1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37
38 #undef SCRAMBLE_DELAYED_REFS
39
40
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 struct btrfs_delayed_ref_node *node, u64 parent,
43 u64 root_objectid, u64 owner_objectid,
44 u64 owner_offset, int refs_to_drop,
45 struct btrfs_delayed_extent_op *extra_op);
46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
47 struct extent_buffer *leaf,
48 struct btrfs_extent_item *ei);
49 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
50 u64 parent, u64 root_objectid,
51 u64 flags, u64 owner, u64 offset,
52 struct btrfs_key *ins, int ref_mod);
53 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
54 struct btrfs_delayed_ref_node *node,
55 struct btrfs_delayed_extent_op *extent_op);
56 static int find_next_key(struct btrfs_path *path, int level,
57 struct btrfs_key *key);
58
block_group_bits(struct btrfs_block_group * cache,u64 bits)59 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
60 {
61 return (cache->flags & bits) == bits;
62 }
63
btrfs_add_excluded_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)64 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
65 u64 start, u64 num_bytes)
66 {
67 u64 end = start + num_bytes - 1;
68 set_extent_bits(&fs_info->excluded_extents, start, end,
69 EXTENT_UPTODATE);
70 return 0;
71 }
72
btrfs_free_excluded_extents(struct btrfs_block_group * cache)73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
74 {
75 struct btrfs_fs_info *fs_info = cache->fs_info;
76 u64 start, end;
77
78 start = cache->start;
79 end = start + cache->length - 1;
80
81 clear_extent_bits(&fs_info->excluded_extents, start, end,
82 EXTENT_UPTODATE);
83 }
84
85 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)86 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
87 {
88 int ret;
89 struct btrfs_key key;
90 struct btrfs_path *path;
91
92 path = btrfs_alloc_path();
93 if (!path)
94 return -ENOMEM;
95
96 key.objectid = start;
97 key.offset = len;
98 key.type = BTRFS_EXTENT_ITEM_KEY;
99 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
100 btrfs_free_path(path);
101 return ret;
102 }
103
104 /*
105 * helper function to lookup reference count and flags of a tree block.
106 *
107 * the head node for delayed ref is used to store the sum of all the
108 * reference count modifications queued up in the rbtree. the head
109 * node may also store the extent flags to set. This way you can check
110 * to see what the reference count and extent flags would be if all of
111 * the delayed refs are not processed.
112 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)113 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
114 struct btrfs_fs_info *fs_info, u64 bytenr,
115 u64 offset, int metadata, u64 *refs, u64 *flags)
116 {
117 struct btrfs_delayed_ref_head *head;
118 struct btrfs_delayed_ref_root *delayed_refs;
119 struct btrfs_path *path;
120 struct btrfs_extent_item *ei;
121 struct extent_buffer *leaf;
122 struct btrfs_key key;
123 u32 item_size;
124 u64 num_refs;
125 u64 extent_flags;
126 int ret;
127
128 /*
129 * If we don't have skinny metadata, don't bother doing anything
130 * different
131 */
132 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
133 offset = fs_info->nodesize;
134 metadata = 0;
135 }
136
137 path = btrfs_alloc_path();
138 if (!path)
139 return -ENOMEM;
140
141 if (!trans) {
142 path->skip_locking = 1;
143 path->search_commit_root = 1;
144 }
145
146 search_again:
147 key.objectid = bytenr;
148 key.offset = offset;
149 if (metadata)
150 key.type = BTRFS_METADATA_ITEM_KEY;
151 else
152 key.type = BTRFS_EXTENT_ITEM_KEY;
153
154 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
155 if (ret < 0)
156 goto out_free;
157
158 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
159 if (path->slots[0]) {
160 path->slots[0]--;
161 btrfs_item_key_to_cpu(path->nodes[0], &key,
162 path->slots[0]);
163 if (key.objectid == bytenr &&
164 key.type == BTRFS_EXTENT_ITEM_KEY &&
165 key.offset == fs_info->nodesize)
166 ret = 0;
167 }
168 }
169
170 if (ret == 0) {
171 leaf = path->nodes[0];
172 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
173 if (item_size >= sizeof(*ei)) {
174 ei = btrfs_item_ptr(leaf, path->slots[0],
175 struct btrfs_extent_item);
176 num_refs = btrfs_extent_refs(leaf, ei);
177 extent_flags = btrfs_extent_flags(leaf, ei);
178 } else {
179 ret = -EINVAL;
180 btrfs_print_v0_err(fs_info);
181 if (trans)
182 btrfs_abort_transaction(trans, ret);
183 else
184 btrfs_handle_fs_error(fs_info, ret, NULL);
185
186 goto out_free;
187 }
188
189 BUG_ON(num_refs == 0);
190 } else {
191 num_refs = 0;
192 extent_flags = 0;
193 ret = 0;
194 }
195
196 if (!trans)
197 goto out;
198
199 delayed_refs = &trans->transaction->delayed_refs;
200 spin_lock(&delayed_refs->lock);
201 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
202 if (head) {
203 if (!mutex_trylock(&head->mutex)) {
204 refcount_inc(&head->refs);
205 spin_unlock(&delayed_refs->lock);
206
207 btrfs_release_path(path);
208
209 /*
210 * Mutex was contended, block until it's released and try
211 * again
212 */
213 mutex_lock(&head->mutex);
214 mutex_unlock(&head->mutex);
215 btrfs_put_delayed_ref_head(head);
216 goto search_again;
217 }
218 spin_lock(&head->lock);
219 if (head->extent_op && head->extent_op->update_flags)
220 extent_flags |= head->extent_op->flags_to_set;
221 else
222 BUG_ON(num_refs == 0);
223
224 num_refs += head->ref_mod;
225 spin_unlock(&head->lock);
226 mutex_unlock(&head->mutex);
227 }
228 spin_unlock(&delayed_refs->lock);
229 out:
230 WARN_ON(num_refs == 0);
231 if (refs)
232 *refs = num_refs;
233 if (flags)
234 *flags = extent_flags;
235 out_free:
236 btrfs_free_path(path);
237 return ret;
238 }
239
240 /*
241 * Back reference rules. Back refs have three main goals:
242 *
243 * 1) differentiate between all holders of references to an extent so that
244 * when a reference is dropped we can make sure it was a valid reference
245 * before freeing the extent.
246 *
247 * 2) Provide enough information to quickly find the holders of an extent
248 * if we notice a given block is corrupted or bad.
249 *
250 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
251 * maintenance. This is actually the same as #2, but with a slightly
252 * different use case.
253 *
254 * There are two kinds of back refs. The implicit back refs is optimized
255 * for pointers in non-shared tree blocks. For a given pointer in a block,
256 * back refs of this kind provide information about the block's owner tree
257 * and the pointer's key. These information allow us to find the block by
258 * b-tree searching. The full back refs is for pointers in tree blocks not
259 * referenced by their owner trees. The location of tree block is recorded
260 * in the back refs. Actually the full back refs is generic, and can be
261 * used in all cases the implicit back refs is used. The major shortcoming
262 * of the full back refs is its overhead. Every time a tree block gets
263 * COWed, we have to update back refs entry for all pointers in it.
264 *
265 * For a newly allocated tree block, we use implicit back refs for
266 * pointers in it. This means most tree related operations only involve
267 * implicit back refs. For a tree block created in old transaction, the
268 * only way to drop a reference to it is COW it. So we can detect the
269 * event that tree block loses its owner tree's reference and do the
270 * back refs conversion.
271 *
272 * When a tree block is COWed through a tree, there are four cases:
273 *
274 * The reference count of the block is one and the tree is the block's
275 * owner tree. Nothing to do in this case.
276 *
277 * The reference count of the block is one and the tree is not the
278 * block's owner tree. In this case, full back refs is used for pointers
279 * in the block. Remove these full back refs, add implicit back refs for
280 * every pointers in the new block.
281 *
282 * The reference count of the block is greater than one and the tree is
283 * the block's owner tree. In this case, implicit back refs is used for
284 * pointers in the block. Add full back refs for every pointers in the
285 * block, increase lower level extents' reference counts. The original
286 * implicit back refs are entailed to the new block.
287 *
288 * The reference count of the block is greater than one and the tree is
289 * not the block's owner tree. Add implicit back refs for every pointer in
290 * the new block, increase lower level extents' reference count.
291 *
292 * Back Reference Key composing:
293 *
294 * The key objectid corresponds to the first byte in the extent,
295 * The key type is used to differentiate between types of back refs.
296 * There are different meanings of the key offset for different types
297 * of back refs.
298 *
299 * File extents can be referenced by:
300 *
301 * - multiple snapshots, subvolumes, or different generations in one subvol
302 * - different files inside a single subvolume
303 * - different offsets inside a file (bookend extents in file.c)
304 *
305 * The extent ref structure for the implicit back refs has fields for:
306 *
307 * - Objectid of the subvolume root
308 * - objectid of the file holding the reference
309 * - original offset in the file
310 * - how many bookend extents
311 *
312 * The key offset for the implicit back refs is hash of the first
313 * three fields.
314 *
315 * The extent ref structure for the full back refs has field for:
316 *
317 * - number of pointers in the tree leaf
318 *
319 * The key offset for the implicit back refs is the first byte of
320 * the tree leaf
321 *
322 * When a file extent is allocated, The implicit back refs is used.
323 * the fields are filled in:
324 *
325 * (root_key.objectid, inode objectid, offset in file, 1)
326 *
327 * When a file extent is removed file truncation, we find the
328 * corresponding implicit back refs and check the following fields:
329 *
330 * (btrfs_header_owner(leaf), inode objectid, offset in file)
331 *
332 * Btree extents can be referenced by:
333 *
334 * - Different subvolumes
335 *
336 * Both the implicit back refs and the full back refs for tree blocks
337 * only consist of key. The key offset for the implicit back refs is
338 * objectid of block's owner tree. The key offset for the full back refs
339 * is the first byte of parent block.
340 *
341 * When implicit back refs is used, information about the lowest key and
342 * level of the tree block are required. These information are stored in
343 * tree block info structure.
344 */
345
346 /*
347 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
348 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
349 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
350 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)351 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
352 struct btrfs_extent_inline_ref *iref,
353 enum btrfs_inline_ref_type is_data)
354 {
355 int type = btrfs_extent_inline_ref_type(eb, iref);
356 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
357
358 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
359 type == BTRFS_SHARED_BLOCK_REF_KEY ||
360 type == BTRFS_SHARED_DATA_REF_KEY ||
361 type == BTRFS_EXTENT_DATA_REF_KEY) {
362 if (is_data == BTRFS_REF_TYPE_BLOCK) {
363 if (type == BTRFS_TREE_BLOCK_REF_KEY)
364 return type;
365 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
366 ASSERT(eb->fs_info);
367 /*
368 * Every shared one has parent tree block,
369 * which must be aligned to sector size.
370 */
371 if (offset &&
372 IS_ALIGNED(offset, eb->fs_info->sectorsize))
373 return type;
374 }
375 } else if (is_data == BTRFS_REF_TYPE_DATA) {
376 if (type == BTRFS_EXTENT_DATA_REF_KEY)
377 return type;
378 if (type == BTRFS_SHARED_DATA_REF_KEY) {
379 ASSERT(eb->fs_info);
380 /*
381 * Every shared one has parent tree block,
382 * which must be aligned to sector size.
383 */
384 if (offset &&
385 IS_ALIGNED(offset, eb->fs_info->sectorsize))
386 return type;
387 }
388 } else {
389 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
390 return type;
391 }
392 }
393
394 btrfs_print_leaf((struct extent_buffer *)eb);
395 btrfs_err(eb->fs_info,
396 "eb %llu iref 0x%lx invalid extent inline ref type %d",
397 eb->start, (unsigned long)iref, type);
398 WARN_ON(1);
399
400 return BTRFS_REF_TYPE_INVALID;
401 }
402
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)403 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
404 {
405 u32 high_crc = ~(u32)0;
406 u32 low_crc = ~(u32)0;
407 __le64 lenum;
408
409 lenum = cpu_to_le64(root_objectid);
410 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
411 lenum = cpu_to_le64(owner);
412 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
413 lenum = cpu_to_le64(offset);
414 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
415
416 return ((u64)high_crc << 31) ^ (u64)low_crc;
417 }
418
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)419 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
420 struct btrfs_extent_data_ref *ref)
421 {
422 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
423 btrfs_extent_data_ref_objectid(leaf, ref),
424 btrfs_extent_data_ref_offset(leaf, ref));
425 }
426
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)427 static int match_extent_data_ref(struct extent_buffer *leaf,
428 struct btrfs_extent_data_ref *ref,
429 u64 root_objectid, u64 owner, u64 offset)
430 {
431 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
432 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
433 btrfs_extent_data_ref_offset(leaf, ref) != offset)
434 return 0;
435 return 1;
436 }
437
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)438 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
439 struct btrfs_path *path,
440 u64 bytenr, u64 parent,
441 u64 root_objectid,
442 u64 owner, u64 offset)
443 {
444 struct btrfs_root *root = trans->fs_info->extent_root;
445 struct btrfs_key key;
446 struct btrfs_extent_data_ref *ref;
447 struct extent_buffer *leaf;
448 u32 nritems;
449 int ret;
450 int recow;
451 int err = -ENOENT;
452
453 key.objectid = bytenr;
454 if (parent) {
455 key.type = BTRFS_SHARED_DATA_REF_KEY;
456 key.offset = parent;
457 } else {
458 key.type = BTRFS_EXTENT_DATA_REF_KEY;
459 key.offset = hash_extent_data_ref(root_objectid,
460 owner, offset);
461 }
462 again:
463 recow = 0;
464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
465 if (ret < 0) {
466 err = ret;
467 goto fail;
468 }
469
470 if (parent) {
471 if (!ret)
472 return 0;
473 goto fail;
474 }
475
476 leaf = path->nodes[0];
477 nritems = btrfs_header_nritems(leaf);
478 while (1) {
479 if (path->slots[0] >= nritems) {
480 ret = btrfs_next_leaf(root, path);
481 if (ret < 0)
482 err = ret;
483 if (ret)
484 goto fail;
485
486 leaf = path->nodes[0];
487 nritems = btrfs_header_nritems(leaf);
488 recow = 1;
489 }
490
491 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
492 if (key.objectid != bytenr ||
493 key.type != BTRFS_EXTENT_DATA_REF_KEY)
494 goto fail;
495
496 ref = btrfs_item_ptr(leaf, path->slots[0],
497 struct btrfs_extent_data_ref);
498
499 if (match_extent_data_ref(leaf, ref, root_objectid,
500 owner, offset)) {
501 if (recow) {
502 btrfs_release_path(path);
503 goto again;
504 }
505 err = 0;
506 break;
507 }
508 path->slots[0]++;
509 }
510 fail:
511 return err;
512 }
513
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)514 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
515 struct btrfs_path *path,
516 u64 bytenr, u64 parent,
517 u64 root_objectid, u64 owner,
518 u64 offset, int refs_to_add)
519 {
520 struct btrfs_root *root = trans->fs_info->extent_root;
521 struct btrfs_key key;
522 struct extent_buffer *leaf;
523 u32 size;
524 u32 num_refs;
525 int ret;
526
527 key.objectid = bytenr;
528 if (parent) {
529 key.type = BTRFS_SHARED_DATA_REF_KEY;
530 key.offset = parent;
531 size = sizeof(struct btrfs_shared_data_ref);
532 } else {
533 key.type = BTRFS_EXTENT_DATA_REF_KEY;
534 key.offset = hash_extent_data_ref(root_objectid,
535 owner, offset);
536 size = sizeof(struct btrfs_extent_data_ref);
537 }
538
539 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
540 if (ret && ret != -EEXIST)
541 goto fail;
542
543 leaf = path->nodes[0];
544 if (parent) {
545 struct btrfs_shared_data_ref *ref;
546 ref = btrfs_item_ptr(leaf, path->slots[0],
547 struct btrfs_shared_data_ref);
548 if (ret == 0) {
549 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
550 } else {
551 num_refs = btrfs_shared_data_ref_count(leaf, ref);
552 num_refs += refs_to_add;
553 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
554 }
555 } else {
556 struct btrfs_extent_data_ref *ref;
557 while (ret == -EEXIST) {
558 ref = btrfs_item_ptr(leaf, path->slots[0],
559 struct btrfs_extent_data_ref);
560 if (match_extent_data_ref(leaf, ref, root_objectid,
561 owner, offset))
562 break;
563 btrfs_release_path(path);
564 key.offset++;
565 ret = btrfs_insert_empty_item(trans, root, path, &key,
566 size);
567 if (ret && ret != -EEXIST)
568 goto fail;
569
570 leaf = path->nodes[0];
571 }
572 ref = btrfs_item_ptr(leaf, path->slots[0],
573 struct btrfs_extent_data_ref);
574 if (ret == 0) {
575 btrfs_set_extent_data_ref_root(leaf, ref,
576 root_objectid);
577 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
578 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
579 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
580 } else {
581 num_refs = btrfs_extent_data_ref_count(leaf, ref);
582 num_refs += refs_to_add;
583 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
584 }
585 }
586 btrfs_mark_buffer_dirty(leaf);
587 ret = 0;
588 fail:
589 btrfs_release_path(path);
590 return ret;
591 }
592
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,int refs_to_drop,int * last_ref)593 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
594 struct btrfs_path *path,
595 int refs_to_drop, int *last_ref)
596 {
597 struct btrfs_key key;
598 struct btrfs_extent_data_ref *ref1 = NULL;
599 struct btrfs_shared_data_ref *ref2 = NULL;
600 struct extent_buffer *leaf;
601 u32 num_refs = 0;
602 int ret = 0;
603
604 leaf = path->nodes[0];
605 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
606
607 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
608 ref1 = btrfs_item_ptr(leaf, path->slots[0],
609 struct btrfs_extent_data_ref);
610 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
611 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
612 ref2 = btrfs_item_ptr(leaf, path->slots[0],
613 struct btrfs_shared_data_ref);
614 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
615 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
616 btrfs_print_v0_err(trans->fs_info);
617 btrfs_abort_transaction(trans, -EINVAL);
618 return -EINVAL;
619 } else {
620 BUG();
621 }
622
623 BUG_ON(num_refs < refs_to_drop);
624 num_refs -= refs_to_drop;
625
626 if (num_refs == 0) {
627 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
628 *last_ref = 1;
629 } else {
630 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
631 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
632 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
633 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
634 btrfs_mark_buffer_dirty(leaf);
635 }
636 return ret;
637 }
638
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)639 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
640 struct btrfs_extent_inline_ref *iref)
641 {
642 struct btrfs_key key;
643 struct extent_buffer *leaf;
644 struct btrfs_extent_data_ref *ref1;
645 struct btrfs_shared_data_ref *ref2;
646 u32 num_refs = 0;
647 int type;
648
649 leaf = path->nodes[0];
650 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
651
652 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
653 if (iref) {
654 /*
655 * If type is invalid, we should have bailed out earlier than
656 * this call.
657 */
658 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
659 ASSERT(type != BTRFS_REF_TYPE_INVALID);
660 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
661 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
662 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
663 } else {
664 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
665 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
666 }
667 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
668 ref1 = btrfs_item_ptr(leaf, path->slots[0],
669 struct btrfs_extent_data_ref);
670 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
671 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
672 ref2 = btrfs_item_ptr(leaf, path->slots[0],
673 struct btrfs_shared_data_ref);
674 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
675 } else {
676 WARN_ON(1);
677 }
678 return num_refs;
679 }
680
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)681 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
682 struct btrfs_path *path,
683 u64 bytenr, u64 parent,
684 u64 root_objectid)
685 {
686 struct btrfs_root *root = trans->fs_info->extent_root;
687 struct btrfs_key key;
688 int ret;
689
690 key.objectid = bytenr;
691 if (parent) {
692 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
693 key.offset = parent;
694 } else {
695 key.type = BTRFS_TREE_BLOCK_REF_KEY;
696 key.offset = root_objectid;
697 }
698
699 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
700 if (ret > 0)
701 ret = -ENOENT;
702 return ret;
703 }
704
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)705 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
706 struct btrfs_path *path,
707 u64 bytenr, u64 parent,
708 u64 root_objectid)
709 {
710 struct btrfs_key key;
711 int ret;
712
713 key.objectid = bytenr;
714 if (parent) {
715 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
716 key.offset = parent;
717 } else {
718 key.type = BTRFS_TREE_BLOCK_REF_KEY;
719 key.offset = root_objectid;
720 }
721
722 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
723 path, &key, 0);
724 btrfs_release_path(path);
725 return ret;
726 }
727
extent_ref_type(u64 parent,u64 owner)728 static inline int extent_ref_type(u64 parent, u64 owner)
729 {
730 int type;
731 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
732 if (parent > 0)
733 type = BTRFS_SHARED_BLOCK_REF_KEY;
734 else
735 type = BTRFS_TREE_BLOCK_REF_KEY;
736 } else {
737 if (parent > 0)
738 type = BTRFS_SHARED_DATA_REF_KEY;
739 else
740 type = BTRFS_EXTENT_DATA_REF_KEY;
741 }
742 return type;
743 }
744
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)745 static int find_next_key(struct btrfs_path *path, int level,
746 struct btrfs_key *key)
747
748 {
749 for (; level < BTRFS_MAX_LEVEL; level++) {
750 if (!path->nodes[level])
751 break;
752 if (path->slots[level] + 1 >=
753 btrfs_header_nritems(path->nodes[level]))
754 continue;
755 if (level == 0)
756 btrfs_item_key_to_cpu(path->nodes[level], key,
757 path->slots[level] + 1);
758 else
759 btrfs_node_key_to_cpu(path->nodes[level], key,
760 path->slots[level] + 1);
761 return 0;
762 }
763 return 1;
764 }
765
766 /*
767 * look for inline back ref. if back ref is found, *ref_ret is set
768 * to the address of inline back ref, and 0 is returned.
769 *
770 * if back ref isn't found, *ref_ret is set to the address where it
771 * should be inserted, and -ENOENT is returned.
772 *
773 * if insert is true and there are too many inline back refs, the path
774 * points to the extent item, and -EAGAIN is returned.
