1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/btf.h>
11 #include <linux/filter.h>
12 #include <linux/uaccess.h>
13 #include <linux/ctype.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/syscalls.h>
17 #include <linux/error-injection.h>
18 #include <linux/btf_ids.h>
19
20 #include <uapi/linux/bpf.h>
21 #include <uapi/linux/btf.h>
22
23 #include <asm/tlb.h>
24
25 #include "trace_probe.h"
26 #include "trace.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "bpf_trace.h"
30
31 #define bpf_event_rcu_dereference(p) \
32 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
33
34 #ifdef CONFIG_MODULES
35 struct bpf_trace_module {
36 struct module *module;
37 struct list_head list;
38 };
39
40 static LIST_HEAD(bpf_trace_modules);
41 static DEFINE_MUTEX(bpf_module_mutex);
42
bpf_get_raw_tracepoint_module(const char * name)43 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
44 {
45 struct bpf_raw_event_map *btp, *ret = NULL;
46 struct bpf_trace_module *btm;
47 unsigned int i;
48
49 mutex_lock(&bpf_module_mutex);
50 list_for_each_entry(btm, &bpf_trace_modules, list) {
51 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
52 btp = &btm->module->bpf_raw_events[i];
53 if (!strcmp(btp->tp->name, name)) {
54 if (try_module_get(btm->module))
55 ret = btp;
56 goto out;
57 }
58 }
59 }
60 out:
61 mutex_unlock(&bpf_module_mutex);
62 return ret;
63 }
64 #else
bpf_get_raw_tracepoint_module(const char * name)65 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
66 {
67 return NULL;
68 }
69 #endif /* CONFIG_MODULES */
70
71 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
72 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
73
74 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
75 u64 flags, const struct btf **btf,
76 s32 *btf_id);
77
78 /**
79 * trace_call_bpf - invoke BPF program
80 * @call: tracepoint event
81 * @ctx: opaque context pointer
82 *
83 * kprobe handlers execute BPF programs via this helper.
84 * Can be used from static tracepoints in the future.
85 *
86 * Return: BPF programs always return an integer which is interpreted by
87 * kprobe handler as:
88 * 0 - return from kprobe (event is filtered out)
89 * 1 - store kprobe event into ring buffer
90 * Other values are reserved and currently alias to 1
91 */
trace_call_bpf(struct trace_event_call * call,void * ctx)92 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
93 {
94 unsigned int ret;
95
96 cant_sleep();
97
98 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
99 /*
100 * since some bpf program is already running on this cpu,
101 * don't call into another bpf program (same or different)
102 * and don't send kprobe event into ring-buffer,
103 * so return zero here
104 */
105 ret = 0;
106 goto out;
107 }
108
109 /*
110 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
111 * to all call sites, we did a bpf_prog_array_valid() there to check
112 * whether call->prog_array is empty or not, which is
113 * a heurisitc to speed up execution.
114 *
115 * If bpf_prog_array_valid() fetched prog_array was
116 * non-NULL, we go into trace_call_bpf() and do the actual
117 * proper rcu_dereference() under RCU lock.
118 * If it turns out that prog_array is NULL then, we bail out.
119 * For the opposite, if the bpf_prog_array_valid() fetched pointer
120 * was NULL, you'll skip the prog_array with the risk of missing
121 * out of events when it was updated in between this and the
122 * rcu_dereference() which is accepted risk.
123 */
124 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
125
126 out:
127 __this_cpu_dec(bpf_prog_active);
128
129 return ret;
130 }
131
132 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return,struct pt_regs *,regs,unsigned long,rc)133 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
134 {
135 regs_set_return_value(regs, rc);
136 override_function_with_return(regs);
137 return 0;
138 }
139
140 static const struct bpf_func_proto bpf_override_return_proto = {
141 .func = bpf_override_return,
142 .gpl_only = true,
143 .ret_type = RET_INTEGER,
144 .arg1_type = ARG_PTR_TO_CTX,
145 .arg2_type = ARG_ANYTHING,
146 };
147 #endif
148
149 static __always_inline int
bpf_probe_read_user_common(void * dst,u32 size,const void __user * unsafe_ptr)150 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
151 {
152 int ret;
153
154 ret = copy_from_user_nofault(dst, unsafe_ptr, size);
155 if (unlikely(ret < 0))
156 memset(dst, 0, size);
157 return ret;
158 }
159
BPF_CALL_3(bpf_probe_read_user,void *,dst,u32,size,const void __user *,unsafe_ptr)160 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
161 const void __user *, unsafe_ptr)
162 {
163 return bpf_probe_read_user_common(dst, size, unsafe_ptr);
164 }
165
166 const struct bpf_func_proto bpf_probe_read_user_proto = {
167 .func = bpf_probe_read_user,
168 .gpl_only = true,
169 .ret_type = RET_INTEGER,
170 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
171 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
172 .arg3_type = ARG_ANYTHING,
173 };
174
175 static __always_inline int
bpf_probe_read_user_str_common(void * dst,u32 size,const void __user * unsafe_ptr)176 bpf_probe_read_user_str_common(void *dst, u32 size,
177 const void __user *unsafe_ptr)
178 {
179 int ret;
180
181 /*
182 * NB: We rely on strncpy_from_user() not copying junk past the NUL
183 * terminator into `dst`.
184 *
185 * strncpy_from_user() does long-sized strides in the fast path. If the
186 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
187 * then there could be junk after the NUL in `dst`. If user takes `dst`
188 * and keys a hash map with it, then semantically identical strings can
189 * occupy multiple entries in the map.
190 */
191 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
192 if (unlikely(ret < 0))
193 memset(dst, 0, size);
194 return ret;
195 }
196
BPF_CALL_3(bpf_probe_read_user_str,void *,dst,u32,size,const void __user *,unsafe_ptr)197 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
198 const void __user *, unsafe_ptr)
199 {
200 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
201 }
202
203 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
204 .func = bpf_probe_read_user_str,
205 .gpl_only = true,
206 .ret_type = RET_INTEGER,
207 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
208 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
209 .arg3_type = ARG_ANYTHING,
210 };
211
212 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)213 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
214 {
215 int ret;
216
217 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
218 if (unlikely(ret < 0))
219 memset(dst, 0, size);
220 return ret;
221 }
222
BPF_CALL_3(bpf_probe_read_kernel,void *,dst,u32,size,const void *,unsafe_ptr)223 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
224 const void *, unsafe_ptr)
225 {
226 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
227 }
228
229 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
230 .func = bpf_probe_read_kernel,
231 .gpl_only = true,
232 .ret_type = RET_INTEGER,
233 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
234 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
235 .arg3_type = ARG_ANYTHING,
236 };
237
238 static __always_inline int
bpf_probe_read_kernel_str_common(void * dst,u32 size,const void * unsafe_ptr)239 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
240 {
241 int ret;
242
243 /*
244 * The strncpy_from_kernel_nofault() call will likely not fill the
245 * entire buffer, but that's okay in this circumstance as we're probing
246 * arbitrary memory anyway similar to bpf_probe_read_*() and might
247 * as well probe the stack. Thus, memory is explicitly cleared
248 * only in error case, so that improper users ignoring return
249 * code altogether don't copy garbage; otherwise length of string
250 * is returned that can be used for bpf_perf_event_output() et al.
251 */
252 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
253 if (unlikely(ret < 0))
254 memset(dst, 0, size);
255 return ret;
256 }
257
BPF_CALL_3(bpf_probe_read_kernel_str,void *,dst,u32,size,const void *,unsafe_ptr)258 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
259 const void *, unsafe_ptr)
260 {
261 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
262 }
263
264 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
265 .func = bpf_probe_read_kernel_str,
266 .gpl_only = true,
267 .ret_type = RET_INTEGER,
268 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
269 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
270 .arg3_type = ARG_ANYTHING,
271 };
272
273 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
BPF_CALL_3(bpf_probe_read_compat,void *,dst,u32,size,const void *,unsafe_ptr)274 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
275 const void *, unsafe_ptr)
276 {
277 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
278 return bpf_probe_read_user_common(dst, size,
279 (__force void __user *)unsafe_ptr);
280 }
281 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
282 }
283
284 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
285 .func = bpf_probe_read_compat,
286 .gpl_only = true,
287 .ret_type = RET_INTEGER,
288 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
289 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
290 .arg3_type = ARG_ANYTHING,
291 };
292
BPF_CALL_3(bpf_probe_read_compat_str,void *,dst,u32,size,const void *,unsafe_ptr)293 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
294 const void *, unsafe_ptr)
295 {
296 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
297 return bpf_probe_read_user_str_common(dst, size,
298 (__force void __user *)unsafe_ptr);
299 }
300 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
301 }
302
303 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
304 .func = bpf_probe_read_compat_str,
305 .gpl_only = true,
306 .ret_type = RET_INTEGER,
307 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
308 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
309 .arg3_type = ARG_ANYTHING,
310 };
311 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
312
BPF_CALL_3(bpf_probe_write_user,void __user *,unsafe_ptr,const void *,src,u32,size)313 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
314 u32, size)
315 {
316 /*
317 * Ensure we're in user context which is safe for the helper to
318 * run. This helper has no business in a kthread.
