• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 
19 /*
20  * Return target flags in extended format or 0 if restripe for this chunk_type
21  * is not in progress
22  *
23  * Should be called with balance_lock held
24  */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)25 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
26 {
27 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
28 	u64 target = 0;
29 
30 	if (!bctl)
31 		return 0;
32 
33 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
34 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
35 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
36 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
37 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
38 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
39 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
40 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
41 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
42 	}
43 
44 	return target;
45 }
46 
47 /*
48  * @flags: available profiles in extended format (see ctree.h)
49  *
50  * Return reduced profile in chunk format.  If profile changing is in progress
51  * (either running or paused) picks the target profile (if it's already
52  * available), otherwise falls back to plain reducing.
53  */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)54 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
55 {
56 	u64 num_devices = fs_info->fs_devices->rw_devices;
57 	u64 target;
58 	u64 raid_type;
59 	u64 allowed = 0;
60 
61 	/*
62 	 * See if restripe for this chunk_type is in progress, if so try to
63 	 * reduce to the target profile
64 	 */
65 	spin_lock(&fs_info->balance_lock);
66 	target = get_restripe_target(fs_info, flags);
67 	if (target) {
68 		spin_unlock(&fs_info->balance_lock);
69 		return extended_to_chunk(target);
70 	}
71 	spin_unlock(&fs_info->balance_lock);
72 
73 	/* First, mask out the RAID levels which aren't possible */
74 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
75 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
76 			allowed |= btrfs_raid_array[raid_type].bg_flag;
77 	}
78 	allowed &= flags;
79 
80 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
81 		allowed = BTRFS_BLOCK_GROUP_RAID6;
82 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
83 		allowed = BTRFS_BLOCK_GROUP_RAID5;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
85 		allowed = BTRFS_BLOCK_GROUP_RAID10;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
87 		allowed = BTRFS_BLOCK_GROUP_RAID1;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
89 		allowed = BTRFS_BLOCK_GROUP_RAID0;
90 
91 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
92 
93 	return extended_to_chunk(flags | allowed);
94 }
95 
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)96 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
97 {
98 	unsigned seq;
99 	u64 flags;
100 
101 	do {
102 		flags = orig_flags;
103 		seq = read_seqbegin(&fs_info->profiles_lock);
104 
105 		if (flags & BTRFS_BLOCK_GROUP_DATA)
106 			flags |= fs_info->avail_data_alloc_bits;
107 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
108 			flags |= fs_info->avail_system_alloc_bits;
109 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
110 			flags |= fs_info->avail_metadata_alloc_bits;
111 	} while (read_seqretry(&fs_info->profiles_lock, seq));
112 
113 	return btrfs_reduce_alloc_profile(fs_info, flags);
114 }
115 
btrfs_get_block_group(struct btrfs_block_group * cache)116 void btrfs_get_block_group(struct btrfs_block_group *cache)
117 {
118 	refcount_inc(&cache->refs);
119 }
120 
btrfs_put_block_group(struct btrfs_block_group * cache)121 void btrfs_put_block_group(struct btrfs_block_group *cache)
122 {
123 	if (refcount_dec_and_test(&cache->refs)) {
124 		WARN_ON(cache->pinned > 0);
125 		WARN_ON(cache->reserved > 0);
126 
127 		/*
128 		 * A block_group shouldn't be on the discard_list anymore.
129 		 * Remove the block_group from the discard_list to prevent us
130 		 * from causing a panic due to NULL pointer dereference.
131 		 */
132 		if (WARN_ON(!list_empty(&cache->discard_list)))
133 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
134 						  cache);
135 
136 		/*
137 		 * If not empty, someone is still holding mutex of
138 		 * full_stripe_lock, which can only be released by caller.
139 		 * And it will definitely cause use-after-free when caller
140 		 * tries to release full stripe lock.
141 		 *
142 		 * No better way to resolve, but only to warn.
143 		 */
144 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145 		kfree(cache->free_space_ctl);
146 		kfree(cache);
147 	}
148 }
149 
150 /*
151  * This adds the block group to the fs_info rb tree for the block group cache
152  */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)153 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
154 				       struct btrfs_block_group *block_group)
155 {
156 	struct rb_node **p;
157 	struct rb_node *parent = NULL;
158 	struct btrfs_block_group *cache;
159 
160 	ASSERT(block_group->length != 0);
161 
162 	spin_lock(&info->block_group_cache_lock);
163 	p = &info->block_group_cache_tree.rb_node;
164 
165 	while (*p) {
166 		parent = *p;
167 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
168 		if (block_group->start < cache->start) {
169 			p = &(*p)->rb_left;
170 		} else if (block_group->start > cache->start) {
171 			p = &(*p)->rb_right;
172 		} else {
173 			spin_unlock(&info->block_group_cache_lock);
174 			return -EEXIST;
175 		}
176 	}
177 
178 	rb_link_node(&block_group->cache_node, parent, p);
179 	rb_insert_color(&block_group->cache_node,
180 			&info->block_group_cache_tree);
181 
182 	if (info->first_logical_byte > block_group->start)
183 		info->first_logical_byte = block_group->start;
184 
185 	spin_unlock(&info->block_group_cache_lock);
186 
187 	return 0;
188 }
189 
190 /*
191  * This will return the block group at or after bytenr if contains is 0, else
192  * it will return the block group that contains the bytenr
193  */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)194 static struct btrfs_block_group *block_group_cache_tree_search(
195 		struct btrfs_fs_info *info, u64 bytenr, int contains)
196 {
197 	struct btrfs_block_group *cache, *ret = NULL;
198 	struct rb_node *n;
199 	u64 end, start;
200 
201 	spin_lock(&info->block_group_cache_lock);
202 	n = info->block_group_cache_tree.rb_node;
203 
204 	while (n) {
205 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
206 		end = cache->start + cache->length - 1;
207 		start = cache->start;
208 
209 		if (bytenr < start) {
210 			if (!contains && (!ret || start < ret->start))
211 				ret = cache;
212 			n = n->rb_left;
213 		} else if (bytenr > start) {
214 			if (contains && bytenr <= end) {
215 				ret = cache;
216 				break;
217 			}
218 			n = n->rb_right;
219 		} else {
220 			ret = cache;
221 			break;
222 		}
223 	}
224 	if (ret) {
225 		btrfs_get_block_group(ret);
226 		if (bytenr == 0 && info->first_logical_byte > ret->start)
227 			info->first_logical_byte = ret->start;
228 	}
229 	spin_unlock(&info->block_group_cache_lock);
230 
231 	return ret;
232 }
233 
234 /*
235  * Return the block group that starts at or after bytenr
236  */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)237 struct btrfs_block_group *btrfs_lookup_first_block_group(
238 		struct btrfs_fs_info *info, u64 bytenr)
239 {
240 	return block_group_cache_tree_search(info, bytenr, 0);
241 }
242 
243 /*
244  * Return the block group that contains the given bytenr
245  */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)246 struct btrfs_block_group *btrfs_lookup_block_group(
247 		struct btrfs_fs_info *info, u64 bytenr)
248 {
249 	return block_group_cache_tree_search(info, bytenr, 1);
250 }
251 
btrfs_next_block_group(struct btrfs_block_group * cache)252 struct btrfs_block_group *btrfs_next_block_group(
253 		struct btrfs_block_group *cache)
254 {
255 	struct btrfs_fs_info *fs_info = cache->fs_info;
256 	struct rb_node *node;
257 
258 	spin_lock(&fs_info->block_group_cache_lock);
259 
260 	/* If our block group was removed, we need a full search. */
261 	if (RB_EMPTY_NODE(&cache->cache_node)) {
262 		const u64 next_bytenr = cache->start + cache->length;
263 
264 		spin_unlock(&fs_info->block_group_cache_lock);
265 		btrfs_put_block_group(cache);
266 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
267 	}
268 	node = rb_next(&cache->cache_node);
269 	btrfs_put_block_group(cache);
270 	if (node) {
271 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
272 		btrfs_get_block_group(cache);
273 	} else
274 		cache = NULL;
275 	spin_unlock(&fs_info->block_group_cache_lock);
276 	return cache;
277 }
278 
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)279 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
280 {
281 	struct btrfs_block_group *bg;
282 	bool ret = true;
283 
284 	bg = btrfs_lookup_block_group(fs_info, bytenr);
285 	if (!bg)
286 		return false;
287 
288 	spin_lock(&bg->lock);
289 	if (bg->ro)
290 		ret = false;
291 	else
292 		atomic_inc(&bg->nocow_writers);
293 	spin_unlock(&bg->lock);
294 
295 	/* No put on block group, done by btrfs_dec_nocow_writers */
296 	if (!ret)
297 		btrfs_put_block_group(bg);
298 
299 	return ret;
300 }
301 
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)302 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
303 {
304 	struct btrfs_block_group *bg;
305 
306 	bg = btrfs_lookup_block_group(fs_info, bytenr);
307 	ASSERT(bg);
308 	if (atomic_dec_and_test(&bg->nocow_writers))
309 		wake_up_var(&bg->nocow_writers);
310 	/*
311 	 * Once for our lookup and once for the lookup done by a previous call
312 	 * to btrfs_inc_nocow_writers()
313 	 */
314 	btrfs_put_block_group(bg);
315 	btrfs_put_block_group(bg);
316 }
317 
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)318 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
319 {
320 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
321 }
322 
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)323 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
324 					const u64 start)
325 {
326 	struct btrfs_block_group *bg;
327 
328 	bg = btrfs_lookup_block_group(fs_info, start);
329 	ASSERT(bg);
330 	if (atomic_dec_and_test(&bg->reservations))
331 		wake_up_var(&bg->reservations);
332 	btrfs_put_block_group(bg);
333 }
334 
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)335 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
336 {
337 	struct btrfs_space_info *space_info = bg->space_info;
338 
339 	ASSERT(bg->ro);
340 
341 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
342 		return;
343 
344 	/*
345 	 * Our block group is read only but before we set it to read only,
346 	 * some task might have had allocated an extent from it already, but it
347 	 * has not yet created a respective ordered extent (and added it to a
348 	 * root's list of ordered extents).
349 	 * Therefore wait for any task currently allocating extents, since the
350 	 * block group's reservations counter is incremented while a read lock
351 	 * on the groups' semaphore is held and decremented after releasing
352 	 * the read access on that semaphore and creating the ordered extent.
353 	 */
354 	down_write(&space_info->groups_sem);
355 	up_write(&space_info->groups_sem);
356 
357 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
358 }
359 
btrfs_get_caching_control(struct btrfs_block_group * cache)360 struct btrfs_caching_control *btrfs_get_caching_control(
361 		struct btrfs_block_group *cache)
362 {
363 	struct btrfs_caching_control *ctl;
364 
365 	spin_lock(&cache->lock);
366 	if (!cache->caching_ctl) {
367 		spin_unlock(&cache->lock);
368 		return NULL;
369 	}
370 
371 	ctl = cache->caching_ctl;
372 	refcount_inc(&ctl->count);
373 	spin_unlock(&cache->lock);
374 	return ctl;
375 }
376 
btrfs_put_caching_control(struct btrfs_caching_control * ctl)377 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
378 {
379 	if (refcount_dec_and_test(&ctl->count))
380 		kfree(ctl);
381 }
382 
383 /*
384  * When we wait for progress in the block group caching, its because our
385  * allocation attempt failed at least once.  So, we must sleep and let some
386  * progress happen before we try again.
387  *
388  * This function will sleep at least once waiting for new free space to show
389  * up, and then it will check the block group free space numbers for our min
390  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
391  * a free extent of a given size, but this is a good start.
392  *
393  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
394  * any of the information in this block group.
395  */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)396 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
397 					   u64 num_bytes)
398 {
399 	struct btrfs_caching_control *caching_ctl;
400 
401 	caching_ctl = btrfs_get_caching_control(cache);
402 	if (!caching_ctl)
403 		return;
404 
405 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
406 		   (cache->free_space_ctl->free_space >= num_bytes));
407 
408 	btrfs_put_caching_control(caching_ctl);
409 }
410 
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)411 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
412 {
413 	struct btrfs_caching_control *caching_ctl;
414 	int ret = 0;
415 
416 	caching_ctl = btrfs_get_caching_control(cache);
417 	if (!caching_ctl)
418 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
419 
420 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
421 	if (cache->cached == BTRFS_CACHE_ERROR)
422 		ret = -EIO;
423 	btrfs_put_caching_control(caching_ctl);
424 	return ret;
425 }
426 
427 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)428 static void fragment_free_space(struct btrfs_block_group *block_group)
429 {
430 	struct btrfs_fs_info *fs_info = block_group->fs_info;
431 	u64 start = block_group->start;
432 	u64 len = block_group->length;
433 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
434 		fs_info->nodesize : fs_info->sectorsize;
435 	u64 step = chunk << 1;
436 
437 	while (len > chunk) {
438 		btrfs_remove_free_space(block_group, start, chunk);
439 		start += step;
440 		if (len < step)
441 			len = 0;
442 		else
443 			len -= step;
444 	}
445 }
446 #endif
447 
448 /*
449  * This is only called by btrfs_cache_block_group, since we could have freed
450  * extents we need to check the pinned_extents for any extents that can't be
451  * used yet since their free space will be released as soon as the transaction
452  * commits.
453  */
add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end)454 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
455 {
456 	struct btrfs_fs_info *info = block_group->fs_info;
457 	u64 extent_start, extent_end, size, total_added = 0;
458 	int ret;
459 
460 	while (start < end) {
461 		ret = find_first_extent_bit(&info->excluded_extents, start,
462 					    &extent_start, &extent_end,
463 					    EXTENT_DIRTY | EXTENT_UPTODATE,
464 					    NULL);
465 		if (ret)
466 			break;
467 
468 		if (extent_start <= start) {
469 			start = extent_end + 1;
470 		} else if (extent_start > start && extent_start < end) {
471 			size = extent_start - start;
472 			total_added += size;
473 			ret = btrfs_add_free_space_async_trimmed(block_group,
474 								 start, size);
475 			BUG_ON(ret); /* -ENOMEM or logic error */
476 			start = extent_end + 1;
477 		} else {
478 			break;
479 		}
480 	}
481 
482 	if (start < end) {
483 		size = end - start;
484 		total_added += size;
485 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
486 							 size);
487 		BUG_ON(ret); /* -ENOMEM or logic error */
488 	}
489 
490 	return total_added;
491 }
492 
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)493 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
494 {
495 	struct btrfs_block_group *block_group = caching_ctl->block_group;
496 	struct btrfs_fs_info *fs_info = block_group->fs_info;
497 	struct btrfs_root *extent_root = fs_info->extent_root;
498 	struct btrfs_path *path;
499 	struct extent_buffer *leaf;
500 	struct btrfs_key key;
501 	u64 total_found = 0;
502 	u64 last = 0;
503 	u32 nritems;
504 	int ret;
505 	bool wakeup = true;
506 
507 	path = btrfs_alloc_path();
508 	if (!path)
509 		return -ENOMEM;
510 
511 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
512 
513 #ifdef CONFIG_BTRFS_DEBUG
514 	/*
515 	 * If we're fragmenting we don't want to make anybody think we can
516 	 * allocate from this block group until we've had a chance to fragment
517 	 * the free space.