775 *
776 * NOTE: inline back refs are ordered in the same way that back ref
777 * items in the tree are ordered.
778 */
779 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)780 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
781 struct btrfs_path *path,
782 struct btrfs_extent_inline_ref **ref_ret,
783 u64 bytenr, u64 num_bytes,
784 u64 parent, u64 root_objectid,
785 u64 owner, u64 offset, int insert)
786 {
787 struct btrfs_fs_info *fs_info = trans->fs_info;
788 struct btrfs_root *root = fs_info->extent_root;
789 struct btrfs_key key;
790 struct extent_buffer *leaf;
791 struct btrfs_extent_item *ei;
792 struct btrfs_extent_inline_ref *iref;
793 u64 flags;
794 u64 item_size;
795 unsigned long ptr;
796 unsigned long end;
797 int extra_size;
798 int type;
799 int want;
800 int ret;
801 int err = 0;
802 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
803 int needed;
804
805 key.objectid = bytenr;
806 key.type = BTRFS_EXTENT_ITEM_KEY;
807 key.offset = num_bytes;
808
809 want = extent_ref_type(parent, owner);
810 if (insert) {
811 extra_size = btrfs_extent_inline_ref_size(want);
812 path->keep_locks = 1;
813 } else
814 extra_size = -1;
815
816 /*
817 * Owner is our level, so we can just add one to get the level for the
818 * block we are interested in.
819 */
820 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
821 key.type = BTRFS_METADATA_ITEM_KEY;
822 key.offset = owner;
823 }
824
825 again:
826 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
827 if (ret < 0) {
828 err = ret;
829 goto out;
830 }
831
832 /*
833 * We may be a newly converted file system which still has the old fat
834 * extent entries for metadata, so try and see if we have one of those.
835 */
836 if (ret > 0 && skinny_metadata) {
837 skinny_metadata = false;
838 if (path->slots[0]) {
839 path->slots[0]--;
840 btrfs_item_key_to_cpu(path->nodes[0], &key,
841 path->slots[0]);
842 if (key.objectid == bytenr &&
843 key.type == BTRFS_EXTENT_ITEM_KEY &&
844 key.offset == num_bytes)
845 ret = 0;
846 }
847 if (ret) {
848 key.objectid = bytenr;
849 key.type = BTRFS_EXTENT_ITEM_KEY;
850 key.offset = num_bytes;
851 btrfs_release_path(path);
852 goto again;
853 }
854 }
855
856 if (ret && !insert) {
857 err = -ENOENT;
858 goto out;
859 } else if (WARN_ON(ret)) {
860 err = -EIO;
861 goto out;
862 }
863
864 leaf = path->nodes[0];
865 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
866 if (unlikely(item_size < sizeof(*ei))) {
867 err = -EINVAL;
868 btrfs_print_v0_err(fs_info);
869 btrfs_abort_transaction(trans, err);
870 goto out;
871 }
872
873 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
874 flags = btrfs_extent_flags(leaf, ei);
875
876 ptr = (unsigned long)(ei + 1);
877 end = (unsigned long)ei + item_size;
878
879 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
880 ptr += sizeof(struct btrfs_tree_block_info);
881 BUG_ON(ptr > end);
882 }
883
884 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
885 needed = BTRFS_REF_TYPE_DATA;
886 else
887 needed = BTRFS_REF_TYPE_BLOCK;
888
889 err = -ENOENT;
890 while (1) {
891 if (ptr >= end) {
892 WARN_ON(ptr > end);
893 break;
894 }
895 iref = (struct btrfs_extent_inline_ref *)ptr;
896 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
897 if (type == BTRFS_REF_TYPE_INVALID) {
898 err = -EUCLEAN;
899 goto out;
900 }
901
902 if (want < type)
903 break;
904 if (want > type) {
905 ptr += btrfs_extent_inline_ref_size(type);
906 continue;
907 }
908
909 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
910 struct btrfs_extent_data_ref *dref;
911 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
912 if (match_extent_data_ref(leaf, dref, root_objectid,
913 owner, offset)) {
914 err = 0;
915 break;
916 }
917 if (hash_extent_data_ref_item(leaf, dref) <
918 hash_extent_data_ref(root_objectid, owner, offset))
919 break;
920 } else {
921 u64 ref_offset;
922 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
923 if (parent > 0) {
924 if (parent == ref_offset) {
925 err = 0;
926 break;
927 }
928 if (ref_offset < parent)
929 break;
930 } else {
931 if (root_objectid == ref_offset) {
932 err = 0;
933 break;
934 }
935 if (ref_offset < root_objectid)
936 break;
937 }
938 }
939 ptr += btrfs_extent_inline_ref_size(type);
940 }
941 if (err == -ENOENT && insert) {
942 if (item_size + extra_size >=
943 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
944 err = -EAGAIN;
945 goto out;
946 }
947 /*
948 * To add new inline back ref, we have to make sure
949 * there is no corresponding back ref item.
950 * For simplicity, we just do not add new inline back
951 * ref if there is any kind of item for this block
952 */
953 if (find_next_key(path, 0, &key) == 0 &&
954 key.objectid == bytenr &&
955 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
956 err = -EAGAIN;
957 goto out;
958 }
959 }
960 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
961 out:
962 if (insert) {
963 path->keep_locks = 0;
964 btrfs_unlock_up_safe(path, 1);
965 }
966 return err;
967 }
968
969 /*
970 * helper to add new inline back ref
971 */
972 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)973 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
974 struct btrfs_path *path,
975 struct btrfs_extent_inline_ref *iref,
976 u64 parent, u64 root_objectid,
977 u64 owner, u64 offset, int refs_to_add,
978 struct btrfs_delayed_extent_op *extent_op)
979 {
980 struct extent_buffer *leaf;
981 struct btrfs_extent_item *ei;
982 unsigned long ptr;
983 unsigned long end;
984 unsigned long item_offset;
985 u64 refs;
986 int size;
987 int type;
988
989 leaf = path->nodes[0];
990 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
991 item_offset = (unsigned long)iref - (unsigned long)ei;
992
993 type = extent_ref_type(parent, owner);
994 size = btrfs_extent_inline_ref_size(type);
995
996 btrfs_extend_item(path, size);
997
998 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
999 refs = btrfs_extent_refs(leaf, ei);
1000 refs += refs_to_add;
1001 btrfs_set_extent_refs(leaf, ei, refs);
1002 if (extent_op)
1003 __run_delayed_extent_op(extent_op, leaf, ei);
1004
1005 ptr = (unsigned long)ei + item_offset;
1006 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1007 if (ptr < end - size)
1008 memmove_extent_buffer(leaf, ptr + size, ptr,
1009 end - size - ptr);
1010
1011 iref = (struct btrfs_extent_inline_ref *)ptr;
1012 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1013 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1014 struct btrfs_extent_data_ref *dref;
1015 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1016 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1017 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1018 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1019 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1020 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1021 struct btrfs_shared_data_ref *sref;
1022 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1023 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1024 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1025 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1026 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1027 } else {
1028 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1029 }
1030 btrfs_mark_buffer_dirty(leaf);
1031 }
1032
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1033 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1034 struct btrfs_path *path,
1035 struct btrfs_extent_inline_ref **ref_ret,
1036 u64 bytenr, u64 num_bytes, u64 parent,
1037 u64 root_objectid, u64 owner, u64 offset)
1038 {
1039 int ret;
1040
1041 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1042 num_bytes, parent, root_objectid,
1043 owner, offset, 0);
1044 if (ret != -ENOENT)
1045 return ret;
1046
1047 btrfs_release_path(path);
1048 *ref_ret = NULL;
1049
1050 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1051 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1052 root_objectid);
1053 } else {
1054 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1055 root_objectid, owner, offset);
1056 }
1057 return ret;
1058 }
1059
1060 /*
1061 * helper to update/remove inline back ref
1062 */
1063 static noinline_for_stack
update_inline_extent_backref(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1064 void update_inline_extent_backref(struct btrfs_path *path,
1065 struct btrfs_extent_inline_ref *iref,
1066 int refs_to_mod,
1067 struct btrfs_delayed_extent_op *extent_op,
1068 int *last_ref)
1069 {
1070 struct extent_buffer *leaf = path->nodes[0];
1071 struct btrfs_extent_item *ei;
1072 struct btrfs_extent_data_ref *dref = NULL;
1073 struct btrfs_shared_data_ref *sref = NULL;
1074 unsigned long ptr;
1075 unsigned long end;
1076 u32 item_size;
1077 int size;
1078 int type;
1079 u64 refs;
1080
1081 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1082 refs = btrfs_extent_refs(leaf, ei);
1083 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1084 refs += refs_to_mod;
1085 btrfs_set_extent_refs(leaf, ei, refs);
1086 if (extent_op)
1087 __run_delayed_extent_op(extent_op, leaf, ei);
1088
1089 /*
1090 * If type is invalid, we should have bailed out after
1091 * lookup_inline_extent_backref().
1092 */
1093 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1094 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1095
1096 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1097 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1098 refs = btrfs_extent_data_ref_count(leaf, dref);
1099 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1100 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1101 refs = btrfs_shared_data_ref_count(leaf, sref);
1102 } else {
1103 refs = 1;
1104 BUG_ON(refs_to_mod != -1);
1105 }
1106
1107 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1108 refs += refs_to_mod;
1109
1110 if (refs > 0) {
1111 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1112 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1113 else
1114 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1115 } else {
1116 *last_ref = 1;
1117 size = btrfs_extent_inline_ref_size(type);
1118 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1119 ptr = (unsigned long)iref;
1120 end = (unsigned long)ei + item_size;
1121 if (ptr + size < end)
1122 memmove_extent_buffer(leaf, ptr, ptr + size,
1123 end - ptr - size);
1124 item_size -= size;
1125 btrfs_truncate_item(path, item_size, 1);
1126 }
1127 btrfs_mark_buffer_dirty(leaf);
1128 }
1129
1130 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1131 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1132 struct btrfs_path *path,
1133 u64 bytenr, u64 num_bytes, u64 parent,
1134 u64 root_objectid, u64 owner,
1135 u64 offset, int refs_to_add,
1136 struct btrfs_delayed_extent_op *extent_op)
1137 {
1138 struct btrfs_extent_inline_ref *iref;
1139 int ret;
1140
1141 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1142 num_bytes, parent, root_objectid,
1143 owner, offset, 1);
1144 if (ret == 0) {
1145 /*
1146 * We're adding refs to a tree block we already own, this
1147 * should not happen at all.
1148 */
1149 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1150 btrfs_crit(trans->fs_info,
1151 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1152 bytenr, num_bytes, root_objectid);
1153 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1154 WARN_ON(1);
1155 btrfs_crit(trans->fs_info,
1156 "path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1157 btrfs_print_leaf(path->nodes[0]);
1158 }
1159 return -EUCLEAN;
1160 }
1161 update_inline_extent_backref(path, iref, refs_to_add,
1162 extent_op, NULL);
1163 } else if (ret == -ENOENT) {
1164 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1165 root_objectid, owner, offset,
1166 refs_to_add, extent_op);
1167 ret = 0;
1168 }
1169 return ret;
1170 }
1171
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1172 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1173 struct btrfs_path *path,
1174 struct btrfs_extent_inline_ref *iref,
1175 int refs_to_drop, int is_data, int *last_ref)
1176 {
1177 int ret = 0;
1178
1179 BUG_ON(!is_data && refs_to_drop != 1);
1180 if (iref) {
1181 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1182 last_ref);
1183 } else if (is_data) {
1184 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1185 last_ref);
1186 } else {
1187 *last_ref = 1;
1188 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1189 }
1190 return ret;
1191 }
1192
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1193 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1194 u64 *discarded_bytes)
1195 {
1196 int j, ret = 0;
1197 u64 bytes_left, end;
1198 u64 aligned_start = ALIGN(start, 1 << 9);
1199
1200 if (WARN_ON(start != aligned_start)) {
1201 len -= aligned_start - start;
1202 len = round_down(len, 1 << 9);
1203 start = aligned_start;
1204 }
1205
1206 *discarded_bytes = 0;
1207
1208 if (!len)
1209 return 0;
1210
1211 end = start + len;
1212 bytes_left = len;
1213
1214 /* Skip any superblocks on this device. */
1215 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1216 u64 sb_start = btrfs_sb_offset(j);
1217 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1218 u64 size = sb_start - start;
1219
1220 if (!in_range(sb_start, start, bytes_left) &&
1221 !in_range(sb_end, start, bytes_left) &&
1222 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1223 continue;
1224
1225 /*
1226 * Superblock spans beginning of range. Adjust start and
1227 * try again.
1228 */
1229 if (sb_start <= start) {
1230 start += sb_end - start;
1231 if (start > end) {
1232 bytes_left = 0;
1233 break;
1234 }
1235 bytes_left = end - start;
1236 continue;
1237 }
1238
1239 if (size) {
1240 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1241 GFP_NOFS, 0);
1242 if (!ret)
1243 *discarded_bytes += size;
1244 else if (ret != -EOPNOTSUPP)
1245 return ret;
1246 }
1247
1248 start = sb_end;
1249 if (start > end) {
1250 bytes_left = 0;
1251 break;
1252 }
1253 bytes_left = end - start;
1254 }
1255
1256 if (bytes_left) {
1257 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1258 GFP_NOFS, 0);
1259 if (!ret)
1260 *discarded_bytes += bytes_left;
1261 }
1262 return ret;
1263 }
1264
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1265 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1266 u64 num_bytes, u64 *actual_bytes)
1267 {
1268 int ret = 0;
1269 u64 discarded_bytes = 0;
1270 u64 end = bytenr + num_bytes;
1271 u64 cur = bytenr;
1272 struct btrfs_bio *bbio = NULL;
1273
1274
1275 /*
1276 * Avoid races with device replace and make sure our bbio has devices
1277 * associated to its stripes that don't go away while we are discarding.
1278 */
1279 btrfs_bio_counter_inc_blocked(fs_info);
1280 while (cur < end) {
1281 struct btrfs_bio_stripe *stripe;
1282 int i;
1283
1284 num_bytes = end - cur;
1285 /* Tell the block device(s) that the sectors can be discarded */
1286 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1287 &num_bytes, &bbio, 0);
1288 /*
1289 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1290 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1291 * thus we can't continue anyway.
1292 */
1293 if (ret < 0)
1294 goto out;
1295
1296 stripe = bbio->stripes;
1297 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1298 u64 bytes;
1299 struct request_queue *req_q;
1300 struct btrfs_device *device = stripe->dev;
1301
1302 if (!device->bdev) {
1303 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1304 continue;
1305 }
1306 req_q = bdev_get_queue(device->bdev);
1307 if (!blk_queue_discard(req_q))
1308 continue;
1309
1310 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1311 continue;
1312
1313 ret = btrfs_issue_discard(device->bdev,
1314 stripe->physical,
1315 stripe->length,
1316 &bytes);
1317 if (!ret) {
1318 discarded_bytes += bytes;
1319 } else if (ret != -EOPNOTSUPP) {
1320 /*
1321 * Logic errors or -ENOMEM, or -EIO, but
1322 * unlikely to happen.
1323 *
1324 * And since there are two loops, explicitly
1325 * go to out to avoid confusion.
1326 */
1327 btrfs_put_bbio(bbio);
1328 goto out;
1329 }
1330
1331 /*
1332 * Just in case we get back EOPNOTSUPP for some reason,
1333 * just ignore the return value so we don't screw up
1334 * people calling discard_extent.
1335 */
1336 ret = 0;
1337 }
1338 btrfs_put_bbio(bbio);
1339 cur += num_bytes;
1340 }
1341 out:
1342 btrfs_bio_counter_dec(fs_info);
1343
1344 if (actual_bytes)
1345 *actual_bytes = discarded_bytes;
1346
1347
1348 if (ret == -EOPNOTSUPP)
1349 ret = 0;
1350 return ret;
1351 }
1352
1353 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1354 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1355 struct btrfs_ref *generic_ref)
1356 {
1357 struct btrfs_fs_info *fs_info = trans->fs_info;
1358 int ret;
1359
1360 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1361 generic_ref->action);
1362 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1363 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1364
1365 if (generic_ref->type == BTRFS_REF_METADATA)
1366 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1367 else
1368 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1369
1370 btrfs_ref_tree_mod(fs_info, generic_ref);
1371
1372 return ret;
1373 }
1374
1375 /*
1376 * __btrfs_inc_extent_ref - insert backreference for a given extent
1377 *
1378 * The counterpart is in __btrfs_free_extent(), with examples and more details
1379 * how it works.
1380 *
1381 * @trans: Handle of transaction
1382 *
1383 * @node: The delayed ref node used to get the bytenr/length for
1384 * extent whose references are incremented.
1385 *
1386 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1387 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1388 * bytenr of the parent block. Since new extents are always
1389 * created with indirect references, this will only be the case
1390 * when relocating a shared extent. In that case, root_objectid
1391 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1392 * be 0
1393 *
1394 * @root_objectid: The id of the root where this modification has originated,
1395 * this can be either one of the well-known metadata trees or
1396 * the subvolume id which references this extent.
1397 *
1398 * @owner: For data extents it is the inode number of the owning file.
1399 * For metadata extents this parameter holds the level in the
1400 * tree of the extent.
1401 *
1402 * @offset: For metadata extents the offset is ignored and is currently
1403 * always passed as 0. For data extents it is the fileoffset
1404 * this extent belongs to.
1405 *
1406 * @refs_to_add Number of references to add
1407 *
1408 * @extent_op Pointer to a structure, holding information necessary when
1409 * updating a tree block's flags
1410 *
1411 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1412 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1413 struct btrfs_delayed_ref_node *node,
1414 u64 parent, u64 root_objectid,
1415 u64 owner, u64 offset, int refs_to_add,
1416 struct btrfs_delayed_extent_op *extent_op)
1417 {
1418 struct btrfs_path *path;
1419 struct extent_buffer *leaf;
1420 struct btrfs_extent_item *item;
1421 struct btrfs_key key;
1422 u64 bytenr = node->bytenr;
1423 u64 num_bytes = node->num_bytes;
1424 u64 refs;
1425 int ret;
1426
1427 path = btrfs_alloc_path();
1428 if (!path)
1429 return -ENOMEM;
1430
1431 path->leave_spinning = 1;
1432 /* this will setup the path even if it fails to insert the back ref */
1433 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1434 parent, root_objectid, owner,
1435 offset, refs_to_add, extent_op);
1436 if ((ret < 0 && ret != -EAGAIN) || !ret)
1437 goto out;
1438
1439 /*
1440 * Ok we had -EAGAIN which means we didn't have space to insert and
1441 * inline extent ref, so just update the reference count and add a
1442 * normal backref.
