1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/btf_ids.h>
26 #include <net/sock.h>
27
28 /* BTF (BPF Type Format) is the meta data format which describes
29 * the data types of BPF program/map. Hence, it basically focus
30 * on the C programming language which the modern BPF is primary
31 * using.
32 *
33 * ELF Section:
34 * ~~~~~~~~~~~
35 * The BTF data is stored under the ".BTF" ELF section
36 *
37 * struct btf_type:
38 * ~~~~~~~~~~~~~~~
39 * Each 'struct btf_type' object describes a C data type.
40 * Depending on the type it is describing, a 'struct btf_type'
41 * object may be followed by more data. F.e.
42 * To describe an array, 'struct btf_type' is followed by
43 * 'struct btf_array'.
44 *
45 * 'struct btf_type' and any extra data following it are
46 * 4 bytes aligned.
47 *
48 * Type section:
49 * ~~~~~~~~~~~~~
50 * The BTF type section contains a list of 'struct btf_type' objects.
51 * Each one describes a C type. Recall from the above section
52 * that a 'struct btf_type' object could be immediately followed by extra
53 * data in order to desribe some particular C types.
54 *
55 * type_id:
56 * ~~~~~~~
57 * Each btf_type object is identified by a type_id. The type_id
58 * is implicitly implied by the location of the btf_type object in
59 * the BTF type section. The first one has type_id 1. The second
60 * one has type_id 2...etc. Hence, an earlier btf_type has
61 * a smaller type_id.
62 *
63 * A btf_type object may refer to another btf_type object by using
64 * type_id (i.e. the "type" in the "struct btf_type").
65 *
66 * NOTE that we cannot assume any reference-order.
67 * A btf_type object can refer to an earlier btf_type object
68 * but it can also refer to a later btf_type object.
69 *
70 * For example, to describe "const void *". A btf_type
71 * object describing "const" may refer to another btf_type
72 * object describing "void *". This type-reference is done
73 * by specifying type_id:
74 *
75 * [1] CONST (anon) type_id=2
76 * [2] PTR (anon) type_id=0
77 *
78 * The above is the btf_verifier debug log:
79 * - Each line started with "[?]" is a btf_type object
80 * - [?] is the type_id of the btf_type object.
81 * - CONST/PTR is the BTF_KIND_XXX
82 * - "(anon)" is the name of the type. It just
83 * happens that CONST and PTR has no name.
84 * - type_id=XXX is the 'u32 type' in btf_type
85 *
86 * NOTE: "void" has type_id 0
87 *
88 * String section:
89 * ~~~~~~~~~~~~~~
90 * The BTF string section contains the names used by the type section.
91 * Each string is referred by an "offset" from the beginning of the
92 * string section.
93 *
94 * Each string is '\0' terminated.
95 *
96 * The first character in the string section must be '\0'
97 * which is used to mean 'anonymous'. Some btf_type may not
98 * have a name.
99 */
100
101 /* BTF verification:
102 *
103 * To verify BTF data, two passes are needed.
104 *
105 * Pass #1
106 * ~~~~~~~
107 * The first pass is to collect all btf_type objects to
108 * an array: "btf->types".
109 *
110 * Depending on the C type that a btf_type is describing,
111 * a btf_type may be followed by extra data. We don't know
112 * how many btf_type is there, and more importantly we don't
113 * know where each btf_type is located in the type section.
114 *
115 * Without knowing the location of each type_id, most verifications
116 * cannot be done. e.g. an earlier btf_type may refer to a later
117 * btf_type (recall the "const void *" above), so we cannot
118 * check this type-reference in the first pass.
119 *
120 * In the first pass, it still does some verifications (e.g.
121 * checking the name is a valid offset to the string section).
122 *
123 * Pass #2
124 * ~~~~~~~
125 * The main focus is to resolve a btf_type that is referring
126 * to another type.
127 *
128 * We have to ensure the referring type:
129 * 1) does exist in the BTF (i.e. in btf->types[])
130 * 2) does not cause a loop:
131 * struct A {
132 * struct B b;
133 * };
134 *
135 * struct B {
136 * struct A a;
137 * };
138 *
139 * btf_type_needs_resolve() decides if a btf_type needs
140 * to be resolved.
141 *
142 * The needs_resolve type implements the "resolve()" ops which
143 * essentially does a DFS and detects backedge.
144 *
145 * During resolve (or DFS), different C types have different
146 * "RESOLVED" conditions.
147 *
148 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
149 * members because a member is always referring to another
150 * type. A struct's member can be treated as "RESOLVED" if
151 * it is referring to a BTF_KIND_PTR. Otherwise, the
152 * following valid C struct would be rejected:
153 *
154 * struct A {
155 * int m;
156 * struct A *a;
157 * };
158 *
159 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
160 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
161 * detect a pointer loop, e.g.:
162 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
163 * ^ |
164 * +-----------------------------------------+
165 *
166 */
167
168 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
169 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
170 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
171 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
172 #define BITS_ROUNDUP_BYTES(bits) \
173 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
174
175 #define BTF_INFO_MASK 0x8f00ffff
176 #define BTF_INT_MASK 0x0fffffff
177 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
178 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
179
180 /* 16MB for 64k structs and each has 16 members and
181 * a few MB spaces for the string section.
182 * The hard limit is S32_MAX.
183 */
184 #define BTF_MAX_SIZE (16 * 1024 * 1024)
185
186 #define for_each_member_from(i, from, struct_type, member) \
187 for (i = from, member = btf_type_member(struct_type) + from; \
188 i < btf_type_vlen(struct_type); \
189 i++, member++)
190
191 #define for_each_vsi_from(i, from, struct_type, member) \
192 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
193 i < btf_type_vlen(struct_type); \
194 i++, member++)
195
196 DEFINE_IDR(btf_idr);
197 DEFINE_SPINLOCK(btf_idr_lock);
198
199 struct btf {
200 void *data;
201 struct btf_type **types;
202 u32 *resolved_ids;
203 u32 *resolved_sizes;
204 const char *strings;
205 void *nohdr_data;
206 struct btf_header hdr;
207 u32 nr_types;
208 u32 types_size;
209 u32 data_size;
210 refcount_t refcnt;
211 u32 id;
212 struct rcu_head rcu;
213 };
214
215 enum verifier_phase {
216 CHECK_META,
217 CHECK_TYPE,
218 };
219
220 struct resolve_vertex {
221 const struct btf_type *t;
222 u32 type_id;
223 u16 next_member;
224 };
225
226 enum visit_state {
227 NOT_VISITED,
228 VISITED,
229 RESOLVED,
230 };
231
232 enum resolve_mode {
233 RESOLVE_TBD, /* To Be Determined */
234 RESOLVE_PTR, /* Resolving for Pointer */
235 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
236 * or array
237 */
238 };
239
240 #define MAX_RESOLVE_DEPTH 32
241
242 struct btf_sec_info {
243 u32 off;
244 u32 len;
245 };
246
247 struct btf_verifier_env {
248 struct btf *btf;
249 u8 *visit_states;
250 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
251 struct bpf_verifier_log log;
252 u32 log_type_id;
253 u32 top_stack;
254 enum verifier_phase phase;
255 enum resolve_mode resolve_mode;
256 };
257
258 static const char * const btf_kind_str[NR_BTF_KINDS] = {
259 [BTF_KIND_UNKN] = "UNKNOWN",
260 [BTF_KIND_INT] = "INT",
261 [BTF_KIND_PTR] = "PTR",
262 [BTF_KIND_ARRAY] = "ARRAY",
263 [BTF_KIND_STRUCT] = "STRUCT",
264 [BTF_KIND_UNION] = "UNION",
265 [BTF_KIND_ENUM] = "ENUM",
266 [BTF_KIND_FWD] = "FWD",
267 [BTF_KIND_TYPEDEF] = "TYPEDEF",
268 [BTF_KIND_VOLATILE] = "VOLATILE",
269 [BTF_KIND_CONST] = "CONST",
270 [BTF_KIND_RESTRICT] = "RESTRICT",
271 [BTF_KIND_FUNC] = "FUNC",
272 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
273 [BTF_KIND_VAR] = "VAR",
274 [BTF_KIND_DATASEC] = "DATASEC",
275 };
276
btf_type_str(const struct btf_type * t)277 static const char *btf_type_str(const struct btf_type *t)
278 {
279 return btf_kind_str[BTF_INFO_KIND(t->info)];
280 }
281
282 /* Chunk size we use in safe copy of data to be shown. */
283 #define BTF_SHOW_OBJ_SAFE_SIZE 32
284
285 /*
286 * This is the maximum size of a base type value (equivalent to a
287 * 128-bit int); if we are at the end of our safe buffer and have
288 * less than 16 bytes space we can't be assured of being able
289 * to copy the next type safely, so in such cases we will initiate
290 * a new copy.
291 */
292 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
293
294 /* Type name size */
295 #define BTF_SHOW_NAME_SIZE 80
296
297 /*
298 * Common data to all BTF show operations. Private show functions can add
299 * their own data to a structure containing a struct btf_show and consult it
300 * in the show callback. See btf_type_show() below.
301 *
302 * One challenge with showing nested data is we want to skip 0-valued
303 * data, but in order to figure out whether a nested object is all zeros
304 * we need to walk through it. As a result, we need to make two passes
305 * when handling structs, unions and arrays; the first path simply looks
306 * for nonzero data, while the second actually does the display. The first
307 * pass is signalled by show->state.depth_check being set, and if we
308 * encounter a non-zero value we set show->state.depth_to_show to
309 * the depth at which we encountered it. When we have completed the
310 * first pass, we will know if anything needs to be displayed if
311 * depth_to_show > depth. See btf_[struct,array]_show() for the
312 * implementation of this.
313 *
314 * Another problem is we want to ensure the data for display is safe to
315 * access. To support this, the anonymous "struct {} obj" tracks the data
316 * object and our safe copy of it. We copy portions of the data needed
317 * to the object "copy" buffer, but because its size is limited to
318 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
319 * traverse larger objects for display.
320 *
321 * The various data type show functions all start with a call to
322 * btf_show_start_type() which returns a pointer to the safe copy
323 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
324 * raw data itself). btf_show_obj_safe() is responsible for
325 * using copy_from_kernel_nofault() to update the safe data if necessary
326 * as we traverse the object's data. skbuff-like semantics are
327 * used:
328 *
329 * - obj.head points to the start of the toplevel object for display
330 * - obj.size is the size of the toplevel object
331 * - obj.data points to the current point in the original data at
332 * which our safe data starts. obj.data will advance as we copy
333 * portions of the data.
334 *
335 * In most cases a single copy will suffice, but larger data structures
336 * such as "struct task_struct" will require many copies. The logic in
337 * btf_show_obj_safe() handles the logic that determines if a new
338 * copy_from_kernel_nofault() is needed.
339 */
340 struct btf_show {
341 u64 flags;
342 void *target; /* target of show operation (seq file, buffer) */
343 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
344 const struct btf *btf;
345 /* below are used during iteration */
346 struct {
347 u8 depth;
348 u8 depth_to_show;
349 u8 depth_check;
350 u8 array_member:1,
351 array_terminated:1;
352 u16 array_encoding;
353 u32 type_id;
354 int status; /* non-zero for error */
355 const struct btf_type *type;
356 const struct btf_member *member;
357 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
358 } state;
359 struct {
360 u32 size;
361 void *head;
362 void *data;
363 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
364 } obj;
365 };
366
367 struct btf_kind_operations {
368 s32 (*check_meta)(struct btf_verifier_env *env,
369 const struct btf_type *t,
370 u32 meta_left);
371 int (*resolve)(struct btf_verifier_env *env,
372 const struct resolve_vertex *v);
373 int (*check_member)(struct btf_verifier_env *env,
374 const struct btf_type *struct_type,
375 const struct btf_member *member,
376 const struct btf_type *member_type);
377 int (*check_kflag_member)(struct btf_verifier_env *env,
378 const struct btf_type *struct_type,
379 const struct btf_member *member,
380 const struct btf_type *member_type);
381 void (*log_details)(struct btf_verifier_env *env,
382 const struct btf_type *t);
383 void (*show)(const struct btf *btf, const struct btf_type *t,
384 u32 type_id, void *data, u8 bits_offsets,
385 struct btf_show *show);
386 };
387
388 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
389 static struct btf_type btf_void;
390
391 static int btf_resolve(struct btf_verifier_env *env,
392 const struct btf_type *t, u32 type_id);
393
btf_type_is_modifier(const struct btf_type * t)394 static bool btf_type_is_modifier(const struct btf_type *t)
395 {
396 /* Some of them is not strictly a C modifier
397 * but they are grouped into the same bucket
398 * for BTF concern:
399 * A type (t) that refers to another
400 * type through t->type AND its size cannot
401 * be determined without following the t->type.
402 *
403 * ptr does not fall into this bucket
404 * because its size is always sizeof(void *).
405 */
406 switch (BTF_INFO_KIND(t->info)) {
407 case BTF_KIND_TYPEDEF:
408 case BTF_KIND_VOLATILE:
409 case BTF_KIND_CONST:
410 case BTF_KIND_RESTRICT:
411 return true;
412 }
413
414 return false;
415 }
416
btf_type_is_void(const struct btf_type * t)417 bool btf_type_is_void(const struct btf_type *t)
418 {
419 return t == &btf_void;
420 }
421
btf_type_is_fwd(const struct btf_type * t)422 static bool btf_type_is_fwd(const struct btf_type *t)
423 {
424 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
425 }
426
btf_type_nosize(const struct btf_type * t)427 static bool btf_type_nosize(const struct btf_type *t)
428 {
429 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
430 btf_type_is_func(t) || btf_type_is_func_proto(t);
431 }
432
btf_type_nosize_or_null(const struct btf_type * t)433 static bool btf_type_nosize_or_null(const struct btf_type *t)
434 {
435 return !t || btf_type_nosize(t);
436 }
437
__btf_type_is_struct(const struct btf_type * t)438 static bool __btf_type_is_struct(const struct btf_type *t)
439 {
440 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
441 }
442
btf_type_is_array(const struct btf_type * t)443 static bool btf_type_is_array(const struct btf_type *t)
444 {
445 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
446 }
447
btf_type_is_datasec(const struct btf_type * t)448 static bool btf_type_is_datasec(const struct btf_type *t)
449 {
450 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
451 }
452
btf_find_by_name_kind(const struct btf * btf,const char * name,u8 kind)453 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
454 {
455 const struct btf_type *t;
456 const char *tname;
457 u32 i;
458
459 for (i = 1; i <= btf->nr_types; i++) {
460 t = btf->types[i];
461 if (BTF_INFO_KIND(t->info) != kind)
462 continue;
463
464 tname = btf_name_by_offset(btf, t->name_off);
465 if (!strcmp(tname, name))
466 return i;
467 }
468
469 return -ENOENT;
470 }
471
btf_type_skip_modifiers(const struct btf * btf,u32 id,u32 * res_id)472 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
473 u32 id, u32 *res_id)
474 {
475 const struct btf_type *t = btf_type_by_id(btf, id);
476
477 while (btf_type_is_modifier(t)) {
478 id = t->type;
479 t = btf_type_by_id(btf, t->type);
480 }
481
482 if (res_id)
483 *res_id = id;
484
485 return t;
486 }
487
btf_type_resolve_ptr(const struct btf * btf,u32 id,u32 * res_id)488 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
489 u32 id, u32 *res_id)
490 {
491 const struct btf_type *t;
492
493 t = btf_type_skip_modifiers(btf, id, NULL);
494 if (!btf_type_is_ptr(t))
495 return NULL;
496
497 return btf_type_skip_modifiers(btf, t->type, res_id);
498 }
499
btf_type_resolve_func_ptr(const struct btf * btf,u32 id,u32 * res_id)500 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
501 u32 id, u32 *res_id)
502 {
503 const struct btf_type *ptype;
504
505 ptype = btf_type_resolve_ptr(btf, id, res_id);
506 if (ptype && btf_type_is_func_proto(ptype))
507 return ptype;
508
509 return NULL;
510 }
511
512 /* Types that act only as a source, not sink or intermediate
513 * type when resolving.
514 */
btf_type_is_resolve_source_only(const struct btf_type * t)515 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
516 {
517 return btf_type_is_var(t) ||
518 btf_type_is_datasec(t);
519 }
520
521 /* What types need to be resolved?
522 *
523 * btf_type_is_modifier() is an obvious one.
524 *
525 * btf_type_is_struct() because its member refers to
526 * another type (through member->type).
527 *
528 * btf_type_is_var() because the variable refers to
529 * another type. btf_type_is_datasec() holds multiple
530 * btf_type_is_var() types that need resolving.
531 *
532 * btf_type_is_array() because its element (array->type)
533 * refers to another type. Array can be thought of a
534 * special case of struct while array just has the same
535 * member-type repeated by array->nelems of times.
536 */
btf_type_needs_resolve(const struct btf_type * t)537 static bool btf_type_needs_resolve(const struct btf_type *t)
538 {
539 return btf_type_is_modifier(t) ||
540 btf_type_is_ptr(t) ||
541 btf_type_is_struct(t) ||
542 btf_type_is_array(t) ||
543 btf_type_is_var(t) ||
544 btf_type_is_datasec(t);
545 }
546
547 /* t->size can be used */
btf_type_has_size(const struct btf_type * t)548 static bool btf_type_has_size(const struct btf_type *t)
549 {
550 switch (BTF_INFO_KIND(t->info)) {
551 case BTF_KIND_INT:
552 case BTF_KIND_STRUCT:
553 case BTF_KIND_UNION:
554 case BTF_KIND_ENUM:
555 case BTF_KIND_DATASEC:
556 return true;
557 }
558
559 return false;
560 }
561
btf_int_encoding_str(u8 encoding)562 static const char *btf_int_encoding_str(u8 encoding)
563 {
564 if (encoding == 0)
565 return "(none)";
566 else if (encoding == BTF_INT_SIGNED)
567 return "SIGNED";
568 else if (encoding == BTF_INT_CHAR)
569 return "CHAR";
570 else if (encoding == BTF_INT_BOOL)
571 return "BOOL";
572 else
573 return "UNKN";
574 }
575
btf_type_int(const struct btf_type * t)576 static u32 btf_type_int(const struct btf_type *t)
577 {
578 return *(u32 *)(t + 1);
579 }
580
btf_type_array(const struct btf_type * t)581 static const struct btf_array *btf_type_array(const struct btf_type *t)
582 {
583 return (const struct btf_array *)(t + 1);
584 }
585
btf_type_enum(const struct btf_type * t)586 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
587 {
588 return (const struct btf_enum *)(t + 1);
589 }
590
btf_type_var(const struct btf_type * t)591 static const struct btf_var *btf_type_var(const struct btf_type *t)
592 {
593 return (const struct btf_var *)(t + 1);
594 }
595
btf_type_ops(const struct btf_type * t)596 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
597 {
598 return kind_ops[BTF_INFO_KIND(t->info)];
599 }
600
btf_name_offset_valid(const struct btf * btf,u32 offset)601 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
602 {
603 return BTF_STR_OFFSET_VALID(offset) &&
604 offset < btf->hdr.str_len;
605 }
606
__btf_name_char_ok(char c,bool first,bool dot_ok)607 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
608 {
609 if ((first ? !isalpha(c) :
610 !isalnum(c)) &&
611 c != '_' &&
612 ((c == '.' && !dot_ok) ||
613 c != '.'))
614 return false;
615 return true;
616 }
617
__btf_name_valid(const struct btf * btf,u32 offset,bool dot_ok)618 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
619 {
620 /* offset must be valid */
621 const char *src = &btf->strings[offset];
622 const char *src_limit;
623
624 if (!__btf_name_char_ok(*src, true, dot_ok))
625 return false;
626
627 /* set a limit on identifier length */
628 src_limit = src + KSYM_NAME_LEN;
629 src++;
630 while (*src && src < src_limit) {
631 if (!__btf_name_char_ok(*src, false, dot_ok))
632 return false;
633 src++;
634 }
635
636 return !*src;
637 }
638
639 /* Only C-style identifier is permitted. This can be relaxed if
640 * necessary.
641 */
btf_name_valid_identifier(const struct btf * btf,u32 offset)642 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
643 {
644 return __btf_name_valid(btf, offset, false);
645 }
646
btf_name_valid_section(const struct btf * btf,u32 offset)647 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
648 {
649 return __btf_name_valid(btf, offset, true);
650 }
651
__btf_name_by_offset(const struct btf * btf,u32 offset)652 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
653 {
654 if (!offset)
655 return "(anon)";
656 else if (offset < btf->hdr.str_len)
657 return &btf->strings[offset];
658 else
659 return "(invalid-name-offset)";
660 }
661
btf_name_by_offset(const struct btf * btf,u32 offset)662 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
663 {
664 if (offset < btf->hdr.str_len)
665 return &btf->strings[offset];
666
667 return NULL;
668 }
669
btf_type_by_id(const struct btf * btf,u32 type_id)670 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
671 {
672 if (type_id > btf->nr_types)
673 return NULL;
674
675 return btf->types[type_id];
676 }
677
678 /*
679 * Regular int is not a bit field and it must be either
680 * u8/u16/u32/u64 or __int128.
681 */
btf_type_int_is_regular(const struct btf_type * t)682 static bool btf_type_int_is_regular(const struct btf_type *t)
683 {
684 u8 nr_bits, nr_bytes;
685 u32 int_data;
686
687 int_data = btf_type_int(t);
688 nr_bits = BTF_INT_BITS(int_data);
689 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
690 if (BITS_PER_BYTE_MASKED(nr_bits) ||
691 BTF_INT_OFFSET(int_data) ||
692 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
693 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
694 nr_bytes != (2 * sizeof(u64)))) {
695 return false;
696 }
697
698 return true;
699 }
700
701 /*
702 * Check that given struct member is a regular int with expected
703 * offset and size.
704 */
btf_member_is_reg_int(const struct btf * btf,const struct btf_type * s,const struct btf_member * m,u32 expected_offset,u32 expected_size)705 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
706 const struct btf_member *m,
707 u32 expected_offset, u32 expected_size)
708 {
709 const struct btf_type *t;
710 u32 id, int_data;
711 u8 nr_bits;
712
713 id = m->type;
714 t = btf_type_id_size(btf, &id, NULL);
715 if (!t || !btf_type_is_int(t))
716 return false;
717
718 int_data = btf_type_int(t);
719 nr_bits = BTF_INT_BITS(int_data);
720 if (btf_type_kflag(s)) {
721 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
722 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
723
724 /* if kflag set, int should be a regular int and
725 * bit offset should be at byte boundary.
