• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/sched/signal.h>
8 #include <linux/hardirq.h>
9 #include <linux/module.h>
10 #include <linux/uaccess.h>
11 #include <linux/sched/debug.h>
12 #include <asm/current.h>
13 #include <asm/tlbflush.h>
14 #include <arch.h>
15 #include <as-layout.h>
16 #include <kern_util.h>
17 #include <os.h>
18 #include <skas.h>
19 
20 /*
21  * Note this is constrained to return 0, -EFAULT, -EACCES, -ENOMEM by
22  * segv().
23  */
handle_page_fault(unsigned long address,unsigned long ip,int is_write,int is_user,int * code_out)24 int handle_page_fault(unsigned long address, unsigned long ip,
25 		      int is_write, int is_user, int *code_out)
26 {
27 	struct mm_struct *mm = current->mm;
28 	struct vm_area_struct *vma;
29 	pmd_t *pmd;
30 	pte_t *pte;
31 	int err = -EFAULT;
32 	unsigned int flags = FAULT_FLAG_DEFAULT;
33 
34 	*code_out = SEGV_MAPERR;
35 
36 	/*
37 	 * If the fault was with pagefaults disabled, don't take the fault, just
38 	 * fail.
39 	 */
40 	if (faulthandler_disabled())
41 		goto out_nosemaphore;
42 
43 	if (is_user)
44 		flags |= FAULT_FLAG_USER;
45 retry:
46 	mmap_read_lock(mm);
47 	vma = find_vma(mm, address);
48 	if (!vma)
49 		goto out;
50 	else if (vma->vm_start <= address)
51 		goto good_area;
52 	else if (!(vma->vm_flags & VM_GROWSDOWN))
53 		goto out;
54 	else if (is_user && !ARCH_IS_STACKGROW(address))
55 		goto out;
56 	else if (expand_stack(vma, address))
57 		goto out;
58 
59 good_area:
60 	*code_out = SEGV_ACCERR;
61 	if (is_write) {
62 		if (!(vma->vm_flags & VM_WRITE))
63 			goto out;
64 		flags |= FAULT_FLAG_WRITE;
65 	} else {
66 		/* Don't require VM_READ|VM_EXEC for write faults! */
67 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
68 			goto out;
69 	}
70 
71 	do {
72 		vm_fault_t fault;
73 
74 		fault = handle_mm_fault(vma, address, flags, NULL);
75 
76 		if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
77 			goto out_nosemaphore;
78 
79 		if (unlikely(fault & VM_FAULT_ERROR)) {
80 			if (fault & VM_FAULT_OOM) {
81 				goto out_of_memory;
82 			} else if (fault & VM_FAULT_SIGSEGV) {
83 				goto out;
84 			} else if (fault & VM_FAULT_SIGBUS) {
85 				err = -EACCES;
86 				goto out;
87 			}
88 			BUG();
89 		}
90 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
91 			if (fault & VM_FAULT_RETRY) {
92 				flags |= FAULT_FLAG_TRIED;
93 
94 				goto retry;
95 			}
96 		}
97 
98 		pmd = pmd_off(mm, address);
99 		pte = pte_offset_kernel(pmd, address);
100 	} while (!pte_present(*pte));
101 	err = 0;
102 	/*
103 	 * The below warning was added in place of
104 	 *	pte_mkyoung(); if (is_write) pte_mkdirty();
105 	 * If it's triggered, we'd see normally a hang here (a clean pte is
106 	 * marked read-only to emulate the dirty bit).
107 	 * However, the generic code can mark a PTE writable but clean on a
108 	 * concurrent read fault, triggering this harmlessly. So comment it out.
109 	 */
110 #if 0
111 	WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte)));
112 #endif
113 	flush_tlb_page(vma, address);
114 out:
115 	mmap_read_unlock(mm);
116 out_nosemaphore:
117 	return err;
118 
119 out_of_memory:
120 	/*
121 	 * We ran out of memory, call the OOM killer, and return the userspace
122 	 * (which will retry the fault, or kill us if we got oom-killed).
123 	 */
124 	mmap_read_unlock(mm);
125 	if (!is_user)
126 		goto out_nosemaphore;
127 	pagefault_out_of_memory();
128 	return 0;
129 }
130 EXPORT_SYMBOL(handle_page_fault);
131 
show_segv_info(struct uml_pt_regs * regs)132 static void show_segv_info(struct uml_pt_regs *regs)
133 {
134 	struct task_struct *tsk = current;
135 	struct faultinfo *fi = UPT_FAULTINFO(regs);
136 
137 	if (!unhandled_signal(tsk, SIGSEGV))
138 		return;
139 
140 	if (!printk_ratelimit())
141 		return;
142 
143 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %x",
144 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
145 		tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi),
146 		(void *)UPT_IP(regs), (void *)UPT_SP(regs),
147 		fi->error_code);
148 
149 	print_vma_addr(KERN_CONT " in ", UPT_IP(regs));
150 	printk(KERN_CONT "\n");
151 }
152 
bad_segv(struct faultinfo fi,unsigned long ip)153 static void bad_segv(struct faultinfo fi, unsigned long ip)
154 {
155 	current->thread.arch.faultinfo = fi;
156 	force_sig_fault(SIGSEGV, SEGV_ACCERR, (void __user *) FAULT_ADDRESS(fi));
157 }
158 
fatal_sigsegv(void)159 void fatal_sigsegv(void)
160 {
161 	force_sigsegv(SIGSEGV);
162 	do_signal(&current->thread.regs);
163 	/*
164 	 * This is to tell gcc that we're not returning - do_signal
165 	 * can, in general, return, but in this case, it's not, since
166 	 * we just got a fatal SIGSEGV queued.