518 	 */
519 	if (btrfs_should_fragment_free_space(block_group))
520 		wakeup = false;
521 #endif
522 	/*
523 	 * We don't want to deadlock with somebody trying to allocate a new
524 	 * extent for the extent root while also trying to search the extent
525 	 * root to add free space.  So we skip locking and search the commit
526 	 * root, since its read-only
527 	 */
528 	path->skip_locking = 1;
529 	path->search_commit_root = 1;
530 	path->reada = READA_FORWARD;
531 
532 	key.objectid = last;
533 	key.offset = 0;
534 	key.type = BTRFS_EXTENT_ITEM_KEY;
535 
536 next:
537 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
538 	if (ret < 0)
539 		goto out;
540 
541 	leaf = path->nodes[0];
542 	nritems = btrfs_header_nritems(leaf);
543 
544 	while (1) {
545 		if (btrfs_fs_closing(fs_info) > 1) {
546 			last = (u64)-1;
547 			break;
548 		}
549 
550 		if (path->slots[0] < nritems) {
551 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
552 		} else {
553 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
554 			if (ret)
555 				break;
556 
557 			if (need_resched() ||
558 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
559 				if (wakeup)
560 					caching_ctl->progress = last;
561 				btrfs_release_path(path);
562 				up_read(&fs_info->commit_root_sem);
563 				mutex_unlock(&caching_ctl->mutex);
564 				cond_resched();
565 				mutex_lock(&caching_ctl->mutex);
566 				down_read(&fs_info->commit_root_sem);
567 				goto next;
568 			}
569 
570 			ret = btrfs_next_leaf(extent_root, path);
571 			if (ret < 0)
572 				goto out;
573 			if (ret)
574 				break;
575 			leaf = path->nodes[0];
576 			nritems = btrfs_header_nritems(leaf);
577 			continue;
578 		}
579 
580 		if (key.objectid < last) {
581 			key.objectid = last;
582 			key.offset = 0;
583 			key.type = BTRFS_EXTENT_ITEM_KEY;
584 
585 			if (wakeup)
586 				caching_ctl->progress = last;
587 			btrfs_release_path(path);
588 			goto next;
589 		}
590 
591 		if (key.objectid < block_group->start) {
592 			path->slots[0]++;
593 			continue;
594 		}
595 
596 		if (key.objectid >= block_group->start + block_group->length)
597 			break;
598 
599 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
600 		    key.type == BTRFS_METADATA_ITEM_KEY) {
601 			total_found += add_new_free_space(block_group, last,
602 							  key.objectid);
603 			if (key.type == BTRFS_METADATA_ITEM_KEY)
604 				last = key.objectid +
605 					fs_info->nodesize;
606 			else
607 				last = key.objectid + key.offset;
608 
609 			if (total_found > CACHING_CTL_WAKE_UP) {
610 				total_found = 0;
611 				if (wakeup)
612 					wake_up(&caching_ctl->wait);
613 			}
614 		}
615 		path->slots[0]++;
616 	}
617 	ret = 0;
618 
619 	total_found += add_new_free_space(block_group, last,
620 				block_group->start + block_group->length);
621 	caching_ctl->progress = (u64)-1;
622 
623 out:
624 	btrfs_free_path(path);
625 	return ret;
626 }
627 
caching_thread(struct btrfs_work * work)628 static noinline void caching_thread(struct btrfs_work *work)
629 {
630 	struct btrfs_block_group *block_group;
631 	struct btrfs_fs_info *fs_info;
632 	struct btrfs_caching_control *caching_ctl;
633 	int ret;
634 
635 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
636 	block_group = caching_ctl->block_group;
637 	fs_info = block_group->fs_info;
638 
639 	mutex_lock(&caching_ctl->mutex);
640 	down_read(&fs_info->commit_root_sem);
641 
642 	/*
643 	 * If we are in the transaction that populated the free space tree we
644 	 * can't actually cache from the free space tree as our commit root and
645 	 * real root are the same, so we could change the contents of the blocks
646 	 * while caching.  Instead do the slow caching in this case, and after
647 	 * the transaction has committed we will be safe.
648 	 */
649 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
650 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
651 		ret = load_free_space_tree(caching_ctl);
652 	else
653 		ret = load_extent_tree_free(caching_ctl);
654 
655 	spin_lock(&block_group->lock);
656 	block_group->caching_ctl = NULL;
657 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
658 	spin_unlock(&block_group->lock);
659 
660 #ifdef CONFIG_BTRFS_DEBUG
661 	if (btrfs_should_fragment_free_space(block_group)) {
662 		u64 bytes_used;
663 
664 		spin_lock(&block_group->space_info->lock);
665 		spin_lock(&block_group->lock);
666 		bytes_used = block_group->length - block_group->used;
667 		block_group->space_info->bytes_used += bytes_used >> 1;
668 		spin_unlock(&block_group->lock);
669 		spin_unlock(&block_group->space_info->lock);
670 		fragment_free_space(block_group);
671 	}
672 #endif
673 
674 	caching_ctl->progress = (u64)-1;
675 
676 	up_read(&fs_info->commit_root_sem);
677 	btrfs_free_excluded_extents(block_group);
678 	mutex_unlock(&caching_ctl->mutex);
679 
680 	wake_up(&caching_ctl->wait);
681 
682 	btrfs_put_caching_control(caching_ctl);
683 	btrfs_put_block_group(block_group);
684 }
685 
btrfs_cache_block_group(struct btrfs_block_group * cache,int load_cache_only)686 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
687 {
688 	DEFINE_WAIT(wait);
689 	struct btrfs_fs_info *fs_info = cache->fs_info;
690 	struct btrfs_caching_control *caching_ctl;
691 	int ret = 0;
692 
693 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
694 	if (!caching_ctl)
695 		return -ENOMEM;
696 
697 	INIT_LIST_HEAD(&caching_ctl->list);
698 	mutex_init(&caching_ctl->mutex);
699 	init_waitqueue_head(&caching_ctl->wait);
700 	caching_ctl->block_group = cache;
701 	caching_ctl->progress = cache->start;
702 	refcount_set(&caching_ctl->count, 1);
703 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
704 
705 	spin_lock(&cache->lock);
706 	/*
707 	 * This should be a rare occasion, but this could happen I think in the
708 	 * case where one thread starts to load the space cache info, and then
709 	 * some other thread starts a transaction commit which tries to do an
710 	 * allocation while the other thread is still loading the space cache
711 	 * info.  The previous loop should have kept us from choosing this block
712 	 * group, but if we've moved to the state where we will wait on caching
713 	 * block groups we need to first check if we're doing a fast load here,
714 	 * so we can wait for it to finish, otherwise we could end up allocating
715 	 * from a block group who's cache gets evicted for one reason or
716 	 * another.
717 	 */
718 	while (cache->cached == BTRFS_CACHE_FAST) {
719 		struct btrfs_caching_control *ctl;
720 
721 		ctl = cache->caching_ctl;
722 		refcount_inc(&ctl->count);
723 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
724 		spin_unlock(&cache->lock);
725 
726 		schedule();
727 
728 		finish_wait(&ctl->wait, &wait);
729 		btrfs_put_caching_control(ctl);
730 		spin_lock(&cache->lock);
731 	}
732 
733 	if (cache->cached != BTRFS_CACHE_NO) {
734 		spin_unlock(&cache->lock);
735 		kfree(caching_ctl);
736 		return 0;
737 	}
738 	WARN_ON(cache->caching_ctl);
739 	cache->caching_ctl = caching_ctl;
740 	cache->cached = BTRFS_CACHE_FAST;
741 	spin_unlock(&cache->lock);
742 
743 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
744 		mutex_lock(&caching_ctl->mutex);
745 		ret = load_free_space_cache(cache);
746 
747 		spin_lock(&cache->lock);
748 		if (ret == 1) {
749 			cache->caching_ctl = NULL;
750 			cache->cached = BTRFS_CACHE_FINISHED;
751 			cache->last_byte_to_unpin = (u64)-1;
752 			caching_ctl->progress = (u64)-1;
753 		} else {
754 			if (load_cache_only) {
755 				cache->caching_ctl = NULL;
756 				cache->cached = BTRFS_CACHE_NO;
757 			} else {
758 				cache->cached = BTRFS_CACHE_STARTED;
759 				cache->has_caching_ctl = 1;
760 			}
761 		}
762 		spin_unlock(&cache->lock);
763 #ifdef CONFIG_BTRFS_DEBUG
764 		if (ret == 1 &&
765 		    btrfs_should_fragment_free_space(cache)) {
766 			u64 bytes_used;
767 
768 			spin_lock(&cache->space_info->lock);
769 			spin_lock(&cache->lock);
770 			bytes_used = cache->length - cache->used;
771 			cache->space_info->bytes_used += bytes_used >> 1;
772 			spin_unlock(&cache->lock);
773 			spin_unlock(&cache->space_info->lock);
774 			fragment_free_space(cache);
775 		}
776 #endif
777 		mutex_unlock(&caching_ctl->mutex);
778 
779 		wake_up(&caching_ctl->wait);
780 		if (ret == 1) {
781 			btrfs_put_caching_control(caching_ctl);
782 			btrfs_free_excluded_extents(cache);
783 			return 0;
784 		}
785 	} else {
786 		/*
787 		 * We're either using the free space tree or no caching at all.
788 		 * Set cached to the appropriate value and wakeup any waiters.
789 		 */
790 		spin_lock(&cache->lock);
791 		if (load_cache_only) {
792 			cache->caching_ctl = NULL;
793 			cache->cached = BTRFS_CACHE_NO;
794 		} else {
795 			cache->cached = BTRFS_CACHE_STARTED;
796 			cache->has_caching_ctl = 1;
797 		}
798 		spin_unlock(&cache->lock);
799 		wake_up(&caching_ctl->wait);
800 	}
801 
802 	if (load_cache_only) {
803 		btrfs_put_caching_control(caching_ctl);
804 		return 0;
805 	}
806 
807 	down_write(&fs_info->commit_root_sem);
808 	refcount_inc(&caching_ctl->count);
809 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
810 	up_write(&fs_info->commit_root_sem);
811 
812 	btrfs_get_block_group(cache);
813 
814 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
815 
816 	return ret;
817 }
818 
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)819 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
820 {
821 	u64 extra_flags = chunk_to_extended(flags) &
822 				BTRFS_EXTENDED_PROFILE_MASK;
823 
824 	write_seqlock(&fs_info->profiles_lock);
825 	if (flags & BTRFS_BLOCK_GROUP_DATA)
826 		fs_info->avail_data_alloc_bits &= ~extra_flags;
827 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
828 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
829 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
830 		fs_info->avail_system_alloc_bits &= ~extra_flags;
831 	write_sequnlock(&fs_info->profiles_lock);
832 }
833 
834 /*
835  * Clear incompat bits for the following feature(s):
836  *
837  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
838  *            in the whole filesystem
839  *
840  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
841  */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)842 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
843 {
844 	bool found_raid56 = false;
845 	bool found_raid1c34 = false;
846 
847 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
848 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
849 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
850 		struct list_head *head = &fs_info->space_info;
851 		struct btrfs_space_info *sinfo;
852 
853 		list_for_each_entry_rcu(sinfo, head, list) {
854 			down_read(&sinfo->groups_sem);
855 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
856 				found_raid56 = true;
857 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
858 				found_raid56 = true;
859 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
860 				found_raid1c34 = true;
861 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
862 				found_raid1c34 = true;
863 			up_read(&sinfo->groups_sem);
864 		}
865 		if (!found_raid56)
866 			btrfs_clear_fs_incompat(fs_info, RAID56);
867 		if (!found_raid1c34)
868 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
869 	}
870 }
871 
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)872 static int remove_block_group_item(struct btrfs_trans_handle *trans,
873 				   struct btrfs_path *path,
874 				   struct btrfs_block_group *block_group)
875 {
876 	struct btrfs_fs_info *fs_info = trans->fs_info;
877 	struct btrfs_root *root;
878 	struct btrfs_key key;
879 	int ret;
880 
881 	root = fs_info->extent_root;
882 	key.objectid = block_group->start;
883 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
884 	key.offset = block_group->length;
885 
886 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
887 	if (ret > 0)
888 		ret = -ENOENT;
889 	if (ret < 0)
890 		return ret;
891 
892 	ret = btrfs_del_item(trans, root, path);
893 	return ret;
894 }
895 
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)896 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
897 			     u64 group_start, struct extent_map *em)
898 {
899 	struct btrfs_fs_info *fs_info = trans->fs_info;
900 	struct btrfs_path *path;
901 	struct btrfs_block_group *block_group;
902 	struct btrfs_free_cluster *cluster;
903 	struct btrfs_root *tree_root = fs_info->tree_root;
904 	struct btrfs_key key;
905 	struct inode *inode;
906 	struct kobject *kobj = NULL;
907 	int ret;
908 	int index;
909 	int factor;
910 	struct btrfs_caching_control *caching_ctl = NULL;
911 	bool remove_em;
912 	bool remove_rsv = false;
913 
914 	block_group = btrfs_lookup_block_group(fs_info, group_start);
915 	BUG_ON(!block_group);
916 	BUG_ON(!block_group->ro);
917 
918 	trace_btrfs_remove_block_group(block_group);
919 	/*
920 	 * Free the reserved super bytes from this block group before
921 	 * remove it.