319 *
320 * access_ok() should prevent writing to non-user memory, but in
321 * some situations (nommu, temporary switch, etc) access_ok() does
322 * not provide enough validation, hence the check on KERNEL_DS.
323 *
324 * nmi_uaccess_okay() ensures the probe is not run in an interim
325 * state, when the task or mm are switched. This is specifically
326 * required to prevent the use of temporary mm.
327 */
328
329 if (unlikely(in_interrupt() ||
330 current->flags & (PF_KTHREAD | PF_EXITING)))
331 return -EPERM;
332 if (unlikely(uaccess_kernel()))
333 return -EPERM;
334 if (unlikely(!nmi_uaccess_okay()))
335 return -EPERM;
336
337 return copy_to_user_nofault(unsafe_ptr, src, size);
338 }
339
340 static const struct bpf_func_proto bpf_probe_write_user_proto = {
341 .func = bpf_probe_write_user,
342 .gpl_only = true,
343 .ret_type = RET_INTEGER,
344 .arg1_type = ARG_ANYTHING,
345 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
346 .arg3_type = ARG_CONST_SIZE,
347 };
348
bpf_get_probe_write_proto(void)349 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
350 {
351 if (!capable(CAP_SYS_ADMIN))
352 return NULL;
353
354 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
355 current->comm, task_pid_nr(current));
356
357 return &bpf_probe_write_user_proto;
358 }
359
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)360 static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
361 size_t bufsz)
362 {
363 void __user *user_ptr = (__force void __user *)unsafe_ptr;
364
365 buf[0] = 0;
366
367 switch (fmt_ptype) {
368 case 's':
369 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
370 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
371 strncpy_from_user_nofault(buf, user_ptr, bufsz);
372 break;
373 }
374 fallthrough;
375 #endif
376 case 'k':
377 strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
378 break;
379 case 'u':
380 strncpy_from_user_nofault(buf, user_ptr, bufsz);
381 break;
382 }
383 }
384
385 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
386
387 #define BPF_TRACE_PRINTK_SIZE 1024
388
bpf_do_trace_printk(const char * fmt,...)389 static __printf(1, 0) int bpf_do_trace_printk(const char *fmt, ...)
390 {
391 static char buf[BPF_TRACE_PRINTK_SIZE];
392 unsigned long flags;
393 va_list ap;
394 int ret;
395
396 raw_spin_lock_irqsave(&trace_printk_lock, flags);
397 va_start(ap, fmt);
398 ret = vsnprintf(buf, sizeof(buf), fmt, ap);
399 va_end(ap);
400 /* vsnprintf() will not append null for zero-length strings */
401 if (ret == 0)
402 buf[0] = '\0';
403 trace_bpf_trace_printk(buf);
404 raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
405
406 return ret;
407 }
408
409 /*
410 * Only limited trace_printk() conversion specifiers allowed:
411 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pB %pks %pus %s
412 */
BPF_CALL_5(bpf_trace_printk,char *,fmt,u32,fmt_size,u64,arg1,u64,arg2,u64,arg3)413 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
414 u64, arg2, u64, arg3)
415 {
416 int i, mod[3] = {}, fmt_cnt = 0;
417 char buf[64], fmt_ptype;
418 void *unsafe_ptr = NULL;
419 bool str_seen = false;
420
421 /*
422 * bpf_check()->check_func_arg()->check_stack_boundary()
423 * guarantees that fmt points to bpf program stack,
424 * fmt_size bytes of it were initialized and fmt_size > 0
425 */
426 if (fmt[--fmt_size] != 0)
427 return -EINVAL;
428
429 /* check format string for allowed specifiers */
430 for (i = 0; i < fmt_size; i++) {
431 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
432 return -EINVAL;
433
434 if (fmt[i] != '%')
435 continue;
436
437 if (fmt_cnt >= 3)
438 return -EINVAL;
439
440 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
441 i++;
442 if (fmt[i] == 'l') {
443 mod[fmt_cnt]++;
444 i++;
445 } else if (fmt[i] == 'p') {
446 mod[fmt_cnt]++;
447 if ((fmt[i + 1] == 'k' ||
448 fmt[i + 1] == 'u') &&
449 fmt[i + 2] == 's') {
450 fmt_ptype = fmt[i + 1];
451 i += 2;
452 goto fmt_str;
453 }
454
455 if (fmt[i + 1] == 'B') {
456 i++;
457 goto fmt_next;
458 }
459
460 /* disallow any further format extensions */
461 if (fmt[i + 1] != 0 &&
462 !isspace(fmt[i + 1]) &&
463 !ispunct(fmt[i + 1]))
464 return -EINVAL;
465
466 goto fmt_next;
467 } else if (fmt[i] == 's') {
468 mod[fmt_cnt]++;
469 fmt_ptype = fmt[i];
470 fmt_str:
471 if (str_seen)
472 /* allow only one '%s' per fmt string */
473 return -EINVAL;
474 str_seen = true;
475
476 if (fmt[i + 1] != 0 &&
477 !isspace(fmt[i + 1]) &&
478 !ispunct(fmt[i + 1]))
479 return -EINVAL;
480
481 switch (fmt_cnt) {
482 case 0:
483 unsafe_ptr = (void *)(long)arg1;
484 arg1 = (long)buf;
485 break;
486 case 1:
487 unsafe_ptr = (void *)(long)arg2;
488 arg2 = (long)buf;
489 break;
490 case 2:
491 unsafe_ptr = (void *)(long)arg3;
492 arg3 = (long)buf;
493 break;
494 }
495
496 bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype,
497 sizeof(buf));
498 goto fmt_next;
499 }
500
501 if (fmt[i] == 'l') {
502 mod[fmt_cnt]++;
503 i++;
504 }
505
506 if (fmt[i] != 'i' && fmt[i] != 'd' &&
507 fmt[i] != 'u' && fmt[i] != 'x')
508 return -EINVAL;
509 fmt_next:
510 fmt_cnt++;
511 }
512
513 /* Horrid workaround for getting va_list handling working with different
514 * argument type combinations generically for 32 and 64 bit archs.
515 */
516 #define __BPF_TP_EMIT() __BPF_ARG3_TP()
517 #define __BPF_TP(...) \
518 bpf_do_trace_printk(fmt, ##__VA_ARGS__)
519
520 #define __BPF_ARG1_TP(...) \
521 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \
522 ? __BPF_TP(arg1, ##__VA_ARGS__) \
523 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \
524 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \
525 : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
526
527 #define __BPF_ARG2_TP(...) \
528 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \
529 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \
530 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \
531 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \
532 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
533
534 #define __BPF_ARG3_TP(...) \
535 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \
536 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \
537 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \
538 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \
539 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
540
541 return __BPF_TP_EMIT();
542 }
543
544 static const struct bpf_func_proto bpf_trace_printk_proto = {
545 .func = bpf_trace_printk,
546 .gpl_only = true,
547 .ret_type = RET_INTEGER,
548 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
549 .arg2_type = ARG_CONST_SIZE,
550 };
551
bpf_get_trace_printk_proto(void)552 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
553 {
554 /*
555 * This program might be calling bpf_trace_printk,
556 * so enable the associated bpf_trace/bpf_trace_printk event.
557 * Repeat this each time as it is possible a user has
558 * disabled bpf_trace_printk events. By loading a program
559 * calling bpf_trace_printk() however the user has expressed
560 * the intent to see such events.