1443 */
1444 leaf = path->nodes[0];
1445 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1446 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1447 refs = btrfs_extent_refs(leaf, item);
1448 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1449 if (extent_op)
1450 __run_delayed_extent_op(extent_op, leaf, item);
1451
1452 btrfs_mark_buffer_dirty(leaf);
1453 btrfs_release_path(path);
1454
1455 path->leave_spinning = 1;
1456 /* now insert the actual backref */
1457 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1458 BUG_ON(refs_to_add != 1);
1459 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1460 root_objectid);
1461 } else {
1462 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1463 root_objectid, owner, offset,
1464 refs_to_add);
1465 }
1466 if (ret)
1467 btrfs_abort_transaction(trans, ret);
1468 out:
1469 btrfs_free_path(path);
1470 return ret;
1471 }
1472
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1473 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1474 struct btrfs_delayed_ref_node *node,
1475 struct btrfs_delayed_extent_op *extent_op,
1476 int insert_reserved)
1477 {
1478 int ret = 0;
1479 struct btrfs_delayed_data_ref *ref;
1480 struct btrfs_key ins;
1481 u64 parent = 0;
1482 u64 ref_root = 0;
1483 u64 flags = 0;
1484
1485 ins.objectid = node->bytenr;
1486 ins.offset = node->num_bytes;
1487 ins.type = BTRFS_EXTENT_ITEM_KEY;
1488
1489 ref = btrfs_delayed_node_to_data_ref(node);
1490 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1491
1492 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1493 parent = ref->parent;
1494 ref_root = ref->root;
1495
1496 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1497 if (extent_op)
1498 flags |= extent_op->flags_to_set;
1499 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1500 flags, ref->objectid,
1501 ref->offset, &ins,
1502 node->ref_mod);
1503 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1504 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1505 ref->objectid, ref->offset,
1506 node->ref_mod, extent_op);
1507 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1508 ret = __btrfs_free_extent(trans, node, parent,
1509 ref_root, ref->objectid,
1510 ref->offset, node->ref_mod,
1511 extent_op);
1512 } else {
1513 BUG();
1514 }
1515 return ret;
1516 }
1517
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1518 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1519 struct extent_buffer *leaf,
1520 struct btrfs_extent_item *ei)
1521 {
1522 u64 flags = btrfs_extent_flags(leaf, ei);
1523 if (extent_op->update_flags) {
1524 flags |= extent_op->flags_to_set;
1525 btrfs_set_extent_flags(leaf, ei, flags);
1526 }
1527
1528 if (extent_op->update_key) {
1529 struct btrfs_tree_block_info *bi;
1530 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1531 bi = (struct btrfs_tree_block_info *)(ei + 1);
1532 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1533 }
1534 }
1535
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1536 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1537 struct btrfs_delayed_ref_head *head,
1538 struct btrfs_delayed_extent_op *extent_op)
1539 {
1540 struct btrfs_fs_info *fs_info = trans->fs_info;
1541 struct btrfs_key key;
1542 struct btrfs_path *path;
1543 struct btrfs_extent_item *ei;
1544 struct extent_buffer *leaf;
1545 u32 item_size;
1546 int ret;
1547 int err = 0;
1548 int metadata = !extent_op->is_data;
1549
1550 if (TRANS_ABORTED(trans))
1551 return 0;
1552
1553 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1554 metadata = 0;
1555
1556 path = btrfs_alloc_path();
1557 if (!path)
1558 return -ENOMEM;
1559
1560 key.objectid = head->bytenr;
1561
1562 if (metadata) {
1563 key.type = BTRFS_METADATA_ITEM_KEY;
1564 key.offset = extent_op->level;
1565 } else {
1566 key.type = BTRFS_EXTENT_ITEM_KEY;
1567 key.offset = head->num_bytes;
1568 }
1569
1570 again:
1571 path->leave_spinning = 1;
1572 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1573 if (ret < 0) {
1574 err = ret;
1575 goto out;
1576 }
1577 if (ret > 0) {
1578 if (metadata) {
1579 if (path->slots[0] > 0) {
1580 path->slots[0]--;
1581 btrfs_item_key_to_cpu(path->nodes[0], &key,
1582 path->slots[0]);
1583 if (key.objectid == head->bytenr &&
1584 key.type == BTRFS_EXTENT_ITEM_KEY &&
1585 key.offset == head->num_bytes)
1586 ret = 0;
1587 }
1588 if (ret > 0) {
1589 btrfs_release_path(path);
1590 metadata = 0;
1591
1592 key.objectid = head->bytenr;
1593 key.offset = head->num_bytes;
1594 key.type = BTRFS_EXTENT_ITEM_KEY;
1595 goto again;
1596 }
1597 } else {
1598 err = -EIO;
1599 goto out;
1600 }
1601 }
1602
1603 leaf = path->nodes[0];
1604 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1605
1606 if (unlikely(item_size < sizeof(*ei))) {
1607 err = -EINVAL;
1608 btrfs_print_v0_err(fs_info);
1609 btrfs_abort_transaction(trans, err);
1610 goto out;
1611 }
1612
1613 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1614 __run_delayed_extent_op(extent_op, leaf, ei);
1615
1616 btrfs_mark_buffer_dirty(leaf);
1617 out:
1618 btrfs_free_path(path);
1619 return err;
1620 }
1621
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1622 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1623 struct btrfs_delayed_ref_node *node,
1624 struct btrfs_delayed_extent_op *extent_op,
1625 int insert_reserved)
1626 {
1627 int ret = 0;
1628 struct btrfs_delayed_tree_ref *ref;
1629 u64 parent = 0;
1630 u64 ref_root = 0;
1631
1632 ref = btrfs_delayed_node_to_tree_ref(node);
1633 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1634
1635 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1636 parent = ref->parent;
1637 ref_root = ref->root;
1638
1639 if (node->ref_mod != 1) {
1640 btrfs_err(trans->fs_info,
1641 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1642 node->bytenr, node->ref_mod, node->action, ref_root,
1643 parent);
1644 return -EIO;
1645 }
1646 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1647 BUG_ON(!extent_op || !extent_op->update_flags);
1648 ret = alloc_reserved_tree_block(trans, node, extent_op);
1649 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1650 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1651 ref->level, 0, 1, extent_op);
1652 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1653 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1654 ref->level, 0, 1, extent_op);
1655 } else {
1656 BUG();
1657 }
1658 return ret;
1659 }
1660
1661 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1662 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1663 struct btrfs_delayed_ref_node *node,
1664 struct btrfs_delayed_extent_op *extent_op,
1665 int insert_reserved)
1666 {
1667 int ret = 0;
1668
1669 if (TRANS_ABORTED(trans)) {
1670 if (insert_reserved)
1671 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1672 return 0;
1673 }
1674
1675 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1676 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1677 ret = run_delayed_tree_ref(trans, node, extent_op,
1678 insert_reserved);
1679 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1680 node->type == BTRFS_SHARED_DATA_REF_KEY)
1681 ret = run_delayed_data_ref(trans, node, extent_op,
1682 insert_reserved);
1683 else
1684 BUG();
1685 if (ret && insert_reserved)
1686 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1687 if (ret < 0)
1688 btrfs_err(trans->fs_info,
1689 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1690 node->bytenr, node->num_bytes, node->type,
1691 node->action, node->ref_mod, ret);
1692 return ret;
1693 }
1694
1695 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1696 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1697 {
1698 struct btrfs_delayed_ref_node *ref;
1699
1700 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1701 return NULL;
1702
1703 /*
1704 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1705 * This is to prevent a ref count from going down to zero, which deletes
1706 * the extent item from the extent tree, when there still are references
1707 * to add, which would fail because they would not find the extent item.
1708 */
1709 if (!list_empty(&head->ref_add_list))
1710 return list_first_entry(&head->ref_add_list,
1711 struct btrfs_delayed_ref_node, add_list);
1712
1713 ref = rb_entry(rb_first_cached(&head->ref_tree),
1714 struct btrfs_delayed_ref_node, ref_node);
1715 ASSERT(list_empty(&ref->add_list));
1716 return ref;
1717 }
1718
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1719 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1720 struct btrfs_delayed_ref_head *head)
1721 {
1722 spin_lock(&delayed_refs->lock);
1723 head->processing = 0;
1724 delayed_refs->num_heads_ready++;
1725 spin_unlock(&delayed_refs->lock);
1726 btrfs_delayed_ref_unlock(head);
1727 }
1728
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1729 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1730 struct btrfs_delayed_ref_head *head)
1731 {
1732 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1733
1734 if (!extent_op)
1735 return NULL;
1736
1737 if (head->must_insert_reserved) {
1738 head->extent_op = NULL;
1739 btrfs_free_delayed_extent_op(extent_op);
1740 return NULL;
1741 }
1742 return extent_op;
1743 }
1744
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1745 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1746 struct btrfs_delayed_ref_head *head)
1747 {
1748 struct btrfs_delayed_extent_op *extent_op;
1749 int ret;
1750
1751 extent_op = cleanup_extent_op(head);
1752 if (!extent_op)
1753 return 0;
1754 head->extent_op = NULL;
1755 spin_unlock(&head->lock);
1756 ret = run_delayed_extent_op(trans, head, extent_op);
1757 btrfs_free_delayed_extent_op(extent_op);
1758 return ret ? ret : 1;
1759 }
1760
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1761 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1762 struct btrfs_delayed_ref_root *delayed_refs,
1763 struct btrfs_delayed_ref_head *head)
1764 {
1765 int nr_items = 1; /* Dropping this ref head update. */
1766
1767 /*
1768 * We had csum deletions accounted for in our delayed refs rsv, we need
1769 * to drop the csum leaves for this update from our delayed_refs_rsv.
1770 */
1771 if (head->total_ref_mod < 0 && head->is_data) {
1772 spin_lock(&delayed_refs->lock);
1773 delayed_refs->pending_csums -= head->num_bytes;
1774 spin_unlock(&delayed_refs->lock);
1775 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1776 }
1777
1778 /*
1779 * We were dropping refs, or had a new ref and dropped it, and thus must
1780 * adjust down our total_bytes_pinned, the space may or may not have
1781 * been pinned and so is accounted for properly in the pinned space by
1782 * now.
1783 */
1784 if (head->total_ref_mod < 0 ||
1785 (head->total_ref_mod == 0 && head->must_insert_reserved)) {
1786 u64 flags = btrfs_ref_head_to_space_flags(head);
1787
1788 btrfs_mod_total_bytes_pinned(fs_info, flags, -head->num_bytes);
1789 }
1790
1791 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1792 }
1793
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1794 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1795 struct btrfs_delayed_ref_head *head)
1796 {
1797
1798 struct btrfs_fs_info *fs_info = trans->fs_info;
1799 struct btrfs_delayed_ref_root *delayed_refs;
1800 int ret;
1801
1802 delayed_refs = &trans->transaction->delayed_refs;
1803
1804 ret = run_and_cleanup_extent_op(trans, head);
1805 if (ret < 0) {
1806 unselect_delayed_ref_head(delayed_refs, head);
1807 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1808 return ret;
1809 } else if (ret) {
1810 return ret;
1811 }
1812
1813 /*
1814 * Need to drop our head ref lock and re-acquire the delayed ref lock
1815 * and then re-check to make sure nobody got added.
1816 */
1817 spin_unlock(&head->lock);
1818 spin_lock(&delayed_refs->lock);
1819 spin_lock(&head->lock);
1820 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1821 spin_unlock(&head->lock);
1822 spin_unlock(&delayed_refs->lock);
1823 return 1;
1824 }
1825 btrfs_delete_ref_head(delayed_refs, head);
1826 spin_unlock(&head->lock);
1827 spin_unlock(&delayed_refs->lock);
1828
1829 if (head->must_insert_reserved) {
1830 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1831 if (head->is_data) {
1832 ret = btrfs_del_csums(trans, fs_info->csum_root,
1833 head->bytenr, head->num_bytes);
1834 }
1835 }
1836
1837 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1838
1839 trace_run_delayed_ref_head(fs_info, head, 0);
1840 btrfs_delayed_ref_unlock(head);
1841 btrfs_put_delayed_ref_head(head);
1842 return ret;
1843 }
1844
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1845 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1846 struct btrfs_trans_handle *trans)
1847 {
1848 struct btrfs_delayed_ref_root *delayed_refs =
1849 &trans->transaction->delayed_refs;
1850 struct btrfs_delayed_ref_head *head = NULL;
1851 int ret;
1852
1853 spin_lock(&delayed_refs->lock);
1854 head = btrfs_select_ref_head(delayed_refs);
1855 if (!head) {
1856 spin_unlock(&delayed_refs->lock);
1857 return head;
1858 }
1859
1860 /*
1861 * Grab the lock that says we are going to process all the refs for
1862 * this head
1863 */
1864 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1865 spin_unlock(&delayed_refs->lock);
1866
1867 /*
1868 * We may have dropped the spin lock to get the head mutex lock, and
1869 * that might have given someone else time to free the head. If that's
1870 * true, it has been removed from our list and we can move on.
1871 */
1872 if (ret == -EAGAIN)
1873 head = ERR_PTR(-EAGAIN);
1874
1875 return head;
1876 }
1877
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,unsigned long * run_refs)1878 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1879 struct btrfs_delayed_ref_head *locked_ref,
1880 unsigned long *run_refs)
1881 {
1882 struct btrfs_fs_info *fs_info = trans->fs_info;
1883 struct btrfs_delayed_ref_root *delayed_refs;
1884 struct btrfs_delayed_extent_op *extent_op;
1885 struct btrfs_delayed_ref_node *ref;
1886 int must_insert_reserved = 0;
1887 int ret;
1888
1889 delayed_refs = &trans->transaction->delayed_refs;
1890
1891 lockdep_assert_held(&locked_ref->mutex);
1892 lockdep_assert_held(&locked_ref->lock);
1893
1894 while ((ref = select_delayed_ref(locked_ref))) {
1895 if (ref->seq &&
1896 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1897 spin_unlock(&locked_ref->lock);
1898 unselect_delayed_ref_head(delayed_refs, locked_ref);
1899 return -EAGAIN;
1900 }
1901
1902 (*run_refs)++;
1903 ref->in_tree = 0;
1904 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1905 RB_CLEAR_NODE(&ref->ref_node);
1906 if (!list_empty(&ref->add_list))
1907 list_del(&ref->add_list);
1908 /*
1909 * When we play the delayed ref, also correct the ref_mod on
1910 * head
1911 */
1912 switch (ref->action) {
1913 case BTRFS_ADD_DELAYED_REF:
1914 case BTRFS_ADD_DELAYED_EXTENT:
1915 locked_ref->ref_mod -= ref->ref_mod;
1916 break;
1917 case BTRFS_DROP_DELAYED_REF:
1918 locked_ref->ref_mod += ref->ref_mod;
1919 break;
1920 default:
1921 WARN_ON(1);
1922 }
1923 atomic_dec(&delayed_refs->num_entries);
1924
1925 /*
1926 * Record the must_insert_reserved flag before we drop the
1927 * spin lock.
1928 */
1929 must_insert_reserved = locked_ref->must_insert_reserved;
1930 locked_ref->must_insert_reserved = 0;
1931
1932 extent_op = locked_ref->extent_op;
1933 locked_ref->extent_op = NULL;
1934 spin_unlock(&locked_ref->lock);
1935
1936 ret = run_one_delayed_ref(trans, ref, extent_op,
1937 must_insert_reserved);
1938
1939 btrfs_free_delayed_extent_op(extent_op);
1940 if (ret) {
1941 unselect_delayed_ref_head(delayed_refs, locked_ref);
1942 btrfs_put_delayed_ref(ref);
1943 return ret;
1944 }
1945
1946 btrfs_put_delayed_ref(ref);
1947 cond_resched();
1948
1949 spin_lock(&locked_ref->lock);
1950 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1951 }
1952
1953 return 0;
1954 }
1955
1956 /*
1957 * Returns 0 on success or if called with an already aborted transaction.
1958 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1959 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)1960 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1961 unsigned long nr)
1962 {
1963 struct btrfs_fs_info *fs_info = trans->fs_info;
1964 struct btrfs_delayed_ref_root *delayed_refs;
1965 struct btrfs_delayed_ref_head *locked_ref = NULL;
1966 ktime_t start = ktime_get();
1967 int ret;
1968 unsigned long count = 0;
1969 unsigned long actual_count = 0;
1970
1971 delayed_refs = &trans->transaction->delayed_refs;
1972 do {
1973 if (!locked_ref) {
1974 locked_ref = btrfs_obtain_ref_head(trans);
1975 if (IS_ERR_OR_NULL(locked_ref)) {
1976 if (PTR_ERR(locked_ref) == -EAGAIN) {
1977 continue;
1978 } else {
1979 break;
1980 }
1981 }
1982 count++;
1983 }
1984 /*
1985 * We need to try and merge add/drops of the same ref since we
1986 * can run into issues with relocate dropping the implicit ref
1987 * and then it being added back again before the drop can
1988 * finish. If we merged anything we need to re-loop so we can
1989 * get a good ref.
1990 * Or we can get node references of the same type that weren't
1991 * merged when created due to bumps in the tree mod seq, and
1992 * we need to merge them to prevent adding an inline extent
1993 * backref before dropping it (triggering a BUG_ON at
1994 * insert_inline_extent_backref()).
1995 */
1996 spin_lock(&locked_ref->lock);
1997 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1998
1999 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2000 &actual_count);
2001 if (ret < 0 && ret != -EAGAIN) {
2002 /*
2003 * Error, btrfs_run_delayed_refs_for_head already
2004 * unlocked everything so just bail out
2005 */
2006 return ret;
2007 } else if (!ret) {
2008 /*
2009 * Success, perform the usual cleanup of a processed
2010 * head
2011 */
2012 ret = cleanup_ref_head(trans, locked_ref);
2013 if (ret > 0 ) {
2014 /* We dropped our lock, we need to loop. */
2015 ret = 0;
2016 continue;
2017 } else if (ret) {
2018 return ret;
2019 }
2020 }
2021
2022 /*
2023 * Either success case or btrfs_run_delayed_refs_for_head
2024 * returned -EAGAIN, meaning we need to select another head
2025 */
2026
2027 locked_ref = NULL;
2028 cond_resched();
2029 } while ((nr != -1 && count < nr) || locked_ref);
2030
2031 /*
2032 * We don't want to include ref heads since we can have empty ref heads
2033 * and those will drastically skew our runtime down since we just do
2034 * accounting, no actual extent tree updates.
2035 */
2036 if (actual_count > 0) {
2037 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2038 u64 avg;
2039
2040 /*
2041 * We weigh the current average higher than our current runtime
2042 * to avoid large swings in the average.
2043 */
2044 spin_lock(&delayed_refs->lock);
2045 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2046 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2047 spin_unlock(&delayed_refs->lock);
2048 }
2049 return 0;
2050 }
2051
2052 #ifdef SCRAMBLE_DELAYED_REFS
2053 /*
2054 * Normally delayed refs get processed in ascending bytenr order. This
2055 * correlates in most cases to the order added. To expose dependencies on this
2056 * order, we start to process the tree in the middle instead of the beginning
2057 */
find_middle(struct rb_root * root)2058 static u64 find_middle(struct rb_root *root)
2059 {
2060 struct rb_node *n = root->rb_node;
2061 struct btrfs_delayed_ref_node *entry;
2062 int alt = 1;
2063 u64 middle;
2064 u64 first = 0, last = 0;
2065
2066 n = rb_first(root);
2067 if (n) {
2068 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2069 first = entry->bytenr;
2070 }
2071 n = rb_last(root);
2072 if (n) {
2073 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2074 last = entry->bytenr;
2075 }
2076 n = root->rb_node;
2077
2078 while (n) {
2079 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2080 WARN_ON(!entry->in_tree);
2081
2082 middle = entry->bytenr;
2083
2084 if (alt)
2085 n = n->rb_left;
2086 else
2087 n = n->rb_right;
2088
2089 alt = 1 - alt;
2090 }
2091 return middle;
2092 }
2093 #endif
2094
2095 /*
2096 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2097 * would require to store the csums for that many bytes.
2098 */
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info * fs_info,u64 csum_bytes)2099 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2100 {
2101 u64 csum_size;
2102 u64 num_csums_per_leaf;
2103 u64 num_csums;
2104
2105 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2106 num_csums_per_leaf = div64_u64(csum_size,
2107 (u64)btrfs_super_csum_size(fs_info->super_copy));
2108 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2109 num_csums += num_csums_per_leaf - 1;
2110 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2111 return num_csums;
2112 }
2113
2114 /*
2115 * this starts processing the delayed reference count updates and
2116 * extent insertions we have queued up so far. count can be
2117 * 0, which means to process everything in the tree at the start
2118 * of the run (but not newly added entries), or it can be some target
2119 * number you'd like to process.
2120 *
2121 * Returns 0 on success or if called with an aborted transaction
2122 * Returns <0 on error and aborts the transaction
2123 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2124 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2125 unsigned long count)
2126 {
2127 struct btrfs_fs_info *fs_info = trans->fs_info;
2128 struct rb_node *node;
2129 struct btrfs_delayed_ref_root *delayed_refs;
2130 struct btrfs_delayed_ref_head *head;
2131 int ret;
2132 int run_all = count == (unsigned long)-1;
2133
2134 /* We'll clean this up in btrfs_cleanup_transaction */
2135 if (TRANS_ABORTED(trans))
2136 return 0;
2137
2138 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2139 return 0;
2140
2141 delayed_refs = &trans->transaction->delayed_refs;
2142 if (count == 0)
2143 count = atomic_read(&delayed_refs->num_entries) * 2;
2144
2145 again:
2146 #ifdef SCRAMBLE_DELAYED_REFS
2147 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2148 #endif
2149 ret = __btrfs_run_delayed_refs(trans, count);
2150 if (ret < 0) {
2151 btrfs_abort_transaction(trans, ret);
2152 return ret;
2153 }
2154
2155 if (run_all) {
2156 btrfs_create_pending_block_groups(trans);
2157
2158 spin_lock(&delayed_refs->lock);
2159 node = rb_first_cached(&delayed_refs->href_root);
2160 if (!node) {
2161 spin_unlock(&delayed_refs->lock);
2162 goto out;
2163 }
2164 head = rb_entry(node, struct btrfs_delayed_ref_head,
2165 href_node);
2166 refcount_inc(&head->refs);
2167 spin_unlock(&delayed_refs->lock);
2168
2169 /* Mutex was contended, block until it's released and retry. */
2170 mutex_lock(&head->mutex);
2171 mutex_unlock(&head->mutex);
2172
2173 btrfs_put_delayed_ref_head(head);
2174 cond_resched();
2175 goto again;
2176 }
2177 out:
2178 return 0;
2179 }
2180
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags,int level,int is_data)2181 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2182 struct extent_buffer *eb, u64 flags,
2183 int level, int is_data)
2184 {
2185 struct btrfs_delayed_extent_op *extent_op;
2186 int ret;
2187
2188 extent_op = btrfs_alloc_delayed_extent_op();
2189 if (!extent_op)
2190 return -ENOMEM;
2191
2192 extent_op->flags_to_set = flags;
2193 extent_op->update_flags = true;
2194 extent_op->update_key = false;
2195 extent_op->is_data = is_data ? true : false;
2196 extent_op->level = level;
2197
2198 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2199 if (ret)
2200 btrfs_free_delayed_extent_op(extent_op);
2201 return ret;
2202 }
2203
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2204 static noinline int check_delayed_ref(struct btrfs_root *root,
2205 struct btrfs_path *path,
2206 u64 objectid, u64 offset, u64 bytenr)
2207 {
2208 struct btrfs_delayed_ref_head *head;
2209 struct btrfs_delayed_ref_node *ref;
2210 struct btrfs_delayed_data_ref *data_ref;
2211 struct btrfs_delayed_ref_root *delayed_refs;
2212 struct btrfs_transaction *cur_trans;
2213 struct rb_node *node;
2214 int ret = 0;
2215
2216 spin_lock(&root->fs_info->trans_lock);
2217 cur_trans = root->fs_info->running_transaction;
2218 if (cur_trans)
2219 refcount_inc(&cur_trans->use_count);
2220 spin_unlock(&root->fs_info->trans_lock);
2221 if (!cur_trans)
2222 return 0;
2223
2224 delayed_refs = &cur_trans->delayed_refs;
2225 spin_lock(&delayed_refs->lock);
2226 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2227 if (!head) {
2228 spin_unlock(&delayed_refs->lock);
2229 btrfs_put_transaction(cur_trans);
2230 return 0;
2231 }
2232
2233 if (!mutex_trylock(&head->mutex)) {
2234 refcount_inc(&head->refs);
2235 spin_unlock(&delayed_refs->lock);
2236
2237 btrfs_release_path(path);
2238
2239 /*
2240 * Mutex was contended, block until it's released and let
2241 * caller try again
2242 */
2243 mutex_lock(&head->mutex);
2244 mutex_unlock(&head->mutex);
2245 btrfs_put_delayed_ref_head(head);
2246 btrfs_put_transaction(cur_trans);
2247 return -EAGAIN;
2248 }
2249 spin_unlock(&delayed_refs->lock);
2250
2251 spin_lock(&head->lock);
2252 /*
2253 * XXX: We should replace this with a proper search function in the
2254 * future.
2255 */
2256 for (node = rb_first_cached(&head->ref_tree); node;
2257 node = rb_next(node)) {
2258 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2259 /* If it's a shared ref we know a cross reference exists */
2260 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2261 ret = 1;
2262 break;
2263 }
2264
2265 data_ref = btrfs_delayed_node_to_data_ref(ref);
2266
2267 /*
2268 * If our ref doesn't match the one we're currently looking at
2269 * then we have a cross reference.
