent verifier state.
1812 */
backtrack_insn(struct bpf_verifier_env * env,int idx,u32 * reg_mask,u64 * stack_mask)1813 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1814 u32 *reg_mask, u64 *stack_mask)
1815 {
1816 const struct bpf_insn_cbs cbs = {
1817 .cb_print = verbose,
1818 .private_data = env,
1819 };
1820 struct bpf_insn *insn = env->prog->insnsi + idx;
1821 u8 class = BPF_CLASS(insn->code);
1822 u8 opcode = BPF_OP(insn->code);
1823 u8 mode = BPF_MODE(insn->code);
1824 u32 dreg = 1u << insn->dst_reg;
1825 u32 sreg = 1u << insn->src_reg;
1826 u32 spi;
1827
1828 if (insn->code == 0)
1829 return 0;
1830 if (env->log.level & BPF_LOG_LEVEL) {
1831 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1832 verbose(env, "%d: ", idx);
1833 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1834 }
1835
1836 if (class == BPF_ALU || class == BPF_ALU64) {
1837 if (!(*reg_mask & dreg))
1838 return 0;
1839 if (opcode == BPF_MOV) {
1840 if (BPF_SRC(insn->code) == BPF_X) {
1841 /* dreg = sreg
1842 * dreg needs precision after this insn
1843 * sreg needs precision before this insn
1844 */
1845 *reg_mask &= ~dreg;
1846 *reg_mask |= sreg;
1847 } else {
1848 /* dreg = K
1849 * dreg needs precision after this insn.
1850 * Corresponding register is already marked
1851 * as precise=true in this verifier state.
1852 * No further markings in parent are necessary
1853 */
1854 *reg_mask &= ~dreg;
1855 }
1856 } else {
1857 if (BPF_SRC(insn->code) == BPF_X) {
1858 /* dreg += sreg
1859 * both dreg and sreg need precision
1860 * before this insn
1861 */
1862 *reg_mask |= sreg;
1863 } /* else dreg += K
1864 * dreg still needs precision before this insn
1865 */
1866 }
1867 } else if (class == BPF_LDX) {
1868 if (!(*reg_mask & dreg))
1869 return 0;
1870 *reg_mask &= ~dreg;
1871
1872 /* scalars can only be spilled into stack w/o losing precision.
1873 * Load from any other memory can be zero extended.
1874 * The desire to keep that precision is already indicated
1875 * by 'precise' mark in corresponding register of this state.
1876 * No further tracking necessary.
1877 */
1878 if (insn->src_reg != BPF_REG_FP)
1879 return 0;
1880 if (BPF_SIZE(insn->code) != BPF_DW)
1881 return 0;
1882
1883 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1884 * that [fp - off] slot contains scalar that needs to be
1885 * tracked with precision
1886 */
1887 spi = (-insn->off - 1) / BPF_REG_SIZE;
1888 if (spi >= 64) {
1889 verbose(env, "BUG spi %d\n", spi);
1890 WARN_ONCE(1, "verifier backtracking bug");
1891 return -EFAULT;
1892 }
1893 *stack_mask |= 1ull << spi;
1894 } else if (class == BPF_STX || class == BPF_ST) {
1895 if (*reg_mask & dreg)
1896 /* stx & st shouldn't be using _scalar_ dst_reg
1897 * to access memory. It means backtracking
1898 * encountered a case of pointer subtraction.
1899 */
1900 return -ENOTSUPP;
1901 /* scalars can only be spilled into stack */
1902 if (insn->dst_reg != BPF_REG_FP)
1903 return 0;
1904 if (BPF_SIZE(insn->code) != BPF_DW)
1905 return 0;
1906 spi = (-insn->off - 1) / BPF_REG_SIZE;
1907 if (spi >= 64) {
1908 verbose(env, "BUG spi %d\n", spi);
1909 WARN_ONCE(1, "verifier backtracking bug");
1910 return -EFAULT;
1911 }
1912 if (!(*stack_mask & (1ull << spi)))
1913 return 0;
1914 *stack_mask &= ~(1ull << spi);
1915 if (class == BPF_STX)
1916 *reg_mask |= sreg;
1917 } else if (class == BPF_JMP || class == BPF_JMP32) {
1918 if (opcode == BPF_CALL) {
1919 if (insn->src_reg == BPF_PSEUDO_CALL)
1920 return -ENOTSUPP;
1921 /* regular helper call sets R0 */
1922 *reg_mask &= ~1;
1923 if (*reg_mask & 0x3f) {
1924 /* if backtracing was looking for registers R1-R5
1925 * they should have been found already.
1926 */
1927 verbose(env, "BUG regs %x\n", *reg_mask);
1928 WARN_ONCE(1, "verifier backtracking bug");
1929 return -EFAULT;
1930 }
1931 } else if (opcode == BPF_EXIT) {
1932 return -ENOTSUPP;
1933 } else if (BPF_SRC(insn->code) == BPF_X) {
1934 if (!(*reg_mask & (dreg | sreg)))
1935 return 0;
1936 /* dreg <cond> sreg
1937 * Both dreg and sreg need precision before
1938 * this insn. If only sreg was marked precise
1939 * before it would be equally necessary to
1940 * propagate it to dreg.
1941 */
1942 *reg_mask |= (sreg | dreg);
1943 /* else dreg <cond> K
1944 * Only dreg still needs precision before
1945 * this insn, so for the K-based conditional
1946 * there is nothing new to be marked.
1947 */
1948 }
1949 } else if (class == BPF_LD) {
1950 if (!(*reg_mask & dreg))
1951 return 0;
1952 *reg_mask &= ~dreg;
1953 /* It's ld_imm64 or ld_abs or ld_ind.
1954 * For ld_imm64 no further tracking of precision
1955 * into parent is necessary
1956 */
1957 if (mode == BPF_IND || mode == BPF_ABS)
1958 /* to be analyzed */
1959 return -ENOTSUPP;
1960 }
1961 return 0;
1962 }
1963
1964 /* the scalar precision tracking algorithm:
1965 * . at the start all registers have precise=false.
1966 * . scalar ranges are tracked as normal through alu and jmp insns.
1967 * . once precise value of the scalar register is used in:
1968 * . ptr + scalar alu
1969 * . if (scalar cond K|scalar)
1970 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1971 * backtrack through the verifier states and mark all registers and
1972 * stack slots with spilled constants that these scalar regisers
1973 * should be precise.
1974 * . during state pruning two registers (or spilled stack slots)
1975 * are equivalent if both are not precise.
1976 *
1977 * Note the verifier cannot simply walk register parentage chain,
1978 * since many different registers and stack slots could have been
1979 * used to compute single precise scalar.
1980 *
1981 * The approach of starting with precise=true for all registers and then
1982 * backtrack to mark a register as not precise when the verifier detects
1983 * that program doesn't care about specific value (e.g., when helper
1984 * takes register as ARG_ANYTHING parameter) is not safe.
1985 *
1986 * It's ok to walk single parentage chain of the verifier states.
1987 * It's possible that this backtracking will go all the way till 1st insn.
1988 * All other branches will be explored for needing precision later.
1989 *
1990 * The backtracking needs to deal with cases like:
1991 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1992 * r9 -= r8
1993 * r5 = r9
1994 * if r5 > 0x79f goto pc+7
1995 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1996 * r5 += 1
1997 * ...
1998 * call bpf_perf_event_output#25
1999 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2000 *
2001 * and this case:
2002 * r6 = 1
2003 * call foo // uses callee's r6 inside to compute r0
2004 * r0 += r6
2005 * if r0 == 0 goto
2006 *
2007 * to track above reg_mask/stack_mask needs to be independent for each frame.
2008 *
2009 * Also if parent's curframe > frame where backtracking started,
2010 * the verifier need to mark registers in both frames, otherwise callees
2011 * may incorrectly prune callers. This is similar to
2012 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2013 *
2014 * For now backtracking falls back into conservative marking.
2015 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2016 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2017 struct bpf_verifier_state *st)
2018 {
2019 struct bpf_func_state *func;
2020 struct bpf_reg_state *reg;
2021 int i, j;
2022
2023 /* big hammer: mark all scalars precise in this path.
2024 * pop_stack may still get !precise scalars.
2025 */
2026 for (; st; st = st->parent)
2027 for (i = 0; i <= st->curframe; i++) {
2028 func = st->frame[i];
2029 for (j = 0; j < BPF_REG_FP; j++) {
2030 reg = &func->regs[j];
2031 if (reg->type != SCALAR_VALUE)
2032 continue;
2033 reg->precise = true;
2034 }
2035 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2036 if (!is_spilled_reg(&func->stack[j]))
2037 continue;
2038 reg = &func->stack[j].spilled_ptr;
2039 if (reg->type != SCALAR_VALUE)
2040 continue;
2041 reg->precise = true;
2042 }
2043 }
2044 }
2045
__mark_chain_precision(struct bpf_verifier_env * env,int frame,int regno,int spi)2046 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
2047 int spi)
2048 {
2049 struct bpf_verifier_state *st = env->cur_state;
2050 int first_idx = st->first_insn_idx;
2051 int last_idx = env->insn_idx;
2052 struct bpf_func_state *func;
2053 struct bpf_reg_state *reg;
2054 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2055 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2056 bool skip_first = true;
2057 bool new_marks = false;
2058 int i, err;
2059
2060 if (!env->bpf_capable)
2061 return 0;
2062
2063 func = st->frame[frame];
2064 if (regno >= 0) {
2065 reg = &func->regs[regno];
2066 if (reg->type != SCALAR_VALUE) {
2067 WARN_ONCE(1, "backtracing misuse");
2068 return -EFAULT;
2069 }
2070 if (!reg->precise)
2071 new_marks = true;
2072 else
2073 reg_mask = 0;
2074 reg->precise = true;
2075 }
2076
2077 while (spi >= 0) {
2078 if (!is_spilled_reg(&func->stack[spi])) {
2079 stack_mask = 0;
2080 break;
2081 }
2082 reg = &func->stack[spi].spilled_ptr;
2083 if (reg->type != SCALAR_VALUE) {
2084 stack_mask = 0;
2085 break;
2086 }
2087 if (!reg->precise)
2088 new_marks = true;
2089 else
2090 stack_mask = 0;
2091 reg->precise = true;
2092 break;
2093 }
2094
2095 if (!new_marks)
2096 return 0;
2097 if (!reg_mask && !stack_mask)
2098 return 0;
2099 for (;;) {
2100 DECLARE_BITMAP(mask, 64);
2101 u32 history = st->jmp_history_cnt;
2102
2103 if (env->log.level & BPF_LOG_LEVEL)
2104 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2105 for (i = last_idx;;) {
2106 if (skip_first) {
2107 err = 0;
2108 skip_first = false;
2109 } else {
2110 err = backtrack_insn(env, i, ®_mask, &stack_mask);
2111 }
2112 if (err == -ENOTSUPP) {
2113 mark_all_scalars_precise(env, st);
2114 return 0;
2115 } else if (err) {
2116 return err;
2117 }
2118 if (!reg_mask && !stack_mask)
2119 /* Found assignment(s) into tracked register in this state.
2120 * Since this state is already marked, just return.
2121 * Nothing to be tracked further in the parent state.
2122 */
2123 return 0;
2124 if (i == first_idx)
2125 break;
2126 i = get_prev_insn_idx(st, i, &history);
2127 if (i >= env->prog->len) {
2128 /* This can happen if backtracking reached insn 0
2129 * and there are still reg_mask or stack_mask
2130 * to backtrack.
2131 * It means the backtracking missed the spot where
2132 * particular register was initialized with a constant.
2133 */
2134 verbose(env, "BUG backtracking idx %d\n", i);
2135 WARN_ONCE(1, "verifier backtracking bug");
2136 return -EFAULT;
2137 }
2138 }
2139 st = st->parent;
2140 if (!st)
2141 break;
2142
2143 new_marks = false;
2144 func = st->frame[frame];
2145 bitmap_from_u64(mask, reg_mask);
2146 for_each_set_bit(i, mask, 32) {
2147 reg = &func->regs[i];
2148 if (reg->type != SCALAR_VALUE) {
2149 reg_mask &= ~(1u << i);
2150 continue;
2151 }
2152 if (!reg->precise)
2153 new_marks = true;
2154 reg->precise = true;
2155 }
2156
2157 bitmap_from_u64(mask, stack_mask);
2158 for_each_set_bit(i, mask, 64) {
2159 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2160 /* the sequence of instructions:
2161 * 2: (bf) r3 = r10
2162 * 3: (7b) *(u64 *)(r3 -8) = r0
2163 * 4: (79) r4 = *(u64 *)(r10 -8)
2164 * doesn't contain jmps. It's backtracked
2165 * as a single block.
2166 * During backtracking insn 3 is not recognized as
2167 * stack access, so at the end of backtracking
2168 * stack slot fp-8 is still marked in stack_mask.
2169 * However the parent state may not have accessed
2170 * fp-8 and it's "unallocated" stack space.
2171 * In such case fallback to conservative.
2172 */
2173 mark_all_scalars_precise(env, st);
2174 return 0;
2175 }
2176
2177 if (!is_spilled_reg(&func->stack[i])) {
2178 stack_mask &= ~(1ull << i);
2179 continue;
2180 }
2181 reg = &func->stack[i].spilled_ptr;
2182 if (reg->type != SCALAR_VALUE) {
2183 stack_mask &= ~(1ull << i);
2184 continue;
2185 }
2186 if (!reg->precise)
2187 new_marks = true;
2188 reg->precise = true;
2189 }
2190 if (env->log.level & BPF_LOG_LEVEL) {
2191 print_verifier_state(env, func);
2192 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2193 new_marks ? "didn't have" : "already had",
2194 reg_mask, stack_mask);
2195 }
2196
2197 if (!reg_mask && !stack_mask)
2198 break;
2199 if (!new_marks)
2200 break;
2201
2202 last_idx = st->last_insn_idx;
2203 first_idx = st->first_insn_idx;
2204 }
2205 return 0;
2206 }
2207
mark_chain_precision(struct bpf_verifier_env * env,int regno)2208 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2209 {
2210 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
2211 }
2212
mark_chain_precision_frame(struct bpf_verifier_env * env,int frame,int regno)2213 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
2214 {
2215 return __mark_chain_precision(env, frame, regno, -1);
2216 }
2217
mark_chain_precision_stack_frame(struct bpf_verifier_env * env,int frame,int spi)2218 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
2219 {
2220 return __mark_chain_precision(env, frame, -1, spi);
2221 }
2222
is_spillable_regtype(enum bpf_reg_type type)2223 static bool is_spillable_regtype(enum bpf_reg_type type)
2224 {
2225 switch (base_type(type)) {
2226 case PTR_TO_MAP_VALUE:
2227 case PTR_TO_STACK:
2228 case PTR_TO_CTX:
2229 case PTR_TO_PACKET:
2230 case PTR_TO_PACKET_META:
2231 case PTR_TO_PACKET_END:
2232 case PTR_TO_FLOW_KEYS:
2233 case CONST_PTR_TO_MAP:
2234 case PTR_TO_SOCKET:
2235 case PTR_TO_SOCK_COMMON:
2236 case PTR_TO_TCP_SOCK:
2237 case PTR_TO_XDP_SOCK:
2238 case PTR_TO_BTF_ID:
2239 case PTR_TO_BUF:
2240 case PTR_TO_PERCPU_BTF_ID:
2241 case PTR_TO_MEM:
2242 return true;
2243 default:
2244 return false;
2245 }
2246 }
2247
2248 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)2249 static bool register_is_null(struct bpf_reg_state *reg)
2250 {
2251 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2252 }
2253
register_is_const(struct bpf_reg_state * reg)2254 static bool register_is_const(struct bpf_reg_state *reg)
2255 {
2256 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2257 }
2258
__is_scalar_unbounded(struct bpf_reg_state * reg)2259 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2260 {
2261 return tnum_is_unknown(reg->var_off) &&
2262 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2263 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2264 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2265 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2266 }
2267
register_is_bounded(struct bpf_reg_state * reg)2268 static bool register_is_bounded(struct bpf_reg_state *reg)
2269 {
2270 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2271 }
2272
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)2273 static bool __is_pointer_value(bool allow_ptr_leaks,
2274 const struct bpf_reg_state *reg)
2275 {
2276 if (allow_ptr_leaks)
2277 return false;
2278
2279 return reg->type != SCALAR_VALUE;
2280 }
2281
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg)2282 static void save_register_state(struct bpf_func_state *state,
2283 int spi, struct bpf_reg_state *reg)
2284 {
2285 int i;
2286
2287 state->stack[spi].spilled_ptr = *reg;
2288 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2289
2290 for (i = 0; i < BPF_REG_SIZE; i++)
2291 state->stack[spi].slot_type[i] = STACK_SPILL;
2292 }
2293
2294 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2295 * stack boundary and alignment are checked in check_mem_access()
2296 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)2297 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2298 /* stack frame we're writing to */
2299 struct bpf_func_state *state,
2300 int off, int size, int value_regno,
2301 int insn_idx)
2302 {
2303 struct bpf_func_state *cur; /* state of the current function */
2304 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2305 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2306 struct bpf_reg_state *reg = NULL;
2307
2308 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2309 state->acquired_refs, true);
2310 if (err)
2311 return err;
2312 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2313 * so it's aligned access and [off, off + size) are within stack limits
2314 */
2315 if (!env->allow_ptr_leaks &&
2316 state->stack[spi].slot_type[0] == STACK_SPILL &&
2317 size != BPF_REG_SIZE) {
2318 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2319 return -EACCES;
2320 }
2321
2322 cur = env->cur_state->frame[env->cur_state->curframe];
2323 if (value_regno >= 0)
2324 reg = &cur->regs[value_regno];
2325 if (!env->bypass_spec_v4) {
2326 bool sanitize = reg && is_spillable_regtype(reg->type);
2327
2328 for (i = 0; i < size; i++) {
2329 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2330 sanitize = true;
2331 break;
2332 }
2333 }
2334
2335 if (sanitize)
2336 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2337 }
2338
2339 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2340 !register_is_null(reg) && env->bpf_capable) {
2341 if (dst_reg != BPF_REG_FP) {
2342 /* The backtracking logic can only recognize explicit
2343 * stack slot address like [fp - 8]. Other spill of
2344 * scalar via different register has to be conervative.
2345 * Backtrack from here and mark all registers as precise
2346 * that contributed into 'reg' being a constant.
2347 */
2348 err = mark_chain_precision(env, value_regno);
2349 if (err)
2350 return err;
2351 }
2352 save_register_state(state, spi, reg);
2353 } else if (reg && is_spillable_regtype(reg->type)) {
2354 /* register containing pointer is being spilled into stack */
2355 if (size != BPF_REG_SIZE) {
2356 verbose_linfo(env, insn_idx, "; ");
2357 verbose(env, "invalid size of register spill\n");
2358 return -EACCES;
2359 }
2360 if (state != cur && reg->type == PTR_TO_STACK) {
2361 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2362 return -EINVAL;
2363 }
2364 save_register_state(state, spi, reg);
2365 } else {
2366 u8 type = STACK_MISC;
2367
2368 /* regular write of data into stack destroys any spilled ptr */
2369 state->stack[spi].spilled_ptr.type = NOT_INIT;
2370 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2371 if (is_spilled_reg(&state->stack[spi]))
2372 for (i = 0; i < BPF_REG_SIZE; i++)
2373 state->stack[spi].slot_type[i] = STACK_MISC;
2374
2375 /* only mark the slot as written if all 8 bytes were written
2376 * otherwise read propagation may incorrectly stop too soon
2377 * when stack slots are partially written.
2378 * This heuristic means that read propagation will be
2379 * conservative, since it will add reg_live_read marks
2380 * to stack slots all the way to first state when programs
2381 * writes+reads less than 8 bytes
2382 */
2383 if (size == BPF_REG_SIZE)
2384 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2385
2386 /* when we zero initialize stack slots mark them as such */
2387 if (reg && register_is_null(reg)) {
2388 /* backtracking doesn't work for STACK_ZERO yet. */
2389 err = mark_chain_precision(env, value_regno);
2390 if (err)
2391 return err;
2392 type = STACK_ZERO;
2393 }
2394
2395 /* Mark slots affected by this stack write. */
2396 for (i = 0; i < size; i++)
2397 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2398 type;
2399 }
2400 return 0;
2401 }
2402
2403 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2404 * known to contain a variable offset.
2405 * This function checks whether the write is permitted and conservatively
2406 * tracks the effects of the write, considering that each stack slot in the
2407 * dynamic range is potentially written to.
2408 *
2409 * 'off' includes 'regno->off'.
2410 * 'value_regno' can be -1, meaning that an unknown value is being written to
2411 * the stack.
2412 *
2413 * Spilled pointers in range are not marked as written because we don't know
2414 * what's going to be actually written. This means that read propagation for
2415 * future reads cannot be terminated by this write.
2416 *
2417 * For privileged programs, uninitialized stack slots are considered
2418 * initialized by this write (even though we don't know exactly what offsets
2419 * are going to be written to). The idea is that we don't want the verifier to
2420 * reject future reads that access slots written to through variable offsets.
2421 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)2422 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2423 /* func where register points to */
2424 struct bpf_func_state *state,
2425 int ptr_regno, int off, int size,
2426 int value_regno, int insn_idx)
2427 {
2428 struct bpf_func_state *cur; /* state of the current function */
2429 int min_off, max_off;
2430 int i, err;
2431 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2432 bool writing_zero = false;
2433 /* set if the fact that we're writing a zero is used to let any
2434 * stack slots remain STACK_ZERO
2435 */
2436 bool zero_used = false;
2437
2438 cur = env->cur_state->frame[env->cur_state->curframe];
2439 ptr_reg = &cur->regs[ptr_regno];
2440 min_off = ptr_reg->smin_value + off;
2441 max_off = ptr_reg->smax_value + off + size;
2442 if (value_regno >= 0)
2443 value_reg = &cur->regs[value_regno];
2444 if (value_reg && register_is_null(value_reg))
2445 writing_zero = true;
2446
2447 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2448 state->acquired_refs, true);
2449 if (err)
2450 return err;
2451
2452
2453 /* Variable offset writes destroy any spilled pointers in range. */
2454 for (i = min_off; i < max_off; i++) {
2455 u8 new_type, *stype;
2456 int slot, spi;
2457
2458 slot = -i - 1;
2459 spi = slot / BPF_REG_SIZE;
2460 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2461
2462 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
2463 /* Reject the write if range we may write to has not
2464 * been initialized beforehand. If we didn't reject
2465 * here, the ptr status would be erased below (even
2466 * though not all slots are actually overwritten),
2467 * possibly opening the door to leaks.
2468 *
2469 * We do however catch STACK_INVALID case below, and
2470 * only allow reading possibly uninitialized memory
2471 * later for CAP_PERFMON, as the write may not happen to
2472 * that slot.
2473 */
2474 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2475 insn_idx, i);
2476 return -EINVAL;
2477 }
2478
2479 /* Erase all spilled pointers. */
2480 state->stack[spi].spilled_ptr.type = NOT_INIT;
2481
2482 /* Update the slot type. */
2483 new_type = STACK_MISC;
2484 if (writing_zero && *stype == STACK_ZERO) {
2485 new_type = STACK_ZERO;
2486 zero_used = true;
2487 }
2488 /* If the slot is STACK_INVALID, we check whether it's OK to
2489 * pretend that it will be initialized by this write. The slot
2490 * might not actually be written to, and so if we mark it as
2491 * initialized future reads might leak uninitialized memory.
2492 * For privileged programs, we will accept such reads to slots
2493 * that may or may not be written because, if we're reject
2494 * them, the error would be too confusing.
2495 */
2496 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2497 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2498 insn_idx, i);
2499 return -EINVAL;
2500 }
2501 *stype = new_type;
2502 }
2503 if (zero_used) {
2504 /* backtracking doesn't work for STACK_ZERO yet. */
2505 err = mark_chain_precision(env, value_regno);
2506 if (err)
2507 return err;
2508 }
2509 return 0;
2510 }
2511
2512 /* When register 'dst_regno' is assigned some values from stack[min_off,
2513 * max_off), we set the register's type according to the types of the
2514 * respective stack slots. If all the stack values are known to be zeros, then
2515 * so is the destination reg. Otherwise, the register is considered to be
2516 * SCALAR. This function does not deal with register filling; the caller must
2517 * ensure that all spilled registers in the stack range have been marked as
2518 * read.
2519 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)2520 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2521 /* func where src register points to */
2522 struct bpf_func_state *ptr_state,
2523 int min_off, int max_off, int dst_regno)
2524 {
2525 struct bpf_verifier_state *vstate = env->cur_state;
2526 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2527 int i, slot, spi;
2528 u8 *stype;
2529 int zeros = 0;
2530
2531 for (i = min_off; i < max_off; i++) {
2532 slot = -i - 1;
2533 spi = slot / BPF_REG_SIZE;
2534 stype = ptr_state->stack[spi].slot_type;
2535 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2536 break;
2537 zeros++;
2538 }
2539 if (zeros == max_off - min_off) {
2540 /* any access_size read into register is zero extended,
2541 * so the whole register == const_zero
2542 */
2543 __mark_reg_const_zero(&state->regs[dst_regno]);
2544 /* backtracking doesn't support STACK_ZERO yet,
2545 * so mark it precise here, so that later
2546 * backtracking can stop here.
2547 * Backtracking may not need this if this register
2548 * doesn't participate in pointer adjustment.
2549 * Forward propagation of precise flag is not
2550 * necessary either. This mark is only to stop
2551 * backtracking. Any register that contributed
2552 * to const 0 was marked precise before spill.
2553 */
2554 state->regs[dst_regno].precise = true;
2555 } else {
2556 /* have read misc data from the stack */
2557 mark_reg_unknown(env, state->regs, dst_regno);
2558 }
2559 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2560 }
2561
2562 /* Read the stack at 'off' and put the results into the register indicated by
2563 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2564 * spilled reg.
2565 *
2566 * 'dst_regno' can be -1, meaning that the read value is not going to a
2567 * register.
2568 *
2569 * The access is assumed to be within the current stack bounds.
2570 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)2571 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2572 /* func where src register points to */
2573 struct bpf_func_state *reg_state,
2574 int off, int size, int dst_regno)
2575 {
2576 struct bpf_verifier_state *vstate = env->cur_state;
2577 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2578 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2579 struct bpf_reg_state *reg;
2580 u8 *stype;
2581
2582 stype = reg_state->stack[spi].slot_type;
2583 reg = ®_state->stack[spi].spilled_ptr;
2584
2585 if (is_spilled_reg(®_state->stack[spi])) {
2586 if (size != BPF_REG_SIZE) {
2587 if (reg->type != SCALAR_VALUE) {
2588 verbose_linfo(env, env->insn_idx, "; ");
2589 verbose(env, "invalid size of register fill\n");
2590 return -EACCES;
2591 }
2592 if (dst_regno >= 0) {
2593 mark_reg_unknown(env, state->regs, dst_regno);
2594 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2595 }
2596 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2597 return 0;
2598 }
2599 for (i = 1; i < BPF_REG_SIZE; i++) {
2600 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2601 verbose(env, "corrupted spill memory\n");
2602 return -EACCES;
2603 }
2604 }
2605
2606 if (dst_regno >= 0) {
2607 /* restore register state from stack */
2608 state->regs[dst_regno] = *reg;
2609 /* mark reg as written since spilled pointer state likely
2610 * has its liveness marks cleared by is_state_visited()
2611 * which resets stack/reg liveness for state transitions
2612 */
2613 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2614 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2615 /* If dst_regno==-1, the caller is asking us whether
2616 * it is acceptable to use this value as a SCALAR_VALUE
2617 * (e.g. for XADD).
2618 * We must not allow unprivileged callers to do that
2619 * with spilled pointers.
2620 */
2621 verbose(env, "leaking pointer from stack off %d\n",
2622 off);
2623 return -EACCES;
2624 }
2625 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2626 } else {
2627 u8 type;
2628
2629 for (i = 0; i < size; i++) {
2630 type = stype[(slot - i) % BPF_REG_SIZE];
2631 if (type == STACK_MISC)
2632 continue;
2633 if (type == STACK_ZERO)
2634 continue;
2635 verbose(env, "invalid read from stack off %d+%d size %d\n",
2636 off, i, size);
2637 return -EACCES;
2638 }
2639 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2640 if (dst_regno >= 0)
2641 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2642 }
2643 return 0;
2644 }
2645
2646 enum stack_access_src {
2647 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
2648 ACCESS_HELPER = 2, /* the access is performed by a helper */
2649 };
2650
2651 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2652 int regno, int off, int access_size,
2653 bool zero_size_allowed,
2654 enum stack_access_src type,
2655 struct bpf_call_arg_meta *meta);
2656
reg_state(struct bpf_verifier_env * env,int regno)2657 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2658 {
2659 return cur_regs(env) + regno;
2660 }
2661
2662 /* Read the stack at 'ptr_regno + off' and put the result into the register
2663 * 'dst_regno'.
2664 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2665 * but not its variable offset.
2666 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2667 *
2668 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2669 * filling registers (i.e. reads of spilled register cannot be detected when
2670 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2671 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2672 * offset; for a fixed offset check_stack_read_fixed_off should be used
2673 * instead.
2674 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)2675 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2676 int ptr_regno, int off, int size, int dst_regno)
2677 {
2678 /* The state of the source register. */
2679 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2680 struct bpf_func_state *ptr_state = func(env, reg);
2681 int err;
2682 int min_off, max_off;
2683
2684 /* Note that we pass a NULL meta, so raw access will not be permitted.
2685 */
2686 err = check_stack_range_initialized(env, ptr_regno, off, size,
2687 false, ACCESS_DIRECT, NULL);
2688 if (err)
2689 return err;
2690
2691 min_off = reg->smin_value + off;
2692 max_off = reg->smax_value + off;
2693 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2694 return 0;
2695 }
2696
2697 /* check_stack_read dispatches to check_stack_read_fixed_off or
2698 * check_stack_read_var_off.
2699 *
2700 * The caller must ensure that the offset falls within the allocated stack
2701 * bounds.
2702 *
2703 * 'dst_regno' is a register which will receive the value from the stack. It
2704 * can be -1, meaning that the read value is not going to a register.
2705 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)2706 static int check_stack_read(struct bpf_verifier_env *env,
2707 int ptr_regno, int off, int size,
2708 int dst_regno)
2709 {
2710 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2711 struct bpf_func_state *state = func(env, reg);
2712 int err;
2713 /* Some accesses are only permitted with a static offset. */
2714 bool var_off = !tnum_is_const(reg->var_off);
2715
2716 /* The offset is required to be static when reads don't go to a
2717 * register, in order to not leak pointers (see
2718 * check_stack_read_fixed_off).
2719 */
2720 if (dst_regno < 0 && var_off) {
2721 char tn_buf[48];
2722
2723 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2724 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2725 tn_buf, off, size);
2726 return -EACCES;
2727 }
2728 /* Variable offset is prohibited for unprivileged mode for simplicity
2729 * since it requires corresponding support in Spectre masking for stack
2730 * ALU. See also retrieve_ptr_limit().
2731 */
2732 if (!env->bypass_spec_v1 && var_off) {
2733 char tn_buf[48];
2734
2735 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2736 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
2737 ptr_regno, tn_buf);
2738 return -EACCES;
2739 }
2740
2741 if (!var_off) {
2742 off += reg->var_off.value;
2743 err = check_stack_read_fixed_off(env, state, off, size,
2744 dst_regno);
2745 } else {
2746 /* Variable offset stack reads need more conservative handling
2747 * than fixed offset ones. Note that dst_regno >= 0 on this
2748 * branch.
2749 */
2750 err = check_stack_read_var_off(env, ptr_regno, off, size,
2751 dst_regno);
2752 }
2753 return err;
2754 }
2755
2756
2757 /* check_stack_write dispatches to check_stack_write_fixed_off or
2758 * check_stack_write_var_off.
2759 *
2760 * 'ptr_regno' is the register used as a pointer into the stack.
2761 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2762 * 'value_regno' is the register whose value we're writing to the stack. It can
2763 * be -1, meaning that we're not writing from a register.
2764 *
2765 * The caller must ensure that the offset falls within the maximum stack size.
2766 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)2767 static int check_stack_write(struct bpf_verifier_env *env,
2768 int ptr_regno, int off, int size,
2769 int value_regno, int insn_idx)
2770 {
2771 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2772 struct bpf_func_state *state = func(env, reg);
2773 int err;
2774
2775 if (tnum_is_const(reg->var_off)) {
2776 off += reg->var_off.value;
2777 err = check_stack_write_fixed_off(env, state, off, size,
2778 value_regno, insn_idx);
2779 } else {
2780 /* Variable offset stack reads need more conservative handling
2781 * than fixed offset ones.
2782 */
2783 err = check_stack_write_var_off(env, state,
2784 ptr_regno, off, size,
2785 value_regno, insn_idx);
2786 }
2787 return err;
2788 }
2789
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)2790 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2791 int off, int size, enum bpf_access_type type)
2792 {
2793 struct bpf_reg_state *regs = cur_regs(env);
2794 struct bpf_map *map = regs[regno].map_ptr;
2795 u32 cap = bpf_map_flags_to_cap(map);
2796
2797 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2798 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2799 map->value_size, off, size);
2800 return -EACCES;
2801 }
2802
2803 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2804 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2805 map->value_size, off, size);
2806 return -EACCES;
2807 }
2808
2809 return 0;
2810 }
2811
2812 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)2813 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2814 int off, int size, u32 mem_size,
2815 bool zero_size_allowed)
2816 {
2817 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2818 struct bpf_reg_state *reg;
2819
2820 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2821 return 0;
2822
2823 reg = &cur_regs(env)[regno];
2824 switch (reg->type) {
2825 case PTR_TO_MAP_VALUE:
2826 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2827 mem_size, off, size);
2828 break;
2829 case PTR_TO_PACKET:
2830 case PTR_TO_PACKET_META:
2831 case PTR_TO_PACKET_END:
2832 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2833 off, size, regno, reg->id, off, mem_size);
2834 break;
2835 case PTR_TO_MEM:
2836 default:
2837 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2838 mem_size, off, size);
2839 }
2840
2841 return -EACCES;
2842 }
2843
2844 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)2845 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2846 int off, int size, u32 mem_size,
2847 bool zero_size_allowed)
2848 {
2849 struct bpf_verifier_state *vstate = env->cur_state;
2850 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2851 struct bpf_reg_state *reg = &state->regs[regno];
2852 int err;
2853
2854 /* We may have adjusted the register pointing to memory region, so we
2855 * need to try adding each of min_value and max_value to off
2856 * to make sure our theoretical access will be safe.
2857 */
2858 if (env->log.level & BPF_LOG_LEVEL)
2859 print_verifier_state(env, state);
2860
2861 /* The minimum value is only important with signed
2862 * comparisons where we can't assume the floor of a
2863 * value is 0. If we are using signed variables for our
2864 * index'es we need to make sure that whatever we use
2865 * will have a set floor within our range.
2866 */
2867 if (reg->smin_value < 0 &&
2868 (reg->smin_value == S64_MIN ||
2869 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2870 reg->smin_value + off < 0)) {
2871 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2872 regno);
2873 return -EACCES;
2874 }
2875 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2876 mem_size, zero_size_allowed);
2877 if (err) {
2878 verbose(env, "R%d min value is outside of the allowed memory range\n",
2879 regno);
2880 return err;
2881 }
2882
2883 /* If we haven't set a max value then we need to bail since we can't be
2884 * sure we won't do bad things.
2885 * If reg->umax_value + off could overflow, treat that as unbounded too.
2886 */
2887 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2888 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2889 regno);
2890 return -EACCES;
2891 }
2892 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2893 mem_size, zero_size_allowed);
2894 if (err) {
2895 verbose(env, "R%d max value is outside of the allowed memory range\n",
2896 regno);
2897 return err;
2898 }
2899
2900 return 0;
2901 }
2902
2903 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)2904 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2905 int off, int size, bool zero_size_allowed)
2906 {
2907 struct bpf_verifier_state *vstate = env->cur_state;
2908 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2909 struct bpf_reg_state *reg = &state->regs[regno];
2910 struct bpf_map *map = reg->map_ptr;
2911 int err;
2912
2913 err = check_mem_region_access(env, regno, off, size, map->value_size,
2914 zero_size_allowed);
2915 if (err)
2916 return err;
2917
2918 if (map_value_has_spin_lock(map)) {
2919 u32 lock = map->spin_lock_off;
2920
2921 /* if any part of struct bpf_spin_lock can be touched by
2922 * load/store reject this program.
2923 * To check that [x1, x2) overlaps with [y1, y2)
2924 * it is sufficient to check x1 < y2 && y1 < x2.
2925 */
2926 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2927 lock < reg->umax_value + off + size) {
2928 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2929 return -EACCES;
2930 }
2931 }
2932 return err;
2933 }
2934
2935 #define MAX_PACKET_OFF 0xffff
2936
resolve_prog_type(struct bpf_prog * prog)2937 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2938 {
2939 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
2940 }
2941
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)2942 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2943 const struct bpf_call_arg_meta *meta,
2944 enum bpf_access_type t)
2945 {
2946 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2947
2948 switch (prog_type) {
2949 /* Program types only with direct read access go here! */
2950 case BPF_PROG_TYPE_LWT_IN:
2951 case BPF_PROG_TYPE_LWT_OUT:
2952 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2953 case BPF_PROG_TYPE_SK_REUSEPORT:
2954 case BPF_PROG_TYPE_FLOW_DISSECTOR:
2955 case BPF_PROG_TYPE_CGROUP_SKB:
2956 if (t == BPF_WRITE)
2957 return false;
2958 fallthrough;
2959
2960 /* Program types with direct read + write access go here! */
2961 case BPF_PROG_TYPE_SCHED_CLS:
2962 case BPF_PROG_TYPE_SCHED_ACT:
2963 case BPF_PROG_TYPE_XDP:
2964 case BPF_PROG_TYPE_LWT_XMIT:
2965 case BPF_PROG_TYPE_SK_SKB:
2966 case BPF_PROG_TYPE_SK_MSG:
2967 if (meta)
2968 return meta->pkt_access;
2969
2970 env->seen_direct_write = true;
2971 return true;
2972
2973 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2974 if (t == BPF_WRITE)
2975 env->seen_direct_write = true;
2976
2977 return true;
2978
2979 default:
2980 return false;
2981 }
2982 }
2983
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)2984 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2985 int size, bool zero_size_allowed)
2986 {
2987 struct bpf_reg_state *regs = cur_regs(env);
2988 struct bpf_reg_state *reg = ®s[regno];
2989 int err;
2990
2991 /* We may have added a variable offset to the packet pointer; but any
2992 * reg->range we have comes after that. We are only checking the fixed
2993 * offset.
2994 */
2995
2996 /* We don't allow negative numbers, because we aren't tracking enough
2997 * detail to prove they're safe.
2998 */
2999 if (reg->smin_value < 0) {
3000 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3001 regno);
3002 return -EACCES;
3003 }
3004
3005 err = reg->range < 0 ? -EINVAL :
3006 __check_mem_access(env, regno, off, size, reg->range,
3007 zero_size_allowed);
3008 if (err) {
3009 verbose(env, "R%d offset is outside of the packet\n", regno);
3010 return err;
3011 }
3012
3013 /* __check_mem_access has made sure "off + size - 1" is within u16.
3014 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3015 * otherwise find_good_pkt_pointers would have refused to set range info
3016 * that __check_mem_access would have rejected this pkt access.
3017 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3018 */
3019 env->prog->aux->max_pkt_offset =
3020 max_t(u32, env->prog->aux->max_pkt_offset,
3021 off + reg->umax_value + size - 1);
3022
3023 return err;
3024 }
3025
3026 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,u32 * btf_id)3027 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3028 enum bpf_access_type t, enum bpf_reg_type *reg_type,
3029 u32 *btf_id)
3030 {
3031 struct bpf_insn_access_aux info = {
3032 .reg_type = *reg_type,
3033 .log = &env->log,
3034 };
3035
3036 if (env->ops->is_valid_access &&
3037 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3038 /* A non zero info.ctx_field_size indicates that this field is a
3039 * candidate for later verifier transformation to load the whole
3040 * field and then apply a mask when accessed with a narrower
3041 * access than actual ctx access size. A zero info.ctx_field_size
3042 * will only allow for whole field access and rejects any other
3043 * type of narrower access.
3044 */
3045 *reg_type = info.reg_type;
3046
3047 if (base_type(*reg_type) == PTR_TO_BTF_ID)
3048 *btf_id = info.btf_id;
3049 else
3050 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3051 /* remember the offset of last byte accessed in ctx */
3052 if (env->prog->aux->max_ctx_offset < off + size)
3053 env->prog->aux->max_ctx_offset = off + size;
3054 return 0;
3055 }
3056
3057 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3058 return -EACCES;
3059 }
3060
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)3061 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3062 int size)
3063 {
3064 if (size < 0 || off < 0 ||
3065 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3066 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3067 off, size);
3068 return -EACCES;
3069 }
3070 return 0;
3071 }
3072
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)3073 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3074 u32 regno, int off, int size,
3075 enum bpf_access_type t)
3076 {
3077 struct bpf_reg_state *regs = cur_regs(env);
3078 struct bpf_reg_state *reg = ®s[regno];
3079 struct bpf_insn_access_aux info = {};
3080 bool valid;
3081
3082 if (reg->smin_value < 0) {
3083 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3084 regno);
3085 return -EACCES;
3086 }
3087
3088 switch (reg->type) {
3089 case PTR_TO_SOCK_COMMON:
3090 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3091 break;
3092 case PTR_TO_SOCKET:
3093 valid = bpf_sock_is_valid_access(off, size, t, &info);
3094 break;
3095 case PTR_TO_TCP_SOCK:
3096 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3097 break;
3098 case PTR_TO_XDP_SOCK:
3099 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3100 break;
3101 default:
3102 valid = false;
3103 }
3104
3105
3106 if (valid) {
3107 env->insn_aux_data[insn_idx].ctx_field_size =
3108 info.ctx_field_size;
3109 return 0;
3110 }
3111
3112 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3113 regno, reg_type_str(env, reg->type), off, size);
3114
3115 return -EACCES;
3116 }
3117
is_pointer_value(struct bpf_verifier_env * env,int regno)3118 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3119 {
3120 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3121 }
3122
is_ctx_reg(struct bpf_verifier_env * env,int regno)3123 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3124 {
3125 const struct bpf_reg_state *reg = reg_state(env, regno);
3126
3127 return reg->type == PTR_TO_CTX;
3128 }
3129
is_sk_reg(struct bpf_verifier_env * env,int regno)3130 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3131 {
3132 const struct bpf_reg_state *reg = reg_state(env, regno);
3133
3134 return type_is_sk_pointer(reg->type);
3135 }
3136
is_pkt_reg(struct bpf_verifier_env * env,int regno)3137 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3138 {
3139 const struct bpf_reg_state *reg = reg_state(env, regno);
3140
3141 return type_is_pkt_pointer(reg->type);
3142 }
3143
is_flow_key_reg(struct bpf_verifier_env * env,int regno)3144 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3145 {
3146 const struct bpf_reg_state *reg = reg_state(env, regno);
3147
3148 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3149 return reg->type == PTR_TO_FLOW_KEYS;
3150 }
3151
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)3152 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3153 const struct bpf_reg_state *reg,
3154 int off, int size, bool strict)
3155 {
3156 struct tnum reg_off;
3157 int ip_align;
3158
3159 /* Byte size accesses are always allowed. */
3160 if (!strict || size == 1)
3161 return 0;
3162
3163 /* For platforms that do not have a Kconfig enabling
3164 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3165 * NET_IP_ALIGN is universally set to '2'. And on platforms
3166 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3167 * to this code only in strict mode where we want to emulate
3168 * the NET_IP_ALIGN==2 checking. Therefore use an
3169 * unconditional IP align value of '2'.