922 	 */
923 	btrfs_free_excluded_extents(block_group);
924 	btrfs_free_ref_tree_range(fs_info, block_group->start,
925 				  block_group->length);
926 
927 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
928 	factor = btrfs_bg_type_to_factor(block_group->flags);
929 
930 	/* make sure this block group isn't part of an allocation cluster */
931 	cluster = &fs_info->data_alloc_cluster;
932 	spin_lock(&cluster->refill_lock);
933 	btrfs_return_cluster_to_free_space(block_group, cluster);
934 	spin_unlock(&cluster->refill_lock);
935 
936 	/*
937 	 * make sure this block group isn't part of a metadata
938 	 * allocation cluster
939 	 */
940 	cluster = &fs_info->meta_alloc_cluster;
941 	spin_lock(&cluster->refill_lock);
942 	btrfs_return_cluster_to_free_space(block_group, cluster);
943 	spin_unlock(&cluster->refill_lock);
944 
945 	path = btrfs_alloc_path();
946 	if (!path) {
947 		ret = -ENOMEM;
948 		goto out;
949 	}
950 
951 	/*
952 	 * get the inode first so any iput calls done for the io_list
953 	 * aren't the final iput (no unlinks allowed now)
954 	 */
955 	inode = lookup_free_space_inode(block_group, path);
956 
957 	mutex_lock(&trans->transaction->cache_write_mutex);
958 	/*
959 	 * Make sure our free space cache IO is done before removing the
960 	 * free space inode
961 	 */
962 	spin_lock(&trans->transaction->dirty_bgs_lock);
963 	if (!list_empty(&block_group->io_list)) {
964 		list_del_init(&block_group->io_list);
965 
966 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
967 
968 		spin_unlock(&trans->transaction->dirty_bgs_lock);
969 		btrfs_wait_cache_io(trans, block_group, path);
970 		btrfs_put_block_group(block_group);
971 		spin_lock(&trans->transaction->dirty_bgs_lock);
972 	}
973 
974 	if (!list_empty(&block_group->dirty_list)) {
975 		list_del_init(&block_group->dirty_list);
976 		remove_rsv = true;
977 		btrfs_put_block_group(block_group);
978 	}
979 	spin_unlock(&trans->transaction->dirty_bgs_lock);
980 	mutex_unlock(&trans->transaction->cache_write_mutex);
981 
982 	if (!IS_ERR(inode)) {
983 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
984 		if (ret) {
985 			btrfs_add_delayed_iput(inode);
986 			goto out;
987 		}
988 		clear_nlink(inode);
989 		/* One for the block groups ref */
990 		spin_lock(&block_group->lock);
991 		if (block_group->iref) {
992 			block_group->iref = 0;
993 			block_group->inode = NULL;
994 			spin_unlock(&block_group->lock);
995 			iput(inode);
996 		} else {
997 			spin_unlock(&block_group->lock);
998 		}
999 		/* One for our lookup ref */
1000 		btrfs_add_delayed_iput(inode);
1001 	}
1002 
1003 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1004 	key.type = 0;
1005 	key.offset = block_group->start;
1006 
1007 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
1008 	if (ret < 0)
1009 		goto out;
1010 	if (ret > 0)
1011 		btrfs_release_path(path);
1012 	if (ret == 0) {
1013 		ret = btrfs_del_item(trans, tree_root, path);
1014 		if (ret)
1015 			goto out;
1016 		btrfs_release_path(path);
1017 	}
1018 
1019 	spin_lock(&fs_info->block_group_cache_lock);
1020 	rb_erase(&block_group->cache_node,
1021 		 &fs_info->block_group_cache_tree);
1022 	RB_CLEAR_NODE(&block_group->cache_node);
1023 
1024 	/* Once for the block groups rbtree */
1025 	btrfs_put_block_group(block_group);
1026 
1027 	if (fs_info->first_logical_byte == block_group->start)
1028 		fs_info->first_logical_byte = (u64)-1;
1029 	spin_unlock(&fs_info->block_group_cache_lock);
1030 
1031 	down_write(&block_group->space_info->groups_sem);
1032 	/*
1033 	 * we must use list_del_init so people can check to see if they
1034 	 * are still on the list after taking the semaphore
1035 	 */
1036 	list_del_init(&block_group->list);
1037 	if (list_empty(&block_group->space_info->block_groups[index])) {
1038 		kobj = block_group->space_info->block_group_kobjs[index];
1039 		block_group->space_info->block_group_kobjs[index] = NULL;
1040 		clear_avail_alloc_bits(fs_info, block_group->flags);
1041 	}
1042 	up_write(&block_group->space_info->groups_sem);
1043 	clear_incompat_bg_bits(fs_info, block_group->flags);
1044 	if (kobj) {
1045 		kobject_del(kobj);
1046 		kobject_put(kobj);
1047 	}
1048 
1049 	if (block_group->has_caching_ctl)
1050 		caching_ctl = btrfs_get_caching_control(block_group);
1051 	if (block_group->cached == BTRFS_CACHE_STARTED)
1052 		btrfs_wait_block_group_cache_done(block_group);
1053 	if (block_group->has_caching_ctl) {
1054 		down_write(&fs_info->commit_root_sem);
1055 		if (!caching_ctl) {
1056 			struct btrfs_caching_control *ctl;
1057 
1058 			list_for_each_entry(ctl,
1059 				    &fs_info->caching_block_groups, list)
1060 				if (ctl->block_group == block_group) {
1061 					caching_ctl = ctl;
1062 					refcount_inc(&caching_ctl->count);
1063 					break;
1064 				}
1065 		}
1066 		if (caching_ctl)
1067 			list_del_init(&caching_ctl->list);
1068 		up_write(&fs_info->commit_root_sem);
1069 		if (caching_ctl) {
1070 			/* Once for the caching bgs list and once for us. */
1071 			btrfs_put_caching_control(caching_ctl);
1072 			btrfs_put_caching_control(caching_ctl);
1073 		}
1074 	}
1075 
1076 	spin_lock(&trans->transaction->dirty_bgs_lock);
1077 	WARN_ON(!list_empty(&block_group->dirty_list));
1078 	WARN_ON(!list_empty(&block_group->io_list));
1079 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1080 
1081 	btrfs_remove_free_space_cache(block_group);
1082 
1083 	spin_lock(&block_group->space_info->lock);
1084 	list_del_init(&block_group->ro_list);
1085 
1086 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1087 		WARN_ON(block_group->space_info->total_bytes
1088 			< block_group->length);
1089 		WARN_ON(block_group->space_info->bytes_readonly
1090 			< block_group->length);
1091 		WARN_ON(block_group->space_info->disk_total
1092 			< block_group->length * factor);
1093 	}
1094 	block_group->space_info->total_bytes -= block_group->length;
1095 	block_group->space_info->bytes_readonly -= block_group->length;
1096 	block_group->space_info->disk_total -= block_group->length * factor;
1097 
1098 	spin_unlock(&block_group->space_info->lock);
1099 
1100 	/*
1101 	 * Remove the free space for the block group from the free space tree
1102 	 * and the block group's item from the extent tree before marking the
1103 	 * block group as removed. This is to prevent races with tasks that
1104 	 * freeze and unfreeze a block group, this task and another task
1105 	 * allocating a new block group - the unfreeze task ends up removing
1106 	 * the block group's extent map before the task calling this function
1107 	 * deletes the block group item from the extent tree, allowing for
1108 	 * another task to attempt to create another block group with the same
1109 	 * item key (and failing with -EEXIST and a transaction abort).
1110 	 */
1111 	ret = remove_block_group_free_space(trans, block_group);
1112 	if (ret)
1113 		goto out;
1114 
1115 	ret = remove_block_group_item(trans, path, block_group);
1116 	if (ret < 0)
1117 		goto out;
1118 
1119 	spin_lock(&block_group->lock);
1120 	block_group->removed = 1;
1121 	/*
1122 	 * At this point trimming or scrub can't start on this block group,
1123 	 * because we removed the block group from the rbtree
1124 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1125 	 * even if someone already got this block group before we removed it
1126 	 * from the rbtree, they have already incremented block_group->frozen -
1127 	 * if they didn't, for the trimming case they won't find any free space
1128 	 * entries because we already removed them all when we called
1129 	 * btrfs_remove_free_space_cache().
1130 	 *
1131 	 * And we must not remove the extent map from the fs_info->mapping_tree
1132 	 * to prevent the same logical address range and physical device space
1133 	 * ranges from being reused for a new block group. This is needed to
1134 	 * avoid races with trimming and scrub.
1135 	 *
1136 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1137 	 * completely transactionless, so while it is trimming a range the
1138 	 * currently running transaction might finish and a new one start,
1139 	 * allowing for new block groups to be created that can reuse the same
1140 	 * physical device locations unless we take this special care.
1141 	 *
1142 	 * There may also be an implicit trim operation if the file system
1143 	 * is mounted with -odiscard. The same protections must remain
1144 	 * in place until the extents have been discarded completely when
1145 	 * the transaction commit has completed.
1146 	 */
1147 	remove_em = (atomic_read(&block_group->frozen) == 0);
1148 	spin_unlock(&block_group->lock);
1149 
1150 	if (remove_em) {
1151 		struct extent_map_tree *em_tree;
1152 
1153 		em_tree = &fs_info->mapping_tree;
1154 		write_lock(&em_tree->lock);
1155 		remove_extent_mapping(em_tree, em);
1156 		write_unlock(&em_tree->lock);
1157 		/* once for the tree */
1158 		free_extent_map(em);
1159 	}
1160 
1161 out:
1162 	/* Once for the lookup reference */
1163 	btrfs_put_block_group(block_group);
1164 	if (remove_rsv)
1165 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1166 	btrfs_free_path(path);
1167 	return ret;
1168 }
1169 
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1170 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1171 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1172 {
1173 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1174 	struct extent_map *em;
1175 	struct map_lookup *map;
1176 	unsigned int num_items;
1177 
1178 	read_lock(&em_tree->lock);
1179 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1180 	read_unlock(&em_tree->lock);
1181 	ASSERT(em && em->start == chunk_offset);
1182 
1183 	/*
1184 	 * We need to reserve 3 + N units from the metadata space info in order
1185 	 * to remove a block group (done at btrfs_remove_chunk() and at
1186 	 * btrfs_remove_block_group()), which are used for:
1187 	 *
1188 	 * 1 unit for adding the free space inode's orphan (located in the tree
1189 	 * of tree roots).
1190 	 * 1 unit for deleting the block group item (located in the extent
1191 	 * tree).
1192 	 * 1 unit for deleting the free space item (located in tree of tree
1193 	 * roots).
1194 	 * N units for deleting N device extent items corresponding to each
1195 	 * stripe (located in the device tree).
1196 	 *
1197 	 * In order to remove a block group we also need to reserve units in the
1198 	 * system space info in order to update the chunk tree (update one or
1199 	 * more device items and remove one chunk item), but this is done at
1200 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1201 	 */
1202 	map = em->map_lookup;
1203 	num_items = 3 + map->num_stripes;
1204 	free_extent_map(em);
1205 
1206 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1207 							   num_items);
1208 }
1209 
1210 /*
1211  * Mark block group @cache read-only, so later write won't happen to block
1212  * group @cache.
1213  *
1214  * If @force is not set, this function will only mark the block group readonly
1215  * if we have enough free space (1M) in other metadata/system block groups.
1216  * If @force is not set, this function will mark the block group readonly
1217  * without checking free space.
1218  *
1219  * NOTE: This function doesn't care if other block groups can contain all the
1220  * data in this block group. That check should be done by relocation routine,
1221  * not this function.
1222  */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1223 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1224 {
1225 	struct btrfs_space_info *sinfo = cache->space_info;
1226 	u64 num_bytes;
1227 	int ret = -ENOSPC;
1228 
1229 	spin_lock(&sinfo->lock);
1230 	spin_lock(&cache->lock);
1231 
1232 	if (cache->swap_extents) {
1233 		ret = -ETXTBSY;
1234 		goto out;
1235 	}
1236 
1237 	if (cache->ro) {
1238 		cache->ro++;
1239 		ret = 0;
1240 		goto out;
1241 	}
1242 
1243 	num_bytes = cache->length - cache->reserved - cache->pinned -
1244 		    cache->bytes_super - cache->used;
1245 
1246 	/*
1247 	 * Data never overcommits, even in mixed mode, so do just the straight
1248 	 * check of left over space in how much we have allocated.
1249 	 */
1250 	if (force) {
1251 		ret = 0;
1252 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1253 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1254 
1255 		/*
1256 		 * Here we make sure if we mark this bg RO, we still have enough
1257 		 * free space as buffer.
1258 		 */
1259 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1260 			ret = 0;
1261 	} else {
1262 		/*
1263 		 * We overcommit metadata, so we need to do the
1264 		 * btrfs_can_overcommit check here, and we need to pass in
1265 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1266 		 * leeway to allow us to mark this block group as read only.
1267 		 */
1268 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1269 					 BTRFS_RESERVE_NO_FLUSH))
1270 			ret = 0;
1271 	}
1272 
1273 	if (!ret) {
1274 		sinfo->bytes_readonly += num_bytes;
1275 		cache->ro++;
1276 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1277 	}
1278 out:
1279 	spin_unlock(&cache->lock);
1280 	spin_unlock(&sinfo->lock);
1281 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1282 		btrfs_info(cache->fs_info,
1283 			"unable to make block group %llu ro", cache->start);
1284 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1285 	}
1286 	return ret;
1287 }
1288 
clean_pinned_extents(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)1289 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1290 				 struct btrfs_block_group *bg)
1291 {
1292 	struct btrfs_fs_info *fs_info = bg->fs_info;
1293 	struct btrfs_transaction *prev_trans = NULL;
1294 	const u64 start = bg->start;
1295 	const u64 end = start + bg->length - 1;
1296 	int ret;
1297 
1298 	spin_lock(&fs_info->trans_lock);
1299 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1300 		prev_trans = list_last_entry(&trans->transaction->list,
1301 					     struct btrfs_transaction, list);
1302 		refcount_inc(&prev_trans->use_count);
1303 	}
1304 	spin_unlock(&fs_info->trans_lock);
1305 
1306 	/*
1307 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1308 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1309 	 * task might be running finish_extent_commit() for the previous
1310 	 * transaction N - 1, and have seen a range belonging to the block
1311 	 * group in pinned_extents before we were able to clear the whole block
1312 	 * group range from pinned_extents. This means that task can lookup for
1313 	 * the block group after we unpinned it from pinned_extents and removed
1314 	 * it, leading to a BUG_ON() at unpin_extent_range().
1315 	 */
1316 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1317 	if (prev_trans) {
1318 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1319 					EXTENT_DIRTY);
1320 		if (ret)
1321 			goto out;
1322 	}
1323 
1324 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1325 				EXTENT_DIRTY);
1326 out:
1327 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1328 	if (prev_trans)
1329 		btrfs_put_transaction(prev_trans);
1330 
1331 	return ret == 0;
1332 }
1333 
1334 /*
1335  * Process the unused_bgs list and remove any that don't have any allocated
1336  * space inside of them.