2270 */
2271 if (data_ref->root != root->root_key.objectid ||
2272 data_ref->objectid != objectid ||
2273 data_ref->offset != offset) {
2274 ret = 1;
2275 break;
2276 }
2277 }
2278 spin_unlock(&head->lock);
2279 mutex_unlock(&head->mutex);
2280 btrfs_put_transaction(cur_trans);
2281 return ret;
2282 }
2283
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2284 static noinline int check_committed_ref(struct btrfs_root *root,
2285 struct btrfs_path *path,
2286 u64 objectid, u64 offset, u64 bytenr,
2287 bool strict)
2288 {
2289 struct btrfs_fs_info *fs_info = root->fs_info;
2290 struct btrfs_root *extent_root = fs_info->extent_root;
2291 struct extent_buffer *leaf;
2292 struct btrfs_extent_data_ref *ref;
2293 struct btrfs_extent_inline_ref *iref;
2294 struct btrfs_extent_item *ei;
2295 struct btrfs_key key;
2296 u32 item_size;
2297 int type;
2298 int ret;
2299
2300 key.objectid = bytenr;
2301 key.offset = (u64)-1;
2302 key.type = BTRFS_EXTENT_ITEM_KEY;
2303
2304 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2305 if (ret < 0)
2306 goto out;
2307 BUG_ON(ret == 0); /* Corruption */
2308
2309 ret = -ENOENT;
2310 if (path->slots[0] == 0)
2311 goto out;
2312
2313 path->slots[0]--;
2314 leaf = path->nodes[0];
2315 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2316
2317 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2318 goto out;
2319
2320 ret = 1;
2321 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2322 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2323
2324 /* If extent item has more than 1 inline ref then it's shared */
2325 if (item_size != sizeof(*ei) +
2326 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2327 goto out;
2328
2329 /*
2330 * If extent created before last snapshot => it's shared unless the
2331 * snapshot has been deleted. Use the heuristic if strict is false.
2332 */
2333 if (!strict &&
2334 (btrfs_extent_generation(leaf, ei) <=
2335 btrfs_root_last_snapshot(&root->root_item)))
2336 goto out;
2337
2338 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2339
2340 /* If this extent has SHARED_DATA_REF then it's shared */
2341 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2342 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2343 goto out;
2344
2345 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2346 if (btrfs_extent_refs(leaf, ei) !=
2347 btrfs_extent_data_ref_count(leaf, ref) ||
2348 btrfs_extent_data_ref_root(leaf, ref) !=
2349 root->root_key.objectid ||
2350 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2351 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2352 goto out;
2353
2354 ret = 0;
2355 out:
2356 return ret;
2357 }
2358
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict)2359 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2360 u64 bytenr, bool strict)
2361 {
2362 struct btrfs_path *path;
2363 int ret;
2364
2365 path = btrfs_alloc_path();
2366 if (!path)
2367 return -ENOMEM;
2368
2369 do {
2370 ret = check_committed_ref(root, path, objectid,
2371 offset, bytenr, strict);
2372 if (ret && ret != -ENOENT)
2373 goto out;
2374
2375 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2376 } while (ret == -EAGAIN);
2377
2378 out:
2379 btrfs_free_path(path);
2380 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2381 WARN_ON(ret > 0);
2382 return ret;
2383 }
2384
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2385 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2386 struct btrfs_root *root,
2387 struct extent_buffer *buf,
2388 int full_backref, int inc)
2389 {
2390 struct btrfs_fs_info *fs_info = root->fs_info;
2391 u64 bytenr;
2392 u64 num_bytes;
2393 u64 parent;
2394 u64 ref_root;
2395 u32 nritems;
2396 struct btrfs_key key;
2397 struct btrfs_file_extent_item *fi;
2398 struct btrfs_ref generic_ref = { 0 };
2399 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2400 int i;
2401 int action;
2402 int level;
2403 int ret = 0;
2404
2405 if (btrfs_is_testing(fs_info))
2406 return 0;
2407
2408 ref_root = btrfs_header_owner(buf);
2409 nritems = btrfs_header_nritems(buf);
2410 level = btrfs_header_level(buf);
2411
2412 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2413 return 0;
2414
2415 if (full_backref)
2416 parent = buf->start;
2417 else
2418 parent = 0;
2419 if (inc)
2420 action = BTRFS_ADD_DELAYED_REF;
2421 else
2422 action = BTRFS_DROP_DELAYED_REF;
2423
2424 for (i = 0; i < nritems; i++) {
2425 if (level == 0) {
2426 btrfs_item_key_to_cpu(buf, &key, i);
2427 if (key.type != BTRFS_EXTENT_DATA_KEY)
2428 continue;
2429 fi = btrfs_item_ptr(buf, i,
2430 struct btrfs_file_extent_item);
2431 if (btrfs_file_extent_type(buf, fi) ==
2432 BTRFS_FILE_EXTENT_INLINE)
2433 continue;
2434 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2435 if (bytenr == 0)
2436 continue;
2437
2438 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2439 key.offset -= btrfs_file_extent_offset(buf, fi);
2440 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2441 num_bytes, parent);
2442 generic_ref.real_root = root->root_key.objectid;
2443 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2444 key.offset);
2445 generic_ref.skip_qgroup = for_reloc;
2446 if (inc)
2447 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2448 else
2449 ret = btrfs_free_extent(trans, &generic_ref);
2450 if (ret)
2451 goto fail;
2452 } else {
2453 bytenr = btrfs_node_blockptr(buf, i);
2454 num_bytes = fs_info->nodesize;
2455 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2456 num_bytes, parent);
2457 generic_ref.real_root = root->root_key.objectid;
2458 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2459 generic_ref.skip_qgroup = for_reloc;
2460 if (inc)
2461 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2462 else
2463 ret = btrfs_free_extent(trans, &generic_ref);
2464 if (ret)
2465 goto fail;
2466 }
2467 }
2468 return 0;
2469 fail:
2470 return ret;
2471 }
2472
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2473 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2474 struct extent_buffer *buf, int full_backref)
2475 {
2476 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2477 }
2478
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2479 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2480 struct extent_buffer *buf, int full_backref)
2481 {
2482 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2483 }
2484
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)2485 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2486 {
2487 struct btrfs_block_group *block_group;
2488 int readonly = 0;
2489
2490 block_group = btrfs_lookup_block_group(fs_info, bytenr);
2491 if (!block_group || block_group->ro)
2492 readonly = 1;
2493 if (block_group)
2494 btrfs_put_block_group(block_group);
2495 return readonly;
2496 }
2497
get_alloc_profile_by_root(struct btrfs_root * root,int data)2498 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2499 {
2500 struct btrfs_fs_info *fs_info = root->fs_info;
2501 u64 flags;
2502 u64 ret;
2503
2504 if (data)
2505 flags = BTRFS_BLOCK_GROUP_DATA;
2506 else if (root == fs_info->chunk_root)
2507 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2508 else
2509 flags = BTRFS_BLOCK_GROUP_METADATA;
2510
2511 ret = btrfs_get_alloc_profile(fs_info, flags);
2512 return ret;
2513 }
2514
first_logical_byte(struct btrfs_fs_info * fs_info,u64 search_start)2515 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2516 {
2517 struct btrfs_block_group *cache;
2518 u64 bytenr;
2519
2520 spin_lock(&fs_info->block_group_cache_lock);
2521 bytenr = fs_info->first_logical_byte;
2522 spin_unlock(&fs_info->block_group_cache_lock);
2523
2524 if (bytenr < (u64)-1)
2525 return bytenr;
2526
2527 cache = btrfs_lookup_first_block_group(fs_info, search_start);
2528 if (!cache)
2529 return 0;
2530
2531 bytenr = cache->start;
2532 btrfs_put_block_group(cache);
2533
2534 return bytenr;
2535 }
2536
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2537 static int pin_down_extent(struct btrfs_trans_handle *trans,
2538 struct btrfs_block_group *cache,
2539 u64 bytenr, u64 num_bytes, int reserved)
2540 {
2541 struct btrfs_fs_info *fs_info = cache->fs_info;
2542
2543 spin_lock(&cache->space_info->lock);
2544 spin_lock(&cache->lock);
2545 cache->pinned += num_bytes;
2546 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2547 num_bytes);
2548 if (reserved) {
2549 cache->reserved -= num_bytes;
2550 cache->space_info->bytes_reserved -= num_bytes;
2551 }
2552 spin_unlock(&cache->lock);
2553 spin_unlock(&cache->space_info->lock);
2554
2555 __btrfs_mod_total_bytes_pinned(cache->space_info, num_bytes);
2556 set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2557 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2558 return 0;
2559 }
2560
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2561 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2562 u64 bytenr, u64 num_bytes, int reserved)
2563 {
2564 struct btrfs_block_group *cache;
2565
2566 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2567 BUG_ON(!cache); /* Logic error */
2568
2569 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2570
2571 btrfs_put_block_group(cache);
2572 return 0;
2573 }
2574
2575 /*
2576 * this function must be called within transaction
2577 */
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)2578 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2579 u64 bytenr, u64 num_bytes)
2580 {
2581 struct btrfs_block_group *cache;
2582 int ret;
2583
2584 btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes);
2585
2586 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2587 if (!cache)
2588 return -EINVAL;
2589
2590 /*
2591 * pull in the free space cache (if any) so that our pin
2592 * removes the free space from the cache. We have load_only set
2593 * to one because the slow code to read in the free extents does check
2594 * the pinned extents.
2595 */
2596 btrfs_cache_block_group(cache, 1);
2597
2598 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2599
2600 /* remove us from the free space cache (if we're there at all) */
2601 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2602 btrfs_put_block_group(cache);
2603 return ret;
2604 }
2605
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2606 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2607 u64 start, u64 num_bytes)
2608 {
2609 int ret;
2610 struct btrfs_block_group *block_group;
2611 struct btrfs_caching_control *caching_ctl;
2612
2613 block_group = btrfs_lookup_block_group(fs_info, start);
2614 if (!block_group)
2615 return -EINVAL;
2616
2617 btrfs_cache_block_group(block_group, 0);
2618 caching_ctl = btrfs_get_caching_control(block_group);
2619
2620 if (!caching_ctl) {
2621 /* Logic error */
2622 BUG_ON(!btrfs_block_group_done(block_group));
2623 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2624 } else {
2625 mutex_lock(&caching_ctl->mutex);
2626
2627 if (start >= caching_ctl->progress) {
2628 ret = btrfs_add_excluded_extent(fs_info, start,
2629 num_bytes);
2630 } else if (start + num_bytes <= caching_ctl->progress) {
2631 ret = btrfs_remove_free_space(block_group,
2632 start, num_bytes);
2633 } else {
2634 num_bytes = caching_ctl->progress - start;
2635 ret = btrfs_remove_free_space(block_group,
2636 start, num_bytes);
2637 if (ret)
2638 goto out_lock;
2639
2640 num_bytes = (start + num_bytes) -
2641 caching_ctl->progress;
2642 start = caching_ctl->progress;
2643 ret = btrfs_add_excluded_extent(fs_info, start,
2644 num_bytes);
2645 }
2646 out_lock:
2647 mutex_unlock(&caching_ctl->mutex);
2648 btrfs_put_caching_control(caching_ctl);
2649 }
2650 btrfs_put_block_group(block_group);
2651 return ret;
2652 }
2653
btrfs_exclude_logged_extents(struct extent_buffer * eb)2654 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2655 {
2656 struct btrfs_fs_info *fs_info = eb->fs_info;
2657 struct btrfs_file_extent_item *item;
2658 struct btrfs_key key;
2659 int found_type;
2660 int i;
2661 int ret = 0;
2662
2663 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2664 return 0;
2665
2666 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2667 btrfs_item_key_to_cpu(eb, &key, i);
2668 if (key.type != BTRFS_EXTENT_DATA_KEY)
2669 continue;
2670 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2671 found_type = btrfs_file_extent_type(eb, item);
2672 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2673 continue;
2674 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2675 continue;
2676 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2677 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2678 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2679 if (ret)
2680 break;
2681 }
2682
2683 return ret;
2684 }
2685
2686 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2687 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2688 {
2689 atomic_inc(&bg->reservations);
2690 }
2691
2692 /*
2693 * Returns the free cluster for the given space info and sets empty_cluster to
2694 * what it should be based on the mount options.
2695 */
2696 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2697 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2698 struct btrfs_space_info *space_info, u64 *empty_cluster)
2699 {
2700 struct btrfs_free_cluster *ret = NULL;
2701
2702 *empty_cluster = 0;
2703 if (btrfs_mixed_space_info(space_info))
2704 return ret;
2705
2706 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2707 ret = &fs_info->meta_alloc_cluster;
2708 if (btrfs_test_opt(fs_info, SSD))
2709 *empty_cluster = SZ_2M;
2710 else
2711 *empty_cluster = SZ_64K;
2712 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2713 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2714 *empty_cluster = SZ_2M;
2715 ret = &fs_info->data_alloc_cluster;
2716 }
2717
2718 return ret;
2719 }
2720
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2721 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2722 u64 start, u64 end,
2723 const bool return_free_space)
2724 {
2725 struct btrfs_block_group *cache = NULL;
2726 struct btrfs_space_info *space_info;
2727 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2728 struct btrfs_free_cluster *cluster = NULL;
2729 u64 len;
2730 u64 total_unpinned = 0;
2731 u64 empty_cluster = 0;
2732 bool readonly;
2733
2734 while (start <= end) {
2735 readonly = false;
2736 if (!cache ||
2737 start >= cache->start + cache->length) {
2738 if (cache)
2739 btrfs_put_block_group(cache);
2740 total_unpinned = 0;
2741 cache = btrfs_lookup_block_group(fs_info, start);
2742 BUG_ON(!cache); /* Logic error */
2743
2744 cluster = fetch_cluster_info(fs_info,
2745 cache->space_info,
2746 &empty_cluster);
2747 empty_cluster <<= 1;
2748 }
2749
2750 len = cache->start + cache->length - start;
2751 len = min(len, end + 1 - start);
2752
2753 if (start < cache->last_byte_to_unpin && return_free_space) {
2754 u64 add_len = min(len, cache->last_byte_to_unpin - start);
2755
2756 btrfs_add_free_space(cache, start, add_len);
2757 }
2758
2759 start += len;
2760 total_unpinned += len;
2761 space_info = cache->space_info;
2762
2763 /*
2764 * If this space cluster has been marked as fragmented and we've
2765 * unpinned enough in this block group to potentially allow a
2766 * cluster to be created inside of it go ahead and clear the
2767 * fragmented check.
2768 */
2769 if (cluster && cluster->fragmented &&
2770 total_unpinned > empty_cluster) {
2771 spin_lock(&cluster->lock);
2772 cluster->fragmented = 0;
2773 spin_unlock(&cluster->lock);
2774 }
2775
2776 spin_lock(&space_info->lock);
2777 spin_lock(&cache->lock);
2778 cache->pinned -= len;
2779 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2780 space_info->max_extent_size = 0;
2781 __btrfs_mod_total_bytes_pinned(space_info, -len);
2782 if (cache->ro) {
2783 space_info->bytes_readonly += len;
2784 readonly = true;
2785 }
2786 spin_unlock(&cache->lock);
2787 if (!readonly && return_free_space &&
2788 global_rsv->space_info == space_info) {
2789 u64 to_add = len;
2790
2791 spin_lock(&global_rsv->lock);
2792 if (!global_rsv->full) {
2793 to_add = min(len, global_rsv->size -
2794 global_rsv->reserved);
2795 global_rsv->reserved += to_add;
2796 btrfs_space_info_update_bytes_may_use(fs_info,
2797 space_info, to_add);
2798 if (global_rsv->reserved >= global_rsv->size)
2799 global_rsv->full = 1;
2800 len -= to_add;
2801 }
2802 spin_unlock(&global_rsv->lock);
2803 }
2804 /* Add to any tickets we may have */
2805 if (!readonly && return_free_space && len)
2806 btrfs_try_granting_tickets(fs_info, space_info);
2807 spin_unlock(&space_info->lock);
2808 }
2809
2810 if (cache)
2811 btrfs_put_block_group(cache);
2812 return 0;
2813 }
2814
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2815 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2816 {
2817 struct btrfs_fs_info *fs_info = trans->fs_info;
2818 struct btrfs_block_group *block_group, *tmp;
2819 struct list_head *deleted_bgs;
2820 struct extent_io_tree *unpin;
2821 u64 start;
2822 u64 end;
2823 int ret;
2824
2825 unpin = &trans->transaction->pinned_extents;
2826
2827 while (!TRANS_ABORTED(trans)) {
2828 struct extent_state *cached_state = NULL;
2829
2830 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2831 ret = find_first_extent_bit(unpin, 0, &start, &end,
2832 EXTENT_DIRTY, &cached_state);
2833 if (ret) {
2834 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2835 break;
2836 }
2837 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
2838 clear_extent_bits(&fs_info->excluded_extents, start,
2839 end, EXTENT_UPTODATE);
2840
2841 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2842 ret = btrfs_discard_extent(fs_info, start,
2843 end + 1 - start, NULL);
2844
2845 clear_extent_dirty(unpin, start, end, &cached_state);
2846 unpin_extent_range(fs_info, start, end, true);
2847 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2848 free_extent_state(cached_state);
2849 cond_resched();
2850 }
2851
2852 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2853 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2854 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2855 }
2856
2857 /*
2858 * Transaction is finished. We don't need the lock anymore. We
2859 * do need to clean up the block groups in case of a transaction
2860 * abort.
2861 */
2862 deleted_bgs = &trans->transaction->deleted_bgs;
2863 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2864 u64 trimmed = 0;
2865
2866 ret = -EROFS;
2867 if (!TRANS_ABORTED(trans))
2868 ret = btrfs_discard_extent(fs_info,
2869 block_group->start,
2870 block_group->length,
2871 &trimmed);
2872
2873 list_del_init(&block_group->bg_list);
2874 btrfs_unfreeze_block_group(block_group);
2875 btrfs_put_block_group(block_group);
2876
2877 if (ret) {
2878 const char *errstr = btrfs_decode_error(ret);
2879 btrfs_warn(fs_info,
2880 "discard failed while removing blockgroup: errno=%d %s",
2881 ret, errstr);
2882 }
2883 }
2884
2885 return 0;
2886 }
2887
2888 /*
2889 * Drop one or more refs of @node.
2890 *
2891 * 1. Locate the extent refs.
2892 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2893 * Locate it, then reduce the refs number or remove the ref line completely.
2894 *
2895 * 2. Update the refs count in EXTENT/METADATA_ITEM
2896 *
2897 * Inline backref case:
2898 *
2899 * in extent tree we have:
2900 *
2901 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2902 * refs 2 gen 6 flags DATA
2903 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2904 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2905 *
2906 * This function gets called with:
2907 *
2908 * node->bytenr = 13631488
2909 * node->num_bytes = 1048576
2910 * root_objectid = FS_TREE
2911 * owner_objectid = 257
2912 * owner_offset = 0
2913 * refs_to_drop = 1
2914 *
2915 * Then we should get some like:
2916 *
2917 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2918 * refs 1 gen 6 flags DATA
2919 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2920 *
2921 * Keyed backref case:
2922 *
2923 * in extent tree we have:
2924 *
2925 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2926 * refs 754 gen 6 flags DATA
2927 * [...]
2928 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2929 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2930 *
2931 * This function get called with:
2932 *
2933 * node->bytenr = 13631488
2934 * node->num_bytes = 1048576
2935 * root_objectid = FS_TREE
2936 * owner_objectid = 866
2937 * owner_offset = 0
2938 * refs_to_drop = 1
2939 *
2940 * Then we should get some like:
2941 *
2942 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2943 * refs 753 gen 6 flags DATA
2944 *
2945 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2946 */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)2947 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2948 struct btrfs_delayed_ref_node *node, u64 parent,
2949 u64 root_objectid, u64 owner_objectid,
2950 u64 owner_offset, int refs_to_drop,
2951 struct btrfs_delayed_extent_op *extent_op)
2952 {
2953 struct btrfs_fs_info *info = trans->fs_info;
2954 struct btrfs_key key;
2955 struct btrfs_path *path;
2956 struct btrfs_root *extent_root = info->extent_root;
2957 struct extent_buffer *leaf;
2958 struct btrfs_extent_item *ei;
2959 struct btrfs_extent_inline_ref *iref;
2960 int ret;
2961 int is_data;
2962 int extent_slot = 0;
2963 int found_extent = 0;
2964 int num_to_del = 1;
2965 u32 item_size;
2966 u64 refs;
2967 u64 bytenr = node->bytenr;
2968 u64 num_bytes = node->num_bytes;
2969 int last_ref = 0;
2970 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2971
2972 path = btrfs_alloc_path();
2973 if (!path)
2974 return -ENOMEM;
2975
2976 path->leave_spinning = 1;
2977
2978 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2979
2980 if (!is_data && refs_to_drop != 1) {
2981 btrfs_crit(info,
2982 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2983 node->bytenr, refs_to_drop);
2984 ret = -EINVAL;
2985 btrfs_abort_transaction(trans, ret);
2986 goto out;
2987 }
2988
2989 if (is_data)
2990 skinny_metadata = false;
2991
2992 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2993 parent, root_objectid, owner_objectid,
2994 owner_offset);
2995 if (ret == 0) {
2996 /*
2997 * Either the inline backref or the SHARED_DATA_REF/
2998 * SHARED_BLOCK_REF is found
2999 *
3000 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3001 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3002 */
3003 extent_slot = path->slots[0];
3004 while (extent_slot >= 0) {
3005 btrfs_item_key_to_cpu(path->nodes[0], &key,
3006 extent_slot);
3007 if (key.objectid != bytenr)
3008 break;
3009 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3010 key.offset == num_bytes) {
3011 found_extent = 1;
3012 break;
3013 }
3014 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3015 key.offset == owner_objectid) {
3016 found_extent = 1;
3017 break;
3018 }
3019
3020 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
3021 if (path->slots[0] - extent_slot > 5)
3022 break;
3023 extent_slot--;
3024 }
3025
3026 if (!found_extent) {
3027 if (iref) {
3028 btrfs_crit(info,
3029 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3030 btrfs_abort_transaction(trans, -EUCLEAN);
3031 goto err_dump;
3032 }
3033 /* Must be SHARED_* item, remove the backref first */
3034 ret = remove_extent_backref(trans, path, NULL,
3035 refs_to_drop,
3036 is_data, &last_ref);
3037 if (ret) {
3038 btrfs_abort_transaction(trans, ret);
3039 goto out;
3040 }
3041 btrfs_release_path(path);
3042 path->leave_spinning = 1;
3043
3044 /* Slow path to locate EXTENT/METADATA_ITEM */
3045 key.objectid = bytenr;
3046 key.type = BTRFS_EXTENT_ITEM_KEY;
3047 key.offset = num_bytes;
3048
3049 if (!is_data && skinny_metadata) {
3050 key.type = BTRFS_METADATA_ITEM_KEY;
3051 key.offset = owner_objectid;
3052 }
3053
3054 ret = btrfs_search_slot(trans, extent_root,
3055 &key, path, -1, 1);
3056 if (ret > 0 && skinny_metadata && path->slots[0]) {
3057 /*
3058 * Couldn't find our skinny metadata item,
3059 * see if we have ye olde extent item.