561 */
562 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
563 pr_warn_ratelimited("could not enable bpf_trace_printk events");
564
565 return &bpf_trace_printk_proto;
566 }
567
568 #define MAX_SEQ_PRINTF_VARARGS 12
569 #define MAX_SEQ_PRINTF_MAX_MEMCPY 6
570 #define MAX_SEQ_PRINTF_STR_LEN 128
571
572 struct bpf_seq_printf_buf {
573 char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN];
574 };
575 static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf);
576 static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used);
577
BPF_CALL_5(bpf_seq_printf,struct seq_file *,m,char *,fmt,u32,fmt_size,const void *,data,u32,data_len)578 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
579 const void *, data, u32, data_len)
580 {
581 int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0;
582 int i, buf_used, copy_size, num_args;
583 u64 params[MAX_SEQ_PRINTF_VARARGS];
584 struct bpf_seq_printf_buf *bufs;
585 const u64 *args = data;
586
587 buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used);
588 if (WARN_ON_ONCE(buf_used > 1)) {
589 err = -EBUSY;
590 goto out;
591 }
592
593 bufs = this_cpu_ptr(&bpf_seq_printf_buf);
594
595 /*
596 * bpf_check()->check_func_arg()->check_stack_boundary()
597 * guarantees that fmt points to bpf program stack,
598 * fmt_size bytes of it were initialized and fmt_size > 0
599 */
600 if (fmt[--fmt_size] != 0)
601 goto out;
602
603 if (data_len & 7)
604 goto out;
605
606 for (i = 0; i < fmt_size; i++) {
607 if (fmt[i] == '%') {
608 if (fmt[i + 1] == '%')
609 i++;
610 else if (!data || !data_len)
611 goto out;
612 }
613 }
614
615 num_args = data_len / 8;
616
617 /* check format string for allowed specifiers */
618 for (i = 0; i < fmt_size; i++) {
619 /* only printable ascii for now. */
620 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
621 err = -EINVAL;
622 goto out;
623 }
624
625 if (fmt[i] != '%')
626 continue;
627
628 if (fmt[i + 1] == '%') {
629 i++;
630 continue;
631 }
632
633 if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) {
634 err = -E2BIG;
635 goto out;
636 }
637
638 if (fmt_cnt >= num_args) {
639 err = -EINVAL;
640 goto out;
641 }
642
643 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
644 i++;
645
646 /* skip optional "[0 +-][num]" width formating field */
647 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
648 fmt[i] == ' ')
649 i++;
650 if (fmt[i] >= '1' && fmt[i] <= '9') {
651 i++;
652 while (fmt[i] >= '0' && fmt[i] <= '9')
653 i++;
654 }
655
656 if (fmt[i] == 's') {
657 void *unsafe_ptr;
658
659 /* try our best to copy */
660 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
661 err = -E2BIG;
662 goto out;
663 }
664
665 unsafe_ptr = (void *)(long)args[fmt_cnt];
666 err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt],
667 unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN);
668 if (err < 0)
669 bufs->buf[memcpy_cnt][0] = '\0';
670 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
671
672 fmt_cnt++;
673 memcpy_cnt++;
674 continue;
675 }
676
677 if (fmt[i] == 'p') {
678 if (fmt[i + 1] == 0 ||
679 fmt[i + 1] == 'K' ||
680 fmt[i + 1] == 'x' ||
681 fmt[i + 1] == 'B') {
682 /* just kernel pointers */
683 params[fmt_cnt] = args[fmt_cnt];
684 fmt_cnt++;
685 continue;
686 }
687
688 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
689 if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') {
690 err = -EINVAL;
691 goto out;
692 }
693 if (fmt[i + 2] != '4' && fmt[i + 2] != '6') {
694 err = -EINVAL;
695 goto out;
696 }
697
698 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
699 err = -E2BIG;
700 goto out;
701 }
702
703
704 copy_size = (fmt[i + 2] == '4') ? 4 : 16;
705
706 err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt],
707 (void *) (long) args[fmt_cnt],
708 copy_size);
709 if (err < 0)
710 memset(bufs->buf[memcpy_cnt], 0, copy_size);
711 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
712
713 i += 2;
714 fmt_cnt++;
715 memcpy_cnt++;
716 continue;
717 }
718
719 if (fmt[i] == 'l') {
720 i++;
721 if (fmt[i] == 'l')
722 i++;
723 }
724
725 if (fmt[i] != 'i' && fmt[i] != 'd' &&
726 fmt[i] != 'u' && fmt[i] != 'x' &&
727 fmt[i] != 'X') {
728 err = -EINVAL;
729 goto out;
730 }
731
732 params[fmt_cnt] = args[fmt_cnt];
733 fmt_cnt++;
734 }
735
736 /* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give
737 * all of them to seq_printf().
738 */
739 seq_printf(m, fmt, params[0], params[1], params[2], params[3],
740 params[4], params[5], params[6], params[7], params[8],
741 params[9], params[10], params[11]);
742
743 err = seq_has_overflowed(m) ? -EOVERFLOW : 0;
744 out:
745 this_cpu_dec(bpf_seq_printf_buf_used);
746 return err;
747 }
748
749 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
750
751 static const struct bpf_func_proto bpf_seq_printf_proto = {
752 .func = bpf_seq_printf,
753 .gpl_only = true,
754 .ret_type = RET_INTEGER,
755 .arg1_type = ARG_PTR_TO_BTF_ID,
756 .arg1_btf_id = &btf_seq_file_ids[0],
757 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
758 .arg3_type = ARG_CONST_SIZE,
759 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
760 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
761 };
762
BPF_CALL_3(bpf_seq_write,struct seq_file *,m,const void *,data,u32,len)763 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
764 {
765 return seq_write(m, data, len) ? -EOVERFLOW : 0;
766 }
767
768 static const struct bpf_func_proto bpf_seq_write_proto = {
769 .func = bpf_seq_write,
770 .gpl_only = true,
771 .ret_type = RET_INTEGER,
772 .arg1_type = ARG_PTR_TO_BTF_ID,
773 .arg1_btf_id = &btf_seq_file_ids[0],
774 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
775 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
776 };
777
BPF_CALL_4(bpf_seq_printf_btf,struct seq_file *,m,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)778 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
779 u32, btf_ptr_size, u64, flags)
780 {
781 const struct btf *btf;
782 s32 btf_id;
783 int ret;
784
785 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
786 if (ret)
787 return ret;
788
789 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
790 }
791
792 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
793 .func = bpf_seq_printf_btf,
794 .gpl_only = true,
795 .ret_type = RET_INTEGER,
796 .arg1_type = ARG_PTR_TO_BTF_ID,
797 .arg1_btf_id = &btf_seq_file_ids[0],
798 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
799 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
800 .arg4_type = ARG_ANYTHING,
801 };
802
803 static __always_inline int
get_map_perf_counter(struct bpf_map * map,u64 flags,u64 * value,u64 * enabled,u64 * running)804 get_map_perf_counter(struct bpf_map *map, u64 flags,
805 u64 *value, u64 *enabled, u64 *running)
806 {
807 struct bpf_array *array = container_of(map, struct bpf_array, map);
808 unsigned int cpu = smp_processor_id();
809 u64 index = flags & BPF_F_INDEX_MASK;
810 struct bpf_event_entry *ee;
811
812 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
813 return -EINVAL;
814 if (index == BPF_F_CURRENT_CPU)
815 index = cpu;
816 if (unlikely(index >= array->map.max_entries))
817 return -E2BIG;
818
819 ee = READ_ONCE(array->ptrs[index]);
820 if (!ee)
821 return -ENOENT;
822
823 return perf_event_read_local(ee->event, value, enabled, running);
824 }
825
BPF_CALL_2(bpf_perf_event_read,struct bpf_map *,map,u64,flags)826 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
827 {
828 u64 value = 0;
829 int err;
830
831 err = get_map_perf_counter(map, flags, &value, NULL, NULL);
832 /*
833 * this api is ugly since we miss [-22..-2] range of valid
834 * counter values, but that's uapi
835 */
836 if (err)
837 return err;
838 return value;
839 }
840
841 static const struct bpf_func_proto bpf_perf_event_read_proto = {
842 .func = bpf_perf_event_read,
843 .gpl_only = true,
844 .ret_type = RET_INTEGER,
845 .arg1_type = ARG_CONST_MAP_PTR,
846 .arg2_type = ARG_ANYTHING,
847 };
848
BPF_CALL_4(bpf_perf_event_read_value,struct bpf_map *,map,u64,flags,struct bpf_perf_event_value *,buf,u32,size)849 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
850 struct bpf_perf_event_value *, buf, u32, size)
851 {
852 int err = -EINVAL;
853
854 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
855 goto clear;
856 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
857 &buf->running);
858 if (unlikely(err))
859 goto clear;
860 return 0;
861 clear:
862 memset(buf, 0, size);
863 return err;
864 }
865
866 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
867 .func = bpf_perf_event_read_value,
868 .gpl_only = true,
869 .ret_type = RET_INTEGER,
870 .arg1_type = ARG_CONST_MAP_PTR,
871 .arg2_type = ARG_ANYTHING,
872 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
873 .arg4_type = ARG_CONST_SIZE,
874 };
875
876 static __always_inline u64
__bpf_perf_event_output(struct pt_regs * regs,struct bpf_map * map,u64 flags,struct perf_sample_data * sd)877 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
878 u64 flags, struct perf_sample_data *sd)
879 {
880 struct bpf_array *array = container_of(map, struct bpf_array, map);
881 unsigned int cpu = smp_processor_id();
882 u64 index = flags & BPF_F_INDEX_MASK;
883 struct bpf_event_entry *ee;
884 struct perf_event *event;
885
886 if (index == BPF_F_CURRENT_CPU)
887 index = cpu;
888 if (unlikely(index >= array->map.max_entries))
889 return -E2BIG;
890
891 ee = READ_ONCE(array->ptrs[index]);
892 if (!ee)
893 return -ENOENT;
894
895 event = ee->event;
896 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
897 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
898 return -EINVAL;
899
900 if (unlikely(event->oncpu != cpu))
901 return -EOPNOTSUPP;
902
903 return perf_event_output(event, sd, regs);
904 }
905
906 /*
907 * Support executing tracepoints in normal, irq, and nmi context that each call
908 * bpf_perf_event_output
909 */
910 struct bpf_trace_sample_data {
911 struct perf_sample_data sds[3];
912 };
913
914 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
915 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
BPF_CALL_5(bpf_perf_event_output,struct pt_regs *,regs,struct bpf_map *,map,u64,flags,void *,data,u64,size)916 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
917 u64, flags, void *, data, u64, size)
918 {
919 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
920 int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
921 struct perf_raw_record raw = {
922 .frag = {
923 .size = size,
924 .data = data,
925 },
926 };
927 struct perf_sample_data *sd;
928 int err;
929
930 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
931 err = -EBUSY;
932 goto out;
933 }
934
935 sd = &sds->sds[nest_level - 1];
936
937 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
938 err = -EINVAL;
939 goto out;
940 }
941
942 perf_sample_data_init(sd, 0, 0);
943 sd->raw = &raw;
944
945 err = __bpf_perf_event_output(regs, map, flags, sd);
946
947 out:
948 this_cpu_dec(bpf_trace_nest_level);
949 return err;
950 }
951
952 static const struct bpf_func_proto bpf_perf_event_output_proto = {
953 .func = bpf_perf_event_output,
954 .gpl_only = true,
955 .ret_type = RET_INTEGER,
956 .arg1_type = ARG_PTR_TO_CTX,
957 .arg2_type = ARG_CONST_MAP_PTR,
958 .arg3_type = ARG_ANYTHING,
959 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
960 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
961 };
962
963 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
964 struct bpf_nested_pt_regs {
965 struct pt_regs regs[3];
966 };
967 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
968 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
969
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)970 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
971 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
972 {
973 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
974 struct perf_raw_frag frag = {
975 .copy = ctx_copy,
976 .size = ctx_size,
977 .data = ctx,
978 };
979 struct perf_raw_record raw = {
980 .frag = {
981 {
982 .next = ctx_size ? &frag : NULL,
983 },
984 .size = meta_size,
985 .data = meta,
986 },
987 };
988 struct perf_sample_data *sd;
989 struct pt_regs *regs;
990 u64 ret;
991
992 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
993 ret = -EBUSY;
994 goto out;
995 }
996 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
997 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
998
999 perf_fetch_caller_regs(regs);
1000 perf_sample_data_init(sd, 0, 0);
1001 sd->raw = &raw;
1002
1003 ret = __bpf_perf_event_output(regs, map, flags, sd);
1004 out:
1005 this_cpu_dec(bpf_event_output_nest_level);
1006 return ret;
1007 }
1008
BPF_CALL_0(bpf_get_current_task)1009 BPF_CALL_0(bpf_get_current_task)
1010 {
1011 return (long) current;
1012 }
1013
1014 const struct bpf_func_proto bpf_get_current_task_proto = {
1015 .func = bpf_get_current_task,
1016 .gpl_only = true,
1017 .ret_type = RET_INTEGER,
1018 };
1019
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)1020 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
1021 {
1022 struct bpf_array *array = container_of(map, struct bpf_array, map);
1023 struct cgroup *cgrp;
1024
1025 if (unlikely(idx >= array->map.max_entries))
1026 return -E2BIG;
1027
1028 cgrp = READ_ONCE(array->ptrs[idx]);
1029 if (unlikely(!cgrp))
1030 return -EAGAIN;
1031
1032 return task_under_cgroup_hierarchy(current, cgrp);
1033 }
1034
1035 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
1036 .func = bpf_current_task_under_cgroup,
1037 .gpl_only = false,
1038 .ret_type = RET_INTEGER,
1039 .arg1_type = ARG_CONST_MAP_PTR,
1040 .arg2_type = ARG_ANYTHING,
1041 };
1042
1043 struct send_signal_irq_work {
1044 struct irq_work irq_work;
1045 struct task_struct *task;
1046 u32 sig;
1047 enum pid_type type;
1048 };
1049
1050 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
1051
do_bpf_send_signal(struct irq_work * entry)1052 static void do_bpf_send_signal(struct irq_work *entry)
1053 {
1054 struct send_signal_irq_work *work;
1055
1056 work = container_of(entry, struct send_signal_irq_work, irq_work);
1057 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
1058 }
1059
bpf_send_signal_common(u32 sig,enum pid_type type)1060 static int bpf_send_signal_common(u32 sig, enum pid_type type)
1061 {
1062 struct send_signal_irq_work *work = NULL;
1063
1064 /* Similar to bpf_probe_write_user, task needs to be
1065 * in a sound condition and kernel memory access be
1066 * permitted in order to send signal to the current
1067 * task.
1068 */
1069 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
1070 return -EPERM;
1071 if (unlikely(uaccess_kernel()))
1072 return -EPERM;
1073 if (unlikely(!nmi_uaccess_okay()))
1074 return -EPERM;
1075
1076 if (irqs_disabled()) {
1077 /* Do an early check on signal validity. Otherwise,
1078 * the error is lost in deferred irq_work.
1079 */
1080 if (unlikely(!valid_signal(sig)))
1081 return -EINVAL;
1082
1083 work = this_cpu_ptr(&send_signal_work);
1084 if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
1085 return -EBUSY;
1086
1087 /* Add the current task, which is the target of sending signal,
1088 * to the irq_work. The current task may change when queued
1089 * irq works get executed.
1090 */
1091 work->task = current;
1092 work->sig = sig;
1093 work->type = type;
1094 irq_work_queue(&work->irq_work);
1095 return 0;
1096 }
1097
1098 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
1099 }
1100
BPF_CALL_1(bpf_send_signal,u32,sig)1101 BPF_CALL_1(bpf_send_signal, u32, sig)
1102 {
1103 return bpf_send_signal_common(sig, PIDTYPE_TGID);
1104 }
1105
1106 static const struct bpf_func_proto bpf_send_signal_proto = {
1107 .func = bpf_send_signal,
1108 .gpl_only = false,
1109 .ret_type = RET_INTEGER,
1110 .arg1_type = ARG_ANYTHING,
1111 };
1112
BPF_CALL_1(bpf_send_signal_thread,u32,sig)1113 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
1114 {
1115 return bpf_send_signal_common(sig, PIDTYPE_PID);
1116 }
1117
1118 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
1119 .func = bpf_send_signal_thread,
1120 .gpl_only = false,
1121 .ret_type = RET_INTEGER,
1122 .arg1_type = ARG_ANYTHING,
1123 };
1124
BPF_CALL_3(bpf_d_path,struct path *,path,char *,buf,u32,sz)1125 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
1126 {
1127 long len;
1128 char *p;
1129
1130 if (!sz)
1131 return 0;
1132
1133 p = d_path(path, buf, sz);
1134 if (IS_ERR(p)) {
1135 len = PTR_ERR(p);
1136 } else {
1137 len = buf + sz - p;
1138 memmove(buf, p, len);
1139 }
1140
1141 return len;
1142 }
1143
1144 BTF_SET_START(btf_allowlist_d_path)
1145 #ifdef CONFIG_SECURITY
BTF_ID(func,security_file_permission)1146 BTF_ID(func, security_file_permission)
1147 BTF_ID(func, security_inode_getattr)
1148 BTF_ID(func, security_file_open)
1149 #endif
1150 #ifdef CONFIG_SECURITY_PATH