1337  */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1338 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1339 {
1340 	struct btrfs_block_group *block_group;
1341 	struct btrfs_space_info *space_info;
1342 	struct btrfs_trans_handle *trans;
1343 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1344 	int ret = 0;
1345 
1346 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1347 		return;
1348 
1349 	spin_lock(&fs_info->unused_bgs_lock);
1350 	while (!list_empty(&fs_info->unused_bgs)) {
1351 		int trimming;
1352 
1353 		block_group = list_first_entry(&fs_info->unused_bgs,
1354 					       struct btrfs_block_group,
1355 					       bg_list);
1356 		list_del_init(&block_group->bg_list);
1357 
1358 		space_info = block_group->space_info;
1359 
1360 		if (ret || btrfs_mixed_space_info(space_info)) {
1361 			btrfs_put_block_group(block_group);
1362 			continue;
1363 		}
1364 		spin_unlock(&fs_info->unused_bgs_lock);
1365 
1366 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1367 
1368 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
1369 
1370 		/* Don't want to race with allocators so take the groups_sem */
1371 		down_write(&space_info->groups_sem);
1372 
1373 		/*
1374 		 * Async discard moves the final block group discard to be prior
1375 		 * to the unused_bgs code path.  Therefore, if it's not fully
1376 		 * trimmed, punt it back to the async discard lists.
1377 		 */
1378 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1379 		    !btrfs_is_free_space_trimmed(block_group)) {
1380 			trace_btrfs_skip_unused_block_group(block_group);
1381 			up_write(&space_info->groups_sem);
1382 			/* Requeue if we failed because of async discard */
1383 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1384 						 block_group);
1385 			goto next;
1386 		}
1387 
1388 		spin_lock(&block_group->lock);
1389 		if (block_group->reserved || block_group->pinned ||
1390 		    block_group->used || block_group->ro ||
1391 		    list_is_singular(&block_group->list)) {
1392 			/*
1393 			 * We want to bail if we made new allocations or have
1394 			 * outstanding allocations in this block group.  We do
1395 			 * the ro check in case balance is currently acting on
1396 			 * this block group.
1397 			 */
1398 			trace_btrfs_skip_unused_block_group(block_group);
1399 			spin_unlock(&block_group->lock);
1400 			up_write(&space_info->groups_sem);
1401 			goto next;
1402 		}
1403 		spin_unlock(&block_group->lock);
1404 
1405 		/* We don't want to force the issue, only flip if it's ok. */
1406 		ret = inc_block_group_ro(block_group, 0);
1407 		up_write(&space_info->groups_sem);
1408 		if (ret < 0) {
1409 			ret = 0;
1410 			goto next;
1411 		}
1412 
1413 		/*
1414 		 * Want to do this before we do anything else so we can recover
1415 		 * properly if we fail to join the transaction.
1416 		 */
1417 		trans = btrfs_start_trans_remove_block_group(fs_info,
1418 						     block_group->start);
1419 		if (IS_ERR(trans)) {
1420 			btrfs_dec_block_group_ro(block_group);
1421 			ret = PTR_ERR(trans);
1422 			goto next;
1423 		}
1424 
1425 		/*
1426 		 * We could have pending pinned extents for this block group,
1427 		 * just delete them, we don't care about them anymore.
1428 		 */
1429 		if (!clean_pinned_extents(trans, block_group)) {
1430 			btrfs_dec_block_group_ro(block_group);
1431 			goto end_trans;
1432 		}
1433 
1434 		/*
1435 		 * At this point, the block_group is read only and should fail
1436 		 * new allocations.  However, btrfs_finish_extent_commit() can
1437 		 * cause this block_group to be placed back on the discard
1438 		 * lists because now the block_group isn't fully discarded.
1439 		 * Bail here and try again later after discarding everything.
1440 		 */
1441 		spin_lock(&fs_info->discard_ctl.lock);
1442 		if (!list_empty(&block_group->discard_list)) {
1443 			spin_unlock(&fs_info->discard_ctl.lock);
1444 			btrfs_dec_block_group_ro(block_group);
1445 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1446 						 block_group);
1447 			goto end_trans;
1448 		}
1449 		spin_unlock(&fs_info->discard_ctl.lock);
1450 
1451 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1452 		spin_lock(&space_info->lock);
1453 		spin_lock(&block_group->lock);
1454 
1455 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1456 						     -block_group->pinned);
1457 		space_info->bytes_readonly += block_group->pinned;
1458 		__btrfs_mod_total_bytes_pinned(space_info, -block_group->pinned);
1459 		block_group->pinned = 0;
1460 
1461 		spin_unlock(&block_group->lock);
1462 		spin_unlock(&space_info->lock);
1463 
1464 		/*
1465 		 * The normal path here is an unused block group is passed here,
1466 		 * then trimming is handled in the transaction commit path.
1467 		 * Async discard interposes before this to do the trimming
1468 		 * before coming down the unused block group path as trimming
1469 		 * will no longer be done later in the transaction commit path.
1470 		 */
1471 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1472 			goto flip_async;
1473 
1474 		/* DISCARD can flip during remount */
1475 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1476 
1477 		/* Implicit trim during transaction commit. */
1478 		if (trimming)
1479 			btrfs_freeze_block_group(block_group);
1480 
1481 		/*
1482 		 * Btrfs_remove_chunk will abort the transaction if things go
1483 		 * horribly wrong.
1484 		 */
1485 		ret = btrfs_remove_chunk(trans, block_group->start);
1486 
1487 		if (ret) {
1488 			if (trimming)
1489 				btrfs_unfreeze_block_group(block_group);
1490 			goto end_trans;
1491 		}
1492 
1493 		/*
1494 		 * If we're not mounted with -odiscard, we can just forget
1495 		 * about this block group. Otherwise we'll need to wait
1496 		 * until transaction commit to do the actual discard.
1497 		 */
1498 		if (trimming) {
1499 			spin_lock(&fs_info->unused_bgs_lock);
1500 			/*
1501 			 * A concurrent scrub might have added us to the list
1502 			 * fs_info->unused_bgs, so use a list_move operation
1503 			 * to add the block group to the deleted_bgs list.
1504 			 */
1505 			list_move(&block_group->bg_list,
1506 				  &trans->transaction->deleted_bgs);
1507 			spin_unlock(&fs_info->unused_bgs_lock);
1508 			btrfs_get_block_group(block_group);
1509 		}
1510 end_trans:
1511 		btrfs_end_transaction(trans);
1512 next:
1513 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1514 		btrfs_put_block_group(block_group);
1515 		spin_lock(&fs_info->unused_bgs_lock);
1516 	}
1517 	spin_unlock(&fs_info->unused_bgs_lock);
1518 	return;
1519 
1520 flip_async:
1521 	btrfs_end_transaction(trans);
1522 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1523 	btrfs_put_block_group(block_group);
1524 	btrfs_discard_punt_unused_bgs_list(fs_info);
1525 }
1526 
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1527 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1528 {
1529 	struct btrfs_fs_info *fs_info = bg->fs_info;
1530 
1531 	spin_lock(&fs_info->unused_bgs_lock);
1532 	if (list_empty(&bg->bg_list)) {
1533 		btrfs_get_block_group(bg);
1534 		trace_btrfs_add_unused_block_group(bg);
1535 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1536 	}
1537 	spin_unlock(&fs_info->unused_bgs_lock);
1538 }
1539 
read_bg_from_eb(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_path * path)1540 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1541 			   struct btrfs_path *path)
1542 {
1543 	struct extent_map_tree *em_tree;
1544 	struct extent_map *em;
1545 	struct btrfs_block_group_item bg;
1546 	struct extent_buffer *leaf;
1547 	int slot;
1548 	u64 flags;
1549 	int ret = 0;
1550 
1551 	slot = path->slots[0];
1552 	leaf = path->nodes[0];
1553 
1554 	em_tree = &fs_info->mapping_tree;
1555 	read_lock(&em_tree->lock);
1556 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1557 	read_unlock(&em_tree->lock);
1558 	if (!em) {
1559 		btrfs_err(fs_info,
1560 			  "logical %llu len %llu found bg but no related chunk",
1561 			  key->objectid, key->offset);
1562 		return -ENOENT;
1563 	}
1564 
1565 	if (em->start != key->objectid || em->len != key->offset) {
1566 		btrfs_err(fs_info,
1567 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1568 			key->objectid, key->offset, em->start, em->len);
1569 		ret = -EUCLEAN;
1570 		goto out_free_em;
1571 	}
1572 
1573 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1574 			   sizeof(bg));
1575 	flags = btrfs_stack_block_group_flags(&bg) &
1576 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1577 
1578 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1579 		btrfs_err(fs_info,
1580 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1581 			  key->objectid, key->offset, flags,
1582 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1583 		ret = -EUCLEAN;
1584 	}
1585 
1586 out_free_em:
1587 	free_extent_map(em);
1588 	return ret;
1589 }
1590 
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)1591 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1592 				  struct btrfs_path *path,
1593 				  struct btrfs_key *key)
1594 {
1595 	struct btrfs_root *root = fs_info->extent_root;
1596 	int ret;
1597 	struct btrfs_key found_key;
1598 	struct extent_buffer *leaf;
1599 	int slot;
1600 
1601 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1602 	if (ret < 0)
1603 		return ret;
1604 
1605 	while (1) {
1606 		slot = path->slots[0];
1607 		leaf = path->nodes[0];
1608 		if (slot >= btrfs_header_nritems(leaf)) {
1609 			ret = btrfs_next_leaf(root, path);
1610 			if (ret == 0)
1611 				continue;
1612 			if (ret < 0)
1613 				goto out;
1614 			break;
1615 		}
1616 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1617 
1618 		if (found_key.objectid >= key->objectid &&
1619 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1620 			ret = read_bg_from_eb(fs_info, &found_key, path);
1621 			break;
1622 		}
1623 
1624 		path->slots[0]++;
1625 	}
1626 out:
1627 	return ret;
1628 }
1629 
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)1630 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1631 {
1632 	u64 extra_flags = chunk_to_extended(flags) &
1633 				BTRFS_EXTENDED_PROFILE_MASK;
1634 
1635 	write_seqlock(&fs_info->profiles_lock);
1636 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1637 		fs_info->avail_data_alloc_bits |= extra_flags;
1638 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1639 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1640 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1641 		fs_info->avail_system_alloc_bits |= extra_flags;
1642 	write_sequnlock(&fs_info->profiles_lock);
1643 }
1644 
1645 /**
1646  * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1647  * @chunk_start:   logical address of block group
1648  * @physical:	   physical address to map to logical addresses
1649  * @logical:	   return array of logical addresses which map to @physical
1650  * @naddrs:	   length of @logical
1651  * @stripe_len:    size of IO stripe for the given block group
1652  *
1653  * Maps a particular @physical disk address to a list of @logical addresses.
1654  * Used primarily to exclude those portions of a block group that contain super
1655  * block copies.
1656  */
1657 EXPORT_FOR_TESTS
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)1658 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1659 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1660 {
1661 	struct extent_map *em;
1662 	struct map_lookup *map;
1663 	u64 *buf;
1664 	u64 bytenr;
1665 	u64 data_stripe_length;
1666 	u64 io_stripe_size;
1667 	int i, nr = 0;
1668 	int ret = 0;
1669 
1670 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1671 	if (IS_ERR(em))
1672 		return -EIO;
1673 
1674 	map = em->map_lookup;
1675 	data_stripe_length = em->orig_block_len;
1676 	io_stripe_size = map->stripe_len;
1677 
1678 	/* For RAID5/6 adjust to a full IO stripe length */
1679 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1680 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1681 
1682 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1683 	if (!buf) {
1684 		ret = -ENOMEM;
1685 		goto out;
1686 	}
1687 
1688 	for (i = 0; i < map->num_stripes; i++) {
1689 		bool already_inserted = false;
1690 		u64 stripe_nr;
1691 		int j;
1692 
1693 		if (!in_range(physical, map->stripes[i].physical,
1694 			      data_stripe_length))
1695 			continue;
1696 
1697 		stripe_nr = physical - map->stripes[i].physical;
1698 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1699 
1700 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1701 			stripe_nr = stripe_nr * map->num_stripes + i;
1702 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1703 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1704 			stripe_nr = stripe_nr * map->num_stripes + i;
1705 		}
1706 		/*
1707 		 * The remaining case would be for RAID56, multiply by
1708 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1709 		 * instead of map->stripe_len
1710 		 */
1711 
1712 		bytenr = chunk_start + stripe_nr * io_stripe_size;
1713 
1714 		/* Ensure we don't add duplicate addresses */
1715 		for (j = 0; j < nr; j++) {
1716 			if (buf[j] == bytenr) {
1717 				already_inserted = true;
1718 				break;
1719 			}
1720 		}
1721 
1722 		if (!already_inserted)
1723 			buf[nr++] = bytenr;
1724 	}
1725 
1726 	*logical = buf;
1727 	*naddrs = nr;
1728 	*stripe_len = io_stripe_size;
1729 out:
1730 	free_extent_map(em);
1731 	return ret;
1732 }
1733 
exclude_super_stripes(struct btrfs_block_group * cache)1734 static int exclude_super_stripes(struct btrfs_block_group *cache)
1735 {
1736 	struct btrfs_fs_info *fs_info = cache->fs_info;
1737 	u64 bytenr;
1738 	u64 *logical;
1739 	int stripe_len;
1740 	int i, nr, ret;
1741 
1742 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1743 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1744 		cache->bytes_super += stripe_len;
1745 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1746 						stripe_len);
1747 		if (ret)
1748 			return ret;
1749 	}
1750 
1751 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1752 		bytenr = btrfs_sb_offset(i);
1753 		ret = btrfs_rmap_block(fs_info, cache->start,
1754 				       bytenr, &logical, &nr, &stripe_len);
1755 		if (ret)
1756 			return ret;
1757 
1758 		while (nr--) {
1759 			u64 len = min_t(u64, stripe_len,
1760 				cache->start + cache->length - logical[nr]);
1761 
1762 			cache->bytes_super += len;
1763 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1764 							len);
1765 			if (ret) {
1766 				kfree(logical);
1767 				return ret;
1768 			}
1769 		}
1770 
1771 		kfree(logical);
1772 	}
1773 	return 0;
1774 }
1775 
link_block_group(struct btrfs_block_group * cache)1776 static void link_block_group(struct btrfs_block_group *cache)
1777 {
1778 	struct btrfs_space_info *space_info = cache->space_info;
1779 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1780 
1781 	down_write(&space_info->groups_sem);
1782 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1783 	up_write(&space_info->groups_sem);
1784 }
1785 
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)1786 static struct btrfs_block_group *btrfs_create_block_group_cache(
1787 		struct btrfs_fs_info *fs_info, u64 start)
1788 {
1789 	struct btrfs_block_group *cache;
1790 
1791 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1792 	if (!cache)
1793 		return NULL;
1794 
1795 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1796 					GFP_NOFS);
1797 	if (!cache->free_space_ctl) {
1798 		kfree(cache);
1799 		return NULL;
1800 	}
1801 
1802 	cache->start = start;
1803 
1804 	cache->fs_info = fs_info;
1805 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1806 
1807 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1808 
1809 	refcount_set(&cache->refs, 1);
1810 	spin_lock_init(&cache->lock);
1811 	init_rwsem(&cache->data_rwsem);
1812 	INIT_LIST_HEAD(&cache->list);
1813 	INIT_LIST_HEAD(&cache->cluster_list);
1814 	INIT_LIST_HEAD(&cache->bg_list);
1815 	INIT_LIST_HEAD(&cache->ro_list);
1816 	INIT_LIST_HEAD(&cache->discard_list);
1817 	INIT_LIST_HEAD(&cache->dirty_list);
1818 	INIT_LIST_HEAD(&cache->io_list);
1819 	btrfs_init_free_space_ctl(cache);
1820 	atomic_set(&cache->frozen, 0);
1821 	mutex_init(&cache->free_space_lock);
1822 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1823 
1824 	return cache;
1825 }
1826 
1827 /*
1828  * Iterate all chunks and verify that each of them has the corresponding block
1829  * group
1830  */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)1831 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1832 {
1833 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1834 	struct extent_map *em;
1835 	struct btrfs_block_group *bg;
1836 	u64 start = 0;
1837 	int ret = 0;
1838 
1839 	while (1) {
1840 		read_lock(&map_tree->lock);
1841 		/*
1842 		 * lookup_extent_mapping will return the first extent map
1843 		 * intersecting the range, so setting @len to 1 is enough to
1844 		 * get the first chunk.