726 */
727 return !bitfield_size &&
728 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
729 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
730 }
731
732 if (BTF_INT_OFFSET(int_data) ||
733 BITS_PER_BYTE_MASKED(m->offset) ||
734 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
735 BITS_PER_BYTE_MASKED(nr_bits) ||
736 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
737 return false;
738
739 return true;
740 }
741
742 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
btf_type_skip_qualifiers(const struct btf * btf,u32 id)743 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
744 u32 id)
745 {
746 const struct btf_type *t = btf_type_by_id(btf, id);
747
748 while (btf_type_is_modifier(t) &&
749 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
750 id = t->type;
751 t = btf_type_by_id(btf, t->type);
752 }
753
754 return t;
755 }
756
757 #define BTF_SHOW_MAX_ITER 10
758
759 #define BTF_KIND_BIT(kind) (1ULL << kind)
760
761 /*
762 * Populate show->state.name with type name information.
763 * Format of type name is
764 *
765 * [.member_name = ] (type_name)
766 */
btf_show_name(struct btf_show * show)767 static const char *btf_show_name(struct btf_show *show)
768 {
769 /* BTF_MAX_ITER array suffixes "[]" */
770 const char *array_suffixes = "[][][][][][][][][][]";
771 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
772 /* BTF_MAX_ITER pointer suffixes "*" */
773 const char *ptr_suffixes = "**********";
774 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
775 const char *name = NULL, *prefix = "", *parens = "";
776 const struct btf_member *m = show->state.member;
777 const struct btf_type *t = show->state.type;
778 const struct btf_array *array;
779 u32 id = show->state.type_id;
780 const char *member = NULL;
781 bool show_member = false;
782 u64 kinds = 0;
783 int i;
784
785 show->state.name[0] = '\0';
786
787 /*
788 * Don't show type name if we're showing an array member;
789 * in that case we show the array type so don't need to repeat
790 * ourselves for each member.
791 */
792 if (show->state.array_member)
793 return "";
794
795 /* Retrieve member name, if any. */
796 if (m) {
797 member = btf_name_by_offset(show->btf, m->name_off);
798 show_member = strlen(member) > 0;
799 id = m->type;
800 }
801
802 /*
803 * Start with type_id, as we have resolved the struct btf_type *
804 * via btf_modifier_show() past the parent typedef to the child
805 * struct, int etc it is defined as. In such cases, the type_id
806 * still represents the starting type while the struct btf_type *
807 * in our show->state points at the resolved type of the typedef.
808 */
809 t = btf_type_by_id(show->btf, id);
810 if (!t)
811 return "";
812
813 /*
814 * The goal here is to build up the right number of pointer and
815 * array suffixes while ensuring the type name for a typedef
816 * is represented. Along the way we accumulate a list of
817 * BTF kinds we have encountered, since these will inform later
818 * display; for example, pointer types will not require an
819 * opening "{" for struct, we will just display the pointer value.
820 *
821 * We also want to accumulate the right number of pointer or array
822 * indices in the format string while iterating until we get to
823 * the typedef/pointee/array member target type.
824 *
825 * We start by pointing at the end of pointer and array suffix
826 * strings; as we accumulate pointers and arrays we move the pointer
827 * or array string backwards so it will show the expected number of
828 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
829 * and/or arrays and typedefs are supported as a precaution.
830 *
831 * We also want to get typedef name while proceeding to resolve
832 * type it points to so that we can add parentheses if it is a
833 * "typedef struct" etc.
834 */
835 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
836
837 switch (BTF_INFO_KIND(t->info)) {
838 case BTF_KIND_TYPEDEF:
839 if (!name)
840 name = btf_name_by_offset(show->btf,
841 t->name_off);
842 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
843 id = t->type;
844 break;
845 case BTF_KIND_ARRAY:
846 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
847 parens = "[";
848 if (!t)
849 return "";
850 array = btf_type_array(t);
851 if (array_suffix > array_suffixes)
852 array_suffix -= 2;
853 id = array->type;
854 break;
855 case BTF_KIND_PTR:
856 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
857 if (ptr_suffix > ptr_suffixes)
858 ptr_suffix -= 1;
859 id = t->type;
860 break;
861 default:
862 id = 0;
863 break;
864 }
865 if (!id)
866 break;
867 t = btf_type_skip_qualifiers(show->btf, id);
868 }
869 /* We may not be able to represent this type; bail to be safe */
870 if (i == BTF_SHOW_MAX_ITER)
871 return "";
872
873 if (!name)
874 name = btf_name_by_offset(show->btf, t->name_off);
875
876 switch (BTF_INFO_KIND(t->info)) {
877 case BTF_KIND_STRUCT:
878 case BTF_KIND_UNION:
879 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
880 "struct" : "union";
881 /* if it's an array of struct/union, parens is already set */
882 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
883 parens = "{";
884 break;
885 case BTF_KIND_ENUM:
886 prefix = "enum";
887 break;
888 default:
889 break;
890 }
891
892 /* pointer does not require parens */
893 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
894 parens = "";
895 /* typedef does not require struct/union/enum prefix */
896 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
897 prefix = "";
898
899 if (!name)
900 name = "";
901
902 /* Even if we don't want type name info, we want parentheses etc */
903 if (show->flags & BTF_SHOW_NONAME)
904 snprintf(show->state.name, sizeof(show->state.name), "%s",
905 parens);
906 else
907 snprintf(show->state.name, sizeof(show->state.name),
908 "%s%s%s(%s%s%s%s%s%s)%s",
909 /* first 3 strings comprise ".member = " */
910 show_member ? "." : "",
911 show_member ? member : "",
912 show_member ? " = " : "",
913 /* ...next is our prefix (struct, enum, etc) */
914 prefix,
915 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
916 /* ...this is the type name itself */
917 name,
918 /* ...suffixed by the appropriate '*', '[]' suffixes */
919 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
920 array_suffix, parens);
921
922 return show->state.name;
923 }
924
__btf_show_indent(struct btf_show * show)925 static const char *__btf_show_indent(struct btf_show *show)
926 {
927 const char *indents = " ";
928 const char *indent = &indents[strlen(indents)];
929
930 if ((indent - show->state.depth) >= indents)
931 return indent - show->state.depth;
932 return indents;
933 }
934
btf_show_indent(struct btf_show * show)935 static const char *btf_show_indent(struct btf_show *show)
936 {
937 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
938 }
939
btf_show_newline(struct btf_show * show)940 static const char *btf_show_newline(struct btf_show *show)
941 {
942 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
943 }
944
btf_show_delim(struct btf_show * show)945 static const char *btf_show_delim(struct btf_show *show)
946 {
947 if (show->state.depth == 0)
948 return "";
949
950 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
951 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
952 return "|";
953
954 return ",";
955 }
956
btf_show(struct btf_show * show,const char * fmt,...)957 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
958 {
959 va_list args;
960
961 if (!show->state.depth_check) {
962 va_start(args, fmt);
963 show->showfn(show, fmt, args);
964 va_end(args);
965 }
966 }
967
968 /* Macros are used here as btf_show_type_value[s]() prepends and appends
969 * format specifiers to the format specifier passed in; these do the work of
970 * adding indentation, delimiters etc while the caller simply has to specify
971 * the type value(s) in the format specifier + value(s).
972 */
973 #define btf_show_type_value(show, fmt, value) \
974 do { \
975 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \
976 show->state.depth == 0) { \
977 btf_show(show, "%s%s" fmt "%s%s", \
978 btf_show_indent(show), \
979 btf_show_name(show), \
980 value, btf_show_delim(show), \
981 btf_show_newline(show)); \
982 if (show->state.depth > show->state.depth_to_show) \
983 show->state.depth_to_show = show->state.depth; \
984 } \
985 } while (0)
986
987 #define btf_show_type_values(show, fmt, ...) \
988 do { \
989 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
990 btf_show_name(show), \
991 __VA_ARGS__, btf_show_delim(show), \
992 btf_show_newline(show)); \
993 if (show->state.depth > show->state.depth_to_show) \
994 show->state.depth_to_show = show->state.depth; \
995 } while (0)
996
997 /* How much is left to copy to safe buffer after @data? */
btf_show_obj_size_left(struct btf_show * show,void * data)998 static int btf_show_obj_size_left(struct btf_show *show, void *data)
999 {
1000 return show->obj.head + show->obj.size - data;
1001 }
1002
1003 /* Is object pointed to by @data of @size already copied to our safe buffer? */
btf_show_obj_is_safe(struct btf_show * show,void * data,int size)1004 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1005 {
1006 return data >= show->obj.data &&
1007 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1008 }
1009
1010 /*
1011 * If object pointed to by @data of @size falls within our safe buffer, return
1012 * the equivalent pointer to the same safe data. Assumes
1013 * copy_from_kernel_nofault() has already happened and our safe buffer is
1014 * populated.
1015 */
__btf_show_obj_safe(struct btf_show * show,void * data,int size)1016 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1017 {
1018 if (btf_show_obj_is_safe(show, data, size))
1019 return show->obj.safe + (data - show->obj.data);
1020 return NULL;
1021 }
1022
1023 /*
1024 * Return a safe-to-access version of data pointed to by @data.
1025 * We do this by copying the relevant amount of information
1026 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1027 *
1028 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1029 * safe copy is needed.
1030 *
1031 * Otherwise we need to determine if we have the required amount
1032 * of data (determined by the @data pointer and the size of the
1033 * largest base type we can encounter (represented by
1034 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1035 * that we will be able to print some of the current object,
1036 * and if more is needed a copy will be triggered.
1037 * Some objects such as structs will not fit into the buffer;
1038 * in such cases additional copies when we iterate over their
1039 * members may be needed.
1040 *
1041 * btf_show_obj_safe() is used to return a safe buffer for
1042 * btf_show_start_type(); this ensures that as we recurse into
1043 * nested types we always have safe data for the given type.
1044 * This approach is somewhat wasteful; it's possible for example
1045 * that when iterating over a large union we'll end up copying the
1046 * same data repeatedly, but the goal is safety not performance.
1047 * We use stack data as opposed to per-CPU buffers because the
1048 * iteration over a type can take some time, and preemption handling
1049 * would greatly complicate use of the safe buffer.
1050 */
btf_show_obj_safe(struct btf_show * show,const struct btf_type * t,void * data)1051 static void *btf_show_obj_safe(struct btf_show *show,
1052 const struct btf_type *t,
1053 void *data)
1054 {
1055 const struct btf_type *rt;
1056 int size_left, size;
1057 void *safe = NULL;
1058
1059 if (show->flags & BTF_SHOW_UNSAFE)
1060 return data;
1061
1062 rt = btf_resolve_size(show->btf, t, &size);
1063 if (IS_ERR(rt)) {
1064 show->state.status = PTR_ERR(rt);
1065 return NULL;
1066 }
1067
1068 /*
1069 * Is this toplevel object? If so, set total object size and
1070 * initialize pointers. Otherwise check if we still fall within
1071 * our safe object data.
1072 */
1073 if (show->state.depth == 0) {
1074 show->obj.size = size;
1075 show->obj.head = data;
1076 } else {
1077 /*
1078 * If the size of the current object is > our remaining
1079 * safe buffer we _may_ need to do a new copy. However
1080 * consider the case of a nested struct; it's size pushes
1081 * us over the safe buffer limit, but showing any individual
1082 * struct members does not. In such cases, we don't need
1083 * to initiate a fresh copy yet; however we definitely need
1084 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1085 * in our buffer, regardless of the current object size.
1086 * The logic here is that as we resolve types we will
1087 * hit a base type at some point, and we need to be sure
1088 * the next chunk of data is safely available to display
1089 * that type info safely. We cannot rely on the size of
1090 * the current object here because it may be much larger
1091 * than our current buffer (e.g. task_struct is 8k).
1092 * All we want to do here is ensure that we can print the
1093 * next basic type, which we can if either
1094 * - the current type size is within the safe buffer; or
1095 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1096 * the safe buffer.
1097 */
1098 safe = __btf_show_obj_safe(show, data,
1099 min(size,
1100 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1101 }
1102
1103 /*
1104 * We need a new copy to our safe object, either because we haven't
1105 * yet copied and are intializing safe data, or because the data
1106 * we want falls outside the boundaries of the safe object.
1107 */
1108 if (!safe) {
1109 size_left = btf_show_obj_size_left(show, data);
1110 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1111 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1112 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1113 data, size_left);
1114 if (!show->state.status) {
1115 show->obj.data = data;
1116 safe = show->obj.safe;
1117 }
1118 }
1119
1120 return safe;
1121 }
1122
1123 /*
1124 * Set the type we are starting to show and return a safe data pointer
1125 * to be used for showing the associated data.
1126 */
btf_show_start_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1127 static void *btf_show_start_type(struct btf_show *show,
1128 const struct btf_type *t,
1129 u32 type_id, void *data)
1130 {
1131 show->state.type = t;
1132 show->state.type_id = type_id;
1133 show->state.name[0] = '\0';
1134
1135 return btf_show_obj_safe(show, t, data);
1136 }
1137
btf_show_end_type(struct btf_show * show)1138 static void btf_show_end_type(struct btf_show *show)
1139 {
1140 show->state.type = NULL;
1141 show->state.type_id = 0;
1142 show->state.name[0] = '\0';
1143 }
1144
btf_show_start_aggr_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1145 static void *btf_show_start_aggr_type(struct btf_show *show,
1146 const struct btf_type *t,
1147 u32 type_id, void *data)
1148 {
1149 void *safe_data = btf_show_start_type(show, t, type_id, data);
1150
1151 if (!safe_data)
1152 return safe_data;
1153
1154 btf_show(show, "%s%s%s", btf_show_indent(show),
1155 btf_show_name(show),
1156 btf_show_newline(show));
1157 show->state.depth++;
1158 return safe_data;
1159 }
1160
btf_show_end_aggr_type(struct btf_show * show,const char * suffix)1161 static void btf_show_end_aggr_type(struct btf_show *show,
1162 const char *suffix)
1163 {
1164 show->state.depth--;
1165 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1166 btf_show_delim(show), btf_show_newline(show));
1167 btf_show_end_type(show);
1168 }
1169
btf_show_start_member(struct btf_show * show,const struct btf_member * m)1170 static void btf_show_start_member(struct btf_show *show,
1171 const struct btf_member *m)
1172 {
1173 show->state.member = m;
1174 }
1175
btf_show_start_array_member(struct btf_show * show)1176 static void btf_show_start_array_member(struct btf_show *show)
1177 {
1178 show->state.array_member = 1;
1179 btf_show_start_member(show, NULL);
1180 }
1181
btf_show_end_member(struct btf_show * show)1182 static void btf_show_end_member(struct btf_show *show)
1183 {
1184 show->state.member = NULL;
1185 }
1186
btf_show_end_array_member(struct btf_show * show)1187 static void btf_show_end_array_member(struct btf_show *show)
1188 {
1189 show->state.array_member = 0;
1190 btf_show_end_member(show);
1191 }
1192
btf_show_start_array_type(struct btf_show * show,const struct btf_type * t,u32 type_id,u16 array_encoding,void * data)1193 static void *btf_show_start_array_type(struct btf_show *show,
1194 const struct btf_type *t,
1195 u32 type_id,
1196 u16 array_encoding,
1197 void *data)
1198 {
1199 show->state.array_encoding = array_encoding;
1200 show->state.array_terminated = 0;
1201 return btf_show_start_aggr_type(show, t, type_id, data);
1202 }
1203
btf_show_end_array_type(struct btf_show * show)1204 static void btf_show_end_array_type(struct btf_show *show)
1205 {
1206 show->state.array_encoding = 0;
1207 show->state.array_terminated = 0;
1208 btf_show_end_aggr_type(show, "]");
1209 }
1210
btf_show_start_struct_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1211 static void *btf_show_start_struct_type(struct btf_show *show,
1212 const struct btf_type *t,
1213 u32 type_id,
1214 void *data)
1215 {
1216 return btf_show_start_aggr_type(show, t, type_id, data);
1217 }
1218
btf_show_end_struct_type(struct btf_show * show)1219 static void btf_show_end_struct_type(struct btf_show *show)
1220 {
1221 btf_show_end_aggr_type(show, "}");
1222 }
1223
__btf_verifier_log(struct bpf_verifier_log * log,const char * fmt,...)1224 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1225 const char *fmt, ...)
1226 {
1227 va_list args;
1228
1229 va_start(args, fmt);
1230 bpf_verifier_vlog(log, fmt, args);
1231 va_end(args);
1232 }
1233
btf_verifier_log(struct btf_verifier_env * env,const char * fmt,...)1234 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1235 const char *fmt, ...)
1236 {
1237 struct bpf_verifier_log *log = &env->log;
1238 va_list args;
1239
1240 if (!bpf_verifier_log_needed(log))
1241 return;
1242
1243 va_start(args, fmt);
1244 bpf_verifier_vlog(log, fmt, args);
1245 va_end(args);
1246 }
1247
__btf_verifier_log_type(struct btf_verifier_env * env,const struct btf_type * t,bool log_details,const char * fmt,...)1248 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1249 const struct btf_type *t,
1250 bool log_details,
1251 const char *fmt, ...)
1252 {
1253 struct bpf_verifier_log *log = &env->log;
1254 u8 kind = BTF_INFO_KIND(t->info);
1255 struct btf *btf = env->btf;
1256 va_list args;
1257
1258 if (!bpf_verifier_log_needed(log))
1259 return;
1260
1261 /* btf verifier prints all types it is processing via
1262 * btf_verifier_log_type(..., fmt = NULL).
1263 * Skip those prints for in-kernel BTF verification.
1264 */
1265 if (log->level == BPF_LOG_KERNEL && !fmt)
1266 return;
1267
1268 __btf_verifier_log(log, "[%u] %s %s%s",
1269 env->log_type_id,
1270 btf_kind_str[kind],
1271 __btf_name_by_offset(btf, t->name_off),
1272 log_details ? " " : "");
1273
1274 if (log_details)
1275 btf_type_ops(t)->log_details(env, t);
1276
1277 if (fmt && *fmt) {
1278 __btf_verifier_log(log, " ");
1279 va_start(args, fmt);
1280 bpf_verifier_vlog(log, fmt, args);
1281 va_end(args);
1282 }
1283
1284 __btf_verifier_log(log, "\n");
1285 }
1286
1287 #define btf_verifier_log_type(env, t, ...) \
1288 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1289 #define btf_verifier_log_basic(env, t, ...) \
1290 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1291
1292 __printf(4, 5)
btf_verifier_log_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const char * fmt,...)1293 static void btf_verifier_log_member(struct btf_verifier_env *env,
1294 const struct btf_type *struct_type,
1295 const struct btf_member *member,
1296 const char *fmt, ...)
1297 {
1298 struct bpf_verifier_log *log = &env->log;
1299 struct btf *btf = env->btf;
1300 va_list args;
1301
1302 if (!bpf_verifier_log_needed(log))
1303 return;
1304
1305 if (log->level == BPF_LOG_KERNEL && !fmt)
1306 return;
1307 /* The CHECK_META phase already did a btf dump.
1308 *
1309 * If member is logged again, it must hit an error in
1310 * parsing this member. It is useful to print out which
1311 * struct this member belongs to.
1312 */
1313 if (env->phase != CHECK_META)
1314 btf_verifier_log_type(env, struct_type, NULL);
1315
1316 if (btf_type_kflag(struct_type))
1317 __btf_verifier_log(log,
1318 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1319 __btf_name_by_offset(btf, member->name_off),
1320 member->type,
1321 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1322 BTF_MEMBER_BIT_OFFSET(member->offset));
1323 else
1324 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1325 __btf_name_by_offset(btf, member->name_off),
1326 member->type, member->offset);
1327
1328 if (fmt && *fmt) {
1329 __btf_verifier_log(log, " ");
1330 va_start(args, fmt);
1331 bpf_verifier_vlog(log, fmt, args);
1332 va_end(args);
1333 }
1334
1335 __btf_verifier_log(log, "\n");
1336 }
1337
1338 __printf(4, 5)
btf_verifier_log_vsi(struct btf_verifier_env * env,const struct btf_type * datasec_type,const struct btf_var_secinfo * vsi,const char * fmt,...)1339 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1340 const struct btf_type *datasec_type,
1341 const struct btf_var_secinfo *vsi,
1342 const char *fmt, ...)
1343 {
1344 struct bpf_verifier_log *log = &env->log;
1345 va_list args;
1346
1347 if (!bpf_verifier_log_needed(log))
1348 return;
1349 if (log->level == BPF_LOG_KERNEL && !fmt)
1350 return;
1351 if (env->phase != CHECK_META)
1352 btf_verifier_log_type(env, datasec_type, NULL);
1353
1354 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1355 vsi->type, vsi->offset, vsi->size);
1356 if (fmt && *fmt) {
1357 __btf_verifier_log(log, " ");
1358 va_start(args, fmt);
1359 bpf_verifier_vlog(log, fmt, args);
1360 va_end(args);
1361 }
1362
1363 __btf_verifier_log(log, "\n");
1364 }
1365
btf_verifier_log_hdr(struct btf_verifier_env * env,u32 btf_data_size)1366 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1367 u32 btf_data_size)
1368 {
1369 struct bpf_verifier_log *log = &env->log;
1370 const struct btf *btf = env->btf;
1371 const struct btf_header *hdr;
1372
1373 if (!bpf_verifier_log_needed(log))
1374 return;
1375
1376 if (log->level == BPF_LOG_KERNEL)
1377 return;
1378 hdr = &btf->hdr;
1379 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1380 __btf_verifier_log(log, "version: %u\n", hdr->version);
1381 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1382 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1383 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1384 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1385 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1386 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1387 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1388 }
1389
btf_add_type(struct btf_verifier_env * env,struct btf_type * t)1390 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1391 {
1392 struct btf *btf = env->btf;
1393
1394 /* < 2 because +1 for btf_void which is always in btf->types[0].
1395 * btf_void is not accounted in btf->nr_types because btf_void
1396 * does not come from the BTF file.