1151 BTF_ID(func, security_path_truncate)
1152 #endif
1153 BTF_ID(func, vfs_truncate)
1154 BTF_ID(func, vfs_fallocate)
1155 BTF_ID(func, dentry_open)
1156 BTF_ID(func, vfs_getattr)
1157 BTF_ID(func, filp_close)
1158 BTF_SET_END(btf_allowlist_d_path)
1159
1160 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
1161 {
1162 return btf_id_set_contains(&btf_allowlist_d_path, prog->aux->attach_btf_id);
1163 }
1164
1165 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
1166
1167 static const struct bpf_func_proto bpf_d_path_proto = {
1168 .func = bpf_d_path,
1169 .gpl_only = false,
1170 .ret_type = RET_INTEGER,
1171 .arg1_type = ARG_PTR_TO_BTF_ID,
1172 .arg1_btf_id = &bpf_d_path_btf_ids[0],
1173 .arg2_type = ARG_PTR_TO_MEM,
1174 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1175 .allowed = bpf_d_path_allowed,
1176 };
1177
1178 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \
1179 BTF_F_PTR_RAW | BTF_F_ZERO)
1180
bpf_btf_printf_prepare(struct btf_ptr * ptr,u32 btf_ptr_size,u64 flags,const struct btf ** btf,s32 * btf_id)1181 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
1182 u64 flags, const struct btf **btf,
1183 s32 *btf_id)
1184 {
1185 const struct btf_type *t;
1186
1187 if (unlikely(flags & ~(BTF_F_ALL)))
1188 return -EINVAL;
1189
1190 if (btf_ptr_size != sizeof(struct btf_ptr))
1191 return -EINVAL;
1192
1193 *btf = bpf_get_btf_vmlinux();
1194
1195 if (IS_ERR_OR_NULL(*btf))
1196 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
1197
1198 if (ptr->type_id > 0)
1199 *btf_id = ptr->type_id;
1200 else
1201 return -EINVAL;
1202
1203 if (*btf_id > 0)
1204 t = btf_type_by_id(*btf, *btf_id);
1205 if (*btf_id <= 0 || !t)
1206 return -ENOENT;
1207
1208 return 0;
1209 }
1210
BPF_CALL_5(bpf_snprintf_btf,char *,str,u32,str_size,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)1211 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1212 u32, btf_ptr_size, u64, flags)
1213 {
1214 const struct btf *btf;
1215 s32 btf_id;
1216 int ret;
1217
1218 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1219 if (ret)
1220 return ret;
1221
1222 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1223 flags);
1224 }
1225
1226 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1227 .func = bpf_snprintf_btf,
1228 .gpl_only = false,
1229 .ret_type = RET_INTEGER,
1230 .arg1_type = ARG_PTR_TO_MEM,
1231 .arg2_type = ARG_CONST_SIZE,
1232 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1233 .arg4_type = ARG_CONST_SIZE,
1234 .arg5_type = ARG_ANYTHING,
1235 };
1236
1237 const struct bpf_func_proto *
bpf_tracing_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1238 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1239 {
1240 switch (func_id) {
1241 case BPF_FUNC_map_lookup_elem:
1242 return &bpf_map_lookup_elem_proto;
1243 case BPF_FUNC_map_update_elem:
1244 return &bpf_map_update_elem_proto;
1245 case BPF_FUNC_map_delete_elem:
1246 return &bpf_map_delete_elem_proto;
1247 case BPF_FUNC_map_push_elem:
1248 return &bpf_map_push_elem_proto;
1249 case BPF_FUNC_map_pop_elem:
1250 return &bpf_map_pop_elem_proto;
1251 case BPF_FUNC_map_peek_elem:
1252 return &bpf_map_peek_elem_proto;
1253 case BPF_FUNC_ktime_get_ns:
1254 return &bpf_ktime_get_ns_proto;
1255 case BPF_FUNC_ktime_get_boot_ns:
1256 return &bpf_ktime_get_boot_ns_proto;
1257 case BPF_FUNC_tail_call:
1258 return &bpf_tail_call_proto;
1259 case BPF_FUNC_get_current_pid_tgid:
1260 return &bpf_get_current_pid_tgid_proto;
1261 case BPF_FUNC_get_current_task:
1262 return &bpf_get_current_task_proto;
1263 case BPF_FUNC_get_current_uid_gid:
1264 return &bpf_get_current_uid_gid_proto;
1265 case BPF_FUNC_get_current_comm:
1266 return &bpf_get_current_comm_proto;
1267 case BPF_FUNC_trace_printk:
1268 return bpf_get_trace_printk_proto();
1269 case BPF_FUNC_get_smp_processor_id:
1270 return &bpf_get_smp_processor_id_proto;
1271 case BPF_FUNC_get_numa_node_id:
1272 return &bpf_get_numa_node_id_proto;
1273 case BPF_FUNC_perf_event_read:
1274 return &bpf_perf_event_read_proto;
1275 case BPF_FUNC_current_task_under_cgroup:
1276 return &bpf_current_task_under_cgroup_proto;
1277 case BPF_FUNC_get_prandom_u32:
1278 return &bpf_get_prandom_u32_proto;
1279 case BPF_FUNC_probe_write_user:
1280 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1281 NULL : bpf_get_probe_write_proto();
1282 case BPF_FUNC_probe_read_user:
1283 return &bpf_probe_read_user_proto;
1284 case BPF_FUNC_probe_read_kernel:
1285 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1286 NULL : &bpf_probe_read_kernel_proto;
1287 case BPF_FUNC_probe_read_user_str:
1288 return &bpf_probe_read_user_str_proto;
1289 case BPF_FUNC_probe_read_kernel_str:
1290 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1291 NULL : &bpf_probe_read_kernel_str_proto;
1292 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1293 case BPF_FUNC_probe_read:
1294 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1295 NULL : &bpf_probe_read_compat_proto;
1296 case BPF_FUNC_probe_read_str:
1297 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1298 NULL : &bpf_probe_read_compat_str_proto;
1299 #endif
1300 #ifdef CONFIG_CGROUPS
1301 case BPF_FUNC_get_current_cgroup_id:
1302 return &bpf_get_current_cgroup_id_proto;
1303 #endif
1304 case BPF_FUNC_send_signal:
1305 return &bpf_send_signal_proto;
1306 case BPF_FUNC_send_signal_thread:
1307 return &bpf_send_signal_thread_proto;
1308 case BPF_FUNC_perf_event_read_value:
1309 return &bpf_perf_event_read_value_proto;
1310 case BPF_FUNC_get_ns_current_pid_tgid:
1311 return &bpf_get_ns_current_pid_tgid_proto;
1312 case BPF_FUNC_ringbuf_output:
1313 return &bpf_ringbuf_output_proto;
1314 case BPF_FUNC_ringbuf_reserve:
1315 return &bpf_ringbuf_reserve_proto;
1316 case BPF_FUNC_ringbuf_submit:
1317 return &bpf_ringbuf_submit_proto;
1318 case BPF_FUNC_ringbuf_discard:
1319 return &bpf_ringbuf_discard_proto;
1320 case BPF_FUNC_ringbuf_query:
1321 return &bpf_ringbuf_query_proto;
1322 case BPF_FUNC_jiffies64:
1323 return &bpf_jiffies64_proto;
1324 case BPF_FUNC_get_task_stack:
1325 return &bpf_get_task_stack_proto;
1326 case BPF_FUNC_copy_from_user:
1327 return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1328 case BPF_FUNC_snprintf_btf:
1329 return &bpf_snprintf_btf_proto;
1330 case BPF_FUNC_per_cpu_ptr:
1331 return &bpf_per_cpu_ptr_proto;
1332 case BPF_FUNC_this_cpu_ptr:
1333 return &bpf_this_cpu_ptr_proto;
1334 default:
1335 return NULL;
1336 }
1337 }
1338
1339 static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1340 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1341 {
1342 switch (func_id) {
1343 case BPF_FUNC_perf_event_output:
1344 return &bpf_perf_event_output_proto;
1345 case BPF_FUNC_get_stackid:
1346 return &bpf_get_stackid_proto;
1347 case BPF_FUNC_get_stack:
1348 return &bpf_get_stack_proto;
1349 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1350 case BPF_FUNC_override_return:
1351 return &bpf_override_return_proto;
1352 #endif
1353 default:
1354 return bpf_tracing_func_proto(func_id, prog);
1355 }
1356 }
1357
1358 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
kprobe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1359 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1360 const struct bpf_prog *prog,
1361 struct bpf_insn_access_aux *info)
1362 {
1363 if (off < 0 || off >= sizeof(struct pt_regs))
1364 return false;
1365 if (type != BPF_READ)
1366 return false;
1367 if (off % size != 0)
1368 return false;
1369 /*
1370 * Assertion for 32 bit to make sure last 8 byte access
1371 * (BPF_DW) to the last 4 byte member is disallowed.
1372 */
1373 if (off + size > sizeof(struct pt_regs))
1374 return false;
1375
1376 return true;
1377 }
1378
1379 const struct bpf_verifier_ops kprobe_verifier_ops = {
1380 .get_func_proto = kprobe_prog_func_proto,
1381 .is_valid_access = kprobe_prog_is_valid_access,
1382 };
1383
1384 const struct bpf_prog_ops kprobe_prog_ops = {
1385 };
1386
BPF_CALL_5(bpf_perf_event_output_tp,void *,tp_buff,struct bpf_map *,map,u64,flags,void *,data,u64,size)1387 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1388 u64, flags, void *, data, u64, size)
1389 {
1390 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1391
1392 /*
1393 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1394 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1395 * from there and call the same bpf_perf_event_output() helper inline.