3060 */
3061 path->slots[0]--;
3062 btrfs_item_key_to_cpu(path->nodes[0], &key,
3063 path->slots[0]);
3064 if (key.objectid == bytenr &&
3065 key.type == BTRFS_EXTENT_ITEM_KEY &&
3066 key.offset == num_bytes)
3067 ret = 0;
3068 }
3069
3070 if (ret > 0 && skinny_metadata) {
3071 skinny_metadata = false;
3072 key.objectid = bytenr;
3073 key.type = BTRFS_EXTENT_ITEM_KEY;
3074 key.offset = num_bytes;
3075 btrfs_release_path(path);
3076 ret = btrfs_search_slot(trans, extent_root,
3077 &key, path, -1, 1);
3078 }
3079
3080 if (ret) {
3081 btrfs_err(info,
3082 "umm, got %d back from search, was looking for %llu",
3083 ret, bytenr);
3084 if (ret > 0)
3085 btrfs_print_leaf(path->nodes[0]);
3086 }
3087 if (ret < 0) {
3088 btrfs_abort_transaction(trans, ret);
3089 goto out;
3090 }
3091 extent_slot = path->slots[0];
3092 }
3093 } else if (WARN_ON(ret == -ENOENT)) {
3094 btrfs_print_leaf(path->nodes[0]);
3095 btrfs_err(info,
3096 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3097 bytenr, parent, root_objectid, owner_objectid,
3098 owner_offset);
3099 btrfs_abort_transaction(trans, ret);
3100 goto out;
3101 } else {
3102 btrfs_abort_transaction(trans, ret);
3103 goto out;
3104 }
3105
3106 leaf = path->nodes[0];
3107 item_size = btrfs_item_size_nr(leaf, extent_slot);
3108 if (unlikely(item_size < sizeof(*ei))) {
3109 ret = -EINVAL;
3110 btrfs_print_v0_err(info);
3111 btrfs_abort_transaction(trans, ret);
3112 goto out;
3113 }
3114 ei = btrfs_item_ptr(leaf, extent_slot,
3115 struct btrfs_extent_item);
3116 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3117 key.type == BTRFS_EXTENT_ITEM_KEY) {
3118 struct btrfs_tree_block_info *bi;
3119 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3120 btrfs_crit(info,
3121 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3122 key.objectid, key.type, key.offset,
3123 owner_objectid, item_size,
3124 sizeof(*ei) + sizeof(*bi));
3125 btrfs_abort_transaction(trans, -EUCLEAN);
3126 goto err_dump;
3127 }
3128 bi = (struct btrfs_tree_block_info *)(ei + 1);
3129 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3130 }
3131
3132 refs = btrfs_extent_refs(leaf, ei);
3133 if (refs < refs_to_drop) {
3134 btrfs_crit(info,
3135 "trying to drop %d refs but we only have %llu for bytenr %llu",
3136 refs_to_drop, refs, bytenr);
3137 btrfs_abort_transaction(trans, -EUCLEAN);
3138 goto err_dump;
3139 }
3140 refs -= refs_to_drop;
3141
3142 if (refs > 0) {
3143 if (extent_op)
3144 __run_delayed_extent_op(extent_op, leaf, ei);
3145 /*
3146 * In the case of inline back ref, reference count will
3147 * be updated by remove_extent_backref
3148 */
3149 if (iref) {
3150 if (!found_extent) {
3151 btrfs_crit(info,
3152 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3153 btrfs_abort_transaction(trans, -EUCLEAN);
3154 goto err_dump;
3155 }
3156 } else {
3157 btrfs_set_extent_refs(leaf, ei, refs);
3158 btrfs_mark_buffer_dirty(leaf);
3159 }
3160 if (found_extent) {
3161 ret = remove_extent_backref(trans, path, iref,
3162 refs_to_drop, is_data,
3163 &last_ref);
3164 if (ret) {
3165 btrfs_abort_transaction(trans, ret);
3166 goto out;
3167 }
3168 }
3169 } else {
3170 /* In this branch refs == 1 */
3171 if (found_extent) {
3172 if (is_data && refs_to_drop !=
3173 extent_data_ref_count(path, iref)) {
3174 btrfs_crit(info,
3175 "invalid refs_to_drop, current refs %u refs_to_drop %u",
3176 extent_data_ref_count(path, iref),
3177 refs_to_drop);
3178 btrfs_abort_transaction(trans, -EUCLEAN);
3179 goto err_dump;
3180 }
3181 if (iref) {
3182 if (path->slots[0] != extent_slot) {
3183 btrfs_crit(info,
3184 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3185 key.objectid, key.type,
3186 key.offset);
3187 btrfs_abort_transaction(trans, -EUCLEAN);
3188 goto err_dump;
3189 }
3190 } else {
3191 /*
3192 * No inline ref, we must be at SHARED_* item,
3193 * And it's single ref, it must be:
3194 * | extent_slot ||extent_slot + 1|
3195 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3196 */
3197 if (path->slots[0] != extent_slot + 1) {
3198 btrfs_crit(info,
3199 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3200 btrfs_abort_transaction(trans, -EUCLEAN);
3201 goto err_dump;
3202 }
3203 path->slots[0] = extent_slot;
3204 num_to_del = 2;
3205 }
3206 }
3207
3208 last_ref = 1;
3209 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3210 num_to_del);
3211 if (ret) {
3212 btrfs_abort_transaction(trans, ret);
3213 goto out;
3214 }
3215 btrfs_release_path(path);
3216
3217 if (is_data) {
3218 ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3219 num_bytes);
3220 if (ret) {
3221 btrfs_abort_transaction(trans, ret);
3222 goto out;
3223 }
3224 }
3225
3226 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3227 if (ret) {
3228 btrfs_abort_transaction(trans, ret);
3229 goto out;
3230 }
3231
3232 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3233 if (ret) {
3234 btrfs_abort_transaction(trans, ret);
3235 goto out;
3236 }
3237 }
3238 btrfs_release_path(path);
3239
3240 out:
3241 btrfs_free_path(path);
3242 return ret;
3243 err_dump:
3244 /*
3245 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3246 * dump for debug build.
3247 */
3248 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3249 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3250 path->slots[0], extent_slot);
3251 btrfs_print_leaf(path->nodes[0]);
3252 }
3253
3254 btrfs_free_path(path);
3255 return -EUCLEAN;
3256 }
3257
3258 /*
3259 * when we free an block, it is possible (and likely) that we free the last
3260 * delayed ref for that extent as well. This searches the delayed ref tree for
3261 * a given extent, and if there are no other delayed refs to be processed, it
3262 * removes it from the tree.
3263 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3264 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3265 u64 bytenr)
3266 {
3267 struct btrfs_delayed_ref_head *head;
3268 struct btrfs_delayed_ref_root *delayed_refs;
3269 int ret = 0;
3270
3271 delayed_refs = &trans->transaction->delayed_refs;
3272 spin_lock(&delayed_refs->lock);
3273 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3274 if (!head)
3275 goto out_delayed_unlock;
3276
3277 spin_lock(&head->lock);
3278 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3279 goto out;
3280
3281 if (cleanup_extent_op(head) != NULL)
3282 goto out;
3283
3284 /*
3285 * waiting for the lock here would deadlock. If someone else has it
3286 * locked they are already in the process of dropping it anyway
3287 */
3288 if (!mutex_trylock(&head->mutex))
3289 goto out;
3290
3291 btrfs_delete_ref_head(delayed_refs, head);
3292 head->processing = 0;
3293
3294 spin_unlock(&head->lock);
3295 spin_unlock(&delayed_refs->lock);
3296
3297 BUG_ON(head->extent_op);
3298 if (head->must_insert_reserved)
3299 ret = 1;
3300
3301 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3302 mutex_unlock(&head->mutex);
3303 btrfs_put_delayed_ref_head(head);
3304 return ret;
3305 out:
3306 spin_unlock(&head->lock);
3307
3308 out_delayed_unlock:
3309 spin_unlock(&delayed_refs->lock);
3310 return 0;
3311 }
3312
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)3313 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3314 struct btrfs_root *root,
3315 struct extent_buffer *buf,
3316 u64 parent, int last_ref)
3317 {
3318 struct btrfs_fs_info *fs_info = root->fs_info;
3319 struct btrfs_ref generic_ref = { 0 };
3320 int ret;
3321
3322 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3323 buf->start, buf->len, parent);
3324 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3325 root->root_key.objectid);
3326
3327 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3328 btrfs_ref_tree_mod(fs_info, &generic_ref);
3329 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3330 BUG_ON(ret); /* -ENOMEM */
3331 }
3332
3333 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3334 struct btrfs_block_group *cache;
3335
3336 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3337 ret = check_ref_cleanup(trans, buf->start);
3338 if (!ret)
3339 goto out;
3340 }
3341
3342 cache = btrfs_lookup_block_group(fs_info, buf->start);
3343
3344 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3345 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3346 btrfs_put_block_group(cache);
3347 goto out;
3348 }
3349
3350 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3351
3352 btrfs_add_free_space(cache, buf->start, buf->len);
3353 btrfs_free_reserved_bytes(cache, buf->len, 0);
3354 btrfs_put_block_group(cache);
3355 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3356 }
3357 out:
3358 if (last_ref) {
3359 /*
3360 * Deleting the buffer, clear the corrupt flag since it doesn't
3361 * matter anymore.
3362 */
3363 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3364 }
3365 }
3366
3367 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3368 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3369 {
3370 struct btrfs_fs_info *fs_info = trans->fs_info;
3371 int ret;
3372
3373 if (btrfs_is_testing(fs_info))
3374 return 0;
3375
3376 /*
3377 * tree log blocks never actually go into the extent allocation
3378 * tree, just update pinning info and exit early.
3379 */
3380 if ((ref->type == BTRFS_REF_METADATA &&
3381 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3382 (ref->type == BTRFS_REF_DATA &&
3383 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3384 /* unlocks the pinned mutex */
3385 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3386 ret = 0;
3387 } else if (ref->type == BTRFS_REF_METADATA) {
3388 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3389 } else {
3390 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3391 }
3392
3393 if (!((ref->type == BTRFS_REF_METADATA &&
3394 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3395 (ref->type == BTRFS_REF_DATA &&
3396 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3397 btrfs_ref_tree_mod(fs_info, ref);
3398
3399 return ret;
3400 }
3401
3402 enum btrfs_loop_type {
3403 LOOP_CACHING_NOWAIT,
3404 LOOP_CACHING_WAIT,
3405 LOOP_ALLOC_CHUNK,
3406 LOOP_NO_EMPTY_SIZE,
3407 };
3408
3409 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3410 btrfs_lock_block_group(struct btrfs_block_group *cache,
3411 int delalloc)
3412 {
3413 if (delalloc)
3414 down_read(&cache->data_rwsem);
3415 }
3416
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3417 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3418 int delalloc)
3419 {
3420 btrfs_get_block_group(cache);
3421 if (delalloc)
3422 down_read(&cache->data_rwsem);
3423 }
3424
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3425 static struct btrfs_block_group *btrfs_lock_cluster(
3426 struct btrfs_block_group *block_group,
3427 struct btrfs_free_cluster *cluster,
3428 int delalloc)
3429 __acquires(&cluster->refill_lock)
3430 {
3431 struct btrfs_block_group *used_bg = NULL;
3432
3433 spin_lock(&cluster->refill_lock);
3434 while (1) {
3435 used_bg = cluster->block_group;
3436 if (!used_bg)
3437 return NULL;
3438
3439 if (used_bg == block_group)
3440 return used_bg;
3441
3442 btrfs_get_block_group(used_bg);
3443
3444 if (!delalloc)
3445 return used_bg;
3446
3447 if (down_read_trylock(&used_bg->data_rwsem))
3448 return used_bg;
3449
3450 spin_unlock(&cluster->refill_lock);
3451
3452 /* We should only have one-level nested. */
3453 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3454
3455 spin_lock(&cluster->refill_lock);
3456 if (used_bg == cluster->block_group)
3457 return used_bg;
3458
3459 up_read(&used_bg->data_rwsem);
3460 btrfs_put_block_group(used_bg);
3461 }
3462 }
3463
3464 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3465 btrfs_release_block_group(struct btrfs_block_group *cache,
3466 int delalloc)
3467 {
3468 if (delalloc)
3469 up_read(&cache->data_rwsem);
3470 btrfs_put_block_group(cache);
3471 }
3472
3473 enum btrfs_extent_allocation_policy {
3474 BTRFS_EXTENT_ALLOC_CLUSTERED,
3475 };
3476
3477 /*
3478 * Structure used internally for find_free_extent() function. Wraps needed
3479 * parameters.
3480 */
3481 struct find_free_extent_ctl {
3482 /* Basic allocation info */
3483 u64 num_bytes;
3484 u64 empty_size;
3485 u64 flags;
3486 int delalloc;
3487
3488 /* Where to start the search inside the bg */
3489 u64 search_start;
3490
3491 /* For clustered allocation */
3492 u64 empty_cluster;
3493 struct btrfs_free_cluster *last_ptr;
3494 bool use_cluster;
3495
3496 bool have_caching_bg;
3497 bool orig_have_caching_bg;
3498
3499 /* RAID index, converted from flags */
3500 int index;
3501
3502 /*
3503 * Current loop number, check find_free_extent_update_loop() for details
3504 */
3505 int loop;
3506
3507 /*
3508 * Whether we're refilling a cluster, if true we need to re-search
3509 * current block group but don't try to refill the cluster again.
3510 */
3511 bool retry_clustered;
3512
3513 /*
3514 * Whether we're updating free space cache, if true we need to re-search
3515 * current block group but don't try updating free space cache again.
3516 */
3517 bool retry_unclustered;
3518
3519 /* If current block group is cached */
3520 int cached;
3521
3522 /* Max contiguous hole found */
3523 u64 max_extent_size;
3524
3525 /* Total free space from free space cache, not always contiguous */
3526 u64 total_free_space;
3527
3528 /* Found result */
3529 u64 found_offset;
3530
3531 /* Hint where to start looking for an empty space */
3532 u64 hint_byte;
3533
3534 /* Allocation policy */
3535 enum btrfs_extent_allocation_policy policy;
3536 };
3537
3538
3539 /*
3540 * Helper function for find_free_extent().
3541 *
3542 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3543 * Return -EAGAIN to inform caller that we need to re-search this block group
3544 * Return >0 to inform caller that we find nothing
3545 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3546 */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3547 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3548 struct find_free_extent_ctl *ffe_ctl,
3549 struct btrfs_block_group **cluster_bg_ret)
3550 {
3551 struct btrfs_block_group *cluster_bg;
3552 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3553 u64 aligned_cluster;
3554 u64 offset;
3555 int ret;
3556
3557 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3558 if (!cluster_bg)
3559 goto refill_cluster;
3560 if (cluster_bg != bg && (cluster_bg->ro ||
3561 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3562 goto release_cluster;
3563
3564 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3565 ffe_ctl->num_bytes, cluster_bg->start,
3566 &ffe_ctl->max_extent_size);
3567 if (offset) {
3568 /* We have a block, we're done */
3569 spin_unlock(&last_ptr->refill_lock);
3570 trace_btrfs_reserve_extent_cluster(cluster_bg,
3571 ffe_ctl->search_start, ffe_ctl->num_bytes);
3572 *cluster_bg_ret = cluster_bg;
3573 ffe_ctl->found_offset = offset;
3574 return 0;
3575 }
3576 WARN_ON(last_ptr->block_group != cluster_bg);
3577
3578 release_cluster:
3579 /*
3580 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3581 * lets just skip it and let the allocator find whatever block it can
3582 * find. If we reach this point, we will have tried the cluster
3583 * allocator plenty of times and not have found anything, so we are
3584 * likely way too fragmented for the clustering stuff to find anything.
3585 *
3586 * However, if the cluster is taken from the current block group,
3587 * release the cluster first, so that we stand a better chance of
3588 * succeeding in the unclustered allocation.
3589 */
3590 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3591 spin_unlock(&last_ptr->refill_lock);
3592 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3593 return -ENOENT;
3594 }
3595
3596 /* This cluster didn't work out, free it and start over */
3597 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3598
3599 if (cluster_bg != bg)
3600 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3601
3602 refill_cluster:
3603 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3604 spin_unlock(&last_ptr->refill_lock);
3605 return -ENOENT;
3606 }
3607
3608 aligned_cluster = max_t(u64,
3609 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3610 bg->full_stripe_len);
3611 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3612 ffe_ctl->num_bytes, aligned_cluster);
3613 if (ret == 0) {
3614 /* Now pull our allocation out of this cluster */
3615 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3616 ffe_ctl->num_bytes, ffe_ctl->search_start,
3617 &ffe_ctl->max_extent_size);
3618 if (offset) {
3619 /* We found one, proceed */
3620 spin_unlock(&last_ptr->refill_lock);
3621 trace_btrfs_reserve_extent_cluster(bg,
3622 ffe_ctl->search_start,
3623 ffe_ctl->num_bytes);
3624 ffe_ctl->found_offset = offset;
3625 return 0;
3626 }
3627 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3628 !ffe_ctl->retry_clustered) {
3629 spin_unlock(&last_ptr->refill_lock);
3630
3631 ffe_ctl->retry_clustered = true;
3632 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3633 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3634 return -EAGAIN;
3635 }
3636 /*
3637 * At this point we either didn't find a cluster or we weren't able to
3638 * allocate a block from our cluster. Free the cluster we've been
3639 * trying to use, and go to the next block group.
3640 */
3641 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3642 spin_unlock(&last_ptr->refill_lock);
3643 return 1;
3644 }
3645
3646 /*
3647 * Return >0 to inform caller that we find nothing
3648 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3649 * Return -EAGAIN to inform caller that we need to re-search this block group
3650 */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3651 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3652 struct find_free_extent_ctl *ffe_ctl)
3653 {
3654 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3655 u64 offset;
3656
3657 /*
3658 * We are doing an unclustered allocation, set the fragmented flag so
3659 * we don't bother trying to setup a cluster again until we get more
3660 * space.
3661 */
3662 if (unlikely(last_ptr)) {
3663 spin_lock(&last_ptr->lock);
3664 last_ptr->fragmented = 1;
3665 spin_unlock(&last_ptr->lock);
3666 }
3667 if (ffe_ctl->cached) {
3668 struct btrfs_free_space_ctl *free_space_ctl;
3669
3670 free_space_ctl = bg->free_space_ctl;
3671 spin_lock(&free_space_ctl->tree_lock);
3672 if (free_space_ctl->free_space <
3673 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3674 ffe_ctl->empty_size) {
3675 ffe_ctl->total_free_space = max_t(u64,
3676 ffe_ctl->total_free_space,
3677 free_space_ctl->free_space);
3678 spin_unlock(&free_space_ctl->tree_lock);
3679 return 1;
3680 }
3681 spin_unlock(&free_space_ctl->tree_lock);
3682 }
3683
3684 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3685 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3686 &ffe_ctl->max_extent_size);
3687
3688 /*
3689 * If we didn't find a chunk, and we haven't failed on this block group
3690 * before, and this block group is in the middle of caching and we are
3691 * ok with waiting, then go ahead and wait for progress to be made, and
3692 * set @retry_unclustered to true.
3693 *
3694 * If @retry_unclustered is true then we've already waited on this
3695 * block group once and should move on to the next block group.
3696 */
3697 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3698 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3699 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3700 ffe_ctl->empty_size);
3701 ffe_ctl->retry_unclustered = true;
3702 return -EAGAIN;
3703 } else if (!offset) {
3704 return 1;
3705 }
3706 ffe_ctl->found_offset = offset;
3707 return 0;
3708 }
3709
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3710 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3711 struct find_free_extent_ctl *ffe_ctl,
3712 struct btrfs_block_group **bg_ret)
3713 {
3714 int ret;
3715
3716 /* We want to try and use the cluster allocator, so lets look there */
3717 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3718 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3719 if (ret >= 0 || ret == -EAGAIN)
3720 return ret;
3721 /* ret == -ENOENT case falls through */
3722 }
3723
3724 return find_free_extent_unclustered(block_group, ffe_ctl);
3725 }
3726
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3727 static int do_allocation(struct btrfs_block_group *block_group,
3728 struct find_free_extent_ctl *ffe_ctl,
3729 struct btrfs_block_group **bg_ret)
3730 {
3731 switch (ffe_ctl->policy) {
3732 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3733 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3734 default:
3735 BUG();
3736 }
3737 }
3738
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3739 static void release_block_group(struct btrfs_block_group *block_group,
3740 struct find_free_extent_ctl *ffe_ctl,
3741 int delalloc)
3742 {
3743 switch (ffe_ctl->policy) {
3744 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3745 ffe_ctl->retry_clustered = false;
3746 ffe_ctl->retry_unclustered = false;
3747 break;
3748 default:
3749 BUG();
3750 }
3751
3752 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3753 ffe_ctl->index);
3754 btrfs_release_block_group(block_group, delalloc);
3755 }
3756
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3757 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3758 struct btrfs_key *ins)
3759 {
3760 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3761
3762 if (!ffe_ctl->use_cluster && last_ptr) {
3763 spin_lock(&last_ptr->lock);
3764 last_ptr->window_start = ins->objectid;
3765 spin_unlock(&last_ptr->lock);
3766 }
3767 }
3768
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3769 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3770 struct btrfs_key *ins)
3771 {
3772 switch (ffe_ctl->policy) {
3773 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3774 found_extent_clustered(ffe_ctl, ins);
3775 break;
3776 default:
3777 BUG();
3778 }
3779 }
3780
chunk_allocation_failed(struct find_free_extent_ctl * ffe_ctl)3781 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3782 {
3783 switch (ffe_ctl->policy) {
3784 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3785 /*
3786 * If we can't allocate a new chunk we've already looped through
3787 * at least once, move on to the NO_EMPTY_SIZE case.