1397 */
1398 if (btf->types_size - btf->nr_types < 2) {
1399 /* Expand 'types' array */
1400
1401 struct btf_type **new_types;
1402 u32 expand_by, new_size;
1403
1404 if (btf->types_size == BTF_MAX_TYPE) {
1405 btf_verifier_log(env, "Exceeded max num of types");
1406 return -E2BIG;
1407 }
1408
1409 expand_by = max_t(u32, btf->types_size >> 2, 16);
1410 new_size = min_t(u32, BTF_MAX_TYPE,
1411 btf->types_size + expand_by);
1412
1413 new_types = kvcalloc(new_size, sizeof(*new_types),
1414 GFP_KERNEL | __GFP_NOWARN);
1415 if (!new_types)
1416 return -ENOMEM;
1417
1418 if (btf->nr_types == 0)
1419 new_types[0] = &btf_void;
1420 else
1421 memcpy(new_types, btf->types,
1422 sizeof(*btf->types) * (btf->nr_types + 1));
1423
1424 kvfree(btf->types);
1425 btf->types = new_types;
1426 btf->types_size = new_size;
1427 }
1428
1429 btf->types[++(btf->nr_types)] = t;
1430
1431 return 0;
1432 }
1433
btf_alloc_id(struct btf * btf)1434 static int btf_alloc_id(struct btf *btf)
1435 {
1436 int id;
1437
1438 idr_preload(GFP_KERNEL);
1439 spin_lock_bh(&btf_idr_lock);
1440 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1441 if (id > 0)
1442 btf->id = id;
1443 spin_unlock_bh(&btf_idr_lock);
1444 idr_preload_end();
1445
1446 if (WARN_ON_ONCE(!id))
1447 return -ENOSPC;
1448
1449 return id > 0 ? 0 : id;
1450 }
1451
btf_free_id(struct btf * btf)1452 static void btf_free_id(struct btf *btf)
1453 {
1454 unsigned long flags;
1455
1456 /*
1457 * In map-in-map, calling map_delete_elem() on outer
1458 * map will call bpf_map_put on the inner map.
1459 * It will then eventually call btf_free_id()
1460 * on the inner map. Some of the map_delete_elem()
1461 * implementation may have irq disabled, so
1462 * we need to use the _irqsave() version instead
1463 * of the _bh() version.
1464 */
1465 spin_lock_irqsave(&btf_idr_lock, flags);
1466 idr_remove(&btf_idr, btf->id);
1467 spin_unlock_irqrestore(&btf_idr_lock, flags);
1468 }
1469
btf_free(struct btf * btf)1470 static void btf_free(struct btf *btf)
1471 {
1472 kvfree(btf->types);
1473 kvfree(btf->resolved_sizes);
1474 kvfree(btf->resolved_ids);
1475 kvfree(btf->data);
1476 kfree(btf);
1477 }
1478
btf_free_rcu(struct rcu_head * rcu)1479 static void btf_free_rcu(struct rcu_head *rcu)
1480 {
1481 struct btf *btf = container_of(rcu, struct btf, rcu);
1482
1483 btf_free(btf);
1484 }
1485
btf_put(struct btf * btf)1486 void btf_put(struct btf *btf)
1487 {
1488 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1489 btf_free_id(btf);
1490 call_rcu(&btf->rcu, btf_free_rcu);
1491 }
1492 }
1493
env_resolve_init(struct btf_verifier_env * env)1494 static int env_resolve_init(struct btf_verifier_env *env)
1495 {
1496 struct btf *btf = env->btf;
1497 u32 nr_types = btf->nr_types;
1498 u32 *resolved_sizes = NULL;
1499 u32 *resolved_ids = NULL;
1500 u8 *visit_states = NULL;
1501
1502 /* +1 for btf_void */
1503 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
1504 GFP_KERNEL | __GFP_NOWARN);
1505 if (!resolved_sizes)
1506 goto nomem;
1507
1508 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
1509 GFP_KERNEL | __GFP_NOWARN);
1510 if (!resolved_ids)
1511 goto nomem;
1512
1513 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
1514 GFP_KERNEL | __GFP_NOWARN);
1515 if (!visit_states)
1516 goto nomem;
1517
1518 btf->resolved_sizes = resolved_sizes;
1519 btf->resolved_ids = resolved_ids;
1520 env->visit_states = visit_states;
1521
1522 return 0;
1523
1524 nomem:
1525 kvfree(resolved_sizes);
1526 kvfree(resolved_ids);
1527 kvfree(visit_states);
1528 return -ENOMEM;
1529 }
1530
btf_verifier_env_free(struct btf_verifier_env * env)1531 static void btf_verifier_env_free(struct btf_verifier_env *env)
1532 {
1533 kvfree(env->visit_states);
1534 kfree(env);
1535 }
1536
env_type_is_resolve_sink(const struct btf_verifier_env * env,const struct btf_type * next_type)1537 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1538 const struct btf_type *next_type)
1539 {
1540 switch (env->resolve_mode) {
1541 case RESOLVE_TBD:
1542 /* int, enum or void is a sink */
1543 return !btf_type_needs_resolve(next_type);
1544 case RESOLVE_PTR:
1545 /* int, enum, void, struct, array, func or func_proto is a sink
1546 * for ptr
1547 */
1548 return !btf_type_is_modifier(next_type) &&
1549 !btf_type_is_ptr(next_type);
1550 case RESOLVE_STRUCT_OR_ARRAY:
1551 /* int, enum, void, ptr, func or func_proto is a sink
1552 * for struct and array
1553 */
1554 return !btf_type_is_modifier(next_type) &&
1555 !btf_type_is_array(next_type) &&
1556 !btf_type_is_struct(next_type);
1557 default:
1558 BUG();
1559 }
1560 }
1561
env_type_is_resolved(const struct btf_verifier_env * env,u32 type_id)1562 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1563 u32 type_id)
1564 {
1565 return env->visit_states[type_id] == RESOLVED;
1566 }
1567
env_stack_push(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)1568 static int env_stack_push(struct btf_verifier_env *env,
1569 const struct btf_type *t, u32 type_id)
1570 {
1571 struct resolve_vertex *v;
1572
1573 if (env->top_stack == MAX_RESOLVE_DEPTH)
1574 return -E2BIG;
1575
1576 if (env->visit_states[type_id] != NOT_VISITED)
1577 return -EEXIST;
1578
1579 env->visit_states[type_id] = VISITED;
1580
1581 v = &env->stack[env->top_stack++];
1582 v->t = t;
1583 v->type_id = type_id;
1584 v->next_member = 0;
1585
1586 if (env->resolve_mode == RESOLVE_TBD) {
1587 if (btf_type_is_ptr(t))
1588 env->resolve_mode = RESOLVE_PTR;
1589 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1590 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1591 }
1592
1593 return 0;
1594 }
1595
env_stack_set_next_member(struct btf_verifier_env * env,u16 next_member)1596 static void env_stack_set_next_member(struct btf_verifier_env *env,
1597 u16 next_member)
1598 {
1599 env->stack[env->top_stack - 1].next_member = next_member;
1600 }
1601
env_stack_pop_resolved(struct btf_verifier_env * env,u32 resolved_type_id,u32 resolved_size)1602 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1603 u32 resolved_type_id,
1604 u32 resolved_size)
1605 {
1606 u32 type_id = env->stack[--(env->top_stack)].type_id;
1607 struct btf *btf = env->btf;
1608
1609 btf->resolved_sizes[type_id] = resolved_size;
1610 btf->resolved_ids[type_id] = resolved_type_id;
1611 env->visit_states[type_id] = RESOLVED;
1612 }
1613
env_stack_peak(struct btf_verifier_env * env)1614 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1615 {
1616 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1617 }
1618
1619 /* Resolve the size of a passed-in "type"
1620 *
1621 * type: is an array (e.g. u32 array[x][y])
1622 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1623 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1624 * corresponds to the return type.
1625 * *elem_type: u32
1626 * *elem_id: id of u32
1627 * *total_nelems: (x * y). Hence, individual elem size is
1628 * (*type_size / *total_nelems)
1629 * *type_id: id of type if it's changed within the function, 0 if not
1630 *
1631 * type: is not an array (e.g. const struct X)
1632 * return type: type "struct X"
1633 * *type_size: sizeof(struct X)
1634 * *elem_type: same as return type ("struct X")
1635 * *elem_id: 0
1636 * *total_nelems: 1
1637 * *type_id: id of type if it's changed within the function, 0 if not
1638 */
1639 static const struct btf_type *
__btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size,const struct btf_type ** elem_type,u32 * elem_id,u32 * total_nelems,u32 * type_id)1640 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1641 u32 *type_size, const struct btf_type **elem_type,
1642 u32 *elem_id, u32 *total_nelems, u32 *type_id)
1643 {
1644 const struct btf_type *array_type = NULL;
1645 const struct btf_array *array = NULL;
1646 u32 i, size, nelems = 1, id = 0;
1647
1648 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1649 switch (BTF_INFO_KIND(type->info)) {
1650 /* type->size can be used */
1651 case BTF_KIND_INT:
1652 case BTF_KIND_STRUCT:
1653 case BTF_KIND_UNION:
1654 case BTF_KIND_ENUM:
1655 size = type->size;
1656 goto resolved;
1657
1658 case BTF_KIND_PTR:
1659 size = sizeof(void *);
1660 goto resolved;
1661
1662 /* Modifiers */
1663 case BTF_KIND_TYPEDEF:
1664 case BTF_KIND_VOLATILE:
1665 case BTF_KIND_CONST:
1666 case BTF_KIND_RESTRICT:
1667 id = type->type;
1668 type = btf_type_by_id(btf, type->type);
1669 break;
1670
1671 case BTF_KIND_ARRAY:
1672 if (!array_type)
1673 array_type = type;
1674 array = btf_type_array(type);
1675 if (nelems && array->nelems > U32_MAX / nelems)
1676 return ERR_PTR(-EINVAL);
1677 nelems *= array->nelems;
1678 type = btf_type_by_id(btf, array->type);
1679 break;
1680
1681 /* type without size */
1682 default:
1683 return ERR_PTR(-EINVAL);
1684 }
1685 }
1686
1687 return ERR_PTR(-EINVAL);
1688
1689 resolved:
1690 if (nelems && size > U32_MAX / nelems)
1691 return ERR_PTR(-EINVAL);
1692
1693 *type_size = nelems * size;
1694 if (total_nelems)
1695 *total_nelems = nelems;
1696 if (elem_type)
1697 *elem_type = type;
1698 if (elem_id)
1699 *elem_id = array ? array->type : 0;
1700 if (type_id && id)
1701 *type_id = id;
1702
1703 return array_type ? : type;
1704 }
1705
1706 const struct btf_type *
btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size)1707 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1708 u32 *type_size)
1709 {
1710 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1711 }
1712
1713 /* The input param "type_id" must point to a needs_resolve type */
btf_type_id_resolve(const struct btf * btf,u32 * type_id)1714 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1715 u32 *type_id)
1716 {
1717 *type_id = btf->resolved_ids[*type_id];
1718 return btf_type_by_id(btf, *type_id);
1719 }
1720
btf_type_id_size(const struct btf * btf,u32 * type_id,u32 * ret_size)1721 const struct btf_type *btf_type_id_size(const struct btf *btf,
1722 u32 *type_id, u32 *ret_size)
1723 {
1724 const struct btf_type *size_type;
1725 u32 size_type_id = *type_id;
1726 u32 size = 0;
1727
1728 size_type = btf_type_by_id(btf, size_type_id);
1729 if (btf_type_nosize_or_null(size_type))
1730 return NULL;
1731
1732 if (btf_type_has_size(size_type)) {
1733 size = size_type->size;
1734 } else if (btf_type_is_array(size_type)) {
1735 size = btf->resolved_sizes[size_type_id];
1736 } else if (btf_type_is_ptr(size_type)) {
1737 size = sizeof(void *);
1738 } else {
1739 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1740 !btf_type_is_var(size_type)))
1741 return NULL;
1742
1743 size_type_id = btf->resolved_ids[size_type_id];
1744 size_type = btf_type_by_id(btf, size_type_id);
1745 if (btf_type_nosize_or_null(size_type))
1746 return NULL;
1747 else if (btf_type_has_size(size_type))
1748 size = size_type->size;
1749 else if (btf_type_is_array(size_type))
1750 size = btf->resolved_sizes[size_type_id];
1751 else if (btf_type_is_ptr(size_type))
1752 size = sizeof(void *);
1753 else
1754 return NULL;
1755 }
1756
1757 *type_id = size_type_id;
1758 if (ret_size)
1759 *ret_size = size;
1760
1761 return size_type;
1762 }
1763
btf_df_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1764 static int btf_df_check_member(struct btf_verifier_env *env,
1765 const struct btf_type *struct_type,
1766 const struct btf_member *member,
1767 const struct btf_type *member_type)
1768 {
1769 btf_verifier_log_basic(env, struct_type,
1770 "Unsupported check_member");
1771 return -EINVAL;
1772 }
1773
btf_df_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1774 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1775 const struct btf_type *struct_type,
1776 const struct btf_member *member,
1777 const struct btf_type *member_type)
1778 {
1779 btf_verifier_log_basic(env, struct_type,
1780 "Unsupported check_kflag_member");
1781 return -EINVAL;
1782 }
1783
1784 /* Used for ptr, array and struct/union type members.
1785 * int, enum and modifier types have their specific callback functions.
1786 */
btf_generic_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1787 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1788 const struct btf_type *struct_type,
1789 const struct btf_member *member,
1790 const struct btf_type *member_type)
1791 {
1792 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1793 btf_verifier_log_member(env, struct_type, member,
1794 "Invalid member bitfield_size");
1795 return -EINVAL;
1796 }
1797
1798 /* bitfield size is 0, so member->offset represents bit offset only.
1799 * It is safe to call non kflag check_member variants.
1800 */
1801 return btf_type_ops(member_type)->check_member(env, struct_type,
1802 member,
1803 member_type);
1804 }
1805
btf_df_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)1806 static int btf_df_resolve(struct btf_verifier_env *env,
1807 const struct resolve_vertex *v)
1808 {
1809 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1810 return -EINVAL;
1811 }
1812
btf_df_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offsets,struct btf_show * show)1813 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1814 u32 type_id, void *data, u8 bits_offsets,
1815 struct btf_show *show)
1816 {
1817 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1818 }
1819
btf_int_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1820 static int btf_int_check_member(struct btf_verifier_env *env,
1821 const struct btf_type *struct_type,
1822 const struct btf_member *member,
1823 const struct btf_type *member_type)
1824 {
1825 u32 int_data = btf_type_int(member_type);
1826 u32 struct_bits_off = member->offset;
1827 u32 struct_size = struct_type->size;
1828 u32 nr_copy_bits;
1829 u32 bytes_offset;
1830
1831 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1832 btf_verifier_log_member(env, struct_type, member,
1833 "bits_offset exceeds U32_MAX");
1834 return -EINVAL;
1835 }
1836
1837 struct_bits_off += BTF_INT_OFFSET(int_data);
1838 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1839 nr_copy_bits = BTF_INT_BITS(int_data) +
1840 BITS_PER_BYTE_MASKED(struct_bits_off);
1841
1842 if (nr_copy_bits > BITS_PER_U128) {
1843 btf_verifier_log_member(env, struct_type, member,
1844 "nr_copy_bits exceeds 128");
1845 return -EINVAL;
1846 }
1847
1848 if (struct_size < bytes_offset ||
1849 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1850 btf_verifier_log_member(env, struct_type, member,
1851 "Member exceeds struct_size");
1852 return -EINVAL;
1853 }
1854
1855 return 0;
1856 }
1857
btf_int_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1858 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1859 const struct btf_type *struct_type,
1860 const struct btf_member *member,
1861 const struct btf_type *member_type)
1862 {
1863 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1864 u32 int_data = btf_type_int(member_type);
1865 u32 struct_size = struct_type->size;
1866 u32 nr_copy_bits;
1867
1868 /* a regular int type is required for the kflag int member */
1869 if (!btf_type_int_is_regular(member_type)) {
1870 btf_verifier_log_member(env, struct_type, member,
1871 "Invalid member base type");
1872 return -EINVAL;
1873 }
1874
1875 /* check sanity of bitfield size */
1876 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1877 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1878 nr_int_data_bits = BTF_INT_BITS(int_data);
1879 if (!nr_bits) {
1880 /* Not a bitfield member, member offset must be at byte
1881 * boundary.
1882 */
1883 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1884 btf_verifier_log_member(env, struct_type, member,
1885 "Invalid member offset");
1886 return -EINVAL;
1887 }
1888
1889 nr_bits = nr_int_data_bits;
1890 } else if (nr_bits > nr_int_data_bits) {
1891 btf_verifier_log_member(env, struct_type, member,
1892 "Invalid member bitfield_size");
1893 return -EINVAL;
1894 }
1895
1896 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1897 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1898 if (nr_copy_bits > BITS_PER_U128) {
1899 btf_verifier_log_member(env, struct_type, member,
1900 "nr_copy_bits exceeds 128");
1901 return -EINVAL;
1902 }
1903
1904 if (struct_size < bytes_offset ||
1905 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1906 btf_verifier_log_member(env, struct_type, member,
1907 "Member exceeds struct_size");
1908 return -EINVAL;
1909 }
1910
1911 return 0;
1912 }
1913
btf_int_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)1914 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1915 const struct btf_type *t,
1916 u32 meta_left)
1917 {
1918 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1919 u16 encoding;
1920
1921 if (meta_left < meta_needed) {
1922 btf_verifier_log_basic(env, t,
1923 "meta_left:%u meta_needed:%u",
1924 meta_left, meta_needed);
1925 return -EINVAL;
1926 }
1927
1928 if (btf_type_vlen(t)) {
1929 btf_verifier_log_type(env, t, "vlen != 0");
1930 return -EINVAL;
1931 }
1932
1933 if (btf_type_kflag(t)) {
1934 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1935 return -EINVAL;
1936 }
1937
1938 int_data = btf_type_int(t);
1939 if (int_data & ~BTF_INT_MASK) {
1940 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1941 int_data);
1942 return -EINVAL;
1943 }
1944
1945 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1946
1947 if (nr_bits > BITS_PER_U128) {
1948 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1949 BITS_PER_U128);
1950 return -EINVAL;
1951 }
1952
1953 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1954 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1955 return -EINVAL;
1956 }
1957
1958 /*
1959 * Only one of the encoding bits is allowed and it
1960 * should be sufficient for the pretty print purpose (i.e. decoding).
1961 * Multiple bits can be allowed later if it is found
1962 * to be insufficient.
1963 */
1964 encoding = BTF_INT_ENCODING(int_data);
1965 if (encoding &&
1966 encoding != BTF_INT_SIGNED &&
1967 encoding != BTF_INT_CHAR &&
1968 encoding != BTF_INT_BOOL) {
1969 btf_verifier_log_type(env, t, "Unsupported encoding");
1970 return -ENOTSUPP;
1971 }
1972
1973 btf_verifier_log_type(env, t, NULL);
1974
1975 return meta_needed;
1976 }
1977
btf_int_log(struct btf_verifier_env * env,const struct btf_type * t)1978 static void btf_int_log(struct btf_verifier_env *env,
1979 const struct btf_type *t)
1980 {
1981 int int_data = btf_type_int(t);
1982
1983 btf_verifier_log(env,
1984 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1985 t->size, BTF_INT_OFFSET(int_data),
1986 BTF_INT_BITS(int_data),
1987 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1988 }
1989
btf_int128_print(struct btf_show * show,void * data)1990 static void btf_int128_print(struct btf_show *show, void *data)
1991 {
1992 /* data points to a __int128 number.
1993 * Suppose
1994 * int128_num = *(__int128 *)data;
1995 * The below formulas shows what upper_num and lower_num represents:
1996 * upper_num = int128_num >> 64;
1997 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1998 */
1999 u64 upper_num, lower_num;
2000
2001 #ifdef __BIG_ENDIAN_BITFIELD
2002 upper_num = *(u64 *)data;
2003 lower_num = *(u64 *)(data + 8);
2004 #else
2005 upper_num = *(u64 *)(data + 8);
2006 lower_num = *(u64 *)data;
2007 #endif
2008 if (upper_num == 0)
2009 btf_show_type_value(show, "0x%llx", lower_num);
2010 else
2011 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2012 lower_num);
2013 }
2014
btf_int128_shift(u64 * print_num,u16 left_shift_bits,u16 right_shift_bits)2015 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2016 u16 right_shift_bits)
2017 {
2018 u64 upper_num, lower_num;
2019
2020 #ifdef __BIG_ENDIAN_BITFIELD
2021 upper_num = print_num[0];
2022 lower_num = print_num[1];
2023 #else
2024 upper_num = print_num[1];
2025 lower_num = print_num[0];
2026 #endif
2027
2028 /* shake out un-needed bits by shift/or operations */
2029 if (left_shift_bits >= 64) {
2030 upper_num = lower_num << (left_shift_bits - 64);
2031 lower_num = 0;
2032 } else {
2033 upper_num = (upper_num << left_shift_bits) |
2034 (lower_num >> (64 - left_shift_bits));
2035 lower_num = lower_num << left_shift_bits;
2036 }
2037
2038 if (right_shift_bits >= 64) {
2039 lower_num = upper_num >> (right_shift_bits - 64);
2040 upper_num = 0;
2041 } else {
2042 lower_num = (lower_num >> right_shift_bits) |
2043 (upper_num << (64 - right_shift_bits));
2044 upper_num = upper_num >> right_shift_bits;
2045 }
2046
2047 #ifdef __BIG_ENDIAN_BITFIELD
2048 print_num[0] = upper_num;
2049 print_num[1] = lower_num;
2050 #else
2051 print_num[0] = lower_num;
2052 print_num[1] = upper_num;
2053 #endif
2054 }
2055
btf_bitfield_show(void * data,u8 bits_offset,u8 nr_bits,struct btf_show * show)2056 static void btf_bitfield_show(void *data, u8 bits_offset,
2057 u8 nr_bits, struct btf_show *show)
2058 {
2059 u16 left_shift_bits, right_shift_bits;
2060 u8 nr_copy_bytes;
2061 u8 nr_copy_bits;
2062 u64 print_num[2] = {};
2063
2064 nr_copy_bits = nr_bits + bits_offset;
2065 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2066
2067 memcpy(print_num, data, nr_copy_bytes);
2068
2069 #ifdef __BIG_ENDIAN_BITFIELD
2070 left_shift_bits = bits_offset;
2071 #else
2072 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2073 #endif
2074 right_shift_bits = BITS_PER_U128 - nr_bits;
2075
2076 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2077 btf_int128_print(show, print_num);
2078 }
2079
2080
btf_int_bits_show(const struct btf * btf,const struct btf_type * t,void * data,u8 bits_offset,struct btf_show * show)2081 static void btf_int_bits_show(const struct btf *btf,
2082 const struct btf_type *t,
2083 void *data, u8 bits_offset,
2084 struct btf_show *show)
2085 {
2086 u32 int_data = btf_type_int(t);
2087 u8 nr_bits = BTF_INT_BITS(int_data);
2088 u8 total_bits_offset;
2089
2090 /*
2091 * bits_offset is at most 7.