3170 */
3171 ip_align = 2;
3172
3173 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3174 if (!tnum_is_aligned(reg_off, size)) {
3175 char tn_buf[48];
3176
3177 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3178 verbose(env,
3179 "misaligned packet access off %d+%s+%d+%d size %d\n",
3180 ip_align, tn_buf, reg->off, off, size);
3181 return -EACCES;
3182 }
3183
3184 return 0;
3185 }
3186
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)3187 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3188 const struct bpf_reg_state *reg,
3189 const char *pointer_desc,
3190 int off, int size, bool strict)
3191 {
3192 struct tnum reg_off;
3193
3194 /* Byte size accesses are always allowed. */
3195 if (!strict || size == 1)
3196 return 0;
3197
3198 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3199 if (!tnum_is_aligned(reg_off, size)) {
3200 char tn_buf[48];
3201
3202 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3203 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3204 pointer_desc, tn_buf, reg->off, off, size);
3205 return -EACCES;
3206 }
3207
3208 return 0;
3209 }
3210
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)3211 static int check_ptr_alignment(struct bpf_verifier_env *env,
3212 const struct bpf_reg_state *reg, int off,
3213 int size, bool strict_alignment_once)
3214 {
3215 bool strict = env->strict_alignment || strict_alignment_once;
3216 const char *pointer_desc = "";
3217
3218 switch (reg->type) {
3219 case PTR_TO_PACKET:
3220 case PTR_TO_PACKET_META:
3221 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3222 * right in front, treat it the very same way.
3223 */
3224 return check_pkt_ptr_alignment(env, reg, off, size, strict);
3225 case PTR_TO_FLOW_KEYS:
3226 pointer_desc = "flow keys ";
3227 break;
3228 case PTR_TO_MAP_VALUE:
3229 pointer_desc = "value ";
3230 break;
3231 case PTR_TO_CTX:
3232 pointer_desc = "context ";
3233 break;
3234 case PTR_TO_STACK:
3235 pointer_desc = "stack ";
3236 /* The stack spill tracking logic in check_stack_write_fixed_off()
3237 * and check_stack_read_fixed_off() relies on stack accesses being
3238 * aligned.
3239 */
3240 strict = true;
3241 break;
3242 case PTR_TO_SOCKET:
3243 pointer_desc = "sock ";
3244 break;
3245 case PTR_TO_SOCK_COMMON:
3246 pointer_desc = "sock_common ";
3247 break;
3248 case PTR_TO_TCP_SOCK:
3249 pointer_desc = "tcp_sock ";
3250 break;
3251 case PTR_TO_XDP_SOCK:
3252 pointer_desc = "xdp_sock ";
3253 break;
3254 default:
3255 break;
3256 }
3257 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3258 strict);
3259 }
3260
update_stack_depth(struct bpf_verifier_env * env,const struct bpf_func_state * func,int off)3261 static int update_stack_depth(struct bpf_verifier_env *env,
3262 const struct bpf_func_state *func,
3263 int off)
3264 {
3265 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3266
3267 if (stack >= -off)
3268 return 0;
3269
3270 /* update known max for given subprogram */
3271 env->subprog_info[func->subprogno].stack_depth = -off;
3272 return 0;
3273 }
3274
3275 /* starting from main bpf function walk all instructions of the function
3276 * and recursively walk all callees that given function can call.
3277 * Ignore jump and exit insns.
3278 * Since recursion is prevented by check_cfg() this algorithm
3279 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3280 */
check_max_stack_depth(struct bpf_verifier_env * env)3281 static int check_max_stack_depth(struct bpf_verifier_env *env)
3282 {
3283 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3284 struct bpf_subprog_info *subprog = env->subprog_info;
3285 struct bpf_insn *insn = env->prog->insnsi;
3286 bool tail_call_reachable = false;
3287 int ret_insn[MAX_CALL_FRAMES];
3288 int ret_prog[MAX_CALL_FRAMES];
3289 int j;
3290
3291 process_func:
3292 /* protect against potential stack overflow that might happen when
3293 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3294 * depth for such case down to 256 so that the worst case scenario
3295 * would result in 8k stack size (32 which is tailcall limit * 256 =
3296 * 8k).
3297 *
3298 * To get the idea what might happen, see an example:
3299 * func1 -> sub rsp, 128
3300 * subfunc1 -> sub rsp, 256
3301 * tailcall1 -> add rsp, 256
3302 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3303 * subfunc2 -> sub rsp, 64
3304 * subfunc22 -> sub rsp, 128
3305 * tailcall2 -> add rsp, 128
3306 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3307 *
3308 * tailcall will unwind the current stack frame but it will not get rid
3309 * of caller's stack as shown on the example above.
3310 */
3311 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3312 verbose(env,
3313 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3314 depth);
3315 return -EACCES;
3316 }
3317 /* round up to 32-bytes, since this is granularity
3318 * of interpreter stack size
3319 */
3320 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3321 if (depth > MAX_BPF_STACK) {
3322 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3323 frame + 1, depth);
3324 return -EACCES;
3325 }
3326 continue_func:
3327 subprog_end = subprog[idx + 1].start;
3328 for (; i < subprog_end; i++) {
3329 if (insn[i].code != (BPF_JMP | BPF_CALL))
3330 continue;
3331 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3332 continue;
3333 /* remember insn and function to return to */
3334 ret_insn[frame] = i + 1;
3335 ret_prog[frame] = idx;
3336
3337 /* find the callee */
3338 i = i + insn[i].imm + 1;
3339 idx = find_subprog(env, i);
3340 if (idx < 0) {
3341 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3342 i);
3343 return -EFAULT;
3344 }
3345
3346 if (subprog[idx].has_tail_call)
3347 tail_call_reachable = true;
3348
3349 frame++;
3350 if (frame >= MAX_CALL_FRAMES) {
3351 verbose(env, "the call stack of %d frames is too deep !\n",
3352 frame);
3353 return -E2BIG;
3354 }
3355 goto process_func;
3356 }
3357 /* if tail call got detected across bpf2bpf calls then mark each of the
3358 * currently present subprog frames as tail call reachable subprogs;
3359 * this info will be utilized by JIT so that we will be preserving the
3360 * tail call counter throughout bpf2bpf calls combined with tailcalls
3361 */
3362 if (tail_call_reachable)
3363 for (j = 0; j < frame; j++)
3364 subprog[ret_prog[j]].tail_call_reachable = true;
3365 if (subprog[0].tail_call_reachable)
3366 env->prog->aux->tail_call_reachable = true;
3367
3368 /* end of for() loop means the last insn of the 'subprog'
3369 * was reached. Doesn't matter whether it was JA or EXIT
3370 */
3371 if (frame == 0)
3372 return 0;
3373 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3374 frame--;
3375 i = ret_insn[frame];
3376 idx = ret_prog[frame];
3377 goto continue_func;
3378 }
3379
3380 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)3381 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3382 const struct bpf_insn *insn, int idx)
3383 {
3384 int start = idx + insn->imm + 1, subprog;
3385
3386 subprog = find_subprog(env, start);
3387 if (subprog < 0) {
3388 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3389 start);
3390 return -EFAULT;
3391 }
3392 return env->subprog_info[subprog].stack_depth;
3393 }
3394 #endif
3395
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)3396 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3397 const struct bpf_reg_state *reg, int regno,
3398 bool fixed_off_ok)
3399 {
3400 /* Access to this pointer-typed register or passing it to a helper
3401 * is only allowed in its original, unmodified form.
3402 */
3403
3404 if (!fixed_off_ok && reg->off) {
3405 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3406 reg_type_str(env, reg->type), regno, reg->off);
3407 return -EACCES;
3408 }
3409
3410 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3411 char tn_buf[48];
3412
3413 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3414 verbose(env, "variable %s access var_off=%s disallowed\n",
3415 reg_type_str(env, reg->type), tn_buf);
3416 return -EACCES;
3417 }
3418
3419 return 0;
3420 }
3421
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)3422 int check_ptr_off_reg(struct bpf_verifier_env *env,
3423 const struct bpf_reg_state *reg, int regno)
3424 {
3425 return __check_ptr_off_reg(env, reg, regno, false);
3426 }
3427
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)3428 static int __check_buffer_access(struct bpf_verifier_env *env,
3429 const char *buf_info,
3430 const struct bpf_reg_state *reg,
3431 int regno, int off, int size)
3432 {
3433 if (off < 0) {
3434 verbose(env,
3435 "R%d invalid %s buffer access: off=%d, size=%d\n",
3436 regno, buf_info, off, size);
3437 return -EACCES;
3438 }
3439 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3440 char tn_buf[48];
3441
3442 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3443 verbose(env,
3444 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3445 regno, off, tn_buf);
3446 return -EACCES;
3447 }
3448
3449 return 0;
3450 }
3451
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)3452 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3453 const struct bpf_reg_state *reg,
3454 int regno, int off, int size)
3455 {
3456 int err;
3457
3458 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3459 if (err)
3460 return err;
3461
3462 if (off + size > env->prog->aux->max_tp_access)
3463 env->prog->aux->max_tp_access = off + size;
3464
3465 return 0;
3466 }
3467
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,const char * buf_info,u32 * max_access)3468 static int check_buffer_access(struct bpf_verifier_env *env,
3469 const struct bpf_reg_state *reg,
3470 int regno, int off, int size,
3471 bool zero_size_allowed,
3472 const char *buf_info,
3473 u32 *max_access)
3474 {
3475 int err;
3476
3477 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3478 if (err)
3479 return err;
3480
3481 if (off + size > *max_access)
3482 *max_access = off + size;
3483
3484 return 0;
3485 }
3486
3487 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)3488 static void zext_32_to_64(struct bpf_reg_state *reg)
3489 {
3490 reg->var_off = tnum_subreg(reg->var_off);
3491 __reg_assign_32_into_64(reg);
3492 }
3493
3494 /* truncate register to smaller size (in bytes)
3495 * must be called with size < BPF_REG_SIZE
3496 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)3497 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3498 {
3499 u64 mask;
3500
3501 /* clear high bits in bit representation */
3502 reg->var_off = tnum_cast(reg->var_off, size);
3503
3504 /* fix arithmetic bounds */
3505 mask = ((u64)1 << (size * 8)) - 1;
3506 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3507 reg->umin_value &= mask;
3508 reg->umax_value &= mask;
3509 } else {
3510 reg->umin_value = 0;
3511 reg->umax_value = mask;
3512 }
3513 reg->smin_value = reg->umin_value;
3514 reg->smax_value = reg->umax_value;
3515
3516 /* If size is smaller than 32bit register the 32bit register
3517 * values are also truncated so we push 64-bit bounds into
3518 * 32-bit bounds. Above were truncated < 32-bits already.
3519 */
3520 if (size >= 4)
3521 return;
3522 __reg_combine_64_into_32(reg);
3523 }
3524
bpf_map_is_rdonly(const struct bpf_map * map)3525 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3526 {
3527 /* A map is considered read-only if the following condition are true:
3528 *
3529 * 1) BPF program side cannot change any of the map content. The
3530 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
3531 * and was set at map creation time.
3532 * 2) The map value(s) have been initialized from user space by a
3533 * loader and then "frozen", such that no new map update/delete
3534 * operations from syscall side are possible for the rest of
3535 * the map's lifetime from that point onwards.
3536 * 3) Any parallel/pending map update/delete operations from syscall
3537 * side have been completed. Only after that point, it's safe to
3538 * assume that map value(s) are immutable.
3539 */
3540 return (map->map_flags & BPF_F_RDONLY_PROG) &&
3541 READ_ONCE(map->frozen) &&
3542 !bpf_map_write_active(map);
3543 }
3544
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val)3545 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3546 {
3547 void *ptr;
3548 u64 addr;
3549 int err;
3550
3551 err = map->ops->map_direct_value_addr(map, &addr, off);
3552 if (err)
3553 return err;
3554 ptr = (void *)(long)addr + off;
3555
3556 switch (size) {
3557 case sizeof(u8):
3558 *val = (u64)*(u8 *)ptr;
3559 break;
3560 case sizeof(u16):
3561 *val = (u64)*(u16 *)ptr;
3562 break;
3563 case sizeof(u32):
3564 *val = (u64)*(u32 *)ptr;
3565 break;
3566 case sizeof(u64):
3567 *val = *(u64 *)ptr;
3568 break;
3569 default:
3570 return -EINVAL;
3571 }
3572 return 0;
3573 }
3574
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)3575 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3576 struct bpf_reg_state *regs,
3577 int regno, int off, int size,
3578 enum bpf_access_type atype,
3579 int value_regno)
3580 {
3581 struct bpf_reg_state *reg = regs + regno;
3582 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3583 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3584 u32 btf_id;
3585 int ret;
3586
3587 if (off < 0) {
3588 verbose(env,
3589 "R%d is ptr_%s invalid negative access: off=%d\n",
3590 regno, tname, off);
3591 return -EACCES;
3592 }
3593 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3594 char tn_buf[48];
3595
3596 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3597 verbose(env,
3598 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3599 regno, tname, off, tn_buf);
3600 return -EACCES;
3601 }
3602
3603 if (env->ops->btf_struct_access) {
3604 ret = env->ops->btf_struct_access(&env->log, t, off, size,
3605 atype, &btf_id);
3606 } else {
3607 if (atype != BPF_READ) {
3608 verbose(env, "only read is supported\n");
3609 return -EACCES;
3610 }
3611
3612 ret = btf_struct_access(&env->log, t, off, size, atype,
3613 &btf_id);
3614 }
3615
3616 if (ret < 0)
3617 return ret;
3618
3619 if (atype == BPF_READ && value_regno >= 0)
3620 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3621
3622 return 0;
3623 }
3624
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)3625 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3626 struct bpf_reg_state *regs,
3627 int regno, int off, int size,
3628 enum bpf_access_type atype,
3629 int value_regno)
3630 {
3631 struct bpf_reg_state *reg = regs + regno;
3632 struct bpf_map *map = reg->map_ptr;
3633 const struct btf_type *t;
3634 const char *tname;
3635 u32 btf_id;
3636 int ret;
3637
3638 if (!btf_vmlinux) {
3639 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3640 return -ENOTSUPP;
3641 }
3642
3643 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3644 verbose(env, "map_ptr access not supported for map type %d\n",
3645 map->map_type);
3646 return -ENOTSUPP;
3647 }
3648
3649 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3650 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3651
3652 if (!env->allow_ptr_to_map_access) {
3653 verbose(env,
3654 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3655 tname);
3656 return -EPERM;
3657 }
3658
3659 if (off < 0) {
3660 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3661 regno, tname, off);
3662 return -EACCES;
3663 }
3664
3665 if (atype != BPF_READ) {
3666 verbose(env, "only read from %s is supported\n", tname);
3667 return -EACCES;
3668 }
3669
3670 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3671 if (ret < 0)
3672 return ret;
3673
3674 if (value_regno >= 0)
3675 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3676
3677 return 0;
3678 }
3679
3680 /* Check that the stack access at the given offset is within bounds. The
3681 * maximum valid offset is -1.
3682 *
3683 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3684 * -state->allocated_stack for reads.
3685 */
check_stack_slot_within_bounds(int off,struct bpf_func_state * state,enum bpf_access_type t)3686 static int check_stack_slot_within_bounds(int off,
3687 struct bpf_func_state *state,
3688 enum bpf_access_type t)
3689 {
3690 int min_valid_off;
3691
3692 if (t == BPF_WRITE)
3693 min_valid_off = -MAX_BPF_STACK;
3694 else
3695 min_valid_off = -state->allocated_stack;
3696
3697 if (off < min_valid_off || off > -1)
3698 return -EACCES;
3699 return 0;
3700 }
3701
3702 /* Check that the stack access at 'regno + off' falls within the maximum stack
3703 * bounds.
3704 *
3705 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3706 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum stack_access_src src,enum bpf_access_type type)3707 static int check_stack_access_within_bounds(
3708 struct bpf_verifier_env *env,
3709 int regno, int off, int access_size,
3710 enum stack_access_src src, enum bpf_access_type type)
3711 {
3712 struct bpf_reg_state *regs = cur_regs(env);
3713 struct bpf_reg_state *reg = regs + regno;
3714 struct bpf_func_state *state = func(env, reg);
3715 int min_off, max_off;
3716 int err;
3717 char *err_extra;
3718
3719 if (src == ACCESS_HELPER)
3720 /* We don't know if helpers are reading or writing (or both). */
3721 err_extra = " indirect access to";
3722 else if (type == BPF_READ)
3723 err_extra = " read from";
3724 else
3725 err_extra = " write to";
3726
3727 if (tnum_is_const(reg->var_off)) {
3728 min_off = reg->var_off.value + off;
3729 if (access_size > 0)
3730 max_off = min_off + access_size - 1;
3731 else
3732 max_off = min_off;
3733 } else {
3734 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3735 reg->smin_value <= -BPF_MAX_VAR_OFF) {
3736 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3737 err_extra, regno);
3738 return -EACCES;
3739 }
3740 min_off = reg->smin_value + off;
3741 if (access_size > 0)
3742 max_off = reg->smax_value + off + access_size - 1;
3743 else
3744 max_off = min_off;
3745 }
3746
3747 err = check_stack_slot_within_bounds(min_off, state, type);
3748 if (!err)
3749 err = check_stack_slot_within_bounds(max_off, state, type);
3750
3751 if (err) {
3752 if (tnum_is_const(reg->var_off)) {
3753 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3754 err_extra, regno, off, access_size);
3755 } else {
3756 char tn_buf[48];
3757
3758 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3759 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3760 err_extra, regno, tn_buf, access_size);
3761 }
3762 }
3763 return err;
3764 }
3765
3766 /* check whether memory at (regno + off) is accessible for t = (read | write)
3767 * if t==write, value_regno is a register which value is stored into memory
3768 * if t==read, value_regno is a register which will receive the value from memory
3769 * if t==write && value_regno==-1, some unknown value is stored into memory
3770 * if t==read && value_regno==-1, don't care what we read from memory
3771 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)3772 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3773 int off, int bpf_size, enum bpf_access_type t,
3774 int value_regno, bool strict_alignment_once)
3775 {
3776 struct bpf_reg_state *regs = cur_regs(env);
3777 struct bpf_reg_state *reg = regs + regno;
3778 struct bpf_func_state *state;
3779 int size, err = 0;
3780
3781 size = bpf_size_to_bytes(bpf_size);
3782 if (size < 0)
3783 return size;
3784
3785 /* alignment checks will add in reg->off themselves */
3786 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3787 if (err)
3788 return err;
3789
3790 /* for access checks, reg->off is just part of off */
3791 off += reg->off;
3792
3793 if (reg->type == PTR_TO_MAP_VALUE) {
3794 if (t == BPF_WRITE && value_regno >= 0 &&
3795 is_pointer_value(env, value_regno)) {
3796 verbose(env, "R%d leaks addr into map\n", value_regno);
3797 return -EACCES;
3798 }
3799 err = check_map_access_type(env, regno, off, size, t);
3800 if (err)
3801 return err;
3802 err = check_map_access(env, regno, off, size, false);
3803 if (!err && t == BPF_READ && value_regno >= 0) {
3804 struct bpf_map *map = reg->map_ptr;
3805
3806 /* if map is read-only, track its contents as scalars */
3807 if (tnum_is_const(reg->var_off) &&
3808 bpf_map_is_rdonly(map) &&
3809 map->ops->map_direct_value_addr) {
3810 int map_off = off + reg->var_off.value;
3811 u64 val = 0;
3812
3813 err = bpf_map_direct_read(map, map_off, size,
3814 &val);
3815 if (err)
3816 return err;
3817
3818 regs[value_regno].type = SCALAR_VALUE;
3819 __mark_reg_known(®s[value_regno], val);
3820 } else {
3821 mark_reg_unknown(env, regs, value_regno);
3822 }
3823 }
3824 } else if (base_type(reg->type) == PTR_TO_MEM) {
3825 bool rdonly_mem = type_is_rdonly_mem(reg->type);
3826
3827 if (type_may_be_null(reg->type)) {
3828 verbose(env, "R%d invalid mem access '%s'\n", regno,
3829 reg_type_str(env, reg->type));
3830 return -EACCES;
3831 }
3832
3833 if (t == BPF_WRITE && rdonly_mem) {
3834 verbose(env, "R%d cannot write into %s\n",
3835 regno, reg_type_str(env, reg->type));
3836 return -EACCES;
3837 }
3838
3839 if (t == BPF_WRITE && value_regno >= 0 &&
3840 is_pointer_value(env, value_regno)) {
3841 verbose(env, "R%d leaks addr into mem\n", value_regno);
3842 return -EACCES;
3843 }
3844
3845 err = check_mem_region_access(env, regno, off, size,
3846 reg->mem_size, false);
3847 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
3848 mark_reg_unknown(env, regs, value_regno);
3849 } else if (reg->type == PTR_TO_CTX) {
3850 enum bpf_reg_type reg_type = SCALAR_VALUE;
3851 u32 btf_id = 0;
3852
3853 if (t == BPF_WRITE && value_regno >= 0 &&
3854 is_pointer_value(env, value_regno)) {
3855 verbose(env, "R%d leaks addr into ctx\n", value_regno);
3856 return -EACCES;
3857 }
3858
3859 err = check_ptr_off_reg(env, reg, regno);
3860 if (err < 0)
3861 return err;
3862
3863 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id);
3864 if (err)
3865 verbose_linfo(env, insn_idx, "; ");
3866 if (!err && t == BPF_READ && value_regno >= 0) {
3867 /* ctx access returns either a scalar, or a
3868 * PTR_TO_PACKET[_META,_END]. In the latter
3869 * case, we know the offset is zero.
3870 */
3871 if (reg_type == SCALAR_VALUE) {
3872 mark_reg_unknown(env, regs, value_regno);
3873 } else {
3874 mark_reg_known_zero(env, regs,
3875 value_regno);
3876 if (type_may_be_null(reg_type))
3877 regs[value_regno].id = ++env->id_gen;
3878 /* A load of ctx field could have different
3879 * actual load size with the one encoded in the
3880 * insn. When the dst is PTR, it is for sure not
3881 * a sub-register.
3882 */
3883 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3884 if (base_type(reg_type) == PTR_TO_BTF_ID)
3885 regs[value_regno].btf_id = btf_id;
3886 }
3887 regs[value_regno].type = reg_type;
3888 }
3889
3890 } else if (reg->type == PTR_TO_STACK) {
3891 /* Basic bounds checks. */
3892 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
3893 if (err)
3894 return err;
3895
3896 state = func(env, reg);
3897 err = update_stack_depth(env, state, off);
3898 if (err)
3899 return err;
3900
3901 if (t == BPF_READ)
3902 err = check_stack_read(env, regno, off, size,
3903 value_regno);
3904 else
3905 err = check_stack_write(env, regno, off, size,
3906 value_regno, insn_idx);
3907 } else if (reg_is_pkt_pointer(reg)) {
3908 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3909 verbose(env, "cannot write into packet\n");
3910 return -EACCES;
3911 }
3912 if (t == BPF_WRITE && value_regno >= 0 &&
3913 is_pointer_value(env, value_regno)) {
3914 verbose(env, "R%d leaks addr into packet\n",
3915 value_regno);
3916 return -EACCES;
3917 }
3918 err = check_packet_access(env, regno, off, size, false);
3919 if (!err && t == BPF_READ && value_regno >= 0)
3920 mark_reg_unknown(env, regs, value_regno);
3921 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3922 if (t == BPF_WRITE && value_regno >= 0 &&
3923 is_pointer_value(env, value_regno)) {
3924 verbose(env, "R%d leaks addr into flow keys\n",
3925 value_regno);
3926 return -EACCES;
3927 }
3928
3929 err = check_flow_keys_access(env, off, size);
3930 if (!err && t == BPF_READ && value_regno >= 0)
3931 mark_reg_unknown(env, regs, value_regno);
3932 } else if (type_is_sk_pointer(reg->type)) {
3933 if (t == BPF_WRITE) {
3934 verbose(env, "R%d cannot write into %s\n",
3935 regno, reg_type_str(env, reg->type));
3936 return -EACCES;
3937 }
3938 err = check_sock_access(env, insn_idx, regno, off, size, t);
3939 if (!err && value_regno >= 0)
3940 mark_reg_unknown(env, regs, value_regno);
3941 } else if (reg->type == PTR_TO_TP_BUFFER) {
3942 err = check_tp_buffer_access(env, reg, regno, off, size);
3943 if (!err && t == BPF_READ && value_regno >= 0)
3944 mark_reg_unknown(env, regs, value_regno);
3945 } else if (reg->type == PTR_TO_BTF_ID) {
3946 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3947 value_regno);
3948 } else if (reg->type == CONST_PTR_TO_MAP) {
3949 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3950 value_regno);
3951 } else if (base_type(reg->type) == PTR_TO_BUF) {
3952 bool rdonly_mem = type_is_rdonly_mem(reg->type);
3953 const char *buf_info;
3954 u32 *max_access;
3955
3956 if (rdonly_mem) {
3957 if (t == BPF_WRITE) {
3958 verbose(env, "R%d cannot write into %s\n",
3959 regno, reg_type_str(env, reg->type));
3960 return -EACCES;
3961 }
3962 buf_info = "rdonly";
3963 max_access = &env->prog->aux->max_rdonly_access;
3964 } else {
3965 buf_info = "rdwr";
3966 max_access = &env->prog->aux->max_rdwr_access;
3967 }
3968
3969 err = check_buffer_access(env, reg, regno, off, size, false,
3970 buf_info, max_access);
3971 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
3972 mark_reg_unknown(env, regs, value_regno);
3973 } else {
3974 verbose(env, "R%d invalid mem access '%s'\n", regno,
3975 reg_type_str(env, reg->type));
3976 return -EACCES;
3977 }
3978
3979 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3980 regs[value_regno].type == SCALAR_VALUE) {
3981 /* b/h/w load zero-extends, mark upper bits as known 0 */
3982 coerce_reg_to_size(®s[value_regno], size);
3983 }
3984 return err;
3985 }
3986
check_xadd(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)3987 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3988 {
3989 int err;
3990
3991 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3992 insn->imm != 0) {
3993 verbose(env, "BPF_XADD uses reserved fields\n");
3994 return -EINVAL;
3995 }
3996
3997 /* check src1 operand */
3998 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3999 if (err)
4000 return err;
4001
4002 /* check src2 operand */
4003 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4004 if (err)
4005 return err;
4006
4007 if (is_pointer_value(env, insn->src_reg)) {
4008 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4009 return -EACCES;
4010 }
4011
4012 if (is_ctx_reg(env, insn->dst_reg) ||
4013 is_pkt_reg(env, insn->dst_reg) ||
4014 is_flow_key_reg(env, insn->dst_reg) ||
4015 is_sk_reg(env, insn->dst_reg)) {
4016 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
4017 insn->dst_reg,
4018 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
4019 return -EACCES;
4020 }
4021
4022 /* check whether atomic_add can read the memory */
4023 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4024 BPF_SIZE(insn->code), BPF_READ, -1, true);
4025 if (err)
4026 return err;
4027
4028 /* check whether atomic_add can write into the same memory */
4029 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4030 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4031 }
4032
4033 /* When register 'regno' is used to read the stack (either directly or through
4034 * a helper function) make sure that it's within stack boundary and, depending
4035 * on the access type, that all elements of the stack are initialized.
4036 *
4037 * 'off' includes 'regno->off', but not its dynamic part (if any).
4038 *
4039 * All registers that have been spilled on the stack in the slots within the
4040 * read offsets are marked as read.
4041 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum stack_access_src type,struct bpf_call_arg_meta * meta)4042 static int check_stack_range_initialized(
4043 struct bpf_verifier_env *env, int regno, int off,
4044 int access_size, bool zero_size_allowed,
4045 enum stack_access_src type, struct bpf_call_arg_meta *meta)
4046 {
4047 struct bpf_reg_state *reg = reg_state(env, regno);
4048 struct bpf_func_state *state = func(env, reg);
4049 int err, min_off, max_off, i, j, slot, spi;
4050 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4051 enum bpf_access_type bounds_check_type;
4052 /* Some accesses can write anything into the stack, others are
4053 * read-only.
4054 */
4055 bool clobber = false;
4056
4057 if (access_size == 0 && !zero_size_allowed) {
4058 verbose(env, "invalid zero-sized read\n");
4059 return -EACCES;
4060 }
4061
4062 if (type == ACCESS_HELPER) {
4063 /* The bounds checks for writes are more permissive than for
4064 * reads. However, if raw_mode is not set, we'll do extra
4065 * checks below.
4066 */
4067 bounds_check_type = BPF_WRITE;
4068 clobber = true;
4069 } else {
4070 bounds_check_type = BPF_READ;
4071 }
4072 err = check_stack_access_within_bounds(env, regno, off, access_size,
4073 type, bounds_check_type);
4074 if (err)
4075 return err;
4076
4077
4078 if (tnum_is_const(reg->var_off)) {
4079 min_off = max_off = reg->var_off.value + off;
4080 } else {
4081 /* Variable offset is prohibited for unprivileged mode for
4082 * simplicity since it requires corresponding support in
4083 * Spectre masking for stack ALU.
4084 * See also retrieve_ptr_limit().
4085 */
4086 if (!env->bypass_spec_v1) {
4087 char tn_buf[48];
4088
4089 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4090 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4091 regno, err_extra, tn_buf);
4092 return -EACCES;
4093 }
4094 /* Only initialized buffer on stack is allowed to be accessed
4095 * with variable offset. With uninitialized buffer it's hard to
4096 * guarantee that whole memory is marked as initialized on
4097 * helper return since specific bounds are unknown what may
4098 * cause uninitialized stack leaking.
4099 */
4100 if (meta && meta->raw_mode)
4101 meta = NULL;
4102
4103 min_off = reg->smin_value + off;
4104 max_off = reg->smax_value + off;
4105 }
4106
4107 if (meta && meta->raw_mode) {
4108 meta->access_size = access_size;
4109 meta->regno = regno;
4110 return 0;
4111 }
4112
4113 for (i = min_off; i < max_off + access_size; i++) {
4114 u8 *stype;
4115
4116 slot = -i - 1;
4117 spi = slot / BPF_REG_SIZE;
4118 if (state->allocated_stack <= slot)
4119 goto err;
4120 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4121 if (*stype == STACK_MISC)
4122 goto mark;
4123 if (*stype == STACK_ZERO) {
4124 if (clobber) {
4125 /* helper can write anything into the stack */
4126 *stype = STACK_MISC;
4127 }
4128 goto mark;
4129 }
4130
4131 if (is_spilled_reg(&state->stack[spi]) &&
4132 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4133 goto mark;
4134
4135 if (is_spilled_reg(&state->stack[spi]) &&
4136 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4137 env->allow_ptr_leaks)) {
4138 if (clobber) {
4139 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4140 for (j = 0; j < BPF_REG_SIZE; j++)
4141 state->stack[spi].slot_type[j] = STACK_MISC;
4142 }
4143 goto mark;
4144 }
4145
4146 err:
4147 if (tnum_is_const(reg->var_off)) {
4148 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4149 err_extra, regno, min_off, i - min_off, access_size);
4150 } else {
4151 char tn_buf[48];
4152
4153 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4154 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4155 err_extra, regno, tn_buf, i - min_off, access_size);
4156 }
4157 return -EACCES;
4158 mark:
4159 /* reading any byte out of 8-byte 'spill_slot' will cause
4160 * the whole slot to be marked as 'read'
4161 */
4162 mark_reg_read(env, &state->stack[spi].spilled_ptr,
4163 state->stack[spi].spilled_ptr.parent,
4164 REG_LIVE_READ64);
4165 }
4166 return update_stack_depth(env, state, min_off);
4167 }
4168
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)4169 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4170 int access_size, bool zero_size_allowed,
4171 struct bpf_call_arg_meta *meta)
4172 {
4173 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4174 const char *buf_info;
4175 u32 *max_access;
4176
4177 switch (base_type(reg->type)) {
4178 case PTR_TO_PACKET:
4179 case PTR_TO_PACKET_META:
4180 return check_packet_access(env, regno, reg->off, access_size,
4181 zero_size_allowed);
4182 case PTR_TO_MAP_VALUE:
4183 if (check_map_access_type(env, regno, reg->off, access_size,
4184 meta && meta->raw_mode ? BPF_WRITE :
4185 BPF_READ))
4186 return -EACCES;
4187 return check_map_access(env, regno, reg->off, access_size,
4188 zero_size_allowed);
4189 case PTR_TO_MEM:
4190 return check_mem_region_access(env, regno, reg->off,
4191 access_size, reg->mem_size,
4192 zero_size_allowed);
4193 case PTR_TO_BUF:
4194 if (type_is_rdonly_mem(reg->type)) {
4195 if (meta && meta->raw_mode)
4196 return -EACCES;
4197
4198 buf_info = "rdonly";
4199 max_access = &env->prog->aux->max_rdonly_access;
4200 } else {
4201 buf_info = "rdwr";
4202 max_access = &env->prog->aux->max_rdwr_access;
4203 }
4204 return check_buffer_access(env, reg, regno, reg->off,
4205 access_size, zero_size_allowed,
4206 buf_info, max_access);
4207 case PTR_TO_STACK:
4208 return check_stack_range_initialized(
4209 env,
4210 regno, reg->off, access_size,
4211 zero_size_allowed, ACCESS_HELPER, meta);
4212 default: /* scalar_value or invalid ptr */
4213 /* Allow zero-byte read from NULL, regardless of pointer type */
4214 if (zero_size_allowed && access_size == 0 &&
4215 register_is_null(reg))
4216 return 0;
4217
4218 verbose(env, "R%d type=%s ", regno,
4219 reg_type_str(env, reg->type));
4220 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
4221 return -EACCES;
4222 }
4223 }
4224
4225 /* Implementation details:
4226 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4227 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4228 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4229 * value_or_null->value transition, since the verifier only cares about
4230 * the range of access to valid map value pointer and doesn't care about actual
4231 * address of the map element.
4232 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4233 * reg->id > 0 after value_or_null->value transition. By doing so
4234 * two bpf_map_lookups will be considered two different pointers that
4235 * point to different bpf_spin_locks.
4236 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4237 * dead-locks.
4238 * Since only one bpf_spin_lock is allowed the checks are simpler than
4239 * reg_is_refcounted() logic. The verifier needs to remember only
4240 * one spin_lock instead of array of acquired_refs.
4241 * cur_state->active_spin_lock remembers which map value element got locked
4242 * and clears it after bpf_spin_unlock.
4243 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)4244 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4245 bool is_lock)
4246 {
4247 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4248 struct bpf_verifier_state *cur = env->cur_state;
4249 bool is_const = tnum_is_const(reg->var_off);
4250 struct bpf_map *map = reg->map_ptr;
4251 u64 val = reg->var_off.value;
4252
4253 if (!is_const) {
4254 verbose(env,
4255 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4256 regno);
4257 return -EINVAL;
4258 }
4259 if (!map->btf) {
4260 verbose(env,
4261 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4262 map->name);
4263 return -EINVAL;
4264 }
4265 if (!map_value_has_spin_lock(map)) {
4266 if (map->spin_lock_off == -E2BIG)
4267 verbose(env,
4268 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4269 map->name);
4270 else if (map->spin_lock_off == -ENOENT)
4271 verbose(env,
4272 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4273 map->name);
4274 else
4275 verbose(env,
4276 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4277 map->name);
4278 return -EINVAL;
4279 }
4280 if (map->spin_lock_off != val + reg->off) {
4281 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4282 val + reg->off);
4283 return -EINVAL;
4284 }
4285 if (is_lock) {
4286 if (cur->active_spin_lock) {
4287 verbose(env,
4288 "Locking two bpf_spin_locks are not allowed\n");
4289 return -EINVAL;
4290 }
4291 cur->active_spin_lock = reg->id;
4292 } else {
4293 if (!cur->active_spin_lock) {
4294 verbose(env, "bpf_spin_unlock without taking a lock\n");
4295 return -EINVAL;
4296 }
4297 if (cur->active_spin_lock != reg->id) {
4298 verbose(env, "bpf_spin_unlock of different lock\n");
4299 return -EINVAL;
4300 }
4301 cur->active_spin_lock = 0;
4302 }
4303 return 0;
4304 }
4305
arg_type_is_mem_ptr(enum bpf_arg_type type)4306 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4307 {
4308 return base_type(type) == ARG_PTR_TO_MEM ||
4309 base_type(type) == ARG_PTR_TO_UNINIT_MEM;
4310 }
4311
arg_type_is_mem_size(enum bpf_arg_type type)4312 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4313 {
4314 return type == ARG_CONST_SIZE ||
4315 type == ARG_CONST_SIZE_OR_ZERO;
4316 }
4317
arg_type_is_alloc_size(enum bpf_arg_type type)4318 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4319 {
4320 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4321 }
4322
arg_type_is_int_ptr(enum bpf_arg_type type)4323 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4324 {
4325 return type == ARG_PTR_TO_INT ||
4326 type == ARG_PTR_TO_LONG;
4327 }
4328
int_ptr_type_to_size(enum bpf_arg_type type)4329 static int int_ptr_type_to_size(enum bpf_arg_type type)
4330 {
4331 if (type == ARG_PTR_TO_INT)
4332 return sizeof(u32);
4333 else if (type == ARG_PTR_TO_LONG)
4334 return sizeof(u64);
4335
4336 return -EINVAL;
4337 }
4338
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)4339 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4340 const struct bpf_call_arg_meta *meta,
4341 enum bpf_arg_type *arg_type)
4342 {
4343 if (!meta->map_ptr) {
4344 /* kernel subsystem misconfigured verifier */
4345 verbose(env, "invalid map_ptr to access map->type\n");
4346 return -EACCES;
4347 }
4348
4349 switch (meta->map_ptr->map_type) {
4350 case BPF_MAP_TYPE_SOCKMAP:
4351 case BPF_MAP_TYPE_SOCKHASH:
4352 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4353 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4354 } else {
4355 verbose(env, "invalid arg_type for sockmap/sockhash\n");
4356 return -EINVAL;
4357 }
4358 break;
4359
4360 default:
4361 break;
4362 }
4363 return 0;
4364 }
4365
4366 struct bpf_reg_types {
4367 const enum bpf_reg_type types[10];
4368 u32 *btf_id;
4369 };
4370
4371 static const struct bpf_reg_types map_key_value_types = {
4372 .types = {
4373 PTR_TO_STACK,
4374 PTR_TO_PACKET,
4375 PTR_TO_PACKET_META,
4376 PTR_TO_MAP_VALUE,
4377 },
4378 };
4379
4380 static const struct bpf_reg_types sock_types = {
4381 .types = {
4382 PTR_TO_SOCK_COMMON,
4383 PTR_TO_SOCKET,
4384 PTR_TO_TCP_SOCK,
4385 PTR_TO_XDP_SOCK,
4386 },
4387 };
4388
4389 #ifdef CONFIG_NET
4390 static const struct bpf_reg_types btf_id_sock_common_types = {
4391 .types = {
4392 PTR_TO_SOCK_COMMON,
4393 PTR_TO_SOCKET,
4394 PTR_TO_TCP_SOCK,
4395 PTR_TO_XDP_SOCK,
4396 PTR_TO_BTF_ID,
4397 },
4398 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4399 };
4400 #endif
4401
4402 static const struct bpf_reg_types mem_types = {
4403 .types = {
4404 PTR_TO_STACK,
4405 PTR_TO_PACKET,
4406 PTR_TO_PACKET_META,
4407 PTR_TO_MAP_VALUE,
4408 PTR_TO_MEM,
4409 PTR_TO_MEM | MEM_ALLOC,
4410 PTR_TO_BUF,
4411 },
4412 };
4413
4414 static const struct bpf_reg_types int_ptr_types = {
4415 .types = {
4416 PTR_TO_STACK,
4417 PTR_TO_PACKET,
4418 PTR_TO_PACKET_META,
4419 PTR_TO_MAP_VALUE,
4420 },
4421 };
4422
4423 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4424 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4425 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4426 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
4427 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4428 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4429 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4430 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4431
4432 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4433 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4434 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4435 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4436 [ARG_CONST_SIZE] = &scalar_types,
4437 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4438 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4439 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4440 [ARG_PTR_TO_CTX] = &context_types,
4441 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
4442 #ifdef CONFIG_NET
4443 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4444 #endif
4445 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4446 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4447 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4448 [ARG_PTR_TO_MEM] = &mem_types,
4449 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4450 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4451 [ARG_PTR_TO_INT] = &int_ptr_types,
4452 [ARG_PTR_TO_LONG] = &int_ptr_types,
4453 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
4454 };
4455
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id)4456 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4457 enum bpf_arg_type arg_type,
4458 const u32 *arg_btf_id)
4459 {
4460 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4461 enum bpf_reg_type expected, type = reg->type;
4462 const struct bpf_reg_types *compatible;
4463 int i, j;
4464
4465 compatible = compatible_reg_types[base_type(arg_type)];
4466 if (!compatible) {
4467 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4468 return -EFAULT;
4469 }
4470
4471 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
4472 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
4473 *
4474 * Same for MAYBE_NULL:
4475 *
4476 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
4477 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
4478 *
4479 * Therefore we fold these flags depending on the arg_type before comparison.
4480 */
4481 if (arg_type & MEM_RDONLY)
4482 type &= ~MEM_RDONLY;
4483 if (arg_type & PTR_MAYBE_NULL)
4484 type &= ~PTR_MAYBE_NULL;
4485
4486 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4487 expected = compatible->types[i];
4488 if (expected == NOT_INIT)
4489 break;
4490
4491 if (type == expected)
4492 goto found;
4493 }
4494
4495 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
4496 for (j = 0; j + 1 < i; j++)
4497 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
4498 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
4499 return -EACCES;
4500
4501 found:
4502 if (reg->type == PTR_TO_BTF_ID) {
4503 if (!arg_btf_id) {
4504 if (!compatible->btf_id) {
4505 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4506 return -EFAULT;
4507 }
4508 arg_btf_id = compatible->btf_id;
4509 }
4510
4511 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id,
4512 *arg_btf_id)) {
4513 verbose(env, "R%d is of type %s but %s is expected\n",
4514 regno, kernel_type_name(reg->btf_id),
4515 kernel_type_name(*arg_btf_id));
4516 return -EACCES;
4517 }
4518 }
4519
4520 return 0;
4521 }
4522
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn)4523 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4524 struct bpf_call_arg_meta *meta,
4525 const struct bpf_func_proto *fn)
4526 {
4527 u32 regno = BPF_REG_1 + arg;
4528 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4529 enum bpf_arg_type arg_type = fn->arg_type[arg];
4530 enum bpf_reg_type type = reg->type;
4531 int err = 0;
4532
4533 if (arg_type == ARG_DONTCARE)
4534 return 0;
4535
4536 err = check_reg_arg(env, regno, SRC_OP);
4537 if (err)
4538 return err;
4539
4540 if (arg_type == ARG_ANYTHING) {
4541 if (is_pointer_value(env, regno)) {
4542 verbose(env, "R%d leaks addr into helper function\n",
4543 regno);
4544 return -EACCES;
4545 }
4546 return 0;
4547 }
4548
4549 if (type_is_pkt_pointer(type) &&
4550 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4551 verbose(env, "helper access to the packet is not allowed\n");
4552 return -EACCES;
4553 }
4554
4555 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
4556 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4557 err = resolve_map_arg_type(env, meta, &arg_type);
4558 if (err)
4559 return err;
4560 }
4561
4562 if (register_is_null(reg) && type_may_be_null(arg_type))
4563 /* A NULL register has a SCALAR_VALUE type, so skip
4564 * type checking.