1845 		 */
1846 		em = lookup_extent_mapping(map_tree, start, 1);
1847 		read_unlock(&map_tree->lock);
1848 		if (!em)
1849 			break;
1850 
1851 		bg = btrfs_lookup_block_group(fs_info, em->start);
1852 		if (!bg) {
1853 			btrfs_err(fs_info,
1854 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1855 				     em->start, em->len);
1856 			ret = -EUCLEAN;
1857 			free_extent_map(em);
1858 			break;
1859 		}
1860 		if (bg->start != em->start || bg->length != em->len ||
1861 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1862 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1863 			btrfs_err(fs_info,
1864 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1865 				em->start, em->len,
1866 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1867 				bg->start, bg->length,
1868 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1869 			ret = -EUCLEAN;
1870 			free_extent_map(em);
1871 			btrfs_put_block_group(bg);
1872 			break;
1873 		}
1874 		start = em->start + em->len;
1875 		free_extent_map(em);
1876 		btrfs_put_block_group(bg);
1877 	}
1878 	return ret;
1879 }
1880 
read_block_group_item(struct btrfs_block_group * cache,struct btrfs_path * path,const struct btrfs_key * key)1881 static void read_block_group_item(struct btrfs_block_group *cache,
1882 				 struct btrfs_path *path,
1883 				 const struct btrfs_key *key)
1884 {
1885 	struct extent_buffer *leaf = path->nodes[0];
1886 	struct btrfs_block_group_item bgi;
1887 	int slot = path->slots[0];
1888 
1889 	cache->length = key->offset;
1890 
1891 	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1892 			   sizeof(bgi));
1893 	cache->used = btrfs_stack_block_group_used(&bgi);
1894 	cache->flags = btrfs_stack_block_group_flags(&bgi);
1895 }
1896 
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_path * path,const struct btrfs_key * key,int need_clear)1897 static int read_one_block_group(struct btrfs_fs_info *info,
1898 				struct btrfs_path *path,
1899 				const struct btrfs_key *key,
1900 				int need_clear)
1901 {
1902 	struct btrfs_block_group *cache;
1903 	struct btrfs_space_info *space_info;
1904 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1905 	int ret;
1906 
1907 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1908 
1909 	cache = btrfs_create_block_group_cache(info, key->objectid);
1910 	if (!cache)
1911 		return -ENOMEM;
1912 
1913 	read_block_group_item(cache, path, key);
1914 
1915 	set_free_space_tree_thresholds(cache);
1916 
1917 	if (need_clear) {
1918 		/*
1919 		 * When we mount with old space cache, we need to
1920 		 * set BTRFS_DC_CLEAR and set dirty flag.
1921 		 *
1922 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1923 		 *    truncate the old free space cache inode and
1924 		 *    setup a new one.
1925 		 * b) Setting 'dirty flag' makes sure that we flush
1926 		 *    the new space cache info onto disk.
1927 		 */
1928 		if (btrfs_test_opt(info, SPACE_CACHE))
1929 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1930 	}
1931 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1932 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1933 			btrfs_err(info,
1934 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1935 				  cache->start);
1936 			ret = -EINVAL;
1937 			goto error;
1938 	}
1939 
1940 	/*
1941 	 * We need to exclude the super stripes now so that the space info has
1942 	 * super bytes accounted for, otherwise we'll think we have more space
1943 	 * than we actually do.
1944 	 */
1945 	ret = exclude_super_stripes(cache);
1946 	if (ret) {
1947 		/* We may have excluded something, so call this just in case. */
1948 		btrfs_free_excluded_extents(cache);
1949 		goto error;
1950 	}
1951 
1952 	/*
1953 	 * Check for two cases, either we are full, and therefore don't need
1954 	 * to bother with the caching work since we won't find any space, or we
1955 	 * are empty, and we can just add all the space in and be done with it.
1956 	 * This saves us _a_lot_ of time, particularly in the full case.
1957 	 */
1958 	if (cache->length == cache->used) {
1959 		cache->last_byte_to_unpin = (u64)-1;
1960 		cache->cached = BTRFS_CACHE_FINISHED;
1961 		btrfs_free_excluded_extents(cache);
1962 	} else if (cache->used == 0) {
1963 		cache->last_byte_to_unpin = (u64)-1;
1964 		cache->cached = BTRFS_CACHE_FINISHED;
1965 		add_new_free_space(cache, cache->start,
1966 				   cache->start + cache->length);
1967 		btrfs_free_excluded_extents(cache);
1968 	}
1969 
1970 	ret = btrfs_add_block_group_cache(info, cache);
1971 	if (ret) {
1972 		btrfs_remove_free_space_cache(cache);
1973 		goto error;
1974 	}
1975 	trace_btrfs_add_block_group(info, cache, 0);
1976 	btrfs_update_space_info(info, cache->flags, cache->length,
1977 				cache->used, cache->bytes_super, &space_info);
1978 
1979 	cache->space_info = space_info;
1980 
1981 	link_block_group(cache);
1982 
1983 	set_avail_alloc_bits(info, cache->flags);
1984 	if (btrfs_chunk_readonly(info, cache->start)) {
1985 		inc_block_group_ro(cache, 1);
1986 	} else if (cache->used == 0) {
1987 		ASSERT(list_empty(&cache->bg_list));
1988 		if (btrfs_test_opt(info, DISCARD_ASYNC))
1989 			btrfs_discard_queue_work(&info->discard_ctl, cache);
1990 		else
1991 			btrfs_mark_bg_unused(cache);
1992 	}
1993 	return 0;
1994 error:
1995 	btrfs_put_block_group(cache);
1996 	return ret;
1997 }
1998 
btrfs_read_block_groups(struct btrfs_fs_info * info)1999 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2000 {
2001 	struct btrfs_path *path;
2002 	int ret;
2003 	struct btrfs_block_group *cache;
2004 	struct btrfs_space_info *space_info;
2005 	struct btrfs_key key;
2006 	int need_clear = 0;
2007 	u64 cache_gen;
2008 
2009 	key.objectid = 0;
2010 	key.offset = 0;
2011 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2012 	path = btrfs_alloc_path();
2013 	if (!path)
2014 		return -ENOMEM;
2015 
2016 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2017 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2018 	    btrfs_super_generation(info->super_copy) != cache_gen)
2019 		need_clear = 1;
2020 	if (btrfs_test_opt(info, CLEAR_CACHE))
2021 		need_clear = 1;
2022 
2023 	while (1) {
2024 		ret = find_first_block_group(info, path, &key);
2025 		if (ret > 0)
2026 			break;
2027 		if (ret != 0)
2028 			goto error;
2029 
2030 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2031 		ret = read_one_block_group(info, path, &key, need_clear);
2032 		if (ret < 0)
2033 			goto error;
2034 		key.objectid += key.offset;
2035 		key.offset = 0;
2036 		btrfs_release_path(path);
2037 	}
2038 	btrfs_release_path(path);
2039 
2040 	list_for_each_entry(space_info, &info->space_info, list) {
2041 		int i;
2042 
2043 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2044 			if (list_empty(&space_info->block_groups[i]))
2045 				continue;
2046 			cache = list_first_entry(&space_info->block_groups[i],
2047 						 struct btrfs_block_group,
2048 						 list);
2049 			btrfs_sysfs_add_block_group_type(cache);
2050 		}
2051 
2052 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2053 		      (BTRFS_BLOCK_GROUP_RAID10 |
2054 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2055 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2056 		       BTRFS_BLOCK_GROUP_DUP)))
2057 			continue;
2058 		/*
2059 		 * Avoid allocating from un-mirrored block group if there are
2060 		 * mirrored block groups.
2061 		 */
2062 		list_for_each_entry(cache,
2063 				&space_info->block_groups[BTRFS_RAID_RAID0],
2064 				list)
2065 			inc_block_group_ro(cache, 1);
2066 		list_for_each_entry(cache,
2067 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2068 				list)
2069 			inc_block_group_ro(cache, 1);
2070 	}
2071 
2072 	btrfs_init_global_block_rsv(info);
2073 	ret = check_chunk_block_group_mappings(info);
2074 error:
2075 	btrfs_free_path(path);
2076 	return ret;
2077 }
2078 
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2079 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2080 				   struct btrfs_block_group *block_group)
2081 {
2082 	struct btrfs_fs_info *fs_info = trans->fs_info;
2083 	struct btrfs_block_group_item bgi;
2084 	struct btrfs_root *root;
2085 	struct btrfs_key key;
2086 
2087 	spin_lock(&block_group->lock);
2088 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2089 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2090 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2091 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2092 	key.objectid = block_group->start;
2093 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2094 	key.offset = block_group->length;
2095 	spin_unlock(&block_group->lock);
2096 
2097 	root = fs_info->extent_root;
2098 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2099 }
2100 
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2101 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2102 {
2103 	struct btrfs_fs_info *fs_info = trans->fs_info;
2104 	struct btrfs_block_group *block_group;
2105 	int ret = 0;
2106 
2107 	if (!trans->can_flush_pending_bgs)
2108 		return;
2109 
2110 	while (!list_empty(&trans->new_bgs)) {
2111 		int index;
2112 
2113 		block_group = list_first_entry(&trans->new_bgs,
2114 					       struct btrfs_block_group,
2115 					       bg_list);
2116 		if (ret)
2117 			goto next;
2118 
2119 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2120 
2121 		ret = insert_block_group_item(trans, block_group);
2122 		if (ret)
2123 			btrfs_abort_transaction(trans, ret);
2124 		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2125 					block_group->length);
2126 		if (ret)
2127 			btrfs_abort_transaction(trans, ret);
2128 		add_block_group_free_space(trans, block_group);
2129 
2130 		/*
2131 		 * If we restriped during balance, we may have added a new raid
2132 		 * type, so now add the sysfs entries when it is safe to do so.
2133 		 * We don't have to worry about locking here as it's handled in
2134 		 * btrfs_sysfs_add_block_group_type.
2135 		 */
2136 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2137 			btrfs_sysfs_add_block_group_type(block_group);
2138 
2139 		/* Already aborted the transaction if it failed. */
2140 next:
2141 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2142 		list_del_init(&block_group->bg_list);
2143 	}
2144 	btrfs_trans_release_chunk_metadata(trans);
2145 }
2146 
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)2147 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2148 			   u64 type, u64 chunk_offset, u64 size)
2149 {
2150 	struct btrfs_fs_info *fs_info = trans->fs_info;
2151 	struct btrfs_block_group *cache;
2152 	int ret;
2153 
2154 	btrfs_set_log_full_commit(trans);
2155 
2156 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2157 	if (!cache)
2158 		return -ENOMEM;
2159 
2160 	cache->length = size;
2161 	set_free_space_tree_thresholds(cache);
2162 	cache->used = bytes_used;
2163 	cache->flags = type;
2164 	cache->last_byte_to_unpin = (u64)-1;
2165 	cache->cached = BTRFS_CACHE_FINISHED;
2166 	cache->needs_free_space = 1;
2167 	ret = exclude_super_stripes(cache);
2168 	if (ret) {
2169 		/* We may have excluded something, so call this just in case */
2170 		btrfs_free_excluded_extents(cache);
2171 		btrfs_put_block_group(cache);
2172 		return ret;
2173 	}
2174 
2175 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2176 
2177 	btrfs_free_excluded_extents(cache);
2178 
2179 #ifdef CONFIG_BTRFS_DEBUG
2180 	if (btrfs_should_fragment_free_space(cache)) {
2181 		u64 new_bytes_used = size - bytes_used;
2182 
2183 		bytes_used += new_bytes_used >> 1;
2184 		fragment_free_space(cache);
2185 	}
2186 #endif
2187 	/*
2188 	 * Ensure the corresponding space_info object is created and
2189 	 * assigned to our block group. We want our bg to be added to the rbtree
2190 	 * with its ->space_info set.
2191 	 */
2192 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2193 	ASSERT(cache->space_info);
2194 
2195 	ret = btrfs_add_block_group_cache(fs_info, cache);
2196 	if (ret) {
2197 		btrfs_remove_free_space_cache(cache);
2198 		btrfs_put_block_group(cache);
2199 		return ret;
2200 	}
2201 
2202 	/*
2203 	 * Now that our block group has its ->space_info set and is inserted in
2204 	 * the rbtree, update the space info's counters.
2205 	 */
2206 	trace_btrfs_add_block_group(fs_info, cache, 1);
2207 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2208 				cache->bytes_super, &cache->space_info);
2209 	btrfs_update_global_block_rsv(fs_info);
2210 
2211 	link_block_group(cache);
2212 
2213 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2214 	trans->delayed_ref_updates++;
2215 	btrfs_update_delayed_refs_rsv(trans);
2216 
2217 	set_avail_alloc_bits(fs_info, type);
2218 	return 0;
2219 }
2220 
2221 /*
2222  * Mark one block group RO, can be called several times for the same block
2223  * group.