167 	 */
168 	os_dump_core();
169 }
170 
171 /**
172  * segv_handler() - the SIGSEGV handler
173  * @sig:	the signal number
174  * @unused_si:	the signal info struct; unused in this handler
175  * @regs:	the ptrace register information
176  *
177  * The handler first extracts the faultinfo from the UML ptrace regs struct.
178  * If the userfault did not happen in an UML userspace process, bad_segv is called.
179  * Otherwise the signal did happen in a cloned userspace process, handle it.
180  */
segv_handler(int sig,struct siginfo * unused_si,struct uml_pt_regs * regs)181 void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
182 {
183 	struct faultinfo * fi = UPT_FAULTINFO(regs);
184 
185 	if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) {
186 		show_segv_info(regs);
187 		bad_segv(*fi, UPT_IP(regs));
188 		return;
189 	}
190 	segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs);
191 }
192 
193 /*
194  * We give a *copy* of the faultinfo in the regs to segv.
195  * This must be done, since nesting SEGVs could overwrite
196  * the info in the regs. A pointer to the info then would
197  * give us bad data!
198  */
segv(struct faultinfo fi,unsigned long ip,int is_user,struct uml_pt_regs * regs)199 unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user,
200 		   struct uml_pt_regs *regs)
201 {
202 	jmp_buf *catcher;
203 	int si_code;
204 	int err;
205 	int is_write = FAULT_WRITE(fi);
206 	unsigned long address = FAULT_ADDRESS(fi);
207 
208 	if (!is_user && regs)
209 		current->thread.segv_regs = container_of(regs, struct pt_regs, regs);
210 
211 	if (!is_user && (address >= start_vm) && (address < end_vm)) {
212 		flush_tlb_kernel_vm();
213 		goto out;
214 	}
215 	else if (current->mm == NULL) {
216 		show_regs(container_of(regs, struct pt_regs, regs));
217 		panic("Segfault with no mm");
218 	}
219 	else if (!is_user && address > PAGE_SIZE && address < TASK_SIZE) {
220 		show_regs(container_of(regs, struct pt_regs, regs));
221 		panic("Kernel tried to access user memory at addr 0x%lx, ip 0x%lx",
222 		       address, ip);
223 	}
224 
225 	if (SEGV_IS_FIXABLE(&fi))
226 		err = handle_page_fault(address, ip, is_write, is_user,
227 					&si_code);
228 	else {
229 		err = -EFAULT;
230 		/*
231 		 * A thread accessed NULL, we get a fault, but CR2 is invalid.
232 		 * This code is used in __do_copy_from_user() of TT mode.
233 		 * XXX tt mode is gone, so maybe this isn't needed any more
234 		 */
235 		address = 0;
236 	}
237 
238 	catcher = current->thread.fault_catcher;
239 	if (!err)
240 		goto out;
241 	else if (catcher != NULL) {
242 		current->thread.fault_addr = (void *) address;
243 		UML_LONGJMP(catcher, 1);
244 	}
245 	else if (current->thread.fault_addr != NULL)
246 		panic("fault_addr set but no fault catcher");
247 	else if (!is_user && arch_fixup(ip, regs))
248 		goto out;
249 
250 	if (!is_user) {
251 		show_regs(container_of(regs, struct pt_regs, regs));
252 		panic("Kernel mode fault at addr 0x%lx, ip 0x%lx",
253 		      address, ip);
254 	}
255 
256 	show_segv_info(regs);
257 
258 	if (err == -EACCES) {
259 		current->thread.arch.faultinfo = fi;
260 		force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
261 	} else {
262 		BUG_ON(err != -EFAULT);
263 		current->thread.arch.faultinfo = fi;
264 		force_sig_fault(SIGSEGV, si_code, (void __user *) address);
265 	}
266 
267 out:
268 	if (regs)
269 		current->thread.segv_regs = NULL;
270 
271 	return 0;
272 }
273 
relay_signal(int sig,struct siginfo * si,struct uml_pt_regs * regs)274 void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs)
275 {
276 	int code, err;
277 	if (!UPT_IS_USER(regs)) {
278 		if (sig == SIGBUS)
279 			printk(KERN_ERR "Bus error - the host /dev/shm or /tmp "
280 			       "mount likely just ran out of space\n");
281 		panic("Kernel mode signal %d", sig);
282 	}
283 
284 	arch_examine_signal(sig, regs);
285 
286 	/* Is the signal layout for the signal known?
287 	 * Signal data must be scrubbed to prevent information leaks.
288 	 */
289 	code = si->si_code;
290 	err = si->si_errno;
291 	if ((err == 0) && (siginfo_layout(sig, code) == SIL_FAULT)) {
292 		struct faultinfo *fi = UPT_FAULTINFO(regs);
293 		current->thread.arch.faultinfo = *fi;
294 		force_sig_fault(sig, code, (void __user *)FAULT_ADDRESS(*fi));
295 	} else {
296 		printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d) with errno %d\n",
297 		       sig, code, err);
298 		force_sig(sig);
299 	}
300 }
301 
bus_handler(int sig,struct siginfo * si,struct uml_pt_regs * regs)302 void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs)
303 {
304 	if (current->thread.fault_catcher != NULL)
305 		UML_LONGJMP(current->thread.fault_catcher, 1);
306 	else
307 		relay_signal(sig, si, regs);
308 }
309 
winch(int sig,struct siginfo * unused_si,struct uml_pt_regs * regs)310 void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
311 {
312 	do_IRQ(WINCH_IRQ, regs);
313 }
314 
trap_init(void)315 void trap_init(void)
316 {
317 }
318