4565 */
4566 goto skip_type_check;
4567
4568 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4569 if (err)
4570 return err;
4571
4572 switch ((u32)type) {
4573 case SCALAR_VALUE:
4574 /* Pointer types where reg offset is explicitly allowed: */
4575 case PTR_TO_PACKET:
4576 case PTR_TO_PACKET_META:
4577 case PTR_TO_MAP_VALUE:
4578 case PTR_TO_MEM:
4579 case PTR_TO_MEM | MEM_RDONLY:
4580 case PTR_TO_MEM | MEM_ALLOC:
4581 case PTR_TO_BUF:
4582 case PTR_TO_BUF | MEM_RDONLY:
4583 case PTR_TO_STACK:
4584 /* Some of the argument types nevertheless require a
4585 * zero register offset.
4586 */
4587 if (arg_type == ARG_PTR_TO_ALLOC_MEM)
4588 goto force_off_check;
4589 break;
4590 /* All the rest must be rejected: */
4591 default:
4592 force_off_check:
4593 err = __check_ptr_off_reg(env, reg, regno,
4594 type == PTR_TO_BTF_ID);
4595 if (err < 0)
4596 return err;
4597 break;
4598 }
4599
4600 skip_type_check:
4601 if (reg->ref_obj_id) {
4602 if (meta->ref_obj_id) {
4603 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4604 regno, reg->ref_obj_id,
4605 meta->ref_obj_id);
4606 return -EFAULT;
4607 }
4608 meta->ref_obj_id = reg->ref_obj_id;
4609 }
4610
4611 if (arg_type == ARG_CONST_MAP_PTR) {
4612 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4613 meta->map_ptr = reg->map_ptr;
4614 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4615 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4616 * check that [key, key + map->key_size) are within
4617 * stack limits and initialized
4618 */
4619 if (!meta->map_ptr) {
4620 /* in function declaration map_ptr must come before
4621 * map_key, so that it's verified and known before
4622 * we have to check map_key here. Otherwise it means
4623 * that kernel subsystem misconfigured verifier
4624 */
4625 verbose(env, "invalid map_ptr to access map->key\n");
4626 return -EACCES;
4627 }
4628 err = check_helper_mem_access(env, regno,
4629 meta->map_ptr->key_size, false,
4630 NULL);
4631 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
4632 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4633 if (type_may_be_null(arg_type) && register_is_null(reg))
4634 return 0;
4635
4636 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4637 * check [value, value + map->value_size) validity
4638 */
4639 if (!meta->map_ptr) {
4640 /* kernel subsystem misconfigured verifier */
4641 verbose(env, "invalid map_ptr to access map->value\n");
4642 return -EACCES;
4643 }
4644 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4645 err = check_helper_mem_access(env, regno,
4646 meta->map_ptr->value_size, false,
4647 meta);
4648 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4649 if (!reg->btf_id) {
4650 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4651 return -EACCES;
4652 }
4653 meta->ret_btf_id = reg->btf_id;
4654 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4655 if (meta->func_id == BPF_FUNC_spin_lock) {
4656 if (process_spin_lock(env, regno, true))
4657 return -EACCES;
4658 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4659 if (process_spin_lock(env, regno, false))
4660 return -EACCES;
4661 } else {
4662 verbose(env, "verifier internal error\n");
4663 return -EFAULT;
4664 }
4665 } else if (arg_type_is_mem_ptr(arg_type)) {
4666 /* The access to this pointer is only checked when we hit the
4667 * next is_mem_size argument below.
4668 */
4669 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4670 } else if (arg_type_is_mem_size(arg_type)) {
4671 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4672
4673 /* This is used to refine r0 return value bounds for helpers
4674 * that enforce this value as an upper bound on return values.
4675 * See do_refine_retval_range() for helpers that can refine
4676 * the return value. C type of helper is u32 so we pull register
4677 * bound from umax_value however, if negative verifier errors
4678 * out. Only upper bounds can be learned because retval is an
4679 * int type and negative retvals are allowed.
4680 */
4681 meta->msize_max_value = reg->umax_value;
4682
4683 /* The register is SCALAR_VALUE; the access check
4684 * happens using its boundaries.
4685 */
4686 if (!tnum_is_const(reg->var_off))
4687 /* For unprivileged variable accesses, disable raw
4688 * mode so that the program is required to
4689 * initialize all the memory that the helper could
4690 * just partially fill up.
4691 */
4692 meta = NULL;
4693
4694 if (reg->smin_value < 0) {
4695 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4696 regno);
4697 return -EACCES;
4698 }
4699
4700 if (reg->umin_value == 0) {
4701 err = check_helper_mem_access(env, regno - 1, 0,
4702 zero_size_allowed,
4703 meta);
4704 if (err)
4705 return err;
4706 }
4707
4708 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4709 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4710 regno);
4711 return -EACCES;
4712 }
4713 err = check_helper_mem_access(env, regno - 1,
4714 reg->umax_value,
4715 zero_size_allowed, meta);
4716 if (!err)
4717 err = mark_chain_precision(env, regno);
4718 } else if (arg_type_is_alloc_size(arg_type)) {
4719 if (!tnum_is_const(reg->var_off)) {
4720 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4721 regno);
4722 return -EACCES;
4723 }
4724 meta->mem_size = reg->var_off.value;
4725 } else if (arg_type_is_int_ptr(arg_type)) {
4726 int size = int_ptr_type_to_size(arg_type);
4727
4728 err = check_helper_mem_access(env, regno, size, false, meta);
4729 if (err)
4730 return err;
4731 err = check_ptr_alignment(env, reg, 0, size, true);
4732 }
4733
4734 return err;
4735 }
4736
may_update_sockmap(struct bpf_verifier_env * env,int func_id)4737 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4738 {
4739 enum bpf_attach_type eatype = env->prog->expected_attach_type;
4740 enum bpf_prog_type type = resolve_prog_type(env->prog);
4741
4742 if (func_id != BPF_FUNC_map_update_elem)
4743 return false;
4744
4745 /* It's not possible to get access to a locked struct sock in these
4746 * contexts, so updating is safe.
4747 */
4748 switch (type) {
4749 case BPF_PROG_TYPE_TRACING:
4750 if (eatype == BPF_TRACE_ITER)
4751 return true;
4752 break;
4753 case BPF_PROG_TYPE_SOCKET_FILTER:
4754 case BPF_PROG_TYPE_SCHED_CLS:
4755 case BPF_PROG_TYPE_SCHED_ACT:
4756 case BPF_PROG_TYPE_XDP:
4757 case BPF_PROG_TYPE_SK_REUSEPORT:
4758 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4759 case BPF_PROG_TYPE_SK_LOOKUP:
4760 return true;
4761 default:
4762 break;
4763 }
4764
4765 verbose(env, "cannot update sockmap in this context\n");
4766 return false;
4767 }
4768
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)4769 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4770 {
4771 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4772 }
4773
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)4774 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4775 struct bpf_map *map, int func_id)
4776 {
4777 if (!map)
4778 return 0;
4779
4780 /* We need a two way check, first is from map perspective ... */
4781 switch (map->map_type) {
4782 case BPF_MAP_TYPE_PROG_ARRAY:
4783 if (func_id != BPF_FUNC_tail_call)
4784 goto error;
4785 break;
4786 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4787 if (func_id != BPF_FUNC_perf_event_read &&
4788 func_id != BPF_FUNC_perf_event_output &&
4789 func_id != BPF_FUNC_skb_output &&
4790 func_id != BPF_FUNC_perf_event_read_value &&
4791 func_id != BPF_FUNC_xdp_output)
4792 goto error;
4793 break;
4794 case BPF_MAP_TYPE_RINGBUF:
4795 if (func_id != BPF_FUNC_ringbuf_output &&
4796 func_id != BPF_FUNC_ringbuf_reserve &&
4797 func_id != BPF_FUNC_ringbuf_query)
4798 goto error;
4799 break;
4800 case BPF_MAP_TYPE_STACK_TRACE:
4801 if (func_id != BPF_FUNC_get_stackid)
4802 goto error;
4803 break;
4804 case BPF_MAP_TYPE_CGROUP_ARRAY:
4805 if (func_id != BPF_FUNC_skb_under_cgroup &&
4806 func_id != BPF_FUNC_current_task_under_cgroup)
4807 goto error;
4808 break;
4809 case BPF_MAP_TYPE_CGROUP_STORAGE:
4810 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4811 if (func_id != BPF_FUNC_get_local_storage)
4812 goto error;
4813 break;
4814 case BPF_MAP_TYPE_DEVMAP:
4815 case BPF_MAP_TYPE_DEVMAP_HASH:
4816 if (func_id != BPF_FUNC_redirect_map &&
4817 func_id != BPF_FUNC_map_lookup_elem)
4818 goto error;
4819 break;
4820 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4821 * appear.
4822 */
4823 case BPF_MAP_TYPE_CPUMAP:
4824 if (func_id != BPF_FUNC_redirect_map)
4825 goto error;
4826 break;
4827 case BPF_MAP_TYPE_XSKMAP:
4828 if (func_id != BPF_FUNC_redirect_map &&
4829 func_id != BPF_FUNC_map_lookup_elem)
4830 goto error;
4831 break;
4832 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4833 case BPF_MAP_TYPE_HASH_OF_MAPS:
4834 if (func_id != BPF_FUNC_map_lookup_elem)
4835 goto error;
4836 break;
4837 case BPF_MAP_TYPE_SOCKMAP:
4838 if (func_id != BPF_FUNC_sk_redirect_map &&
4839 func_id != BPF_FUNC_sock_map_update &&
4840 func_id != BPF_FUNC_map_delete_elem &&
4841 func_id != BPF_FUNC_msg_redirect_map &&
4842 func_id != BPF_FUNC_sk_select_reuseport &&
4843 func_id != BPF_FUNC_map_lookup_elem &&
4844 !may_update_sockmap(env, func_id))
4845 goto error;
4846 break;
4847 case BPF_MAP_TYPE_SOCKHASH:
4848 if (func_id != BPF_FUNC_sk_redirect_hash &&
4849 func_id != BPF_FUNC_sock_hash_update &&
4850 func_id != BPF_FUNC_map_delete_elem &&
4851 func_id != BPF_FUNC_msg_redirect_hash &&
4852 func_id != BPF_FUNC_sk_select_reuseport &&
4853 func_id != BPF_FUNC_map_lookup_elem &&
4854 !may_update_sockmap(env, func_id))
4855 goto error;
4856 break;
4857 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4858 if (func_id != BPF_FUNC_sk_select_reuseport)
4859 goto error;
4860 break;
4861 case BPF_MAP_TYPE_QUEUE:
4862 case BPF_MAP_TYPE_STACK:
4863 if (func_id != BPF_FUNC_map_peek_elem &&
4864 func_id != BPF_FUNC_map_pop_elem &&
4865 func_id != BPF_FUNC_map_push_elem)
4866 goto error;
4867 break;
4868 case BPF_MAP_TYPE_SK_STORAGE:
4869 if (func_id != BPF_FUNC_sk_storage_get &&
4870 func_id != BPF_FUNC_sk_storage_delete)
4871 goto error;
4872 break;
4873 case BPF_MAP_TYPE_INODE_STORAGE:
4874 if (func_id != BPF_FUNC_inode_storage_get &&
4875 func_id != BPF_FUNC_inode_storage_delete)
4876 goto error;
4877 break;
4878 default:
4879 break;
4880 }
4881
4882 /* ... and second from the function itself. */
4883 switch (func_id) {
4884 case BPF_FUNC_tail_call:
4885 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4886 goto error;
4887 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4888 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4889 return -EINVAL;
4890 }
4891 break;
4892 case BPF_FUNC_perf_event_read:
4893 case BPF_FUNC_perf_event_output:
4894 case BPF_FUNC_perf_event_read_value:
4895 case BPF_FUNC_skb_output:
4896 case BPF_FUNC_xdp_output:
4897 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4898 goto error;
4899 break;
4900 case BPF_FUNC_ringbuf_output:
4901 case BPF_FUNC_ringbuf_reserve:
4902 case BPF_FUNC_ringbuf_query:
4903 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
4904 goto error;
4905 break;
4906 case BPF_FUNC_get_stackid:
4907 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4908 goto error;
4909 break;
4910 case BPF_FUNC_current_task_under_cgroup:
4911 case BPF_FUNC_skb_under_cgroup:
4912 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4913 goto error;
4914 break;
4915 case BPF_FUNC_redirect_map:
4916 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4917 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4918 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4919 map->map_type != BPF_MAP_TYPE_XSKMAP)
4920 goto error;
4921 break;
4922 case BPF_FUNC_sk_redirect_map:
4923 case BPF_FUNC_msg_redirect_map:
4924 case BPF_FUNC_sock_map_update:
4925 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4926 goto error;
4927 break;
4928 case BPF_FUNC_sk_redirect_hash:
4929 case BPF_FUNC_msg_redirect_hash:
4930 case BPF_FUNC_sock_hash_update:
4931 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4932 goto error;
4933 break;
4934 case BPF_FUNC_get_local_storage:
4935 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4936 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4937 goto error;
4938 break;
4939 case BPF_FUNC_sk_select_reuseport:
4940 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4941 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4942 map->map_type != BPF_MAP_TYPE_SOCKHASH)
4943 goto error;
4944 break;
4945 case BPF_FUNC_map_peek_elem:
4946 case BPF_FUNC_map_pop_elem:
4947 case BPF_FUNC_map_push_elem:
4948 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4949 map->map_type != BPF_MAP_TYPE_STACK)
4950 goto error;
4951 break;
4952 case BPF_FUNC_sk_storage_get:
4953 case BPF_FUNC_sk_storage_delete:
4954 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4955 goto error;
4956 break;
4957 case BPF_FUNC_inode_storage_get:
4958 case BPF_FUNC_inode_storage_delete:
4959 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4960 goto error;
4961 break;
4962 default:
4963 break;
4964 }
4965
4966 return 0;
4967 error:
4968 verbose(env, "cannot pass map_type %d into func %s#%d\n",
4969 map->map_type, func_id_name(func_id), func_id);
4970 return -EINVAL;
4971 }
4972
check_raw_mode_ok(const struct bpf_func_proto * fn)4973 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4974 {
4975 int count = 0;
4976
4977 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4978 count++;
4979 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4980 count++;
4981 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4982 count++;
4983 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4984 count++;
4985 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4986 count++;
4987
4988 /* We only support one arg being in raw mode at the moment,
4989 * which is sufficient for the helper functions we have
4990 * right now.
4991 */
4992 return count <= 1;
4993 }
4994
check_args_pair_invalid(enum bpf_arg_type arg_curr,enum bpf_arg_type arg_next)4995 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4996 enum bpf_arg_type arg_next)
4997 {
4998 return (arg_type_is_mem_ptr(arg_curr) &&
4999 !arg_type_is_mem_size(arg_next)) ||
5000 (!arg_type_is_mem_ptr(arg_curr) &&
5001 arg_type_is_mem_size(arg_next));
5002 }
5003
check_arg_pair_ok(const struct bpf_func_proto * fn)5004 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5005 {
5006 /* bpf_xxx(..., buf, len) call will access 'len'
5007 * bytes from memory 'buf'. Both arg types need
5008 * to be paired, so make sure there's no buggy
5009 * helper function specification.
5010 */
5011 if (arg_type_is_mem_size(fn->arg1_type) ||
5012 arg_type_is_mem_ptr(fn->arg5_type) ||
5013 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5014 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5015 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5016 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5017 return false;
5018
5019 return true;
5020 }
5021
check_refcount_ok(const struct bpf_func_proto * fn,int func_id)5022 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5023 {
5024 int count = 0;
5025
5026 if (arg_type_may_be_refcounted(fn->arg1_type))
5027 count++;
5028 if (arg_type_may_be_refcounted(fn->arg2_type))
5029 count++;
5030 if (arg_type_may_be_refcounted(fn->arg3_type))
5031 count++;
5032 if (arg_type_may_be_refcounted(fn->arg4_type))
5033 count++;
5034 if (arg_type_may_be_refcounted(fn->arg5_type))
5035 count++;
5036
5037 /* A reference acquiring function cannot acquire
5038 * another refcounted ptr.
5039 */
5040 if (may_be_acquire_function(func_id) && count)
5041 return false;
5042
5043 /* We only support one arg being unreferenced at the moment,
5044 * which is sufficient for the helper functions we have right now.
5045 */
5046 return count <= 1;
5047 }
5048
check_btf_id_ok(const struct bpf_func_proto * fn)5049 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5050 {
5051 int i;
5052
5053 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5054 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5055 return false;
5056
5057 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5058 return false;
5059 }
5060
5061 return true;
5062 }
5063
check_func_proto(const struct bpf_func_proto * fn,int func_id)5064 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5065 {
5066 return check_raw_mode_ok(fn) &&
5067 check_arg_pair_ok(fn) &&
5068 check_btf_id_ok(fn) &&
5069 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5070 }
5071
5072 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5073 * are now invalid, so turn them into unknown SCALAR_VALUE.
5074 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)5075 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5076 {
5077 struct bpf_func_state *state;
5078 struct bpf_reg_state *reg;
5079
5080 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5081 if (reg_is_pkt_pointer_any(reg))
5082 __mark_reg_unknown(env, reg);
5083 }));
5084 }
5085
5086 enum {
5087 AT_PKT_END = -1,
5088 BEYOND_PKT_END = -2,
5089 };
5090
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)5091 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5092 {
5093 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5094 struct bpf_reg_state *reg = &state->regs[regn];
5095
5096 if (reg->type != PTR_TO_PACKET)
5097 /* PTR_TO_PACKET_META is not supported yet */
5098 return;
5099
5100 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5101 * How far beyond pkt_end it goes is unknown.
5102 * if (!range_open) it's the case of pkt >= pkt_end
5103 * if (range_open) it's the case of pkt > pkt_end
5104 * hence this pointer is at least 1 byte bigger than pkt_end
5105 */
5106 if (range_open)
5107 reg->range = BEYOND_PKT_END;
5108 else
5109 reg->range = AT_PKT_END;
5110 }
5111
5112 /* The pointer with the specified id has released its reference to kernel
5113 * resources. Identify all copies of the same pointer and clear the reference.
5114 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)5115 static int release_reference(struct bpf_verifier_env *env,
5116 int ref_obj_id)
5117 {
5118 struct bpf_func_state *state;
5119 struct bpf_reg_state *reg;
5120 int err;
5121
5122 err = release_reference_state(cur_func(env), ref_obj_id);
5123 if (err)
5124 return err;
5125
5126 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5127 if (reg->ref_obj_id == ref_obj_id) {
5128 if (!env->allow_ptr_leaks)
5129 __mark_reg_not_init(env, reg);
5130 else
5131 __mark_reg_unknown(env, reg);
5132 }
5133 }));
5134
5135 return 0;
5136 }
5137
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)5138 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5139 struct bpf_reg_state *regs)
5140 {
5141 int i;
5142
5143 /* after the call registers r0 - r5 were scratched */
5144 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5145 mark_reg_not_init(env, regs, caller_saved[i]);
5146 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5147 }
5148 }
5149
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)5150 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5151 int *insn_idx)
5152 {
5153 struct bpf_verifier_state *state = env->cur_state;
5154 struct bpf_func_info_aux *func_info_aux;
5155 struct bpf_func_state *caller, *callee;
5156 int i, err, subprog, target_insn;
5157 bool is_global = false;
5158
5159 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5160 verbose(env, "the call stack of %d frames is too deep\n",
5161 state->curframe + 2);
5162 return -E2BIG;
5163 }
5164
5165 target_insn = *insn_idx + insn->imm;
5166 subprog = find_subprog(env, target_insn + 1);
5167 if (subprog < 0) {
5168 verbose(env, "verifier bug. No program starts at insn %d\n",
5169 target_insn + 1);
5170 return -EFAULT;
5171 }
5172
5173 caller = state->frame[state->curframe];
5174 if (state->frame[state->curframe + 1]) {
5175 verbose(env, "verifier bug. Frame %d already allocated\n",
5176 state->curframe + 1);
5177 return -EFAULT;
5178 }
5179
5180 func_info_aux = env->prog->aux->func_info_aux;
5181 if (func_info_aux)
5182 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5183 err = btf_check_func_arg_match(env, subprog, caller->regs);
5184 if (err == -EFAULT)
5185 return err;
5186 if (is_global) {
5187 if (err) {
5188 verbose(env, "Caller passes invalid args into func#%d\n",
5189 subprog);
5190 return err;
5191 } else {
5192 if (env->log.level & BPF_LOG_LEVEL)
5193 verbose(env,
5194 "Func#%d is global and valid. Skipping.\n",
5195 subprog);
5196 clear_caller_saved_regs(env, caller->regs);
5197
5198 /* All global functions return a 64-bit SCALAR_VALUE */
5199 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5200 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5201
5202 /* continue with next insn after call */
5203 return 0;
5204 }
5205 }
5206
5207 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5208 if (!callee)
5209 return -ENOMEM;
5210 state->frame[state->curframe + 1] = callee;
5211
5212 /* callee cannot access r0, r6 - r9 for reading and has to write
5213 * into its own stack before reading from it.
5214 * callee can read/write into caller's stack
5215 */
5216 init_func_state(env, callee,
5217 /* remember the callsite, it will be used by bpf_exit */
5218 *insn_idx /* callsite */,
5219 state->curframe + 1 /* frameno within this callchain */,
5220 subprog /* subprog number within this prog */);
5221
5222 /* Transfer references to the callee */
5223 err = transfer_reference_state(callee, caller);
5224 if (err)
5225 return err;
5226
5227 /* copy r1 - r5 args that callee can access. The copy includes parent
5228 * pointers, which connects us up to the liveness chain
5229 */
5230 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5231 callee->regs[i] = caller->regs[i];
5232
5233 clear_caller_saved_regs(env, caller->regs);
5234
5235 /* only increment it after check_reg_arg() finished */
5236 state->curframe++;
5237
5238 /* and go analyze first insn of the callee */
5239 *insn_idx = target_insn;
5240
5241 if (env->log.level & BPF_LOG_LEVEL) {
5242 verbose(env, "caller:\n");
5243 print_verifier_state(env, caller);
5244 verbose(env, "callee:\n");
5245 print_verifier_state(env, callee);
5246 }
5247 return 0;
5248 }
5249
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)5250 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5251 {
5252 struct bpf_verifier_state *state = env->cur_state;
5253 struct bpf_func_state *caller, *callee;
5254 struct bpf_reg_state *r0;
5255 int err;
5256
5257 callee = state->frame[state->curframe];
5258 r0 = &callee->regs[BPF_REG_0];
5259 if (r0->type == PTR_TO_STACK) {
5260 /* technically it's ok to return caller's stack pointer
5261 * (or caller's caller's pointer) back to the caller,
5262 * since these pointers are valid. Only current stack
5263 * pointer will be invalid as soon as function exits,
5264 * but let's be conservative
5265 */
5266 verbose(env, "cannot return stack pointer to the caller\n");
5267 return -EINVAL;
5268 }
5269
5270 state->curframe--;
5271 caller = state->frame[state->curframe];
5272 /* return to the caller whatever r0 had in the callee */
5273 caller->regs[BPF_REG_0] = *r0;
5274
5275 /* Transfer references to the caller */
5276 err = transfer_reference_state(caller, callee);
5277 if (err)
5278 return err;
5279
5280 *insn_idx = callee->callsite + 1;
5281 if (env->log.level & BPF_LOG_LEVEL) {
5282 verbose(env, "returning from callee:\n");
5283 print_verifier_state(env, callee);
5284 verbose(env, "to caller at %d:\n", *insn_idx);
5285 print_verifier_state(env, caller);
5286 }
5287 /* clear everything in the callee */
5288 free_func_state(callee);
5289 state->frame[state->curframe + 1] = NULL;
5290 return 0;
5291 }
5292
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)5293 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5294 int func_id,
5295 struct bpf_call_arg_meta *meta)
5296 {
5297 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
5298
5299 if (ret_type != RET_INTEGER ||
5300 (func_id != BPF_FUNC_get_stack &&
5301 func_id != BPF_FUNC_probe_read_str &&
5302 func_id != BPF_FUNC_probe_read_kernel_str &&
5303 func_id != BPF_FUNC_probe_read_user_str))
5304 return;
5305
5306 ret_reg->smax_value = meta->msize_max_value;
5307 ret_reg->s32_max_value = meta->msize_max_value;
5308 ret_reg->smin_value = -MAX_ERRNO;
5309 ret_reg->s32_min_value = -MAX_ERRNO;
5310 reg_bounds_sync(ret_reg);
5311 }
5312
5313 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)5314 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5315 int func_id, int insn_idx)
5316 {
5317 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5318 struct bpf_map *map = meta->map_ptr;
5319
5320 if (func_id != BPF_FUNC_tail_call &&
5321 func_id != BPF_FUNC_map_lookup_elem &&
5322 func_id != BPF_FUNC_map_update_elem &&
5323 func_id != BPF_FUNC_map_delete_elem &&
5324 func_id != BPF_FUNC_map_push_elem &&
5325 func_id != BPF_FUNC_map_pop_elem &&
5326 func_id != BPF_FUNC_map_peek_elem)
5327 return 0;
5328
5329 if (map == NULL) {
5330 verbose(env, "kernel subsystem misconfigured verifier\n");
5331 return -EINVAL;
5332 }
5333
5334 /* In case of read-only, some additional restrictions
5335 * need to be applied in order to prevent altering the
5336 * state of the map from program side.
5337 */
5338 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5339 (func_id == BPF_FUNC_map_delete_elem ||
5340 func_id == BPF_FUNC_map_update_elem ||
5341 func_id == BPF_FUNC_map_push_elem ||
5342 func_id == BPF_FUNC_map_pop_elem)) {
5343 verbose(env, "write into map forbidden\n");
5344 return -EACCES;
5345 }
5346
5347 if (!BPF_MAP_PTR(aux->map_ptr_state))
5348 bpf_map_ptr_store(aux, meta->map_ptr,
5349 !meta->map_ptr->bypass_spec_v1);
5350 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5351 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5352 !meta->map_ptr->bypass_spec_v1);
5353 return 0;
5354 }
5355
5356 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)5357 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5358 int func_id, int insn_idx)
5359 {
5360 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5361 struct bpf_reg_state *regs = cur_regs(env), *reg;
5362 struct bpf_map *map = meta->map_ptr;
5363 u64 val, max;
5364 int err;
5365
5366 if (func_id != BPF_FUNC_tail_call)
5367 return 0;
5368 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5369 verbose(env, "kernel subsystem misconfigured verifier\n");
5370 return -EINVAL;
5371 }
5372
5373 reg = ®s[BPF_REG_3];
5374 val = reg->var_off.value;
5375 max = map->max_entries;
5376
5377 if (!(register_is_const(reg) && val < max)) {
5378 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5379 return 0;
5380 }
5381
5382 err = mark_chain_precision(env, BPF_REG_3);
5383 if (err)
5384 return err;
5385 if (bpf_map_key_unseen(aux))
5386 bpf_map_key_store(aux, val);
5387 else if (!bpf_map_key_poisoned(aux) &&
5388 bpf_map_key_immediate(aux) != val)
5389 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5390 return 0;
5391 }
5392
check_reference_leak(struct bpf_verifier_env * env)5393 static int check_reference_leak(struct bpf_verifier_env *env)
5394 {
5395 struct bpf_func_state *state = cur_func(env);
5396 int i;
5397
5398 for (i = 0; i < state->acquired_refs; i++) {
5399 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5400 state->refs[i].id, state->refs[i].insn_idx);
5401 }
5402 return state->acquired_refs ? -EINVAL : 0;
5403 }
5404
check_helper_call(struct bpf_verifier_env * env,int func_id,int insn_idx)5405 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5406 {
5407 const struct bpf_func_proto *fn = NULL;
5408 enum bpf_return_type ret_type;
5409 enum bpf_type_flag ret_flag;
5410 struct bpf_reg_state *regs;
5411 struct bpf_call_arg_meta meta;
5412 bool changes_data;
5413 int i, err;
5414
5415 /* find function prototype */
5416 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5417 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5418 func_id);
5419 return -EINVAL;
5420 }
5421
5422 if (env->ops->get_func_proto)
5423 fn = env->ops->get_func_proto(func_id, env->prog);
5424 if (!fn) {
5425 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5426 func_id);
5427 return -EINVAL;
5428 }
5429
5430 /* eBPF programs must be GPL compatible to use GPL-ed functions */
5431 if (!env->prog->gpl_compatible && fn->gpl_only) {
5432 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5433 return -EINVAL;
5434 }
5435
5436 if (fn->allowed && !fn->allowed(env->prog)) {
5437 verbose(env, "helper call is not allowed in probe\n");
5438 return -EINVAL;
5439 }
5440
5441 /* With LD_ABS/IND some JITs save/restore skb from r1. */
5442 changes_data = bpf_helper_changes_pkt_data(fn->func);
5443 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5444 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5445 func_id_name(func_id), func_id);
5446 return -EINVAL;
5447 }
5448
5449 memset(&meta, 0, sizeof(meta));
5450 meta.pkt_access = fn->pkt_access;
5451
5452 err = check_func_proto(fn, func_id);
5453 if (err) {
5454 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5455 func_id_name(func_id), func_id);
5456 return err;
5457 }
5458
5459 meta.func_id = func_id;
5460 /* check args */
5461 for (i = 0; i < 5; i++) {
5462 err = check_func_arg(env, i, &meta, fn);
5463 if (err)
5464 return err;
5465 }
5466
5467 err = record_func_map(env, &meta, func_id, insn_idx);
5468 if (err)
5469 return err;
5470
5471 err = record_func_key(env, &meta, func_id, insn_idx);
5472 if (err)
5473 return err;
5474
5475 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5476 * is inferred from register state.
5477 */
5478 for (i = 0; i < meta.access_size; i++) {
5479 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5480 BPF_WRITE, -1, false);
5481 if (err)
5482 return err;
5483 }
5484
5485 if (func_id == BPF_FUNC_tail_call) {
5486 err = check_reference_leak(env);
5487 if (err) {
5488 verbose(env, "tail_call would lead to reference leak\n");
5489 return err;
5490 }
5491 } else if (is_release_function(func_id)) {
5492 err = release_reference(env, meta.ref_obj_id);
5493 if (err) {
5494 verbose(env, "func %s#%d reference has not been acquired before\n",
5495 func_id_name(func_id), func_id);
5496 return err;
5497 }
5498 }
5499
5500 regs = cur_regs(env);
5501
5502 /* check that flags argument in get_local_storage(map, flags) is 0,
5503 * this is required because get_local_storage() can't return an error.
5504 */
5505 if (func_id == BPF_FUNC_get_local_storage &&
5506 !register_is_null(®s[BPF_REG_2])) {
5507 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5508 return -EINVAL;
5509 }
5510
5511 /* reset caller saved regs */
5512 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5513 mark_reg_not_init(env, regs, caller_saved[i]);
5514 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5515 }
5516
5517 /* helper call returns 64-bit value. */
5518 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5519
5520 /* update return register (already marked as written above) */
5521 ret_type = fn->ret_type;
5522 ret_flag = type_flag(fn->ret_type);
5523 if (ret_type == RET_INTEGER) {
5524 /* sets type to SCALAR_VALUE */
5525 mark_reg_unknown(env, regs, BPF_REG_0);
5526 } else if (ret_type == RET_VOID) {
5527 regs[BPF_REG_0].type = NOT_INIT;
5528 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
5529 /* There is no offset yet applied, variable or fixed */
5530 mark_reg_known_zero(env, regs, BPF_REG_0);
5531 /* remember map_ptr, so that check_map_access()
5532 * can check 'value_size' boundary of memory access
5533 * to map element returned from bpf_map_lookup_elem()
5534 */
5535 if (meta.map_ptr == NULL) {
5536 verbose(env,
5537 "kernel subsystem misconfigured verifier\n");
5538 return -EINVAL;
5539 }
5540 regs[BPF_REG_0].map_ptr = meta.map_ptr;
5541 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
5542 if (!type_may_be_null(ret_type) &&
5543 map_value_has_spin_lock(meta.map_ptr)) {
5544 regs[BPF_REG_0].id = ++env->id_gen;
5545 }
5546 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
5547 mark_reg_known_zero(env, regs, BPF_REG_0);
5548 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
5549 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
5550 mark_reg_known_zero(env, regs, BPF_REG_0);
5551 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
5552 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
5553 mark_reg_known_zero(env, regs, BPF_REG_0);
5554 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
5555 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
5556 mark_reg_known_zero(env, regs, BPF_REG_0);
5557 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
5558 regs[BPF_REG_0].mem_size = meta.mem_size;
5559 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
5560 const struct btf_type *t;
5561
5562 mark_reg_known_zero(env, regs, BPF_REG_0);
5563 t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL);
5564 if (!btf_type_is_struct(t)) {
5565 u32 tsize;
5566 const struct btf_type *ret;
5567 const char *tname;
5568
5569 /* resolve the type size of ksym. */
5570 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
5571 if (IS_ERR(ret)) {
5572 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5573 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5574 tname, PTR_ERR(ret));
5575 return -EINVAL;
5576 }
5577 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
5578 regs[BPF_REG_0].mem_size = tsize;
5579 } else {
5580 /* MEM_RDONLY may be carried from ret_flag, but it
5581 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
5582 * it will confuse the check of PTR_TO_BTF_ID in
5583 * check_mem_access().
5584 */
5585 ret_flag &= ~MEM_RDONLY;
5586
5587 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
5588 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5589 }
5590 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
5591 int ret_btf_id;
5592
5593 mark_reg_known_zero(env, regs, BPF_REG_0);
5594 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
5595 ret_btf_id = *fn->ret_btf_id;
5596 if (ret_btf_id == 0) {
5597 verbose(env, "invalid return type %u of func %s#%d\n",
5598 base_type(ret_type), func_id_name(func_id),
5599 func_id);
5600 return -EINVAL;
5601 }
5602 regs[BPF_REG_0].btf_id = ret_btf_id;
5603 } else {
5604 verbose(env, "unknown return type %u of func %s#%d\n",
5605 base_type(ret_type), func_id_name(func_id), func_id);
5606 return -EINVAL;
5607 }
5608
5609 if (type_may_be_null(regs[BPF_REG_0].type))
5610 regs[BPF_REG_0].id = ++env->id_gen;
5611
5612 if (is_ptr_cast_function(func_id)) {
5613 /* For release_reference() */
5614 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5615 } else if (is_acquire_function(func_id, meta.map_ptr)) {
5616 int id = acquire_reference_state(env, insn_idx);
5617
5618 if (id < 0)
5619 return id;
5620 /* For mark_ptr_or_null_reg() */
5621 regs[BPF_REG_0].id = id;
5622 /* For release_reference() */
5623 regs[BPF_REG_0].ref_obj_id = id;
5624 }
5625
5626 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5627
5628 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5629 if (err)
5630 return err;
5631
5632 if ((func_id == BPF_FUNC_get_stack ||
5633 func_id == BPF_FUNC_get_task_stack) &&
5634 !env->prog->has_callchain_buf) {
5635 const char *err_str;
5636
5637 #ifdef CONFIG_PERF_EVENTS
5638 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5639 err_str = "cannot get callchain buffer for func %s#%d\n";
5640 #else
5641 err = -ENOTSUPP;
5642 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5643 #endif
5644 if (err) {
5645 verbose(env, err_str, func_id_name(func_id), func_id);
5646 return err;
5647 }
5648
5649 env->prog->has_callchain_buf = true;
5650 }
5651
5652 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5653 env->prog->call_get_stack = true;
5654
5655 if (changes_data)
5656 clear_all_pkt_pointers(env);
5657 return 0;
5658 }
5659
signed_add_overflows(s64 a,s64 b)5660 static bool signed_add_overflows(s64 a, s64 b)
5661 {
5662 /* Do the add in u64, where overflow is well-defined */
5663 s64 res = (s64)((u64)a + (u64)b);
5664
5665 if (b < 0)
5666 return res > a;
5667 return res < a;
5668 }
5669
signed_add32_overflows(s32 a,s32 b)5670 static bool signed_add32_overflows(s32 a, s32 b)
5671 {
5672 /* Do the add in u32, where overflow is well-defined */
5673 s32 res = (s32)((u32)a + (u32)b);
5674
5675 if (b < 0)
5676 return res > a;
5677 return res < a;
5678 }
5679
signed_sub_overflows(s64 a,s64 b)5680 static bool signed_sub_overflows(s64 a, s64 b)
5681 {
5682 /* Do the sub in u64, where overflow is well-defined */
5683 s64 res = (s64)((u64)a - (u64)b);
5684
5685 if (b < 0)
5686 return res < a;
5687 return res > a;
5688 }
5689
signed_sub32_overflows(s32 a,s32 b)5690 static bool signed_sub32_overflows(s32 a, s32 b)
5691 {
5692 /* Do the sub in u32, where overflow is well-defined */
5693 s32 res = (s32)((u32)a - (u32)b);
5694
5695 if (b < 0)
5696 return res < a;
5697 return res > a;
5698 }
5699
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)5700 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5701 const struct bpf_reg_state *reg,
5702 enum bpf_reg_type type)
5703 {
5704 bool known = tnum_is_const(reg->var_off);
5705 s64 val = reg->var_off.value;
5706 s64 smin = reg->smin_value;
5707
5708 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5709 verbose(env, "math between %s pointer and %lld is not allowed\n",
5710 reg_type_str(env, type), val);
5711 return false;
5712 }
5713
5714 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5715 verbose(env, "%s pointer offset %d is not allowed\n",
5716 reg_type_str(env, type), reg->off);
5717 return false;
5718 }
5719
5720 if (smin == S64_MIN) {
5721 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5722 reg_type_str(env, type));
5723 return false;
5724 }
5725
5726 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5727 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5728 smin, reg_type_str(env, type));
5729 return false;
5730 }
5731
5732 return true;
5733 }
5734
cur_aux(struct bpf_verifier_env * env)5735 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5736 {
5737 return &env->insn_aux_data[env->insn_idx];
5738 }
5739
5740 enum {
5741 REASON_BOUNDS = -1,
5742 REASON_TYPE = -2,
5743 REASON_PATHS = -3,
5744 REASON_LIMIT = -4,
5745 REASON_STACK = -5,
5746 };
5747
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)5748 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5749 u32 *alu_limit, bool mask_to_left)
5750 {
5751 u32 max = 0, ptr_limit = 0;
5752
5753 switch (ptr_reg->type) {
5754 case PTR_TO_STACK:
5755 /* Offset 0 is out-of-bounds, but acceptable start for the
5756 * left direction, see BPF_REG_FP. Also, unknown scalar
5757 * offset where we would need to deal with min/max bounds is
5758 * currently prohibited for unprivileged.
5759 */
5760 max = MAX_BPF_STACK + mask_to_left;
5761 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
5762 break;
5763 case PTR_TO_MAP_VALUE:
5764 max = ptr_reg->map_ptr->value_size;
5765 ptr_limit = (mask_to_left ?
5766 ptr_reg->smin_value :
5767 ptr_reg->umax_value) + ptr_reg->off;
5768 break;
5769 default:
5770 return REASON_TYPE;
5771 }
5772
5773 if (ptr_limit >= max)
5774 return REASON_LIMIT;
5775 *alu_limit = ptr_limit;
5776 return 0;
5777 }
5778
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)5779 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5780 const struct bpf_insn *insn)
5781 {
5782 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5783 }
5784
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)5785 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5786 u32 alu_state, u32 alu_limit)
5787 {
5788 /* If we arrived here from different branches with different
5789 * state or limits to sanitize, then this won't work.
5790 */
5791 if (aux->alu_state &&
5792 (aux->alu_state != alu_state ||
5793 aux->alu_limit != alu_limit))
5794 return REASON_PATHS;
5795
5796 /* Corresponding fixup done in fixup_bpf_calls(). */
5797 aux->alu_state = alu_state;
5798 aux->alu_limit = alu_limit;
5799 return 0;
5800 }
5801
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)5802 static int sanitize_val_alu(struct bpf_verifier_env *env,
5803 struct bpf_insn *insn)
5804 {
5805 struct bpf_insn_aux_data *aux = cur_aux(env);
5806
5807 if (can_skip_alu_sanitation(env, insn))
5808 return 0;
5809
5810 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5811 }
5812
sanitize_needed(u8 opcode)5813 static bool sanitize_needed(u8 opcode)
5814 {
5815 return opcode == BPF_ADD || opcode == BPF_SUB;
5816 }
5817
5818 struct bpf_sanitize_info {
5819 struct bpf_insn_aux_data aux;
5820 bool mask_to_left;
5821 };
5822
5823 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)5824 sanitize_speculative_path(struct bpf_verifier_env *env,
5825 const struct bpf_insn *insn,
5826 u32 next_idx, u32 curr_idx)
5827 {
5828 struct bpf_verifier_state *branch;
5829 struct bpf_reg_state *regs;
5830
5831 branch = push_stack(env, next_idx, curr_idx, true);
5832 if (branch && insn) {
5833 regs = branch->frame[branch->curframe]->regs;
5834 if (BPF_SRC(insn->code) == BPF_K) {
5835 mark_reg_unknown(env, regs, insn->dst_reg);
5836 } else if (BPF_SRC(insn->code) == BPF_X) {
5837 mark_reg_unknown(env, regs, insn->dst_reg);
5838 mark_reg_unknown(env, regs, insn->src_reg);
5839 }
5840 }
5841 return branch;
5842 }
5843
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)5844 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5845 struct bpf_insn *insn,
5846 const struct bpf_reg_state *ptr_reg,
5847 const struct bpf_reg_state *off_reg,
5848 struct bpf_reg_state *dst_reg,
5849 struct bpf_sanitize_info *info,
5850 const bool commit_window)
5851 {
5852 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
5853 struct bpf_verifier_state *vstate = env->cur_state;
5854 bool off_is_imm = tnum_is_const(off_reg->var_off);
5855 bool off_is_neg = off_reg->smin_value < 0;
5856 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5857 u8 opcode = BPF_OP(insn->code);
5858 u32 alu_state, alu_limit;
5859 struct bpf_reg_state tmp;
5860 bool ret;
5861 int err;
5862
5863 if (can_skip_alu_sanitation(env, insn))
5864 return 0;
5865
5866 /* We already marked aux for masking from non-speculative
5867 * paths, thus we got here in the first place. We only care
5868 * to explore bad access from here.
5869 */
5870 if (vstate->speculative)
5871 goto do_sim;
5872
5873 if (!commit_window) {
5874 if (!tnum_is_const(off_reg->var_off) &&
5875 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
5876 return REASON_BOUNDS;
5877
5878 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5879 (opcode == BPF_SUB && !off_is_neg);
5880 }
5881
5882 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
5883 if (err < 0)
5884 return err;
5885
5886 if (commit_window) {
5887 /* In commit phase we narrow the masking window based on
5888 * the observed pointer move after the simulated operation.