2224  *
2225  * @cache:		the destination block group
2226  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2227  * 			ensure we still have some free space after marking this
2228  * 			block group RO.
2229  */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2230 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2231 			     bool do_chunk_alloc)
2232 {
2233 	struct btrfs_fs_info *fs_info = cache->fs_info;
2234 	struct btrfs_trans_handle *trans;
2235 	u64 alloc_flags;
2236 	int ret;
2237 
2238 again:
2239 	trans = btrfs_join_transaction(fs_info->extent_root);
2240 	if (IS_ERR(trans))
2241 		return PTR_ERR(trans);
2242 
2243 	/*
2244 	 * we're not allowed to set block groups readonly after the dirty
2245 	 * block groups cache has started writing.  If it already started,
2246 	 * back off and let this transaction commit
2247 	 */
2248 	mutex_lock(&fs_info->ro_block_group_mutex);
2249 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2250 		u64 transid = trans->transid;
2251 
2252 		mutex_unlock(&fs_info->ro_block_group_mutex);
2253 		btrfs_end_transaction(trans);
2254 
2255 		ret = btrfs_wait_for_commit(fs_info, transid);
2256 		if (ret)
2257 			return ret;
2258 		goto again;
2259 	}
2260 
2261 	if (do_chunk_alloc) {
2262 		/*
2263 		 * If we are changing raid levels, try to allocate a
2264 		 * corresponding block group with the new raid level.
2265 		 */
2266 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2267 		if (alloc_flags != cache->flags) {
2268 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2269 						CHUNK_ALLOC_FORCE);
2270 			/*
2271 			 * ENOSPC is allowed here, we may have enough space
2272 			 * already allocated at the new raid level to carry on
2273 			 */
2274 			if (ret == -ENOSPC)
2275 				ret = 0;
2276 			if (ret < 0)
2277 				goto out;
2278 		}
2279 	}
2280 
2281 	ret = inc_block_group_ro(cache, 0);
2282 	if (!do_chunk_alloc || ret == -ETXTBSY)
2283 		goto unlock_out;
2284 	if (!ret)
2285 		goto out;
2286 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2287 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2288 	if (ret < 0)
2289 		goto out;
2290 	ret = inc_block_group_ro(cache, 0);
2291 	if (ret == -ETXTBSY)
2292 		goto unlock_out;
2293 out:
2294 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2295 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2296 		mutex_lock(&fs_info->chunk_mutex);
2297 		check_system_chunk(trans, alloc_flags);
2298 		mutex_unlock(&fs_info->chunk_mutex);
2299 	}
2300 unlock_out:
2301 	mutex_unlock(&fs_info->ro_block_group_mutex);
2302 
2303 	btrfs_end_transaction(trans);
2304 	return ret;
2305 }
2306 
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)2307 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2308 {
2309 	struct btrfs_space_info *sinfo = cache->space_info;
2310 	u64 num_bytes;
2311 
2312 	BUG_ON(!cache->ro);
2313 
2314 	spin_lock(&sinfo->lock);
2315 	spin_lock(&cache->lock);
2316 	if (!--cache->ro) {
2317 		num_bytes = cache->length - cache->reserved -
2318 			    cache->pinned - cache->bytes_super - cache->used;
2319 		sinfo->bytes_readonly -= num_bytes;
2320 		list_del_init(&cache->ro_list);
2321 	}
2322 	spin_unlock(&cache->lock);
2323 	spin_unlock(&sinfo->lock);
2324 }
2325 
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)2326 static int update_block_group_item(struct btrfs_trans_handle *trans,
2327 				   struct btrfs_path *path,
2328 				   struct btrfs_block_group *cache)
2329 {
2330 	struct btrfs_fs_info *fs_info = trans->fs_info;
2331 	int ret;
2332 	struct btrfs_root *root = fs_info->extent_root;
2333 	unsigned long bi;
2334 	struct extent_buffer *leaf;
2335 	struct btrfs_block_group_item bgi;
2336 	struct btrfs_key key;
2337 
2338 	key.objectid = cache->start;
2339 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2340 	key.offset = cache->length;
2341 
2342 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2343 	if (ret) {
2344 		if (ret > 0)
2345 			ret = -ENOENT;
2346 		goto fail;
2347 	}
2348 
2349 	leaf = path->nodes[0];
2350 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2351 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2352 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2353 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2354 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2355 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2356 	btrfs_mark_buffer_dirty(leaf);
2357 fail:
2358 	btrfs_release_path(path);
2359 	return ret;
2360 
2361 }
2362 
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)2363 static int cache_save_setup(struct btrfs_block_group *block_group,
2364 			    struct btrfs_trans_handle *trans,
2365 			    struct btrfs_path *path)
2366 {
2367 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2368 	struct btrfs_root *root = fs_info->tree_root;
2369 	struct inode *inode = NULL;
2370 	struct extent_changeset *data_reserved = NULL;
2371 	u64 alloc_hint = 0;
2372 	int dcs = BTRFS_DC_ERROR;
2373 	u64 num_pages = 0;
2374 	int retries = 0;
2375 	int ret = 0;
2376 
2377 	/*
2378 	 * If this block group is smaller than 100 megs don't bother caching the
2379 	 * block group.
2380 	 */
2381 	if (block_group->length < (100 * SZ_1M)) {
2382 		spin_lock(&block_group->lock);
2383 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2384 		spin_unlock(&block_group->lock);
2385 		return 0;
2386 	}
2387 
2388 	if (TRANS_ABORTED(trans))
2389 		return 0;
2390 again:
2391 	inode = lookup_free_space_inode(block_group, path);
2392 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2393 		ret = PTR_ERR(inode);
2394 		btrfs_release_path(path);
2395 		goto out;
2396 	}
2397 
2398 	if (IS_ERR(inode)) {
2399 		BUG_ON(retries);
2400 		retries++;
2401 
2402 		if (block_group->ro)
2403 			goto out_free;
2404 
2405 		ret = create_free_space_inode(trans, block_group, path);
2406 		if (ret)
2407 			goto out_free;
2408 		goto again;
2409 	}
2410 
2411 	/*
2412 	 * We want to set the generation to 0, that way if anything goes wrong
2413 	 * from here on out we know not to trust this cache when we load up next
2414 	 * time.
2415 	 */
2416 	BTRFS_I(inode)->generation = 0;
2417 	ret = btrfs_update_inode(trans, root, inode);
2418 	if (ret) {
2419 		/*
2420 		 * So theoretically we could recover from this, simply set the
2421 		 * super cache generation to 0 so we know to invalidate the
2422 		 * cache, but then we'd have to keep track of the block groups
2423 		 * that fail this way so we know we _have_ to reset this cache
2424 		 * before the next commit or risk reading stale cache.  So to
2425 		 * limit our exposure to horrible edge cases lets just abort the
2426 		 * transaction, this only happens in really bad situations
2427 		 * anyway.
2428 		 */
2429 		btrfs_abort_transaction(trans, ret);
2430 		goto out_put;
2431 	}
2432 	WARN_ON(ret);
2433 
2434 	/* We've already setup this transaction, go ahead and exit */
2435 	if (block_group->cache_generation == trans->transid &&
2436 	    i_size_read(inode)) {
2437 		dcs = BTRFS_DC_SETUP;
2438 		goto out_put;
2439 	}
2440 
2441 	if (i_size_read(inode) > 0) {
2442 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2443 					&fs_info->global_block_rsv);
2444 		if (ret)
2445 			goto out_put;
2446 
2447 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2448 		if (ret)
2449 			goto out_put;
2450 	}
2451 
2452 	spin_lock(&block_group->lock);
2453 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2454 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2455 		/*
2456 		 * don't bother trying to write stuff out _if_
2457 		 * a) we're not cached,
2458 		 * b) we're with nospace_cache mount option,
2459 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2460 		 */
2461 		dcs = BTRFS_DC_WRITTEN;
2462 		spin_unlock(&block_group->lock);
2463 		goto out_put;
2464 	}
2465 	spin_unlock(&block_group->lock);
2466 
2467 	/*
2468 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2469 	 * skip doing the setup, we've already cleared the cache so we're safe.
2470 	 */
2471 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2472 		ret = -ENOSPC;
2473 		goto out_put;
2474 	}
2475 
2476 	/*
2477 	 * Try to preallocate enough space based on how big the block group is.
2478 	 * Keep in mind this has to include any pinned space which could end up
2479 	 * taking up quite a bit since it's not folded into the other space
2480 	 * cache.
2481 	 */
2482 	num_pages = div_u64(block_group->length, SZ_256M);
2483 	if (!num_pages)
2484 		num_pages = 1;
2485 
2486 	num_pages *= 16;
2487 	num_pages *= PAGE_SIZE;
2488 
2489 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2490 					  num_pages);
2491 	if (ret)
2492 		goto out_put;
2493 
2494 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2495 					      num_pages, num_pages,
2496 					      &alloc_hint);
2497 	/*
2498 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2499 	 * of metadata or split extents when writing the cache out, which means
2500 	 * we can enospc if we are heavily fragmented in addition to just normal
2501 	 * out of space conditions.  So if we hit this just skip setting up any
2502 	 * other block groups for this transaction, maybe we'll unpin enough
2503 	 * space the next time around.
2504 	 */
2505 	if (!ret)
2506 		dcs = BTRFS_DC_SETUP;
2507 	else if (ret == -ENOSPC)
2508 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2509 
2510 out_put:
2511 	iput(inode);
2512 out_free:
2513 	btrfs_release_path(path);
2514 out:
2515 	spin_lock(&block_group->lock);
2516 	if (!ret && dcs == BTRFS_DC_SETUP)
2517 		block_group->cache_generation = trans->transid;
2518 	block_group->disk_cache_state = dcs;
2519 	spin_unlock(&block_group->lock);
2520 
2521 	extent_changeset_free(data_reserved);
2522 	return ret;
2523 }
2524 
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)2525 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2526 {
2527 	struct btrfs_fs_info *fs_info = trans->fs_info;
2528 	struct btrfs_block_group *cache, *tmp;
2529 	struct btrfs_transaction *cur_trans = trans->transaction;
2530 	struct btrfs_path *path;
2531 
2532 	if (list_empty(&cur_trans->dirty_bgs) ||
2533 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2534 		return 0;
2535 
2536 	path = btrfs_alloc_path();
2537 	if (!path)
2538 		return -ENOMEM;
2539 
2540 	/* Could add new block groups, use _safe just in case */
2541 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2542 				 dirty_list) {
2543 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2544 			cache_save_setup(cache, trans, path);
2545 	}
2546 
2547 	btrfs_free_path(path);
2548 	return 0;
2549 }
2550 
2551 /*
2552  * Transaction commit does final block group cache writeback during a critical
2553  * section where nothing is allowed to change the FS.  This is required in
2554  * order for the cache to actually match the block group, but can introduce a
2555  * lot of latency into the commit.
2556  *
2557  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2558  * There's a chance we'll have to redo some of it if the block group changes
2559  * again during the commit, but it greatly reduces the commit latency by
2560  * getting rid of the easy block groups while we're still allowing others to
2561  * join the commit.
2562  */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)2563 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2564 {
2565 	struct btrfs_fs_info *fs_info = trans->fs_info;
2566 	struct btrfs_block_group *cache;
2567 	struct btrfs_transaction *cur_trans = trans->transaction;
2568 	int ret = 0;
2569 	int should_put;
2570 	struct btrfs_path *path = NULL;
2571 	LIST_HEAD(dirty);
2572 	struct list_head *io = &cur_trans->io_bgs;
2573 	int loops = 0;
2574 
2575 	spin_lock(&cur_trans->dirty_bgs_lock);
2576 	if (list_empty(&cur_trans->dirty_bgs)) {
2577 		spin_unlock(&cur_trans->dirty_bgs_lock);
2578 		return 0;
2579 	}
2580 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2581 	spin_unlock(&cur_trans->dirty_bgs_lock);
2582 
2583 again:
2584 	/* Make sure all the block groups on our dirty list actually exist */
2585 	btrfs_create_pending_block_groups(trans);
2586 
2587 	if (!path) {
2588 		path = btrfs_alloc_path();
2589 		if (!path) {
2590 			ret = -ENOMEM;
2591 			goto out;
2592 		}
2593 	}
2594 
2595 	/*
2596 	 * cache_write_mutex is here only to save us from balance or automatic
2597 	 * removal of empty block groups deleting this block group while we are
2598 	 * writing out the cache
2599 	 */
2600 	mutex_lock(&trans->transaction->cache_write_mutex);
2601 	while (!list_empty(&dirty)) {
2602 		bool drop_reserve = true;
2603 
2604 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2605 					 dirty_list);
2606 		/*
2607 		 * This can happen if something re-dirties a block group that
2608 		 * is already under IO.  Just wait for it to finish and then do
2609 		 * it all again
2610 		 */
2611 		if (!list_empty(&cache->io_list)) {
2612 			list_del_init(&cache->io_list);
2613 			btrfs_wait_cache_io(trans, cache, path);
2614 			btrfs_put_block_group(cache);
2615 		}
2616 
2617 
2618 		/*
2619 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2620 		 * it should update the cache_state.  Don't delete until after
2621 		 * we wait.
2622 		 *
2623 		 * Since we're not running in the commit critical section
2624 		 * we need the dirty_bgs_lock to protect from update_block_group
2625 		 */
2626 		spin_lock(&cur_trans->dirty_bgs_lock);
2627 		list_del_init(&cache->dirty_list);
2628 		spin_unlock(&cur_trans->dirty_bgs_lock);
2629 
2630 		should_put = 1;
2631 
2632 		cache_save_setup(cache, trans, path);
2633 
2634 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2635 			cache->io_ctl.inode = NULL;
2636 			ret = btrfs_write_out_cache(trans, cache, path);
2637 			if (ret == 0 && cache->io_ctl.inode) {
2638 				should_put = 0;
2639 
2640 				/*
2641 				 * The cache_write_mutex is protecting the
2642 				 * io_list, also refer to the definition of
2643 				 * btrfs_transaction::io_bgs for more details
2644 				 */
2645 				list_add_tail(&cache->io_list, io);
2646 			} else {
2647 				/*
2648 				 * If we failed to write the cache, the
2649 				 * generation will be bad and life goes on
2650 				 */
2651 				ret = 0;
2652 			}
2653 		}
2654 		if (!ret) {
2655 			ret = update_block_group_item(trans, path, cache);
2656 			/*
2657 			 * Our block group might still be attached to the list
2658 			 * of new block groups in the transaction handle of some
2659 			 * other task (struct btrfs_trans_handle->new_bgs). This
2660 			 * means its block group item isn't yet in the extent
2661 			 * tree. If this happens ignore the error, as we will
2662 			 * try again later in the critical section of the
2663 			 * transaction commit.