2092 * BTF_INT_OFFSET() cannot exceed 128 bits.
2093 */
2094 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2095 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2096 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2097 btf_bitfield_show(data, bits_offset, nr_bits, show);
2098 }
2099
btf_int_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2100 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2101 u32 type_id, void *data, u8 bits_offset,
2102 struct btf_show *show)
2103 {
2104 u32 int_data = btf_type_int(t);
2105 u8 encoding = BTF_INT_ENCODING(int_data);
2106 bool sign = encoding & BTF_INT_SIGNED;
2107 u8 nr_bits = BTF_INT_BITS(int_data);
2108 void *safe_data;
2109
2110 safe_data = btf_show_start_type(show, t, type_id, data);
2111 if (!safe_data)
2112 return;
2113
2114 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2115 BITS_PER_BYTE_MASKED(nr_bits)) {
2116 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2117 goto out;
2118 }
2119
2120 switch (nr_bits) {
2121 case 128:
2122 btf_int128_print(show, safe_data);
2123 break;
2124 case 64:
2125 if (sign)
2126 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2127 else
2128 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2129 break;
2130 case 32:
2131 if (sign)
2132 btf_show_type_value(show, "%d", *(s32 *)safe_data);
2133 else
2134 btf_show_type_value(show, "%u", *(u32 *)safe_data);
2135 break;
2136 case 16:
2137 if (sign)
2138 btf_show_type_value(show, "%d", *(s16 *)safe_data);
2139 else
2140 btf_show_type_value(show, "%u", *(u16 *)safe_data);
2141 break;
2142 case 8:
2143 if (show->state.array_encoding == BTF_INT_CHAR) {
2144 /* check for null terminator */
2145 if (show->state.array_terminated)
2146 break;
2147 if (*(char *)data == '\0') {
2148 show->state.array_terminated = 1;
2149 break;
2150 }
2151 if (isprint(*(char *)data)) {
2152 btf_show_type_value(show, "'%c'",
2153 *(char *)safe_data);
2154 break;
2155 }
2156 }
2157 if (sign)
2158 btf_show_type_value(show, "%d", *(s8 *)safe_data);
2159 else
2160 btf_show_type_value(show, "%u", *(u8 *)safe_data);
2161 break;
2162 default:
2163 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2164 break;
2165 }
2166 out:
2167 btf_show_end_type(show);
2168 }
2169
2170 static const struct btf_kind_operations int_ops = {
2171 .check_meta = btf_int_check_meta,
2172 .resolve = btf_df_resolve,
2173 .check_member = btf_int_check_member,
2174 .check_kflag_member = btf_int_check_kflag_member,
2175 .log_details = btf_int_log,
2176 .show = btf_int_show,
2177 };
2178
btf_modifier_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2179 static int btf_modifier_check_member(struct btf_verifier_env *env,
2180 const struct btf_type *struct_type,
2181 const struct btf_member *member,
2182 const struct btf_type *member_type)
2183 {
2184 const struct btf_type *resolved_type;
2185 u32 resolved_type_id = member->type;
2186 struct btf_member resolved_member;
2187 struct btf *btf = env->btf;
2188
2189 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2190 if (!resolved_type) {
2191 btf_verifier_log_member(env, struct_type, member,
2192 "Invalid member");
2193 return -EINVAL;
2194 }
2195
2196 resolved_member = *member;
2197 resolved_member.type = resolved_type_id;
2198
2199 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2200 &resolved_member,
2201 resolved_type);
2202 }
2203
btf_modifier_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2204 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2205 const struct btf_type *struct_type,
2206 const struct btf_member *member,
2207 const struct btf_type *member_type)
2208 {
2209 const struct btf_type *resolved_type;
2210 u32 resolved_type_id = member->type;
2211 struct btf_member resolved_member;
2212 struct btf *btf = env->btf;
2213
2214 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2215 if (!resolved_type) {
2216 btf_verifier_log_member(env, struct_type, member,
2217 "Invalid member");
2218 return -EINVAL;
2219 }
2220
2221 resolved_member = *member;
2222 resolved_member.type = resolved_type_id;
2223
2224 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2225 &resolved_member,
2226 resolved_type);
2227 }
2228
btf_ptr_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2229 static int btf_ptr_check_member(struct btf_verifier_env *env,
2230 const struct btf_type *struct_type,
2231 const struct btf_member *member,
2232 const struct btf_type *member_type)
2233 {
2234 u32 struct_size, struct_bits_off, bytes_offset;
2235
2236 struct_size = struct_type->size;
2237 struct_bits_off = member->offset;
2238 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2239
2240 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2241 btf_verifier_log_member(env, struct_type, member,
2242 "Member is not byte aligned");
2243 return -EINVAL;
2244 }
2245
2246 if (struct_size - bytes_offset < sizeof(void *)) {
2247 btf_verifier_log_member(env, struct_type, member,
2248 "Member exceeds struct_size");
2249 return -EINVAL;
2250 }
2251
2252 return 0;
2253 }
2254
btf_ref_type_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2255 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2256 const struct btf_type *t,
2257 u32 meta_left)
2258 {
2259 if (btf_type_vlen(t)) {
2260 btf_verifier_log_type(env, t, "vlen != 0");
2261 return -EINVAL;
2262 }
2263
2264 if (btf_type_kflag(t)) {
2265 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2266 return -EINVAL;
2267 }
2268
2269 if (!BTF_TYPE_ID_VALID(t->type)) {
2270 btf_verifier_log_type(env, t, "Invalid type_id");
2271 return -EINVAL;
2272 }
2273
2274 /* typedef type must have a valid name, and other ref types,
2275 * volatile, const, restrict, should have a null name.
2276 */
2277 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2278 if (!t->name_off ||
2279 !btf_name_valid_identifier(env->btf, t->name_off)) {
2280 btf_verifier_log_type(env, t, "Invalid name");
2281 return -EINVAL;
2282 }
2283 } else {
2284 if (t->name_off) {
2285 btf_verifier_log_type(env, t, "Invalid name");
2286 return -EINVAL;
2287 }
2288 }
2289
2290 btf_verifier_log_type(env, t, NULL);
2291
2292 return 0;
2293 }
2294
btf_modifier_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2295 static int btf_modifier_resolve(struct btf_verifier_env *env,
2296 const struct resolve_vertex *v)
2297 {
2298 const struct btf_type *t = v->t;
2299 const struct btf_type *next_type;
2300 u32 next_type_id = t->type;
2301 struct btf *btf = env->btf;
2302
2303 next_type = btf_type_by_id(btf, next_type_id);
2304 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2305 btf_verifier_log_type(env, v->t, "Invalid type_id");
2306 return -EINVAL;
2307 }
2308
2309 if (!env_type_is_resolve_sink(env, next_type) &&
2310 !env_type_is_resolved(env, next_type_id))
2311 return env_stack_push(env, next_type, next_type_id);
2312
2313 /* Figure out the resolved next_type_id with size.
2314 * They will be stored in the current modifier's
2315 * resolved_ids and resolved_sizes such that it can
2316 * save us a few type-following when we use it later (e.g. in
2317 * pretty print).
2318 */
2319 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2320 if (env_type_is_resolved(env, next_type_id))
2321 next_type = btf_type_id_resolve(btf, &next_type_id);
2322
2323 /* "typedef void new_void", "const void"...etc */
2324 if (!btf_type_is_void(next_type) &&
2325 !btf_type_is_fwd(next_type) &&
2326 !btf_type_is_func_proto(next_type)) {
2327 btf_verifier_log_type(env, v->t, "Invalid type_id");
2328 return -EINVAL;
2329 }
2330 }
2331
2332 env_stack_pop_resolved(env, next_type_id, 0);
2333
2334 return 0;
2335 }
2336
btf_var_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2337 static int btf_var_resolve(struct btf_verifier_env *env,
2338 const struct resolve_vertex *v)
2339 {
2340 const struct btf_type *next_type;
2341 const struct btf_type *t = v->t;
2342 u32 next_type_id = t->type;
2343 struct btf *btf = env->btf;
2344
2345 next_type = btf_type_by_id(btf, next_type_id);
2346 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2347 btf_verifier_log_type(env, v->t, "Invalid type_id");
2348 return -EINVAL;
2349 }
2350
2351 if (!env_type_is_resolve_sink(env, next_type) &&
2352 !env_type_is_resolved(env, next_type_id))
2353 return env_stack_push(env, next_type, next_type_id);
2354
2355 if (btf_type_is_modifier(next_type)) {
2356 const struct btf_type *resolved_type;
2357 u32 resolved_type_id;
2358
2359 resolved_type_id = next_type_id;
2360 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2361
2362 if (btf_type_is_ptr(resolved_type) &&
2363 !env_type_is_resolve_sink(env, resolved_type) &&
2364 !env_type_is_resolved(env, resolved_type_id))
2365 return env_stack_push(env, resolved_type,
2366 resolved_type_id);
2367 }
2368
2369 /* We must resolve to something concrete at this point, no
2370 * forward types or similar that would resolve to size of
2371 * zero is allowed.
2372 */
2373 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2374 btf_verifier_log_type(env, v->t, "Invalid type_id");
2375 return -EINVAL;
2376 }
2377
2378 env_stack_pop_resolved(env, next_type_id, 0);
2379
2380 return 0;
2381 }
2382
btf_ptr_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2383 static int btf_ptr_resolve(struct btf_verifier_env *env,
2384 const struct resolve_vertex *v)
2385 {
2386 const struct btf_type *next_type;
2387 const struct btf_type *t = v->t;
2388 u32 next_type_id = t->type;
2389 struct btf *btf = env->btf;
2390
2391 next_type = btf_type_by_id(btf, next_type_id);
2392 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2393 btf_verifier_log_type(env, v->t, "Invalid type_id");
2394 return -EINVAL;
2395 }
2396
2397 if (!env_type_is_resolve_sink(env, next_type) &&
2398 !env_type_is_resolved(env, next_type_id))
2399 return env_stack_push(env, next_type, next_type_id);
2400
2401 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2402 * the modifier may have stopped resolving when it was resolved
2403 * to a ptr (last-resolved-ptr).
2404 *
2405 * We now need to continue from the last-resolved-ptr to
2406 * ensure the last-resolved-ptr will not referring back to
2407 * the currenct ptr (t).
2408 */
2409 if (btf_type_is_modifier(next_type)) {
2410 const struct btf_type *resolved_type;
2411 u32 resolved_type_id;
2412
2413 resolved_type_id = next_type_id;
2414 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2415
2416 if (btf_type_is_ptr(resolved_type) &&
2417 !env_type_is_resolve_sink(env, resolved_type) &&
2418 !env_type_is_resolved(env, resolved_type_id))
2419 return env_stack_push(env, resolved_type,
2420 resolved_type_id);
2421 }
2422
2423 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2424 if (env_type_is_resolved(env, next_type_id))
2425 next_type = btf_type_id_resolve(btf, &next_type_id);
2426
2427 if (!btf_type_is_void(next_type) &&
2428 !btf_type_is_fwd(next_type) &&
2429 !btf_type_is_func_proto(next_type)) {
2430 btf_verifier_log_type(env, v->t, "Invalid type_id");
2431 return -EINVAL;
2432 }
2433 }
2434
2435 env_stack_pop_resolved(env, next_type_id, 0);
2436
2437 return 0;
2438 }
2439
btf_modifier_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2440 static void btf_modifier_show(const struct btf *btf,
2441 const struct btf_type *t,
2442 u32 type_id, void *data,
2443 u8 bits_offset, struct btf_show *show)
2444 {
2445 if (btf->resolved_ids)
2446 t = btf_type_id_resolve(btf, &type_id);
2447 else
2448 t = btf_type_skip_modifiers(btf, type_id, NULL);
2449
2450 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2451 }
2452
btf_var_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2453 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2454 u32 type_id, void *data, u8 bits_offset,
2455 struct btf_show *show)
2456 {
2457 t = btf_type_id_resolve(btf, &type_id);
2458
2459 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2460 }
2461
btf_ptr_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2462 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2463 u32 type_id, void *data, u8 bits_offset,
2464 struct btf_show *show)
2465 {
2466 void *safe_data;
2467
2468 safe_data = btf_show_start_type(show, t, type_id, data);
2469 if (!safe_data)
2470 return;
2471
2472 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2473 if (show->flags & BTF_SHOW_PTR_RAW)
2474 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2475 else
2476 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2477 btf_show_end_type(show);
2478 }
2479
btf_ref_type_log(struct btf_verifier_env * env,const struct btf_type * t)2480 static void btf_ref_type_log(struct btf_verifier_env *env,
2481 const struct btf_type *t)
2482 {
2483 btf_verifier_log(env, "type_id=%u", t->type);
2484 }
2485
2486 static struct btf_kind_operations modifier_ops = {
2487 .check_meta = btf_ref_type_check_meta,
2488 .resolve = btf_modifier_resolve,
2489 .check_member = btf_modifier_check_member,
2490 .check_kflag_member = btf_modifier_check_kflag_member,
2491 .log_details = btf_ref_type_log,
2492 .show = btf_modifier_show,
2493 };
2494
2495 static struct btf_kind_operations ptr_ops = {
2496 .check_meta = btf_ref_type_check_meta,
2497 .resolve = btf_ptr_resolve,
2498 .check_member = btf_ptr_check_member,
2499 .check_kflag_member = btf_generic_check_kflag_member,
2500 .log_details = btf_ref_type_log,
2501 .show = btf_ptr_show,
2502 };
2503
btf_fwd_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2504 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2505 const struct btf_type *t,
2506 u32 meta_left)
2507 {
2508 if (btf_type_vlen(t)) {
2509 btf_verifier_log_type(env, t, "vlen != 0");
2510 return -EINVAL;
2511 }
2512
2513 if (t->type) {
2514 btf_verifier_log_type(env, t, "type != 0");
2515 return -EINVAL;
2516 }
2517
2518 /* fwd type must have a valid name */
2519 if (!t->name_off ||
2520 !btf_name_valid_identifier(env->btf, t->name_off)) {
2521 btf_verifier_log_type(env, t, "Invalid name");
2522 return -EINVAL;
2523 }
2524
2525 btf_verifier_log_type(env, t, NULL);
2526
2527 return 0;
2528 }
2529
btf_fwd_type_log(struct btf_verifier_env * env,const struct btf_type * t)2530 static void btf_fwd_type_log(struct btf_verifier_env *env,
2531 const struct btf_type *t)
2532 {
2533 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2534 }
2535
2536 static struct btf_kind_operations fwd_ops = {
2537 .check_meta = btf_fwd_check_meta,
2538 .resolve = btf_df_resolve,
2539 .check_member = btf_df_check_member,
2540 .check_kflag_member = btf_df_check_kflag_member,
2541 .log_details = btf_fwd_type_log,
2542 .show = btf_df_show,
2543 };
2544
btf_array_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2545 static int btf_array_check_member(struct btf_verifier_env *env,
2546 const struct btf_type *struct_type,
2547 const struct btf_member *member,
2548 const struct btf_type *member_type)
2549 {
2550 u32 struct_bits_off = member->offset;
2551 u32 struct_size, bytes_offset;
2552 u32 array_type_id, array_size;
2553 struct btf *btf = env->btf;
2554
2555 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2556 btf_verifier_log_member(env, struct_type, member,
2557 "Member is not byte aligned");
2558 return -EINVAL;
2559 }
2560
2561 array_type_id = member->type;
2562 btf_type_id_size(btf, &array_type_id, &array_size);
2563 struct_size = struct_type->size;
2564 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2565 if (struct_size - bytes_offset < array_size) {
2566 btf_verifier_log_member(env, struct_type, member,
2567 "Member exceeds struct_size");
2568 return -EINVAL;
2569 }
2570
2571 return 0;
2572 }
2573
btf_array_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2574 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2575 const struct btf_type *t,
2576 u32 meta_left)
2577 {
2578 const struct btf_array *array = btf_type_array(t);
2579 u32 meta_needed = sizeof(*array);
2580
2581 if (meta_left < meta_needed) {
2582 btf_verifier_log_basic(env, t,
2583 "meta_left:%u meta_needed:%u",
2584 meta_left, meta_needed);
2585 return -EINVAL;
2586 }
2587
2588 /* array type should not have a name */
2589 if (t->name_off) {
2590 btf_verifier_log_type(env, t, "Invalid name");
2591 return -EINVAL;
2592 }
2593
2594 if (btf_type_vlen(t)) {
2595 btf_verifier_log_type(env, t, "vlen != 0");
2596 return -EINVAL;
2597 }
2598
2599 if (btf_type_kflag(t)) {
2600 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2601 return -EINVAL;
2602 }
2603
2604 if (t->size) {
2605 btf_verifier_log_type(env, t, "size != 0");
2606 return -EINVAL;
2607 }
2608
2609 /* Array elem type and index type cannot be in type void,
2610 * so !array->type and !array->index_type are not allowed.
2611 */
2612 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2613 btf_verifier_log_type(env, t, "Invalid elem");
2614 return -EINVAL;
2615 }
2616
2617 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2618 btf_verifier_log_type(env, t, "Invalid index");
2619 return -EINVAL;
2620 }
2621
2622 btf_verifier_log_type(env, t, NULL);
2623
2624 return meta_needed;
2625 }
2626
btf_array_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2627 static int btf_array_resolve(struct btf_verifier_env *env,
2628 const struct resolve_vertex *v)
2629 {
2630 const struct btf_array *array = btf_type_array(v->t);
2631 const struct btf_type *elem_type, *index_type;
2632 u32 elem_type_id, index_type_id;
2633 struct btf *btf = env->btf;
2634 u32 elem_size;
2635
2636 /* Check array->index_type */
2637 index_type_id = array->index_type;
2638 index_type = btf_type_by_id(btf, index_type_id);
2639 if (btf_type_nosize_or_null(index_type) ||
2640 btf_type_is_resolve_source_only(index_type)) {
2641 btf_verifier_log_type(env, v->t, "Invalid index");
2642 return -EINVAL;
2643 }
2644
2645 if (!env_type_is_resolve_sink(env, index_type) &&
2646 !env_type_is_resolved(env, index_type_id))
2647 return env_stack_push(env, index_type, index_type_id);
2648
2649 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2650 if (!index_type || !btf_type_is_int(index_type) ||
2651 !btf_type_int_is_regular(index_type)) {
2652 btf_verifier_log_type(env, v->t, "Invalid index");
2653 return -EINVAL;
2654 }
2655
2656 /* Check array->type */
2657 elem_type_id = array->type;
2658 elem_type = btf_type_by_id(btf, elem_type_id);
2659 if (btf_type_nosize_or_null(elem_type) ||
2660 btf_type_is_resolve_source_only(elem_type)) {
2661 btf_verifier_log_type(env, v->t,
2662 "Invalid elem");
2663 return -EINVAL;
2664 }
2665
2666 if (!env_type_is_resolve_sink(env, elem_type) &&
2667 !env_type_is_resolved(env, elem_type_id))
2668 return env_stack_push(env, elem_type, elem_type_id);
2669
2670 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2671 if (!elem_type) {
2672 btf_verifier_log_type(env, v->t, "Invalid elem");
2673 return -EINVAL;
2674 }
2675
2676 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2677 btf_verifier_log_type(env, v->t, "Invalid array of int");
2678 return -EINVAL;
2679 }
2680
2681 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2682 btf_verifier_log_type(env, v->t,
2683 "Array size overflows U32_MAX");
2684 return -EINVAL;
2685 }
2686
2687 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2688
2689 return 0;
2690 }
2691
btf_array_log(struct btf_verifier_env * env,const struct btf_type * t)2692 static void btf_array_log(struct btf_verifier_env *env,
2693 const struct btf_type *t)
2694 {
2695 const struct btf_array *array = btf_type_array(t);
2696
2697 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2698 array->type, array->index_type, array->nelems);
2699 }
2700
__btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2701 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2702 u32 type_id, void *data, u8 bits_offset,
2703 struct btf_show *show)
2704 {
2705 const struct btf_array *array = btf_type_array(t);
2706 const struct btf_kind_operations *elem_ops;
2707 const struct btf_type *elem_type;
2708 u32 i, elem_size = 0, elem_type_id;
2709 u16 encoding = 0;
2710
2711 elem_type_id = array->type;
2712 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2713 if (elem_type && btf_type_has_size(elem_type))
2714 elem_size = elem_type->size;
2715
2716 if (elem_type && btf_type_is_int(elem_type)) {
2717 u32 int_type = btf_type_int(elem_type);
2718
2719 encoding = BTF_INT_ENCODING(int_type);
2720
2721 /*
2722 * BTF_INT_CHAR encoding never seems to be set for
2723 * char arrays, so if size is 1 and element is
2724 * printable as a char, we'll do that.
2725 */
2726 if (elem_size == 1)
2727 encoding = BTF_INT_CHAR;
2728 }
2729
2730 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2731 return;
2732
2733 if (!elem_type)
2734 goto out;
2735 elem_ops = btf_type_ops(elem_type);
2736
2737 for (i = 0; i < array->nelems; i++) {
2738
2739 btf_show_start_array_member(show);
2740
2741 elem_ops->show(btf, elem_type, elem_type_id, data,
2742 bits_offset, show);
2743 data += elem_size;
2744
2745 btf_show_end_array_member(show);
2746
2747 if (show->state.array_terminated)
2748 break;
2749 }
2750 out:
2751 btf_show_end_array_type(show);
2752 }
2753
btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2754 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2755 u32 type_id, void *data, u8 bits_offset,
2756 struct btf_show *show)
2757 {
2758 const struct btf_member *m = show->state.member;
2759
2760 /*
2761 * First check if any members would be shown (are non-zero).
2762 * See comments above "struct btf_show" definition for more
2763 * details on how this works at a high-level.