5889 */
5890 alu_state = info->aux.alu_state;
5891 alu_limit = abs(info->aux.alu_limit - alu_limit);
5892 } else {
5893 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5894 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
5895 alu_state |= ptr_is_dst_reg ?
5896 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5897
5898 /* Limit pruning on unknown scalars to enable deep search for
5899 * potential masking differences from other program paths.
5900 */
5901 if (!off_is_imm)
5902 env->explore_alu_limits = true;
5903 }
5904
5905 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
5906 if (err < 0)
5907 return err;
5908 do_sim:
5909 /* If we're in commit phase, we're done here given we already
5910 * pushed the truncated dst_reg into the speculative verification
5911 * stack.
5912 *
5913 * Also, when register is a known constant, we rewrite register-based
5914 * operation to immediate-based, and thus do not need masking (and as
5915 * a consequence, do not need to simulate the zero-truncation either).
5916 */
5917 if (commit_window || off_is_imm)
5918 return 0;
5919
5920 /* Simulate and find potential out-of-bounds access under
5921 * speculative execution from truncation as a result of
5922 * masking when off was not within expected range. If off
5923 * sits in dst, then we temporarily need to move ptr there
5924 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5925 * for cases where we use K-based arithmetic in one direction
5926 * and truncated reg-based in the other in order to explore
5927 * bad access.
5928 */
5929 if (!ptr_is_dst_reg) {
5930 tmp = *dst_reg;
5931 *dst_reg = *ptr_reg;
5932 }
5933 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
5934 env->insn_idx);
5935 if (!ptr_is_dst_reg && ret)
5936 *dst_reg = tmp;
5937 return !ret ? REASON_STACK : 0;
5938 }
5939
sanitize_mark_insn_seen(struct bpf_verifier_env * env)5940 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
5941 {
5942 struct bpf_verifier_state *vstate = env->cur_state;
5943
5944 /* If we simulate paths under speculation, we don't update the
5945 * insn as 'seen' such that when we verify unreachable paths in
5946 * the non-speculative domain, sanitize_dead_code() can still
5947 * rewrite/sanitize them.
5948 */
5949 if (!vstate->speculative)
5950 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
5951 }
5952
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)5953 static int sanitize_err(struct bpf_verifier_env *env,
5954 const struct bpf_insn *insn, int reason,
5955 const struct bpf_reg_state *off_reg,
5956 const struct bpf_reg_state *dst_reg)
5957 {
5958 static const char *err = "pointer arithmetic with it prohibited for !root";
5959 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
5960 u32 dst = insn->dst_reg, src = insn->src_reg;
5961
5962 switch (reason) {
5963 case REASON_BOUNDS:
5964 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
5965 off_reg == dst_reg ? dst : src, err);
5966 break;
5967 case REASON_TYPE:
5968 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
5969 off_reg == dst_reg ? src : dst, err);
5970 break;
5971 case REASON_PATHS:
5972 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
5973 dst, op, err);
5974 break;
5975 case REASON_LIMIT:
5976 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
5977 dst, op, err);
5978 break;
5979 case REASON_STACK:
5980 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
5981 dst, err);
5982 break;
5983 default:
5984 verbose(env, "verifier internal error: unknown reason (%d)\n",
5985 reason);
5986 break;
5987 }
5988
5989 return -EACCES;
5990 }
5991
5992 /* check that stack access falls within stack limits and that 'reg' doesn't
5993 * have a variable offset.
5994 *
5995 * Variable offset is prohibited for unprivileged mode for simplicity since it
5996 * requires corresponding support in Spectre masking for stack ALU. See also
5997 * retrieve_ptr_limit().
5998 *
5999 *
6000 * 'off' includes 'reg->off'.
6001 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)6002 static int check_stack_access_for_ptr_arithmetic(
6003 struct bpf_verifier_env *env,
6004 int regno,
6005 const struct bpf_reg_state *reg,
6006 int off)
6007 {
6008 if (!tnum_is_const(reg->var_off)) {
6009 char tn_buf[48];
6010
6011 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6012 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6013 regno, tn_buf, off);
6014 return -EACCES;
6015 }
6016
6017 if (off >= 0 || off < -MAX_BPF_STACK) {
6018 verbose(env, "R%d stack pointer arithmetic goes out of range, "
6019 "prohibited for !root; off=%d\n", regno, off);
6020 return -EACCES;
6021 }
6022
6023 return 0;
6024 }
6025
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)6026 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6027 const struct bpf_insn *insn,
6028 const struct bpf_reg_state *dst_reg)
6029 {
6030 u32 dst = insn->dst_reg;
6031
6032 /* For unprivileged we require that resulting offset must be in bounds
6033 * in order to be able to sanitize access later on.
6034 */
6035 if (env->bypass_spec_v1)
6036 return 0;
6037
6038 switch (dst_reg->type) {
6039 case PTR_TO_STACK:
6040 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6041 dst_reg->off + dst_reg->var_off.value))
6042 return -EACCES;
6043 break;
6044 case PTR_TO_MAP_VALUE:
6045 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6046 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6047 "prohibited for !root\n", dst);
6048 return -EACCES;
6049 }
6050 break;
6051 default:
6052 break;
6053 }
6054
6055 return 0;
6056 }
6057
6058 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6059 * Caller should also handle BPF_MOV case separately.
6060 * If we return -EACCES, caller may want to try again treating pointer as a
6061 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
6062 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)6063 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6064 struct bpf_insn *insn,
6065 const struct bpf_reg_state *ptr_reg,
6066 const struct bpf_reg_state *off_reg)
6067 {
6068 struct bpf_verifier_state *vstate = env->cur_state;
6069 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6070 struct bpf_reg_state *regs = state->regs, *dst_reg;
6071 bool known = tnum_is_const(off_reg->var_off);
6072 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6073 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6074 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6075 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6076 struct bpf_sanitize_info info = {};
6077 u8 opcode = BPF_OP(insn->code);
6078 u32 dst = insn->dst_reg;
6079 int ret;
6080
6081 dst_reg = ®s[dst];
6082
6083 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6084 smin_val > smax_val || umin_val > umax_val) {
6085 /* Taint dst register if offset had invalid bounds derived from
6086 * e.g. dead branches.
6087 */
6088 __mark_reg_unknown(env, dst_reg);
6089 return 0;
6090 }
6091
6092 if (BPF_CLASS(insn->code) != BPF_ALU64) {
6093 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6094 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6095 __mark_reg_unknown(env, dst_reg);
6096 return 0;
6097 }
6098
6099 verbose(env,
6100 "R%d 32-bit pointer arithmetic prohibited\n",
6101 dst);
6102 return -EACCES;
6103 }
6104
6105 if (ptr_reg->type & PTR_MAYBE_NULL) {
6106 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6107 dst, reg_type_str(env, ptr_reg->type));
6108 return -EACCES;
6109 }
6110
6111 switch (base_type(ptr_reg->type)) {
6112 case PTR_TO_FLOW_KEYS:
6113 if (known)
6114 break;
6115 fallthrough;
6116 case CONST_PTR_TO_MAP:
6117 /* smin_val represents the known value */
6118 if (known && smin_val == 0 && opcode == BPF_ADD)
6119 break;
6120 fallthrough;
6121 case PTR_TO_PACKET_END:
6122 case PTR_TO_SOCKET:
6123 case PTR_TO_SOCK_COMMON:
6124 case PTR_TO_TCP_SOCK:
6125 case PTR_TO_XDP_SOCK:
6126 reject:
6127 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6128 dst, reg_type_str(env, ptr_reg->type));
6129 return -EACCES;
6130 default:
6131 if (type_may_be_null(ptr_reg->type))
6132 goto reject;
6133 break;
6134 }
6135
6136 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6137 * The id may be overwritten later if we create a new variable offset.
6138 */
6139 dst_reg->type = ptr_reg->type;
6140 dst_reg->id = ptr_reg->id;
6141
6142 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6143 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6144 return -EINVAL;
6145
6146 /* pointer types do not carry 32-bit bounds at the moment. */
6147 __mark_reg32_unbounded(dst_reg);
6148
6149 if (sanitize_needed(opcode)) {
6150 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6151 &info, false);
6152 if (ret < 0)
6153 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6154 }
6155
6156 switch (opcode) {
6157 case BPF_ADD:
6158 /* We can take a fixed offset as long as it doesn't overflow
6159 * the s32 'off' field
6160 */
6161 if (known && (ptr_reg->off + smin_val ==
6162 (s64)(s32)(ptr_reg->off + smin_val))) {
6163 /* pointer += K. Accumulate it into fixed offset */
6164 dst_reg->smin_value = smin_ptr;
6165 dst_reg->smax_value = smax_ptr;
6166 dst_reg->umin_value = umin_ptr;
6167 dst_reg->umax_value = umax_ptr;
6168 dst_reg->var_off = ptr_reg->var_off;
6169 dst_reg->off = ptr_reg->off + smin_val;
6170 dst_reg->raw = ptr_reg->raw;
6171 break;
6172 }
6173 /* A new variable offset is created. Note that off_reg->off
6174 * == 0, since it's a scalar.
6175 * dst_reg gets the pointer type and since some positive
6176 * integer value was added to the pointer, give it a new 'id'
6177 * if it's a PTR_TO_PACKET.
6178 * this creates a new 'base' pointer, off_reg (variable) gets
6179 * added into the variable offset, and we copy the fixed offset
6180 * from ptr_reg.
6181 */
6182 if (signed_add_overflows(smin_ptr, smin_val) ||
6183 signed_add_overflows(smax_ptr, smax_val)) {
6184 dst_reg->smin_value = S64_MIN;
6185 dst_reg->smax_value = S64_MAX;
6186 } else {
6187 dst_reg->smin_value = smin_ptr + smin_val;
6188 dst_reg->smax_value = smax_ptr + smax_val;
6189 }
6190 if (umin_ptr + umin_val < umin_ptr ||
6191 umax_ptr + umax_val < umax_ptr) {
6192 dst_reg->umin_value = 0;
6193 dst_reg->umax_value = U64_MAX;
6194 } else {
6195 dst_reg->umin_value = umin_ptr + umin_val;
6196 dst_reg->umax_value = umax_ptr + umax_val;
6197 }
6198 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6199 dst_reg->off = ptr_reg->off;
6200 dst_reg->raw = ptr_reg->raw;
6201 if (reg_is_pkt_pointer(ptr_reg)) {
6202 dst_reg->id = ++env->id_gen;
6203 /* something was added to pkt_ptr, set range to zero */
6204 dst_reg->raw = 0;
6205 }
6206 break;
6207 case BPF_SUB:
6208 if (dst_reg == off_reg) {
6209 /* scalar -= pointer. Creates an unknown scalar */
6210 verbose(env, "R%d tried to subtract pointer from scalar\n",
6211 dst);
6212 return -EACCES;
6213 }
6214 /* We don't allow subtraction from FP, because (according to
6215 * test_verifier.c test "invalid fp arithmetic", JITs might not
6216 * be able to deal with it.
6217 */
6218 if (ptr_reg->type == PTR_TO_STACK) {
6219 verbose(env, "R%d subtraction from stack pointer prohibited\n",
6220 dst);
6221 return -EACCES;
6222 }
6223 if (known && (ptr_reg->off - smin_val ==
6224 (s64)(s32)(ptr_reg->off - smin_val))) {
6225 /* pointer -= K. Subtract it from fixed offset */
6226 dst_reg->smin_value = smin_ptr;
6227 dst_reg->smax_value = smax_ptr;
6228 dst_reg->umin_value = umin_ptr;
6229 dst_reg->umax_value = umax_ptr;
6230 dst_reg->var_off = ptr_reg->var_off;
6231 dst_reg->id = ptr_reg->id;
6232 dst_reg->off = ptr_reg->off - smin_val;
6233 dst_reg->raw = ptr_reg->raw;
6234 break;
6235 }
6236 /* A new variable offset is created. If the subtrahend is known
6237 * nonnegative, then any reg->range we had before is still good.
6238 */
6239 if (signed_sub_overflows(smin_ptr, smax_val) ||
6240 signed_sub_overflows(smax_ptr, smin_val)) {
6241 /* Overflow possible, we know nothing */
6242 dst_reg->smin_value = S64_MIN;
6243 dst_reg->smax_value = S64_MAX;
6244 } else {
6245 dst_reg->smin_value = smin_ptr - smax_val;
6246 dst_reg->smax_value = smax_ptr - smin_val;
6247 }
6248 if (umin_ptr < umax_val) {
6249 /* Overflow possible, we know nothing */
6250 dst_reg->umin_value = 0;
6251 dst_reg->umax_value = U64_MAX;
6252 } else {
6253 /* Cannot overflow (as long as bounds are consistent) */
6254 dst_reg->umin_value = umin_ptr - umax_val;
6255 dst_reg->umax_value = umax_ptr - umin_val;
6256 }
6257 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6258 dst_reg->off = ptr_reg->off;
6259 dst_reg->raw = ptr_reg->raw;
6260 if (reg_is_pkt_pointer(ptr_reg)) {
6261 dst_reg->id = ++env->id_gen;
6262 /* something was added to pkt_ptr, set range to zero */
6263 if (smin_val < 0)
6264 dst_reg->raw = 0;
6265 }
6266 break;
6267 case BPF_AND:
6268 case BPF_OR:
6269 case BPF_XOR:
6270 /* bitwise ops on pointers are troublesome, prohibit. */
6271 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6272 dst, bpf_alu_string[opcode >> 4]);
6273 return -EACCES;
6274 default:
6275 /* other operators (e.g. MUL,LSH) produce non-pointer results */
6276 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6277 dst, bpf_alu_string[opcode >> 4]);
6278 return -EACCES;
6279 }
6280
6281 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6282 return -EINVAL;
6283 reg_bounds_sync(dst_reg);
6284 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6285 return -EACCES;
6286 if (sanitize_needed(opcode)) {
6287 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6288 &info, true);
6289 if (ret < 0)
6290 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6291 }
6292
6293 return 0;
6294 }
6295
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6296 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6297 struct bpf_reg_state *src_reg)
6298 {
6299 s32 smin_val = src_reg->s32_min_value;
6300 s32 smax_val = src_reg->s32_max_value;
6301 u32 umin_val = src_reg->u32_min_value;
6302 u32 umax_val = src_reg->u32_max_value;
6303
6304 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6305 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6306 dst_reg->s32_min_value = S32_MIN;
6307 dst_reg->s32_max_value = S32_MAX;
6308 } else {
6309 dst_reg->s32_min_value += smin_val;
6310 dst_reg->s32_max_value += smax_val;
6311 }
6312 if (dst_reg->u32_min_value + umin_val < umin_val ||
6313 dst_reg->u32_max_value + umax_val < umax_val) {
6314 dst_reg->u32_min_value = 0;
6315 dst_reg->u32_max_value = U32_MAX;
6316 } else {
6317 dst_reg->u32_min_value += umin_val;
6318 dst_reg->u32_max_value += umax_val;
6319 }
6320 }
6321
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6322 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6323 struct bpf_reg_state *src_reg)
6324 {
6325 s64 smin_val = src_reg->smin_value;
6326 s64 smax_val = src_reg->smax_value;
6327 u64 umin_val = src_reg->umin_value;
6328 u64 umax_val = src_reg->umax_value;
6329
6330 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6331 signed_add_overflows(dst_reg->smax_value, smax_val)) {
6332 dst_reg->smin_value = S64_MIN;
6333 dst_reg->smax_value = S64_MAX;
6334 } else {
6335 dst_reg->smin_value += smin_val;
6336 dst_reg->smax_value += smax_val;
6337 }
6338 if (dst_reg->umin_value + umin_val < umin_val ||
6339 dst_reg->umax_value + umax_val < umax_val) {
6340 dst_reg->umin_value = 0;
6341 dst_reg->umax_value = U64_MAX;
6342 } else {
6343 dst_reg->umin_value += umin_val;
6344 dst_reg->umax_value += umax_val;
6345 }
6346 }
6347
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6348 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6349 struct bpf_reg_state *src_reg)
6350 {
6351 s32 smin_val = src_reg->s32_min_value;
6352 s32 smax_val = src_reg->s32_max_value;
6353 u32 umin_val = src_reg->u32_min_value;
6354 u32 umax_val = src_reg->u32_max_value;
6355
6356 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6357 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6358 /* Overflow possible, we know nothing */
6359 dst_reg->s32_min_value = S32_MIN;
6360 dst_reg->s32_max_value = S32_MAX;
6361 } else {
6362 dst_reg->s32_min_value -= smax_val;
6363 dst_reg->s32_max_value -= smin_val;
6364 }
6365 if (dst_reg->u32_min_value < umax_val) {
6366 /* Overflow possible, we know nothing */
6367 dst_reg->u32_min_value = 0;
6368 dst_reg->u32_max_value = U32_MAX;
6369 } else {
6370 /* Cannot overflow (as long as bounds are consistent) */
6371 dst_reg->u32_min_value -= umax_val;
6372 dst_reg->u32_max_value -= umin_val;
6373 }
6374 }
6375
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6376 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6377 struct bpf_reg_state *src_reg)
6378 {
6379 s64 smin_val = src_reg->smin_value;
6380 s64 smax_val = src_reg->smax_value;
6381 u64 umin_val = src_reg->umin_value;
6382 u64 umax_val = src_reg->umax_value;
6383
6384 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6385 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6386 /* Overflow possible, we know nothing */
6387 dst_reg->smin_value = S64_MIN;
6388 dst_reg->smax_value = S64_MAX;
6389 } else {
6390 dst_reg->smin_value -= smax_val;
6391 dst_reg->smax_value -= smin_val;
6392 }
6393 if (dst_reg->umin_value < umax_val) {
6394 /* Overflow possible, we know nothing */
6395 dst_reg->umin_value = 0;
6396 dst_reg->umax_value = U64_MAX;
6397 } else {
6398 /* Cannot overflow (as long as bounds are consistent) */
6399 dst_reg->umin_value -= umax_val;
6400 dst_reg->umax_value -= umin_val;
6401 }
6402 }
6403
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6404 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6405 struct bpf_reg_state *src_reg)
6406 {
6407 s32 smin_val = src_reg->s32_min_value;
6408 u32 umin_val = src_reg->u32_min_value;
6409 u32 umax_val = src_reg->u32_max_value;
6410
6411 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6412 /* Ain't nobody got time to multiply that sign */
6413 __mark_reg32_unbounded(dst_reg);
6414 return;
6415 }
6416 /* Both values are positive, so we can work with unsigned and
6417 * copy the result to signed (unless it exceeds S32_MAX).
6418 */
6419 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6420 /* Potential overflow, we know nothing */
6421 __mark_reg32_unbounded(dst_reg);
6422 return;
6423 }
6424 dst_reg->u32_min_value *= umin_val;
6425 dst_reg->u32_max_value *= umax_val;
6426 if (dst_reg->u32_max_value > S32_MAX) {
6427 /* Overflow possible, we know nothing */
6428 dst_reg->s32_min_value = S32_MIN;
6429 dst_reg->s32_max_value = S32_MAX;
6430 } else {
6431 dst_reg->s32_min_value = dst_reg->u32_min_value;
6432 dst_reg->s32_max_value = dst_reg->u32_max_value;
6433 }
6434 }
6435
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6436 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6437 struct bpf_reg_state *src_reg)
6438 {
6439 s64 smin_val = src_reg->smin_value;
6440 u64 umin_val = src_reg->umin_value;
6441 u64 umax_val = src_reg->umax_value;
6442
6443 if (smin_val < 0 || dst_reg->smin_value < 0) {
6444 /* Ain't nobody got time to multiply that sign */
6445 __mark_reg64_unbounded(dst_reg);
6446 return;
6447 }
6448 /* Both values are positive, so we can work with unsigned and
6449 * copy the result to signed (unless it exceeds S64_MAX).
6450 */
6451 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6452 /* Potential overflow, we know nothing */
6453 __mark_reg64_unbounded(dst_reg);
6454 return;
6455 }
6456 dst_reg->umin_value *= umin_val;
6457 dst_reg->umax_value *= umax_val;
6458 if (dst_reg->umax_value > S64_MAX) {
6459 /* Overflow possible, we know nothing */
6460 dst_reg->smin_value = S64_MIN;
6461 dst_reg->smax_value = S64_MAX;
6462 } else {
6463 dst_reg->smin_value = dst_reg->umin_value;
6464 dst_reg->smax_value = dst_reg->umax_value;
6465 }
6466 }
6467
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6468 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6469 struct bpf_reg_state *src_reg)
6470 {
6471 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6472 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6473 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6474 s32 smin_val = src_reg->s32_min_value;
6475 u32 umax_val = src_reg->u32_max_value;
6476
6477 if (src_known && dst_known) {
6478 __mark_reg32_known(dst_reg, var32_off.value);
6479 return;
6480 }
6481
6482 /* We get our minimum from the var_off, since that's inherently
6483 * bitwise. Our maximum is the minimum of the operands' maxima.
6484 */
6485 dst_reg->u32_min_value = var32_off.value;
6486 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6487 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6488 /* Lose signed bounds when ANDing negative numbers,
6489 * ain't nobody got time for that.
6490 */
6491 dst_reg->s32_min_value = S32_MIN;
6492 dst_reg->s32_max_value = S32_MAX;
6493 } else {
6494 /* ANDing two positives gives a positive, so safe to
6495 * cast result into s64.
6496 */
6497 dst_reg->s32_min_value = dst_reg->u32_min_value;
6498 dst_reg->s32_max_value = dst_reg->u32_max_value;
6499 }
6500 }
6501
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6502 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6503 struct bpf_reg_state *src_reg)
6504 {
6505 bool src_known = tnum_is_const(src_reg->var_off);
6506 bool dst_known = tnum_is_const(dst_reg->var_off);
6507 s64 smin_val = src_reg->smin_value;
6508 u64 umax_val = src_reg->umax_value;
6509
6510 if (src_known && dst_known) {
6511 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6512 return;
6513 }
6514
6515 /* We get our minimum from the var_off, since that's inherently
6516 * bitwise. Our maximum is the minimum of the operands' maxima.
6517 */
6518 dst_reg->umin_value = dst_reg->var_off.value;
6519 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6520 if (dst_reg->smin_value < 0 || smin_val < 0) {
6521 /* Lose signed bounds when ANDing negative numbers,
6522 * ain't nobody got time for that.
6523 */
6524 dst_reg->smin_value = S64_MIN;
6525 dst_reg->smax_value = S64_MAX;
6526 } else {
6527 /* ANDing two positives gives a positive, so safe to
6528 * cast result into s64.
6529 */
6530 dst_reg->smin_value = dst_reg->umin_value;
6531 dst_reg->smax_value = dst_reg->umax_value;
6532 }
6533 /* We may learn something more from the var_off */
6534 __update_reg_bounds(dst_reg);
6535 }
6536
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6537 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6538 struct bpf_reg_state *src_reg)
6539 {
6540 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6541 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6542 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6543 s32 smin_val = src_reg->s32_min_value;
6544 u32 umin_val = src_reg->u32_min_value;
6545
6546 if (src_known && dst_known) {
6547 __mark_reg32_known(dst_reg, var32_off.value);
6548 return;
6549 }
6550
6551 /* We get our maximum from the var_off, and our minimum is the
6552 * maximum of the operands' minima
6553 */
6554 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6555 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6556 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6557 /* Lose signed bounds when ORing negative numbers,
6558 * ain't nobody got time for that.
6559 */
6560 dst_reg->s32_min_value = S32_MIN;
6561 dst_reg->s32_max_value = S32_MAX;
6562 } else {
6563 /* ORing two positives gives a positive, so safe to
6564 * cast result into s64.
6565 */
6566 dst_reg->s32_min_value = dst_reg->u32_min_value;
6567 dst_reg->s32_max_value = dst_reg->u32_max_value;
6568 }
6569 }
6570
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6571 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6572 struct bpf_reg_state *src_reg)
6573 {
6574 bool src_known = tnum_is_const(src_reg->var_off);
6575 bool dst_known = tnum_is_const(dst_reg->var_off);
6576 s64 smin_val = src_reg->smin_value;
6577 u64 umin_val = src_reg->umin_value;
6578
6579 if (src_known && dst_known) {
6580 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6581 return;
6582 }
6583
6584 /* We get our maximum from the var_off, and our minimum is the
6585 * maximum of the operands' minima
6586 */
6587 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6588 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6589 if (dst_reg->smin_value < 0 || smin_val < 0) {
6590 /* Lose signed bounds when ORing negative numbers,
6591 * ain't nobody got time for that.
6592 */
6593 dst_reg->smin_value = S64_MIN;
6594 dst_reg->smax_value = S64_MAX;
6595 } else {
6596 /* ORing two positives gives a positive, so safe to
6597 * cast result into s64.
6598 */
6599 dst_reg->smin_value = dst_reg->umin_value;
6600 dst_reg->smax_value = dst_reg->umax_value;
6601 }
6602 /* We may learn something more from the var_off */
6603 __update_reg_bounds(dst_reg);
6604 }
6605
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6606 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6607 struct bpf_reg_state *src_reg)
6608 {
6609 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6610 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6611 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6612 s32 smin_val = src_reg->s32_min_value;
6613
6614 if (src_known && dst_known) {
6615 __mark_reg32_known(dst_reg, var32_off.value);
6616 return;
6617 }
6618
6619 /* We get both minimum and maximum from the var32_off. */
6620 dst_reg->u32_min_value = var32_off.value;
6621 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6622
6623 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6624 /* XORing two positive sign numbers gives a positive,
6625 * so safe to cast u32 result into s32.
6626 */
6627 dst_reg->s32_min_value = dst_reg->u32_min_value;
6628 dst_reg->s32_max_value = dst_reg->u32_max_value;
6629 } else {
6630 dst_reg->s32_min_value = S32_MIN;
6631 dst_reg->s32_max_value = S32_MAX;
6632 }
6633 }
6634
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6635 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6636 struct bpf_reg_state *src_reg)
6637 {
6638 bool src_known = tnum_is_const(src_reg->var_off);
6639 bool dst_known = tnum_is_const(dst_reg->var_off);
6640 s64 smin_val = src_reg->smin_value;
6641
6642 if (src_known && dst_known) {
6643 /* dst_reg->var_off.value has been updated earlier */
6644 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6645 return;
6646 }
6647
6648 /* We get both minimum and maximum from the var_off. */
6649 dst_reg->umin_value = dst_reg->var_off.value;
6650 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6651
6652 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6653 /* XORing two positive sign numbers gives a positive,
6654 * so safe to cast u64 result into s64.
6655 */
6656 dst_reg->smin_value = dst_reg->umin_value;
6657 dst_reg->smax_value = dst_reg->umax_value;
6658 } else {
6659 dst_reg->smin_value = S64_MIN;
6660 dst_reg->smax_value = S64_MAX;
6661 }
6662
6663 __update_reg_bounds(dst_reg);
6664 }
6665
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)6666 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6667 u64 umin_val, u64 umax_val)
6668 {
6669 /* We lose all sign bit information (except what we can pick
6670 * up from var_off)
6671 */
6672 dst_reg->s32_min_value = S32_MIN;
6673 dst_reg->s32_max_value = S32_MAX;
6674 /* If we might shift our top bit out, then we know nothing */
6675 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6676 dst_reg->u32_min_value = 0;
6677 dst_reg->u32_max_value = U32_MAX;
6678 } else {
6679 dst_reg->u32_min_value <<= umin_val;
6680 dst_reg->u32_max_value <<= umax_val;
6681 }
6682 }
6683
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6684 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6685 struct bpf_reg_state *src_reg)
6686 {
6687 u32 umax_val = src_reg->u32_max_value;
6688 u32 umin_val = src_reg->u32_min_value;
6689 /* u32 alu operation will zext upper bits */
6690 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6691
6692 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6693 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6694 /* Not required but being careful mark reg64 bounds as unknown so
6695 * that we are forced to pick them up from tnum and zext later and
6696 * if some path skips this step we are still safe.
6697 */
6698 __mark_reg64_unbounded(dst_reg);
6699 __update_reg32_bounds(dst_reg);
6700 }
6701
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)6702 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6703 u64 umin_val, u64 umax_val)
6704 {
6705 /* Special case <<32 because it is a common compiler pattern to sign
6706 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6707 * positive we know this shift will also be positive so we can track
6708 * bounds correctly. Otherwise we lose all sign bit information except
6709 * what we can pick up from var_off. Perhaps we can generalize this
6710 * later to shifts of any length.
6711 */
6712 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6713 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6714 else
6715 dst_reg->smax_value = S64_MAX;
6716
6717 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6718 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6719 else
6720 dst_reg->smin_value = S64_MIN;
6721
6722 /* If we might shift our top bit out, then we know nothing */
6723 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6724 dst_reg->umin_value = 0;
6725 dst_reg->umax_value = U64_MAX;
6726 } else {
6727 dst_reg->umin_value <<= umin_val;
6728 dst_reg->umax_value <<= umax_val;
6729 }
6730 }
6731
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6732 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6733 struct bpf_reg_state *src_reg)
6734 {
6735 u64 umax_val = src_reg->umax_value;
6736 u64 umin_val = src_reg->umin_value;
6737
6738 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6739 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6740 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6741
6742 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6743 /* We may learn something more from the var_off */
6744 __update_reg_bounds(dst_reg);
6745 }
6746
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6747 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6748 struct bpf_reg_state *src_reg)
6749 {
6750 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6751 u32 umax_val = src_reg->u32_max_value;
6752 u32 umin_val = src_reg->u32_min_value;
6753
6754 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6755 * be negative, then either:
6756 * 1) src_reg might be zero, so the sign bit of the result is
6757 * unknown, so we lose our signed bounds
6758 * 2) it's known negative, thus the unsigned bounds capture the
6759 * signed bounds
6760 * 3) the signed bounds cross zero, so they tell us nothing
6761 * about the result
6762 * If the value in dst_reg is known nonnegative, then again the
6763 * unsigned bounts capture the signed bounds.
6764 * Thus, in all cases it suffices to blow away our signed bounds
6765 * and rely on inferring new ones from the unsigned bounds and
6766 * var_off of the result.
6767 */
6768 dst_reg->s32_min_value = S32_MIN;
6769 dst_reg->s32_max_value = S32_MAX;
6770
6771 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6772 dst_reg->u32_min_value >>= umax_val;
6773 dst_reg->u32_max_value >>= umin_val;
6774
6775 __mark_reg64_unbounded(dst_reg);
6776 __update_reg32_bounds(dst_reg);
6777 }
6778
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6779 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6780 struct bpf_reg_state *src_reg)
6781 {
6782 u64 umax_val = src_reg->umax_value;
6783 u64 umin_val = src_reg->umin_value;
6784
6785 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6786 * be negative, then either:
6787 * 1) src_reg might be zero, so the sign bit of the result is
6788 * unknown, so we lose our signed bounds
6789 * 2) it's known negative, thus the unsigned bounds capture the
6790 * signed bounds
6791 * 3) the signed bounds cross zero, so they tell us nothing
6792 * about the result
6793 * If the value in dst_reg is known nonnegative, then again the
6794 * unsigned bounts capture the signed bounds.
6795 * Thus, in all cases it suffices to blow away our signed bounds
6796 * and rely on inferring new ones from the unsigned bounds and
6797 * var_off of the result.
6798 */
6799 dst_reg->smin_value = S64_MIN;
6800 dst_reg->smax_value = S64_MAX;
6801 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6802 dst_reg->umin_value >>= umax_val;
6803 dst_reg->umax_value >>= umin_val;
6804
6805 /* Its not easy to operate on alu32 bounds here because it depends
6806 * on bits being shifted in. Take easy way out and mark unbounded
6807 * so we can recalculate later from tnum.
6808 */
6809 __mark_reg32_unbounded(dst_reg);
6810 __update_reg_bounds(dst_reg);
6811 }
6812
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6813 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6814 struct bpf_reg_state *src_reg)
6815 {
6816 u64 umin_val = src_reg->u32_min_value;
6817
6818 /* Upon reaching here, src_known is true and
6819 * umax_val is equal to umin_val.
6820 */
6821 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6822 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6823
6824 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6825
6826 /* blow away the dst_reg umin_value/umax_value and rely on
6827 * dst_reg var_off to refine the result.
6828 */
6829 dst_reg->u32_min_value = 0;
6830 dst_reg->u32_max_value = U32_MAX;
6831
6832 __mark_reg64_unbounded(dst_reg);
6833 __update_reg32_bounds(dst_reg);
6834 }
6835
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6836 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6837 struct bpf_reg_state *src_reg)
6838 {
6839 u64 umin_val = src_reg->umin_value;
6840
6841 /* Upon reaching here, src_known is true and umax_val is equal
6842 * to umin_val.
6843 */
6844 dst_reg->smin_value >>= umin_val;
6845 dst_reg->smax_value >>= umin_val;
6846
6847 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6848
6849 /* blow away the dst_reg umin_value/umax_value and rely on
6850 * dst_reg var_off to refine the result.
6851 */
6852 dst_reg->umin_value = 0;
6853 dst_reg->umax_value = U64_MAX;
6854
6855 /* Its not easy to operate on alu32 bounds here because it depends
6856 * on bits being shifted in from upper 32-bits. Take easy way out
6857 * and mark unbounded so we can recalculate later from tnum.
6858 */
6859 __mark_reg32_unbounded(dst_reg);
6860 __update_reg_bounds(dst_reg);
6861 }
6862
6863 /* WARNING: This function does calculations on 64-bit values, but the actual
6864 * execution may occur on 32-bit values. Therefore, things like bitshifts
6865 * need extra checks in the 32-bit case.
6866 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)6867 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6868 struct bpf_insn *insn,
6869 struct bpf_reg_state *dst_reg,
6870 struct bpf_reg_state src_reg)
6871 {
6872 struct bpf_reg_state *regs = cur_regs(env);
6873 u8 opcode = BPF_OP(insn->code);
6874 bool src_known;
6875 s64 smin_val, smax_val;
6876 u64 umin_val, umax_val;
6877 s32 s32_min_val, s32_max_val;
6878 u32 u32_min_val, u32_max_val;
6879 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6880 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6881 int ret;
6882
6883 smin_val = src_reg.smin_value;
6884 smax_val = src_reg.smax_value;
6885 umin_val = src_reg.umin_value;
6886 umax_val = src_reg.umax_value;
6887
6888 s32_min_val = src_reg.s32_min_value;
6889 s32_max_val = src_reg.s32_max_value;
6890 u32_min_val = src_reg.u32_min_value;
6891 u32_max_val = src_reg.u32_max_value;
6892
6893 if (alu32) {
6894 src_known = tnum_subreg_is_const(src_reg.var_off);
6895 if ((src_known &&
6896 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6897 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6898 /* Taint dst register if offset had invalid bounds
6899 * derived from e.g. dead branches.
6900 */
6901 __mark_reg_unknown(env, dst_reg);
6902 return 0;
6903 }
6904 } else {
6905 src_known = tnum_is_const(src_reg.var_off);
6906 if ((src_known &&
6907 (smin_val != smax_val || umin_val != umax_val)) ||
6908 smin_val > smax_val || umin_val > umax_val) {
6909 /* Taint dst register if offset had invalid bounds
6910 * derived from e.g. dead branches.
6911 */
6912 __mark_reg_unknown(env, dst_reg);
6913 return 0;
6914 }
6915 }
6916
6917 if (!src_known &&
6918 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6919 __mark_reg_unknown(env, dst_reg);
6920 return 0;
6921 }
6922
6923 if (sanitize_needed(opcode)) {
6924 ret = sanitize_val_alu(env, insn);
6925 if (ret < 0)
6926 return sanitize_err(env, insn, ret, NULL, NULL);
6927 }
6928
6929 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6930 * There are two classes of instructions: The first class we track both
6931 * alu32 and alu64 sign/unsigned bounds independently this provides the
6932 * greatest amount of precision when alu operations are mixed with jmp32
6933 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6934 * and BPF_OR. This is possible because these ops have fairly easy to
6935 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6936 * See alu32 verifier tests for examples. The second class of
6937 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6938 * with regards to tracking sign/unsigned bounds because the bits may
6939 * cross subreg boundaries in the alu64 case. When this happens we mark
6940 * the reg unbounded in the subreg bound space and use the resulting
6941 * tnum to calculate an approximation of the sign/unsigned bounds.
6942 */
6943 switch (opcode) {
6944 case BPF_ADD:
6945 scalar32_min_max_add(dst_reg, &src_reg);
6946 scalar_min_max_add(dst_reg, &src_reg);
6947 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6948 break;
6949 case BPF_SUB:
6950 scalar32_min_max_sub(dst_reg, &src_reg);
6951 scalar_min_max_sub(dst_reg, &src_reg);
6952 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6953 break;
6954 case BPF_MUL:
6955 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6956 scalar32_min_max_mul(dst_reg, &src_reg);
6957 scalar_min_max_mul(dst_reg, &src_reg);
6958 break;
6959 case BPF_AND:
6960 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6961 scalar32_min_max_and(dst_reg, &src_reg);
6962 scalar_min_max_and(dst_reg, &src_reg);
6963 break;
6964 case BPF_OR:
6965 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6966 scalar32_min_max_or(dst_reg, &src_reg);
6967 scalar_min_max_or(dst_reg, &src_reg);
6968 break;
6969 case BPF_XOR:
6970 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6971 scalar32_min_max_xor(dst_reg, &src_reg);
6972 scalar_min_max_xor(dst_reg, &src_reg);
6973 break;
6974 case BPF_LSH:
6975 if (umax_val >= insn_bitness) {
6976 /* Shifts greater than 31 or 63 are undefined.
6977 * This includes shifts by a negative number.
6978 */
6979 mark_reg_unknown(env, regs, insn->dst_reg);
6980 break;
6981 }
6982 if (alu32)
6983 scalar32_min_max_lsh(dst_reg, &src_reg);
6984 else
6985 scalar_min_max_lsh(dst_reg, &src_reg);
6986 break;
6987 case BPF_RSH:
6988 if (umax_val >= insn_bitness) {
6989 /* Shifts greater than 31 or 63 are undefined.
6990 * This includes shifts by a negative number.
6991 */
6992 mark_reg_unknown(env, regs, insn->dst_reg);
6993 break;
6994 }
6995 if (alu32)
6996 scalar32_min_max_rsh(dst_reg, &src_reg);
6997 else
6998 scalar_min_max_rsh(dst_reg, &src_reg);
6999 break;
7000 case BPF_ARSH:
7001 if (umax_val >= insn_bitness) {
7002 /* Shifts greater than 31 or 63 are undefined.
7003 * This includes shifts by a negative number.
7004 */
7005 mark_reg_unknown(env, regs, insn->dst_reg);
7006 break;
7007 }
7008 if (alu32)
7009 scalar32_min_max_arsh(dst_reg, &src_reg);
7010 else
7011 scalar_min_max_arsh(dst_reg, &src_reg);
7012 break;
7013 default:
7014 mark_reg_unknown(env, regs, insn->dst_reg);
7015 break;
7016 }
7017
7018 /* ALU32 ops are zero extended into 64bit register */
7019 if (alu32)
7020 zext_32_to_64(dst_reg);
7021 reg_bounds_sync(dst_reg);
7022 return 0;
7023 }
7024
7025 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7026 * and var_off.
7027 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)7028 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7029 struct bpf_insn *insn)
7030 {
7031 struct bpf_verifier_state *vstate = env->cur_state;
7032 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7033 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7034 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7035 u8 opcode = BPF_OP(insn->code);
7036 int err;
7037
7038 dst_reg = ®s[insn->dst_reg];
7039 src_reg = NULL;
7040 if (dst_reg->type != SCALAR_VALUE)
7041 ptr_reg = dst_reg;
7042 else
7043 /* Make sure ID is cleared otherwise dst_reg min/max could be
7044 * incorrectly propagated into other registers by find_equal_scalars()
7045 */
7046 dst_reg->id = 0;
7047 if (BPF_SRC(insn->code) == BPF_X) {
7048 src_reg = ®s[insn->src_reg];
7049 if (src_reg->type != SCALAR_VALUE) {
7050 if (dst_reg->type != SCALAR_VALUE) {
7051 /* Combining two pointers by any ALU op yields
7052 * an arbitrary scalar. Disallow all math except
7053 * pointer subtraction
7054 */
7055 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7056 mark_reg_unknown(env, regs, insn->dst_reg);
7057 return 0;
7058 }
7059 verbose(env, "R%d pointer %s pointer prohibited\n",
7060 insn->dst_reg,
7061 bpf_alu_string[opcode >> 4]);
7062 return -EACCES;
7063 } else {
7064 /* scalar += pointer
7065 * This is legal, but we have to reverse our
7066 * src/dest handling in computing the range
7067 */
7068 err = mark_chain_precision(env, insn->dst_reg);
7069 if (err)
7070 return err;
7071 return adjust_ptr_min_max_vals(env, insn,
7072 src_reg, dst_reg);
7073 }
7074 } else if (ptr_reg) {
7075 /* pointer += scalar */
7076 err = mark_chain_precision(env, insn->src_reg);
7077 if (err)
7078 return err;
7079 return adjust_ptr_min_max_vals(env, insn,
7080 dst_reg, src_reg);
7081 } else if (dst_reg->precise) {
7082 /* if dst_reg is precise, src_reg should be precise as well */
7083 err = mark_chain_precision(env, insn->src_reg);
7084 if (err)
7085 return err;
7086 }
7087 } else {
7088 /* Pretend the src is a reg with a known value, since we only
7089 * need to be able to read from this state.
7090 */
7091 off_reg.type = SCALAR_VALUE;
7092 __mark_reg_known(&off_reg, insn->imm);
7093 src_reg = &off_reg;
7094 if (ptr_reg) /* pointer += K */
7095 return adjust_ptr_min_max_vals(env, insn,
7096 ptr_reg, src_reg);
7097 }
7098
7099 /* Got here implies adding two SCALAR_VALUEs */
7100 if (WARN_ON_ONCE(ptr_reg)) {
7101 print_verifier_state(env, state);
7102 verbose(env, "verifier internal error: unexpected ptr_reg\n");
7103 return -EINVAL;
7104 }
7105 if (WARN_ON(!src_reg)) {
7106 print_verifier_state(env, state);
7107 verbose(env, "verifier internal error: no src_reg\n");
7108 return -EINVAL;
7109 }
7110 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7111 }
7112
7113 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)7114 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7115 {
7116 struct bpf_reg_state *regs = cur_regs(env);
7117 u8 opcode = BPF_OP(insn->code);
7118 int err;
7119
7120 if (opcode == BPF_END || opcode == BPF_NEG) {
7121 if (opcode == BPF_NEG) {
7122 if (BPF_SRC(insn->code) != 0 ||
7123 insn->src_reg != BPF_REG_0 ||
7124 insn->off != 0 || insn->imm != 0) {
7125 verbose(env, "BPF_NEG uses reserved fields\n");
7126 return -EINVAL;
7127 }
7128 } else {
7129 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7130 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7131 BPF_CLASS(insn->code) == BPF_ALU64) {
7132 verbose(env, "BPF_END uses reserved fields\n");
7133 return -EINVAL;
7134 }
7135 }
7136
7137 /* check src operand */
7138 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7139 if (err)
7140 return err;
7141
7142 if (is_pointer_value(env, insn->dst_reg)) {
7143 verbose(env, "R%d pointer arithmetic prohibited\n",
7144 insn->dst_reg);
7145 return -EACCES;
7146 }
7147
7148 /* check dest operand */
7149 err = check_reg_arg(env, insn->dst_reg, DST_OP);
7150 if (err)
7151 return err;
7152
7153 } else if (opcode == BPF_MOV) {
7154
7155 if (BPF_SRC(insn->code) == BPF_X) {
7156 if (insn->imm != 0 || insn->off != 0) {
7157 verbose(env, "BPF_MOV uses reserved fields\n");
7158 return -EINVAL;
7159 }
7160
7161 /* check src operand */
7162 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7163 if (err)
7164 return err;
7165 } else {
7166 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7167 verbose(env, "BPF_MOV uses reserved fields\n");
7168 return -EINVAL;
7169 }
7170 }
7171
7172 /* check dest operand, mark as required later */
7173 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7174 if (err)
7175 return err;
7176
7177 if (BPF_SRC(insn->code) == BPF_X) {
7178 struct bpf_reg_state *src_reg = regs + insn->src_reg;
7179 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7180
7181 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7182 /* case: R1 = R2
7183 * copy register state to dest reg
7184 */
7185 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7186 /* Assign src and dst registers the same ID
7187 * that will be used by find_equal_scalars()
7188 * to propagate min/max range.