2664 			 */
2665 			if (ret == -ENOENT) {
2666 				ret = 0;
2667 				spin_lock(&cur_trans->dirty_bgs_lock);
2668 				if (list_empty(&cache->dirty_list)) {
2669 					list_add_tail(&cache->dirty_list,
2670 						      &cur_trans->dirty_bgs);
2671 					btrfs_get_block_group(cache);
2672 					drop_reserve = false;
2673 				}
2674 				spin_unlock(&cur_trans->dirty_bgs_lock);
2675 			} else if (ret) {
2676 				btrfs_abort_transaction(trans, ret);
2677 			}
2678 		}
2679 
2680 		/* If it's not on the io list, we need to put the block group */
2681 		if (should_put)
2682 			btrfs_put_block_group(cache);
2683 		if (drop_reserve)
2684 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2685 		/*
2686 		 * Avoid blocking other tasks for too long. It might even save
2687 		 * us from writing caches for block groups that are going to be
2688 		 * removed.
2689 		 */
2690 		mutex_unlock(&trans->transaction->cache_write_mutex);
2691 		if (ret)
2692 			goto out;
2693 		mutex_lock(&trans->transaction->cache_write_mutex);
2694 	}
2695 	mutex_unlock(&trans->transaction->cache_write_mutex);
2696 
2697 	/*
2698 	 * Go through delayed refs for all the stuff we've just kicked off
2699 	 * and then loop back (just once)
2700 	 */
2701 	if (!ret)
2702 		ret = btrfs_run_delayed_refs(trans, 0);
2703 	if (!ret && loops == 0) {
2704 		loops++;
2705 		spin_lock(&cur_trans->dirty_bgs_lock);
2706 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2707 		/*
2708 		 * dirty_bgs_lock protects us from concurrent block group
2709 		 * deletes too (not just cache_write_mutex).
2710 		 */
2711 		if (!list_empty(&dirty)) {
2712 			spin_unlock(&cur_trans->dirty_bgs_lock);
2713 			goto again;
2714 		}
2715 		spin_unlock(&cur_trans->dirty_bgs_lock);
2716 	}
2717 out:
2718 	if (ret < 0) {
2719 		spin_lock(&cur_trans->dirty_bgs_lock);
2720 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
2721 		spin_unlock(&cur_trans->dirty_bgs_lock);
2722 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2723 	}
2724 
2725 	btrfs_free_path(path);
2726 	return ret;
2727 }
2728 
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)2729 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2730 {
2731 	struct btrfs_fs_info *fs_info = trans->fs_info;
2732 	struct btrfs_block_group *cache;
2733 	struct btrfs_transaction *cur_trans = trans->transaction;
2734 	int ret = 0;
2735 	int should_put;
2736 	struct btrfs_path *path;
2737 	struct list_head *io = &cur_trans->io_bgs;
2738 
2739 	path = btrfs_alloc_path();
2740 	if (!path)
2741 		return -ENOMEM;
2742 
2743 	/*
2744 	 * Even though we are in the critical section of the transaction commit,
2745 	 * we can still have concurrent tasks adding elements to this
2746 	 * transaction's list of dirty block groups. These tasks correspond to
2747 	 * endio free space workers started when writeback finishes for a
2748 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2749 	 * allocate new block groups as a result of COWing nodes of the root
2750 	 * tree when updating the free space inode. The writeback for the space
2751 	 * caches is triggered by an earlier call to
2752 	 * btrfs_start_dirty_block_groups() and iterations of the following
2753 	 * loop.
2754 	 * Also we want to do the cache_save_setup first and then run the
2755 	 * delayed refs to make sure we have the best chance at doing this all
2756 	 * in one shot.
2757 	 */
2758 	spin_lock(&cur_trans->dirty_bgs_lock);
2759 	while (!list_empty(&cur_trans->dirty_bgs)) {
2760 		cache = list_first_entry(&cur_trans->dirty_bgs,
2761 					 struct btrfs_block_group,
2762 					 dirty_list);
2763 
2764 		/*
2765 		 * This can happen if cache_save_setup re-dirties a block group
2766 		 * that is already under IO.  Just wait for it to finish and
2767 		 * then do it all again
2768 		 */
2769 		if (!list_empty(&cache->io_list)) {
2770 			spin_unlock(&cur_trans->dirty_bgs_lock);
2771 			list_del_init(&cache->io_list);
2772 			btrfs_wait_cache_io(trans, cache, path);
2773 			btrfs_put_block_group(cache);
2774 			spin_lock(&cur_trans->dirty_bgs_lock);
2775 		}
2776 
2777 		/*
2778 		 * Don't remove from the dirty list until after we've waited on
2779 		 * any pending IO
2780 		 */
2781 		list_del_init(&cache->dirty_list);
2782 		spin_unlock(&cur_trans->dirty_bgs_lock);
2783 		should_put = 1;
2784 
2785 		cache_save_setup(cache, trans, path);
2786 
2787 		if (!ret)
2788 			ret = btrfs_run_delayed_refs(trans,
2789 						     (unsigned long) -1);
2790 
2791 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2792 			cache->io_ctl.inode = NULL;
2793 			ret = btrfs_write_out_cache(trans, cache, path);
2794 			if (ret == 0 && cache->io_ctl.inode) {
2795 				should_put = 0;
2796 				list_add_tail(&cache->io_list, io);
2797 			} else {
2798 				/*
2799 				 * If we failed to write the cache, the
2800 				 * generation will be bad and life goes on
2801 				 */
2802 				ret = 0;
2803 			}
2804 		}
2805 		if (!ret) {
2806 			ret = update_block_group_item(trans, path, cache);
2807 			/*
2808 			 * One of the free space endio workers might have
2809 			 * created a new block group while updating a free space
2810 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2811 			 * and hasn't released its transaction handle yet, in
2812 			 * which case the new block group is still attached to
2813 			 * its transaction handle and its creation has not
2814 			 * finished yet (no block group item in the extent tree
2815 			 * yet, etc). If this is the case, wait for all free
2816 			 * space endio workers to finish and retry. This is a
2817 			 * very rare case so no need for a more efficient and
2818 			 * complex approach.
2819 			 */
2820 			if (ret == -ENOENT) {
2821 				wait_event(cur_trans->writer_wait,
2822 				   atomic_read(&cur_trans->num_writers) == 1);
2823 				ret = update_block_group_item(trans, path, cache);
2824 			}
2825 			if (ret)
2826 				btrfs_abort_transaction(trans, ret);
2827 		}
2828 
2829 		/* If its not on the io list, we need to put the block group */
2830 		if (should_put)
2831 			btrfs_put_block_group(cache);
2832 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2833 		spin_lock(&cur_trans->dirty_bgs_lock);
2834 	}
2835 	spin_unlock(&cur_trans->dirty_bgs_lock);
2836 
2837 	/*
2838 	 * Refer to the definition of io_bgs member for details why it's safe
2839 	 * to use it without any locking
2840 	 */
2841 	while (!list_empty(io)) {
2842 		cache = list_first_entry(io, struct btrfs_block_group,
2843 					 io_list);
2844 		list_del_init(&cache->io_list);
2845 		btrfs_wait_cache_io(trans, cache, path);
2846 		btrfs_put_block_group(cache);
2847 	}
2848 
2849 	btrfs_free_path(path);
2850 	return ret;
2851 }
2852 
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int alloc)2853 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2854 			     u64 bytenr, u64 num_bytes, int alloc)
2855 {
2856 	struct btrfs_fs_info *info = trans->fs_info;
2857 	struct btrfs_block_group *cache = NULL;
2858 	u64 total = num_bytes;
2859 	u64 old_val;
2860 	u64 byte_in_group;
2861 	int factor;
2862 	int ret = 0;
2863 
2864 	/* Block accounting for super block */
2865 	spin_lock(&info->delalloc_root_lock);
2866 	old_val = btrfs_super_bytes_used(info->super_copy);
2867 	if (alloc)
2868 		old_val += num_bytes;
2869 	else
2870 		old_val -= num_bytes;
2871 	btrfs_set_super_bytes_used(info->super_copy, old_val);
2872 	spin_unlock(&info->delalloc_root_lock);
2873 
2874 	while (total) {
2875 		cache = btrfs_lookup_block_group(info, bytenr);
2876 		if (!cache) {
2877 			ret = -ENOENT;
2878 			break;
2879 		}
2880 		factor = btrfs_bg_type_to_factor(cache->flags);
2881 
2882 		/*
2883 		 * If this block group has free space cache written out, we
2884 		 * need to make sure to load it if we are removing space.  This
2885 		 * is because we need the unpinning stage to actually add the
2886 		 * space back to the block group, otherwise we will leak space.
2887 		 */
2888 		if (!alloc && !btrfs_block_group_done(cache))
2889 			btrfs_cache_block_group(cache, 1);
2890 
2891 		byte_in_group = bytenr - cache->start;
2892 		WARN_ON(byte_in_group > cache->length);
2893 
2894 		spin_lock(&cache->space_info->lock);
2895 		spin_lock(&cache->lock);
2896 
2897 		if (btrfs_test_opt(info, SPACE_CACHE) &&
2898 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2899 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2900 
2901 		old_val = cache->used;
2902 		num_bytes = min(total, cache->length - byte_in_group);
2903 		if (alloc) {
2904 			old_val += num_bytes;
2905 			cache->used = old_val;
2906 			cache->reserved -= num_bytes;
2907 			cache->space_info->bytes_reserved -= num_bytes;
2908 			cache->space_info->bytes_used += num_bytes;
2909 			cache->space_info->disk_used += num_bytes * factor;
2910 			spin_unlock(&cache->lock);
2911 			spin_unlock(&cache->space_info->lock);
2912 		} else {
2913 			old_val -= num_bytes;
2914 			cache->used = old_val;
2915 			cache->pinned += num_bytes;
2916 			btrfs_space_info_update_bytes_pinned(info,
2917 					cache->space_info, num_bytes);
2918 			cache->space_info->bytes_used -= num_bytes;
2919 			cache->space_info->disk_used -= num_bytes * factor;
2920 			spin_unlock(&cache->lock);
2921 			spin_unlock(&cache->space_info->lock);
2922 
2923 			__btrfs_mod_total_bytes_pinned(cache->space_info,
2924 						       num_bytes);
2925 			set_extent_dirty(&trans->transaction->pinned_extents,
2926 					 bytenr, bytenr + num_bytes - 1,
2927 					 GFP_NOFS | __GFP_NOFAIL);
2928 		}
2929 
2930 		spin_lock(&trans->transaction->dirty_bgs_lock);
2931 		if (list_empty(&cache->dirty_list)) {
2932 			list_add_tail(&cache->dirty_list,
2933 				      &trans->transaction->dirty_bgs);
2934 			trans->delayed_ref_updates++;
2935 			btrfs_get_block_group(cache);
2936 		}
2937 		spin_unlock(&trans->transaction->dirty_bgs_lock);
2938 
2939 		/*
2940 		 * No longer have used bytes in this block group, queue it for
2941 		 * deletion. We do this after adding the block group to the
2942 		 * dirty list to avoid races between cleaner kthread and space
2943 		 * cache writeout.
2944 		 */
2945 		if (!alloc && old_val == 0) {
2946 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
2947 				btrfs_mark_bg_unused(cache);
2948 		}
2949 
2950 		btrfs_put_block_group(cache);
2951 		total -= num_bytes;
2952 		bytenr += num_bytes;
2953 	}
2954 
2955 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2956 	btrfs_update_delayed_refs_rsv(trans);
2957 	return ret;
2958 }
2959 
2960 /**
2961  * btrfs_add_reserved_bytes - update the block_group and space info counters
2962  * @cache:	The cache we are manipulating
2963  * @ram_bytes:  The number of bytes of file content, and will be same to
2964  *              @num_bytes except for the compress path.
2965  * @num_bytes:	The number of bytes in question
2966  * @delalloc:   The blocks are allocated for the delalloc write
2967  *
2968  * This is called by the allocator when it reserves space. If this is a
2969  * reservation and the block group has become read only we cannot make the
2970  * reservation and return -EAGAIN, otherwise this function always succeeds.
2971  */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc)2972 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2973 			     u64 ram_bytes, u64 num_bytes, int delalloc)
2974 {
2975 	struct btrfs_space_info *space_info = cache->space_info;
2976 	int ret = 0;
2977 
2978 	spin_lock(&space_info->lock);
2979 	spin_lock(&cache->lock);
2980 	if (cache->ro) {
2981 		ret = -EAGAIN;
2982 	} else {
2983 		cache->reserved += num_bytes;
2984 		space_info->bytes_reserved += num_bytes;
2985 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
2986 					      space_info->flags, num_bytes, 1);
2987 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
2988 						      space_info, -ram_bytes);
2989 		if (delalloc)
2990 			cache->delalloc_bytes += num_bytes;
2991 
2992 		/*
2993 		 * Compression can use less space than we reserved, so wake
2994 		 * tickets if that happens
2995 		 */
2996 		if (num_bytes < ram_bytes)
2997 			btrfs_try_granting_tickets(cache->fs_info, space_info);
2998 	}
2999 	spin_unlock(&cache->lock);
3000 	spin_unlock(&space_info->lock);
3001 	return ret;
3002 }
3003 
3004 /**
3005  * btrfs_free_reserved_bytes - update the block_group and space info counters
3006  * @cache:      The cache we are manipulating
3007  * @num_bytes:  The number of bytes in question
3008  * @delalloc:   The blocks are allocated for the delalloc write
3009  *
3010  * This is called by somebody who is freeing space that was never actually used
3011  * on disk.  For example if you reserve some space for a new leaf in transaction
3012  * A and before transaction A commits you free that leaf, you call this with
3013  * reserve set to 0 in order to clear the reservation.