2764 */
2765 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2766 if (!show->state.depth_check) {
2767 show->state.depth_check = show->state.depth + 1;
2768 show->state.depth_to_show = 0;
2769 }
2770 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2771 show->state.member = m;
2772
2773 if (show->state.depth_check != show->state.depth + 1)
2774 return;
2775 show->state.depth_check = 0;
2776
2777 if (show->state.depth_to_show <= show->state.depth)
2778 return;
2779 /*
2780 * Reaching here indicates we have recursed and found
2781 * non-zero array member(s).
2782 */
2783 }
2784 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2785 }
2786
2787 static struct btf_kind_operations array_ops = {
2788 .check_meta = btf_array_check_meta,
2789 .resolve = btf_array_resolve,
2790 .check_member = btf_array_check_member,
2791 .check_kflag_member = btf_generic_check_kflag_member,
2792 .log_details = btf_array_log,
2793 .show = btf_array_show,
2794 };
2795
btf_struct_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2796 static int btf_struct_check_member(struct btf_verifier_env *env,
2797 const struct btf_type *struct_type,
2798 const struct btf_member *member,
2799 const struct btf_type *member_type)
2800 {
2801 u32 struct_bits_off = member->offset;
2802 u32 struct_size, bytes_offset;
2803
2804 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2805 btf_verifier_log_member(env, struct_type, member,
2806 "Member is not byte aligned");
2807 return -EINVAL;
2808 }
2809
2810 struct_size = struct_type->size;
2811 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2812 if (struct_size - bytes_offset < member_type->size) {
2813 btf_verifier_log_member(env, struct_type, member,
2814 "Member exceeds struct_size");
2815 return -EINVAL;
2816 }
2817
2818 return 0;
2819 }
2820
btf_struct_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2821 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2822 const struct btf_type *t,
2823 u32 meta_left)
2824 {
2825 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2826 const struct btf_member *member;
2827 u32 meta_needed, last_offset;
2828 struct btf *btf = env->btf;
2829 u32 struct_size = t->size;
2830 u32 offset;
2831 u16 i;
2832
2833 meta_needed = btf_type_vlen(t) * sizeof(*member);
2834 if (meta_left < meta_needed) {
2835 btf_verifier_log_basic(env, t,
2836 "meta_left:%u meta_needed:%u",
2837 meta_left, meta_needed);
2838 return -EINVAL;
2839 }
2840
2841 /* struct type either no name or a valid one */
2842 if (t->name_off &&
2843 !btf_name_valid_identifier(env->btf, t->name_off)) {
2844 btf_verifier_log_type(env, t, "Invalid name");
2845 return -EINVAL;
2846 }
2847
2848 btf_verifier_log_type(env, t, NULL);
2849
2850 last_offset = 0;
2851 for_each_member(i, t, member) {
2852 if (!btf_name_offset_valid(btf, member->name_off)) {
2853 btf_verifier_log_member(env, t, member,
2854 "Invalid member name_offset:%u",
2855 member->name_off);
2856 return -EINVAL;
2857 }
2858
2859 /* struct member either no name or a valid one */
2860 if (member->name_off &&
2861 !btf_name_valid_identifier(btf, member->name_off)) {
2862 btf_verifier_log_member(env, t, member, "Invalid name");
2863 return -EINVAL;
2864 }
2865 /* A member cannot be in type void */
2866 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2867 btf_verifier_log_member(env, t, member,
2868 "Invalid type_id");
2869 return -EINVAL;
2870 }
2871
2872 offset = btf_member_bit_offset(t, member);
2873 if (is_union && offset) {
2874 btf_verifier_log_member(env, t, member,
2875 "Invalid member bits_offset");
2876 return -EINVAL;
2877 }
2878
2879 /*
2880 * ">" instead of ">=" because the last member could be
2881 * "char a[0];"
2882 */
2883 if (last_offset > offset) {
2884 btf_verifier_log_member(env, t, member,
2885 "Invalid member bits_offset");
2886 return -EINVAL;
2887 }
2888
2889 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2890 btf_verifier_log_member(env, t, member,
2891 "Member bits_offset exceeds its struct size");
2892 return -EINVAL;
2893 }
2894
2895 btf_verifier_log_member(env, t, member, NULL);
2896 last_offset = offset;
2897 }
2898
2899 return meta_needed;
2900 }
2901
btf_struct_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2902 static int btf_struct_resolve(struct btf_verifier_env *env,
2903 const struct resolve_vertex *v)
2904 {
2905 const struct btf_member *member;
2906 int err;
2907 u16 i;
2908
2909 /* Before continue resolving the next_member,
2910 * ensure the last member is indeed resolved to a
2911 * type with size info.
2912 */
2913 if (v->next_member) {
2914 const struct btf_type *last_member_type;
2915 const struct btf_member *last_member;
2916 u32 last_member_type_id;
2917
2918 last_member = btf_type_member(v->t) + v->next_member - 1;
2919 last_member_type_id = last_member->type;
2920 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2921 last_member_type_id)))
2922 return -EINVAL;
2923
2924 last_member_type = btf_type_by_id(env->btf,
2925 last_member_type_id);
2926 if (btf_type_kflag(v->t))
2927 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2928 last_member,
2929 last_member_type);
2930 else
2931 err = btf_type_ops(last_member_type)->check_member(env, v->t,
2932 last_member,
2933 last_member_type);
2934 if (err)
2935 return err;
2936 }
2937
2938 for_each_member_from(i, v->next_member, v->t, member) {
2939 u32 member_type_id = member->type;
2940 const struct btf_type *member_type = btf_type_by_id(env->btf,
2941 member_type_id);
2942
2943 if (btf_type_nosize_or_null(member_type) ||
2944 btf_type_is_resolve_source_only(member_type)) {
2945 btf_verifier_log_member(env, v->t, member,
2946 "Invalid member");
2947 return -EINVAL;
2948 }
2949
2950 if (!env_type_is_resolve_sink(env, member_type) &&
2951 !env_type_is_resolved(env, member_type_id)) {
2952 env_stack_set_next_member(env, i + 1);
2953 return env_stack_push(env, member_type, member_type_id);
2954 }
2955
2956 if (btf_type_kflag(v->t))
2957 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2958 member,
2959 member_type);
2960 else
2961 err = btf_type_ops(member_type)->check_member(env, v->t,
2962 member,
2963 member_type);
2964 if (err)
2965 return err;
2966 }
2967
2968 env_stack_pop_resolved(env, 0, 0);
2969
2970 return 0;
2971 }
2972
btf_struct_log(struct btf_verifier_env * env,const struct btf_type * t)2973 static void btf_struct_log(struct btf_verifier_env *env,
2974 const struct btf_type *t)
2975 {
2976 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2977 }
2978
2979 /* find 'struct bpf_spin_lock' in map value.
2980 * return >= 0 offset if found
2981 * and < 0 in case of error
2982 */
btf_find_spin_lock(const struct btf * btf,const struct btf_type * t)2983 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2984 {
2985 const struct btf_member *member;
2986 u32 i, off = -ENOENT;
2987
2988 if (!__btf_type_is_struct(t))
2989 return -EINVAL;
2990
2991 for_each_member(i, t, member) {
2992 const struct btf_type *member_type = btf_type_by_id(btf,
2993 member->type);
2994 if (!__btf_type_is_struct(member_type))
2995 continue;
2996 if (member_type->size != sizeof(struct bpf_spin_lock))
2997 continue;
2998 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2999 "bpf_spin_lock"))
3000 continue;
3001 if (off != -ENOENT)
3002 /* only one 'struct bpf_spin_lock' is allowed */
3003 return -E2BIG;
3004 off = btf_member_bit_offset(t, member);
3005 if (off % 8)
3006 /* valid C code cannot generate such BTF */
3007 return -EINVAL;
3008 off /= 8;
3009 if (off % __alignof__(struct bpf_spin_lock))
3010 /* valid struct bpf_spin_lock will be 4 byte aligned */
3011 return -EINVAL;
3012 }
3013 return off;
3014 }
3015
__btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3016 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3017 u32 type_id, void *data, u8 bits_offset,
3018 struct btf_show *show)
3019 {
3020 const struct btf_member *member;
3021 void *safe_data;
3022 u32 i;
3023
3024 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3025 if (!safe_data)
3026 return;
3027
3028 for_each_member(i, t, member) {
3029 const struct btf_type *member_type = btf_type_by_id(btf,
3030 member->type);
3031 const struct btf_kind_operations *ops;
3032 u32 member_offset, bitfield_size;
3033 u32 bytes_offset;
3034 u8 bits8_offset;
3035
3036 btf_show_start_member(show, member);
3037
3038 member_offset = btf_member_bit_offset(t, member);
3039 bitfield_size = btf_member_bitfield_size(t, member);
3040 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3041 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3042 if (bitfield_size) {
3043 safe_data = btf_show_start_type(show, member_type,
3044 member->type,
3045 data + bytes_offset);
3046 if (safe_data)
3047 btf_bitfield_show(safe_data,
3048 bits8_offset,
3049 bitfield_size, show);
3050 btf_show_end_type(show);
3051 } else {
3052 ops = btf_type_ops(member_type);
3053 ops->show(btf, member_type, member->type,
3054 data + bytes_offset, bits8_offset, show);
3055 }
3056
3057 btf_show_end_member(show);
3058 }
3059
3060 btf_show_end_struct_type(show);
3061 }
3062
btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3063 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3064 u32 type_id, void *data, u8 bits_offset,
3065 struct btf_show *show)
3066 {
3067 const struct btf_member *m = show->state.member;
3068
3069 /*
3070 * First check if any members would be shown (are non-zero).
3071 * See comments above "struct btf_show" definition for more
3072 * details on how this works at a high-level.
3073 */
3074 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3075 if (!show->state.depth_check) {
3076 show->state.depth_check = show->state.depth + 1;
3077 show->state.depth_to_show = 0;
3078 }
3079 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3080 /* Restore saved member data here */
3081 show->state.member = m;
3082 if (show->state.depth_check != show->state.depth + 1)
3083 return;
3084 show->state.depth_check = 0;
3085
3086 if (show->state.depth_to_show <= show->state.depth)
3087 return;
3088 /*
3089 * Reaching here indicates we have recursed and found
3090 * non-zero child values.
3091 */
3092 }
3093
3094 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3095 }
3096
3097 static struct btf_kind_operations struct_ops = {
3098 .check_meta = btf_struct_check_meta,
3099 .resolve = btf_struct_resolve,
3100 .check_member = btf_struct_check_member,
3101 .check_kflag_member = btf_generic_check_kflag_member,
3102 .log_details = btf_struct_log,
3103 .show = btf_struct_show,
3104 };
3105
btf_enum_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3106 static int btf_enum_check_member(struct btf_verifier_env *env,
3107 const struct btf_type *struct_type,
3108 const struct btf_member *member,
3109 const struct btf_type *member_type)
3110 {
3111 u32 struct_bits_off = member->offset;
3112 u32 struct_size, bytes_offset;
3113
3114 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3115 btf_verifier_log_member(env, struct_type, member,
3116 "Member is not byte aligned");
3117 return -EINVAL;
3118 }
3119
3120 struct_size = struct_type->size;
3121 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3122 if (struct_size - bytes_offset < member_type->size) {
3123 btf_verifier_log_member(env, struct_type, member,
3124 "Member exceeds struct_size");
3125 return -EINVAL;
3126 }
3127
3128 return 0;
3129 }
3130
btf_enum_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3131 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3132 const struct btf_type *struct_type,
3133 const struct btf_member *member,
3134 const struct btf_type *member_type)
3135 {
3136 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3137 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3138
3139 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3140 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3141 if (!nr_bits) {
3142 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3143 btf_verifier_log_member(env, struct_type, member,
3144 "Member is not byte aligned");
3145 return -EINVAL;
3146 }
3147
3148 nr_bits = int_bitsize;
3149 } else if (nr_bits > int_bitsize) {
3150 btf_verifier_log_member(env, struct_type, member,
3151 "Invalid member bitfield_size");
3152 return -EINVAL;
3153 }
3154
3155 struct_size = struct_type->size;
3156 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3157 if (struct_size < bytes_end) {
3158 btf_verifier_log_member(env, struct_type, member,
3159 "Member exceeds struct_size");
3160 return -EINVAL;
3161 }
3162
3163 return 0;
3164 }
3165
btf_enum_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3166 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3167 const struct btf_type *t,
3168 u32 meta_left)
3169 {
3170 const struct btf_enum *enums = btf_type_enum(t);
3171 struct btf *btf = env->btf;
3172 u16 i, nr_enums;
3173 u32 meta_needed;
3174
3175 nr_enums = btf_type_vlen(t);
3176 meta_needed = nr_enums * sizeof(*enums);
3177
3178 if (meta_left < meta_needed) {
3179 btf_verifier_log_basic(env, t,
3180 "meta_left:%u meta_needed:%u",
3181 meta_left, meta_needed);
3182 return -EINVAL;
3183 }
3184
3185 if (btf_type_kflag(t)) {
3186 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3187 return -EINVAL;
3188 }
3189
3190 if (t->size > 8 || !is_power_of_2(t->size)) {
3191 btf_verifier_log_type(env, t, "Unexpected size");
3192 return -EINVAL;
3193 }
3194
3195 /* enum type either no name or a valid one */
3196 if (t->name_off &&
3197 !btf_name_valid_identifier(env->btf, t->name_off)) {
3198 btf_verifier_log_type(env, t, "Invalid name");
3199 return -EINVAL;
3200 }
3201
3202 btf_verifier_log_type(env, t, NULL);
3203
3204 for (i = 0; i < nr_enums; i++) {
3205 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3206 btf_verifier_log(env, "\tInvalid name_offset:%u",
3207 enums[i].name_off);
3208 return -EINVAL;
3209 }
3210
3211 /* enum member must have a valid name */
3212 if (!enums[i].name_off ||
3213 !btf_name_valid_identifier(btf, enums[i].name_off)) {
3214 btf_verifier_log_type(env, t, "Invalid name");
3215 return -EINVAL;
3216 }
3217
3218 if (env->log.level == BPF_LOG_KERNEL)
3219 continue;
3220 btf_verifier_log(env, "\t%s val=%d\n",
3221 __btf_name_by_offset(btf, enums[i].name_off),
3222 enums[i].val);
3223 }
3224
3225 return meta_needed;
3226 }
3227
btf_enum_log(struct btf_verifier_env * env,const struct btf_type * t)3228 static void btf_enum_log(struct btf_verifier_env *env,
3229 const struct btf_type *t)
3230 {
3231 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3232 }
3233
btf_enum_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3234 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3235 u32 type_id, void *data, u8 bits_offset,
3236 struct btf_show *show)
3237 {
3238 const struct btf_enum *enums = btf_type_enum(t);
3239 u32 i, nr_enums = btf_type_vlen(t);
3240 void *safe_data;
3241 int v;
3242
3243 safe_data = btf_show_start_type(show, t, type_id, data);
3244 if (!safe_data)
3245 return;
3246
3247 v = *(int *)safe_data;
3248
3249 for (i = 0; i < nr_enums; i++) {
3250 if (v != enums[i].val)
3251 continue;
3252
3253 btf_show_type_value(show, "%s",
3254 __btf_name_by_offset(btf,
3255 enums[i].name_off));
3256
3257 btf_show_end_type(show);
3258 return;
3259 }
3260
3261 btf_show_type_value(show, "%d", v);
3262 btf_show_end_type(show);
3263 }
3264
3265 static struct btf_kind_operations enum_ops = {
3266 .check_meta = btf_enum_check_meta,
3267 .resolve = btf_df_resolve,
3268 .check_member = btf_enum_check_member,
3269 .check_kflag_member = btf_enum_check_kflag_member,
3270 .log_details = btf_enum_log,
3271 .show = btf_enum_show,
3272 };
3273
btf_func_proto_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3274 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3275 const struct btf_type *t,
3276 u32 meta_left)
3277 {
3278 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3279
3280 if (meta_left < meta_needed) {
3281 btf_verifier_log_basic(env, t,
3282 "meta_left:%u meta_needed:%u",
3283 meta_left, meta_needed);
3284 return -EINVAL;
3285 }
3286
3287 if (t->name_off) {
3288 btf_verifier_log_type(env, t, "Invalid name");
3289 return -EINVAL;
3290 }
3291
3292 if (btf_type_kflag(t)) {
3293 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3294 return -EINVAL;
3295 }
3296
3297 btf_verifier_log_type(env, t, NULL);
3298
3299 return meta_needed;
3300 }
3301
btf_func_proto_log(struct btf_verifier_env * env,const struct btf_type * t)3302 static void btf_func_proto_log(struct btf_verifier_env *env,
3303 const struct btf_type *t)
3304 {
3305 const struct btf_param *args = (const struct btf_param *)(t + 1);
3306 u16 nr_args = btf_type_vlen(t), i;
3307
3308 btf_verifier_log(env, "return=%u args=(", t->type);
3309 if (!nr_args) {
3310 btf_verifier_log(env, "void");
3311 goto done;
3312 }
3313
3314 if (nr_args == 1 && !args[0].type) {
3315 /* Only one vararg */
3316 btf_verifier_log(env, "vararg");
3317 goto done;
3318 }
3319
3320 btf_verifier_log(env, "%u %s", args[0].type,
3321 __btf_name_by_offset(env->btf,
3322 args[0].name_off));
3323 for (i = 1; i < nr_args - 1; i++)
3324 btf_verifier_log(env, ", %u %s", args[i].type,
3325 __btf_name_by_offset(env->btf,
3326 args[i].name_off));
3327
3328 if (nr_args > 1) {
3329 const struct btf_param *last_arg = &args[nr_args - 1];
3330
3331 if (last_arg->type)
3332 btf_verifier_log(env, ", %u %s", last_arg->type,
3333 __btf_name_by_offset(env->btf,
3334 last_arg->name_off));
3335 else
3336 btf_verifier_log(env, ", vararg");
3337 }
3338
3339 done:
3340 btf_verifier_log(env, ")");
3341 }
3342
3343 static struct btf_kind_operations func_proto_ops = {
3344 .check_meta = btf_func_proto_check_meta,
3345 .resolve = btf_df_resolve,
3346 /*
3347 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3348 * a struct's member.
3349 *
3350 * It should be a funciton pointer instead.
3351 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3352 *
3353 * Hence, there is no btf_func_check_member().