3788 */
3789 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3790 return 0;
3791 default:
3792 BUG();
3793 }
3794 }
3795
3796 /*
3797 * Return >0 means caller needs to re-search for free extent
3798 * Return 0 means we have the needed free extent.
3799 * Return <0 means we failed to locate any free extent.
3800 */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)3801 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3802 struct btrfs_key *ins,
3803 struct find_free_extent_ctl *ffe_ctl,
3804 bool full_search)
3805 {
3806 struct btrfs_root *root = fs_info->extent_root;
3807 int ret;
3808
3809 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3810 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3811 ffe_ctl->orig_have_caching_bg = true;
3812
3813 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3814 ffe_ctl->have_caching_bg)
3815 return 1;
3816
3817 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3818 return 1;
3819
3820 if (ins->objectid) {
3821 found_extent(ffe_ctl, ins);
3822 return 0;
3823 }
3824
3825 /*
3826 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3827 * caching kthreads as we move along
3828 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3829 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3830 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3831 * again
3832 */
3833 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3834 ffe_ctl->index = 0;
3835 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3836 /*
3837 * We want to skip the LOOP_CACHING_WAIT step if we
3838 * don't have any uncached bgs and we've already done a
3839 * full search through.
3840 */
3841 if (ffe_ctl->orig_have_caching_bg || !full_search)
3842 ffe_ctl->loop = LOOP_CACHING_WAIT;
3843 else
3844 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3845 } else {
3846 ffe_ctl->loop++;
3847 }
3848
3849 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3850 struct btrfs_trans_handle *trans;
3851 int exist = 0;
3852
3853 trans = current->journal_info;
3854 if (trans)
3855 exist = 1;
3856 else
3857 trans = btrfs_join_transaction(root);
3858
3859 if (IS_ERR(trans)) {
3860 ret = PTR_ERR(trans);
3861 return ret;
3862 }
3863
3864 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3865 CHUNK_ALLOC_FORCE);
3866
3867 /* Do not bail out on ENOSPC since we can do more. */
3868 if (ret == -ENOSPC)
3869 ret = chunk_allocation_failed(ffe_ctl);
3870 else if (ret < 0)
3871 btrfs_abort_transaction(trans, ret);
3872 else
3873 ret = 0;
3874 if (!exist)
3875 btrfs_end_transaction(trans);
3876 if (ret)
3877 return ret;
3878 }
3879
3880 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3881 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
3882 return -ENOSPC;
3883
3884 /*
3885 * Don't loop again if we already have no empty_size and
3886 * no empty_cluster.
3887 */
3888 if (ffe_ctl->empty_size == 0 &&
3889 ffe_ctl->empty_cluster == 0)
3890 return -ENOSPC;
3891 ffe_ctl->empty_size = 0;
3892 ffe_ctl->empty_cluster = 0;
3893 }
3894 return 1;
3895 }
3896 return -ENOSPC;
3897 }
3898
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)3899 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
3900 struct find_free_extent_ctl *ffe_ctl,
3901 struct btrfs_space_info *space_info,
3902 struct btrfs_key *ins)
3903 {
3904 /*
3905 * If our free space is heavily fragmented we may not be able to make
3906 * big contiguous allocations, so instead of doing the expensive search
3907 * for free space, simply return ENOSPC with our max_extent_size so we
3908 * can go ahead and search for a more manageable chunk.
3909 *
3910 * If our max_extent_size is large enough for our allocation simply
3911 * disable clustering since we will likely not be able to find enough
3912 * space to create a cluster and induce latency trying.
3913 */
3914 if (space_info->max_extent_size) {
3915 spin_lock(&space_info->lock);
3916 if (space_info->max_extent_size &&
3917 ffe_ctl->num_bytes > space_info->max_extent_size) {
3918 ins->offset = space_info->max_extent_size;
3919 spin_unlock(&space_info->lock);
3920 return -ENOSPC;
3921 } else if (space_info->max_extent_size) {
3922 ffe_ctl->use_cluster = false;
3923 }
3924 spin_unlock(&space_info->lock);
3925 }
3926
3927 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
3928 &ffe_ctl->empty_cluster);
3929 if (ffe_ctl->last_ptr) {
3930 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3931
3932 spin_lock(&last_ptr->lock);
3933 if (last_ptr->block_group)
3934 ffe_ctl->hint_byte = last_ptr->window_start;
3935 if (last_ptr->fragmented) {
3936 /*
3937 * We still set window_start so we can keep track of the
3938 * last place we found an allocation to try and save
3939 * some time.
3940 */
3941 ffe_ctl->hint_byte = last_ptr->window_start;
3942 ffe_ctl->use_cluster = false;
3943 }
3944 spin_unlock(&last_ptr->lock);
3945 }
3946
3947 return 0;
3948 }
3949
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)3950 static int prepare_allocation(struct btrfs_fs_info *fs_info,
3951 struct find_free_extent_ctl *ffe_ctl,
3952 struct btrfs_space_info *space_info,
3953 struct btrfs_key *ins)
3954 {
3955 switch (ffe_ctl->policy) {
3956 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3957 return prepare_allocation_clustered(fs_info, ffe_ctl,
3958 space_info, ins);
3959 default:
3960 BUG();
3961 }
3962 }
3963
3964 /*
3965 * walks the btree of allocated extents and find a hole of a given size.
3966 * The key ins is changed to record the hole:
3967 * ins->objectid == start position
3968 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3969 * ins->offset == the size of the hole.
3970 * Any available blocks before search_start are skipped.
3971 *
3972 * If there is no suitable free space, we will record the max size of
3973 * the free space extent currently.
3974 *
3975 * The overall logic and call chain:
3976 *
3977 * find_free_extent()
3978 * |- Iterate through all block groups
3979 * | |- Get a valid block group
3980 * | |- Try to do clustered allocation in that block group
3981 * | |- Try to do unclustered allocation in that block group
3982 * | |- Check if the result is valid
3983 * | | |- If valid, then exit
3984 * | |- Jump to next block group
3985 * |
3986 * |- Push harder to find free extents
3987 * |- If not found, re-iterate all block groups
3988 */
find_free_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 empty_size,u64 hint_byte_orig,struct btrfs_key * ins,u64 flags,int delalloc)3989 static noinline int find_free_extent(struct btrfs_root *root,
3990 u64 ram_bytes, u64 num_bytes, u64 empty_size,
3991 u64 hint_byte_orig, struct btrfs_key *ins,
3992 u64 flags, int delalloc)
3993 {
3994 struct btrfs_fs_info *fs_info = root->fs_info;
3995 int ret = 0;
3996 int cache_block_group_error = 0;
3997 struct btrfs_block_group *block_group = NULL;
3998 struct find_free_extent_ctl ffe_ctl = {0};
3999 struct btrfs_space_info *space_info;
4000 bool full_search = false;
4001
4002 WARN_ON(num_bytes < fs_info->sectorsize);
4003
4004 ffe_ctl.num_bytes = num_bytes;
4005 ffe_ctl.empty_size = empty_size;
4006 ffe_ctl.flags = flags;
4007 ffe_ctl.search_start = 0;
4008 ffe_ctl.delalloc = delalloc;
4009 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
4010 ffe_ctl.have_caching_bg = false;
4011 ffe_ctl.orig_have_caching_bg = false;
4012 ffe_ctl.found_offset = 0;
4013 ffe_ctl.hint_byte = hint_byte_orig;
4014 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4015
4016 /* For clustered allocation */
4017 ffe_ctl.retry_clustered = false;
4018 ffe_ctl.retry_unclustered = false;
4019 ffe_ctl.last_ptr = NULL;
4020 ffe_ctl.use_cluster = true;
4021
4022 ins->type = BTRFS_EXTENT_ITEM_KEY;
4023 ins->objectid = 0;
4024 ins->offset = 0;
4025
4026 trace_find_free_extent(root, num_bytes, empty_size, flags);
4027
4028 space_info = btrfs_find_space_info(fs_info, flags);
4029 if (!space_info) {
4030 btrfs_err(fs_info, "No space info for %llu", flags);
4031 return -ENOSPC;
4032 }
4033
4034 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
4035 if (ret < 0)
4036 return ret;
4037
4038 ffe_ctl.search_start = max(ffe_ctl.search_start,
4039 first_logical_byte(fs_info, 0));
4040 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
4041 if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
4042 block_group = btrfs_lookup_block_group(fs_info,
4043 ffe_ctl.search_start);
4044 /*
4045 * we don't want to use the block group if it doesn't match our
4046 * allocation bits, or if its not cached.
4047 *
4048 * However if we are re-searching with an ideal block group
4049 * picked out then we don't care that the block group is cached.
4050 */
4051 if (block_group && block_group_bits(block_group, flags) &&
4052 block_group->cached != BTRFS_CACHE_NO) {
4053 down_read(&space_info->groups_sem);
4054 if (list_empty(&block_group->list) ||
4055 block_group->ro) {
4056 /*
4057 * someone is removing this block group,
4058 * we can't jump into the have_block_group
4059 * target because our list pointers are not
4060 * valid
4061 */
4062 btrfs_put_block_group(block_group);
4063 up_read(&space_info->groups_sem);
4064 } else {
4065 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
4066 block_group->flags);
4067 btrfs_lock_block_group(block_group, delalloc);
4068 goto have_block_group;
4069 }
4070 } else if (block_group) {
4071 btrfs_put_block_group(block_group);
4072 }
4073 }
4074 search:
4075 ffe_ctl.have_caching_bg = false;
4076 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4077 ffe_ctl.index == 0)
4078 full_search = true;
4079 down_read(&space_info->groups_sem);
4080 list_for_each_entry(block_group,
4081 &space_info->block_groups[ffe_ctl.index], list) {
4082 struct btrfs_block_group *bg_ret;
4083
4084 /* If the block group is read-only, we can skip it entirely. */
4085 if (unlikely(block_group->ro))
4086 continue;
4087
4088 btrfs_grab_block_group(block_group, delalloc);
4089 ffe_ctl.search_start = block_group->start;
4090
4091 /*
4092 * this can happen if we end up cycling through all the
4093 * raid types, but we want to make sure we only allocate
4094 * for the proper type.
4095 */
4096 if (!block_group_bits(block_group, flags)) {
4097 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4098 BTRFS_BLOCK_GROUP_RAID1_MASK |
4099 BTRFS_BLOCK_GROUP_RAID56_MASK |
4100 BTRFS_BLOCK_GROUP_RAID10;
4101
4102 /*
4103 * if they asked for extra copies and this block group
4104 * doesn't provide them, bail. This does allow us to
4105 * fill raid0 from raid1.
4106 */
4107 if ((flags & extra) && !(block_group->flags & extra))
4108 goto loop;
4109
4110 /*
4111 * This block group has different flags than we want.
4112 * It's possible that we have MIXED_GROUP flag but no
4113 * block group is mixed. Just skip such block group.
4114 */
4115 btrfs_release_block_group(block_group, delalloc);
4116 continue;
4117 }
4118
4119 have_block_group:
4120 ffe_ctl.cached = btrfs_block_group_done(block_group);
4121 if (unlikely(!ffe_ctl.cached)) {
4122 ffe_ctl.have_caching_bg = true;
4123 ret = btrfs_cache_block_group(block_group, 0);
4124
4125 /*
4126 * If we get ENOMEM here or something else we want to
4127 * try other block groups, because it may not be fatal.
4128 * However if we can't find anything else we need to
4129 * save our return here so that we return the actual
4130 * error that caused problems, not ENOSPC.
4131 */
4132 if (ret < 0) {
4133 if (!cache_block_group_error)
4134 cache_block_group_error = ret;
4135 ret = 0;
4136 goto loop;
4137 }
4138 ret = 0;
4139 }
4140
4141 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4142 goto loop;
4143
4144 bg_ret = NULL;
4145 ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4146 if (ret == 0) {
4147 if (bg_ret && bg_ret != block_group) {
4148 btrfs_release_block_group(block_group, delalloc);
4149 block_group = bg_ret;
4150 }
4151 } else if (ret == -EAGAIN) {
4152 goto have_block_group;
4153 } else if (ret > 0) {
4154 goto loop;
4155 }
4156
4157 /* Checks */
4158 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4159 fs_info->stripesize);
4160
4161 /* move on to the next group */
4162 if (ffe_ctl.search_start + num_bytes >
4163 block_group->start + block_group->length) {
4164 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4165 num_bytes);
4166 goto loop;
4167 }
4168
4169 if (ffe_ctl.found_offset < ffe_ctl.search_start)
4170 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4171 ffe_ctl.search_start - ffe_ctl.found_offset);
4172
4173 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4174 num_bytes, delalloc);
4175 if (ret == -EAGAIN) {
4176 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4177 num_bytes);
4178 goto loop;
4179 }
4180 btrfs_inc_block_group_reservations(block_group);
4181
4182 /* we are all good, lets return */
4183 ins->objectid = ffe_ctl.search_start;
4184 ins->offset = num_bytes;
4185
4186 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4187 num_bytes);
4188 btrfs_release_block_group(block_group, delalloc);
4189 break;
4190 loop:
4191 release_block_group(block_group, &ffe_ctl, delalloc);
4192 cond_resched();
4193 }
4194 up_read(&space_info->groups_sem);
4195
4196 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4197 if (ret > 0)
4198 goto search;
4199
4200 if (ret == -ENOSPC && !cache_block_group_error) {
4201 /*
4202 * Use ffe_ctl->total_free_space as fallback if we can't find
4203 * any contiguous hole.
4204 */
4205 if (!ffe_ctl.max_extent_size)
4206 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4207 spin_lock(&space_info->lock);
4208 space_info->max_extent_size = ffe_ctl.max_extent_size;
4209 spin_unlock(&space_info->lock);
4210 ins->offset = ffe_ctl.max_extent_size;
4211 } else if (ret == -ENOSPC) {
4212 ret = cache_block_group_error;
4213 }
4214 return ret;
4215 }
4216
4217 /*
4218 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4219 * hole that is at least as big as @num_bytes.
4220 *
4221 * @root - The root that will contain this extent
4222 *
4223 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4224 * is used for accounting purposes. This value differs
4225 * from @num_bytes only in the case of compressed extents.
4226 *
4227 * @num_bytes - Number of bytes to allocate on-disk.
4228 *
4229 * @min_alloc_size - Indicates the minimum amount of space that the
4230 * allocator should try to satisfy. In some cases
4231 * @num_bytes may be larger than what is required and if
4232 * the filesystem is fragmented then allocation fails.
4233 * However, the presence of @min_alloc_size gives a
4234 * chance to try and satisfy the smaller allocation.
4235 *
4236 * @empty_size - A hint that you plan on doing more COW. This is the
4237 * size in bytes the allocator should try to find free
4238 * next to the block it returns. This is just a hint and
4239 * may be ignored by the allocator.
4240 *
4241 * @hint_byte - Hint to the allocator to start searching above the byte
4242 * address passed. It might be ignored.
4243 *
4244 * @ins - This key is modified to record the found hole. It will
4245 * have the following values:
4246 * ins->objectid == start position
4247 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4248 * ins->offset == the size of the hole.
4249 *
4250 * @is_data - Boolean flag indicating whether an extent is
4251 * allocated for data (true) or metadata (false)
4252 *
4253 * @delalloc - Boolean flag indicating whether this allocation is for
4254 * delalloc or not. If 'true' data_rwsem of block groups
4255 * is going to be acquired.
4256 *
4257 *
4258 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4259 * case -ENOSPC is returned then @ins->offset will contain the size of the
4260 * largest available hole the allocator managed to find.
4261 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4262 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4263 u64 num_bytes, u64 min_alloc_size,
4264 u64 empty_size, u64 hint_byte,
4265 struct btrfs_key *ins, int is_data, int delalloc)
4266 {
4267 struct btrfs_fs_info *fs_info = root->fs_info;
4268 bool final_tried = num_bytes == min_alloc_size;
4269 u64 flags;
4270 int ret;
4271
4272 flags = get_alloc_profile_by_root(root, is_data);
4273 again:
4274 WARN_ON(num_bytes < fs_info->sectorsize);
4275 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
4276 hint_byte, ins, flags, delalloc);
4277 if (!ret && !is_data) {
4278 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4279 } else if (ret == -ENOSPC) {
4280 if (!final_tried && ins->offset) {
4281 num_bytes = min(num_bytes >> 1, ins->offset);
4282 num_bytes = round_down(num_bytes,
4283 fs_info->sectorsize);
4284 num_bytes = max(num_bytes, min_alloc_size);
4285 ram_bytes = num_bytes;
4286 if (num_bytes == min_alloc_size)
4287 final_tried = true;
4288 goto again;
4289 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4290 struct btrfs_space_info *sinfo;
4291
4292 sinfo = btrfs_find_space_info(fs_info, flags);
4293 btrfs_err(fs_info,
4294 "allocation failed flags %llu, wanted %llu",
4295 flags, num_bytes);
4296 if (sinfo)
4297 btrfs_dump_space_info(fs_info, sinfo,
4298 num_bytes, 1);
4299 }
4300 }
4301
4302 return ret;
4303 }
4304
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4305 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4306 u64 start, u64 len, int delalloc)
4307 {
4308 struct btrfs_block_group *cache;
4309
4310 cache = btrfs_lookup_block_group(fs_info, start);
4311 if (!cache) {
4312 btrfs_err(fs_info, "Unable to find block group for %llu",
4313 start);
4314 return -ENOSPC;
4315 }
4316
4317 btrfs_add_free_space(cache, start, len);
4318 btrfs_free_reserved_bytes(cache, len, delalloc);
4319 trace_btrfs_reserved_extent_free(fs_info, start, len);
4320
4321 btrfs_put_block_group(cache);
4322 return 0;
4323 }
4324
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,u64 start,u64 len)4325 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4326 u64 len)
4327 {
4328 struct btrfs_block_group *cache;
4329 int ret = 0;
4330
4331 cache = btrfs_lookup_block_group(trans->fs_info, start);
4332 if (!cache) {
4333 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4334 start);
4335 return -ENOSPC;
4336 }
4337
4338 ret = pin_down_extent(trans, cache, start, len, 1);
4339 btrfs_put_block_group(cache);
4340 return ret;
4341 }
4342
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)4343 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4344 u64 parent, u64 root_objectid,
4345 u64 flags, u64 owner, u64 offset,
4346 struct btrfs_key *ins, int ref_mod)
4347 {
4348 struct btrfs_fs_info *fs_info = trans->fs_info;
4349 int ret;
4350 struct btrfs_extent_item *extent_item;
4351 struct btrfs_extent_inline_ref *iref;
4352 struct btrfs_path *path;
4353 struct extent_buffer *leaf;
4354 int type;
4355 u32 size;
4356
4357 if (parent > 0)
4358 type = BTRFS_SHARED_DATA_REF_KEY;
4359 else
4360 type = BTRFS_EXTENT_DATA_REF_KEY;
4361
4362 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4363
4364 path = btrfs_alloc_path();
4365 if (!path)
4366 return -ENOMEM;
4367
4368 path->leave_spinning = 1;
4369 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4370 ins, size);
4371 if (ret) {
4372 btrfs_free_path(path);
4373 return ret;
4374 }
4375
4376 leaf = path->nodes[0];
4377 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4378 struct btrfs_extent_item);
4379 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4380 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4381 btrfs_set_extent_flags(leaf, extent_item,
4382 flags | BTRFS_EXTENT_FLAG_DATA);
4383
4384 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4385 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4386 if (parent > 0) {
4387 struct btrfs_shared_data_ref *ref;
4388 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4389 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4390 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4391 } else {
4392 struct btrfs_extent_data_ref *ref;
4393 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4394 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4395 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4396 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4397 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4398 }
4399
4400 btrfs_mark_buffer_dirty(path->nodes[0]);
4401 btrfs_free_path(path);
4402
4403 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4404 if (ret)
4405 return ret;
4406
4407 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4408 if (ret) { /* -ENOENT, logic error */
4409 btrfs_err(fs_info, "update block group failed for %llu %llu",
4410 ins->objectid, ins->offset);
4411 BUG();
4412 }
4413 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4414 return ret;
4415 }
4416
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4417 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4418 struct btrfs_delayed_ref_node *node,
4419 struct btrfs_delayed_extent_op *extent_op)
4420 {
4421 struct btrfs_fs_info *fs_info = trans->fs_info;
4422 int ret;
4423 struct btrfs_extent_item *extent_item;
4424 struct btrfs_key extent_key;
4425 struct btrfs_tree_block_info *block_info;
4426 struct btrfs_extent_inline_ref *iref;
4427 struct btrfs_path *path;
4428 struct extent_buffer *leaf;
4429 struct btrfs_delayed_tree_ref *ref;
4430 u32 size = sizeof(*extent_item) + sizeof(*iref);
4431 u64 num_bytes;
4432 u64 flags = extent_op->flags_to_set;
4433 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4434
4435 ref = btrfs_delayed_node_to_tree_ref(node);
4436
4437 extent_key.objectid = node->bytenr;
4438 if (skinny_metadata) {
4439 extent_key.offset = ref->level;
4440 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4441 num_bytes = fs_info->nodesize;
4442 } else {
4443 extent_key.offset = node->num_bytes;
4444 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4445 size += sizeof(*block_info);
4446 num_bytes = node->num_bytes;
4447 }
4448
4449 path = btrfs_alloc_path();
4450 if (!path)
4451 return -ENOMEM;
4452
4453 path->leave_spinning = 1;
4454 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4455 &extent_key, size);
4456 if (ret) {
4457 btrfs_free_path(path);
4458 return ret;
4459 }
4460
4461 leaf = path->nodes[0];
4462 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4463 struct btrfs_extent_item);
4464 btrfs_set_extent_refs(leaf, extent_item, 1);
4465 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4466 btrfs_set_extent_flags(leaf, extent_item,
4467 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4468
4469 if (skinny_metadata) {
4470 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4471 } else {
4472 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4473 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4474 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4475 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4476 }
4477
4478 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4479 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4480 btrfs_set_extent_inline_ref_type(leaf, iref,
4481 BTRFS_SHARED_BLOCK_REF_KEY);
4482 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4483 } else {
4484 btrfs_set_extent_inline_ref_type(leaf, iref,
4485 BTRFS_TREE_BLOCK_REF_KEY);
4486 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4487 }
4488
4489 btrfs_mark_buffer_dirty(leaf);
4490 btrfs_free_path(path);
4491
4492 ret = remove_from_free_space_tree(trans, extent_key.objectid,
4493 num_bytes);
4494 if (ret)
4495 return ret;
4496
4497 ret = btrfs_update_block_group(trans, extent_key.objectid,
4498 fs_info->nodesize, 1);
4499 if (ret) { /* -ENOENT, logic error */
4500 btrfs_err(fs_info, "update block group failed for %llu %llu",
4501 extent_key.objectid, extent_key.offset);
4502 BUG();
4503 }
4504
4505 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4506 fs_info->nodesize);
4507 return ret;
4508 }
4509
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4510 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4511 struct btrfs_root *root, u64 owner,
4512 u64 offset, u64 ram_bytes,
4513 struct btrfs_key *ins)
4514 {
4515 struct btrfs_ref generic_ref = { 0 };
4516
4517 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4518
4519 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4520 ins->objectid, ins->offset, 0);
4521 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4522 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4523
4524 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4525 }
4526
4527 /*
4528 * this is used by the tree logging recovery code. It records that
4529 * an extent has been allocated and makes sure to clear the free
4530 * space cache bits as well
4531 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4532 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4533 u64 root_objectid, u64 owner, u64 offset,
4534 struct btrfs_key *ins)
4535 {
4536 struct btrfs_fs_info *fs_info = trans->fs_info;
4537 int ret;
4538 struct btrfs_block_group *block_group;
4539 struct btrfs_space_info *space_info;
4540
4541 /*
4542 * Mixed block groups will exclude before processing the log so we only
4543 * need to do the exclude dance if this fs isn't mixed.