7189 */
7190 src_reg->id = ++env->id_gen;
7191 *dst_reg = *src_reg;
7192 dst_reg->live |= REG_LIVE_WRITTEN;
7193 dst_reg->subreg_def = DEF_NOT_SUBREG;
7194 } else {
7195 /* R1 = (u32) R2 */
7196 if (is_pointer_value(env, insn->src_reg)) {
7197 verbose(env,
7198 "R%d partial copy of pointer\n",
7199 insn->src_reg);
7200 return -EACCES;
7201 } else if (src_reg->type == SCALAR_VALUE) {
7202 *dst_reg = *src_reg;
7203 /* Make sure ID is cleared otherwise
7204 * dst_reg min/max could be incorrectly
7205 * propagated into src_reg by find_equal_scalars()
7206 */
7207 dst_reg->id = 0;
7208 dst_reg->live |= REG_LIVE_WRITTEN;
7209 dst_reg->subreg_def = env->insn_idx + 1;
7210 } else {
7211 mark_reg_unknown(env, regs,
7212 insn->dst_reg);
7213 }
7214 zext_32_to_64(dst_reg);
7215 reg_bounds_sync(dst_reg);
7216 }
7217 } else {
7218 /* case: R = imm
7219 * remember the value we stored into this reg
7220 */
7221 /* clear any state __mark_reg_known doesn't set */
7222 mark_reg_unknown(env, regs, insn->dst_reg);
7223 regs[insn->dst_reg].type = SCALAR_VALUE;
7224 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7225 __mark_reg_known(regs + insn->dst_reg,
7226 insn->imm);
7227 } else {
7228 __mark_reg_known(regs + insn->dst_reg,
7229 (u32)insn->imm);
7230 }
7231 }
7232
7233 } else if (opcode > BPF_END) {
7234 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7235 return -EINVAL;
7236
7237 } else { /* all other ALU ops: and, sub, xor, add, ... */
7238
7239 if (BPF_SRC(insn->code) == BPF_X) {
7240 if (insn->imm != 0 || insn->off != 0) {
7241 verbose(env, "BPF_ALU uses reserved fields\n");
7242 return -EINVAL;
7243 }
7244 /* check src1 operand */
7245 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7246 if (err)
7247 return err;
7248 } else {
7249 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7250 verbose(env, "BPF_ALU uses reserved fields\n");
7251 return -EINVAL;
7252 }
7253 }
7254
7255 /* check src2 operand */
7256 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7257 if (err)
7258 return err;
7259
7260 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7261 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7262 verbose(env, "div by zero\n");
7263 return -EINVAL;
7264 }
7265
7266 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7267 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7268 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7269
7270 if (insn->imm < 0 || insn->imm >= size) {
7271 verbose(env, "invalid shift %d\n", insn->imm);
7272 return -EINVAL;
7273 }
7274 }
7275
7276 /* check dest operand */
7277 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7278 if (err)
7279 return err;
7280
7281 return adjust_reg_min_max_vals(env, insn);
7282 }
7283
7284 return 0;
7285 }
7286
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)7287 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7288 struct bpf_reg_state *dst_reg,
7289 enum bpf_reg_type type,
7290 bool range_right_open)
7291 {
7292 struct bpf_func_state *state;
7293 struct bpf_reg_state *reg;
7294 int new_range;
7295
7296 if (dst_reg->off < 0 ||
7297 (dst_reg->off == 0 && range_right_open))
7298 /* This doesn't give us any range */
7299 return;
7300
7301 if (dst_reg->umax_value > MAX_PACKET_OFF ||
7302 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7303 /* Risk of overflow. For instance, ptr + (1<<63) may be less
7304 * than pkt_end, but that's because it's also less than pkt.
7305 */
7306 return;
7307
7308 new_range = dst_reg->off;
7309 if (range_right_open)
7310 new_range++;
7311
7312 /* Examples for register markings:
7313 *
7314 * pkt_data in dst register:
7315 *
7316 * r2 = r3;
7317 * r2 += 8;
7318 * if (r2 > pkt_end) goto <handle exception>
7319 * <access okay>
7320 *
7321 * r2 = r3;
7322 * r2 += 8;
7323 * if (r2 < pkt_end) goto <access okay>
7324 * <handle exception>
7325 *
7326 * Where:
7327 * r2 == dst_reg, pkt_end == src_reg
7328 * r2=pkt(id=n,off=8,r=0)
7329 * r3=pkt(id=n,off=0,r=0)
7330 *
7331 * pkt_data in src register:
7332 *
7333 * r2 = r3;
7334 * r2 += 8;
7335 * if (pkt_end >= r2) goto <access okay>
7336 * <handle exception>
7337 *
7338 * r2 = r3;
7339 * r2 += 8;
7340 * if (pkt_end <= r2) goto <handle exception>
7341 * <access okay>
7342 *
7343 * Where:
7344 * pkt_end == dst_reg, r2 == src_reg
7345 * r2=pkt(id=n,off=8,r=0)
7346 * r3=pkt(id=n,off=0,r=0)
7347 *
7348 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7349 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7350 * and [r3, r3 + 8-1) respectively is safe to access depending on
7351 * the check.
7352 */
7353
7354 /* If our ids match, then we must have the same max_value. And we
7355 * don't care about the other reg's fixed offset, since if it's too big
7356 * the range won't allow anything.
7357 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7358 */
7359 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
7360 if (reg->type == type && reg->id == dst_reg->id)
7361 /* keep the maximum range already checked */
7362 reg->range = max(reg->range, new_range);
7363 }));
7364 }
7365
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)7366 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7367 {
7368 struct tnum subreg = tnum_subreg(reg->var_off);
7369 s32 sval = (s32)val;
7370
7371 switch (opcode) {
7372 case BPF_JEQ:
7373 if (tnum_is_const(subreg))
7374 return !!tnum_equals_const(subreg, val);
7375 break;
7376 case BPF_JNE:
7377 if (tnum_is_const(subreg))
7378 return !tnum_equals_const(subreg, val);
7379 break;
7380 case BPF_JSET:
7381 if ((~subreg.mask & subreg.value) & val)
7382 return 1;
7383 if (!((subreg.mask | subreg.value) & val))
7384 return 0;
7385 break;
7386 case BPF_JGT:
7387 if (reg->u32_min_value > val)
7388 return 1;
7389 else if (reg->u32_max_value <= val)
7390 return 0;
7391 break;
7392 case BPF_JSGT:
7393 if (reg->s32_min_value > sval)
7394 return 1;
7395 else if (reg->s32_max_value <= sval)
7396 return 0;
7397 break;
7398 case BPF_JLT:
7399 if (reg->u32_max_value < val)
7400 return 1;
7401 else if (reg->u32_min_value >= val)
7402 return 0;
7403 break;
7404 case BPF_JSLT:
7405 if (reg->s32_max_value < sval)
7406 return 1;
7407 else if (reg->s32_min_value >= sval)
7408 return 0;
7409 break;
7410 case BPF_JGE:
7411 if (reg->u32_min_value >= val)
7412 return 1;
7413 else if (reg->u32_max_value < val)
7414 return 0;
7415 break;
7416 case BPF_JSGE:
7417 if (reg->s32_min_value >= sval)
7418 return 1;
7419 else if (reg->s32_max_value < sval)
7420 return 0;
7421 break;
7422 case BPF_JLE:
7423 if (reg->u32_max_value <= val)
7424 return 1;
7425 else if (reg->u32_min_value > val)
7426 return 0;
7427 break;
7428 case BPF_JSLE:
7429 if (reg->s32_max_value <= sval)
7430 return 1;
7431 else if (reg->s32_min_value > sval)
7432 return 0;
7433 break;
7434 }
7435
7436 return -1;
7437 }
7438
7439
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)7440 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7441 {
7442 s64 sval = (s64)val;
7443
7444 switch (opcode) {
7445 case BPF_JEQ:
7446 if (tnum_is_const(reg->var_off))
7447 return !!tnum_equals_const(reg->var_off, val);
7448 break;
7449 case BPF_JNE:
7450 if (tnum_is_const(reg->var_off))
7451 return !tnum_equals_const(reg->var_off, val);
7452 break;
7453 case BPF_JSET:
7454 if ((~reg->var_off.mask & reg->var_off.value) & val)
7455 return 1;
7456 if (!((reg->var_off.mask | reg->var_off.value) & val))
7457 return 0;
7458 break;
7459 case BPF_JGT:
7460 if (reg->umin_value > val)
7461 return 1;
7462 else if (reg->umax_value <= val)
7463 return 0;
7464 break;
7465 case BPF_JSGT:
7466 if (reg->smin_value > sval)
7467 return 1;
7468 else if (reg->smax_value <= sval)
7469 return 0;
7470 break;
7471 case BPF_JLT:
7472 if (reg->umax_value < val)
7473 return 1;
7474 else if (reg->umin_value >= val)
7475 return 0;
7476 break;
7477 case BPF_JSLT:
7478 if (reg->smax_value < sval)
7479 return 1;
7480 else if (reg->smin_value >= sval)
7481 return 0;
7482 break;
7483 case BPF_JGE:
7484 if (reg->umin_value >= val)
7485 return 1;
7486 else if (reg->umax_value < val)
7487 return 0;
7488 break;
7489 case BPF_JSGE:
7490 if (reg->smin_value >= sval)
7491 return 1;
7492 else if (reg->smax_value < sval)
7493 return 0;
7494 break;
7495 case BPF_JLE:
7496 if (reg->umax_value <= val)
7497 return 1;
7498 else if (reg->umin_value > val)
7499 return 0;
7500 break;
7501 case BPF_JSLE:
7502 if (reg->smax_value <= sval)
7503 return 1;
7504 else if (reg->smin_value > sval)
7505 return 0;
7506 break;
7507 }
7508
7509 return -1;
7510 }
7511
7512 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7513 * and return:
7514 * 1 - branch will be taken and "goto target" will be executed
7515 * 0 - branch will not be taken and fall-through to next insn
7516 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7517 * range [0,10]
7518 */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)7519 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7520 bool is_jmp32)
7521 {
7522 if (__is_pointer_value(false, reg)) {
7523 if (!reg_type_not_null(reg->type))
7524 return -1;
7525
7526 /* If pointer is valid tests against zero will fail so we can
7527 * use this to direct branch taken.
7528 */
7529 if (val != 0)
7530 return -1;
7531
7532 switch (opcode) {
7533 case BPF_JEQ:
7534 return 0;
7535 case BPF_JNE:
7536 return 1;
7537 default:
7538 return -1;
7539 }
7540 }
7541
7542 if (is_jmp32)
7543 return is_branch32_taken(reg, val, opcode);
7544 return is_branch64_taken(reg, val, opcode);
7545 }
7546
flip_opcode(u32 opcode)7547 static int flip_opcode(u32 opcode)
7548 {
7549 /* How can we transform "a <op> b" into "b <op> a"? */
7550 static const u8 opcode_flip[16] = {
7551 /* these stay the same */
7552 [BPF_JEQ >> 4] = BPF_JEQ,
7553 [BPF_JNE >> 4] = BPF_JNE,
7554 [BPF_JSET >> 4] = BPF_JSET,
7555 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7556 [BPF_JGE >> 4] = BPF_JLE,
7557 [BPF_JGT >> 4] = BPF_JLT,
7558 [BPF_JLE >> 4] = BPF_JGE,
7559 [BPF_JLT >> 4] = BPF_JGT,
7560 [BPF_JSGE >> 4] = BPF_JSLE,
7561 [BPF_JSGT >> 4] = BPF_JSLT,
7562 [BPF_JSLE >> 4] = BPF_JSGE,
7563 [BPF_JSLT >> 4] = BPF_JSGT
7564 };
7565 return opcode_flip[opcode >> 4];
7566 }
7567
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)7568 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7569 struct bpf_reg_state *src_reg,
7570 u8 opcode)
7571 {
7572 struct bpf_reg_state *pkt;
7573
7574 if (src_reg->type == PTR_TO_PACKET_END) {
7575 pkt = dst_reg;
7576 } else if (dst_reg->type == PTR_TO_PACKET_END) {
7577 pkt = src_reg;
7578 opcode = flip_opcode(opcode);
7579 } else {
7580 return -1;
7581 }
7582
7583 if (pkt->range >= 0)
7584 return -1;
7585
7586 switch (opcode) {
7587 case BPF_JLE:
7588 /* pkt <= pkt_end */
7589 fallthrough;
7590 case BPF_JGT:
7591 /* pkt > pkt_end */
7592 if (pkt->range == BEYOND_PKT_END)
7593 /* pkt has at last one extra byte beyond pkt_end */
7594 return opcode == BPF_JGT;
7595 break;
7596 case BPF_JLT:
7597 /* pkt < pkt_end */
7598 fallthrough;
7599 case BPF_JGE:
7600 /* pkt >= pkt_end */
7601 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7602 return opcode == BPF_JGE;
7603 break;
7604 }
7605 return -1;
7606 }
7607
7608 /* Adjusts the register min/max values in the case that the dst_reg is the
7609 * variable register that we are working on, and src_reg is a constant or we're
7610 * simply doing a BPF_K check.
7611 * In JEQ/JNE cases we also adjust the var_off values.
7612 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)7613 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7614 struct bpf_reg_state *false_reg,
7615 u64 val, u32 val32,
7616 u8 opcode, bool is_jmp32)
7617 {
7618 struct tnum false_32off = tnum_subreg(false_reg->var_off);
7619 struct tnum false_64off = false_reg->var_off;
7620 struct tnum true_32off = tnum_subreg(true_reg->var_off);
7621 struct tnum true_64off = true_reg->var_off;
7622 s64 sval = (s64)val;
7623 s32 sval32 = (s32)val32;
7624
7625 /* If the dst_reg is a pointer, we can't learn anything about its
7626 * variable offset from the compare (unless src_reg were a pointer into
7627 * the same object, but we don't bother with that.
7628 * Since false_reg and true_reg have the same type by construction, we
7629 * only need to check one of them for pointerness.
7630 */
7631 if (__is_pointer_value(false, false_reg))
7632 return;
7633
7634 switch (opcode) {
7635 /* JEQ/JNE comparison doesn't change the register equivalence.
7636 *
7637 * r1 = r2;
7638 * if (r1 == 42) goto label;
7639 * ...
7640 * label: // here both r1 and r2 are known to be 42.
7641 *
7642 * Hence when marking register as known preserve it's ID.
7643 */
7644 case BPF_JEQ:
7645 if (is_jmp32) {
7646 __mark_reg32_known(true_reg, val32);
7647 true_32off = tnum_subreg(true_reg->var_off);
7648 } else {
7649 ___mark_reg_known(true_reg, val);
7650 true_64off = true_reg->var_off;
7651 }
7652 break;
7653 case BPF_JNE:
7654 if (is_jmp32) {
7655 __mark_reg32_known(false_reg, val32);
7656 false_32off = tnum_subreg(false_reg->var_off);
7657 } else {
7658 ___mark_reg_known(false_reg, val);
7659 false_64off = false_reg->var_off;
7660 }
7661 break;
7662 case BPF_JSET:
7663 if (is_jmp32) {
7664 false_32off = tnum_and(false_32off, tnum_const(~val32));
7665 if (is_power_of_2(val32))
7666 true_32off = tnum_or(true_32off,
7667 tnum_const(val32));
7668 } else {
7669 false_64off = tnum_and(false_64off, tnum_const(~val));
7670 if (is_power_of_2(val))
7671 true_64off = tnum_or(true_64off,
7672 tnum_const(val));
7673 }
7674 break;
7675 case BPF_JGE:
7676 case BPF_JGT:
7677 {
7678 if (is_jmp32) {
7679 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7680 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7681
7682 false_reg->u32_max_value = min(false_reg->u32_max_value,
7683 false_umax);
7684 true_reg->u32_min_value = max(true_reg->u32_min_value,
7685 true_umin);
7686 } else {
7687 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7688 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7689
7690 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7691 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7692 }
7693 break;
7694 }
7695 case BPF_JSGE:
7696 case BPF_JSGT:
7697 {
7698 if (is_jmp32) {
7699 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7700 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7701
7702 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7703 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7704 } else {
7705 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7706 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7707
7708 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7709 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7710 }
7711 break;
7712 }
7713 case BPF_JLE:
7714 case BPF_JLT:
7715 {
7716 if (is_jmp32) {
7717 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7718 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7719
7720 false_reg->u32_min_value = max(false_reg->u32_min_value,
7721 false_umin);
7722 true_reg->u32_max_value = min(true_reg->u32_max_value,
7723 true_umax);
7724 } else {
7725 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7726 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7727
7728 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7729 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7730 }
7731 break;
7732 }
7733 case BPF_JSLE:
7734 case BPF_JSLT:
7735 {
7736 if (is_jmp32) {
7737 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7738 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7739
7740 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7741 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7742 } else {
7743 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7744 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7745
7746 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7747 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7748 }
7749 break;
7750 }
7751 default:
7752 return;
7753 }
7754
7755 if (is_jmp32) {
7756 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7757 tnum_subreg(false_32off));
7758 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7759 tnum_subreg(true_32off));
7760 __reg_combine_32_into_64(false_reg);
7761 __reg_combine_32_into_64(true_reg);
7762 } else {
7763 false_reg->var_off = false_64off;
7764 true_reg->var_off = true_64off;
7765 __reg_combine_64_into_32(false_reg);
7766 __reg_combine_64_into_32(true_reg);
7767 }
7768 }
7769
7770 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7771 * the variable reg.
7772 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)7773 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7774 struct bpf_reg_state *false_reg,
7775 u64 val, u32 val32,
7776 u8 opcode, bool is_jmp32)
7777 {
7778 opcode = flip_opcode(opcode);
7779 /* This uses zero as "not present in table"; luckily the zero opcode,
7780 * BPF_JA, can't get here.
7781 */
7782 if (opcode)
7783 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7784 }
7785
7786 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)7787 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7788 struct bpf_reg_state *dst_reg)
7789 {
7790 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7791 dst_reg->umin_value);
7792 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7793 dst_reg->umax_value);
7794 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7795 dst_reg->smin_value);
7796 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7797 dst_reg->smax_value);
7798 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7799 dst_reg->var_off);
7800 reg_bounds_sync(src_reg);
7801 reg_bounds_sync(dst_reg);
7802 }
7803
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)7804 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7805 struct bpf_reg_state *true_dst,
7806 struct bpf_reg_state *false_src,
7807 struct bpf_reg_state *false_dst,
7808 u8 opcode)
7809 {
7810 switch (opcode) {
7811 case BPF_JEQ:
7812 __reg_combine_min_max(true_src, true_dst);
7813 break;
7814 case BPF_JNE:
7815 __reg_combine_min_max(false_src, false_dst);
7816 break;
7817 }
7818 }
7819
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)7820 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7821 struct bpf_reg_state *reg, u32 id,
7822 bool is_null)
7823 {
7824 if (type_may_be_null(reg->type) && reg->id == id &&
7825 !WARN_ON_ONCE(!reg->id)) {
7826 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7827 !tnum_equals_const(reg->var_off, 0) ||
7828 reg->off)) {
7829 /* Old offset (both fixed and variable parts) should
7830 * have been known-zero, because we don't allow pointer
7831 * arithmetic on pointers that might be NULL. If we
7832 * see this happening, don't convert the register.
7833 */
7834 return;
7835 }
7836 if (is_null) {
7837 reg->type = SCALAR_VALUE;
7838 } else if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
7839 const struct bpf_map *map = reg->map_ptr;
7840
7841 if (map->inner_map_meta) {
7842 reg->type = CONST_PTR_TO_MAP;
7843 reg->map_ptr = map->inner_map_meta;
7844 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7845 reg->type = PTR_TO_XDP_SOCK;
7846 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7847 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7848 reg->type = PTR_TO_SOCKET;
7849 } else {
7850 reg->type = PTR_TO_MAP_VALUE;
7851 }
7852 } else {
7853 reg->type &= ~PTR_MAYBE_NULL;
7854 }
7855
7856 if (is_null) {
7857 /* We don't need id and ref_obj_id from this point
7858 * onwards anymore, thus we should better reset it,
7859 * so that state pruning has chances to take effect.
7860 */
7861 reg->id = 0;
7862 reg->ref_obj_id = 0;
7863 } else if (!reg_may_point_to_spin_lock(reg)) {
7864 /* For not-NULL ptr, reg->ref_obj_id will be reset
7865 * in release_reference().
7866 *
7867 * reg->id is still used by spin_lock ptr. Other
7868 * than spin_lock ptr type, reg->id can be reset.
7869 */
7870 reg->id = 0;
7871 }
7872 }
7873 }
7874
7875 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7876 * be folded together at some point.
7877 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)7878 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7879 bool is_null)
7880 {
7881 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7882 struct bpf_reg_state *regs = state->regs, *reg;
7883 u32 ref_obj_id = regs[regno].ref_obj_id;
7884 u32 id = regs[regno].id;
7885
7886 if (ref_obj_id && ref_obj_id == id && is_null)
7887 /* regs[regno] is in the " == NULL" branch.
7888 * No one could have freed the reference state before
7889 * doing the NULL check.
7890 */
7891 WARN_ON_ONCE(release_reference_state(state, id));
7892
7893 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
7894 mark_ptr_or_null_reg(state, reg, id, is_null);
7895 }));
7896 }
7897
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)7898 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7899 struct bpf_reg_state *dst_reg,
7900 struct bpf_reg_state *src_reg,
7901 struct bpf_verifier_state *this_branch,
7902 struct bpf_verifier_state *other_branch)
7903 {
7904 if (BPF_SRC(insn->code) != BPF_X)
7905 return false;
7906
7907 /* Pointers are always 64-bit. */
7908 if (BPF_CLASS(insn->code) == BPF_JMP32)
7909 return false;
7910
7911 switch (BPF_OP(insn->code)) {
7912 case BPF_JGT:
7913 if ((dst_reg->type == PTR_TO_PACKET &&
7914 src_reg->type == PTR_TO_PACKET_END) ||
7915 (dst_reg->type == PTR_TO_PACKET_META &&
7916 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7917 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7918 find_good_pkt_pointers(this_branch, dst_reg,
7919 dst_reg->type, false);
7920 mark_pkt_end(other_branch, insn->dst_reg, true);
7921 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7922 src_reg->type == PTR_TO_PACKET) ||
7923 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7924 src_reg->type == PTR_TO_PACKET_META)) {
7925 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7926 find_good_pkt_pointers(other_branch, src_reg,
7927 src_reg->type, true);
7928 mark_pkt_end(this_branch, insn->src_reg, false);
7929 } else {
7930 return false;
7931 }
7932 break;
7933 case BPF_JLT:
7934 if ((dst_reg->type == PTR_TO_PACKET &&
7935 src_reg->type == PTR_TO_PACKET_END) ||
7936 (dst_reg->type == PTR_TO_PACKET_META &&
7937 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7938 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7939 find_good_pkt_pointers(other_branch, dst_reg,
7940 dst_reg->type, true);
7941 mark_pkt_end(this_branch, insn->dst_reg, false);
7942 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7943 src_reg->type == PTR_TO_PACKET) ||
7944 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7945 src_reg->type == PTR_TO_PACKET_META)) {
7946 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7947 find_good_pkt_pointers(this_branch, src_reg,
7948 src_reg->type, false);
7949 mark_pkt_end(other_branch, insn->src_reg, true);
7950 } else {
7951 return false;
7952 }
7953 break;
7954 case BPF_JGE:
7955 if ((dst_reg->type == PTR_TO_PACKET &&
7956 src_reg->type == PTR_TO_PACKET_END) ||
7957 (dst_reg->type == PTR_TO_PACKET_META &&
7958 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7959 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7960 find_good_pkt_pointers(this_branch, dst_reg,
7961 dst_reg->type, true);
7962 mark_pkt_end(other_branch, insn->dst_reg, false);
7963 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7964 src_reg->type == PTR_TO_PACKET) ||
7965 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7966 src_reg->type == PTR_TO_PACKET_META)) {
7967 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7968 find_good_pkt_pointers(other_branch, src_reg,
7969 src_reg->type, false);
7970 mark_pkt_end(this_branch, insn->src_reg, true);
7971 } else {
7972 return false;
7973 }
7974 break;
7975 case BPF_JLE:
7976 if ((dst_reg->type == PTR_TO_PACKET &&
7977 src_reg->type == PTR_TO_PACKET_END) ||
7978 (dst_reg->type == PTR_TO_PACKET_META &&
7979 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7980 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7981 find_good_pkt_pointers(other_branch, dst_reg,
7982 dst_reg->type, false);
7983 mark_pkt_end(this_branch, insn->dst_reg, true);
7984 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7985 src_reg->type == PTR_TO_PACKET) ||
7986 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7987 src_reg->type == PTR_TO_PACKET_META)) {
7988 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7989 find_good_pkt_pointers(this_branch, src_reg,
7990 src_reg->type, true);
7991 mark_pkt_end(other_branch, insn->src_reg, false);
7992 } else {
7993 return false;
7994 }
7995 break;
7996 default:
7997 return false;
7998 }
7999
8000 return true;
8001 }
8002
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)8003 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8004 struct bpf_reg_state *known_reg)
8005 {
8006 struct bpf_func_state *state;
8007 struct bpf_reg_state *reg;
8008
8009 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
8010 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8011 *reg = *known_reg;
8012 }));
8013 }
8014
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)8015 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8016 struct bpf_insn *insn, int *insn_idx)
8017 {
8018 struct bpf_verifier_state *this_branch = env->cur_state;
8019 struct bpf_verifier_state *other_branch;
8020 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8021 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8022 u8 opcode = BPF_OP(insn->code);
8023 bool is_jmp32;
8024 int pred = -1;
8025 int err;
8026
8027 /* Only conditional jumps are expected to reach here. */
8028 if (opcode == BPF_JA || opcode > BPF_JSLE) {
8029 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8030 return -EINVAL;
8031 }
8032
8033 if (BPF_SRC(insn->code) == BPF_X) {
8034 if (insn->imm != 0) {
8035 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8036 return -EINVAL;
8037 }
8038
8039 /* check src1 operand */
8040 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8041 if (err)
8042 return err;
8043
8044 if (is_pointer_value(env, insn->src_reg)) {
8045 verbose(env, "R%d pointer comparison prohibited\n",
8046 insn->src_reg);
8047 return -EACCES;
8048 }
8049 src_reg = ®s[insn->src_reg];
8050 } else {
8051 if (insn->src_reg != BPF_REG_0) {
8052 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8053 return -EINVAL;
8054 }
8055 }
8056
8057 /* check src2 operand */
8058 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8059 if (err)
8060 return err;
8061
8062 dst_reg = ®s[insn->dst_reg];
8063 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8064
8065 if (BPF_SRC(insn->code) == BPF_K) {
8066 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8067 } else if (src_reg->type == SCALAR_VALUE &&
8068 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8069 pred = is_branch_taken(dst_reg,
8070 tnum_subreg(src_reg->var_off).value,
8071 opcode,
8072 is_jmp32);
8073 } else if (src_reg->type == SCALAR_VALUE &&
8074 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8075 pred = is_branch_taken(dst_reg,
8076 src_reg->var_off.value,
8077 opcode,
8078 is_jmp32);
8079 } else if (reg_is_pkt_pointer_any(dst_reg) &&
8080 reg_is_pkt_pointer_any(src_reg) &&
8081 !is_jmp32) {
8082 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8083 }
8084
8085 if (pred >= 0) {
8086 /* If we get here with a dst_reg pointer type it is because
8087 * above is_branch_taken() special cased the 0 comparison.
8088 */
8089 if (!__is_pointer_value(false, dst_reg))
8090 err = mark_chain_precision(env, insn->dst_reg);
8091 if (BPF_SRC(insn->code) == BPF_X && !err &&
8092 !__is_pointer_value(false, src_reg))
8093 err = mark_chain_precision(env, insn->src_reg);
8094 if (err)
8095 return err;
8096 }
8097
8098 if (pred == 1) {
8099 /* Only follow the goto, ignore fall-through. If needed, push
8100 * the fall-through branch for simulation under speculative
8101 * execution.
8102 */
8103 if (!env->bypass_spec_v1 &&
8104 !sanitize_speculative_path(env, insn, *insn_idx + 1,
8105 *insn_idx))
8106 return -EFAULT;
8107 *insn_idx += insn->off;
8108 return 0;
8109 } else if (pred == 0) {
8110 /* Only follow the fall-through branch, since that's where the
8111 * program will go. If needed, push the goto branch for
8112 * simulation under speculative execution.
8113 */
8114 if (!env->bypass_spec_v1 &&
8115 !sanitize_speculative_path(env, insn,
8116 *insn_idx + insn->off + 1,
8117 *insn_idx))
8118 return -EFAULT;
8119 return 0;
8120 }
8121
8122 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8123 false);
8124 if (!other_branch)
8125 return -EFAULT;
8126 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8127
8128 /* detect if we are comparing against a constant value so we can adjust
8129 * our min/max values for our dst register.
8130 * this is only legit if both are scalars (or pointers to the same
8131 * object, I suppose, but we don't support that right now), because
8132 * otherwise the different base pointers mean the offsets aren't
8133 * comparable.
8134 */
8135 if (BPF_SRC(insn->code) == BPF_X) {
8136 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
8137
8138 if (dst_reg->type == SCALAR_VALUE &&
8139 src_reg->type == SCALAR_VALUE) {
8140 if (tnum_is_const(src_reg->var_off) ||
8141 (is_jmp32 &&
8142 tnum_is_const(tnum_subreg(src_reg->var_off))))
8143 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8144 dst_reg,
8145 src_reg->var_off.value,
8146 tnum_subreg(src_reg->var_off).value,
8147 opcode, is_jmp32);
8148 else if (tnum_is_const(dst_reg->var_off) ||
8149 (is_jmp32 &&
8150 tnum_is_const(tnum_subreg(dst_reg->var_off))))
8151 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8152 src_reg,
8153 dst_reg->var_off.value,
8154 tnum_subreg(dst_reg->var_off).value,
8155 opcode, is_jmp32);
8156 else if (!is_jmp32 &&
8157 (opcode == BPF_JEQ || opcode == BPF_JNE))
8158 /* Comparing for equality, we can combine knowledge */
8159 reg_combine_min_max(&other_branch_regs[insn->src_reg],
8160 &other_branch_regs[insn->dst_reg],
8161 src_reg, dst_reg, opcode);
8162 if (src_reg->id &&
8163 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8164 find_equal_scalars(this_branch, src_reg);
8165 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8166 }
8167
8168 }
8169 } else if (dst_reg->type == SCALAR_VALUE) {
8170 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8171 dst_reg, insn->imm, (u32)insn->imm,
8172 opcode, is_jmp32);
8173 }
8174
8175 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8176 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8177 find_equal_scalars(this_branch, dst_reg);
8178 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8179 }
8180
8181 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8182 * NOTE: these optimizations below are related with pointer comparison
8183 * which will never be JMP32.
8184 */
8185 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8186 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8187 type_may_be_null(dst_reg->type)) {
8188 /* Mark all identical registers in each branch as either
8189 * safe or unknown depending R == 0 or R != 0 conditional.
8190 */
8191 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8192 opcode == BPF_JNE);
8193 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8194 opcode == BPF_JEQ);
8195 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
8196 this_branch, other_branch) &&
8197 is_pointer_value(env, insn->dst_reg)) {
8198 verbose(env, "R%d pointer comparison prohibited\n",
8199 insn->dst_reg);
8200 return -EACCES;
8201 }
8202 if (env->log.level & BPF_LOG_LEVEL)
8203 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8204 return 0;
8205 }
8206
8207 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)8208 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8209 {
8210 struct bpf_insn_aux_data *aux = cur_aux(env);
8211 struct bpf_reg_state *regs = cur_regs(env);
8212 struct bpf_reg_state *dst_reg;
8213 struct bpf_map *map;
8214 int err;
8215
8216 if (BPF_SIZE(insn->code) != BPF_DW) {
8217 verbose(env, "invalid BPF_LD_IMM insn\n");
8218 return -EINVAL;
8219 }
8220 if (insn->off != 0) {
8221 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8222 return -EINVAL;
8223 }
8224
8225 err = check_reg_arg(env, insn->dst_reg, DST_OP);
8226 if (err)
8227 return err;
8228
8229 dst_reg = ®s[insn->dst_reg];
8230 if (insn->src_reg == 0) {
8231 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8232
8233 dst_reg->type = SCALAR_VALUE;
8234 __mark_reg_known(®s[insn->dst_reg], imm);
8235 return 0;
8236 }
8237
8238 /* All special src_reg cases are listed below. From this point onwards
8239 * we either succeed and assign a corresponding dst_reg->type after
8240 * zeroing the offset, or fail and reject the program.
8241 */
8242 mark_reg_known_zero(env, regs, insn->dst_reg);
8243
8244 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8245 dst_reg->type = aux->btf_var.reg_type;
8246 switch (base_type(dst_reg->type)) {
8247 case PTR_TO_MEM:
8248 dst_reg->mem_size = aux->btf_var.mem_size;
8249 break;
8250 case PTR_TO_BTF_ID:
8251 case PTR_TO_PERCPU_BTF_ID:
8252 dst_reg->btf_id = aux->btf_var.btf_id;
8253 break;
8254 default:
8255 verbose(env, "bpf verifier is misconfigured\n");
8256 return -EFAULT;
8257 }
8258 return 0;
8259 }
8260
8261 map = env->used_maps[aux->map_index];
8262 dst_reg->map_ptr = map;
8263
8264 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8265 dst_reg->type = PTR_TO_MAP_VALUE;
8266 dst_reg->off = aux->map_off;
8267 if (map_value_has_spin_lock(map))
8268 dst_reg->id = ++env->id_gen;
8269 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8270 dst_reg->type = CONST_PTR_TO_MAP;
8271 } else {
8272 verbose(env, "bpf verifier is misconfigured\n");
8273 return -EINVAL;
8274 }
8275
8276 return 0;
8277 }
8278
may_access_skb(enum bpf_prog_type type)8279 static bool may_access_skb(enum bpf_prog_type type)
8280 {
8281 switch (type) {
8282 case BPF_PROG_TYPE_SOCKET_FILTER:
8283 case BPF_PROG_TYPE_SCHED_CLS:
8284 case BPF_PROG_TYPE_SCHED_ACT:
8285 return true;
8286 default:
8287 return false;
8288 }
8289 }
8290
8291 /* verify safety of LD_ABS|LD_IND instructions:
8292 * - they can only appear in the programs where ctx == skb
8293 * - since they are wrappers of function calls, they scratch R1-R5 registers,
8294 * preserve R6-R9, and store return value into R0
8295 *
8296 * Implicit input:
8297 * ctx == skb == R6 == CTX
8298 *
8299 * Explicit input:
8300 * SRC == any register
8301 * IMM == 32-bit immediate
8302 *
8303 * Output:
8304 * R0 - 8/16/32-bit skb data converted to cpu endianness
8305 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)8306 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8307 {
8308 struct bpf_reg_state *regs = cur_regs(env);
8309 static const int ctx_reg = BPF_REG_6;
8310 u8 mode = BPF_MODE(insn->code);
8311 int i, err;
8312
8313 if (!may_access_skb(resolve_prog_type(env->prog))) {
8314 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8315 return -EINVAL;
8316 }
8317
8318 if (!env->ops->gen_ld_abs) {
8319 verbose(env, "bpf verifier is misconfigured\n");
8320 return -EINVAL;
8321 }
8322
8323 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8324 BPF_SIZE(insn->code) == BPF_DW ||
8325 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8326 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8327 return -EINVAL;
8328 }
8329
8330 /* check whether implicit source operand (register R6) is readable */
8331 err = check_reg_arg(env, ctx_reg, SRC_OP);
8332 if (err)
8333 return err;
8334
8335 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8336 * gen_ld_abs() may terminate the program at runtime, leading to
8337 * reference leak.
8338 */
8339 err = check_reference_leak(env);
8340 if (err) {
8341 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8342 return err;
8343 }
8344
8345 if (env->cur_state->active_spin_lock) {
8346 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8347 return -EINVAL;
8348 }
8349
8350 if (regs[ctx_reg].type != PTR_TO_CTX) {
8351 verbose(env,
8352 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8353 return -EINVAL;
8354 }
8355
8356 if (mode == BPF_IND) {
8357 /* check explicit source operand */
8358 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8359 if (err)
8360 return err;
8361 }
8362
8363 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
8364 if (err < 0)
8365 return err;
8366
8367 /* reset caller saved regs to unreadable */
8368 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8369 mark_reg_not_init(env, regs, caller_saved[i]);
8370 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8371 }
8372
8373 /* mark destination R0 register as readable, since it contains
8374 * the value fetched from the packet.
8375 * Already marked as written above.
8376 */
8377 mark_reg_unknown(env, regs, BPF_REG_0);
8378 /* ld_abs load up to 32-bit skb data. */
8379 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8380 return 0;
8381 }
8382
check_return_code(struct bpf_verifier_env * env)8383 static int check_return_code(struct bpf_verifier_env *env)
8384 {
8385 struct tnum enforce_attach_type_range = tnum_unknown;
8386 const struct bpf_prog *prog = env->prog;
8387 struct bpf_reg_state *reg;
8388 struct tnum range = tnum_range(0, 1);
8389 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8390 int err;
8391 const bool is_subprog = env->cur_state->frame[0]->subprogno;
8392
8393 /* LSM and struct_ops func-ptr's return type could be "void" */
8394 if (!is_subprog &&
8395 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8396 prog_type == BPF_PROG_TYPE_LSM) &&
8397 !prog->aux->attach_func_proto->type)
8398 return 0;
8399
8400 /* eBPF calling convetion is such that R0 is used
8401 * to return the value from eBPF program.
8402 * Make sure that it's readable at this time
8403 * of bpf_exit, which means that program wrote
8404 * something into it earlier
8405 */
8406 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8407 if (err)
8408 return err;
8409
8410 if (is_pointer_value(env, BPF_REG_0)) {
8411 verbose(env, "R0 leaks addr as return value\n");
8412 return -EACCES;
8413 }
8414
8415 reg = cur_regs(env) + BPF_REG_0;
8416 if (is_subprog) {
8417 if (reg->type != SCALAR_VALUE) {
8418 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8419 reg_type_str(env, reg->type));
8420 return -EINVAL;
8421 }
8422 return 0;
8423 }
8424
8425 switch (prog_type) {
8426 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8427 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8428 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8429 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8430 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8431 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8432 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8433 range = tnum_range(1, 1);
8434 break;
8435 case BPF_PROG_TYPE_CGROUP_SKB:
8436 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8437 range = tnum_range(0, 3);
8438 enforce_attach_type_range = tnum_range(2, 3);
8439 }
8440 break;
8441 case BPF_PROG_TYPE_CGROUP_SOCK:
8442 case BPF_PROG_TYPE_SOCK_OPS:
8443 case BPF_PROG_TYPE_CGROUP_DEVICE:
8444 case BPF_PROG_TYPE_CGROUP_SYSCTL:
8445 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8446 break;
8447 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8448 if (!env->prog->aux->attach_btf_id)
8449 return 0;
8450 range = tnum_const(0);
8451 break;
8452 case BPF_PROG_TYPE_TRACING:
8453 switch (env->prog->expected_attach_type) {
8454 case BPF_TRACE_FENTRY:
8455 case BPF_TRACE_FEXIT:
8456 range = tnum_const(0);
8457 break;
8458 case BPF_TRACE_RAW_TP:
8459 case BPF_MODIFY_RETURN:
8460 return 0;
8461 case BPF_TRACE_ITER:
8462 break;
8463 default:
8464 return -ENOTSUPP;
8465 }
8466 break;
8467 case BPF_PROG_TYPE_SK_LOOKUP:
8468 range = tnum_range(SK_DROP, SK_PASS);
8469 break;
8470 case BPF_PROG_TYPE_EXT:
8471 /* freplace program can return anything as its return value
8472 * depends on the to-be-replaced kernel func or bpf program.