3014  */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3015 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3016 			       u64 num_bytes, int delalloc)
3017 {
3018 	struct btrfs_space_info *space_info = cache->space_info;
3019 
3020 	spin_lock(&space_info->lock);
3021 	spin_lock(&cache->lock);
3022 	if (cache->ro)
3023 		space_info->bytes_readonly += num_bytes;
3024 	cache->reserved -= num_bytes;
3025 	space_info->bytes_reserved -= num_bytes;
3026 	space_info->max_extent_size = 0;
3027 
3028 	if (delalloc)
3029 		cache->delalloc_bytes -= num_bytes;
3030 	spin_unlock(&cache->lock);
3031 
3032 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3033 	spin_unlock(&space_info->lock);
3034 }
3035 
force_metadata_allocation(struct btrfs_fs_info * info)3036 static void force_metadata_allocation(struct btrfs_fs_info *info)
3037 {
3038 	struct list_head *head = &info->space_info;
3039 	struct btrfs_space_info *found;
3040 
3041 	list_for_each_entry(found, head, list) {
3042 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3043 			found->force_alloc = CHUNK_ALLOC_FORCE;
3044 	}
3045 }
3046 
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)3047 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3048 			      struct btrfs_space_info *sinfo, int force)
3049 {
3050 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3051 	u64 thresh;
3052 
3053 	if (force == CHUNK_ALLOC_FORCE)
3054 		return 1;
3055 
3056 	/*
3057 	 * in limited mode, we want to have some free space up to
3058 	 * about 1% of the FS size.
3059 	 */
3060 	if (force == CHUNK_ALLOC_LIMITED) {
3061 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3062 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3063 
3064 		if (sinfo->total_bytes - bytes_used < thresh)
3065 			return 1;
3066 	}
3067 
3068 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3069 		return 0;
3070 	return 1;
3071 }
3072 
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3073 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3074 {
3075 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3076 
3077 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3078 }
3079 
3080 /*
3081  * If force is CHUNK_ALLOC_FORCE:
3082  *    - return 1 if it successfully allocates a chunk,
3083  *    - return errors including -ENOSPC otherwise.
3084  * If force is NOT CHUNK_ALLOC_FORCE:
3085  *    - return 0 if it doesn't need to allocate a new chunk,
3086  *    - return 1 if it successfully allocates a chunk,
3087  *    - return errors including -ENOSPC otherwise.
3088  */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)3089 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3090 		      enum btrfs_chunk_alloc_enum force)
3091 {
3092 	struct btrfs_fs_info *fs_info = trans->fs_info;
3093 	struct btrfs_space_info *space_info;
3094 	bool wait_for_alloc = false;
3095 	bool should_alloc = false;
3096 	int ret = 0;
3097 
3098 	/* Don't re-enter if we're already allocating a chunk */
3099 	if (trans->allocating_chunk)
3100 		return -ENOSPC;
3101 
3102 	space_info = btrfs_find_space_info(fs_info, flags);
3103 	ASSERT(space_info);
3104 
3105 	do {
3106 		spin_lock(&space_info->lock);
3107 		if (force < space_info->force_alloc)
3108 			force = space_info->force_alloc;
3109 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3110 		if (space_info->full) {
3111 			/* No more free physical space */
3112 			if (should_alloc)
3113 				ret = -ENOSPC;
3114 			else
3115 				ret = 0;
3116 			spin_unlock(&space_info->lock);
3117 			return ret;
3118 		} else if (!should_alloc) {
3119 			spin_unlock(&space_info->lock);
3120 			return 0;
3121 		} else if (space_info->chunk_alloc) {
3122 			/*
3123 			 * Someone is already allocating, so we need to block
3124 			 * until this someone is finished and then loop to
3125 			 * recheck if we should continue with our allocation
3126 			 * attempt.
3127 			 */
3128 			wait_for_alloc = true;
3129 			force = CHUNK_ALLOC_NO_FORCE;
3130 			spin_unlock(&space_info->lock);
3131 			mutex_lock(&fs_info->chunk_mutex);
3132 			mutex_unlock(&fs_info->chunk_mutex);
3133 		} else {
3134 			/* Proceed with allocation */
3135 			space_info->chunk_alloc = 1;
3136 			wait_for_alloc = false;
3137 			spin_unlock(&space_info->lock);
3138 		}
3139 
3140 		cond_resched();
3141 	} while (wait_for_alloc);
3142 
3143 	mutex_lock(&fs_info->chunk_mutex);
3144 	trans->allocating_chunk = true;
3145 
3146 	/*
3147 	 * If we have mixed data/metadata chunks we want to make sure we keep
3148 	 * allocating mixed chunks instead of individual chunks.
3149 	 */
3150 	if (btrfs_mixed_space_info(space_info))
3151 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3152 
3153 	/*
3154 	 * if we're doing a data chunk, go ahead and make sure that
3155 	 * we keep a reasonable number of metadata chunks allocated in the
3156 	 * FS as well.
3157 	 */
3158 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3159 		fs_info->data_chunk_allocations++;
3160 		if (!(fs_info->data_chunk_allocations %
3161 		      fs_info->metadata_ratio))
3162 			force_metadata_allocation(fs_info);
3163 	}
3164 
3165 	/*
3166 	 * Check if we have enough space in SYSTEM chunk because we may need
3167 	 * to update devices.
3168 	 */
3169 	check_system_chunk(trans, flags);
3170 
3171 	ret = btrfs_alloc_chunk(trans, flags);
3172 	trans->allocating_chunk = false;
3173 
3174 	spin_lock(&space_info->lock);
3175 	if (ret < 0) {
3176 		if (ret == -ENOSPC)
3177 			space_info->full = 1;
3178 		else
3179 			goto out;
3180 	} else {
3181 		ret = 1;
3182 		space_info->max_extent_size = 0;
3183 	}
3184 
3185 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3186 out:
3187 	space_info->chunk_alloc = 0;
3188 	spin_unlock(&space_info->lock);
3189 	mutex_unlock(&fs_info->chunk_mutex);
3190 	/*
3191 	 * When we allocate a new chunk we reserve space in the chunk block
3192 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3193 	 * add new nodes/leafs to it if we end up needing to do it when
3194 	 * inserting the chunk item and updating device items as part of the
3195 	 * second phase of chunk allocation, performed by
3196 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3197 	 * large number of new block groups to create in our transaction
3198 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3199 	 * in extreme cases - like having a single transaction create many new
3200 	 * block groups when starting to write out the free space caches of all
3201 	 * the block groups that were made dirty during the lifetime of the
3202 	 * transaction.
3203 	 */
3204 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3205 		btrfs_create_pending_block_groups(trans);
3206 
3207 	return ret;
3208 }
3209 
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)3210 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3211 {
3212 	u64 num_dev;
3213 
3214 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3215 	if (!num_dev)
3216 		num_dev = fs_info->fs_devices->rw_devices;
3217 
3218 	return num_dev;
3219 }
3220 
3221 /*
3222  * Reserve space in the system space for allocating or removing a chunk
3223  */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)3224 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3225 {
3226 	struct btrfs_fs_info *fs_info = trans->fs_info;
3227 	struct btrfs_space_info *info;
3228 	u64 left;
3229 	u64 thresh;
3230 	int ret = 0;
3231 	u64 num_devs;
3232 
3233 	/*
3234 	 * Needed because we can end up allocating a system chunk and for an
3235 	 * atomic and race free space reservation in the chunk block reserve.
3236 	 */
3237 	lockdep_assert_held(&fs_info->chunk_mutex);
3238 
3239 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3240 	spin_lock(&info->lock);
3241 	left = info->total_bytes - btrfs_space_info_used(info, true);
3242 	spin_unlock(&info->lock);
3243 
3244 	num_devs = get_profile_num_devs(fs_info, type);
3245 
3246 	/* num_devs device items to update and 1 chunk item to add or remove */
3247 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3248 		btrfs_calc_insert_metadata_size(fs_info, 1);
3249 
3250 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3251 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3252 			   left, thresh, type);
3253 		btrfs_dump_space_info(fs_info, info, 0, 0);
3254 	}
3255 
3256 	if (left < thresh) {
3257 		u64 flags = btrfs_system_alloc_profile(fs_info);
3258 
3259 		/*
3260 		 * Ignore failure to create system chunk. We might end up not
3261 		 * needing it, as we might not need to COW all nodes/leafs from
3262 		 * the paths we visit in the chunk tree (they were already COWed
3263 		 * or created in the current transaction for example).
3264 		 */
3265 		ret = btrfs_alloc_chunk(trans, flags);
3266 	}
3267 
3268 	if (!ret) {
3269 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3270 					  &fs_info->chunk_block_rsv,
3271 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3272 		if (!ret)
3273 			trans->chunk_bytes_reserved += thresh;
3274 	}
3275 }
3276 
btrfs_put_block_group_cache(struct btrfs_fs_info * info)3277 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3278 {
3279 	struct btrfs_block_group *block_group;
3280 	u64 last = 0;
3281 
3282 	while (1) {
3283 		struct inode *inode;
3284 
3285 		block_group = btrfs_lookup_first_block_group(info, last);
3286 		while (block_group) {
3287 			btrfs_wait_block_group_cache_done(block_group);
3288 			spin_lock(&block_group->lock);
3289 			if (block_group->iref)
3290 				break;
3291 			spin_unlock(&block_group->lock);
3292 			block_group = btrfs_next_block_group(block_group);
3293 		}
3294 		if (!block_group) {
3295 			if (last == 0)
3296 				break;
3297 			last = 0;
3298 			continue;
3299 		}
3300 
3301 		inode = block_group->inode;
3302 		block_group->iref = 0;
3303 		block_group->inode = NULL;
3304 		spin_unlock(&block_group->lock);
3305 		ASSERT(block_group->io_ctl.inode == NULL);
3306 		iput(inode);
3307 		last = block_group->start + block_group->length;
3308 		btrfs_put_block_group(block_group);
3309 	}
3310 }
3311 
3312 /*
3313  * Must be called only after stopping all workers, since we could have block
3314  * group caching kthreads running, and therefore they could race with us if we
3315  * freed the block groups before stopping them.
3316  */
btrfs_free_block_groups(struct btrfs_fs_info * info)3317 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3318 {
3319 	struct btrfs_block_group *block_group;
3320 	struct btrfs_space_info *space_info;
3321 	struct btrfs_caching_control *caching_ctl;
3322 	struct rb_node *n;
3323 
3324 	down_write(&info->commit_root_sem);
3325 	while (!list_empty(&info->caching_block_groups)) {
3326 		caching_ctl = list_entry(info->caching_block_groups.next,
3327 					 struct btrfs_caching_control, list);
3328 		list_del(&caching_ctl->list);
3329 		btrfs_put_caching_control(caching_ctl);
3330 	}
3331 	up_write(&info->commit_root_sem);
3332 
3333 	spin_lock(&info->unused_bgs_lock);
3334 	while (!list_empty(&info->unused_bgs)) {
3335 		block_group = list_first_entry(&info->unused_bgs,
3336 					       struct btrfs_block_group,
3337 					       bg_list);
3338 		list_del_init(&block_group->bg_list);
3339 		btrfs_put_block_group(block_group);
3340 	}
3341 	spin_unlock(&info->unused_bgs_lock);
3342 
3343 	spin_lock(&info->block_group_cache_lock);
3344 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3345 		block_group = rb_entry(n, struct btrfs_block_group,
3346 				       cache_node);
3347 		rb_erase(&block_group->cache_node,
3348 			 &info->block_group_cache_tree);
3349 		RB_CLEAR_NODE(&block_group->cache_node);
3350 		spin_unlock(&info->block_group_cache_lock);
3351 
3352 		down_write(&block_group->space_info->groups_sem);
3353 		list_del(&block_group->list);
3354 		up_write(&block_group->space_info->groups_sem);
3355 
3356 		/*
3357 		 * We haven't cached this block group, which means we could
3358 		 * possibly have excluded extents on this block group.
3359 		 */
3360 		if (block_group->cached == BTRFS_CACHE_NO ||
3361 		    block_group->cached == BTRFS_CACHE_ERROR)
3362 			btrfs_free_excluded_extents(block_group);
3363 
3364 		btrfs_remove_free_space_cache(block_group);
3365 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3366 		ASSERT(list_empty(&block_group->dirty_list));
3367 		ASSERT(list_empty(&block_group->io_list));
3368 		ASSERT(list_empty(&block_group->bg_list));
3369 		ASSERT(refcount_read(&block_group->refs) == 1);
3370 		ASSERT(block_group->swap_extents == 0);
3371 		btrfs_put_block_group(block_group);
3372 
3373 		spin_lock(&info->block_group_cache_lock);
3374 	}
3375 	spin_unlock(&info->block_group_cache_lock);
3376 
3377 	btrfs_release_global_block_rsv(info);
3378 
3379 	while (!list_empty(&info->space_info)) {
3380 		space_info = list_entry(info->space_info.next,
3381 					struct btrfs_space_info,
3382 					list);
3383 
3384 		/*
3385 		 * Do not hide this behind enospc_debug, this is actually
3386 		 * important and indicates a real bug if this happens.
3387 		 */
3388 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3389 			    space_info->bytes_reserved > 0 ||
3390 			    space_info->bytes_may_use > 0))
3391 			btrfs_dump_space_info(info, space_info, 0, 0);
3392 		WARN_ON(space_info->reclaim_size > 0);
3393 		list_del(&space_info->list);
3394 		btrfs_sysfs_remove_space_info(space_info);
3395 	}
3396 	return 0;
3397 }
3398 
btrfs_freeze_block_group(struct btrfs_block_group * cache)3399 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3400 {
3401 	atomic_inc(&cache->frozen);
3402 }
3403 
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)3404 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3405 {
3406 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3407 	struct extent_map_tree *em_tree;
3408 	struct extent_map *em;
3409 	bool cleanup;
3410 
3411 	spin_lock(&block_group->lock);
3412 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3413 		   block_group->removed);
3414 	spin_unlock(&block_group->lock);
3415 
3416 	if (cleanup) {
3417 		em_tree = &fs_info->mapping_tree;
3418 		write_lock(&em_tree->lock);
3419 		em = lookup_extent_mapping(em_tree, block_group->start,
3420 					   1);
3421 		BUG_ON(!em); /* logic error, can't happen */
3422 		remove_extent_mapping(em_tree, em);
3423 		write_unlock(&em_tree->lock);
3424 
3425 		/* once for us and once for the tree */
3426 		free_extent_map(em);
3427 		free_extent_map(em);
3428 
3429 		/*
3430 		 * We may have left one free space entry and other possible
3431 		 * tasks trimming this block group have left 1 entry each one.
3432 		 * Free them if any.
3433 		 */
3434 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3435 	}
3436 }
3437 
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)3438 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3439 {
3440 	bool ret = true;
3441 
3442 	spin_lock(&bg->lock);
3443 	if (bg->ro)
3444 		ret = false;
3445 	else
3446 		bg->swap_extents++;
3447 	spin_unlock(&bg->lock);
3448 
3449 	return ret;
3450 }
3451 
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)3452 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3453 {
3454 	spin_lock(&bg->lock);
3455 	ASSERT(!bg->ro);
3456 	ASSERT(bg->swap_extents >= amount);
3457 	bg->swap_extents -= amount;
3458 	spin_unlock(&bg->lock);
3459 }
3460