4544 */
4545 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4546 ret = __exclude_logged_extent(fs_info, ins->objectid,
4547 ins->offset);
4548 if (ret)
4549 return ret;
4550 }
4551
4552 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4553 if (!block_group)
4554 return -EINVAL;
4555
4556 space_info = block_group->space_info;
4557 spin_lock(&space_info->lock);
4558 spin_lock(&block_group->lock);
4559 space_info->bytes_reserved += ins->offset;
4560 block_group->reserved += ins->offset;
4561 spin_unlock(&block_group->lock);
4562 spin_unlock(&space_info->lock);
4563
4564 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4565 offset, ins, 1);
4566 if (ret)
4567 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4568 btrfs_put_block_group(block_group);
4569 return ret;
4570 }
4571
4572 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)4573 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4574 u64 bytenr, int level, u64 owner,
4575 enum btrfs_lock_nesting nest)
4576 {
4577 struct btrfs_fs_info *fs_info = root->fs_info;
4578 struct extent_buffer *buf;
4579
4580 buf = btrfs_find_create_tree_block(fs_info, bytenr);
4581 if (IS_ERR(buf))
4582 return buf;
4583
4584 /*
4585 * Extra safety check in case the extent tree is corrupted and extent
4586 * allocator chooses to use a tree block which is already used and
4587 * locked.
4588 */
4589 if (buf->lock_owner == current->pid) {
4590 btrfs_err_rl(fs_info,
4591 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4592 buf->start, btrfs_header_owner(buf), current->pid);
4593 free_extent_buffer(buf);
4594 return ERR_PTR(-EUCLEAN);
4595 }
4596
4597 btrfs_set_buffer_lockdep_class(owner, buf, level);
4598 __btrfs_tree_lock(buf, nest);
4599 btrfs_clean_tree_block(buf);
4600 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4601
4602 btrfs_set_lock_blocking_write(buf);
4603 set_extent_buffer_uptodate(buf);
4604
4605 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4606 btrfs_set_header_level(buf, level);
4607 btrfs_set_header_bytenr(buf, buf->start);
4608 btrfs_set_header_generation(buf, trans->transid);
4609 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4610 btrfs_set_header_owner(buf, owner);
4611 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4612 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4613 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4614 buf->log_index = root->log_transid % 2;
4615 /*
4616 * we allow two log transactions at a time, use different
4617 * EXTENT bit to differentiate dirty pages.
4618 */
4619 if (buf->log_index == 0)
4620 set_extent_dirty(&root->dirty_log_pages, buf->start,
4621 buf->start + buf->len - 1, GFP_NOFS);
4622 else
4623 set_extent_new(&root->dirty_log_pages, buf->start,
4624 buf->start + buf->len - 1);
4625 } else {
4626 buf->log_index = -1;
4627 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4628 buf->start + buf->len - 1, GFP_NOFS);
4629 }
4630 trans->dirty = true;
4631 /* this returns a buffer locked for blocking */
4632 return buf;
4633 }
4634
4635 /*
4636 * finds a free extent and does all the dirty work required for allocation
4637 * returns the tree buffer or an ERR_PTR on error.
4638 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,enum btrfs_lock_nesting nest)4639 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4640 struct btrfs_root *root,
4641 u64 parent, u64 root_objectid,
4642 const struct btrfs_disk_key *key,
4643 int level, u64 hint,
4644 u64 empty_size,
4645 enum btrfs_lock_nesting nest)
4646 {
4647 struct btrfs_fs_info *fs_info = root->fs_info;
4648 struct btrfs_key ins;
4649 struct btrfs_block_rsv *block_rsv;
4650 struct extent_buffer *buf;
4651 struct btrfs_delayed_extent_op *extent_op;
4652 struct btrfs_ref generic_ref = { 0 };
4653 u64 flags = 0;
4654 int ret;
4655 u32 blocksize = fs_info->nodesize;
4656 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4657
4658 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4659 if (btrfs_is_testing(fs_info)) {
4660 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4661 level, root_objectid, nest);
4662 if (!IS_ERR(buf))
4663 root->alloc_bytenr += blocksize;
4664 return buf;
4665 }
4666 #endif
4667
4668 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4669 if (IS_ERR(block_rsv))
4670 return ERR_CAST(block_rsv);
4671
4672 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4673 empty_size, hint, &ins, 0, 0);
4674 if (ret)
4675 goto out_unuse;
4676
4677 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4678 root_objectid, nest);
4679 if (IS_ERR(buf)) {
4680 ret = PTR_ERR(buf);
4681 goto out_free_reserved;
4682 }
4683
4684 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4685 if (parent == 0)
4686 parent = ins.objectid;
4687 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4688 } else
4689 BUG_ON(parent > 0);
4690
4691 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4692 extent_op = btrfs_alloc_delayed_extent_op();
4693 if (!extent_op) {
4694 ret = -ENOMEM;
4695 goto out_free_buf;
4696 }
4697 if (key)
4698 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4699 else
4700 memset(&extent_op->key, 0, sizeof(extent_op->key));
4701 extent_op->flags_to_set = flags;
4702 extent_op->update_key = skinny_metadata ? false : true;
4703 extent_op->update_flags = true;
4704 extent_op->is_data = false;
4705 extent_op->level = level;
4706
4707 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4708 ins.objectid, ins.offset, parent);
4709 generic_ref.real_root = root->root_key.objectid;
4710 btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4711 btrfs_ref_tree_mod(fs_info, &generic_ref);
4712 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4713 if (ret)
4714 goto out_free_delayed;
4715 }
4716 return buf;
4717
4718 out_free_delayed:
4719 btrfs_free_delayed_extent_op(extent_op);
4720 out_free_buf:
4721 btrfs_tree_unlock(buf);
4722 free_extent_buffer(buf);
4723 out_free_reserved:
4724 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4725 out_unuse:
4726 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4727 return ERR_PTR(ret);
4728 }
4729
4730 struct walk_control {
4731 u64 refs[BTRFS_MAX_LEVEL];
4732 u64 flags[BTRFS_MAX_LEVEL];
4733 struct btrfs_key update_progress;
4734 struct btrfs_key drop_progress;
4735 int drop_level;
4736 int stage;
4737 int level;
4738 int shared_level;
4739 int update_ref;
4740 int keep_locks;
4741 int reada_slot;
4742 int reada_count;
4743 int restarted;
4744 };
4745
4746 #define DROP_REFERENCE 1
4747 #define UPDATE_BACKREF 2
4748
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)4749 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4750 struct btrfs_root *root,
4751 struct walk_control *wc,
4752 struct btrfs_path *path)
4753 {
4754 struct btrfs_fs_info *fs_info = root->fs_info;
4755 u64 bytenr;
4756 u64 generation;
4757 u64 refs;
4758 u64 flags;
4759 u32 nritems;
4760 struct btrfs_key key;
4761 struct extent_buffer *eb;
4762 int ret;
4763 int slot;
4764 int nread = 0;
4765
4766 if (path->slots[wc->level] < wc->reada_slot) {
4767 wc->reada_count = wc->reada_count * 2 / 3;
4768 wc->reada_count = max(wc->reada_count, 2);
4769 } else {
4770 wc->reada_count = wc->reada_count * 3 / 2;
4771 wc->reada_count = min_t(int, wc->reada_count,
4772 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4773 }
4774
4775 eb = path->nodes[wc->level];
4776 nritems = btrfs_header_nritems(eb);
4777
4778 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4779 if (nread >= wc->reada_count)
4780 break;
4781
4782 cond_resched();
4783 bytenr = btrfs_node_blockptr(eb, slot);
4784 generation = btrfs_node_ptr_generation(eb, slot);
4785
4786 if (slot == path->slots[wc->level])
4787 goto reada;
4788
4789 if (wc->stage == UPDATE_BACKREF &&
4790 generation <= root->root_key.offset)
4791 continue;
4792
4793 /* We don't lock the tree block, it's OK to be racy here */
4794 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4795 wc->level - 1, 1, &refs,
4796 &flags);
4797 /* We don't care about errors in readahead. */
4798 if (ret < 0)
4799 continue;
4800 BUG_ON(refs == 0);
4801
4802 if (wc->stage == DROP_REFERENCE) {
4803 if (refs == 1)
4804 goto reada;
4805
4806 if (wc->level == 1 &&
4807 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4808 continue;
4809 if (!wc->update_ref ||
4810 generation <= root->root_key.offset)
4811 continue;
4812 btrfs_node_key_to_cpu(eb, &key, slot);
4813 ret = btrfs_comp_cpu_keys(&key,
4814 &wc->update_progress);
4815 if (ret < 0)
4816 continue;
4817 } else {
4818 if (wc->level == 1 &&
4819 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4820 continue;
4821 }
4822 reada:
4823 readahead_tree_block(fs_info, bytenr);
4824 nread++;
4825 }
4826 wc->reada_slot = slot;
4827 }
4828
4829 /*
4830 * helper to process tree block while walking down the tree.
4831 *
4832 * when wc->stage == UPDATE_BACKREF, this function updates
4833 * back refs for pointers in the block.
4834 *
4835 * NOTE: return value 1 means we should stop walking down.
4836 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)4837 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4838 struct btrfs_root *root,
4839 struct btrfs_path *path,
4840 struct walk_control *wc, int lookup_info)
4841 {
4842 struct btrfs_fs_info *fs_info = root->fs_info;
4843 int level = wc->level;
4844 struct extent_buffer *eb = path->nodes[level];
4845 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4846 int ret;
4847
4848 if (wc->stage == UPDATE_BACKREF &&
4849 btrfs_header_owner(eb) != root->root_key.objectid)
4850 return 1;
4851
4852 /*
4853 * when reference count of tree block is 1, it won't increase
4854 * again. once full backref flag is set, we never clear it.
4855 */
4856 if (lookup_info &&
4857 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4858 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4859 BUG_ON(!path->locks[level]);
4860 ret = btrfs_lookup_extent_info(trans, fs_info,
4861 eb->start, level, 1,
4862 &wc->refs[level],
4863 &wc->flags[level]);
4864 BUG_ON(ret == -ENOMEM);
4865 if (ret)
4866 return ret;
4867 BUG_ON(wc->refs[level] == 0);
4868 }
4869
4870 if (wc->stage == DROP_REFERENCE) {
4871 if (wc->refs[level] > 1)
4872 return 1;
4873
4874 if (path->locks[level] && !wc->keep_locks) {
4875 btrfs_tree_unlock_rw(eb, path->locks[level]);
4876 path->locks[level] = 0;
4877 }
4878 return 0;
4879 }
4880
4881 /* wc->stage == UPDATE_BACKREF */
4882 if (!(wc->flags[level] & flag)) {
4883 BUG_ON(!path->locks[level]);
4884 ret = btrfs_inc_ref(trans, root, eb, 1);
4885 BUG_ON(ret); /* -ENOMEM */
4886 ret = btrfs_dec_ref(trans, root, eb, 0);
4887 BUG_ON(ret); /* -ENOMEM */
4888 ret = btrfs_set_disk_extent_flags(trans, eb, flag,
4889 btrfs_header_level(eb), 0);
4890 BUG_ON(ret); /* -ENOMEM */
4891 wc->flags[level] |= flag;
4892 }
4893
4894 /*
4895 * the block is shared by multiple trees, so it's not good to
4896 * keep the tree lock
4897 */
4898 if (path->locks[level] && level > 0) {
4899 btrfs_tree_unlock_rw(eb, path->locks[level]);
4900 path->locks[level] = 0;
4901 }
4902 return 0;
4903 }
4904
4905 /*
4906 * This is used to verify a ref exists for this root to deal with a bug where we
4907 * would have a drop_progress key that hadn't been updated properly.
4908 */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)4909 static int check_ref_exists(struct btrfs_trans_handle *trans,
4910 struct btrfs_root *root, u64 bytenr, u64 parent,
4911 int level)
4912 {
4913 struct btrfs_path *path;
4914 struct btrfs_extent_inline_ref *iref;
4915 int ret;
4916
4917 path = btrfs_alloc_path();
4918 if (!path)
4919 return -ENOMEM;
4920
4921 ret = lookup_extent_backref(trans, path, &iref, bytenr,
4922 root->fs_info->nodesize, parent,
4923 root->root_key.objectid, level, 0);
4924 btrfs_free_path(path);
4925 if (ret == -ENOENT)
4926 return 0;
4927 if (ret < 0)
4928 return ret;
4929 return 1;
4930 }
4931
4932 /*
4933 * helper to process tree block pointer.
4934 *
4935 * when wc->stage == DROP_REFERENCE, this function checks
4936 * reference count of the block pointed to. if the block
4937 * is shared and we need update back refs for the subtree
4938 * rooted at the block, this function changes wc->stage to
4939 * UPDATE_BACKREF. if the block is shared and there is no
4940 * need to update back, this function drops the reference
4941 * to the block.
4942 *
4943 * NOTE: return value 1 means we should stop walking down.
4944 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)4945 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4946 struct btrfs_root *root,
4947 struct btrfs_path *path,
4948 struct walk_control *wc, int *lookup_info)
4949 {
4950 struct btrfs_fs_info *fs_info = root->fs_info;
4951 u64 bytenr;
4952 u64 generation;
4953 u64 parent;
4954 struct btrfs_key key;
4955 struct btrfs_key first_key;
4956 struct btrfs_ref ref = { 0 };
4957 struct extent_buffer *next;
4958 int level = wc->level;
4959 int reada = 0;
4960 int ret = 0;
4961 bool need_account = false;
4962
4963 generation = btrfs_node_ptr_generation(path->nodes[level],
4964 path->slots[level]);
4965 /*
4966 * if the lower level block was created before the snapshot
4967 * was created, we know there is no need to update back refs
4968 * for the subtree
4969 */
4970 if (wc->stage == UPDATE_BACKREF &&
4971 generation <= root->root_key.offset) {
4972 *lookup_info = 1;
4973 return 1;
4974 }
4975
4976 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4977 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4978 path->slots[level]);
4979
4980 next = find_extent_buffer(fs_info, bytenr);
4981 if (!next) {
4982 next = btrfs_find_create_tree_block(fs_info, bytenr);
4983 if (IS_ERR(next))
4984 return PTR_ERR(next);
4985
4986 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4987 level - 1);
4988 reada = 1;
4989 }
4990 btrfs_tree_lock(next);
4991 btrfs_set_lock_blocking_write(next);
4992
4993 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
4994 &wc->refs[level - 1],
4995 &wc->flags[level - 1]);
4996 if (ret < 0)
4997 goto out_unlock;
4998
4999 if (unlikely(wc->refs[level - 1] == 0)) {
5000 btrfs_err(fs_info, "Missing references.");
5001 ret = -EIO;
5002 goto out_unlock;
5003 }
5004 *lookup_info = 0;
5005
5006 if (wc->stage == DROP_REFERENCE) {
5007 if (wc->refs[level - 1] > 1) {
5008 need_account = true;
5009 if (level == 1 &&
5010 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5011 goto skip;
5012
5013 if (!wc->update_ref ||
5014 generation <= root->root_key.offset)
5015 goto skip;
5016
5017 btrfs_node_key_to_cpu(path->nodes[level], &key,
5018 path->slots[level]);
5019 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5020 if (ret < 0)
5021 goto skip;
5022
5023 wc->stage = UPDATE_BACKREF;
5024 wc->shared_level = level - 1;
5025 }
5026 } else {
5027 if (level == 1 &&
5028 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5029 goto skip;
5030 }
5031
5032 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5033 btrfs_tree_unlock(next);
5034 free_extent_buffer(next);
5035 next = NULL;
5036 *lookup_info = 1;
5037 }
5038
5039 if (!next) {
5040 if (reada && level == 1)
5041 reada_walk_down(trans, root, wc, path);
5042 next = read_tree_block(fs_info, bytenr, generation, level - 1,
5043 &first_key);
5044 if (IS_ERR(next)) {
5045 return PTR_ERR(next);
5046 } else if (!extent_buffer_uptodate(next)) {
5047 free_extent_buffer(next);
5048 return -EIO;
5049 }
5050 btrfs_tree_lock(next);
5051 btrfs_set_lock_blocking_write(next);
5052 }
5053
5054 level--;
5055 ASSERT(level == btrfs_header_level(next));
5056 if (level != btrfs_header_level(next)) {
5057 btrfs_err(root->fs_info, "mismatched level");
5058 ret = -EIO;
5059 goto out_unlock;
5060 }
5061 path->nodes[level] = next;
5062 path->slots[level] = 0;
5063 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5064 wc->level = level;
5065 if (wc->level == 1)
5066 wc->reada_slot = 0;
5067 return 0;
5068 skip:
5069 wc->refs[level - 1] = 0;
5070 wc->flags[level - 1] = 0;
5071 if (wc->stage == DROP_REFERENCE) {
5072 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5073 parent = path->nodes[level]->start;
5074 } else {
5075 ASSERT(root->root_key.objectid ==
5076 btrfs_header_owner(path->nodes[level]));
5077 if (root->root_key.objectid !=
5078 btrfs_header_owner(path->nodes[level])) {
5079 btrfs_err(root->fs_info,
5080 "mismatched block owner");
5081 ret = -EIO;
5082 goto out_unlock;
5083 }
5084 parent = 0;
5085 }
5086
5087 /*
5088 * If we had a drop_progress we need to verify the refs are set
5089 * as expected. If we find our ref then we know that from here
5090 * on out everything should be correct, and we can clear the
5091 * ->restarted flag.
5092 */
5093 if (wc->restarted) {
5094 ret = check_ref_exists(trans, root, bytenr, parent,
5095 level - 1);
5096 if (ret < 0)
5097 goto out_unlock;
5098 if (ret == 0)
5099 goto no_delete;
5100 ret = 0;
5101 wc->restarted = 0;
5102 }
5103
5104 /*
5105 * Reloc tree doesn't contribute to qgroup numbers, and we have
5106 * already accounted them at merge time (replace_path),
5107 * thus we could skip expensive subtree trace here.
5108 */
5109 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5110 need_account) {
5111 ret = btrfs_qgroup_trace_subtree(trans, next,
5112 generation, level - 1);
5113 if (ret) {
5114 btrfs_err_rl(fs_info,
5115 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5116 ret);
5117 }
5118 }
5119
5120 /*
5121 * We need to update the next key in our walk control so we can
5122 * update the drop_progress key accordingly. We don't care if
5123 * find_next_key doesn't find a key because that means we're at
5124 * the end and are going to clean up now.
5125 */
5126 wc->drop_level = level;
5127 find_next_key(path, level, &wc->drop_progress);
5128
5129 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5130 fs_info->nodesize, parent);
5131 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
5132 ret = btrfs_free_extent(trans, &ref);
5133 if (ret)
5134 goto out_unlock;
5135 }
5136 no_delete:
5137 *lookup_info = 1;
5138 ret = 1;
5139
5140 out_unlock:
5141 btrfs_tree_unlock(next);
5142 free_extent_buffer(next);
5143
5144 return ret;
5145 }
5146
5147 /*
5148 * helper to process tree block while walking up the tree.
5149 *
5150 * when wc->stage == DROP_REFERENCE, this function drops
5151 * reference count on the block.
5152 *
5153 * when wc->stage == UPDATE_BACKREF, this function changes
5154 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5155 * to UPDATE_BACKREF previously while processing the block.
5156 *
5157 * NOTE: return value 1 means we should stop walking up.