8473 */
8474 default:
8475 return 0;
8476 }
8477
8478 if (reg->type != SCALAR_VALUE) {
8479 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8480 reg_type_str(env, reg->type));
8481 return -EINVAL;
8482 }
8483
8484 if (!tnum_in(range, reg->var_off)) {
8485 char tn_buf[48];
8486
8487 verbose(env, "At program exit the register R0 ");
8488 if (!tnum_is_unknown(reg->var_off)) {
8489 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8490 verbose(env, "has value %s", tn_buf);
8491 } else {
8492 verbose(env, "has unknown scalar value");
8493 }
8494 tnum_strn(tn_buf, sizeof(tn_buf), range);
8495 verbose(env, " should have been in %s\n", tn_buf);
8496 return -EINVAL;
8497 }
8498
8499 if (!tnum_is_unknown(enforce_attach_type_range) &&
8500 tnum_in(enforce_attach_type_range, reg->var_off))
8501 env->prog->enforce_expected_attach_type = 1;
8502 return 0;
8503 }
8504
8505 /* non-recursive DFS pseudo code
8506 * 1 procedure DFS-iterative(G,v):
8507 * 2 label v as discovered
8508 * 3 let S be a stack
8509 * 4 S.push(v)
8510 * 5 while S is not empty
8511 * 6 t <- S.pop()
8512 * 7 if t is what we're looking for:
8513 * 8 return t
8514 * 9 for all edges e in G.adjacentEdges(t) do
8515 * 10 if edge e is already labelled
8516 * 11 continue with the next edge
8517 * 12 w <- G.adjacentVertex(t,e)
8518 * 13 if vertex w is not discovered and not explored
8519 * 14 label e as tree-edge
8520 * 15 label w as discovered
8521 * 16 S.push(w)
8522 * 17 continue at 5
8523 * 18 else if vertex w is discovered
8524 * 19 label e as back-edge
8525 * 20 else
8526 * 21 // vertex w is explored
8527 * 22 label e as forward- or cross-edge
8528 * 23 label t as explored
8529 * 24 S.pop()
8530 *
8531 * convention:
8532 * 0x10 - discovered
8533 * 0x11 - discovered and fall-through edge labelled
8534 * 0x12 - discovered and fall-through and branch edges labelled
8535 * 0x20 - explored
8536 */
8537
8538 enum {
8539 DISCOVERED = 0x10,
8540 EXPLORED = 0x20,
8541 FALLTHROUGH = 1,
8542 BRANCH = 2,
8543 };
8544
state_htab_size(struct bpf_verifier_env * env)8545 static u32 state_htab_size(struct bpf_verifier_env *env)
8546 {
8547 return env->prog->len;
8548 }
8549
explored_state(struct bpf_verifier_env * env,int idx)8550 static struct bpf_verifier_state_list **explored_state(
8551 struct bpf_verifier_env *env,
8552 int idx)
8553 {
8554 struct bpf_verifier_state *cur = env->cur_state;
8555 struct bpf_func_state *state = cur->frame[cur->curframe];
8556
8557 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8558 }
8559
init_explored_state(struct bpf_verifier_env * env,int idx)8560 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8561 {
8562 env->insn_aux_data[idx].prune_point = true;
8563 }
8564
8565 /* t, w, e - match pseudo-code above:
8566 * t - index of current instruction
8567 * w - next instruction
8568 * e - edge
8569 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env,bool loop_ok)8570 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8571 bool loop_ok)
8572 {
8573 int *insn_stack = env->cfg.insn_stack;
8574 int *insn_state = env->cfg.insn_state;
8575
8576 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8577 return 0;
8578
8579 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8580 return 0;
8581
8582 if (w < 0 || w >= env->prog->len) {
8583 verbose_linfo(env, t, "%d: ", t);
8584 verbose(env, "jump out of range from insn %d to %d\n", t, w);
8585 return -EINVAL;
8586 }
8587
8588 if (e == BRANCH)
8589 /* mark branch target for state pruning */
8590 init_explored_state(env, w);
8591
8592 if (insn_state[w] == 0) {
8593 /* tree-edge */
8594 insn_state[t] = DISCOVERED | e;
8595 insn_state[w] = DISCOVERED;
8596 if (env->cfg.cur_stack >= env->prog->len)
8597 return -E2BIG;
8598 insn_stack[env->cfg.cur_stack++] = w;
8599 return 1;
8600 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8601 if (loop_ok && env->bpf_capable)
8602 return 0;
8603 verbose_linfo(env, t, "%d: ", t);
8604 verbose_linfo(env, w, "%d: ", w);
8605 verbose(env, "back-edge from insn %d to %d\n", t, w);
8606 return -EINVAL;
8607 } else if (insn_state[w] == EXPLORED) {
8608 /* forward- or cross-edge */
8609 insn_state[t] = DISCOVERED | e;
8610 } else {
8611 verbose(env, "insn state internal bug\n");
8612 return -EFAULT;
8613 }
8614 return 0;
8615 }
8616
8617 /* non-recursive depth-first-search to detect loops in BPF program
8618 * loop == back-edge in directed graph
8619 */
check_cfg(struct bpf_verifier_env * env)8620 static int check_cfg(struct bpf_verifier_env *env)
8621 {
8622 struct bpf_insn *insns = env->prog->insnsi;
8623 int insn_cnt = env->prog->len;
8624 int *insn_stack, *insn_state;
8625 int ret = 0;
8626 int i, t;
8627
8628 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8629 if (!insn_state)
8630 return -ENOMEM;
8631
8632 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8633 if (!insn_stack) {
8634 kvfree(insn_state);
8635 return -ENOMEM;
8636 }
8637
8638 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8639 insn_stack[0] = 0; /* 0 is the first instruction */
8640 env->cfg.cur_stack = 1;
8641
8642 peek_stack:
8643 if (env->cfg.cur_stack == 0)
8644 goto check_state;
8645 t = insn_stack[env->cfg.cur_stack - 1];
8646
8647 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
8648 BPF_CLASS(insns[t].code) == BPF_JMP32) {
8649 u8 opcode = BPF_OP(insns[t].code);
8650
8651 if (opcode == BPF_EXIT) {
8652 goto mark_explored;
8653 } else if (opcode == BPF_CALL) {
8654 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8655 if (ret == 1)
8656 goto peek_stack;
8657 else if (ret < 0)
8658 goto err_free;
8659 if (t + 1 < insn_cnt)
8660 init_explored_state(env, t + 1);
8661 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8662 init_explored_state(env, t);
8663 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8664 env, false);
8665 if (ret == 1)
8666 goto peek_stack;
8667 else if (ret < 0)
8668 goto err_free;
8669 }
8670 } else if (opcode == BPF_JA) {
8671 if (BPF_SRC(insns[t].code) != BPF_K) {
8672 ret = -EINVAL;
8673 goto err_free;
8674 }
8675 /* unconditional jump with single edge */
8676 ret = push_insn(t, t + insns[t].off + 1,
8677 FALLTHROUGH, env, true);
8678 if (ret == 1)
8679 goto peek_stack;
8680 else if (ret < 0)
8681 goto err_free;
8682 /* unconditional jmp is not a good pruning point,
8683 * but it's marked, since backtracking needs
8684 * to record jmp history in is_state_visited().
8685 */
8686 init_explored_state(env, t + insns[t].off + 1);
8687 /* tell verifier to check for equivalent states
8688 * after every call and jump
8689 */
8690 if (t + 1 < insn_cnt)
8691 init_explored_state(env, t + 1);
8692 } else {
8693 /* conditional jump with two edges */
8694 init_explored_state(env, t);
8695 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8696 if (ret == 1)
8697 goto peek_stack;
8698 else if (ret < 0)
8699 goto err_free;
8700
8701 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8702 if (ret == 1)
8703 goto peek_stack;
8704 else if (ret < 0)
8705 goto err_free;
8706 }
8707 } else {
8708 /* all other non-branch instructions with single
8709 * fall-through edge
8710 */
8711 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8712 if (ret == 1)
8713 goto peek_stack;
8714 else if (ret < 0)
8715 goto err_free;
8716 }
8717
8718 mark_explored:
8719 insn_state[t] = EXPLORED;
8720 if (env->cfg.cur_stack-- <= 0) {
8721 verbose(env, "pop stack internal bug\n");
8722 ret = -EFAULT;
8723 goto err_free;
8724 }
8725 goto peek_stack;
8726
8727 check_state:
8728 for (i = 0; i < insn_cnt; i++) {
8729 if (insn_state[i] != EXPLORED) {
8730 verbose(env, "unreachable insn %d\n", i);
8731 ret = -EINVAL;
8732 goto err_free;
8733 }
8734 }
8735 ret = 0; /* cfg looks good */
8736
8737 err_free:
8738 kvfree(insn_state);
8739 kvfree(insn_stack);
8740 env->cfg.insn_state = env->cfg.insn_stack = NULL;
8741 return ret;
8742 }
8743
check_abnormal_return(struct bpf_verifier_env * env)8744 static int check_abnormal_return(struct bpf_verifier_env *env)
8745 {
8746 int i;
8747
8748 for (i = 1; i < env->subprog_cnt; i++) {
8749 if (env->subprog_info[i].has_ld_abs) {
8750 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8751 return -EINVAL;
8752 }
8753 if (env->subprog_info[i].has_tail_call) {
8754 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8755 return -EINVAL;
8756 }
8757 }
8758 return 0;
8759 }
8760
8761 /* The minimum supported BTF func info size */
8762 #define MIN_BPF_FUNCINFO_SIZE 8
8763 #define MAX_FUNCINFO_REC_SIZE 252
8764
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)8765 static int check_btf_func(struct bpf_verifier_env *env,
8766 const union bpf_attr *attr,
8767 union bpf_attr __user *uattr)
8768 {
8769 const struct btf_type *type, *func_proto, *ret_type;
8770 u32 i, nfuncs, urec_size, min_size;
8771 u32 krec_size = sizeof(struct bpf_func_info);
8772 struct bpf_func_info *krecord;
8773 struct bpf_func_info_aux *info_aux = NULL;
8774 struct bpf_prog *prog;
8775 const struct btf *btf;
8776 void __user *urecord;
8777 u32 prev_offset = 0;
8778 bool scalar_return;
8779 int ret = -ENOMEM;
8780
8781 nfuncs = attr->func_info_cnt;
8782 if (!nfuncs) {
8783 if (check_abnormal_return(env))
8784 return -EINVAL;
8785 return 0;
8786 }
8787
8788 if (nfuncs != env->subprog_cnt) {
8789 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8790 return -EINVAL;
8791 }
8792
8793 urec_size = attr->func_info_rec_size;
8794 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8795 urec_size > MAX_FUNCINFO_REC_SIZE ||
8796 urec_size % sizeof(u32)) {
8797 verbose(env, "invalid func info rec size %u\n", urec_size);
8798 return -EINVAL;
8799 }
8800
8801 prog = env->prog;
8802 btf = prog->aux->btf;
8803
8804 urecord = u64_to_user_ptr(attr->func_info);
8805 min_size = min_t(u32, krec_size, urec_size);
8806
8807 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8808 if (!krecord)
8809 return -ENOMEM;
8810 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8811 if (!info_aux)
8812 goto err_free;
8813
8814 for (i = 0; i < nfuncs; i++) {
8815 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8816 if (ret) {
8817 if (ret == -E2BIG) {
8818 verbose(env, "nonzero tailing record in func info");
8819 /* set the size kernel expects so loader can zero
8820 * out the rest of the record.
8821 */
8822 if (put_user(min_size, &uattr->func_info_rec_size))
8823 ret = -EFAULT;
8824 }
8825 goto err_free;
8826 }
8827
8828 if (copy_from_user(&krecord[i], urecord, min_size)) {
8829 ret = -EFAULT;
8830 goto err_free;
8831 }
8832
8833 /* check insn_off */
8834 ret = -EINVAL;
8835 if (i == 0) {
8836 if (krecord[i].insn_off) {
8837 verbose(env,
8838 "nonzero insn_off %u for the first func info record",
8839 krecord[i].insn_off);
8840 goto err_free;
8841 }
8842 } else if (krecord[i].insn_off <= prev_offset) {
8843 verbose(env,
8844 "same or smaller insn offset (%u) than previous func info record (%u)",
8845 krecord[i].insn_off, prev_offset);
8846 goto err_free;
8847 }
8848
8849 if (env->subprog_info[i].start != krecord[i].insn_off) {
8850 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8851 goto err_free;
8852 }
8853
8854 /* check type_id */
8855 type = btf_type_by_id(btf, krecord[i].type_id);
8856 if (!type || !btf_type_is_func(type)) {
8857 verbose(env, "invalid type id %d in func info",
8858 krecord[i].type_id);
8859 goto err_free;
8860 }
8861 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8862
8863 func_proto = btf_type_by_id(btf, type->type);
8864 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8865 /* btf_func_check() already verified it during BTF load */
8866 goto err_free;
8867 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8868 scalar_return =
8869 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8870 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8871 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8872 goto err_free;
8873 }
8874 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8875 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8876 goto err_free;
8877 }
8878
8879 prev_offset = krecord[i].insn_off;
8880 urecord += urec_size;
8881 }
8882
8883 prog->aux->func_info = krecord;
8884 prog->aux->func_info_cnt = nfuncs;
8885 prog->aux->func_info_aux = info_aux;
8886 return 0;
8887
8888 err_free:
8889 kvfree(krecord);
8890 kfree(info_aux);
8891 return ret;
8892 }
8893
adjust_btf_func(struct bpf_verifier_env * env)8894 static void adjust_btf_func(struct bpf_verifier_env *env)
8895 {
8896 struct bpf_prog_aux *aux = env->prog->aux;
8897 int i;
8898
8899 if (!aux->func_info)
8900 return;
8901
8902 for (i = 0; i < env->subprog_cnt; i++)
8903 aux->func_info[i].insn_off = env->subprog_info[i].start;
8904 }
8905
8906 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8907 sizeof(((struct bpf_line_info *)(0))->line_col))
8908 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8909
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)8910 static int check_btf_line(struct bpf_verifier_env *env,
8911 const union bpf_attr *attr,
8912 union bpf_attr __user *uattr)
8913 {
8914 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8915 struct bpf_subprog_info *sub;
8916 struct bpf_line_info *linfo;
8917 struct bpf_prog *prog;
8918 const struct btf *btf;
8919 void __user *ulinfo;
8920 int err;
8921
8922 nr_linfo = attr->line_info_cnt;
8923 if (!nr_linfo)
8924 return 0;
8925 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
8926 return -EINVAL;
8927
8928 rec_size = attr->line_info_rec_size;
8929 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8930 rec_size > MAX_LINEINFO_REC_SIZE ||
8931 rec_size & (sizeof(u32) - 1))
8932 return -EINVAL;
8933
8934 /* Need to zero it in case the userspace may
8935 * pass in a smaller bpf_line_info object.
8936 */
8937 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8938 GFP_KERNEL | __GFP_NOWARN);
8939 if (!linfo)
8940 return -ENOMEM;
8941
8942 prog = env->prog;
8943 btf = prog->aux->btf;
8944
8945 s = 0;
8946 sub = env->subprog_info;
8947 ulinfo = u64_to_user_ptr(attr->line_info);
8948 expected_size = sizeof(struct bpf_line_info);
8949 ncopy = min_t(u32, expected_size, rec_size);
8950 for (i = 0; i < nr_linfo; i++) {
8951 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8952 if (err) {
8953 if (err == -E2BIG) {
8954 verbose(env, "nonzero tailing record in line_info");
8955 if (put_user(expected_size,
8956 &uattr->line_info_rec_size))
8957 err = -EFAULT;
8958 }
8959 goto err_free;
8960 }
8961
8962 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8963 err = -EFAULT;
8964 goto err_free;
8965 }
8966
8967 /*
8968 * Check insn_off to ensure
8969 * 1) strictly increasing AND
8970 * 2) bounded by prog->len
8971 *
8972 * The linfo[0].insn_off == 0 check logically falls into
8973 * the later "missing bpf_line_info for func..." case
8974 * because the first linfo[0].insn_off must be the
8975 * first sub also and the first sub must have
8976 * subprog_info[0].start == 0.
8977 */
8978 if ((i && linfo[i].insn_off <= prev_offset) ||
8979 linfo[i].insn_off >= prog->len) {
8980 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8981 i, linfo[i].insn_off, prev_offset,
8982 prog->len);
8983 err = -EINVAL;
8984 goto err_free;
8985 }
8986
8987 if (!prog->insnsi[linfo[i].insn_off].code) {
8988 verbose(env,
8989 "Invalid insn code at line_info[%u].insn_off\n",
8990 i);
8991 err = -EINVAL;
8992 goto err_free;
8993 }
8994
8995 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8996 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
8997 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8998 err = -EINVAL;
8999 goto err_free;
9000 }
9001
9002 if (s != env->subprog_cnt) {
9003 if (linfo[i].insn_off == sub[s].start) {
9004 sub[s].linfo_idx = i;
9005 s++;
9006 } else if (sub[s].start < linfo[i].insn_off) {
9007 verbose(env, "missing bpf_line_info for func#%u\n", s);
9008 err = -EINVAL;
9009 goto err_free;
9010 }
9011 }
9012
9013 prev_offset = linfo[i].insn_off;
9014 ulinfo += rec_size;
9015 }
9016
9017 if (s != env->subprog_cnt) {
9018 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9019 env->subprog_cnt - s, s);
9020 err = -EINVAL;
9021 goto err_free;
9022 }
9023
9024 prog->aux->linfo = linfo;
9025 prog->aux->nr_linfo = nr_linfo;
9026
9027 return 0;
9028
9029 err_free:
9030 kvfree(linfo);
9031 return err;
9032 }
9033
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)9034 static int check_btf_info(struct bpf_verifier_env *env,
9035 const union bpf_attr *attr,
9036 union bpf_attr __user *uattr)
9037 {
9038 struct btf *btf;
9039 int err;
9040
9041 if (!attr->func_info_cnt && !attr->line_info_cnt) {
9042 if (check_abnormal_return(env))
9043 return -EINVAL;
9044 return 0;
9045 }
9046
9047 btf = btf_get_by_fd(attr->prog_btf_fd);
9048 if (IS_ERR(btf))
9049 return PTR_ERR(btf);
9050 env->prog->aux->btf = btf;
9051
9052 err = check_btf_func(env, attr, uattr);
9053 if (err)
9054 return err;
9055
9056 err = check_btf_line(env, attr, uattr);
9057 if (err)
9058 return err;
9059
9060 return 0;
9061 }
9062
9063 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)9064 static bool range_within(struct bpf_reg_state *old,
9065 struct bpf_reg_state *cur)
9066 {
9067 return old->umin_value <= cur->umin_value &&
9068 old->umax_value >= cur->umax_value &&
9069 old->smin_value <= cur->smin_value &&
9070 old->smax_value >= cur->smax_value &&
9071 old->u32_min_value <= cur->u32_min_value &&
9072 old->u32_max_value >= cur->u32_max_value &&
9073 old->s32_min_value <= cur->s32_min_value &&
9074 old->s32_max_value >= cur->s32_max_value;
9075 }
9076
9077 /* If in the old state two registers had the same id, then they need to have
9078 * the same id in the new state as well. But that id could be different from
9079 * the old state, so we need to track the mapping from old to new ids.
9080 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9081 * regs with old id 5 must also have new id 9 for the new state to be safe. But
9082 * regs with a different old id could still have new id 9, we don't care about
9083 * that.
9084 * So we look through our idmap to see if this old id has been seen before. If
9085 * so, we require the new id to match; otherwise, we add the id pair to the map.
9086 */
check_ids(u32 old_id,u32 cur_id,struct bpf_id_pair * idmap)9087 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
9088 {
9089 unsigned int i;
9090
9091 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
9092 if (!idmap[i].old) {
9093 /* Reached an empty slot; haven't seen this id before */
9094 idmap[i].old = old_id;
9095 idmap[i].cur = cur_id;
9096 return true;
9097 }
9098 if (idmap[i].old == old_id)
9099 return idmap[i].cur == cur_id;
9100 }
9101 /* We ran out of idmap slots, which should be impossible */
9102 WARN_ON_ONCE(1);
9103 return false;
9104 }
9105
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)9106 static void clean_func_state(struct bpf_verifier_env *env,
9107 struct bpf_func_state *st)
9108 {
9109 enum bpf_reg_liveness live;
9110 int i, j;
9111
9112 for (i = 0; i < BPF_REG_FP; i++) {
9113 live = st->regs[i].live;
9114 /* liveness must not touch this register anymore */
9115 st->regs[i].live |= REG_LIVE_DONE;
9116 if (!(live & REG_LIVE_READ))
9117 /* since the register is unused, clear its state
9118 * to make further comparison simpler
9119 */
9120 __mark_reg_not_init(env, &st->regs[i]);
9121 }
9122
9123 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9124 live = st->stack[i].spilled_ptr.live;
9125 /* liveness must not touch this stack slot anymore */
9126 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9127 if (!(live & REG_LIVE_READ)) {
9128 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9129 for (j = 0; j < BPF_REG_SIZE; j++)
9130 st->stack[i].slot_type[j] = STACK_INVALID;
9131 }
9132 }
9133 }
9134
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)9135 static void clean_verifier_state(struct bpf_verifier_env *env,
9136 struct bpf_verifier_state *st)
9137 {
9138 int i;
9139
9140 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9141 /* all regs in this state in all frames were already marked */
9142 return;
9143
9144 for (i = 0; i <= st->curframe; i++)
9145 clean_func_state(env, st->frame[i]);
9146 }
9147
9148 /* the parentage chains form a tree.
9149 * the verifier states are added to state lists at given insn and
9150 * pushed into state stack for future exploration.
9151 * when the verifier reaches bpf_exit insn some of the verifer states
9152 * stored in the state lists have their final liveness state already,
9153 * but a lot of states will get revised from liveness point of view when
9154 * the verifier explores other branches.
9155 * Example:
9156 * 1: r0 = 1
9157 * 2: if r1 == 100 goto pc+1
9158 * 3: r0 = 2
9159 * 4: exit
9160 * when the verifier reaches exit insn the register r0 in the state list of
9161 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9162 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9163 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9164 *
9165 * Since the verifier pushes the branch states as it sees them while exploring
9166 * the program the condition of walking the branch instruction for the second
9167 * time means that all states below this branch were already explored and
9168 * their final liveness markes are already propagated.
9169 * Hence when the verifier completes the search of state list in is_state_visited()
9170 * we can call this clean_live_states() function to mark all liveness states
9171 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9172 * will not be used.
9173 * This function also clears the registers and stack for states that !READ
9174 * to simplify state merging.
9175 *
9176 * Important note here that walking the same branch instruction in the callee
9177 * doesn't meant that the states are DONE. The verifier has to compare
9178 * the callsites
9179 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)9180 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9181 struct bpf_verifier_state *cur)
9182 {
9183 struct bpf_verifier_state_list *sl;
9184 int i;
9185
9186 sl = *explored_state(env, insn);
9187 while (sl) {
9188 if (sl->state.branches)
9189 goto next;
9190 if (sl->state.insn_idx != insn ||
9191 sl->state.curframe != cur->curframe)
9192 goto next;
9193 for (i = 0; i <= cur->curframe; i++)
9194 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9195 goto next;
9196 clean_verifier_state(env, &sl->state);
9197 next:
9198 sl = sl->next;
9199 }
9200 }
9201
9202 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_id_pair * idmap)9203 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
9204 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
9205 {
9206 bool equal;
9207
9208 if (!(rold->live & REG_LIVE_READ))
9209 /* explored state didn't use this */
9210 return true;
9211
9212 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9213
9214 if (rold->type == PTR_TO_STACK)
9215 /* two stack pointers are equal only if they're pointing to
9216 * the same stack frame, since fp-8 in foo != fp-8 in bar
9217 */
9218 return equal && rold->frameno == rcur->frameno;
9219
9220 if (equal)
9221 return true;
9222
9223 if (rold->type == NOT_INIT)
9224 /* explored state can't have used this */
9225 return true;
9226 if (rcur->type == NOT_INIT)
9227 return false;
9228 switch (base_type(rold->type)) {
9229 case SCALAR_VALUE:
9230 if (env->explore_alu_limits)
9231 return false;
9232 if (rcur->type == SCALAR_VALUE) {
9233 if (!rold->precise && !rcur->precise)
9234 return true;
9235 /* new val must satisfy old val knowledge */
9236 return range_within(rold, rcur) &&
9237 tnum_in(rold->var_off, rcur->var_off);
9238 } else {
9239 /* We're trying to use a pointer in place of a scalar.
9240 * Even if the scalar was unbounded, this could lead to
9241 * pointer leaks because scalars are allowed to leak
9242 * while pointers are not. We could make this safe in
9243 * special cases if root is calling us, but it's
9244 * probably not worth the hassle.
9245 */
9246 return false;
9247 }
9248 case PTR_TO_MAP_VALUE:
9249 /* a PTR_TO_MAP_VALUE could be safe to use as a
9250 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9251 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9252 * checked, doing so could have affected others with the same
9253 * id, and we can't check for that because we lost the id when
9254 * we converted to a PTR_TO_MAP_VALUE.
9255 */
9256 if (type_may_be_null(rold->type)) {
9257 if (!type_may_be_null(rcur->type))
9258 return false;
9259 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9260 return false;
9261 /* Check our ids match any regs they're supposed to */
9262 return check_ids(rold->id, rcur->id, idmap);
9263 }
9264
9265 /* If the new min/max/var_off satisfy the old ones and
9266 * everything else matches, we are OK.
9267 * 'id' is not compared, since it's only used for maps with
9268 * bpf_spin_lock inside map element and in such cases if
9269 * the rest of the prog is valid for one map element then
9270 * it's valid for all map elements regardless of the key
9271 * used in bpf_map_lookup()
9272 */
9273 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9274 range_within(rold, rcur) &&
9275 tnum_in(rold->var_off, rcur->var_off);
9276 case PTR_TO_PACKET_META:
9277 case PTR_TO_PACKET:
9278 if (rcur->type != rold->type)
9279 return false;
9280 /* We must have at least as much range as the old ptr
9281 * did, so that any accesses which were safe before are
9282 * still safe. This is true even if old range < old off,
9283 * since someone could have accessed through (ptr - k), or
9284 * even done ptr -= k in a register, to get a safe access.
9285 */
9286 if (rold->range > rcur->range)
9287 return false;
9288 /* If the offsets don't match, we can't trust our alignment;
9289 * nor can we be sure that we won't fall out of range.
9290 */
9291 if (rold->off != rcur->off)
9292 return false;
9293 /* id relations must be preserved */
9294 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9295 return false;
9296 /* new val must satisfy old val knowledge */
9297 return range_within(rold, rcur) &&
9298 tnum_in(rold->var_off, rcur->var_off);
9299 case PTR_TO_CTX:
9300 case CONST_PTR_TO_MAP:
9301 case PTR_TO_PACKET_END:
9302 case PTR_TO_FLOW_KEYS:
9303 case PTR_TO_SOCKET:
9304 case PTR_TO_SOCK_COMMON:
9305 case PTR_TO_TCP_SOCK:
9306 case PTR_TO_XDP_SOCK:
9307 /* Only valid matches are exact, which memcmp() above
9308 * would have accepted
9309 */
9310 default:
9311 /* Don't know what's going on, just say it's not safe */
9312 return false;
9313 }
9314
9315 /* Shouldn't get here; if we do, say it's not safe */
9316 WARN_ON_ONCE(1);
9317 return false;
9318 }
9319
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_id_pair * idmap)9320 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
9321 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
9322 {
9323 int i, spi;
9324
9325 /* walk slots of the explored stack and ignore any additional
9326 * slots in the current stack, since explored(safe) state
9327 * didn't use them
9328 */
9329 for (i = 0; i < old->allocated_stack; i++) {
9330 spi = i / BPF_REG_SIZE;
9331
9332 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9333 i += BPF_REG_SIZE - 1;
9334 /* explored state didn't use this */
9335 continue;
9336 }
9337
9338 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9339 continue;
9340
9341 /* explored stack has more populated slots than current stack
9342 * and these slots were used
9343 */
9344 if (i >= cur->allocated_stack)
9345 return false;
9346
9347 /* if old state was safe with misc data in the stack
9348 * it will be safe with zero-initialized stack.
9349 * The opposite is not true
9350 */
9351 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9352 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9353 continue;
9354 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9355 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9356 /* Ex: old explored (safe) state has STACK_SPILL in
9357 * this stack slot, but current has STACK_MISC ->
9358 * this verifier states are not equivalent,
9359 * return false to continue verification of this path
9360 */
9361 return false;
9362 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
9363 continue;
9364 if (!is_spilled_reg(&old->stack[spi]))
9365 continue;
9366 if (!regsafe(env, &old->stack[spi].spilled_ptr,
9367 &cur->stack[spi].spilled_ptr, idmap))
9368 /* when explored and current stack slot are both storing
9369 * spilled registers, check that stored pointers types
9370 * are the same as well.
9371 * Ex: explored safe path could have stored
9372 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9373 * but current path has stored:
9374 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9375 * such verifier states are not equivalent.
9376 * return false to continue verification of this path
9377 */
9378 return false;
9379 }
9380 return true;
9381 }
9382
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur)9383 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9384 {
9385 if (old->acquired_refs != cur->acquired_refs)
9386 return false;
9387 return !memcmp(old->refs, cur->refs,
9388 sizeof(*old->refs) * old->acquired_refs);
9389 }
9390
9391 /* compare two verifier states
9392 *
9393 * all states stored in state_list are known to be valid, since
9394 * verifier reached 'bpf_exit' instruction through them
9395 *
9396 * this function is called when verifier exploring different branches of
9397 * execution popped from the state stack. If it sees an old state that has
9398 * more strict register state and more strict stack state then this execution
9399 * branch doesn't need to be explored further, since verifier already
9400 * concluded that more strict state leads to valid finish.
9401 *
9402 * Therefore two states are equivalent if register state is more conservative
9403 * and explored stack state is more conservative than the current one.
9404 * Example:
9405 * explored current
9406 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9407 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9408 *
9409 * In other words if current stack state (one being explored) has more
9410 * valid slots than old one that already passed validation, it means
9411 * the verifier can stop exploring and conclude that current state is valid too
9412 *
9413 * Similarly with registers. If explored state has register type as invalid
9414 * whereas register type in current state is meaningful, it means that
9415 * the current state will reach 'bpf_exit' instruction safely
9416 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur)9417 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
9418 struct bpf_func_state *cur)
9419 {
9420 int i;
9421
9422 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
9423 for (i = 0; i < MAX_BPF_REG; i++)
9424 if (!regsafe(env, &old->regs[i], &cur->regs[i],
9425 env->idmap_scratch))
9426 return false;
9427
9428 if (!stacksafe(env, old, cur, env->idmap_scratch))
9429 return false;
9430
9431 if (!refsafe(old, cur))
9432 return false;
9433
9434 return true;
9435 }
9436
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)9437 static bool states_equal(struct bpf_verifier_env *env,
9438 struct bpf_verifier_state *old,
9439 struct bpf_verifier_state *cur)
9440 {
9441 int i;
9442
9443 if (old->curframe != cur->curframe)
9444 return false;
9445
9446 /* Verification state from speculative execution simulation
9447 * must never prune a non-speculative execution one.
9448 */
9449 if (old->speculative && !cur->speculative)
9450 return false;
9451
9452 if (old->active_spin_lock != cur->active_spin_lock)
9453 return false;
9454
9455 /* for states to be equal callsites have to be the same
9456 * and all frame states need to be equivalent
9457 */
9458 for (i = 0; i <= old->curframe; i++) {
9459 if (old->frame[i]->callsite != cur->frame[i]->callsite)
9460 return false;
9461 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
9462 return false;
9463 }
9464 return true;
9465 }
9466
9467 /* Return 0 if no propagation happened. Return negative error code if error
9468 * happened. Otherwise, return the propagated bit.
9469 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)9470 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9471 struct bpf_reg_state *reg,
9472 struct bpf_reg_state *parent_reg)
9473 {
9474 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9475 u8 flag = reg->live & REG_LIVE_READ;
9476 int err;
9477
9478 /* When comes here, read flags of PARENT_REG or REG could be any of
9479 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9480 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9481 */
9482 if (parent_flag == REG_LIVE_READ64 ||
9483 /* Or if there is no read flag from REG. */
9484 !flag ||
9485 /* Or if the read flag from REG is the same as PARENT_REG. */
9486 parent_flag == flag)
9487 return 0;
9488
9489 err = mark_reg_read(env, reg, parent_reg, flag);
9490 if (err)
9491 return err;
9492
9493 return flag;
9494 }
9495
9496 /* A write screens off any subsequent reads; but write marks come from the
9497 * straight-line code between a state and its parent. When we arrive at an
9498 * equivalent state (jump target or such) we didn't arrive by the straight-line
9499 * code, so read marks in the state must propagate to the parent regardless
9500 * of the state's write marks. That's what 'parent == state->parent' comparison
9501 * in mark_reg_read() is for.
9502 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)9503 static int propagate_liveness(struct bpf_verifier_env *env,
9504 const struct bpf_verifier_state *vstate,
9505 struct bpf_verifier_state *vparent)
9506 {
9507 struct bpf_reg_state *state_reg, *parent_reg;
9508 struct bpf_func_state *state, *parent;
9509 int i, frame, err = 0;
9510
9511 if (vparent->curframe != vstate->curframe) {
9512 WARN(1, "propagate_live: parent frame %d current frame %d\n",
9513 vparent->curframe, vstate->curframe);
9514 return -EFAULT;
9515 }
9516 /* Propagate read liveness of registers... */
9517 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9518 for (frame = 0; frame <= vstate->curframe; frame++) {
9519 parent = vparent->frame[frame];
9520 state = vstate->frame[frame];
9521 parent_reg = parent->regs;
9522 state_reg = state->regs;
9523 /* We don't need to worry about FP liveness, it's read-only */
9524 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9525 err = propagate_liveness_reg(env, &state_reg[i],
9526 &parent_reg[i]);
9527 if (err < 0)
9528 return err;
9529 if (err == REG_LIVE_READ64)
9530 mark_insn_zext(env, &parent_reg[i]);
9531 }
9532
9533 /* Propagate stack slots. */
9534 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9535 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9536 parent_reg = &parent->stack[i].spilled_ptr;
9537 state_reg = &state->stack[i].spilled_ptr;
9538 err = propagate_liveness_reg(env, state_reg,
9539 parent_reg);
9540 if (err < 0)
9541 return err;
9542 }
9543 }
9544 return 0;
9545 }
9546
9547 /* find precise scalars in the previous equivalent state and
9548 * propagate them into the current state
9549 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)9550 static int propagate_precision(struct bpf_verifier_env *env,
9551 const struct bpf_verifier_state *old)
9552 {
9553 struct bpf_reg_state *state_reg;
9554 struct bpf_func_state *state;
9555 int i, err = 0, fr;
9556
9557 for (fr = old->curframe; fr >= 0; fr--) {
9558 state = old->frame[fr];
9559 state_reg = state->regs;
9560 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9561 if (state_reg->type != SCALAR_VALUE ||
9562 !state_reg->precise)
9563 continue;
9564 if (env->log.level & BPF_LOG_LEVEL2)
9565 verbose(env, "frame %d: propagating r%d\n", i, fr);
9566 err = mark_chain_precision_frame(env, fr, i);
9567 if (err < 0)
9568 return err;
9569 }
9570
9571 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9572 if (!is_spilled_reg(&state->stack[i]))
9573 continue;
9574 state_reg = &state->stack[i].spilled_ptr;
9575 if (state_reg->type != SCALAR_VALUE ||
9576 !state_reg->precise)
9577 continue;
9578 if (env->log.level & BPF_LOG_LEVEL2)
9579 verbose(env, "frame %d: propagating fp%d\n",
9580 (-i - 1) * BPF_REG_SIZE, fr);
9581 err = mark_chain_precision_stack_frame(env, fr, i);
9582 if (err < 0)
9583 return err;
9584 }
9585 }
9586 return 0;
9587 }
9588
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)9589 static bool states_maybe_looping(struct bpf_verifier_state *old,
9590 struct bpf_verifier_state *cur)
9591 {
9592 struct bpf_func_state *fold, *fcur;
9593 int i, fr = cur->curframe;
9594
9595 if (old->curframe != fr)
9596 return false;
9597
9598 fold = old->frame[fr];
9599 fcur = cur->frame[fr];
9600 for (i = 0; i < MAX_BPF_REG; i++)
9601 if (memcmp(&fold->regs[i], &fcur->regs[i],
9602 offsetof(struct bpf_reg_state, parent)))
9603 return false;
9604 return true;
9605 }
9606
9607
is_state_visited(struct bpf_verifier_env * env,int insn_idx)9608 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9609 {
9610 struct bpf_verifier_state_list *new_sl;
9611 struct bpf_verifier_state_list *sl, **pprev;
9612 struct bpf_verifier_state *cur = env->cur_state, *new;
9613 int i, j, err, states_cnt = 0;
9614 bool add_new_state = env->test_state_freq ? true : false;
9615
9616 cur->last_insn_idx = env->prev_insn_idx;
9617 if (!env->insn_aux_data[insn_idx].prune_point)
9618 /* this 'insn_idx' instruction wasn't marked, so we will not
9619 * be doing state search here
9620 */
9621 return 0;
9622
9623 /* bpf progs typically have pruning point every 4 instructions
9624 * http://vger.kernel.org/bpfconf2019.html#session-1
9625 * Do not add new state for future pruning if the verifier hasn't seen
9626 * at least 2 jumps and at least 8 instructions.
9627 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9628 * In tests that amounts to up to 50% reduction into total verifier
9629 * memory consumption and 20% verifier time speedup.
9630 */
9631 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9632 env->insn_processed - env->prev_insn_processed >= 8)
9633 add_new_state = true;
9634
9635 pprev = explored_state(env, insn_idx);
9636 sl = *pprev;
9637
9638 clean_live_states(env, insn_idx, cur);
9639
9640 while (sl) {
9641 states_cnt++;
9642 if (sl->state.insn_idx != insn_idx)
9643 goto next;
9644 if (sl->state.branches) {
9645 if (states_maybe_looping(&sl->state, cur) &&
9646 states_equal(env, &sl->state, cur)) {
9647 verbose_linfo(env, insn_idx, "; ");
9648 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9649 return -EINVAL;
9650 }
9651 /* if the verifier is processing a loop, avoid adding new state
9652 * too often, since different loop iterations have distinct
9653 * states and may not help future pruning.
9654 * This threshold shouldn't be too low to make sure that
9655 * a loop with large bound will be rejected quickly.
9656 * The most abusive loop will be:
9657 * r1 += 1
9658 * if r1 < 1000000 goto pc-2
9659 * 1M insn_procssed limit / 100 == 10k peak states.
9660 * This threshold shouldn't be too high either, since states
9661 * at the end of the loop are likely to be useful in pruning.
9662 */
9663 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9664 env->insn_processed - env->prev_insn_processed < 100)
9665 add_new_state = false;
9666 goto miss;
9667 }
9668 if (states_equal(env, &sl->state, cur)) {
9669 sl->hit_cnt++;
9670 /* reached equivalent register/stack state,
9671 * prune the search.
9672 * Registers read by the continuation are read by us.
9673 * If we have any write marks in env->cur_state, they
9674 * will prevent corresponding reads in the continuation
9675 * from reaching our parent (an explored_state). Our
9676 * own state will get the read marks recorded, but
9677 * they'll be immediately forgotten as we're pruning
9678 * this state and will pop a new one.
9679 */
9680 err = propagate_liveness(env, &sl->state, cur);
9681
9682 /* if previous state reached the exit with precision and
9683 * current state is equivalent to it (except precsion marks)
9684 * the precision needs to be propagated back in
9685 * the current state.
9686 */
9687 err = err ? : push_jmp_history(env, cur);
9688 err = err ? : propagate_precision(env, &sl->state);
9689 if (err)
9690 return err;
9691 return 1;
9692 }
9693 miss:
9694 /* when new state is not going to be added do not increase miss count.
9695 * Otherwise several loop iterations will remove the state
9696 * recorded earlier. The goal of these heuristics is to have
9697 * states from some iterations of the loop (some in the beginning
9698 * and some at the end) to help pruning.
9699 */
9700 if (add_new_state)
9701 sl->miss_cnt++;
9702 /* heuristic to determine whether this state is beneficial
9703 * to keep checking from state equivalence point of view.
9704 * Higher numbers increase max_states_per_insn and verification time,
9705 * but do not meaningfully decrease insn_processed.
9706 */
9707 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9708 /* the state is unlikely to be useful. Remove it to
9709 * speed up verification
9710 */
9711 *pprev = sl->next;
9712 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9713 u32 br = sl->state.branches;
9714
9715 WARN_ONCE(br,
9716 "BUG live_done but branches_to_explore %d\n",
9717 br);
9718 free_verifier_state(&sl->state, false);
9719 kfree(sl);
9720 env->peak_states--;
9721 } else {
9722 /* cannot free this state, since parentage chain may
9723 * walk it later. Add it for free_list instead to
9724 * be freed at the end of verification
9725 */
9726 sl->next = env->free_list;
9727 env->free_list = sl;
9728 }
9729 sl = *pprev;
9730 continue;
9731 }
9732 next:
9733 pprev = &sl->next;
9734 sl = *pprev;
9735 }
9736
9737 if (env->max_states_per_insn < states_cnt)
9738 env->max_states_per_insn = states_cnt;
9739
9740 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9741 return push_jmp_history(env, cur);
9742
9743 if (!add_new_state)
9744 return push_jmp_history(env, cur);
9745
9746 /* There were no equivalent states, remember the current one.
9747 * Technically the current state is not proven to be safe yet,
9748 * but it will either reach outer most bpf_exit (which means it's safe)
9749 * or it will be rejected. When there are no loops the verifier won't be
9750 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9751 * again on the way to bpf_exit.
9752 * When looping the sl->state.branches will be > 0 and this state
9753 * will not be considered for equivalence until branches == 0.
9754 */
9755 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9756 if (!new_sl)
9757 return -ENOMEM;
9758 env->total_states++;
9759 env->peak_states++;
9760 env->prev_jmps_processed = env->jmps_processed;
9761 env->prev_insn_processed = env->insn_processed;
9762
9763 /* add new state to the head of linked list */
9764 new = &new_sl->state;
9765 err = copy_verifier_state(new, cur);
9766 if (err) {
9767 free_verifier_state(new, false);
9768 kfree(new_sl);
9769 return err;
9770 }
9771 new->insn_idx = insn_idx;
9772 WARN_ONCE(new->branches != 1,
9773 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9774
9775 cur->parent = new;
9776 cur->first_insn_idx = insn_idx;
9777 clear_jmp_history(cur);
9778 new_sl->next = *explored_state(env, insn_idx);
9779 *explored_state(env, insn_idx) = new_sl;
9780 /* connect new state to parentage chain. Current frame needs all
9781 * registers connected. Only r6 - r9 of the callers are alive (pushed
9782 * to the stack implicitly by JITs) so in callers' frames connect just
9783 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9784 * the state of the call instruction (with WRITTEN set), and r0 comes
9785 * from callee with its full parentage chain, anyway.
9786 */
9787 /* clear write marks in current state: the writes we did are not writes
9788 * our child did, so they don't screen off its reads from us.
9789 * (There are no read marks in current state, because reads always mark
9790 * their parent and current state never has children yet. Only
9791 * explored_states can get read marks.)
9792 */
9793 for (j = 0; j <= cur->curframe; j++) {
9794 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9795 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9796 for (i = 0; i < BPF_REG_FP; i++)
9797 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9798 }
9799
9800 /* all stack frames are accessible from callee, clear them all */
9801 for (j = 0; j <= cur->curframe; j++) {
9802 struct bpf_func_state *frame = cur->frame[j];
9803 struct bpf_func_state *newframe = new->frame[j];
9804
9805 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9806 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9807 frame->stack[i].spilled_ptr.parent =
9808 &newframe->stack[i].spilled_ptr;
9809 }
9810 }
9811 return 0;
9812 }
9813
9814 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)9815 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9816 {
9817 switch (base_type(type)) {
9818 case PTR_TO_CTX:
9819 case PTR_TO_SOCKET:
9820 case PTR_TO_SOCK_COMMON:
9821 case PTR_TO_TCP_SOCK:
9822 case PTR_TO_XDP_SOCK:
9823 case PTR_TO_BTF_ID:
9824 return false;
9825 default:
9826 return true;
9827 }
9828 }
9829
9830 /* If an instruction was previously used with particular pointer types, then we
9831 * need to be careful to avoid cases such as the below, where it may be ok
9832 * for one branch accessing the pointer, but not ok for the other branch:
9833 *
9834 * R1 = sock_ptr
9835 * goto X;
9836 * ...
9837 * R1 = some_other_valid_ptr;
9838 * goto X;
9839 * ...