3354 */
3355 .check_member = btf_df_check_member,
3356 .check_kflag_member = btf_df_check_kflag_member,
3357 .log_details = btf_func_proto_log,
3358 .show = btf_df_show,
3359 };
3360
btf_func_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3361 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3362 const struct btf_type *t,
3363 u32 meta_left)
3364 {
3365 if (!t->name_off ||
3366 !btf_name_valid_identifier(env->btf, t->name_off)) {
3367 btf_verifier_log_type(env, t, "Invalid name");
3368 return -EINVAL;
3369 }
3370
3371 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3372 btf_verifier_log_type(env, t, "Invalid func linkage");
3373 return -EINVAL;
3374 }
3375
3376 if (btf_type_kflag(t)) {
3377 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3378 return -EINVAL;
3379 }
3380
3381 btf_verifier_log_type(env, t, NULL);
3382
3383 return 0;
3384 }
3385
3386 static struct btf_kind_operations func_ops = {
3387 .check_meta = btf_func_check_meta,
3388 .resolve = btf_df_resolve,
3389 .check_member = btf_df_check_member,
3390 .check_kflag_member = btf_df_check_kflag_member,
3391 .log_details = btf_ref_type_log,
3392 .show = btf_df_show,
3393 };
3394
btf_var_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3395 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3396 const struct btf_type *t,
3397 u32 meta_left)
3398 {
3399 const struct btf_var *var;
3400 u32 meta_needed = sizeof(*var);
3401
3402 if (meta_left < meta_needed) {
3403 btf_verifier_log_basic(env, t,
3404 "meta_left:%u meta_needed:%u",
3405 meta_left, meta_needed);
3406 return -EINVAL;
3407 }
3408
3409 if (btf_type_vlen(t)) {
3410 btf_verifier_log_type(env, t, "vlen != 0");
3411 return -EINVAL;
3412 }
3413
3414 if (btf_type_kflag(t)) {
3415 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3416 return -EINVAL;
3417 }
3418
3419 if (!t->name_off ||
3420 !__btf_name_valid(env->btf, t->name_off, true)) {
3421 btf_verifier_log_type(env, t, "Invalid name");
3422 return -EINVAL;
3423 }
3424
3425 /* A var cannot be in type void */
3426 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3427 btf_verifier_log_type(env, t, "Invalid type_id");
3428 return -EINVAL;
3429 }
3430
3431 var = btf_type_var(t);
3432 if (var->linkage != BTF_VAR_STATIC &&
3433 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3434 btf_verifier_log_type(env, t, "Linkage not supported");
3435 return -EINVAL;
3436 }
3437
3438 btf_verifier_log_type(env, t, NULL);
3439
3440 return meta_needed;
3441 }
3442
btf_var_log(struct btf_verifier_env * env,const struct btf_type * t)3443 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3444 {
3445 const struct btf_var *var = btf_type_var(t);
3446
3447 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3448 }
3449
3450 static const struct btf_kind_operations var_ops = {
3451 .check_meta = btf_var_check_meta,
3452 .resolve = btf_var_resolve,
3453 .check_member = btf_df_check_member,
3454 .check_kflag_member = btf_df_check_kflag_member,
3455 .log_details = btf_var_log,
3456 .show = btf_var_show,
3457 };
3458
btf_datasec_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3459 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3460 const struct btf_type *t,
3461 u32 meta_left)
3462 {
3463 const struct btf_var_secinfo *vsi;
3464 u64 last_vsi_end_off = 0, sum = 0;
3465 u32 i, meta_needed;
3466
3467 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3468 if (meta_left < meta_needed) {
3469 btf_verifier_log_basic(env, t,
3470 "meta_left:%u meta_needed:%u",
3471 meta_left, meta_needed);
3472 return -EINVAL;
3473 }
3474
3475 if (!btf_type_vlen(t)) {
3476 btf_verifier_log_type(env, t, "vlen == 0");
3477 return -EINVAL;
3478 }
3479
3480 if (!t->size) {
3481 btf_verifier_log_type(env, t, "size == 0");
3482 return -EINVAL;
3483 }
3484
3485 if (btf_type_kflag(t)) {
3486 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3487 return -EINVAL;
3488 }
3489
3490 if (!t->name_off ||
3491 !btf_name_valid_section(env->btf, t->name_off)) {
3492 btf_verifier_log_type(env, t, "Invalid name");
3493 return -EINVAL;
3494 }
3495
3496 btf_verifier_log_type(env, t, NULL);
3497
3498 for_each_vsi(i, t, vsi) {
3499 /* A var cannot be in type void */
3500 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3501 btf_verifier_log_vsi(env, t, vsi,
3502 "Invalid type_id");
3503 return -EINVAL;
3504 }
3505
3506 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3507 btf_verifier_log_vsi(env, t, vsi,
3508 "Invalid offset");
3509 return -EINVAL;
3510 }
3511
3512 if (!vsi->size || vsi->size > t->size) {
3513 btf_verifier_log_vsi(env, t, vsi,
3514 "Invalid size");
3515 return -EINVAL;
3516 }
3517
3518 last_vsi_end_off = vsi->offset + vsi->size;
3519 if (last_vsi_end_off > t->size) {
3520 btf_verifier_log_vsi(env, t, vsi,
3521 "Invalid offset+size");
3522 return -EINVAL;
3523 }
3524
3525 btf_verifier_log_vsi(env, t, vsi, NULL);
3526 sum += vsi->size;
3527 }
3528
3529 if (t->size < sum) {
3530 btf_verifier_log_type(env, t, "Invalid btf_info size");
3531 return -EINVAL;
3532 }
3533
3534 return meta_needed;
3535 }
3536
btf_datasec_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)3537 static int btf_datasec_resolve(struct btf_verifier_env *env,
3538 const struct resolve_vertex *v)
3539 {
3540 const struct btf_var_secinfo *vsi;
3541 struct btf *btf = env->btf;
3542 u16 i;
3543
3544 for_each_vsi_from(i, v->next_member, v->t, vsi) {
3545 u32 var_type_id = vsi->type, type_id, type_size = 0;
3546 const struct btf_type *var_type = btf_type_by_id(env->btf,
3547 var_type_id);
3548 if (!var_type || !btf_type_is_var(var_type)) {
3549 btf_verifier_log_vsi(env, v->t, vsi,
3550 "Not a VAR kind member");
3551 return -EINVAL;
3552 }
3553
3554 if (!env_type_is_resolve_sink(env, var_type) &&
3555 !env_type_is_resolved(env, var_type_id)) {
3556 env_stack_set_next_member(env, i + 1);
3557 return env_stack_push(env, var_type, var_type_id);
3558 }
3559
3560 type_id = var_type->type;
3561 if (!btf_type_id_size(btf, &type_id, &type_size)) {
3562 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3563 return -EINVAL;
3564 }
3565
3566 if (vsi->size < type_size) {
3567 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3568 return -EINVAL;
3569 }
3570 }
3571
3572 env_stack_pop_resolved(env, 0, 0);
3573 return 0;
3574 }
3575
btf_datasec_log(struct btf_verifier_env * env,const struct btf_type * t)3576 static void btf_datasec_log(struct btf_verifier_env *env,
3577 const struct btf_type *t)
3578 {
3579 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3580 }
3581
btf_datasec_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3582 static void btf_datasec_show(const struct btf *btf,
3583 const struct btf_type *t, u32 type_id,
3584 void *data, u8 bits_offset,
3585 struct btf_show *show)
3586 {
3587 const struct btf_var_secinfo *vsi;
3588 const struct btf_type *var;
3589 u32 i;
3590
3591 if (!btf_show_start_type(show, t, type_id, data))
3592 return;
3593
3594 btf_show_type_value(show, "section (\"%s\") = {",
3595 __btf_name_by_offset(btf, t->name_off));
3596 for_each_vsi(i, t, vsi) {
3597 var = btf_type_by_id(btf, vsi->type);
3598 if (i)
3599 btf_show(show, ",");
3600 btf_type_ops(var)->show(btf, var, vsi->type,
3601 data + vsi->offset, bits_offset, show);
3602 }
3603 btf_show_end_type(show);
3604 }
3605
3606 static const struct btf_kind_operations datasec_ops = {
3607 .check_meta = btf_datasec_check_meta,
3608 .resolve = btf_datasec_resolve,
3609 .check_member = btf_df_check_member,
3610 .check_kflag_member = btf_df_check_kflag_member,
3611 .log_details = btf_datasec_log,
3612 .show = btf_datasec_show,
3613 };
3614
btf_func_proto_check(struct btf_verifier_env * env,const struct btf_type * t)3615 static int btf_func_proto_check(struct btf_verifier_env *env,
3616 const struct btf_type *t)
3617 {
3618 const struct btf_type *ret_type;
3619 const struct btf_param *args;
3620 const struct btf *btf;
3621 u16 nr_args, i;
3622 int err;
3623
3624 btf = env->btf;
3625 args = (const struct btf_param *)(t + 1);
3626 nr_args = btf_type_vlen(t);
3627
3628 /* Check func return type which could be "void" (t->type == 0) */
3629 if (t->type) {
3630 u32 ret_type_id = t->type;
3631
3632 ret_type = btf_type_by_id(btf, ret_type_id);
3633 if (!ret_type) {
3634 btf_verifier_log_type(env, t, "Invalid return type");
3635 return -EINVAL;
3636 }
3637
3638 if (btf_type_needs_resolve(ret_type) &&
3639 !env_type_is_resolved(env, ret_type_id)) {
3640 err = btf_resolve(env, ret_type, ret_type_id);
3641 if (err)
3642 return err;
3643 }
3644
3645 /* Ensure the return type is a type that has a size */
3646 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3647 btf_verifier_log_type(env, t, "Invalid return type");
3648 return -EINVAL;
3649 }
3650 }
3651
3652 if (!nr_args)
3653 return 0;
3654
3655 /* Last func arg type_id could be 0 if it is a vararg */
3656 if (!args[nr_args - 1].type) {
3657 if (args[nr_args - 1].name_off) {
3658 btf_verifier_log_type(env, t, "Invalid arg#%u",
3659 nr_args);
3660 return -EINVAL;
3661 }
3662 nr_args--;
3663 }
3664
3665 err = 0;
3666 for (i = 0; i < nr_args; i++) {
3667 const struct btf_type *arg_type;
3668 u32 arg_type_id;
3669
3670 arg_type_id = args[i].type;
3671 arg_type = btf_type_by_id(btf, arg_type_id);
3672 if (!arg_type) {
3673 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3674 err = -EINVAL;
3675 break;
3676 }
3677
3678 if (btf_type_is_resolve_source_only(arg_type)) {
3679 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3680 return -EINVAL;
3681 }
3682
3683 if (args[i].name_off &&
3684 (!btf_name_offset_valid(btf, args[i].name_off) ||
3685 !btf_name_valid_identifier(btf, args[i].name_off))) {
3686 btf_verifier_log_type(env, t,
3687 "Invalid arg#%u", i + 1);
3688 err = -EINVAL;
3689 break;
3690 }
3691
3692 if (btf_type_needs_resolve(arg_type) &&
3693 !env_type_is_resolved(env, arg_type_id)) {
3694 err = btf_resolve(env, arg_type, arg_type_id);
3695 if (err)
3696 break;
3697 }
3698
3699 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3700 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3701 err = -EINVAL;
3702 break;
3703 }
3704 }
3705
3706 return err;
3707 }
3708
btf_func_check(struct btf_verifier_env * env,const struct btf_type * t)3709 static int btf_func_check(struct btf_verifier_env *env,
3710 const struct btf_type *t)
3711 {
3712 const struct btf_type *proto_type;
3713 const struct btf_param *args;
3714 const struct btf *btf;
3715 u16 nr_args, i;
3716
3717 btf = env->btf;
3718 proto_type = btf_type_by_id(btf, t->type);
3719
3720 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3721 btf_verifier_log_type(env, t, "Invalid type_id");
3722 return -EINVAL;
3723 }
3724
3725 args = (const struct btf_param *)(proto_type + 1);
3726 nr_args = btf_type_vlen(proto_type);
3727 for (i = 0; i < nr_args; i++) {
3728 if (!args[i].name_off && args[i].type) {
3729 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3730 return -EINVAL;
3731 }
3732 }
3733
3734 return 0;
3735 }
3736
3737 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3738 [BTF_KIND_INT] = &int_ops,
3739 [BTF_KIND_PTR] = &ptr_ops,
3740 [BTF_KIND_ARRAY] = &array_ops,
3741 [BTF_KIND_STRUCT] = &struct_ops,
3742 [BTF_KIND_UNION] = &struct_ops,
3743 [BTF_KIND_ENUM] = &enum_ops,
3744 [BTF_KIND_FWD] = &fwd_ops,
3745 [BTF_KIND_TYPEDEF] = &modifier_ops,
3746 [BTF_KIND_VOLATILE] = &modifier_ops,
3747 [BTF_KIND_CONST] = &modifier_ops,
3748 [BTF_KIND_RESTRICT] = &modifier_ops,
3749 [BTF_KIND_FUNC] = &func_ops,
3750 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3751 [BTF_KIND_VAR] = &var_ops,
3752 [BTF_KIND_DATASEC] = &datasec_ops,
3753 };
3754
btf_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3755 static s32 btf_check_meta(struct btf_verifier_env *env,
3756 const struct btf_type *t,
3757 u32 meta_left)
3758 {
3759 u32 saved_meta_left = meta_left;
3760 s32 var_meta_size;
3761
3762 if (meta_left < sizeof(*t)) {
3763 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3764 env->log_type_id, meta_left, sizeof(*t));
3765 return -EINVAL;
3766 }
3767 meta_left -= sizeof(*t);
3768
3769 if (t->info & ~BTF_INFO_MASK) {
3770 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3771 env->log_type_id, t->info);
3772 return -EINVAL;
3773 }
3774
3775 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3776 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3777 btf_verifier_log(env, "[%u] Invalid kind:%u",
3778 env->log_type_id, BTF_INFO_KIND(t->info));
3779 return -EINVAL;
3780 }
3781
3782 if (!btf_name_offset_valid(env->btf, t->name_off)) {
3783 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3784 env->log_type_id, t->name_off);
3785 return -EINVAL;
3786 }
3787
3788 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3789 if (var_meta_size < 0)
3790 return var_meta_size;
3791
3792 meta_left -= var_meta_size;
3793
3794 return saved_meta_left - meta_left;
3795 }
3796
btf_check_all_metas(struct btf_verifier_env * env)3797 static int btf_check_all_metas(struct btf_verifier_env *env)
3798 {
3799 struct btf *btf = env->btf;
3800 struct btf_header *hdr;
3801 void *cur, *end;
3802
3803 hdr = &btf->hdr;
3804 cur = btf->nohdr_data + hdr->type_off;
3805 end = cur + hdr->type_len;
3806
3807 env->log_type_id = 1;
3808 while (cur < end) {
3809 struct btf_type *t = cur;
3810 s32 meta_size;
3811
3812 meta_size = btf_check_meta(env, t, end - cur);
3813 if (meta_size < 0)
3814 return meta_size;
3815
3816 btf_add_type(env, t);
3817 cur += meta_size;
3818 env->log_type_id++;
3819 }
3820
3821 return 0;
3822 }
3823
btf_resolve_valid(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)3824 static bool btf_resolve_valid(struct btf_verifier_env *env,
3825 const struct btf_type *t,
3826 u32 type_id)
3827 {
3828 struct btf *btf = env->btf;
3829
3830 if (!env_type_is_resolved(env, type_id))
3831 return false;
3832
3833 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3834 return !btf->resolved_ids[type_id] &&
3835 !btf->resolved_sizes[type_id];
3836
3837 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3838 btf_type_is_var(t)) {
3839 t = btf_type_id_resolve(btf, &type_id);
3840 return t &&
3841 !btf_type_is_modifier(t) &&
3842 !btf_type_is_var(t) &&
3843 !btf_type_is_datasec(t);
3844 }
3845
3846 if (btf_type_is_array(t)) {
3847 const struct btf_array *array = btf_type_array(t);
3848 const struct btf_type *elem_type;
3849 u32 elem_type_id = array->type;
3850 u32 elem_size;
3851
3852 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3853 return elem_type && !btf_type_is_modifier(elem_type) &&
3854 (array->nelems * elem_size ==
3855 btf->resolved_sizes[type_id]);
3856 }
3857
3858 return false;
3859 }
3860
btf_resolve(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)3861 static int btf_resolve(struct btf_verifier_env *env,
3862 const struct btf_type *t, u32 type_id)
3863 {
3864 u32 save_log_type_id = env->log_type_id;
3865 const struct resolve_vertex *v;
3866 int err = 0;
3867
3868 env->resolve_mode = RESOLVE_TBD;
3869 env_stack_push(env, t, type_id);
3870 while (!err && (v = env_stack_peak(env))) {
3871 env->log_type_id = v->type_id;
3872 err = btf_type_ops(v->t)->resolve(env, v);
3873 }
3874
3875 env->log_type_id = type_id;
3876 if (err == -E2BIG) {
3877 btf_verifier_log_type(env, t,
3878 "Exceeded max resolving depth:%u",
3879 MAX_RESOLVE_DEPTH);
3880 } else if (err == -EEXIST) {
3881 btf_verifier_log_type(env, t, "Loop detected");
3882 }
3883
3884 /* Final sanity check */
3885 if (!err && !btf_resolve_valid(env, t, type_id)) {
3886 btf_verifier_log_type(env, t, "Invalid resolve state");
3887 err = -EINVAL;
3888 }
3889
3890 env->log_type_id = save_log_type_id;
3891 return err;
3892 }
3893
btf_check_all_types(struct btf_verifier_env * env)3894 static int btf_check_all_types(struct btf_verifier_env *env)
3895 {
3896 struct btf *btf = env->btf;
3897 u32 type_id;
3898 int err;
3899
3900 err = env_resolve_init(env);
3901 if (err)
3902 return err;
3903
3904 env->phase++;
3905 for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3906 const struct btf_type *t = btf_type_by_id(btf, type_id);
3907
3908 env->log_type_id = type_id;
3909 if (btf_type_needs_resolve(t) &&
3910 !env_type_is_resolved(env, type_id)) {
3911 err = btf_resolve(env, t, type_id);
3912 if (err)
3913 return err;
3914 }
3915
3916 if (btf_type_is_func_proto(t)) {
3917 err = btf_func_proto_check(env, t);
3918 if (err)
3919 return err;
3920 }
3921
3922 if (btf_type_is_func(t)) {
3923 err = btf_func_check(env, t);
3924 if (err)
3925 return err;
3926 }
3927 }
3928
3929 return 0;
3930 }
3931
btf_parse_type_sec(struct btf_verifier_env * env)3932 static int btf_parse_type_sec(struct btf_verifier_env *env)
3933 {
3934 const struct btf_header *hdr = &env->btf->hdr;
3935 int err;
3936
3937 /* Type section must align to 4 bytes */
3938 if (hdr->type_off & (sizeof(u32) - 1)) {
3939 btf_verifier_log(env, "Unaligned type_off");
3940 return -EINVAL;
3941 }
3942
3943 if (!hdr->type_len) {
3944 btf_verifier_log(env, "No type found");
3945 return -EINVAL;
3946 }
3947
3948 err = btf_check_all_metas(env);
3949 if (err)
3950 return err;
3951
3952 return btf_check_all_types(env);
3953 }
3954
btf_parse_str_sec(struct btf_verifier_env * env)3955 static int btf_parse_str_sec(struct btf_verifier_env *env)
3956 {
3957 const struct btf_header *hdr;
3958 struct btf *btf = env->btf;
3959 const char *start, *end;
3960
3961 hdr = &btf->hdr;
3962 start = btf->nohdr_data + hdr->str_off;
3963 end = start + hdr->str_len;
3964
3965 if (end != btf->data + btf->data_size) {
3966 btf_verifier_log(env, "String section is not at the end");
3967 return -EINVAL;
3968 }
3969
3970 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3971 start[0] || end[-1]) {
3972 btf_verifier_log(env, "Invalid string section");
3973 return -EINVAL;
3974 }
3975
3976 btf->strings = start;
3977
3978 return 0;
3979 }
3980
3981 static const size_t btf_sec_info_offset[] = {
3982 offsetof(struct btf_header, type_off),
3983 offsetof(struct btf_header, str_off),
3984 };
3985
btf_sec_info_cmp(const void * a,const void * b)3986 static int btf_sec_info_cmp(const void *a, const void *b)
3987 {
3988 const struct btf_sec_info *x = a;
3989 const struct btf_sec_info *y = b;
3990
3991 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3992 }
3993
btf_check_sec_info(struct btf_verifier_env * env,u32 btf_data_size)3994 static int btf_check_sec_info(struct btf_verifier_env *env,
3995 u32 btf_data_size)
3996 {
3997 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3998 u32 total, expected_total, i;
3999 const struct btf_header *hdr;
4000 const struct btf *btf;
4001
4002 btf = env->btf;
4003 hdr = &btf->hdr;
4004
4005 /* Populate the secs from hdr */
4006 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4007 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4008 btf_sec_info_offset[i]);
4009
4010 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4011 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4012
4013 /* Check for gaps and overlap among sections */
4014 total = 0;
4015 expected_total = btf_data_size - hdr->hdr_len;
4016 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4017 if (expected_total < secs[i].off) {
4018 btf_verifier_log(env, "Invalid section offset");
4019 return -EINVAL;
4020 }
4021 if (total < secs[i].off) {
4022 /* gap */
4023 btf_verifier_log(env, "Unsupported section found");
4024 return -EINVAL;
4025 }
4026 if (total > secs[i].off) {
4027 btf_verifier_log(env, "Section overlap found");
4028 return -EINVAL;
4029 }
4030 if (expected_total - total < secs[i].len) {
4031 btf_verifier_log(env,
4032 "Total section length too long");
4033 return -EINVAL;
4034 }
4035 total += secs[i].len;
4036 }
4037
4038 /* There is data other than hdr and known sections */
4039 if (expected_total != total) {
4040 btf_verifier_log(env, "Unsupported section found");
4041 return -EINVAL;
4042 }
4043
4044 return 0;
4045 }
4046
btf_parse_hdr(struct btf_verifier_env * env)4047 static int btf_parse_hdr(struct btf_verifier_env *env)
4048 {
4049 u32 hdr_len, hdr_copy, btf_data_size;
4050 const struct btf_header *hdr;
4051 struct btf *btf;
4052 int err;
4053
4054 btf = env->btf;
4055 btf_data_size = btf->data_size;
4056
4057 if (btf_data_size <
4058 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4059 btf_verifier_log(env, "hdr_len not found");
4060 return -EINVAL;
4061 }
4062
4063 hdr = btf->data;
4064 hdr_len = hdr->hdr_len;
4065 if (btf_data_size < hdr_len) {
4066 btf_verifier_log(env, "btf_header not found");
4067 return -EINVAL;
4068 }
4069
4070 /* Ensure the unsupported header fields are zero */
4071 if (hdr_len > sizeof(btf->hdr)) {
4072 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4073 u8 *end = btf->data + hdr_len;
4074
4075 for (; expected_zero < end; expected_zero++) {
4076 if (*expected_zero) {
4077 btf_verifier_log(env, "Unsupported btf_header");
4078 return -E2BIG;
4079 }
4080 }
4081 }
4082
4083 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4084 memcpy(&btf->hdr, btf->data, hdr_copy);
4085
4086 hdr = &btf->hdr;
4087
4088 btf_verifier_log_hdr(env, btf_data_size);
4089
4090 if (hdr->magic != BTF_MAGIC) {
4091 btf_verifier_log(env, "Invalid magic");
4092 return -EINVAL;
4093 }
4094
4095 if (hdr->version != BTF_VERSION) {
4096 btf_verifier_log(env, "Unsupported version");
4097 return -ENOTSUPP;
4098 }
4099
4100 if (hdr->flags) {
4101 btf_verifier_log(env, "Unsupported flags");
4102 return -ENOTSUPP;
4103 }
4104
4105 if (btf_data_size == hdr->hdr_len) {
4106 btf_verifier_log(env, "No data");
4107 return -EINVAL;
4108 }
4109
4110 err = btf_check_sec_info(env, btf_data_size);
4111 if (err)
4112 return err;
4113
4114 return 0;
4115 }
4116
btf_parse(void __user * btf_data,u32 btf_data_size,u32 log_level,char __user * log_ubuf,u32 log_size)4117 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
4118 u32 log_level, char __user *log_ubuf, u32 log_size)
4119 {
4120 struct btf_verifier_env *env = NULL;
4121 struct bpf_verifier_log *log;
4122 struct btf *btf = NULL;
4123 u8 *data;
4124 int err;
4125
4126 if (btf_data_size > BTF_MAX_SIZE)
4127 return ERR_PTR(-E2BIG);
4128
4129 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4130 if (!env)
4131 return ERR_PTR(-ENOMEM);
4132
4133 log = &env->log;
4134 if (log_level || log_ubuf || log_size) {
4135 /* user requested verbose verifier output
4136 * and supplied buffer to store the verification trace
4137 */
4138 log->level = log_level;
4139 log->ubuf = log_ubuf;
4140 log->len_total = log_size;
4141
4142 /* log attributes have to be sane */
4143 if (!bpf_verifier_log_attr_valid(log)) {
4144 err = -EINVAL;
4145 goto errout;
4146 }
4147 }
4148
4149 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4150 if (!btf) {
4151 err = -ENOMEM;
4152 goto errout;
4153 }
4154 env->btf = btf;
4155
4156 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4157 if (!data) {
4158 err = -ENOMEM;
4159 goto errout;
4160 }
4161
4162 btf->data = data;
4163 btf->data_size = btf_data_size;
4164
4165 if (copy_from_user(data, btf_data, btf_data_size)) {
4166 err = -EFAULT;
4167 goto errout;
4168 }
4169
4170 err = btf_parse_hdr(env);
4171 if (err)
4172 goto errout;
4173
4174 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4175
4176 err = btf_parse_str_sec(env);
4177 if (err)
4178 goto errout;
4179
4180 err = btf_parse_type_sec(env);
4181 if (err)
4182 goto errout;
4183
4184 if (log->level && bpf_verifier_log_full(log)) {
4185 err = -ENOSPC;
4186 goto errout;
4187 }
4188
4189 btf_verifier_env_free(env);
4190 refcount_set(&btf->refcnt, 1);
4191 return btf;
4192
4193 errout:
4194 btf_verifier_env_free(env);
4195 if (btf)
4196 btf_free(btf);
4197 return ERR_PTR(err);
4198 }
4199
4200 extern char __weak __start_BTF[];
4201 extern char __weak __stop_BTF[];
4202 extern struct btf *btf_vmlinux;
4203
4204 #define BPF_MAP_TYPE(_id, _ops)
4205 #define BPF_LINK_TYPE(_id, _name)
4206 static union {
4207 struct bpf_ctx_convert {
4208 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4209 prog_ctx_type _id##_prog; \
4210 kern_ctx_type _id##_kern;
4211 #include <linux/bpf_types.h>
4212 #undef BPF_PROG_TYPE
4213 } *__t;
4214 /* 't' is written once under lock. Read many times. */
4215 const struct btf_type *t;
4216 } bpf_ctx_convert;
4217 enum {
4218 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4219 __ctx_convert##_id,
4220 #include <linux/bpf_types.h>
4221 #undef BPF_PROG_TYPE
4222 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
4223 };
4224 static u8 bpf_ctx_convert_map[] = {
4225 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4226 [_id] = __ctx_convert##_id,
4227 #include <linux/bpf_types.h>
4228 #undef BPF_PROG_TYPE
4229 0, /* avoid empty array */
4230 };
4231 #undef BPF_MAP_TYPE
4232 #undef BPF_LINK_TYPE
4233
4234 static const struct btf_member *
btf_get_prog_ctx_type(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)4235 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
4236 const struct btf_type *t, enum bpf_prog_type prog_type,
4237 int arg)
4238 {
4239 const struct btf_type *conv_struct;
4240 const struct btf_type *ctx_struct;
4241 const struct btf_member *ctx_type;
4242 const char *tname, *ctx_tname;
4243
4244 conv_struct = bpf_ctx_convert.t;
4245 if (!conv_struct) {
4246 bpf_log(log, "btf_vmlinux is malformed\n");
4247 return NULL;
4248 }
4249 t = btf_type_by_id(btf, t->type);
4250 while (btf_type_is_modifier(t))
4251 t = btf_type_by_id(btf, t->type);
4252 if (!btf_type_is_struct(t)) {
4253 /* Only pointer to struct is supported for now.