1396 */
1397 return ____bpf_perf_event_output(regs, map, flags, data, size);
1398 }
1399
1400 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1401 .func = bpf_perf_event_output_tp,
1402 .gpl_only = true,
1403 .ret_type = RET_INTEGER,
1404 .arg1_type = ARG_PTR_TO_CTX,
1405 .arg2_type = ARG_CONST_MAP_PTR,
1406 .arg3_type = ARG_ANYTHING,
1407 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1408 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1409 };
1410
BPF_CALL_3(bpf_get_stackid_tp,void *,tp_buff,struct bpf_map *,map,u64,flags)1411 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1412 u64, flags)
1413 {
1414 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1415
1416 /*
1417 * Same comment as in bpf_perf_event_output_tp(), only that this time
1418 * the other helper's function body cannot be inlined due to being
1419 * external, thus we need to call raw helper function.
1420 */
1421 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1422 flags, 0, 0);
1423 }
1424
1425 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1426 .func = bpf_get_stackid_tp,
1427 .gpl_only = true,
1428 .ret_type = RET_INTEGER,
1429 .arg1_type = ARG_PTR_TO_CTX,
1430 .arg2_type = ARG_CONST_MAP_PTR,
1431 .arg3_type = ARG_ANYTHING,
1432 };
1433
BPF_CALL_4(bpf_get_stack_tp,void *,tp_buff,void *,buf,u32,size,u64,flags)1434 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1435 u64, flags)
1436 {
1437 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1438
1439 return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1440 (unsigned long) size, flags, 0);
1441 }
1442
1443 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1444 .func = bpf_get_stack_tp,
1445 .gpl_only = true,
1446 .ret_type = RET_INTEGER,
1447 .arg1_type = ARG_PTR_TO_CTX,
1448 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1449 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1450 .arg4_type = ARG_ANYTHING,
1451 };
1452
1453 static const struct bpf_func_proto *
tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1454 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1455 {
1456 switch (func_id) {
1457 case BPF_FUNC_perf_event_output:
1458 return &bpf_perf_event_output_proto_tp;
1459 case BPF_FUNC_get_stackid:
1460 return &bpf_get_stackid_proto_tp;
1461 case BPF_FUNC_get_stack:
1462 return &bpf_get_stack_proto_tp;
1463 default:
1464 return bpf_tracing_func_proto(func_id, prog);
1465 }
1466 }
1467
tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1468 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1469 const struct bpf_prog *prog,
1470 struct bpf_insn_access_aux *info)
1471 {
1472 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1473 return false;
1474 if (type != BPF_READ)
1475 return false;
1476 if (off % size != 0)
1477 return false;
1478
1479 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1480 return true;
1481 }
1482
1483 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1484 .get_func_proto = tp_prog_func_proto,
1485 .is_valid_access = tp_prog_is_valid_access,
1486 };
1487
1488 const struct bpf_prog_ops tracepoint_prog_ops = {
1489 };
1490
BPF_CALL_3(bpf_perf_prog_read_value,struct bpf_perf_event_data_kern *,ctx,struct bpf_perf_event_value *,buf,u32,size)1491 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1492 struct bpf_perf_event_value *, buf, u32, size)
1493 {
1494 int err = -EINVAL;
1495
1496 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1497 goto clear;
1498 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1499 &buf->running);
1500 if (unlikely(err))
1501 goto clear;
1502 return 0;
1503 clear:
1504 memset(buf, 0, size);
1505 return err;
1506 }
1507
1508 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1509 .func = bpf_perf_prog_read_value,
1510 .gpl_only = true,
1511 .ret_type = RET_INTEGER,
1512 .arg1_type = ARG_PTR_TO_CTX,
1513 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1514 .arg3_type = ARG_CONST_SIZE,
1515 };
1516
BPF_CALL_4(bpf_read_branch_records,struct bpf_perf_event_data_kern *,ctx,void *,buf,u32,size,u64,flags)1517 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1518 void *, buf, u32, size, u64, flags)
1519 {
1520 static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1521 struct perf_branch_stack *br_stack = ctx->data->br_stack;
1522 u32 to_copy;
1523
1524 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1525 return -EINVAL;
1526
1527 if (unlikely(!br_stack))
1528 return -ENOENT;
1529
1530 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1531 return br_stack->nr * br_entry_size;
1532
1533 if (!buf || (size % br_entry_size != 0))
1534 return -EINVAL;
1535
1536 to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1537 memcpy(buf, br_stack->entries, to_copy);
1538
1539 return to_copy;
1540 }
1541
1542 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1543 .func = bpf_read_branch_records,
1544 .gpl_only = true,
1545 .ret_type = RET_INTEGER,
1546 .arg1_type = ARG_PTR_TO_CTX,
1547 .arg2_type = ARG_PTR_TO_MEM_OR_NULL,
1548 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1549 .arg4_type = ARG_ANYTHING,
1550 };
1551
1552 static const struct bpf_func_proto *
pe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1553 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1554 {
1555 switch (func_id) {
1556 case BPF_FUNC_perf_event_output:
1557 return &bpf_perf_event_output_proto_tp;
1558 case BPF_FUNC_get_stackid:
1559 return &bpf_get_stackid_proto_pe;
1560 case BPF_FUNC_get_stack:
1561 return &bpf_get_stack_proto_pe;
1562 case BPF_FUNC_perf_prog_read_value:
1563 return &bpf_perf_prog_read_value_proto;
1564 case BPF_FUNC_read_branch_records:
1565 return &bpf_read_branch_records_proto;
1566 default:
1567 return bpf_tracing_func_proto(func_id, prog);
1568 }
1569 }
1570
1571 /*
1572 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1573 * to avoid potential recursive reuse issue when/if tracepoints are added
1574 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1575 *
1576 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1577 * in normal, irq, and nmi context.
1578 */
1579 struct bpf_raw_tp_regs {
1580 struct pt_regs regs[3];
1581 };
1582 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1583 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
get_bpf_raw_tp_regs(void)1584 static struct pt_regs *get_bpf_raw_tp_regs(void)
1585 {
1586 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1587 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1588
1589 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1590 this_cpu_dec(bpf_raw_tp_nest_level);
1591 return ERR_PTR(-EBUSY);
1592 }
1593
1594 return &tp_regs->regs[nest_level - 1];
1595 }
1596
put_bpf_raw_tp_regs(void)1597 static void put_bpf_raw_tp_regs(void)
1598 {
1599 this_cpu_dec(bpf_raw_tp_nest_level);
1600 }
1601
BPF_CALL_5(bpf_perf_event_output_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags,void *,data,u64,size)1602 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1603 struct bpf_map *, map, u64, flags, void *, data, u64, size)
1604 {
1605 struct pt_regs *regs = get_bpf_raw_tp_regs();
1606 int ret;
1607
1608 if (IS_ERR(regs))
1609 return PTR_ERR(regs);
1610
1611 perf_fetch_caller_regs(regs);
1612 ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1613
1614 put_bpf_raw_tp_regs();
1615 return ret;
1616 }
1617
1618 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1619 .func = bpf_perf_event_output_raw_tp,
1620 .gpl_only = true,
1621 .ret_type = RET_INTEGER,
1622 .arg1_type = ARG_PTR_TO_CTX,
1623 .arg2_type = ARG_CONST_MAP_PTR,
1624 .arg3_type = ARG_ANYTHING,
1625 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1626 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1627 };
1628
1629 extern const struct bpf_func_proto bpf_skb_output_proto;
1630 extern const struct bpf_func_proto bpf_xdp_output_proto;
1631
BPF_CALL_3(bpf_get_stackid_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags)1632 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1633 struct bpf_map *, map, u64, flags)
1634 {
1635 struct pt_regs *regs = get_bpf_raw_tp_regs();
1636 int ret;
1637
1638 if (IS_ERR(regs))
1639 return PTR_ERR(regs);
1640
1641 perf_fetch_caller_regs(regs);
1642 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1643 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1644 flags, 0, 0);
1645 put_bpf_raw_tp_regs();
1646 return ret;
1647 }
1648
1649 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1650 .func = bpf_get_stackid_raw_tp,
1651 .gpl_only = true,
1652 .ret_type = RET_INTEGER,
1653 .arg1_type = ARG_PTR_TO_CTX,
1654 .arg2_type = ARG_CONST_MAP_PTR,
1655 .arg3_type = ARG_ANYTHING,
1656 };
1657
BPF_CALL_4(bpf_get_stack_raw_tp,struct bpf_raw_tracepoint_args *,args,void *,buf,u32,size,u64,flags)1658 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1659 void *, buf, u32, size, u64, flags)
1660 {
1661 struct pt_regs *regs = get_bpf_raw_tp_regs();
1662 int ret;
1663
1664 if (IS_ERR(regs))
1665 return PTR_ERR(regs);
1666
1667 perf_fetch_caller_regs(regs);
1668 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1669 (unsigned long) size, flags, 0);
1670 put_bpf_raw_tp_regs();
1671 return ret;
1672 }
1673
1674 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1675 .func = bpf_get_stack_raw_tp,
1676 .gpl_only = true,
1677 .ret_type = RET_INTEGER,
1678 .arg1_type = ARG_PTR_TO_CTX,
1679 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1680 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1681 .arg4_type = ARG_ANYTHING,
1682 };
1683
1684 static const struct bpf_func_proto *
raw_tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1685 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1686 {
1687 switch (func_id) {
1688 case BPF_FUNC_perf_event_output:
1689 return &bpf_perf_event_output_proto_raw_tp;
1690 case BPF_FUNC_get_stackid:
1691 return &bpf_get_stackid_proto_raw_tp;
1692 case BPF_FUNC_get_stack:
1693 return &bpf_get_stack_proto_raw_tp;
1694 default:
1695 return bpf_tracing_func_proto(func_id, prog);
1696 }
1697 }
1698
1699 const struct bpf_func_proto *
tracing_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1700 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1701 {
1702 switch (func_id) {
1703 #ifdef CONFIG_NET
1704 case BPF_FUNC_skb_output:
1705 return &bpf_skb_output_proto;
1706 case BPF_FUNC_xdp_output:
1707 return &bpf_xdp_output_proto;
1708 case BPF_FUNC_skc_to_tcp6_sock:
1709 return &bpf_skc_to_tcp6_sock_proto;
1710 case BPF_FUNC_skc_to_tcp_sock:
1711 return &bpf_skc_to_tcp_sock_proto;
1712 case BPF_FUNC_skc_to_tcp_timewait_sock:
1713 return &bpf_skc_to_tcp_timewait_sock_proto;
1714 case BPF_FUNC_skc_to_tcp_request_sock:
1715 return &bpf_skc_to_tcp_request_sock_proto;
1716 case BPF_FUNC_skc_to_udp6_sock:
1717 return &bpf_skc_to_udp6_sock_proto;
1718 #endif
1719 case BPF_FUNC_seq_printf:
1720 return prog->expected_attach_type == BPF_TRACE_ITER ?