9840 * R2 = *(u32 *)(R1 + 0);
9841 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)9842 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9843 {
9844 return src != prev && (!reg_type_mismatch_ok(src) ||
9845 !reg_type_mismatch_ok(prev));
9846 }
9847
do_check(struct bpf_verifier_env * env)9848 static int do_check(struct bpf_verifier_env *env)
9849 {
9850 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9851 struct bpf_verifier_state *state = env->cur_state;
9852 struct bpf_insn *insns = env->prog->insnsi;
9853 struct bpf_reg_state *regs;
9854 int insn_cnt = env->prog->len;
9855 bool do_print_state = false;
9856 int prev_insn_idx = -1;
9857
9858 for (;;) {
9859 struct bpf_insn *insn;
9860 u8 class;
9861 int err;
9862
9863 env->prev_insn_idx = prev_insn_idx;
9864 if (env->insn_idx >= insn_cnt) {
9865 verbose(env, "invalid insn idx %d insn_cnt %d\n",
9866 env->insn_idx, insn_cnt);
9867 return -EFAULT;
9868 }
9869
9870 insn = &insns[env->insn_idx];
9871 class = BPF_CLASS(insn->code);
9872
9873 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9874 verbose(env,
9875 "BPF program is too large. Processed %d insn\n",
9876 env->insn_processed);
9877 return -E2BIG;
9878 }
9879
9880 err = is_state_visited(env, env->insn_idx);
9881 if (err < 0)
9882 return err;
9883 if (err == 1) {
9884 /* found equivalent state, can prune the search */
9885 if (env->log.level & BPF_LOG_LEVEL) {
9886 if (do_print_state)
9887 verbose(env, "\nfrom %d to %d%s: safe\n",
9888 env->prev_insn_idx, env->insn_idx,
9889 env->cur_state->speculative ?
9890 " (speculative execution)" : "");
9891 else
9892 verbose(env, "%d: safe\n", env->insn_idx);
9893 }
9894 goto process_bpf_exit;
9895 }
9896
9897 if (signal_pending(current))
9898 return -EAGAIN;
9899
9900 if (need_resched())
9901 cond_resched();
9902
9903 if (env->log.level & BPF_LOG_LEVEL2 ||
9904 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9905 if (env->log.level & BPF_LOG_LEVEL2)
9906 verbose(env, "%d:", env->insn_idx);
9907 else
9908 verbose(env, "\nfrom %d to %d%s:",
9909 env->prev_insn_idx, env->insn_idx,
9910 env->cur_state->speculative ?
9911 " (speculative execution)" : "");
9912 print_verifier_state(env, state->frame[state->curframe]);
9913 do_print_state = false;
9914 }
9915
9916 if (env->log.level & BPF_LOG_LEVEL) {
9917 const struct bpf_insn_cbs cbs = {
9918 .cb_print = verbose,
9919 .private_data = env,
9920 };
9921
9922 verbose_linfo(env, env->insn_idx, "; ");
9923 verbose(env, "%d: ", env->insn_idx);
9924 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9925 }
9926
9927 if (bpf_prog_is_dev_bound(env->prog->aux)) {
9928 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9929 env->prev_insn_idx);
9930 if (err)
9931 return err;
9932 }
9933
9934 regs = cur_regs(env);
9935 sanitize_mark_insn_seen(env);
9936 prev_insn_idx = env->insn_idx;
9937
9938 if (class == BPF_ALU || class == BPF_ALU64) {
9939 err = check_alu_op(env, insn);
9940 if (err)
9941 return err;
9942
9943 } else if (class == BPF_LDX) {
9944 enum bpf_reg_type *prev_src_type, src_reg_type;
9945
9946 /* check for reserved fields is already done */
9947
9948 /* check src operand */
9949 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9950 if (err)
9951 return err;
9952
9953 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9954 if (err)
9955 return err;
9956
9957 src_reg_type = regs[insn->src_reg].type;
9958
9959 /* check that memory (src_reg + off) is readable,
9960 * the state of dst_reg will be updated by this func
9961 */
9962 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9963 insn->off, BPF_SIZE(insn->code),
9964 BPF_READ, insn->dst_reg, false);
9965 if (err)
9966 return err;
9967
9968 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9969
9970 if (*prev_src_type == NOT_INIT) {
9971 /* saw a valid insn
9972 * dst_reg = *(u32 *)(src_reg + off)
9973 * save type to validate intersecting paths
9974 */
9975 *prev_src_type = src_reg_type;
9976
9977 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9978 /* ABuser program is trying to use the same insn
9979 * dst_reg = *(u32*) (src_reg + off)
9980 * with different pointer types:
9981 * src_reg == ctx in one branch and
9982 * src_reg == stack|map in some other branch.
9983 * Reject it.
9984 */
9985 verbose(env, "same insn cannot be used with different pointers\n");
9986 return -EINVAL;
9987 }
9988
9989 } else if (class == BPF_STX) {
9990 enum bpf_reg_type *prev_dst_type, dst_reg_type;
9991
9992 if (BPF_MODE(insn->code) == BPF_XADD) {
9993 err = check_xadd(env, env->insn_idx, insn);
9994 if (err)
9995 return err;
9996 env->insn_idx++;
9997 continue;
9998 }
9999
10000 /* check src1 operand */
10001 err = check_reg_arg(env, insn->src_reg, SRC_OP);
10002 if (err)
10003 return err;
10004 /* check src2 operand */
10005 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10006 if (err)
10007 return err;
10008
10009 dst_reg_type = regs[insn->dst_reg].type;
10010
10011 /* check that memory (dst_reg + off) is writeable */
10012 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10013 insn->off, BPF_SIZE(insn->code),
10014 BPF_WRITE, insn->src_reg, false);
10015 if (err)
10016 return err;
10017
10018 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10019
10020 if (*prev_dst_type == NOT_INIT) {
10021 *prev_dst_type = dst_reg_type;
10022 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10023 verbose(env, "same insn cannot be used with different pointers\n");
10024 return -EINVAL;
10025 }
10026
10027 } else if (class == BPF_ST) {
10028 if (BPF_MODE(insn->code) != BPF_MEM ||
10029 insn->src_reg != BPF_REG_0) {
10030 verbose(env, "BPF_ST uses reserved fields\n");
10031 return -EINVAL;
10032 }
10033 /* check src operand */
10034 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10035 if (err)
10036 return err;
10037
10038 if (is_ctx_reg(env, insn->dst_reg)) {
10039 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10040 insn->dst_reg,
10041 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
10042 return -EACCES;
10043 }
10044
10045 /* check that memory (dst_reg + off) is writeable */
10046 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10047 insn->off, BPF_SIZE(insn->code),
10048 BPF_WRITE, -1, false);
10049 if (err)
10050 return err;
10051
10052 } else if (class == BPF_JMP || class == BPF_JMP32) {
10053 u8 opcode = BPF_OP(insn->code);
10054
10055 env->jmps_processed++;
10056 if (opcode == BPF_CALL) {
10057 if (BPF_SRC(insn->code) != BPF_K ||
10058 insn->off != 0 ||
10059 (insn->src_reg != BPF_REG_0 &&
10060 insn->src_reg != BPF_PSEUDO_CALL) ||
10061 insn->dst_reg != BPF_REG_0 ||
10062 class == BPF_JMP32) {
10063 verbose(env, "BPF_CALL uses reserved fields\n");
10064 return -EINVAL;
10065 }
10066
10067 if (env->cur_state->active_spin_lock &&
10068 (insn->src_reg == BPF_PSEUDO_CALL ||
10069 insn->imm != BPF_FUNC_spin_unlock)) {
10070 verbose(env, "function calls are not allowed while holding a lock\n");
10071 return -EINVAL;
10072 }
10073 if (insn->src_reg == BPF_PSEUDO_CALL)
10074 err = check_func_call(env, insn, &env->insn_idx);
10075 else
10076 err = check_helper_call(env, insn->imm, env->insn_idx);
10077 if (err)
10078 return err;
10079
10080 } else if (opcode == BPF_JA) {
10081 if (BPF_SRC(insn->code) != BPF_K ||
10082 insn->imm != 0 ||
10083 insn->src_reg != BPF_REG_0 ||
10084 insn->dst_reg != BPF_REG_0 ||
10085 class == BPF_JMP32) {
10086 verbose(env, "BPF_JA uses reserved fields\n");
10087 return -EINVAL;
10088 }
10089
10090 env->insn_idx += insn->off + 1;
10091 continue;
10092
10093 } else if (opcode == BPF_EXIT) {
10094 if (BPF_SRC(insn->code) != BPF_K ||
10095 insn->imm != 0 ||
10096 insn->src_reg != BPF_REG_0 ||
10097 insn->dst_reg != BPF_REG_0 ||
10098 class == BPF_JMP32) {
10099 verbose(env, "BPF_EXIT uses reserved fields\n");
10100 return -EINVAL;
10101 }
10102
10103 if (env->cur_state->active_spin_lock) {
10104 verbose(env, "bpf_spin_unlock is missing\n");
10105 return -EINVAL;
10106 }
10107
10108 if (state->curframe) {
10109 /* exit from nested function */
10110 err = prepare_func_exit(env, &env->insn_idx);
10111 if (err)
10112 return err;
10113 do_print_state = true;
10114 continue;
10115 }
10116
10117 err = check_reference_leak(env);
10118 if (err)
10119 return err;
10120
10121 err = check_return_code(env);
10122 if (err)
10123 return err;
10124 process_bpf_exit:
10125 update_branch_counts(env, env->cur_state);
10126 err = pop_stack(env, &prev_insn_idx,
10127 &env->insn_idx, pop_log);
10128 if (err < 0) {
10129 if (err != -ENOENT)
10130 return err;
10131 break;
10132 } else {
10133 do_print_state = true;
10134 continue;
10135 }
10136 } else {
10137 err = check_cond_jmp_op(env, insn, &env->insn_idx);
10138 if (err)
10139 return err;
10140 }
10141 } else if (class == BPF_LD) {
10142 u8 mode = BPF_MODE(insn->code);
10143
10144 if (mode == BPF_ABS || mode == BPF_IND) {
10145 err = check_ld_abs(env, insn);
10146 if (err)
10147 return err;
10148
10149 } else if (mode == BPF_IMM) {
10150 err = check_ld_imm(env, insn);
10151 if (err)
10152 return err;
10153
10154 env->insn_idx++;
10155 sanitize_mark_insn_seen(env);
10156 } else {
10157 verbose(env, "invalid BPF_LD mode\n");
10158 return -EINVAL;
10159 }
10160 } else {
10161 verbose(env, "unknown insn class %d\n", class);
10162 return -EINVAL;
10163 }
10164
10165 env->insn_idx++;
10166 }
10167
10168 return 0;
10169 }
10170
10171 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)10172 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10173 struct bpf_insn *insn,
10174 struct bpf_insn_aux_data *aux)
10175 {
10176 const struct btf_var_secinfo *vsi;
10177 const struct btf_type *datasec;
10178 const struct btf_type *t;
10179 const char *sym_name;
10180 bool percpu = false;
10181 u32 type, id = insn->imm;
10182 s32 datasec_id;
10183 u64 addr;
10184 int i;
10185
10186 if (!btf_vmlinux) {
10187 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10188 return -EINVAL;
10189 }
10190
10191 if (insn[1].imm != 0) {
10192 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
10193 return -EINVAL;
10194 }
10195
10196 t = btf_type_by_id(btf_vmlinux, id);
10197 if (!t) {
10198 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10199 return -ENOENT;
10200 }
10201
10202 if (!btf_type_is_var(t)) {
10203 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
10204 id);
10205 return -EINVAL;
10206 }
10207
10208 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
10209 addr = kallsyms_lookup_name(sym_name);
10210 if (!addr) {
10211 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10212 sym_name);
10213 return -ENOENT;
10214 }
10215
10216 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
10217 BTF_KIND_DATASEC);
10218 if (datasec_id > 0) {
10219 datasec = btf_type_by_id(btf_vmlinux, datasec_id);
10220 for_each_vsi(i, datasec, vsi) {
10221 if (vsi->type == id) {
10222 percpu = true;
10223 break;
10224 }
10225 }
10226 }
10227
10228 insn[0].imm = (u32)addr;
10229 insn[1].imm = addr >> 32;
10230
10231 type = t->type;
10232 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
10233 if (percpu) {
10234 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10235 aux->btf_var.btf_id = type;
10236 } else if (!btf_type_is_struct(t)) {
10237 const struct btf_type *ret;
10238 const char *tname;
10239 u32 tsize;
10240
10241 /* resolve the type size of ksym. */
10242 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
10243 if (IS_ERR(ret)) {
10244 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
10245 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10246 tname, PTR_ERR(ret));
10247 return -EINVAL;
10248 }
10249 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
10250 aux->btf_var.mem_size = tsize;
10251 } else {
10252 aux->btf_var.reg_type = PTR_TO_BTF_ID;
10253 aux->btf_var.btf_id = type;
10254 }
10255 return 0;
10256 }
10257
check_map_prealloc(struct bpf_map * map)10258 static int check_map_prealloc(struct bpf_map *map)
10259 {
10260 return (map->map_type != BPF_MAP_TYPE_HASH &&
10261 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10262 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10263 !(map->map_flags & BPF_F_NO_PREALLOC);
10264 }
10265
is_tracing_prog_type(enum bpf_prog_type type)10266 static bool is_tracing_prog_type(enum bpf_prog_type type)
10267 {
10268 switch (type) {
10269 case BPF_PROG_TYPE_KPROBE:
10270 case BPF_PROG_TYPE_TRACEPOINT:
10271 case BPF_PROG_TYPE_PERF_EVENT:
10272 case BPF_PROG_TYPE_RAW_TRACEPOINT:
10273 return true;
10274 default:
10275 return false;
10276 }
10277 }
10278
is_preallocated_map(struct bpf_map * map)10279 static bool is_preallocated_map(struct bpf_map *map)
10280 {
10281 if (!check_map_prealloc(map))
10282 return false;
10283 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10284 return false;
10285 return true;
10286 }
10287
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)10288 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10289 struct bpf_map *map,
10290 struct bpf_prog *prog)
10291
10292 {
10293 enum bpf_prog_type prog_type = resolve_prog_type(prog);
10294 /*
10295 * Validate that trace type programs use preallocated hash maps.
10296 *
10297 * For programs attached to PERF events this is mandatory as the
10298 * perf NMI can hit any arbitrary code sequence.
10299 *
10300 * All other trace types using preallocated hash maps are unsafe as
10301 * well because tracepoint or kprobes can be inside locked regions
10302 * of the memory allocator or at a place where a recursion into the
10303 * memory allocator would see inconsistent state.
10304 *
10305 * On RT enabled kernels run-time allocation of all trace type
10306 * programs is strictly prohibited due to lock type constraints. On
10307 * !RT kernels it is allowed for backwards compatibility reasons for
10308 * now, but warnings are emitted so developers are made aware of
10309 * the unsafety and can fix their programs before this is enforced.
10310 */
10311 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10312 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10313 verbose(env, "perf_event programs can only use preallocated hash map\n");
10314 return -EINVAL;
10315 }
10316 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10317 verbose(env, "trace type programs can only use preallocated hash map\n");
10318 return -EINVAL;
10319 }
10320 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10321 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10322 }
10323
10324 if ((is_tracing_prog_type(prog_type) ||
10325 prog_type == BPF_PROG_TYPE_SOCKET_FILTER) &&
10326 map_value_has_spin_lock(map)) {
10327 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10328 return -EINVAL;
10329 }
10330
10331 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10332 !bpf_offload_prog_map_match(prog, map)) {
10333 verbose(env, "offload device mismatch between prog and map\n");
10334 return -EINVAL;
10335 }
10336
10337 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10338 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10339 return -EINVAL;
10340 }
10341
10342 if (prog->aux->sleepable)
10343 switch (map->map_type) {
10344 case BPF_MAP_TYPE_HASH:
10345 case BPF_MAP_TYPE_LRU_HASH:
10346 case BPF_MAP_TYPE_ARRAY:
10347 if (!is_preallocated_map(map)) {
10348 verbose(env,
10349 "Sleepable programs can only use preallocated hash maps\n");
10350 return -EINVAL;
10351 }
10352 break;
10353 default:
10354 verbose(env,
10355 "Sleepable programs can only use array and hash maps\n");
10356 return -EINVAL;
10357 }
10358
10359 return 0;
10360 }
10361
bpf_map_is_cgroup_storage(struct bpf_map * map)10362 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10363 {
10364 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10365 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10366 }
10367
10368 /* find and rewrite pseudo imm in ld_imm64 instructions:
10369 *
10370 * 1. if it accesses map FD, replace it with actual map pointer.
10371 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10372 *
10373 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10374 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)10375 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10376 {
10377 struct bpf_insn *insn = env->prog->insnsi;
10378 int insn_cnt = env->prog->len;
10379 int i, j, err;
10380
10381 err = bpf_prog_calc_tag(env->prog);
10382 if (err)
10383 return err;
10384
10385 for (i = 0; i < insn_cnt; i++, insn++) {
10386 if (BPF_CLASS(insn->code) == BPF_LDX &&
10387 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10388 verbose(env, "BPF_LDX uses reserved fields\n");
10389 return -EINVAL;
10390 }
10391
10392 if (BPF_CLASS(insn->code) == BPF_STX &&
10393 ((BPF_MODE(insn->code) != BPF_MEM &&
10394 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
10395 verbose(env, "BPF_STX uses reserved fields\n");
10396 return -EINVAL;
10397 }
10398
10399 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10400 struct bpf_insn_aux_data *aux;
10401 struct bpf_map *map;
10402 struct fd f;
10403 u64 addr;
10404
10405 if (i == insn_cnt - 1 || insn[1].code != 0 ||
10406 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10407 insn[1].off != 0) {
10408 verbose(env, "invalid bpf_ld_imm64 insn\n");
10409 return -EINVAL;
10410 }
10411
10412 if (insn[0].src_reg == 0)
10413 /* valid generic load 64-bit imm */
10414 goto next_insn;
10415
10416 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10417 aux = &env->insn_aux_data[i];
10418 err = check_pseudo_btf_id(env, insn, aux);
10419 if (err)
10420 return err;
10421 goto next_insn;
10422 }
10423
10424 /* In final convert_pseudo_ld_imm64() step, this is
10425 * converted into regular 64-bit imm load insn.
10426 */
10427 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10428 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10429 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10430 insn[1].imm != 0)) {
10431 verbose(env,
10432 "unrecognized bpf_ld_imm64 insn\n");
10433 return -EINVAL;
10434 }
10435
10436 f = fdget(insn[0].imm);
10437 map = __bpf_map_get(f);
10438 if (IS_ERR(map)) {
10439 verbose(env, "fd %d is not pointing to valid bpf_map\n",
10440 insn[0].imm);
10441 return PTR_ERR(map);
10442 }
10443
10444 err = check_map_prog_compatibility(env, map, env->prog);
10445 if (err) {
10446 fdput(f);
10447 return err;
10448 }
10449
10450 aux = &env->insn_aux_data[i];
10451 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10452 addr = (unsigned long)map;
10453 } else {
10454 u32 off = insn[1].imm;
10455
10456 if (off >= BPF_MAX_VAR_OFF) {
10457 verbose(env, "direct value offset of %u is not allowed\n", off);
10458 fdput(f);
10459 return -EINVAL;
10460 }
10461
10462 if (!map->ops->map_direct_value_addr) {
10463 verbose(env, "no direct value access support for this map type\n");
10464 fdput(f);
10465 return -EINVAL;
10466 }
10467
10468 err = map->ops->map_direct_value_addr(map, &addr, off);
10469 if (err) {
10470 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10471 map->value_size, off);
10472 fdput(f);
10473 return err;
10474 }
10475
10476 aux->map_off = off;
10477 addr += off;
10478 }
10479
10480 insn[0].imm = (u32)addr;
10481 insn[1].imm = addr >> 32;
10482
10483 /* check whether we recorded this map already */
10484 for (j = 0; j < env->used_map_cnt; j++) {
10485 if (env->used_maps[j] == map) {
10486 aux->map_index = j;
10487 fdput(f);
10488 goto next_insn;
10489 }
10490 }
10491
10492 if (env->used_map_cnt >= MAX_USED_MAPS) {
10493 fdput(f);
10494 return -E2BIG;
10495 }
10496
10497 /* hold the map. If the program is rejected by verifier,
10498 * the map will be released by release_maps() or it
10499 * will be used by the valid program until it's unloaded
10500 * and all maps are released in free_used_maps()
10501 */
10502 bpf_map_inc(map);
10503
10504 aux->map_index = env->used_map_cnt;
10505 env->used_maps[env->used_map_cnt++] = map;
10506
10507 if (bpf_map_is_cgroup_storage(map) &&
10508 bpf_cgroup_storage_assign(env->prog->aux, map)) {
10509 verbose(env, "only one cgroup storage of each type is allowed\n");
10510 fdput(f);
10511 return -EBUSY;
10512 }
10513
10514 fdput(f);
10515 next_insn:
10516 insn++;
10517 i++;
10518 continue;
10519 }
10520
10521 /* Basic sanity check before we invest more work here. */
10522 if (!bpf_opcode_in_insntable(insn->code)) {
10523 verbose(env, "unknown opcode %02x\n", insn->code);
10524 return -EINVAL;
10525 }
10526 }
10527
10528 /* now all pseudo BPF_LD_IMM64 instructions load valid
10529 * 'struct bpf_map *' into a register instead of user map_fd.
10530 * These pointers will be used later by verifier to validate map access.
10531 */
10532 return 0;
10533 }
10534
10535 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)10536 static void release_maps(struct bpf_verifier_env *env)
10537 {
10538 __bpf_free_used_maps(env->prog->aux, env->used_maps,
10539 env->used_map_cnt);
10540 }
10541
10542 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)10543 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10544 {
10545 struct bpf_insn *insn = env->prog->insnsi;
10546 int insn_cnt = env->prog->len;
10547 int i;
10548
10549 for (i = 0; i < insn_cnt; i++, insn++)
10550 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10551 insn->src_reg = 0;
10552 }
10553
10554 /* single env->prog->insni[off] instruction was replaced with the range
10555 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
10556 * [0, off) and [off, end) to new locations, so the patched range stays zero
10557 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)10558 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
10559 struct bpf_insn_aux_data *new_data,
10560 struct bpf_prog *new_prog, u32 off, u32 cnt)
10561 {
10562 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
10563 struct bpf_insn *insn = new_prog->insnsi;
10564 u32 old_seen = old_data[off].seen;
10565 u32 prog_len;
10566 int i;
10567
10568 /* aux info at OFF always needs adjustment, no matter fast path
10569 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10570 * original insn at old prog.
10571 */
10572 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10573
10574 if (cnt == 1)
10575 return;
10576 prog_len = new_prog->len;
10577
10578 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10579 memcpy(new_data + off + cnt - 1, old_data + off,
10580 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10581 for (i = off; i < off + cnt - 1; i++) {
10582 /* Expand insni[off]'s seen count to the patched range. */
10583 new_data[i].seen = old_seen;
10584 new_data[i].zext_dst = insn_has_def32(env, insn + i);
10585 }
10586 env->insn_aux_data = new_data;
10587 vfree(old_data);
10588 }
10589
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)10590 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10591 {
10592 int i;
10593
10594 if (len == 1)
10595 return;
10596 /* NOTE: fake 'exit' subprog should be updated as well. */
10597 for (i = 0; i <= env->subprog_cnt; i++) {
10598 if (env->subprog_info[i].start <= off)
10599 continue;
10600 env->subprog_info[i].start += len - 1;
10601 }
10602 }
10603
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)10604 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
10605 {
10606 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10607 int i, sz = prog->aux->size_poke_tab;
10608 struct bpf_jit_poke_descriptor *desc;
10609
10610 for (i = 0; i < sz; i++) {
10611 desc = &tab[i];
10612 if (desc->insn_idx <= off)
10613 continue;
10614 desc->insn_idx += len - 1;
10615 }
10616 }
10617
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)10618 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10619 const struct bpf_insn *patch, u32 len)
10620 {
10621 struct bpf_prog *new_prog;
10622 struct bpf_insn_aux_data *new_data = NULL;
10623
10624 if (len > 1) {
10625 new_data = vzalloc(array_size(env->prog->len + len - 1,
10626 sizeof(struct bpf_insn_aux_data)));
10627 if (!new_data)
10628 return NULL;
10629 }
10630
10631 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10632 if (IS_ERR(new_prog)) {
10633 if (PTR_ERR(new_prog) == -ERANGE)
10634 verbose(env,
10635 "insn %d cannot be patched due to 16-bit range\n",
10636 env->insn_aux_data[off].orig_idx);
10637 vfree(new_data);
10638 return NULL;
10639 }
10640 adjust_insn_aux_data(env, new_data, new_prog, off, len);
10641 adjust_subprog_starts(env, off, len);
10642 adjust_poke_descs(new_prog, off, len);
10643 return new_prog;
10644 }
10645
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)10646 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10647 u32 off, u32 cnt)
10648 {
10649 int i, j;
10650
10651 /* find first prog starting at or after off (first to remove) */
10652 for (i = 0; i < env->subprog_cnt; i++)
10653 if (env->subprog_info[i].start >= off)
10654 break;
10655 /* find first prog starting at or after off + cnt (first to stay) */
10656 for (j = i; j < env->subprog_cnt; j++)
10657 if (env->subprog_info[j].start >= off + cnt)
10658 break;
10659 /* if j doesn't start exactly at off + cnt, we are just removing
10660 * the front of previous prog
10661 */
10662 if (env->subprog_info[j].start != off + cnt)
10663 j--;
10664
10665 if (j > i) {
10666 struct bpf_prog_aux *aux = env->prog->aux;
10667 int move;
10668
10669 /* move fake 'exit' subprog as well */
10670 move = env->subprog_cnt + 1 - j;
10671
10672 memmove(env->subprog_info + i,
10673 env->subprog_info + j,
10674 sizeof(*env->subprog_info) * move);
10675 env->subprog_cnt -= j - i;
10676
10677 /* remove func_info */
10678 if (aux->func_info) {
10679 move = aux->func_info_cnt - j;
10680
10681 memmove(aux->func_info + i,
10682 aux->func_info + j,
10683 sizeof(*aux->func_info) * move);
10684 aux->func_info_cnt -= j - i;
10685 /* func_info->insn_off is set after all code rewrites,
10686 * in adjust_btf_func() - no need to adjust
10687 */
10688 }
10689 } else {
10690 /* convert i from "first prog to remove" to "first to adjust" */
10691 if (env->subprog_info[i].start == off)
10692 i++;
10693 }
10694
10695 /* update fake 'exit' subprog as well */
10696 for (; i <= env->subprog_cnt; i++)
10697 env->subprog_info[i].start -= cnt;
10698
10699 return 0;
10700 }
10701
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)10702 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10703 u32 cnt)
10704 {
10705 struct bpf_prog *prog = env->prog;
10706 u32 i, l_off, l_cnt, nr_linfo;
10707 struct bpf_line_info *linfo;
10708
10709 nr_linfo = prog->aux->nr_linfo;
10710 if (!nr_linfo)
10711 return 0;
10712
10713 linfo = prog->aux->linfo;
10714
10715 /* find first line info to remove, count lines to be removed */
10716 for (i = 0; i < nr_linfo; i++)
10717 if (linfo[i].insn_off >= off)
10718 break;
10719
10720 l_off = i;
10721 l_cnt = 0;
10722 for (; i < nr_linfo; i++)
10723 if (linfo[i].insn_off < off + cnt)
10724 l_cnt++;
10725 else
10726 break;
10727
10728 /* First live insn doesn't match first live linfo, it needs to "inherit"
10729 * last removed linfo. prog is already modified, so prog->len == off
10730 * means no live instructions after (tail of the program was removed).
10731 */
10732 if (prog->len != off && l_cnt &&
10733 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10734 l_cnt--;
10735 linfo[--i].insn_off = off + cnt;
10736 }
10737
10738 /* remove the line info which refer to the removed instructions */
10739 if (l_cnt) {
10740 memmove(linfo + l_off, linfo + i,
10741 sizeof(*linfo) * (nr_linfo - i));
10742
10743 prog->aux->nr_linfo -= l_cnt;
10744 nr_linfo = prog->aux->nr_linfo;
10745 }
10746
10747 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10748 for (i = l_off; i < nr_linfo; i++)
10749 linfo[i].insn_off -= cnt;
10750
10751 /* fix up all subprogs (incl. 'exit') which start >= off */
10752 for (i = 0; i <= env->subprog_cnt; i++)
10753 if (env->subprog_info[i].linfo_idx > l_off) {
10754 /* program may have started in the removed region but
10755 * may not be fully removed
10756 */
10757 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10758 env->subprog_info[i].linfo_idx -= l_cnt;
10759 else
10760 env->subprog_info[i].linfo_idx = l_off;
10761 }
10762
10763 return 0;
10764 }
10765
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)10766 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10767 {
10768 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10769 unsigned int orig_prog_len = env->prog->len;
10770 int err;
10771
10772 if (bpf_prog_is_dev_bound(env->prog->aux))
10773 bpf_prog_offload_remove_insns(env, off, cnt);
10774
10775 err = bpf_remove_insns(env->prog, off, cnt);
10776 if (err)
10777 return err;
10778
10779 err = adjust_subprog_starts_after_remove(env, off, cnt);
10780 if (err)
10781 return err;
10782
10783 err = bpf_adj_linfo_after_remove(env, off, cnt);
10784 if (err)
10785 return err;
10786
10787 memmove(aux_data + off, aux_data + off + cnt,
10788 sizeof(*aux_data) * (orig_prog_len - off - cnt));
10789
10790 return 0;
10791 }
10792
10793 /* The verifier does more data flow analysis than llvm and will not
10794 * explore branches that are dead at run time. Malicious programs can
10795 * have dead code too. Therefore replace all dead at-run-time code
10796 * with 'ja -1'.
10797 *
10798 * Just nops are not optimal, e.g. if they would sit at the end of the
10799 * program and through another bug we would manage to jump there, then
10800 * we'd execute beyond program memory otherwise. Returning exception
10801 * code also wouldn't work since we can have subprogs where the dead
10802 * code could be located.
10803 */
sanitize_dead_code(struct bpf_verifier_env * env)10804 static void sanitize_dead_code(struct bpf_verifier_env *env)
10805 {
10806 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10807 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10808 struct bpf_insn *insn = env->prog->insnsi;
10809 const int insn_cnt = env->prog->len;
10810 int i;
10811
10812 for (i = 0; i < insn_cnt; i++) {
10813 if (aux_data[i].seen)
10814 continue;
10815 memcpy(insn + i, &trap, sizeof(trap));
10816 aux_data[i].zext_dst = false;
10817 }
10818 }
10819
insn_is_cond_jump(u8 code)10820 static bool insn_is_cond_jump(u8 code)
10821 {
10822 u8 op;
10823
10824 if (BPF_CLASS(code) == BPF_JMP32)
10825 return true;
10826
10827 if (BPF_CLASS(code) != BPF_JMP)
10828 return false;
10829
10830 op = BPF_OP(code);
10831 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10832 }
10833
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)10834 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10835 {
10836 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10837 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10838 struct bpf_insn *insn = env->prog->insnsi;
10839 const int insn_cnt = env->prog->len;
10840 int i;
10841
10842 for (i = 0; i < insn_cnt; i++, insn++) {
10843 if (!insn_is_cond_jump(insn->code))
10844 continue;
10845
10846 if (!aux_data[i + 1].seen)
10847 ja.off = insn->off;
10848 else if (!aux_data[i + 1 + insn->off].seen)
10849 ja.off = 0;
10850 else
10851 continue;
10852
10853 if (bpf_prog_is_dev_bound(env->prog->aux))
10854 bpf_prog_offload_replace_insn(env, i, &ja);
10855
10856 memcpy(insn, &ja, sizeof(ja));
10857 }
10858 }
10859
opt_remove_dead_code(struct bpf_verifier_env * env)10860 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10861 {
10862 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10863 int insn_cnt = env->prog->len;
10864 int i, err;
10865
10866 for (i = 0; i < insn_cnt; i++) {
10867 int j;
10868
10869 j = 0;
10870 while (i + j < insn_cnt && !aux_data[i + j].seen)
10871 j++;
10872 if (!j)
10873 continue;
10874
10875 err = verifier_remove_insns(env, i, j);
10876 if (err)
10877 return err;
10878 insn_cnt = env->prog->len;
10879 }
10880
10881 return 0;
10882 }
10883
opt_remove_nops(struct bpf_verifier_env * env)10884 static int opt_remove_nops(struct bpf_verifier_env *env)
10885 {
10886 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10887 struct bpf_insn *insn = env->prog->insnsi;
10888 int insn_cnt = env->prog->len;
10889 int i, err;
10890
10891 for (i = 0; i < insn_cnt; i++) {
10892 if (memcmp(&insn[i], &ja, sizeof(ja)))
10893 continue;
10894
10895 err = verifier_remove_insns(env, i, 1);
10896 if (err)
10897 return err;
10898 insn_cnt--;
10899 i--;
10900 }
10901
10902 return 0;
10903 }
10904
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)10905 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10906 const union bpf_attr *attr)
10907 {
10908 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10909 struct bpf_insn_aux_data *aux = env->insn_aux_data;
10910 int i, patch_len, delta = 0, len = env->prog->len;
10911 struct bpf_insn *insns = env->prog->insnsi;
10912 struct bpf_prog *new_prog;
10913 bool rnd_hi32;
10914
10915 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10916 zext_patch[1] = BPF_ZEXT_REG(0);
10917 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10918 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10919 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10920 for (i = 0; i < len; i++) {
10921 int adj_idx = i + delta;
10922 struct bpf_insn insn;
10923
10924 insn = insns[adj_idx];
10925 if (!aux[adj_idx].zext_dst) {
10926 u8 code, class;
10927 u32 imm_rnd;
10928
10929 if (!rnd_hi32)
10930 continue;
10931
10932 code = insn.code;
10933 class = BPF_CLASS(code);
10934 if (insn_no_def(&insn))
10935 continue;
10936
10937 /* NOTE: arg "reg" (the fourth one) is only used for
10938 * BPF_STX which has been ruled out in above
10939 * check, it is safe to pass NULL here.
10940 */
10941 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10942 if (class == BPF_LD &&
10943 BPF_MODE(code) == BPF_IMM)
10944 i++;
10945 continue;
10946 }
10947
10948 /* ctx load could be transformed into wider load. */
10949 if (class == BPF_LDX &&
10950 aux[adj_idx].ptr_type == PTR_TO_CTX)
10951 continue;
10952
10953 imm_rnd = get_random_int();
10954 rnd_hi32_patch[0] = insn;
10955 rnd_hi32_patch[1].imm = imm_rnd;
10956 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10957 patch = rnd_hi32_patch;
10958 patch_len = 4;
10959 goto apply_patch_buffer;
10960 }
10961
10962 if (!bpf_jit_needs_zext())
10963 continue;
10964
10965 zext_patch[0] = insn;
10966 zext_patch[1].dst_reg = insn.dst_reg;
10967 zext_patch[1].src_reg = insn.dst_reg;
10968 patch = zext_patch;
10969 patch_len = 2;
10970 apply_patch_buffer:
10971 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
10972 if (!new_prog)
10973 return -ENOMEM;
10974 env->prog = new_prog;
10975 insns = new_prog->insnsi;
10976 aux = env->insn_aux_data;
10977 delta += patch_len - 1;
10978 }
10979
10980 return 0;
10981 }
10982
10983 /* convert load instructions that access fields of a context type into a
10984 * sequence of instructions that access fields of the underlying structure:
10985 * struct __sk_buff -> struct sk_buff
10986 * struct bpf_sock_ops -> struct sock
10987 */
convert_ctx_accesses(struct bpf_verifier_env * env)10988 static int convert_ctx_accesses(struct bpf_verifier_env *env)
10989 {
10990 const struct bpf_verifier_ops *ops = env->ops;
10991 int i, cnt, size, ctx_field_size, delta = 0;
10992 const int insn_cnt = env->prog->len;
10993 struct bpf_insn insn_buf[16], *insn;
10994 u32 target_size, size_default, off;
10995 struct bpf_prog *new_prog;
10996 enum bpf_access_type type;
10997 bool is_narrower_load;
10998
10999 if (ops->gen_prologue || env->seen_direct_write) {
11000 if (!ops->gen_prologue) {
11001 verbose(env, "bpf verifier is misconfigured\n");
11002 return -EINVAL;
11003 }
11004 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11005 env->prog);
11006 if (cnt >= ARRAY_SIZE(insn_buf)) {
11007 verbose(env, "bpf verifier is misconfigured\n");
11008 return -EINVAL;
11009 } else if (cnt) {
11010 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11011 if (!new_prog)
11012 return -ENOMEM;
11013
11014 env->prog = new_prog;
11015 delta += cnt - 1;
11016 }
11017 }
11018
11019 if (bpf_prog_is_dev_bound(env->prog->aux))
11020 return 0;
11021
11022 insn = env->prog->insnsi + delta;
11023
11024 for (i = 0; i < insn_cnt; i++, insn++) {
11025 bpf_convert_ctx_access_t convert_ctx_access;
11026 bool ctx_access;
11027
11028 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11029 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11030 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11031 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
11032 type = BPF_READ;
11033 ctx_access = true;
11034 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11035 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11036 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11037 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
11038 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
11039 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
11040 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
11041 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
11042 type = BPF_WRITE;
11043 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
11044 } else {
11045 continue;
11046 }
11047
11048 if (type == BPF_WRITE &&
11049 env->insn_aux_data[i + delta].sanitize_stack_spill) {
11050 struct bpf_insn patch[] = {
11051 *insn,
11052 BPF_ST_NOSPEC(),
11053 };
11054
11055 cnt = ARRAY_SIZE(patch);
11056 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11057 if (!new_prog)
11058 return -ENOMEM;
11059
11060 delta += cnt - 1;
11061 env->prog = new_prog;
11062 insn = new_prog->insnsi + i + delta;
11063 continue;
11064 }
11065
11066 if (!ctx_access)
11067 continue;
11068
11069 switch (env->insn_aux_data[i + delta].ptr_type) {
11070 case PTR_TO_CTX:
11071 if (!ops->convert_ctx_access)
11072 continue;
11073 convert_ctx_access = ops->convert_ctx_access;
11074 break;
11075 case PTR_TO_SOCKET:
11076 case PTR_TO_SOCK_COMMON:
11077 convert_ctx_access = bpf_sock_convert_ctx_access;
11078 break;
11079 case PTR_TO_TCP_SOCK:
11080 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11081 break;
11082 case PTR_TO_XDP_SOCK:
11083 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11084 break;
11085 case PTR_TO_BTF_ID:
11086 if (type == BPF_READ) {
11087 insn->code = BPF_LDX | BPF_PROBE_MEM |
11088 BPF_SIZE((insn)->code);
11089 env->prog->aux->num_exentries++;
11090 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11091 verbose(env, "Writes through BTF pointers are not allowed\n");
11092 return -EINVAL;
11093 }
11094 continue;
11095 default:
11096 continue;
11097 }
11098
11099 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11100 size = BPF_LDST_BYTES(insn);
11101
11102 /* If the read access is a narrower load of the field,
11103 * convert to a 4/8-byte load, to minimum program type specific
11104 * convert_ctx_access changes. If conversion is successful,
11105 * we will apply proper mask to the result.
11106 */
11107 is_narrower_load = size < ctx_field_size;
11108 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11109 off = insn->off;
11110 if (is_narrower_load) {
11111 u8 size_code;
11112
11113 if (type == BPF_WRITE) {
11114 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11115 return -EINVAL;
11116 }
11117
11118 size_code = BPF_H;
11119 if (ctx_field_size == 4)
11120 size_code = BPF_W;
11121 else if (ctx_field_size == 8)
11122 size_code = BPF_DW;
11123
11124 insn->off = off & ~(size_default - 1);
11125 insn->code = BPF_LDX | BPF_MEM | size_code;
11126 }
11127
11128 target_size = 0;
11129 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11130 &target_size);
11131 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11132 (ctx_field_size && !target_size)) {
11133 verbose(env, "bpf verifier is misconfigured\n");
11134 return -EINVAL;
11135 }
11136
11137 if (is_narrower_load && size < target_size) {
11138 u8 shift = bpf_ctx_narrow_access_offset(
11139 off, size, size_default) * 8;
11140 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
11141 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
11142 return -EINVAL;
11143 }
11144 if (ctx_field_size <= 4) {
11145 if (shift)
11146 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11147 insn->dst_reg,
11148 shift);
11149 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11150 (1 << size * 8) - 1);
11151 } else {
11152 if (shift)
11153 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11154 insn->dst_reg,
11155 shift);
11156 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11157 (1ULL << size * 8) - 1);
11158 }
11159 }
11160
11161 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11162 if (!new_prog)
11163 return -ENOMEM;
11164
11165 delta += cnt - 1;
11166
11167 /* keep walking new program and skip insns we just inserted */
11168 env->prog = new_prog;
11169 insn = new_prog->insnsi + i + delta;
11170 }
11171
11172 return 0;
11173 }
11174
jit_subprogs(struct bpf_verifier_env * env)11175 static int jit_subprogs(struct bpf_verifier_env *env)
11176 {
11177 struct bpf_prog *prog = env->prog, **func, *tmp;
11178 int i, j, subprog_start, subprog_end = 0, len, subprog;
11179 struct bpf_map *map_ptr;
11180 struct bpf_insn *insn;
11181 void *old_bpf_func;
11182 int err, num_exentries;
11183
11184 if (env->subprog_cnt <= 1)
11185 return 0;
11186
11187 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11188 if (insn->code != (BPF_JMP | BPF_CALL) ||
11189 insn->src_reg != BPF_PSEUDO_CALL)
11190 continue;
11191 /* Upon error here we cannot fall back to interpreter but
11192 * need a hard reject of the program. Thus -EFAULT is
11193 * propagated in any case.
11194 */
11195 subprog = find_subprog(env, i + insn->imm + 1);
11196 if (subprog < 0) {
11197 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11198 i + insn->imm + 1);
11199 return -EFAULT;
11200 }
11201 /* temporarily remember subprog id inside insn instead of
11202 * aux_data, since next loop will split up all insns into funcs
11203 */
11204 insn->off = subprog;
11205 /* remember original imm in case JIT fails and fallback
11206 * to interpreter will be needed
11207 */
11208 env->insn_aux_data[i].call_imm = insn->imm;
11209 /* point imm to __bpf_call_base+1 from JITs point of view */
11210 insn->imm = 1;
11211 }
11212
11213 err = bpf_prog_alloc_jited_linfo(prog);
11214 if (err)
11215 goto out_undo_insn;
11216
11217 err = -ENOMEM;
11218 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11219 if (!func)
11220 goto out_undo_insn;
11221
11222 for (i = 0; i < env->subprog_cnt; i++) {
11223 subprog_start = subprog_end;
11224 subprog_end = env->subprog_info[i + 1].start;
11225
11226 len = subprog_end - subprog_start;
11227 /* BPF_PROG_RUN doesn't call subprogs directly,
11228 * hence main prog stats include the runtime of subprogs.