4254 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4255 * is not supported yet.
4256 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4257 */
4258 if (log->level & BPF_LOG_LEVEL)
4259 bpf_log(log, "arg#%d type is not a struct\n", arg);
4260 return NULL;
4261 }
4262 tname = btf_name_by_offset(btf, t->name_off);
4263 if (!tname) {
4264 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4265 return NULL;
4266 }
4267 /* prog_type is valid bpf program type. No need for bounds check. */
4268 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4269 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4270 * Like 'struct __sk_buff'
4271 */
4272 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4273 if (!ctx_struct)
4274 /* should not happen */
4275 return NULL;
4276 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4277 if (!ctx_tname) {
4278 /* should not happen */
4279 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4280 return NULL;
4281 }
4282 /* only compare that prog's ctx type name is the same as
4283 * kernel expects. No need to compare field by field.
4284 * It's ok for bpf prog to do:
4285 * struct __sk_buff {};
4286 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4287 * { // no fields of skb are ever used }
4288 */
4289 if (strcmp(ctx_tname, tname))
4290 return NULL;
4291 return ctx_type;
4292 }
4293
4294 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4295 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4296 #define BPF_LINK_TYPE(_id, _name)
4297 #define BPF_MAP_TYPE(_id, _ops) \
4298 [_id] = &_ops,
4299 #include <linux/bpf_types.h>
4300 #undef BPF_PROG_TYPE
4301 #undef BPF_LINK_TYPE
4302 #undef BPF_MAP_TYPE
4303 };
4304
btf_vmlinux_map_ids_init(const struct btf * btf,struct bpf_verifier_log * log)4305 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4306 struct bpf_verifier_log *log)
4307 {
4308 const struct bpf_map_ops *ops;
4309 int i, btf_id;
4310
4311 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4312 ops = btf_vmlinux_map_ops[i];
4313 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4314 continue;
4315 if (!ops->map_btf_name || !ops->map_btf_id) {
4316 bpf_log(log, "map type %d is misconfigured\n", i);
4317 return -EINVAL;
4318 }
4319 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4320 BTF_KIND_STRUCT);
4321 if (btf_id < 0)
4322 return btf_id;
4323 *ops->map_btf_id = btf_id;
4324 }
4325
4326 return 0;
4327 }
4328
btf_translate_to_vmlinux(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)4329 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4330 struct btf *btf,
4331 const struct btf_type *t,
4332 enum bpf_prog_type prog_type,
4333 int arg)
4334 {
4335 const struct btf_member *prog_ctx_type, *kern_ctx_type;
4336
4337 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4338 if (!prog_ctx_type)
4339 return -ENOENT;
4340 kern_ctx_type = prog_ctx_type + 1;
4341 return kern_ctx_type->type;
4342 }
4343
4344 BTF_ID_LIST(bpf_ctx_convert_btf_id)
BTF_ID(struct,bpf_ctx_convert)4345 BTF_ID(struct, bpf_ctx_convert)
4346
4347 struct btf *btf_parse_vmlinux(void)
4348 {
4349 struct btf_verifier_env *env = NULL;
4350 struct bpf_verifier_log *log;
4351 struct btf *btf = NULL;
4352 int err;
4353
4354 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4355 if (!env)
4356 return ERR_PTR(-ENOMEM);
4357
4358 log = &env->log;
4359 log->level = BPF_LOG_KERNEL;
4360
4361 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4362 if (!btf) {
4363 err = -ENOMEM;
4364 goto errout;
4365 }
4366 env->btf = btf;
4367
4368 btf->data = __start_BTF;
4369 btf->data_size = __stop_BTF - __start_BTF;
4370
4371 err = btf_parse_hdr(env);
4372 if (err)
4373 goto errout;
4374
4375 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4376
4377 err = btf_parse_str_sec(env);
4378 if (err)
4379 goto errout;
4380
4381 err = btf_check_all_metas(env);
4382 if (err)
4383 goto errout;
4384
4385 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
4386 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4387
4388 /* find bpf map structs for map_ptr access checking */
4389 err = btf_vmlinux_map_ids_init(btf, log);
4390 if (err < 0)
4391 goto errout;
4392
4393 bpf_struct_ops_init(btf, log);
4394
4395 btf_verifier_env_free(env);
4396 refcount_set(&btf->refcnt, 1);
4397 return btf;
4398
4399 errout:
4400 btf_verifier_env_free(env);
4401 if (btf) {
4402 kvfree(btf->types);
4403 kfree(btf);
4404 }
4405 return ERR_PTR(err);
4406 }
4407
bpf_prog_get_target_btf(const struct bpf_prog * prog)4408 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4409 {
4410 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4411
4412 if (tgt_prog) {
4413 return tgt_prog->aux->btf;
4414 } else {
4415 return btf_vmlinux;
4416 }
4417 }
4418
is_string_ptr(struct btf * btf,const struct btf_type * t)4419 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4420 {
4421 /* t comes in already as a pointer */
4422 t = btf_type_by_id(btf, t->type);
4423
4424 /* allow const */
4425 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4426 t = btf_type_by_id(btf, t->type);
4427
4428 /* char, signed char, unsigned char */
4429 return btf_type_is_int(t) && t->size == 1;
4430 }
4431
btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)4432 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4433 const struct bpf_prog *prog,
4434 struct bpf_insn_access_aux *info)
4435 {
4436 const struct btf_type *t = prog->aux->attach_func_proto;
4437 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4438 struct btf *btf = bpf_prog_get_target_btf(prog);
4439 const char *tname = prog->aux->attach_func_name;
4440 struct bpf_verifier_log *log = info->log;
4441 const struct btf_param *args;
4442 u32 nr_args, arg;
4443 int i, ret;
4444
4445 if (off % 8) {
4446 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4447 tname, off);
4448 return false;
4449 }
4450 arg = off / 8;
4451 args = (const struct btf_param *)(t + 1);
4452 /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
4453 nr_args = t ? btf_type_vlen(t) : 5;
4454 if (prog->aux->attach_btf_trace) {
4455 /* skip first 'void *__data' argument in btf_trace_##name typedef */
4456 args++;
4457 nr_args--;
4458 }
4459
4460 if (arg > nr_args) {
4461 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4462 tname, arg + 1);
4463 return false;
4464 }
4465
4466 if (arg == nr_args) {
4467 switch (prog->expected_attach_type) {
4468 case BPF_LSM_MAC:
4469 case BPF_TRACE_FEXIT:
4470 /* When LSM programs are attached to void LSM hooks
4471 * they use FEXIT trampolines and when attached to
4472 * int LSM hooks, they use MODIFY_RETURN trampolines.
4473 *
4474 * While the LSM programs are BPF_MODIFY_RETURN-like
4475 * the check:
4476 *
4477 * if (ret_type != 'int')
4478 * return -EINVAL;
4479 *
4480 * is _not_ done here. This is still safe as LSM hooks
4481 * have only void and int return types.
4482 */
4483 if (!t)
4484 return true;
4485 t = btf_type_by_id(btf, t->type);
4486 break;
4487 case BPF_MODIFY_RETURN:
4488 /* For now the BPF_MODIFY_RETURN can only be attached to
4489 * functions that return an int.
4490 */
4491 if (!t)
4492 return false;
4493
4494 t = btf_type_skip_modifiers(btf, t->type, NULL);
4495 if (!btf_type_is_small_int(t)) {
4496 bpf_log(log,
4497 "ret type %s not allowed for fmod_ret\n",
4498 btf_kind_str[BTF_INFO_KIND(t->info)]);
4499 return false;
4500 }
4501 break;
4502 default:
4503 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4504 tname, arg + 1);
4505 return false;
4506 }
4507 } else {
4508 if (!t)
4509 /* Default prog with 5 args */
4510 return true;
4511 t = btf_type_by_id(btf, args[arg].type);
4512 }
4513
4514 /* skip modifiers */
4515 while (btf_type_is_modifier(t))
4516 t = btf_type_by_id(btf, t->type);
4517 if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4518 /* accessing a scalar */
4519 return true;
4520 if (!btf_type_is_ptr(t)) {
4521 bpf_log(log,
4522 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4523 tname, arg,
4524 __btf_name_by_offset(btf, t->name_off),
4525 btf_kind_str[BTF_INFO_KIND(t->info)]);
4526 return false;
4527 }
4528
4529 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4530 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4531 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4532 u32 type, flag;
4533
4534 type = base_type(ctx_arg_info->reg_type);
4535 flag = type_flag(ctx_arg_info->reg_type);
4536 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
4537 (flag & PTR_MAYBE_NULL)) {
4538 info->reg_type = ctx_arg_info->reg_type;
4539 return true;
4540 }
4541 }
4542
4543 if (t->type == 0)
4544 /* This is a pointer to void.
4545 * It is the same as scalar from the verifier safety pov.
4546 * No further pointer walking is allowed.
4547 */
4548 return true;
4549
4550 if (is_string_ptr(btf, t))
4551 return true;
4552
4553 /* this is a pointer to another type */
4554 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4555 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4556
4557 if (ctx_arg_info->offset == off) {
4558 info->reg_type = ctx_arg_info->reg_type;
4559 info->btf_id = ctx_arg_info->btf_id;
4560 return true;
4561 }
4562 }
4563
4564 info->reg_type = PTR_TO_BTF_ID;
4565 if (tgt_prog) {
4566 enum bpf_prog_type tgt_type;
4567
4568 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4569 tgt_type = tgt_prog->aux->saved_dst_prog_type;
4570 else
4571 tgt_type = tgt_prog->type;
4572
4573 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4574 if (ret > 0) {
4575 info->btf_id = ret;
4576 return true;
4577 } else {
4578 return false;
4579 }
4580 }
4581
4582 info->btf_id = t->type;
4583 t = btf_type_by_id(btf, t->type);
4584 /* skip modifiers */
4585 while (btf_type_is_modifier(t)) {
4586 info->btf_id = t->type;
4587 t = btf_type_by_id(btf, t->type);
4588 }
4589 if (!btf_type_is_struct(t)) {
4590 bpf_log(log,
4591 "func '%s' arg%d type %s is not a struct\n",
4592 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4593 return false;
4594 }
4595 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
4596 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
4597 __btf_name_by_offset(btf, t->name_off));
4598 return true;
4599 }
4600
4601 enum bpf_struct_walk_result {
4602 /* < 0 error */
4603 WALK_SCALAR = 0,
4604 WALK_PTR,
4605 WALK_STRUCT,
4606 };
4607
btf_struct_walk(struct bpf_verifier_log * log,const struct btf_type * t,int off,int size,u32 * next_btf_id)4608 static int btf_struct_walk(struct bpf_verifier_log *log,
4609 const struct btf_type *t, int off, int size,
4610 u32 *next_btf_id)
4611 {
4612 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4613 const struct btf_type *mtype, *elem_type = NULL;
4614 const struct btf_member *member;
4615 const char *tname, *mname;
4616 u32 vlen, elem_id, mid;
4617
4618 again:
4619 tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
4620 if (!btf_type_is_struct(t)) {
4621 bpf_log(log, "Type '%s' is not a struct\n", tname);
4622 return -EINVAL;
4623 }
4624
4625 vlen = btf_type_vlen(t);
4626 if (off + size > t->size) {
4627 /* If the last element is a variable size array, we may
4628 * need to relax the rule.
4629 */
4630 struct btf_array *array_elem;
4631
4632 if (vlen == 0)
4633 goto error;
4634
4635 member = btf_type_member(t) + vlen - 1;
4636 mtype = btf_type_skip_modifiers(btf_vmlinux, member->type,
4637 NULL);
4638 if (!btf_type_is_array(mtype))
4639 goto error;
4640
4641 array_elem = (struct btf_array *)(mtype + 1);
4642 if (array_elem->nelems != 0)
4643 goto error;
4644
4645 moff = btf_member_bit_offset(t, member) / 8;
4646 if (off < moff)
4647 goto error;
4648
4649 /* Only allow structure for now, can be relaxed for
4650 * other types later.
4651 */
4652 t = btf_type_skip_modifiers(btf_vmlinux, array_elem->type,
4653 NULL);
4654 if (!btf_type_is_struct(t))
4655 goto error;
4656
4657 off = (off - moff) % t->size;
4658 goto again;
4659
4660 error:
4661 bpf_log(log, "access beyond struct %s at off %u size %u\n",
4662 tname, off, size);
4663 return -EACCES;
4664 }
4665
4666 for_each_member(i, t, member) {
4667 /* offset of the field in bytes */
4668 moff = btf_member_bit_offset(t, member) / 8;
4669 if (off + size <= moff)
4670 /* won't find anything, field is already too far */
4671 break;
4672
4673 if (btf_member_bitfield_size(t, member)) {
4674 u32 end_bit = btf_member_bit_offset(t, member) +
4675 btf_member_bitfield_size(t, member);
4676
4677 /* off <= moff instead of off == moff because clang
4678 * does not generate a BTF member for anonymous
4679 * bitfield like the ":16" here:
4680 * struct {
4681 * int :16;
4682 * int x:8;
4683 * };
4684 */
4685 if (off <= moff &&
4686 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
4687 return WALK_SCALAR;
4688
4689 /* off may be accessing a following member
4690 *
4691 * or
4692 *
4693 * Doing partial access at either end of this
4694 * bitfield. Continue on this case also to
4695 * treat it as not accessing this bitfield
4696 * and eventually error out as field not
4697 * found to keep it simple.
4698 * It could be relaxed if there was a legit
4699 * partial access case later.
4700 */
4701 continue;
4702 }
4703
4704 /* In case of "off" is pointing to holes of a struct */
4705 if (off < moff)
4706 break;
4707
4708 /* type of the field */
4709 mid = member->type;
4710 mtype = btf_type_by_id(btf_vmlinux, member->type);
4711 mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
4712
4713 mtype = __btf_resolve_size(btf_vmlinux, mtype, &msize,
4714 &elem_type, &elem_id, &total_nelems,
4715 &mid);
4716 if (IS_ERR(mtype)) {
4717 bpf_log(log, "field %s doesn't have size\n", mname);
4718 return -EFAULT;
4719 }
4720
4721 mtrue_end = moff + msize;
4722 if (off >= mtrue_end)
4723 /* no overlap with member, keep iterating */
4724 continue;
4725
4726 if (btf_type_is_array(mtype)) {
4727 u32 elem_idx;
4728
4729 /* __btf_resolve_size() above helps to
4730 * linearize a multi-dimensional array.
4731 *
4732 * The logic here is treating an array
4733 * in a struct as the following way:
4734 *
4735 * struct outer {
4736 * struct inner array[2][2];
4737 * };
4738 *
4739 * looks like:
4740 *
4741 * struct outer {
4742 * struct inner array_elem0;
4743 * struct inner array_elem1;
4744 * struct inner array_elem2;
4745 * struct inner array_elem3;
4746 * };
4747 *
4748 * When accessing outer->array[1][0], it moves
4749 * moff to "array_elem2", set mtype to
4750 * "struct inner", and msize also becomes
4751 * sizeof(struct inner). Then most of the
4752 * remaining logic will fall through without
4753 * caring the current member is an array or
4754 * not.
4755 *
4756 * Unlike mtype/msize/moff, mtrue_end does not
4757 * change. The naming difference ("_true") tells
4758 * that it is not always corresponding to
4759 * the current mtype/msize/moff.
4760 * It is the true end of the current
4761 * member (i.e. array in this case). That
4762 * will allow an int array to be accessed like
4763 * a scratch space,
4764 * i.e. allow access beyond the size of
4765 * the array's element as long as it is
4766 * within the mtrue_end boundary.
4767 */
4768
4769 /* skip empty array */
4770 if (moff == mtrue_end)
4771 continue;
4772
4773 msize /= total_nelems;
4774 elem_idx = (off - moff) / msize;
4775 moff += elem_idx * msize;
4776 mtype = elem_type;
4777 mid = elem_id;
4778 }
4779
4780 /* the 'off' we're looking for is either equal to start
4781 * of this field or inside of this struct
4782 */
4783 if (btf_type_is_struct(mtype)) {
4784 /* our field must be inside that union or struct */
4785 t = mtype;
4786
4787 /* return if the offset matches the member offset */
4788 if (off == moff) {
4789 *next_btf_id = mid;
4790 return WALK_STRUCT;
4791 }
4792
4793 /* adjust offset we're looking for */
4794 off -= moff;
4795 goto again;
4796 }
4797
4798 if (btf_type_is_ptr(mtype)) {
4799 const struct btf_type *stype;
4800 u32 id;
4801
4802 if (msize != size || off != moff) {
4803 bpf_log(log,
4804 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
4805 mname, moff, tname, off, size);
4806 return -EACCES;
4807 }
4808 stype = btf_type_skip_modifiers(btf_vmlinux, mtype->type, &id);
4809 if (btf_type_is_struct(stype)) {
4810 *next_btf_id = id;
4811 return WALK_PTR;
4812 }
4813 }
4814
4815 /* Allow more flexible access within an int as long as
4816 * it is within mtrue_end.
4817 * Since mtrue_end could be the end of an array,
4818 * that also allows using an array of int as a scratch
4819 * space. e.g. skb->cb[].
4820 */
4821 if (off + size > mtrue_end) {
4822 bpf_log(log,
4823 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
4824 mname, mtrue_end, tname, off, size);
4825 return -EACCES;
4826 }
4827
4828 return WALK_SCALAR;
4829 }
4830 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
4831 return -EINVAL;
4832 }
4833
btf_struct_access(struct bpf_verifier_log * log,const struct btf_type * t,int off,int size,enum bpf_access_type atype __maybe_unused,u32 * next_btf_id)4834 int btf_struct_access(struct bpf_verifier_log *log,
4835 const struct btf_type *t, int off, int size,
4836 enum bpf_access_type atype __maybe_unused,
4837 u32 *next_btf_id)
4838 {
4839 int err;
4840 u32 id;
4841
4842 do {
4843 err = btf_struct_walk(log, t, off, size, &id);
4844
4845 switch (err) {
4846 case WALK_PTR:
4847 /* If we found the pointer or scalar on t+off,
4848 * we're done.
4849 */
4850 *next_btf_id = id;
4851 return PTR_TO_BTF_ID;
4852 case WALK_SCALAR:
4853 return SCALAR_VALUE;
4854 case WALK_STRUCT:
4855 /* We found nested struct, so continue the search
4856 * by diving in it. At this point the offset is
4857 * aligned with the new type, so set it to 0.
4858 */
4859 t = btf_type_by_id(btf_vmlinux, id);
4860 off = 0;
4861 break;
4862 default:
4863 /* It's either error or unknown return value..
4864 * scream and leave.
4865 */
4866 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
4867 return -EINVAL;
4868 return err;
4869 }
4870 } while (t);
4871
4872 return -EINVAL;
4873 }
4874
btf_struct_ids_match(struct bpf_verifier_log * log,int off,u32 id,u32 need_type_id)4875 bool btf_struct_ids_match(struct bpf_verifier_log *log,
4876 int off, u32 id, u32 need_type_id)
4877 {
4878 const struct btf_type *type;
4879 int err;
4880
4881 /* Are we already done? */
4882 if (need_type_id == id && off == 0)
4883 return true;
4884
4885 again:
4886 type = btf_type_by_id(btf_vmlinux, id);
4887 if (!type)
4888 return false;
4889 err = btf_struct_walk(log, type, off, 1, &id);
4890 if (err != WALK_STRUCT)
4891 return false;
4892
4893 /* We found nested struct object. If it matches
4894 * the requested ID, we're done. Otherwise let's
4895 * continue the search with offset 0 in the new
4896 * type.