1721 &bpf_seq_printf_proto :
1722 NULL;
1723 case BPF_FUNC_seq_write:
1724 return prog->expected_attach_type == BPF_TRACE_ITER ?
1725 &bpf_seq_write_proto :
1726 NULL;
1727 case BPF_FUNC_seq_printf_btf:
1728 return prog->expected_attach_type == BPF_TRACE_ITER ?
1729 &bpf_seq_printf_btf_proto :
1730 NULL;
1731 case BPF_FUNC_d_path:
1732 return &bpf_d_path_proto;
1733 default:
1734 return raw_tp_prog_func_proto(func_id, prog);
1735 }
1736 }
1737
raw_tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1738 static bool raw_tp_prog_is_valid_access(int off, int size,
1739 enum bpf_access_type type,
1740 const struct bpf_prog *prog,
1741 struct bpf_insn_access_aux *info)
1742 {
1743 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1744 return false;
1745 if (type != BPF_READ)
1746 return false;
1747 if (off % size != 0)
1748 return false;
1749 return true;
1750 }
1751
tracing_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1752 static bool tracing_prog_is_valid_access(int off, int size,
1753 enum bpf_access_type type,
1754 const struct bpf_prog *prog,
1755 struct bpf_insn_access_aux *info)
1756 {
1757 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1758 return false;
1759 if (type != BPF_READ)
1760 return false;
1761 if (off % size != 0)
1762 return false;
1763 return btf_ctx_access(off, size, type, prog, info);
1764 }
1765
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)1766 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1767 const union bpf_attr *kattr,
1768 union bpf_attr __user *uattr)
1769 {
1770 return -ENOTSUPP;
1771 }
1772
1773 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1774 .get_func_proto = raw_tp_prog_func_proto,
1775 .is_valid_access = raw_tp_prog_is_valid_access,
1776 };
1777
1778 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1779 #ifdef CONFIG_NET
1780 .test_run = bpf_prog_test_run_raw_tp,
1781 #endif
1782 };
1783
1784 const struct bpf_verifier_ops tracing_verifier_ops = {
1785 .get_func_proto = tracing_prog_func_proto,
1786 .is_valid_access = tracing_prog_is_valid_access,
1787 };
1788
1789 const struct bpf_prog_ops tracing_prog_ops = {
1790 .test_run = bpf_prog_test_run_tracing,
1791 };
1792
raw_tp_writable_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1793 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1794 enum bpf_access_type type,
1795 const struct bpf_prog *prog,
1796 struct bpf_insn_access_aux *info)
1797 {
1798 if (off == 0) {
1799 if (size != sizeof(u64) || type != BPF_READ)
1800 return false;
1801 info->reg_type = PTR_TO_TP_BUFFER;
1802 }
1803 return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1804 }
1805
1806 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1807 .get_func_proto = raw_tp_prog_func_proto,
1808 .is_valid_access = raw_tp_writable_prog_is_valid_access,
1809 };
1810
1811 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1812 };
1813
pe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1814 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1815 const struct bpf_prog *prog,
1816 struct bpf_insn_access_aux *info)
1817 {
1818 const int size_u64 = sizeof(u64);
1819
1820 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1821 return false;
1822 if (type != BPF_READ)
1823 return false;
1824 if (off % size != 0) {
1825 if (sizeof(unsigned long) != 4)
1826 return false;
1827 if (size != 8)
1828 return false;
1829 if (off % size != 4)
1830 return false;
1831 }
1832
1833 switch (off) {
1834 case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1835 bpf_ctx_record_field_size(info, size_u64);
1836 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1837 return false;
1838 break;
1839 case bpf_ctx_range(struct bpf_perf_event_data, addr):
1840 bpf_ctx_record_field_size(info, size_u64);
1841 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1842 return false;
1843 break;
1844 default:
1845 if (size != sizeof(long))
1846 return false;
1847 }
1848
1849 return true;
1850 }
1851
pe_prog_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1852 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1853 const struct bpf_insn *si,
1854 struct bpf_insn *insn_buf,
1855 struct bpf_prog *prog, u32 *target_size)
1856 {
1857 struct bpf_insn *insn = insn_buf;
1858
1859 switch (si->off) {
1860 case offsetof(struct bpf_perf_event_data, sample_period):
1861 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1862 data), si->dst_reg, si->src_reg,
1863 offsetof(struct bpf_perf_event_data_kern, data));
1864 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1865 bpf_target_off(struct perf_sample_data, period, 8,
1866 target_size));
1867 break;
1868 case offsetof(struct bpf_perf_event_data, addr):
1869 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1870 data), si->dst_reg, si->src_reg,
1871 offsetof(struct bpf_perf_event_data_kern, data));
1872 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1873 bpf_target_off(struct perf_sample_data, addr, 8,
1874 target_size));
1875 break;
1876 default:
1877 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1878 regs), si->dst_reg, si->src_reg,
1879 offsetof(struct bpf_perf_event_data_kern, regs));
1880 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1881 si->off);
1882 break;
1883 }
1884
1885 return insn - insn_buf;
1886 }
1887
1888 const struct bpf_verifier_ops perf_event_verifier_ops = {
1889 .get_func_proto = pe_prog_func_proto,
1890 .is_valid_access = pe_prog_is_valid_access,
1891 .convert_ctx_access = pe_prog_convert_ctx_access,
1892 };
1893
1894 const struct bpf_prog_ops perf_event_prog_ops = {
1895 };
1896
1897 static DEFINE_MUTEX(bpf_event_mutex);
1898
1899 #define BPF_TRACE_MAX_PROGS 64
1900
perf_event_attach_bpf_prog(struct perf_event * event,struct bpf_prog * prog)1901 int perf_event_attach_bpf_prog(struct perf_event *event,
1902 struct bpf_prog *prog)
1903 {
1904 struct bpf_prog_array *old_array;
1905 struct bpf_prog_array *new_array;
1906 int ret = -EEXIST;
1907
1908 /*
1909 * Kprobe override only works if they are on the function entry,
1910 * and only if they are on the opt-in list.