11229 * subprogs don't have IDs and not reachable via prog_get_next_id
11230 * func[i]->aux->stats will never be accessed and stays NULL
11231 */
11232 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11233 if (!func[i])
11234 goto out_free;
11235 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11236 len * sizeof(struct bpf_insn));
11237 func[i]->type = prog->type;
11238 func[i]->len = len;
11239 if (bpf_prog_calc_tag(func[i]))
11240 goto out_free;
11241 func[i]->is_func = 1;
11242 func[i]->aux->func_idx = i;
11243 /* Below members will be freed only at prog->aux */
11244 func[i]->aux->btf = prog->aux->btf;
11245 func[i]->aux->func_info = prog->aux->func_info;
11246 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
11247 func[i]->aux->poke_tab = prog->aux->poke_tab;
11248 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
11249
11250 for (j = 0; j < prog->aux->size_poke_tab; j++) {
11251 struct bpf_jit_poke_descriptor *poke;
11252
11253 poke = &prog->aux->poke_tab[j];
11254 if (poke->insn_idx < subprog_end &&
11255 poke->insn_idx >= subprog_start)
11256 poke->aux = func[i]->aux;
11257 }
11258
11259 func[i]->aux->name[0] = 'F';
11260 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11261 func[i]->jit_requested = 1;
11262 func[i]->aux->linfo = prog->aux->linfo;
11263 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11264 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11265 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11266 num_exentries = 0;
11267 insn = func[i]->insnsi;
11268 for (j = 0; j < func[i]->len; j++, insn++) {
11269 if (BPF_CLASS(insn->code) == BPF_LDX &&
11270 BPF_MODE(insn->code) == BPF_PROBE_MEM)
11271 num_exentries++;
11272 }
11273 func[i]->aux->num_exentries = num_exentries;
11274 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11275 func[i] = bpf_int_jit_compile(func[i]);
11276 if (!func[i]->jited) {
11277 err = -ENOTSUPP;
11278 goto out_free;
11279 }
11280 cond_resched();
11281 }
11282
11283 /* at this point all bpf functions were successfully JITed
11284 * now populate all bpf_calls with correct addresses and
11285 * run last pass of JIT
11286 */
11287 for (i = 0; i < env->subprog_cnt; i++) {
11288 insn = func[i]->insnsi;
11289 for (j = 0; j < func[i]->len; j++, insn++) {
11290 if (insn->code != (BPF_JMP | BPF_CALL) ||
11291 insn->src_reg != BPF_PSEUDO_CALL)
11292 continue;
11293 subprog = insn->off;
11294 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11295 __bpf_call_base;
11296 }
11297
11298 /* we use the aux data to keep a list of the start addresses
11299 * of the JITed images for each function in the program
11300 *
11301 * for some architectures, such as powerpc64, the imm field
11302 * might not be large enough to hold the offset of the start
11303 * address of the callee's JITed image from __bpf_call_base
11304 *
11305 * in such cases, we can lookup the start address of a callee
11306 * by using its subprog id, available from the off field of
11307 * the call instruction, as an index for this list
11308 */
11309 func[i]->aux->func = func;
11310 func[i]->aux->func_cnt = env->subprog_cnt;
11311 }
11312 for (i = 0; i < env->subprog_cnt; i++) {
11313 old_bpf_func = func[i]->bpf_func;
11314 tmp = bpf_int_jit_compile(func[i]);
11315 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11316 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11317 err = -ENOTSUPP;
11318 goto out_free;
11319 }
11320 cond_resched();
11321 }
11322
11323 /* finally lock prog and jit images for all functions and
11324 * populate kallsysm
11325 */
11326 for (i = 0; i < env->subprog_cnt; i++) {
11327 bpf_prog_lock_ro(func[i]);
11328 bpf_prog_kallsyms_add(func[i]);
11329 }
11330
11331 /* Last step: make now unused interpreter insns from main
11332 * prog consistent for later dump requests, so they can
11333 * later look the same as if they were interpreted only.
11334 */
11335 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11336 if (insn->code != (BPF_JMP | BPF_CALL) ||
11337 insn->src_reg != BPF_PSEUDO_CALL)
11338 continue;
11339 insn->off = env->insn_aux_data[i].call_imm;
11340 subprog = find_subprog(env, i + insn->off + 1);
11341 insn->imm = subprog;
11342 }
11343
11344 prog->jited = 1;
11345 prog->bpf_func = func[0]->bpf_func;
11346 prog->aux->func = func;
11347 prog->aux->func_cnt = env->subprog_cnt;
11348 bpf_prog_free_unused_jited_linfo(prog);
11349 return 0;
11350 out_free:
11351 /* We failed JIT'ing, so at this point we need to unregister poke
11352 * descriptors from subprogs, so that kernel is not attempting to
11353 * patch it anymore as we're freeing the subprog JIT memory.
11354 */
11355 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11356 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11357 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11358 }
11359 /* At this point we're guaranteed that poke descriptors are not
11360 * live anymore. We can just unlink its descriptor table as it's
11361 * released with the main prog.
11362 */
11363 for (i = 0; i < env->subprog_cnt; i++) {
11364 if (!func[i])
11365 continue;
11366 func[i]->aux->poke_tab = NULL;
11367 bpf_jit_free(func[i]);
11368 }
11369 kfree(func);
11370 out_undo_insn:
11371 /* cleanup main prog to be interpreted */
11372 prog->jit_requested = 0;
11373 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11374 if (insn->code != (BPF_JMP | BPF_CALL) ||
11375 insn->src_reg != BPF_PSEUDO_CALL)
11376 continue;
11377 insn->off = 0;
11378 insn->imm = env->insn_aux_data[i].call_imm;
11379 }
11380 bpf_prog_free_jited_linfo(prog);
11381 return err;
11382 }
11383
fixup_call_args(struct bpf_verifier_env * env)11384 static int fixup_call_args(struct bpf_verifier_env *env)
11385 {
11386 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11387 struct bpf_prog *prog = env->prog;
11388 struct bpf_insn *insn = prog->insnsi;
11389 int i, depth;
11390 #endif
11391 int err = 0;
11392
11393 if (env->prog->jit_requested &&
11394 !bpf_prog_is_dev_bound(env->prog->aux)) {
11395 err = jit_subprogs(env);
11396 if (err == 0)
11397 return 0;
11398 if (err == -EFAULT)
11399 return err;
11400 }
11401 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11402 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11403 /* When JIT fails the progs with bpf2bpf calls and tail_calls
11404 * have to be rejected, since interpreter doesn't support them yet.
11405 */
11406 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11407 return -EINVAL;
11408 }
11409 for (i = 0; i < prog->len; i++, insn++) {
11410 if (insn->code != (BPF_JMP | BPF_CALL) ||
11411 insn->src_reg != BPF_PSEUDO_CALL)
11412 continue;
11413 depth = get_callee_stack_depth(env, insn, i);
11414 if (depth < 0)
11415 return depth;
11416 bpf_patch_call_args(insn, depth);
11417 }
11418 err = 0;
11419 #endif
11420 return err;
11421 }
11422
11423 /* fixup insn->imm field of bpf_call instructions
11424 * and inline eligible helpers as explicit sequence of BPF instructions
11425 *
11426 * this function is called after eBPF program passed verification
11427 */
fixup_bpf_calls(struct bpf_verifier_env * env)11428 static int fixup_bpf_calls(struct bpf_verifier_env *env)
11429 {
11430 struct bpf_prog *prog = env->prog;
11431 bool expect_blinding = bpf_jit_blinding_enabled(prog);
11432 struct bpf_insn *insn = prog->insnsi;
11433 const struct bpf_func_proto *fn;
11434 const int insn_cnt = prog->len;
11435 const struct bpf_map_ops *ops;
11436 struct bpf_insn_aux_data *aux;
11437 struct bpf_insn insn_buf[16];
11438 struct bpf_prog *new_prog;
11439 struct bpf_map *map_ptr;
11440 int i, ret, cnt, delta = 0;
11441
11442 for (i = 0; i < insn_cnt; i++, insn++) {
11443 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11444 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11445 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11446 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11447 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11448 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11449 struct bpf_insn *patchlet;
11450 struct bpf_insn chk_and_div[] = {
11451 /* [R,W]x div 0 -> 0 */
11452 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11453 BPF_JNE | BPF_K, insn->src_reg,
11454 0, 2, 0),
11455 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11456 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11457 *insn,
11458 };
11459 struct bpf_insn chk_and_mod[] = {
11460 /* [R,W]x mod 0 -> [R,W]x */
11461 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11462 BPF_JEQ | BPF_K, insn->src_reg,
11463 0, 1 + (is64 ? 0 : 1), 0),
11464 *insn,
11465 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11466 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11467 };
11468
11469 patchlet = isdiv ? chk_and_div : chk_and_mod;
11470 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11471 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11472
11473 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11474 if (!new_prog)
11475 return -ENOMEM;
11476
11477 delta += cnt - 1;
11478 env->prog = prog = new_prog;
11479 insn = new_prog->insnsi + i + delta;
11480 continue;
11481 }
11482
11483 if (BPF_CLASS(insn->code) == BPF_LD &&
11484 (BPF_MODE(insn->code) == BPF_ABS ||
11485 BPF_MODE(insn->code) == BPF_IND)) {
11486 cnt = env->ops->gen_ld_abs(insn, insn_buf);
11487 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11488 verbose(env, "bpf verifier is misconfigured\n");
11489 return -EINVAL;
11490 }
11491
11492 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11493 if (!new_prog)
11494 return -ENOMEM;
11495
11496 delta += cnt - 1;
11497 env->prog = prog = new_prog;
11498 insn = new_prog->insnsi + i + delta;
11499 continue;
11500 }
11501
11502 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11503 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11504 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11505 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11506 struct bpf_insn insn_buf[16];
11507 struct bpf_insn *patch = &insn_buf[0];
11508 bool issrc, isneg, isimm;
11509 u32 off_reg;
11510
11511 aux = &env->insn_aux_data[i + delta];
11512 if (!aux->alu_state ||
11513 aux->alu_state == BPF_ALU_NON_POINTER)
11514 continue;
11515
11516 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11517 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11518 BPF_ALU_SANITIZE_SRC;
11519 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
11520
11521 off_reg = issrc ? insn->src_reg : insn->dst_reg;
11522 if (isimm) {
11523 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11524 } else {
11525 if (isneg)
11526 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11527 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11528 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11529 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11530 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11531 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11532 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
11533 }
11534 if (!issrc)
11535 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
11536 insn->src_reg = BPF_REG_AX;
11537 if (isneg)
11538 insn->code = insn->code == code_add ?
11539 code_sub : code_add;
11540 *patch++ = *insn;
11541 if (issrc && isneg && !isimm)
11542 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11543 cnt = patch - insn_buf;
11544
11545 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11546 if (!new_prog)
11547 return -ENOMEM;
11548
11549 delta += cnt - 1;
11550 env->prog = prog = new_prog;
11551 insn = new_prog->insnsi + i + delta;
11552 continue;
11553 }
11554
11555 if (insn->code != (BPF_JMP | BPF_CALL))
11556 continue;
11557 if (insn->src_reg == BPF_PSEUDO_CALL)
11558 continue;
11559
11560 if (insn->imm == BPF_FUNC_get_route_realm)
11561 prog->dst_needed = 1;
11562 if (insn->imm == BPF_FUNC_get_prandom_u32)
11563 bpf_user_rnd_init_once();
11564 if (insn->imm == BPF_FUNC_override_return)
11565 prog->kprobe_override = 1;
11566 if (insn->imm == BPF_FUNC_tail_call) {
11567 /* If we tail call into other programs, we
11568 * cannot make any assumptions since they can
11569 * be replaced dynamically during runtime in
11570 * the program array.
11571 */
11572 prog->cb_access = 1;
11573 if (!allow_tail_call_in_subprogs(env))
11574 prog->aux->stack_depth = MAX_BPF_STACK;
11575 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11576
11577 /* mark bpf_tail_call as different opcode to avoid
11578 * conditional branch in the interpeter for every normal
11579 * call and to prevent accidental JITing by JIT compiler
11580 * that doesn't support bpf_tail_call yet
11581 */
11582 insn->imm = 0;
11583 insn->code = BPF_JMP | BPF_TAIL_CALL;
11584
11585 aux = &env->insn_aux_data[i + delta];
11586 if (env->bpf_capable && !expect_blinding &&
11587 prog->jit_requested &&
11588 !bpf_map_key_poisoned(aux) &&
11589 !bpf_map_ptr_poisoned(aux) &&
11590 !bpf_map_ptr_unpriv(aux)) {
11591 struct bpf_jit_poke_descriptor desc = {
11592 .reason = BPF_POKE_REASON_TAIL_CALL,
11593 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11594 .tail_call.key = bpf_map_key_immediate(aux),
11595 .insn_idx = i + delta,
11596 };
11597
11598 ret = bpf_jit_add_poke_descriptor(prog, &desc);
11599 if (ret < 0) {
11600 verbose(env, "adding tail call poke descriptor failed\n");
11601 return ret;
11602 }
11603
11604 insn->imm = ret + 1;
11605 continue;
11606 }
11607
11608 if (!bpf_map_ptr_unpriv(aux))
11609 continue;
11610
11611 /* instead of changing every JIT dealing with tail_call
11612 * emit two extra insns:
11613 * if (index >= max_entries) goto out;
11614 * index &= array->index_mask;
11615 * to avoid out-of-bounds cpu speculation
11616 */
11617 if (bpf_map_ptr_poisoned(aux)) {
11618 verbose(env, "tail_call abusing map_ptr\n");
11619 return -EINVAL;
11620 }
11621
11622 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11623 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11624 map_ptr->max_entries, 2);
11625 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11626 container_of(map_ptr,
11627 struct bpf_array,
11628 map)->index_mask);
11629 insn_buf[2] = *insn;
11630 cnt = 3;
11631 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11632 if (!new_prog)
11633 return -ENOMEM;
11634
11635 delta += cnt - 1;
11636 env->prog = prog = new_prog;
11637 insn = new_prog->insnsi + i + delta;
11638 continue;
11639 }
11640
11641 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11642 * and other inlining handlers are currently limited to 64 bit
11643 * only.
11644 */
11645 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11646 (insn->imm == BPF_FUNC_map_lookup_elem ||
11647 insn->imm == BPF_FUNC_map_update_elem ||
11648 insn->imm == BPF_FUNC_map_delete_elem ||
11649 insn->imm == BPF_FUNC_map_push_elem ||
11650 insn->imm == BPF_FUNC_map_pop_elem ||
11651 insn->imm == BPF_FUNC_map_peek_elem)) {
11652 aux = &env->insn_aux_data[i + delta];
11653 if (bpf_map_ptr_poisoned(aux))
11654 goto patch_call_imm;
11655
11656 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11657 ops = map_ptr->ops;
11658 if (insn->imm == BPF_FUNC_map_lookup_elem &&
11659 ops->map_gen_lookup) {
11660 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11661 if (cnt == -EOPNOTSUPP)
11662 goto patch_map_ops_generic;
11663 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11664 verbose(env, "bpf verifier is misconfigured\n");
11665 return -EINVAL;
11666 }
11667
11668 new_prog = bpf_patch_insn_data(env, i + delta,
11669 insn_buf, cnt);
11670 if (!new_prog)
11671 return -ENOMEM;
11672
11673 delta += cnt - 1;
11674 env->prog = prog = new_prog;
11675 insn = new_prog->insnsi + i + delta;
11676 continue;
11677 }
11678
11679 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11680 (void *(*)(struct bpf_map *map, void *key))NULL));
11681 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11682 (int (*)(struct bpf_map *map, void *key))NULL));
11683 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11684 (int (*)(struct bpf_map *map, void *key, void *value,
11685 u64 flags))NULL));
11686 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11687 (int (*)(struct bpf_map *map, void *value,
11688 u64 flags))NULL));
11689 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11690 (int (*)(struct bpf_map *map, void *value))NULL));
11691 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11692 (int (*)(struct bpf_map *map, void *value))NULL));
11693 patch_map_ops_generic:
11694 switch (insn->imm) {
11695 case BPF_FUNC_map_lookup_elem:
11696 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11697 __bpf_call_base;
11698 continue;
11699 case BPF_FUNC_map_update_elem:
11700 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11701 __bpf_call_base;
11702 continue;
11703 case BPF_FUNC_map_delete_elem:
11704 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11705 __bpf_call_base;
11706 continue;
11707 case BPF_FUNC_map_push_elem:
11708 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11709 __bpf_call_base;
11710 continue;
11711 case BPF_FUNC_map_pop_elem:
11712 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11713 __bpf_call_base;
11714 continue;
11715 case BPF_FUNC_map_peek_elem:
11716 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11717 __bpf_call_base;
11718 continue;
11719 }
11720
11721 goto patch_call_imm;
11722 }
11723
11724 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11725 insn->imm == BPF_FUNC_jiffies64) {
11726 struct bpf_insn ld_jiffies_addr[2] = {
11727 BPF_LD_IMM64(BPF_REG_0,
11728 (unsigned long)&jiffies),
11729 };
11730
11731 insn_buf[0] = ld_jiffies_addr[0];
11732 insn_buf[1] = ld_jiffies_addr[1];
11733 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11734 BPF_REG_0, 0);
11735 cnt = 3;
11736
11737 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11738 cnt);
11739 if (!new_prog)
11740 return -ENOMEM;
11741
11742 delta += cnt - 1;
11743 env->prog = prog = new_prog;
11744 insn = new_prog->insnsi + i + delta;
11745 continue;
11746 }
11747
11748 patch_call_imm:
11749 fn = env->ops->get_func_proto(insn->imm, env->prog);
11750 /* all functions that have prototype and verifier allowed
11751 * programs to call them, must be real in-kernel functions
11752 */
11753 if (!fn->func) {
11754 verbose(env,
11755 "kernel subsystem misconfigured func %s#%d\n",
11756 func_id_name(insn->imm), insn->imm);
11757 return -EFAULT;
11758 }
11759 insn->imm = fn->func - __bpf_call_base;
11760 }
11761
11762 /* Since poke tab is now finalized, publish aux to tracker. */
11763 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11764 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11765 if (!map_ptr->ops->map_poke_track ||
11766 !map_ptr->ops->map_poke_untrack ||
11767 !map_ptr->ops->map_poke_run) {
11768 verbose(env, "bpf verifier is misconfigured\n");
11769 return -EINVAL;
11770 }
11771
11772 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11773 if (ret < 0) {
11774 verbose(env, "tracking tail call prog failed\n");
11775 return ret;
11776 }
11777 }
11778
11779 return 0;
11780 }
11781
free_states(struct bpf_verifier_env * env)11782 static void free_states(struct bpf_verifier_env *env)
11783 {
11784 struct bpf_verifier_state_list *sl, *sln;
11785 int i;
11786
11787 sl = env->free_list;
11788 while (sl) {
11789 sln = sl->next;
11790 free_verifier_state(&sl->state, false);
11791 kfree(sl);
11792 sl = sln;
11793 }
11794 env->free_list = NULL;
11795
11796 if (!env->explored_states)
11797 return;
11798
11799 for (i = 0; i < state_htab_size(env); i++) {
11800 sl = env->explored_states[i];
11801
11802 while (sl) {
11803 sln = sl->next;
11804 free_verifier_state(&sl->state, false);
11805 kfree(sl);
11806 sl = sln;
11807 }
11808 env->explored_states[i] = NULL;
11809 }
11810 }
11811
do_check_common(struct bpf_verifier_env * env,int subprog)11812 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11813 {
11814 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11815 struct bpf_verifier_state *state;
11816 struct bpf_reg_state *regs;
11817 int ret, i;
11818
11819 env->prev_linfo = NULL;
11820 env->pass_cnt++;
11821
11822 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11823 if (!state)
11824 return -ENOMEM;
11825 state->curframe = 0;
11826 state->speculative = false;
11827 state->branches = 1;
11828 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11829 if (!state->frame[0]) {
11830 kfree(state);
11831 return -ENOMEM;
11832 }
11833 env->cur_state = state;
11834 init_func_state(env, state->frame[0],
11835 BPF_MAIN_FUNC /* callsite */,
11836 0 /* frameno */,
11837 subprog);
11838
11839 regs = state->frame[state->curframe]->regs;
11840 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
11841 ret = btf_prepare_func_args(env, subprog, regs);
11842 if (ret)
11843 goto out;
11844 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11845 if (regs[i].type == PTR_TO_CTX)
11846 mark_reg_known_zero(env, regs, i);
11847 else if (regs[i].type == SCALAR_VALUE)
11848 mark_reg_unknown(env, regs, i);
11849 }
11850 } else {
11851 /* 1st arg to a function */
11852 regs[BPF_REG_1].type = PTR_TO_CTX;
11853 mark_reg_known_zero(env, regs, BPF_REG_1);
11854 ret = btf_check_func_arg_match(env, subprog, regs);
11855 if (ret == -EFAULT)
11856 /* unlikely verifier bug. abort.
11857 * ret == 0 and ret < 0 are sadly acceptable for
11858 * main() function due to backward compatibility.
11859 * Like socket filter program may be written as:
11860 * int bpf_prog(struct pt_regs *ctx)
11861 * and never dereference that ctx in the program.
11862 * 'struct pt_regs' is a type mismatch for socket
11863 * filter that should be using 'struct __sk_buff'.
11864 */
11865 goto out;
11866 }
11867
11868 ret = do_check(env);
11869 out:
11870 /* check for NULL is necessary, since cur_state can be freed inside
11871 * do_check() under memory pressure.
11872 */
11873 if (env->cur_state) {
11874 free_verifier_state(env->cur_state, true);
11875 env->cur_state = NULL;
11876 }
11877 while (!pop_stack(env, NULL, NULL, false));
11878 if (!ret && pop_log)
11879 bpf_vlog_reset(&env->log, 0);
11880 free_states(env);
11881 return ret;
11882 }
11883
11884 /* Verify all global functions in a BPF program one by one based on their BTF.
11885 * All global functions must pass verification. Otherwise the whole program is rejected.
11886 * Consider:
11887 * int bar(int);
11888 * int foo(int f)
11889 * {
11890 * return bar(f);
11891 * }
11892 * int bar(int b)
11893 * {
11894 * ...
11895 * }
11896 * foo() will be verified first for R1=any_scalar_value. During verification it
11897 * will be assumed that bar() already verified successfully and call to bar()
11898 * from foo() will be checked for type match only. Later bar() will be verified
11899 * independently to check that it's safe for R1=any_scalar_value.
11900 */
do_check_subprogs(struct bpf_verifier_env * env)11901 static int do_check_subprogs(struct bpf_verifier_env *env)
11902 {
11903 struct bpf_prog_aux *aux = env->prog->aux;
11904 int i, ret;
11905
11906 if (!aux->func_info)
11907 return 0;
11908
11909 for (i = 1; i < env->subprog_cnt; i++) {
11910 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11911 continue;
11912 env->insn_idx = env->subprog_info[i].start;
11913 WARN_ON_ONCE(env->insn_idx == 0);
11914 ret = do_check_common(env, i);
11915 if (ret) {
11916 return ret;
11917 } else if (env->log.level & BPF_LOG_LEVEL) {
11918 verbose(env,
11919 "Func#%d is safe for any args that match its prototype\n",
11920 i);
11921 }
11922 }
11923 return 0;
11924 }
11925
do_check_main(struct bpf_verifier_env * env)11926 static int do_check_main(struct bpf_verifier_env *env)
11927 {
11928 int ret;
11929
11930 env->insn_idx = 0;
11931 ret = do_check_common(env, 0);
11932 if (!ret)
11933 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11934 return ret;
11935 }
11936
11937
print_verification_stats(struct bpf_verifier_env * env)11938 static void print_verification_stats(struct bpf_verifier_env *env)
11939 {
11940 int i;
11941
11942 if (env->log.level & BPF_LOG_STATS) {
11943 verbose(env, "verification time %lld usec\n",
11944 div_u64(env->verification_time, 1000));
11945 verbose(env, "stack depth ");
11946 for (i = 0; i < env->subprog_cnt; i++) {
11947 u32 depth = env->subprog_info[i].stack_depth;
11948
11949 verbose(env, "%d", depth);
11950 if (i + 1 < env->subprog_cnt)
11951 verbose(env, "+");
11952 }
11953 verbose(env, "\n");
11954 }
11955 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11956 "total_states %d peak_states %d mark_read %d\n",
11957 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11958 env->max_states_per_insn, env->total_states,
11959 env->peak_states, env->longest_mark_read_walk);
11960 }
11961
check_struct_ops_btf_id(struct bpf_verifier_env * env)11962 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11963 {
11964 const struct btf_type *t, *func_proto;
11965 const struct bpf_struct_ops *st_ops;
11966 const struct btf_member *member;
11967 struct bpf_prog *prog = env->prog;
11968 u32 btf_id, member_idx;
11969 const char *mname;
11970
11971 if (!prog->gpl_compatible) {
11972 verbose(env, "struct ops programs must have a GPL compatible license\n");
11973 return -EINVAL;
11974 }
11975
11976 btf_id = prog->aux->attach_btf_id;
11977 st_ops = bpf_struct_ops_find(btf_id);
11978 if (!st_ops) {
11979 verbose(env, "attach_btf_id %u is not a supported struct\n",
11980 btf_id);
11981 return -ENOTSUPP;
11982 }
11983
11984 t = st_ops->type;
11985 member_idx = prog->expected_attach_type;
11986 if (member_idx >= btf_type_vlen(t)) {
11987 verbose(env, "attach to invalid member idx %u of struct %s\n",
11988 member_idx, st_ops->name);
11989 return -EINVAL;
11990 }
11991
11992 member = &btf_type_member(t)[member_idx];
11993 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11994 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11995 NULL);
11996 if (!func_proto) {
11997 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11998 mname, member_idx, st_ops->name);
11999 return -EINVAL;
12000 }
12001
12002 if (st_ops->check_member) {
12003 int err = st_ops->check_member(t, member);
12004
12005 if (err) {
12006 verbose(env, "attach to unsupported member %s of struct %s\n",
12007 mname, st_ops->name);
12008 return err;
12009 }
12010 }
12011
12012 prog->aux->attach_func_proto = func_proto;
12013 prog->aux->attach_func_name = mname;
12014 env->ops = st_ops->verifier_ops;
12015
12016 return 0;
12017 }
12018 #define SECURITY_PREFIX "security_"
12019
check_attach_modify_return(unsigned long addr,const char * func_name)12020 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12021 {
12022 if (within_error_injection_list(addr) ||
12023 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12024 return 0;
12025
12026 return -EINVAL;
12027 }
12028
12029 /* non exhaustive list of sleepable bpf_lsm_*() functions */
12030 BTF_SET_START(btf_sleepable_lsm_hooks)
12031 #ifdef CONFIG_BPF_LSM
BTF_ID(func,bpf_lsm_bprm_committed_creds)12032 BTF_ID(func, bpf_lsm_bprm_committed_creds)
12033 #else
12034 BTF_ID_UNUSED
12035 #endif
12036 BTF_SET_END(btf_sleepable_lsm_hooks)
12037
12038 static int check_sleepable_lsm_hook(u32 btf_id)
12039 {
12040 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
12041 }
12042
12043 /* list of non-sleepable functions that are otherwise on
12044 * ALLOW_ERROR_INJECTION list
12045 */
12046 BTF_SET_START(btf_non_sleepable_error_inject)
12047 /* Three functions below can be called from sleepable and non-sleepable context.
12048 * Assume non-sleepable from bpf safety point of view.
12049 */
BTF_ID(func,__add_to_page_cache_locked)12050 BTF_ID(func, __add_to_page_cache_locked)
12051 BTF_ID(func, should_fail_alloc_page)
12052 BTF_ID(func, should_failslab)
12053 BTF_SET_END(btf_non_sleepable_error_inject)
12054
12055 static int check_non_sleepable_error_inject(u32 btf_id)
12056 {
12057 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12058 }
12059
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)12060 int bpf_check_attach_target(struct bpf_verifier_log *log,
12061 const struct bpf_prog *prog,
12062 const struct bpf_prog *tgt_prog,
12063 u32 btf_id,
12064 struct bpf_attach_target_info *tgt_info)
12065 {
12066 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12067 const char prefix[] = "btf_trace_";
12068 int ret = 0, subprog = -1, i;
12069 const struct btf_type *t;
12070 bool conservative = true;
12071 const char *tname;
12072 struct btf *btf;
12073 long addr = 0;
12074
12075 if (!btf_id) {
12076 bpf_log(log, "Tracing programs must provide btf_id\n");
12077 return -EINVAL;
12078 }
12079 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux;
12080 if (!btf) {
12081 bpf_log(log,
12082 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12083 return -EINVAL;
12084 }
12085 t = btf_type_by_id(btf, btf_id);
12086 if (!t) {
12087 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12088 return -EINVAL;
12089 }
12090 tname = btf_name_by_offset(btf, t->name_off);
12091 if (!tname) {
12092 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12093 return -EINVAL;
12094 }
12095 if (tgt_prog) {
12096 struct bpf_prog_aux *aux = tgt_prog->aux;
12097
12098 for (i = 0; i < aux->func_info_cnt; i++)
12099 if (aux->func_info[i].type_id == btf_id) {
12100 subprog = i;
12101 break;
12102 }
12103 if (subprog == -1) {
12104 bpf_log(log, "Subprog %s doesn't exist\n", tname);
12105 return -EINVAL;
12106 }
12107 conservative = aux->func_info_aux[subprog].unreliable;
12108 if (prog_extension) {
12109 if (conservative) {
12110 bpf_log(log,
12111 "Cannot replace static functions\n");
12112 return -EINVAL;
12113 }
12114 if (!prog->jit_requested) {
12115 bpf_log(log,
12116 "Extension programs should be JITed\n");
12117 return -EINVAL;
12118 }
12119 }
12120 if (!tgt_prog->jited) {
12121 bpf_log(log, "Can attach to only JITed progs\n");
12122 return -EINVAL;
12123 }
12124 if (tgt_prog->type == prog->type) {
12125 /* Cannot fentry/fexit another fentry/fexit program.
12126 * Cannot attach program extension to another extension.
12127 * It's ok to attach fentry/fexit to extension program.
12128 */
12129 bpf_log(log, "Cannot recursively attach\n");
12130 return -EINVAL;
12131 }
12132 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12133 prog_extension &&
12134 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12135 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12136 /* Program extensions can extend all program types
12137 * except fentry/fexit. The reason is the following.
12138 * The fentry/fexit programs are used for performance
12139 * analysis, stats and can be attached to any program
12140 * type except themselves. When extension program is
12141 * replacing XDP function it is necessary to allow
12142 * performance analysis of all functions. Both original
12143 * XDP program and its program extension. Hence
12144 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12145 * allowed. If extending of fentry/fexit was allowed it
12146 * would be possible to create long call chain
12147 * fentry->extension->fentry->extension beyond
12148 * reasonable stack size. Hence extending fentry is not
12149 * allowed.
12150 */
12151 bpf_log(log, "Cannot extend fentry/fexit\n");
12152 return -EINVAL;
12153 }
12154 } else {
12155 if (prog_extension) {
12156 bpf_log(log, "Cannot replace kernel functions\n");
12157 return -EINVAL;
12158 }
12159 }
12160
12161 switch (prog->expected_attach_type) {
12162 case BPF_TRACE_RAW_TP:
12163 if (tgt_prog) {
12164 bpf_log(log,
12165 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12166 return -EINVAL;
12167 }
12168 if (!btf_type_is_typedef(t)) {
12169 bpf_log(log, "attach_btf_id %u is not a typedef\n",
12170 btf_id);
12171 return -EINVAL;
12172 }
12173 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12174 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12175 btf_id, tname);
12176 return -EINVAL;
12177 }
12178 tname += sizeof(prefix) - 1;
12179 t = btf_type_by_id(btf, t->type);
12180 if (!btf_type_is_ptr(t))
12181 /* should never happen in valid vmlinux build */
12182 return -EINVAL;
12183 t = btf_type_by_id(btf, t->type);
12184 if (!btf_type_is_func_proto(t))
12185 /* should never happen in valid vmlinux build */
12186 return -EINVAL;
12187
12188 break;
12189 case BPF_TRACE_ITER:
12190 if (!btf_type_is_func(t)) {
12191 bpf_log(log, "attach_btf_id %u is not a function\n",
12192 btf_id);
12193 return -EINVAL;
12194 }
12195 t = btf_type_by_id(btf, t->type);
12196 if (!btf_type_is_func_proto(t))
12197 return -EINVAL;
12198 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12199 if (ret)
12200 return ret;
12201 break;
12202 default:
12203 if (!prog_extension)
12204 return -EINVAL;
12205 fallthrough;
12206 case BPF_MODIFY_RETURN:
12207 case BPF_LSM_MAC:
12208 case BPF_TRACE_FENTRY:
12209 case BPF_TRACE_FEXIT:
12210 if (!btf_type_is_func(t)) {
12211 bpf_log(log, "attach_btf_id %u is not a function\n",
12212 btf_id);
12213 return -EINVAL;
12214 }
12215 if (prog_extension &&
12216 btf_check_type_match(log, prog, btf, t))
12217 return -EINVAL;
12218 t = btf_type_by_id(btf, t->type);
12219 if (!btf_type_is_func_proto(t))
12220 return -EINVAL;
12221
12222 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12223 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12224 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12225 return -EINVAL;
12226
12227 if (tgt_prog && conservative)
12228 t = NULL;
12229
12230 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12231 if (ret < 0)
12232 return ret;
12233
12234 if (tgt_prog) {
12235 if (subprog == 0)
12236 addr = (long) tgt_prog->bpf_func;
12237 else
12238 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12239 } else {
12240 addr = kallsyms_lookup_name(tname);
12241 if (!addr) {
12242 bpf_log(log,
12243 "The address of function %s cannot be found\n",
12244 tname);
12245 return -ENOENT;
12246 }
12247 }
12248
12249 if (prog->aux->sleepable) {
12250 ret = -EINVAL;
12251 switch (prog->type) {
12252 case BPF_PROG_TYPE_TRACING:
12253 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
12254 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12255 */
12256 if (!check_non_sleepable_error_inject(btf_id) &&
12257 within_error_injection_list(addr))
12258 ret = 0;
12259 break;
12260 case BPF_PROG_TYPE_LSM:
12261 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
12262 * Only some of them are sleepable.
12263 */
12264 if (check_sleepable_lsm_hook(btf_id))
12265 ret = 0;
12266 break;
12267 default:
12268 break;
12269 }
12270 if (ret) {
12271 bpf_log(log, "%s is not sleepable\n", tname);
12272 return ret;
12273 }
12274 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12275 if (tgt_prog) {
12276 bpf_log(log, "can't modify return codes of BPF programs\n");
12277 return -EINVAL;
12278 }
12279 ret = check_attach_modify_return(addr, tname);
12280 if (ret) {
12281 bpf_log(log, "%s() is not modifiable\n", tname);
12282 return ret;
12283 }
12284 }
12285
12286 break;
12287 }
12288 tgt_info->tgt_addr = addr;
12289 tgt_info->tgt_name = tname;
12290 tgt_info->tgt_type = t;
12291 return 0;
12292 }
12293
check_attach_btf_id(struct bpf_verifier_env * env)12294 static int check_attach_btf_id(struct bpf_verifier_env *env)
12295 {
12296 struct bpf_prog *prog = env->prog;
12297 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12298 struct bpf_attach_target_info tgt_info = {};
12299 u32 btf_id = prog->aux->attach_btf_id;
12300 struct bpf_trampoline *tr;
12301 int ret;
12302 u64 key;
12303
12304 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12305 prog->type != BPF_PROG_TYPE_LSM) {
12306 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12307 return -EINVAL;
12308 }
12309
12310 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12311 return check_struct_ops_btf_id(env);
12312
12313 if (prog->type != BPF_PROG_TYPE_TRACING &&
12314 prog->type != BPF_PROG_TYPE_LSM &&
12315 prog->type != BPF_PROG_TYPE_EXT)
12316 return 0;
12317
12318 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12319 if (ret)
12320 return ret;
12321
12322 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12323 /* to make freplace equivalent to their targets, they need to
12324 * inherit env->ops and expected_attach_type for the rest of the
12325 * verification
12326 */
12327 env->ops = bpf_verifier_ops[tgt_prog->type];
12328 prog->expected_attach_type = tgt_prog->expected_attach_type;
12329 }
12330
12331 /* store info about the attachment target that will be used later */
12332 prog->aux->attach_func_proto = tgt_info.tgt_type;
12333 prog->aux->attach_func_name = tgt_info.tgt_name;
12334
12335 if (tgt_prog) {
12336 prog->aux->saved_dst_prog_type = tgt_prog->type;
12337 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12338 }
12339
12340 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12341 prog->aux->attach_btf_trace = true;
12342 return 0;
12343 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12344 if (!bpf_iter_prog_supported(prog))
12345 return -EINVAL;
12346 return 0;
12347 }
12348
12349 if (prog->type == BPF_PROG_TYPE_LSM) {
12350 ret = bpf_lsm_verify_prog(&env->log, prog);
12351 if (ret < 0)
12352 return ret;
12353 }
12354
12355 key = bpf_trampoline_compute_key(tgt_prog, btf_id);
12356 tr = bpf_trampoline_get(key, &tgt_info);
12357 if (!tr)
12358 return -ENOMEM;
12359
12360 prog->aux->dst_trampoline = tr;
12361 return 0;
12362 }
12363
bpf_get_btf_vmlinux(void)12364 struct btf *bpf_get_btf_vmlinux(void)
12365 {
12366 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12367 mutex_lock(&bpf_verifier_lock);
12368 if (!btf_vmlinux)
12369 btf_vmlinux = btf_parse_vmlinux();
12370 mutex_unlock(&bpf_verifier_lock);
12371 }
12372 return btf_vmlinux;
12373 }
12374
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,union bpf_attr __user * uattr)12375 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12376 union bpf_attr __user *uattr)
12377 {
12378 u64 start_time = ktime_get_ns();
12379 struct bpf_verifier_env *env;
12380 struct bpf_verifier_log *log;
12381 int i, len, ret = -EINVAL;
12382 bool is_priv;
12383
12384 /* no program is valid */
12385 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12386 return -EINVAL;
12387
12388 /* 'struct bpf_verifier_env' can be global, but since it's not small,
12389 * allocate/free it every time bpf_check() is called
12390 */
12391 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12392 if (!env)
12393 return -ENOMEM;
12394 log = &env->log;
12395
12396 len = (*prog)->len;
12397 env->insn_aux_data =
12398 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12399 ret = -ENOMEM;
12400 if (!env->insn_aux_data)
12401 goto err_free_env;
12402 for (i = 0; i < len; i++)
12403 env->insn_aux_data[i].orig_idx = i;
12404 env->prog = *prog;
12405 env->ops = bpf_verifier_ops[env->prog->type];
12406 is_priv = bpf_capable();
12407
12408 bpf_get_btf_vmlinux();
12409
12410 /* grab the mutex to protect few globals used by verifier */
12411 if (!is_priv)
12412 mutex_lock(&bpf_verifier_lock);
12413
12414 if (attr->log_level || attr->log_buf || attr->log_size) {
12415 /* user requested verbose verifier output
12416 * and supplied buffer to store the verification trace
12417 */
12418 log->level = attr->log_level;
12419 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12420 log->len_total = attr->log_size;
12421
12422 /* log attributes have to be sane */
12423 if (!bpf_verifier_log_attr_valid(log)) {
12424 ret = -EINVAL;
12425 goto err_unlock;
12426 }
12427 }
12428
12429 if (IS_ERR(btf_vmlinux)) {
12430 /* Either gcc or pahole or kernel are broken. */
12431 verbose(env, "in-kernel BTF is malformed\n");
12432 ret = PTR_ERR(btf_vmlinux);
12433 goto skip_full_check;
12434 }
12435
12436 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12437 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12438 env->strict_alignment = true;
12439 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12440 env->strict_alignment = false;
12441
12442 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12443 env->allow_uninit_stack = bpf_allow_uninit_stack();
12444 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12445 env->bypass_spec_v1 = bpf_bypass_spec_v1();
12446 env->bypass_spec_v4 = bpf_bypass_spec_v4();
12447 env->bpf_capable = bpf_capable();
12448
12449 if (is_priv)
12450 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12451
12452 env->explored_states = kvcalloc(state_htab_size(env),
12453 sizeof(struct bpf_verifier_state_list *),
12454 GFP_USER);
12455 ret = -ENOMEM;
12456 if (!env->explored_states)
12457 goto skip_full_check;
12458
12459 ret = check_subprogs(env);
12460 if (ret < 0)
12461 goto skip_full_check;
12462
12463 ret = check_btf_info(env, attr, uattr);
12464 if (ret < 0)
12465 goto skip_full_check;
12466
12467 ret = check_attach_btf_id(env);
12468 if (ret)
12469 goto skip_full_check;
12470
12471 ret = resolve_pseudo_ldimm64(env);
12472 if (ret < 0)
12473 goto skip_full_check;
12474
12475 if (bpf_prog_is_dev_bound(env->prog->aux)) {
12476 ret = bpf_prog_offload_verifier_prep(env->prog);
12477 if (ret)
12478 goto skip_full_check;
12479 }
12480
12481 ret = check_cfg(env);
12482 if (ret < 0)
12483 goto skip_full_check;
12484
12485 ret = do_check_subprogs(env);
12486 ret = ret ?: do_check_main(env);
12487
12488 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12489 ret = bpf_prog_offload_finalize(env);
12490
12491 skip_full_check:
12492 kvfree(env->explored_states);
12493
12494 if (ret == 0)
12495 ret = check_max_stack_depth(env);
12496
12497 /* instruction rewrites happen after this point */
12498 if (is_priv) {
12499 if (ret == 0)
12500 opt_hard_wire_dead_code_branches(env);
12501 if (ret == 0)
12502 ret = opt_remove_dead_code(env);
12503 if (ret == 0)
12504 ret = opt_remove_nops(env);
12505 } else {
12506 if (ret == 0)
12507 sanitize_dead_code(env);
12508 }
12509
12510 if (ret == 0)
12511 /* program is valid, convert *(u32*)(ctx + off) accesses */
12512 ret = convert_ctx_accesses(env);
12513
12514 if (ret == 0)
12515 ret = fixup_bpf_calls(env);
12516
12517 /* do 32-bit optimization after insn patching has done so those patched
12518 * insns could be handled correctly.
12519 */
12520 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12521 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12522 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12523 : false;
12524 }
12525
12526 if (ret == 0)
12527 ret = fixup_call_args(env);
12528
12529 env->verification_time = ktime_get_ns() - start_time;
12530 print_verification_stats(env);
12531
12532 if (log->level && bpf_verifier_log_full(log))
12533 ret = -ENOSPC;
12534 if (log->level && !log->ubuf) {
12535 ret = -EFAULT;
12536 goto err_release_maps;
12537 }
12538
12539 if (ret == 0 && env->used_map_cnt) {
12540 /* if program passed verifier, update used_maps in bpf_prog_info */
12541 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12542 sizeof(env->used_maps[0]),
12543 GFP_KERNEL);
12544
12545 if (!env->prog->aux->used_maps) {
12546 ret = -ENOMEM;
12547 goto err_release_maps;
12548 }
12549
12550 memcpy(env->prog->aux->used_maps, env->used_maps,
12551 sizeof(env->used_maps[0]) * env->used_map_cnt);
12552 env->prog->aux->used_map_cnt = env->used_map_cnt;
12553
12554 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
12555 * bpf_ld_imm64 instructions
12556 */
12557 convert_pseudo_ld_imm64(env);
12558 }
12559
12560 if (ret == 0)
12561 adjust_btf_func(env);
12562
12563 err_release_maps:
12564 if (!env->prog->aux->used_maps)
12565 /* if we didn't copy map pointers into bpf_prog_info, release
12566 * them now. Otherwise free_used_maps() will release them.
12567 */
12568 release_maps(env);
12569
12570 /* extension progs temporarily inherit the attach_type of their targets
12571 for verification purposes, so set it back to zero before returning
12572 */
12573 if (env->prog->type == BPF_PROG_TYPE_EXT)
12574 env->prog->expected_attach_type = 0;
12575
12576 *prog = env->prog;
12577 err_unlock:
12578 if (!is_priv)
12579 mutex_unlock(&bpf_verifier_lock);
12580 vfree(env->insn_aux_data);
12581 err_free_env:
12582 kfree(env);
12583 return ret;
12584 }
12585