4897 */
4898 if (need_type_id != id) {
4899 off = 0;
4900 goto again;
4901 }
4902
4903 return true;
4904 }
4905
__get_type_size(struct btf * btf,u32 btf_id,const struct btf_type ** bad_type)4906 static int __get_type_size(struct btf *btf, u32 btf_id,
4907 const struct btf_type **bad_type)
4908 {
4909 const struct btf_type *t;
4910
4911 if (!btf_id)
4912 /* void */
4913 return 0;
4914 t = btf_type_by_id(btf, btf_id);
4915 while (t && btf_type_is_modifier(t))
4916 t = btf_type_by_id(btf, t->type);
4917 if (!t) {
4918 *bad_type = btf->types[0];
4919 return -EINVAL;
4920 }
4921 if (btf_type_is_ptr(t))
4922 /* kernel size of pointer. Not BPF's size of pointer*/
4923 return sizeof(void *);
4924 if (btf_type_is_int(t) || btf_type_is_enum(t))
4925 return t->size;
4926 *bad_type = t;
4927 return -EINVAL;
4928 }
4929
btf_distill_func_proto(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * func,const char * tname,struct btf_func_model * m)4930 int btf_distill_func_proto(struct bpf_verifier_log *log,
4931 struct btf *btf,
4932 const struct btf_type *func,
4933 const char *tname,
4934 struct btf_func_model *m)
4935 {
4936 const struct btf_param *args;
4937 const struct btf_type *t;
4938 u32 i, nargs;
4939 int ret;
4940
4941 if (!func) {
4942 /* BTF function prototype doesn't match the verifier types.
4943 * Fall back to 5 u64 args.
4944 */
4945 for (i = 0; i < 5; i++)
4946 m->arg_size[i] = 8;
4947 m->ret_size = 8;
4948 m->nr_args = 5;
4949 return 0;
4950 }
4951 args = (const struct btf_param *)(func + 1);
4952 nargs = btf_type_vlen(func);
4953 if (nargs >= MAX_BPF_FUNC_ARGS) {
4954 bpf_log(log,
4955 "The function %s has %d arguments. Too many.\n",
4956 tname, nargs);
4957 return -EINVAL;
4958 }
4959 ret = __get_type_size(btf, func->type, &t);
4960 if (ret < 0) {
4961 bpf_log(log,
4962 "The function %s return type %s is unsupported.\n",
4963 tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
4964 return -EINVAL;
4965 }
4966 m->ret_size = ret;
4967
4968 for (i = 0; i < nargs; i++) {
4969 if (i == nargs - 1 && args[i].type == 0) {
4970 bpf_log(log,
4971 "The function %s with variable args is unsupported.\n",
4972 tname);
4973 return -EINVAL;
4974 }
4975 ret = __get_type_size(btf, args[i].type, &t);
4976 if (ret < 0) {
4977 bpf_log(log,
4978 "The function %s arg%d type %s is unsupported.\n",
4979 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4980 return -EINVAL;
4981 }
4982 if (ret == 0) {
4983 bpf_log(log,
4984 "The function %s has malformed void argument.\n",
4985 tname);
4986 return -EINVAL;
4987 }
4988 m->arg_size[i] = ret;
4989 }
4990 m->nr_args = nargs;
4991 return 0;
4992 }
4993
4994 /* Compare BTFs of two functions assuming only scalars and pointers to context.
4995 * t1 points to BTF_KIND_FUNC in btf1
4996 * t2 points to BTF_KIND_FUNC in btf2
4997 * Returns:
4998 * EINVAL - function prototype mismatch
4999 * EFAULT - verifier bug
5000 * 0 - 99% match. The last 1% is validated by the verifier.
5001 */
btf_check_func_type_match(struct bpf_verifier_log * log,struct btf * btf1,const struct btf_type * t1,struct btf * btf2,const struct btf_type * t2)5002 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5003 struct btf *btf1, const struct btf_type *t1,
5004 struct btf *btf2, const struct btf_type *t2)
5005 {
5006 const struct btf_param *args1, *args2;
5007 const char *fn1, *fn2, *s1, *s2;
5008 u32 nargs1, nargs2, i;
5009
5010 fn1 = btf_name_by_offset(btf1, t1->name_off);
5011 fn2 = btf_name_by_offset(btf2, t2->name_off);
5012
5013 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5014 bpf_log(log, "%s() is not a global function\n", fn1);
5015 return -EINVAL;
5016 }
5017 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5018 bpf_log(log, "%s() is not a global function\n", fn2);
5019 return -EINVAL;
5020 }
5021
5022 t1 = btf_type_by_id(btf1, t1->type);
5023 if (!t1 || !btf_type_is_func_proto(t1))
5024 return -EFAULT;
5025 t2 = btf_type_by_id(btf2, t2->type);
5026 if (!t2 || !btf_type_is_func_proto(t2))
5027 return -EFAULT;
5028
5029 args1 = (const struct btf_param *)(t1 + 1);
5030 nargs1 = btf_type_vlen(t1);
5031 args2 = (const struct btf_param *)(t2 + 1);
5032 nargs2 = btf_type_vlen(t2);
5033
5034 if (nargs1 != nargs2) {
5035 bpf_log(log, "%s() has %d args while %s() has %d args\n",
5036 fn1, nargs1, fn2, nargs2);
5037 return -EINVAL;
5038 }
5039
5040 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5041 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5042 if (t1->info != t2->info) {
5043 bpf_log(log,
5044 "Return type %s of %s() doesn't match type %s of %s()\n",
5045 btf_type_str(t1), fn1,
5046 btf_type_str(t2), fn2);
5047 return -EINVAL;
5048 }
5049
5050 for (i = 0; i < nargs1; i++) {
5051 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5052 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5053
5054 if (t1->info != t2->info) {
5055 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5056 i, fn1, btf_type_str(t1),
5057 fn2, btf_type_str(t2));
5058 return -EINVAL;
5059 }
5060 if (btf_type_has_size(t1) && t1->size != t2->size) {
5061 bpf_log(log,
5062 "arg%d in %s() has size %d while %s() has %d\n",
5063 i, fn1, t1->size,
5064 fn2, t2->size);
5065 return -EINVAL;
5066 }
5067
5068 /* global functions are validated with scalars and pointers
5069 * to context only. And only global functions can be replaced.
5070 * Hence type check only those types.
5071 */
5072 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5073 continue;
5074 if (!btf_type_is_ptr(t1)) {
5075 bpf_log(log,
5076 "arg%d in %s() has unrecognized type\n",
5077 i, fn1);
5078 return -EINVAL;
5079 }
5080 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5081 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5082 if (!btf_type_is_struct(t1)) {
5083 bpf_log(log,
5084 "arg%d in %s() is not a pointer to context\n",
5085 i, fn1);
5086 return -EINVAL;
5087 }
5088 if (!btf_type_is_struct(t2)) {
5089 bpf_log(log,
5090 "arg%d in %s() is not a pointer to context\n",
5091 i, fn2);
5092 return -EINVAL;
5093 }
5094 /* This is an optional check to make program writing easier.
5095 * Compare names of structs and report an error to the user.
5096 * btf_prepare_func_args() already checked that t2 struct
5097 * is a context type. btf_prepare_func_args() will check
5098 * later that t1 struct is a context type as well.
5099 */
5100 s1 = btf_name_by_offset(btf1, t1->name_off);
5101 s2 = btf_name_by_offset(btf2, t2->name_off);
5102 if (strcmp(s1, s2)) {
5103 bpf_log(log,
5104 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5105 i, fn1, s1, fn2, s2);
5106 return -EINVAL;
5107 }
5108 }
5109 return 0;
5110 }
5111
5112 /* Compare BTFs of given program with BTF of target program */
btf_check_type_match(struct bpf_verifier_log * log,const struct bpf_prog * prog,struct btf * btf2,const struct btf_type * t2)5113 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5114 struct btf *btf2, const struct btf_type *t2)
5115 {
5116 struct btf *btf1 = prog->aux->btf;
5117 const struct btf_type *t1;
5118 u32 btf_id = 0;
5119
5120 if (!prog->aux->func_info) {
5121 bpf_log(log, "Program extension requires BTF\n");
5122 return -EINVAL;
5123 }
5124
5125 btf_id = prog->aux->func_info[0].type_id;
5126 if (!btf_id)
5127 return -EFAULT;
5128
5129 t1 = btf_type_by_id(btf1, btf_id);
5130 if (!t1 || !btf_type_is_func(t1))
5131 return -EFAULT;
5132
5133 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5134 }
5135
5136 /* Compare BTF of a function with given bpf_reg_state.
5137 * Returns:
5138 * EFAULT - there is a verifier bug. Abort verification.
5139 * EINVAL - there is a type mismatch or BTF is not available.
5140 * 0 - BTF matches with what bpf_reg_state expects.
5141 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5142 */
btf_check_func_arg_match(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * reg)5143 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
5144 struct bpf_reg_state *reg)
5145 {
5146 struct bpf_verifier_log *log = &env->log;
5147 struct bpf_prog *prog = env->prog;
5148 struct btf *btf = prog->aux->btf;
5149 const struct btf_param *args;
5150 const struct btf_type *t;
5151 u32 i, nargs, btf_id;
5152 const char *tname;
5153
5154 if (!prog->aux->func_info)
5155 return -EINVAL;
5156
5157 btf_id = prog->aux->func_info[subprog].type_id;
5158 if (!btf_id)
5159 return -EFAULT;
5160
5161 if (prog->aux->func_info_aux[subprog].unreliable)
5162 return -EINVAL;
5163
5164 t = btf_type_by_id(btf, btf_id);
5165 if (!t || !btf_type_is_func(t)) {
5166 /* These checks were already done by the verifier while loading
5167 * struct bpf_func_info
5168 */
5169 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5170 subprog);
5171 return -EFAULT;
5172 }
5173 tname = btf_name_by_offset(btf, t->name_off);
5174
5175 t = btf_type_by_id(btf, t->type);
5176 if (!t || !btf_type_is_func_proto(t)) {
5177 bpf_log(log, "Invalid BTF of func %s\n", tname);
5178 return -EFAULT;
5179 }
5180 args = (const struct btf_param *)(t + 1);
5181 nargs = btf_type_vlen(t);
5182 if (nargs > 5) {
5183 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
5184 goto out;
5185 }
5186 /* check that BTF function arguments match actual types that the
5187 * verifier sees.
5188 */
5189 for (i = 0; i < nargs; i++) {
5190 t = btf_type_by_id(btf, args[i].type);
5191 while (btf_type_is_modifier(t))
5192 t = btf_type_by_id(btf, t->type);
5193 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5194 if (reg[i + 1].type == SCALAR_VALUE)
5195 continue;
5196 bpf_log(log, "R%d is not a scalar\n", i + 1);
5197 goto out;
5198 }
5199 if (btf_type_is_ptr(t)) {
5200 if (reg[i + 1].type == SCALAR_VALUE) {
5201 bpf_log(log, "R%d is not a pointer\n", i + 1);
5202 goto out;
5203 }
5204 /* If function expects ctx type in BTF check that caller
5205 * is passing PTR_TO_CTX.
5206 */
5207 if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
5208 if (reg[i + 1].type != PTR_TO_CTX) {
5209 bpf_log(log,
5210 "arg#%d expected pointer to ctx, but got %s\n",
5211 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5212 goto out;
5213 }
5214 if (check_ptr_off_reg(env, ®[i + 1], i + 1))
5215 goto out;
5216 continue;
5217 }
5218 }
5219 bpf_log(log, "Unrecognized arg#%d type %s\n",
5220 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5221 goto out;
5222 }
5223 return 0;
5224 out:
5225 /* Compiler optimizations can remove arguments from static functions
5226 * or mismatched type can be passed into a global function.
5227 * In such cases mark the function as unreliable from BTF point of view.
5228 */
5229 prog->aux->func_info_aux[subprog].unreliable = true;
5230 return -EINVAL;
5231 }
5232
5233 /* Convert BTF of a function into bpf_reg_state if possible
5234 * Returns:
5235 * EFAULT - there is a verifier bug. Abort verification.
5236 * EINVAL - cannot convert BTF.
5237 * 0 - Successfully converted BTF into bpf_reg_state
5238 * (either PTR_TO_CTX or SCALAR_VALUE).
5239 */
btf_prepare_func_args(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * reg)5240 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5241 struct bpf_reg_state *reg)
5242 {
5243 struct bpf_verifier_log *log = &env->log;
5244 struct bpf_prog *prog = env->prog;
5245 enum bpf_prog_type prog_type = prog->type;
5246 struct btf *btf = prog->aux->btf;
5247 const struct btf_param *args;
5248 const struct btf_type *t;
5249 u32 i, nargs, btf_id;
5250 const char *tname;
5251
5252 if (!prog->aux->func_info ||
5253 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5254 bpf_log(log, "Verifier bug\n");
5255 return -EFAULT;
5256 }
5257
5258 btf_id = prog->aux->func_info[subprog].type_id;
5259 if (!btf_id) {
5260 bpf_log(log, "Global functions need valid BTF\n");
5261 return -EFAULT;
5262 }
5263
5264 t = btf_type_by_id(btf, btf_id);
5265 if (!t || !btf_type_is_func(t)) {
5266 /* These checks were already done by the verifier while loading
5267 * struct bpf_func_info
5268 */
5269 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5270 subprog);
5271 return -EFAULT;
5272 }
5273 tname = btf_name_by_offset(btf, t->name_off);
5274
5275 if (log->level & BPF_LOG_LEVEL)
5276 bpf_log(log, "Validating %s() func#%d...\n",
5277 tname, subprog);
5278
5279 if (prog->aux->func_info_aux[subprog].unreliable) {
5280 bpf_log(log, "Verifier bug in function %s()\n", tname);
5281 return -EFAULT;
5282 }
5283 if (prog_type == BPF_PROG_TYPE_EXT)
5284 prog_type = prog->aux->dst_prog->type;
5285
5286 t = btf_type_by_id(btf, t->type);
5287 if (!t || !btf_type_is_func_proto(t)) {
5288 bpf_log(log, "Invalid type of function %s()\n", tname);
5289 return -EFAULT;
5290 }
5291 args = (const struct btf_param *)(t + 1);
5292 nargs = btf_type_vlen(t);
5293 if (nargs > 5) {
5294 bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
5295 tname, nargs);
5296 return -EINVAL;
5297 }
5298 /* check that function returns int */
5299 t = btf_type_by_id(btf, t->type);
5300 while (btf_type_is_modifier(t))
5301 t = btf_type_by_id(btf, t->type);
5302 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5303 bpf_log(log,
5304 "Global function %s() doesn't return scalar. Only those are supported.\n",
5305 tname);
5306 return -EINVAL;
5307 }
5308 /* Convert BTF function arguments into verifier types.
5309 * Only PTR_TO_CTX and SCALAR are supported atm.
5310 */
5311 for (i = 0; i < nargs; i++) {
5312 t = btf_type_by_id(btf, args[i].type);
5313 while (btf_type_is_modifier(t))
5314 t = btf_type_by_id(btf, t->type);
5315 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5316 reg[i + 1].type = SCALAR_VALUE;
5317 continue;
5318 }
5319 if (btf_type_is_ptr(t) &&
5320 btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5321 reg[i + 1].type = PTR_TO_CTX;
5322 continue;
5323 }
5324 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5325 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5326 return -EINVAL;
5327 }
5328 return 0;
5329 }
5330
btf_type_show(const struct btf * btf,u32 type_id,void * obj,struct btf_show * show)5331 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5332 struct btf_show *show)
5333 {
5334 const struct btf_type *t = btf_type_by_id(btf, type_id);
5335
5336 show->btf = btf;
5337 memset(&show->state, 0, sizeof(show->state));
5338 memset(&show->obj, 0, sizeof(show->obj));
5339
5340 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5341 }
5342
btf_seq_show(struct btf_show * show,const char * fmt,va_list args)5343 static void btf_seq_show(struct btf_show *show, const char *fmt,
5344 va_list args)
5345 {
5346 seq_vprintf((struct seq_file *)show->target, fmt, args);
5347 }
5348
btf_type_seq_show_flags(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m,u64 flags)5349 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5350 void *obj, struct seq_file *m, u64 flags)
5351 {
5352 struct btf_show sseq;
5353
5354 sseq.target = m;
5355 sseq.showfn = btf_seq_show;
5356 sseq.flags = flags;
5357
5358 btf_type_show(btf, type_id, obj, &sseq);
5359
5360 return sseq.state.status;
5361 }
5362
btf_type_seq_show(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m)5363 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5364 struct seq_file *m)
5365 {
5366 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
5367 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5368 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5369 }
5370
5371 struct btf_show_snprintf {
5372 struct btf_show show;
5373 int len_left; /* space left in string */
5374 int len; /* length we would have written */
5375 };
5376
btf_snprintf_show(struct btf_show * show,const char * fmt,va_list args)5377 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5378 va_list args)
5379 {
5380 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5381 int len;
5382
5383 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5384
5385 if (len < 0) {
5386 ssnprintf->len_left = 0;
5387 ssnprintf->len = len;
5388 } else if (len > ssnprintf->len_left) {
5389 /* no space, drive on to get length we would have written */
5390 ssnprintf->len_left = 0;
5391 ssnprintf->len += len;
5392 } else {
5393 ssnprintf->len_left -= len;
5394 ssnprintf->len += len;
5395 show->target += len;
5396 }
5397 }
5398
btf_type_snprintf_show(const struct btf * btf,u32 type_id,void * obj,char * buf,int len,u64 flags)5399 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5400 char *buf, int len, u64 flags)
5401 {
5402 struct btf_show_snprintf ssnprintf;
5403
5404 ssnprintf.show.target = buf;
5405 ssnprintf.show.flags = flags;
5406 ssnprintf.show.showfn = btf_snprintf_show;
5407 ssnprintf.len_left = len;
5408 ssnprintf.len = 0;
5409
5410 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5411
5412 /* If we encontered an error, return it. */
5413 if (ssnprintf.show.state.status)
5414 return ssnprintf.show.state.status;
5415
5416 /* Otherwise return length we would have written */
5417 return ssnprintf.len;
5418 }
5419
5420 #ifdef CONFIG_PROC_FS
bpf_btf_show_fdinfo(struct seq_file * m,struct file * filp)5421 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5422 {
5423 const struct btf *btf = filp->private_data;
5424
5425 seq_printf(m, "btf_id:\t%u\n", btf->id);
5426 }
5427 #endif
5428
btf_release(struct inode * inode,struct file * filp)5429 static int btf_release(struct inode *inode, struct file *filp)
5430 {
5431 btf_put(filp->private_data);
5432 return 0;
5433 }
5434
5435 const struct file_operations btf_fops = {
5436 #ifdef CONFIG_PROC_FS
5437 .show_fdinfo = bpf_btf_show_fdinfo,
5438 #endif
5439 .release = btf_release,
5440 };
5441
__btf_new_fd(struct btf * btf)5442 static int __btf_new_fd(struct btf *btf)
5443 {
5444 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5445 }
5446
btf_new_fd(const union bpf_attr * attr)5447 int btf_new_fd(const union bpf_attr *attr)
5448 {
5449 struct btf *btf;
5450 int ret;
5451
5452 btf = btf_parse(u64_to_user_ptr(attr->btf),
5453 attr->btf_size, attr->btf_log_level,
5454 u64_to_user_ptr(attr->btf_log_buf),
5455 attr->btf_log_size);
5456 if (IS_ERR(btf))
5457 return PTR_ERR(btf);
5458
5459 ret = btf_alloc_id(btf);
5460 if (ret) {
5461 btf_free(btf);
5462 return ret;
5463 }
5464
5465 /*
5466 * The BTF ID is published to the userspace.
5467 * All BTF free must go through call_rcu() from
5468 * now on (i.e. free by calling btf_put()).
5469 */
5470
5471 ret = __btf_new_fd(btf);
5472 if (ret < 0)
5473 btf_put(btf);
5474
5475 return ret;
5476 }
5477
btf_get_by_fd(int fd)5478 struct btf *btf_get_by_fd(int fd)
5479 {
5480 struct btf *btf;
5481 struct fd f;
5482
5483 f = fdget(fd);
5484
5485 if (!f.file)
5486 return ERR_PTR(-EBADF);
5487
5488 if (f.file->f_op != &btf_fops) {
5489 fdput(f);
5490 return ERR_PTR(-EINVAL);
5491 }
5492
5493 btf = f.file->private_data;
5494 refcount_inc(&btf->refcnt);
5495 fdput(f);
5496
5497 return btf;
5498 }
5499
btf_get_info_by_fd(const struct btf * btf,const union bpf_attr * attr,union bpf_attr __user * uattr)5500 int btf_get_info_by_fd(const struct btf *btf,
5501 const union bpf_attr *attr,
5502 union bpf_attr __user *uattr)
5503 {
5504 struct bpf_btf_info __user *uinfo;
5505 struct bpf_btf_info info;
5506 u32 info_copy, btf_copy;
5507 void __user *ubtf;
5508 u32 uinfo_len;
5509
5510 uinfo = u64_to_user_ptr(attr->info.info);
5511 uinfo_len = attr->info.info_len;
5512
5513 info_copy = min_t(u32, uinfo_len, sizeof(info));
5514 memset(&info, 0, sizeof(info));
5515 if (copy_from_user(&info, uinfo, info_copy))
5516 return -EFAULT;
5517
5518 info.id = btf->id;
5519 ubtf = u64_to_user_ptr(info.btf);
5520 btf_copy = min_t(u32, btf->data_size, info.btf_size);
5521 if (copy_to_user(ubtf, btf->data, btf_copy))
5522 return -EFAULT;
5523 info.btf_size = btf->data_size;
5524
5525 if (copy_to_user(uinfo, &info, info_copy) ||
5526 put_user(info_copy, &uattr->info.info_len))
5527 return -EFAULT;
5528
5529 return 0;
5530 }
5531
btf_get_fd_by_id(u32 id)5532 int btf_get_fd_by_id(u32 id)
5533 {
5534 struct btf *btf;
5535 int fd;
5536
5537 rcu_read_lock();
5538 btf = idr_find(&btf_idr, id);
5539 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5540 btf = ERR_PTR(-ENOENT);
5541 rcu_read_unlock();
5542
5543 if (IS_ERR(btf))
5544 return PTR_ERR(btf);
5545
5546 fd = __btf_new_fd(btf);
5547 if (fd < 0)
5548 btf_put(btf);
5549
5550 return fd;
5551 }
5552
btf_id(const struct btf * btf)5553 u32 btf_id(const struct btf *btf)
5554 {
5555 return btf->id;
5556 }
5557
btf_id_cmp_func(const void * a,const void * b)5558 static int btf_id_cmp_func(const void *a, const void *b)
5559 {
5560 const int *pa = a, *pb = b;
5561
5562 return *pa - *pb;
5563 }
5564
btf_id_set_contains(const struct btf_id_set * set,u32 id)5565 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
5566 {
5567 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
5568 }
5569