5158 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5159 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5160 struct btrfs_root *root,
5161 struct btrfs_path *path,
5162 struct walk_control *wc)
5163 {
5164 struct btrfs_fs_info *fs_info = root->fs_info;
5165 int ret;
5166 int level = wc->level;
5167 struct extent_buffer *eb = path->nodes[level];
5168 u64 parent = 0;
5169
5170 if (wc->stage == UPDATE_BACKREF) {
5171 BUG_ON(wc->shared_level < level);
5172 if (level < wc->shared_level)
5173 goto out;
5174
5175 ret = find_next_key(path, level + 1, &wc->update_progress);
5176 if (ret > 0)
5177 wc->update_ref = 0;
5178
5179 wc->stage = DROP_REFERENCE;
5180 wc->shared_level = -1;
5181 path->slots[level] = 0;
5182
5183 /*
5184 * check reference count again if the block isn't locked.
5185 * we should start walking down the tree again if reference
5186 * count is one.
5187 */
5188 if (!path->locks[level]) {
5189 BUG_ON(level == 0);
5190 btrfs_tree_lock(eb);
5191 btrfs_set_lock_blocking_write(eb);
5192 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5193
5194 ret = btrfs_lookup_extent_info(trans, fs_info,
5195 eb->start, level, 1,
5196 &wc->refs[level],
5197 &wc->flags[level]);
5198 if (ret < 0) {
5199 btrfs_tree_unlock_rw(eb, path->locks[level]);
5200 path->locks[level] = 0;
5201 return ret;
5202 }
5203 BUG_ON(wc->refs[level] == 0);
5204 if (wc->refs[level] == 1) {
5205 btrfs_tree_unlock_rw(eb, path->locks[level]);
5206 path->locks[level] = 0;
5207 return 1;
5208 }
5209 }
5210 }
5211
5212 /* wc->stage == DROP_REFERENCE */
5213 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5214
5215 if (wc->refs[level] == 1) {
5216 if (level == 0) {
5217 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5218 ret = btrfs_dec_ref(trans, root, eb, 1);
5219 else
5220 ret = btrfs_dec_ref(trans, root, eb, 0);
5221 BUG_ON(ret); /* -ENOMEM */
5222 if (is_fstree(root->root_key.objectid)) {
5223 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5224 if (ret) {
5225 btrfs_err_rl(fs_info,
5226 "error %d accounting leaf items, quota is out of sync, rescan required",
5227 ret);
5228 }
5229 }
5230 }
5231 /* make block locked assertion in btrfs_clean_tree_block happy */
5232 if (!path->locks[level] &&
5233 btrfs_header_generation(eb) == trans->transid) {
5234 btrfs_tree_lock(eb);
5235 btrfs_set_lock_blocking_write(eb);
5236 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5237 }
5238 btrfs_clean_tree_block(eb);
5239 }
5240
5241 if (eb == root->node) {
5242 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5243 parent = eb->start;
5244 else if (root->root_key.objectid != btrfs_header_owner(eb))
5245 goto owner_mismatch;
5246 } else {
5247 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5248 parent = path->nodes[level + 1]->start;
5249 else if (root->root_key.objectid !=
5250 btrfs_header_owner(path->nodes[level + 1]))
5251 goto owner_mismatch;
5252 }
5253
5254 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5255 out:
5256 wc->refs[level] = 0;
5257 wc->flags[level] = 0;
5258 return 0;
5259
5260 owner_mismatch:
5261 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5262 btrfs_header_owner(eb), root->root_key.objectid);
5263 return -EUCLEAN;
5264 }
5265
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5266 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5267 struct btrfs_root *root,
5268 struct btrfs_path *path,
5269 struct walk_control *wc)
5270 {
5271 int level = wc->level;
5272 int lookup_info = 1;
5273 int ret;
5274
5275 while (level >= 0) {
5276 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5277 if (ret > 0)
5278 break;
5279
5280 if (level == 0)
5281 break;
5282
5283 if (path->slots[level] >=
5284 btrfs_header_nritems(path->nodes[level]))
5285 break;
5286
5287 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5288 if (ret > 0) {
5289 path->slots[level]++;
5290 continue;
5291 } else if (ret < 0)
5292 return ret;
5293 level = wc->level;
5294 }
5295 return 0;
5296 }
5297
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5298 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5299 struct btrfs_root *root,
5300 struct btrfs_path *path,
5301 struct walk_control *wc, int max_level)
5302 {
5303 int level = wc->level;
5304 int ret;
5305
5306 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5307 while (level < max_level && path->nodes[level]) {
5308 wc->level = level;
5309 if (path->slots[level] + 1 <
5310 btrfs_header_nritems(path->nodes[level])) {
5311 path->slots[level]++;
5312 return 0;
5313 } else {
5314 ret = walk_up_proc(trans, root, path, wc);
5315 if (ret > 0)
5316 return 0;
5317 if (ret < 0)
5318 return ret;
5319
5320 if (path->locks[level]) {
5321 btrfs_tree_unlock_rw(path->nodes[level],
5322 path->locks[level]);
5323 path->locks[level] = 0;
5324 }
5325 free_extent_buffer(path->nodes[level]);
5326 path->nodes[level] = NULL;
5327 level++;
5328 }
5329 }
5330 return 1;
5331 }
5332
5333 /*
5334 * drop a subvolume tree.
5335 *
5336 * this function traverses the tree freeing any blocks that only
5337 * referenced by the tree.
5338 *
5339 * when a shared tree block is found. this function decreases its
5340 * reference count by one. if update_ref is true, this function
5341 * also make sure backrefs for the shared block and all lower level
5342 * blocks are properly updated.
5343 *
5344 * If called with for_reloc == 0, may exit early with -EAGAIN
5345 */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)5346 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5347 {
5348 struct btrfs_fs_info *fs_info = root->fs_info;
5349 struct btrfs_path *path;
5350 struct btrfs_trans_handle *trans;
5351 struct btrfs_root *tree_root = fs_info->tree_root;
5352 struct btrfs_root_item *root_item = &root->root_item;
5353 struct walk_control *wc;
5354 struct btrfs_key key;
5355 int err = 0;
5356 int ret;
5357 int level;
5358 bool root_dropped = false;
5359
5360 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5361
5362 path = btrfs_alloc_path();
5363 if (!path) {
5364 err = -ENOMEM;
5365 goto out;
5366 }
5367
5368 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5369 if (!wc) {
5370 btrfs_free_path(path);
5371 err = -ENOMEM;
5372 goto out;
5373 }
5374
5375 /*
5376 * Use join to avoid potential EINTR from transaction start. See
5377 * wait_reserve_ticket and the whole reservation callchain.
5378 */
5379 if (for_reloc)
5380 trans = btrfs_join_transaction(tree_root);
5381 else
5382 trans = btrfs_start_transaction(tree_root, 0);
5383 if (IS_ERR(trans)) {
5384 err = PTR_ERR(trans);
5385 goto out_free;
5386 }
5387
5388 err = btrfs_run_delayed_items(trans);
5389 if (err)
5390 goto out_end_trans;
5391
5392 /*
5393 * This will help us catch people modifying the fs tree while we're
5394 * dropping it. It is unsafe to mess with the fs tree while it's being
5395 * dropped as we unlock the root node and parent nodes as we walk down
5396 * the tree, assuming nothing will change. If something does change
5397 * then we'll have stale information and drop references to blocks we've
5398 * already dropped.
5399 */
5400 set_bit(BTRFS_ROOT_DELETING, &root->state);
5401 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5402 level = btrfs_header_level(root->node);
5403 path->nodes[level] = btrfs_lock_root_node(root);
5404 btrfs_set_lock_blocking_write(path->nodes[level]);
5405 path->slots[level] = 0;
5406 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5407 memset(&wc->update_progress, 0,
5408 sizeof(wc->update_progress));
5409 } else {
5410 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5411 memcpy(&wc->update_progress, &key,
5412 sizeof(wc->update_progress));
5413
5414 level = root_item->drop_level;
5415 BUG_ON(level == 0);
5416 path->lowest_level = level;
5417 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5418 path->lowest_level = 0;
5419 if (ret < 0) {
5420 err = ret;
5421 goto out_end_trans;
5422 }
5423 WARN_ON(ret > 0);
5424
5425 /*
5426 * unlock our path, this is safe because only this
5427 * function is allowed to delete this snapshot
5428 */
5429 btrfs_unlock_up_safe(path, 0);
5430
5431 level = btrfs_header_level(root->node);
5432 while (1) {
5433 btrfs_tree_lock(path->nodes[level]);
5434 btrfs_set_lock_blocking_write(path->nodes[level]);
5435 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5436
5437 ret = btrfs_lookup_extent_info(trans, fs_info,
5438 path->nodes[level]->start,
5439 level, 1, &wc->refs[level],
5440 &wc->flags[level]);
5441 if (ret < 0) {
5442 err = ret;
5443 goto out_end_trans;
5444 }
5445 BUG_ON(wc->refs[level] == 0);
5446
5447 if (level == root_item->drop_level)
5448 break;
5449
5450 btrfs_tree_unlock(path->nodes[level]);
5451 path->locks[level] = 0;
5452 WARN_ON(wc->refs[level] != 1);
5453 level--;
5454 }
5455 }
5456
5457 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5458 wc->level = level;
5459 wc->shared_level = -1;
5460 wc->stage = DROP_REFERENCE;
5461 wc->update_ref = update_ref;
5462 wc->keep_locks = 0;
5463 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5464
5465 while (1) {
5466
5467 ret = walk_down_tree(trans, root, path, wc);
5468 if (ret < 0) {
5469 err = ret;
5470 break;
5471 }
5472
5473 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5474 if (ret < 0) {
5475 err = ret;
5476 break;
5477 }
5478
5479 if (ret > 0) {
5480 BUG_ON(wc->stage != DROP_REFERENCE);
5481 break;
5482 }
5483
5484 if (wc->stage == DROP_REFERENCE) {
5485 wc->drop_level = wc->level;
5486 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5487 &wc->drop_progress,
5488 path->slots[wc->drop_level]);
5489 }
5490 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5491 &wc->drop_progress);
5492 root_item->drop_level = wc->drop_level;
5493
5494 BUG_ON(wc->level == 0);
5495 if (btrfs_should_end_transaction(trans) ||
5496 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5497 ret = btrfs_update_root(trans, tree_root,
5498 &root->root_key,
5499 root_item);
5500 if (ret) {
5501 btrfs_abort_transaction(trans, ret);
5502 err = ret;
5503 goto out_end_trans;
5504 }
5505
5506 btrfs_end_transaction_throttle(trans);
5507 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5508 btrfs_debug(fs_info,
5509 "drop snapshot early exit");
5510 err = -EAGAIN;
5511 goto out_free;
5512 }
5513
5514 /*
5515 * Use join to avoid potential EINTR from transaction
5516 * start. See wait_reserve_ticket and the whole
5517 * reservation callchain.
5518 */
5519 if (for_reloc)
5520 trans = btrfs_join_transaction(tree_root);
5521 else
5522 trans = btrfs_start_transaction(tree_root, 0);
5523 if (IS_ERR(trans)) {
5524 err = PTR_ERR(trans);
5525 goto out_free;
5526 }
5527 }
5528 }
5529 btrfs_release_path(path);
5530 if (err)
5531 goto out_end_trans;
5532
5533 ret = btrfs_del_root(trans, &root->root_key);
5534 if (ret) {
5535 btrfs_abort_transaction(trans, ret);
5536 err = ret;
5537 goto out_end_trans;
5538 }
5539
5540 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5541 ret = btrfs_find_root(tree_root, &root->root_key, path,
5542 NULL, NULL);
5543 if (ret < 0) {
5544 btrfs_abort_transaction(trans, ret);
5545 err = ret;
5546 goto out_end_trans;
5547 } else if (ret > 0) {
5548 /* if we fail to delete the orphan item this time
5549 * around, it'll get picked up the next time.
5550 *
5551 * The most common failure here is just -ENOENT.
5552 */
5553 btrfs_del_orphan_item(trans, tree_root,
5554 root->root_key.objectid);
5555 }
5556 }
5557
5558 /*
5559 * This subvolume is going to be completely dropped, and won't be
5560 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5561 * commit transaction time. So free it here manually.
5562 */
5563 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5564 btrfs_qgroup_free_meta_all_pertrans(root);
5565
5566 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5567 btrfs_add_dropped_root(trans, root);
5568 else
5569 btrfs_put_root(root);
5570 root_dropped = true;
5571 out_end_trans:
5572 btrfs_end_transaction_throttle(trans);
5573 out_free:
5574 kfree(wc);
5575 btrfs_free_path(path);
5576 out:
5577 /*
5578 * So if we need to stop dropping the snapshot for whatever reason we
5579 * need to make sure to add it back to the dead root list so that we
5580 * keep trying to do the work later. This also cleans up roots if we
5581 * don't have it in the radix (like when we recover after a power fail
5582 * or unmount) so we don't leak memory.
5583 */
5584 if (!for_reloc && !root_dropped)
5585 btrfs_add_dead_root(root);
5586 return err;
5587 }
5588
5589 /*
5590 * drop subtree rooted at tree block 'node'.
5591 *
5592 * NOTE: this function will unlock and release tree block 'node'
5593 * only used by relocation code
5594 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)5595 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5596 struct btrfs_root *root,
5597 struct extent_buffer *node,
5598 struct extent_buffer *parent)
5599 {
5600 struct btrfs_fs_info *fs_info = root->fs_info;
5601 struct btrfs_path *path;
5602 struct walk_control *wc;
5603 int level;
5604 int parent_level;
5605 int ret = 0;
5606 int wret;
5607
5608 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5609
5610 path = btrfs_alloc_path();
5611 if (!path)
5612 return -ENOMEM;
5613
5614 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5615 if (!wc) {
5616 btrfs_free_path(path);
5617 return -ENOMEM;
5618 }
5619
5620 btrfs_assert_tree_locked(parent);
5621 parent_level = btrfs_header_level(parent);
5622 atomic_inc(&parent->refs);
5623 path->nodes[parent_level] = parent;
5624 path->slots[parent_level] = btrfs_header_nritems(parent);
5625
5626 btrfs_assert_tree_locked(node);
5627 level = btrfs_header_level(node);
5628 path->nodes[level] = node;
5629 path->slots[level] = 0;
5630 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5631
5632 wc->refs[parent_level] = 1;
5633 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5634 wc->level = level;
5635 wc->shared_level = -1;
5636 wc->stage = DROP_REFERENCE;
5637 wc->update_ref = 0;
5638 wc->keep_locks = 1;
5639 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5640
5641 while (1) {
5642 wret = walk_down_tree(trans, root, path, wc);
5643 if (wret < 0) {
5644 ret = wret;
5645 break;
5646 }
5647
5648 wret = walk_up_tree(trans, root, path, wc, parent_level);
5649 if (wret < 0)
5650 ret = wret;
5651 if (wret != 0)
5652 break;
5653 }
5654
5655 kfree(wc);
5656 btrfs_free_path(path);
5657 return ret;
5658 }
5659
5660 /*
5661 * helper to account the unused space of all the readonly block group in the
5662 * space_info. takes mirrors into account.
5663 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)5664 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5665 {
5666 struct btrfs_block_group *block_group;
5667 u64 free_bytes = 0;
5668 int factor;
5669
5670 /* It's df, we don't care if it's racy */
5671 if (list_empty(&sinfo->ro_bgs))
5672 return 0;
5673
5674 spin_lock(&sinfo->lock);
5675 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5676 spin_lock(&block_group->lock);
5677
5678 if (!block_group->ro) {
5679 spin_unlock(&block_group->lock);
5680 continue;
5681 }
5682
5683 factor = btrfs_bg_type_to_factor(block_group->flags);
5684 free_bytes += (block_group->length -
5685 block_group->used) * factor;
5686
5687 spin_unlock(&block_group->lock);
5688 }
5689 spin_unlock(&sinfo->lock);
5690
5691 return free_bytes;
5692 }
5693
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)5694 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5695 u64 start, u64 end)
5696 {
5697 return unpin_extent_range(fs_info, start, end, false);
5698 }
5699
5700 /*
5701 * It used to be that old block groups would be left around forever.
5702 * Iterating over them would be enough to trim unused space. Since we
5703 * now automatically remove them, we also need to iterate over unallocated
5704 * space.
5705 *
5706 * We don't want a transaction for this since the discard may take a
5707 * substantial amount of time. We don't require that a transaction be
5708 * running, but we do need to take a running transaction into account
5709 * to ensure that we're not discarding chunks that were released or
5710 * allocated in the current transaction.
5711 *
5712 * Holding the chunks lock will prevent other threads from allocating
5713 * or releasing chunks, but it won't prevent a running transaction
5714 * from committing and releasing the memory that the pending chunks
5715 * list head uses. For that, we need to take a reference to the
5716 * transaction and hold the commit root sem. We only need to hold
5717 * it while performing the free space search since we have already
5718 * held back allocations.
5719 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)5720 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5721 {
5722 u64 start = SZ_1M, len = 0, end = 0;
5723 int ret;
5724
5725 *trimmed = 0;
5726
5727 /* Discard not supported = nothing to do. */
5728 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5729 return 0;
5730
5731 /* Not writable = nothing to do. */
5732 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5733 return 0;
5734
5735 /* No free space = nothing to do. */
5736 if (device->total_bytes <= device->bytes_used)
5737 return 0;
5738
5739 ret = 0;
5740
5741 while (1) {
5742 struct btrfs_fs_info *fs_info = device->fs_info;
5743 u64 bytes;
5744
5745 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5746 if (ret)
5747 break;
5748
5749 find_first_clear_extent_bit(&device->alloc_state, start,
5750 &start, &end,
5751 CHUNK_TRIMMED | CHUNK_ALLOCATED);
5752
5753 /* Check if there are any CHUNK_* bits left */
5754 if (start > device->total_bytes) {
5755 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5756 btrfs_warn_in_rcu(fs_info,
5757 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5758 start, end - start + 1,
5759 rcu_str_deref(device->name),
5760 device->total_bytes);
5761 mutex_unlock(&fs_info->chunk_mutex);
5762 ret = 0;
5763 break;
5764 }
5765
5766 /* Ensure we skip the reserved area in the first 1M */
5767 start = max_t(u64, start, SZ_1M);
5768
5769 /*
5770 * If find_first_clear_extent_bit find a range that spans the
5771 * end of the device it will set end to -1, in this case it's up
5772 * to the caller to trim the value to the size of the device.
5773 */
5774 end = min(end, device->total_bytes - 1);
5775
5776 len = end - start + 1;
5777
5778 /* We didn't find any extents */
5779 if (!len) {
5780 mutex_unlock(&fs_info->chunk_mutex);
5781 ret = 0;
5782 break;
5783 }
5784
5785 ret = btrfs_issue_discard(device->bdev, start, len,
5786 &bytes);
5787 if (!ret)
5788 set_extent_bits(&device->alloc_state, start,
5789 start + bytes - 1,
5790 CHUNK_TRIMMED);
5791 mutex_unlock(&fs_info->chunk_mutex);
5792
5793 if (ret)
5794 break;
5795
5796 start += len;
5797 *trimmed += bytes;
5798
5799 if (fatal_signal_pending(current)) {
5800 ret = -ERESTARTSYS;
5801 break;
5802 }
5803
5804 cond_resched();
5805 }
5806
5807 return ret;
5808 }
5809
5810 /*
5811 * Trim the whole filesystem by:
5812 * 1) trimming the free space in each block group
5813 * 2) trimming the unallocated space on each device
5814 *
5815 * This will also continue trimming even if a block group or device encounters
5816 * an error. The return value will be the last error, or 0 if nothing bad
5817 * happens.
5818 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)5819 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5820 {
5821 struct btrfs_block_group *cache = NULL;
5822 struct btrfs_device *device;
5823 struct list_head *devices;
5824 u64 group_trimmed;
5825 u64 range_end = U64_MAX;
5826 u64 start;
5827 u64 end;
5828 u64 trimmed = 0;
5829 u64 bg_failed = 0;
5830 u64 dev_failed = 0;
5831 int bg_ret = 0;
5832 int dev_ret = 0;
5833 int ret = 0;
5834
5835 /*
5836 * Check range overflow if range->len is set.
5837 * The default range->len is U64_MAX.
5838 */
5839 if (range->len != U64_MAX &&
5840 check_add_overflow(range->start, range->len, &range_end))
5841 return -EINVAL;
5842
5843 cache = btrfs_lookup_first_block_group(fs_info, range->start);
5844 for (; cache; cache = btrfs_next_block_group(cache)) {
5845 if (cache->start >= range_end) {
5846 btrfs_put_block_group(cache);
5847 break;
5848 }
5849
5850 start = max(range->start, cache->start);
5851 end = min(range_end, cache->start + cache->length);
5852
5853 if (end - start >= range->minlen) {
5854 if (!btrfs_block_group_done(cache)) {
5855 ret = btrfs_cache_block_group(cache, 0);
5856 if (ret) {
5857 bg_failed++;
5858 bg_ret = ret;
5859 continue;
5860 }
5861 ret = btrfs_wait_block_group_cache_done(cache);
5862 if (ret) {
5863 bg_failed++;
5864 bg_ret = ret;
5865 continue;
5866 }
5867 }
5868 ret = btrfs_trim_block_group(cache,
5869 &group_trimmed,
5870 start,
5871 end,
5872 range->minlen);
5873
5874 trimmed += group_trimmed;
5875 if (ret) {
5876 bg_failed++;
5877 bg_ret = ret;
5878 continue;
5879 }
5880 }
5881 }
5882
5883 if (bg_failed)
5884 btrfs_warn(fs_info,
5885 "failed to trim %llu block group(s), last error %d",
5886 bg_failed, bg_ret);
5887 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5888 devices = &fs_info->fs_devices->devices;
5889 list_for_each_entry(device, devices, dev_list) {
5890 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
5891 continue;
5892
5893 ret = btrfs_trim_free_extents(device, &group_trimmed);
5894 if (ret) {
5895 dev_failed++;
5896 dev_ret = ret;
5897 break;
5898 }
5899
5900 trimmed += group_trimmed;
5901 }
5902 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5903
5904 if (dev_failed)
5905 btrfs_warn(fs_info,
5906 "failed to trim %llu device(s), last error %d",
5907 dev_failed, dev_ret);
5908 range->len = trimmed;
5909 if (bg_ret)
5910 return bg_ret;
5911 return dev_ret;
5912 }
5913