1911 */
1912 if (prog->kprobe_override &&
1913 (!trace_kprobe_on_func_entry(event->tp_event) ||
1914 !trace_kprobe_error_injectable(event->tp_event)))
1915 return -EINVAL;
1916
1917 mutex_lock(&bpf_event_mutex);
1918
1919 if (event->prog)
1920 goto unlock;
1921
1922 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1923 if (old_array &&
1924 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1925 ret = -E2BIG;
1926 goto unlock;
1927 }
1928
1929 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1930 if (ret < 0)
1931 goto unlock;
1932
1933 /* set the new array to event->tp_event and set event->prog */
1934 event->prog = prog;
1935 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1936 bpf_prog_array_free(old_array);
1937
1938 unlock:
1939 mutex_unlock(&bpf_event_mutex);
1940 return ret;
1941 }
1942
perf_event_detach_bpf_prog(struct perf_event * event)1943 void perf_event_detach_bpf_prog(struct perf_event *event)
1944 {
1945 struct bpf_prog_array *old_array;
1946 struct bpf_prog_array *new_array;
1947 int ret;
1948
1949 mutex_lock(&bpf_event_mutex);
1950
1951 if (!event->prog)
1952 goto unlock;
1953
1954 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1955 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1956 if (ret == -ENOENT)
1957 goto unlock;
1958 if (ret < 0) {
1959 bpf_prog_array_delete_safe(old_array, event->prog);
1960 } else {
1961 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1962 bpf_prog_array_free(old_array);
1963 }
1964
1965 bpf_prog_put(event->prog);
1966 event->prog = NULL;
1967
1968 unlock:
1969 mutex_unlock(&bpf_event_mutex);
1970 }
1971
perf_event_query_prog_array(struct perf_event * event,void __user * info)1972 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1973 {
1974 struct perf_event_query_bpf __user *uquery = info;
1975 struct perf_event_query_bpf query = {};
1976 struct bpf_prog_array *progs;
1977 u32 *ids, prog_cnt, ids_len;
1978 int ret;
1979
1980 if (!perfmon_capable())
1981 return -EPERM;
1982 if (event->attr.type != PERF_TYPE_TRACEPOINT)
1983 return -EINVAL;
1984 if (copy_from_user(&query, uquery, sizeof(query)))
1985 return -EFAULT;
1986
1987 ids_len = query.ids_len;
1988 if (ids_len > BPF_TRACE_MAX_PROGS)
1989 return -E2BIG;
1990 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1991 if (!ids)
1992 return -ENOMEM;
1993 /*
1994 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1995 * is required when user only wants to check for uquery->prog_cnt.
1996 * There is no need to check for it since the case is handled
1997 * gracefully in bpf_prog_array_copy_info.
1998 */
1999
2000 mutex_lock(&bpf_event_mutex);
2001 progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2002 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2003 mutex_unlock(&bpf_event_mutex);
2004
2005 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2006 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2007 ret = -EFAULT;
2008
2009 kfree(ids);
2010 return ret;
2011 }
2012
2013 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2014 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2015
bpf_get_raw_tracepoint(const char * name)2016 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2017 {
2018 struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2019
2020 for (; btp < __stop__bpf_raw_tp; btp++) {
2021 if (!strcmp(btp->tp->name, name))
2022 return btp;
2023 }
2024
2025 return bpf_get_raw_tracepoint_module(name);
2026 }
2027
bpf_put_raw_tracepoint(struct bpf_raw_event_map * btp)2028 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2029 {
2030 struct module *mod;
2031
2032 preempt_disable();
2033 mod = __module_address((unsigned long)btp);
2034 module_put(mod);
2035 preempt_enable();
2036 }
2037
2038 static __always_inline
__bpf_trace_run(struct bpf_prog * prog,u64 * args)2039 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2040 {
2041 cant_sleep();
2042 rcu_read_lock();
2043 (void) BPF_PROG_RUN(prog, args);
2044 rcu_read_unlock();
2045 }
2046
2047 #define UNPACK(...) __VA_ARGS__
2048 #define REPEAT_1(FN, DL, X, ...) FN(X)
2049 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2050 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2051 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2052 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2053 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2054 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2055 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2056 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2057 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2058 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2059 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2060 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
2061
2062 #define SARG(X) u64 arg##X
2063 #define COPY(X) args[X] = arg##X
2064
2065 #define __DL_COM (,)
2066 #define __DL_SEM (;)
2067
2068 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2069
2070 #define BPF_TRACE_DEFN_x(x) \
2071 void bpf_trace_run##x(struct bpf_prog *prog, \
2072 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
2073 { \
2074 u64 args[x]; \
2075 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
2076 __bpf_trace_run(prog, args); \
2077 } \
2078 EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2079 BPF_TRACE_DEFN_x(1);
2080 BPF_TRACE_DEFN_x(2);
2081 BPF_TRACE_DEFN_x(3);
2082 BPF_TRACE_DEFN_x(4);
2083 BPF_TRACE_DEFN_x(5);
2084 BPF_TRACE_DEFN_x(6);
2085 BPF_TRACE_DEFN_x(7);
2086 BPF_TRACE_DEFN_x(8);
2087 BPF_TRACE_DEFN_x(9);
2088 BPF_TRACE_DEFN_x(10);
2089 BPF_TRACE_DEFN_x(11);
2090 BPF_TRACE_DEFN_x(12);
2091
__bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)2092 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2093 {
2094 struct tracepoint *tp = btp->tp;
2095
2096 /*
2097 * check that program doesn't access arguments beyond what's
2098 * available in this tracepoint
2099 */
2100 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2101 return -EINVAL;
2102
2103 if (prog->aux->max_tp_access > btp->writable_size)
2104 return -EINVAL;
2105
2106 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2107 prog);
2108 }
2109
bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)2110 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2111 {
2112 return __bpf_probe_register(btp, prog);
2113 }
2114
bpf_probe_unregister(struct bpf_raw_event_map * btp,struct bpf_prog * prog)2115 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2116 {
2117 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2118 }
2119
bpf_get_perf_event_info(const struct perf_event * event,u32 * prog_id,u32 * fd_type,const char ** buf,u64 * probe_offset,u64 * probe_addr)2120 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2121 u32 *fd_type, const char **buf,
2122 u64 *probe_offset, u64 *probe_addr)
2123 {
2124 bool is_tracepoint, is_syscall_tp;
2125 struct bpf_prog *prog;
2126 int flags, err = 0;
2127
2128 prog = event->prog;
2129 if (!prog)
2130 return -ENOENT;
2131
2132 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2133 if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2134 return -EOPNOTSUPP;
2135
2136 *prog_id = prog->aux->id;
2137 flags = event->tp_event->flags;
2138 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2139 is_syscall_tp = is_syscall_trace_event(event->tp_event);
2140
2141 if (is_tracepoint || is_syscall_tp) {
2142 *buf = is_tracepoint ? event->tp_event->tp->name
2143 : event->tp_event->name;
2144 *fd_type = BPF_FD_TYPE_TRACEPOINT;
2145 *probe_offset = 0x0;
2146 *probe_addr = 0x0;
2147 } else {
2148 /* kprobe/uprobe */
2149 err = -EOPNOTSUPP;
2150 #ifdef CONFIG_KPROBE_EVENTS
2151 if (flags & TRACE_EVENT_FL_KPROBE)
2152 err = bpf_get_kprobe_info(event, fd_type, buf,
2153 probe_offset, probe_addr,
2154 event->attr.type == PERF_TYPE_TRACEPOINT);
2155 #endif
2156 #ifdef CONFIG_UPROBE_EVENTS
2157 if (flags & TRACE_EVENT_FL_UPROBE)
2158 err = bpf_get_uprobe_info(event, fd_type, buf,
2159 probe_offset,
2160 event->attr.type == PERF_TYPE_TRACEPOINT);
2161 #endif
2162 }
2163
2164 return err;
2165 }
2166
send_signal_irq_work_init(void)2167 static int __init send_signal_irq_work_init(void)
2168 {
2169 int cpu;
2170 struct send_signal_irq_work *work;
2171
2172 for_each_possible_cpu(cpu) {
2173 work = per_cpu_ptr(&send_signal_work, cpu);
2174 init_irq_work(&work->irq_work, do_bpf_send_signal);
2175 }
2176 return 0;
2177 }
2178
2179 subsys_initcall(send_signal_irq_work_init);
2180
2181 #ifdef CONFIG_MODULES
bpf_event_notify(struct notifier_block * nb,unsigned long op,void * module)2182 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2183 void *module)
2184 {
2185 struct bpf_trace_module *btm, *tmp;
2186 struct module *mod = module;
2187 int ret = 0;
2188
2189 if (mod->num_bpf_raw_events == 0 ||
2190 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2191 goto out;
2192
2193 mutex_lock(&bpf_module_mutex);
2194
2195 switch (op) {
2196 case MODULE_STATE_COMING:
2197 btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2198 if (btm) {
2199 btm->module = module;
2200 list_add(&btm->list, &bpf_trace_modules);
2201 } else {
2202 ret = -ENOMEM;
2203 }
2204 break;
2205 case MODULE_STATE_GOING:
2206 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2207 if (btm->module == module) {
2208 list_del(&btm->list);
2209 kfree(btm);
2210 break;
2211 }
2212 }
2213 break;
2214 }
2215
2216 mutex_unlock(&bpf_module_mutex);
2217
2218 out:
2219 return notifier_from_errno(ret);
2220 }
2221
2222 static struct notifier_block bpf_module_nb = {
2223 .notifier_call = bpf_event_notify,
2224 };
2225
bpf_event_init(void)2226 static int __init bpf_event_init(void)
2227 {
2228 register_module_notifier(&bpf_module_nb);
2229 return 0;
2230 }
2231
2232 fs_initcall(bpf_event_init);
2233 #endif /* CONFIG_MODULES */
2234