• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 
11 #include <asm/set_memory.h>
12 #include <asm/e820/api.h>
13 #include <asm/init.h>
14 #include <asm/page.h>
15 #include <asm/page_types.h>
16 #include <asm/sections.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include <asm/proto.h>
21 #include <asm/dma.h>		/* for MAX_DMA_PFN */
22 #include <asm/microcode.h>
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
26 #include <asm/pti.h>
27 #include <asm/text-patching.h>
28 #include <asm/memtype.h>
29 
30 /*
31  * We need to define the tracepoints somewhere, and tlb.c
32  * is only compied when SMP=y.
33  */
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/tlb.h>
36 
37 #include "mm_internal.h"
38 
39 /*
40  * Tables translating between page_cache_type_t and pte encoding.
41  *
42  * The default values are defined statically as minimal supported mode;
43  * WC and WT fall back to UC-.  pat_init() updates these values to support
44  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
45  * for the details.  Note, __early_ioremap() used during early boot-time
46  * takes pgprot_t (pte encoding) and does not use these tables.
47  *
48  *   Index into __cachemode2pte_tbl[] is the cachemode.
49  *
50  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
51  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52  */
53 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
54 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
55 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
56 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
57 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
58 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
59 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
60 };
61 
cachemode2protval(enum page_cache_mode pcm)62 unsigned long cachemode2protval(enum page_cache_mode pcm)
63 {
64 	if (likely(pcm == 0))
65 		return 0;
66 	return __cachemode2pte_tbl[pcm];
67 }
68 EXPORT_SYMBOL(cachemode2protval);
69 
70 static uint8_t __pte2cachemode_tbl[8] = {
71 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
72 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
73 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
74 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
75 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
76 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
79 };
80 
81 /*
82  * Check that the write-protect PAT entry is set for write-protect.
83  * To do this without making assumptions how PAT has been set up (Xen has
84  * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
85  * mode via the __cachemode2pte_tbl[] into protection bits (those protection
86  * bits will select a cache mode of WP or better), and then translate the
87  * protection bits back into the cache mode using __pte2cm_idx() and the
88  * __pte2cachemode_tbl[] array. This will return the really used cache mode.
89  */
x86_has_pat_wp(void)90 bool x86_has_pat_wp(void)
91 {
92 	uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
93 
94 	return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
95 }
96 
pgprot2cachemode(pgprot_t pgprot)97 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
98 {
99 	unsigned long masked;
100 
101 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
102 	if (likely(masked == 0))
103 		return 0;
104 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
105 }
106 
107 static unsigned long __initdata pgt_buf_start;
108 static unsigned long __initdata pgt_buf_end;
109 static unsigned long __initdata pgt_buf_top;
110 
111 static unsigned long min_pfn_mapped;
112 
113 static bool __initdata can_use_brk_pgt = true;
114 
115 /*
116  * Pages returned are already directly mapped.
117  *
118  * Changing that is likely to break Xen, see commit:
119  *
120  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
121  *
122  * for detailed information.
123  */
alloc_low_pages(unsigned int num)124 __ref void *alloc_low_pages(unsigned int num)
125 {
126 	unsigned long pfn;
127 	int i;
128 
129 	if (after_bootmem) {
130 		unsigned int order;
131 
132 		order = get_order((unsigned long)num << PAGE_SHIFT);
133 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
134 	}
135 
136 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
137 		unsigned long ret = 0;
138 
139 		if (min_pfn_mapped < max_pfn_mapped) {
140 			ret = memblock_find_in_range(
141 					min_pfn_mapped << PAGE_SHIFT,
142 					max_pfn_mapped << PAGE_SHIFT,
143 					PAGE_SIZE * num , PAGE_SIZE);
144 		}
145 		if (ret)
146 			memblock_reserve(ret, PAGE_SIZE * num);
147 		else if (can_use_brk_pgt)
148 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
149 
150 		if (!ret)
151 			panic("alloc_low_pages: can not alloc memory");
152 
153 		pfn = ret >> PAGE_SHIFT;
154 	} else {
155 		pfn = pgt_buf_end;
156 		pgt_buf_end += num;
157 	}
158 
159 	for (i = 0; i < num; i++) {
160 		void *adr;
161 
162 		adr = __va((pfn + i) << PAGE_SHIFT);
163 		clear_page(adr);
164 	}
165 
166 	return __va(pfn << PAGE_SHIFT);
167 }
168 
169 /*
170  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
171  * With KASLR memory randomization, depending on the machine e820 memory
172  * and the PUD alignment. We may need twice more pages when KASLR memory
173  * randomization is enabled.
174  */
175 #ifndef CONFIG_RANDOMIZE_MEMORY
176 #define INIT_PGD_PAGE_COUNT      6
177 #else
178 #define INIT_PGD_PAGE_COUNT      12
179 #endif
180 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
181 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)182 void  __init early_alloc_pgt_buf(void)
183 {
184 	unsigned long tables = INIT_PGT_BUF_SIZE;
185 	phys_addr_t base;
186 
187 	base = __pa(extend_brk(tables, PAGE_SIZE));
188 
189 	pgt_buf_start = base >> PAGE_SHIFT;
190 	pgt_buf_end = pgt_buf_start;
191 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
192 }
193 
194 int after_bootmem;
195 
196 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
197 
198 struct map_range {
199 	unsigned long start;
200 	unsigned long end;
201 	unsigned page_size_mask;
202 };
203 
204 static int page_size_mask;
205 
206 /*
207  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
208  * enable and PPro Global page enable), so that any CPU's that boot
209  * up after us can get the correct flags. Invoked on the boot CPU.
210  */
cr4_set_bits_and_update_boot(unsigned long mask)211 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
212 {
213 	mmu_cr4_features |= mask;
214 	if (trampoline_cr4_features)
215 		*trampoline_cr4_features = mmu_cr4_features;
216 	cr4_set_bits(mask);
217 }
218 
probe_page_size_mask(void)219 static void __init probe_page_size_mask(void)
220 {
221 	/*
222 	 * For pagealloc debugging, identity mapping will use small pages.
223 	 * This will simplify cpa(), which otherwise needs to support splitting
224 	 * large pages into small in interrupt context, etc.
225 	 */
226 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
227 		page_size_mask |= 1 << PG_LEVEL_2M;
228 	else
229 		direct_gbpages = 0;
230 
231 	/* Enable PSE if available */
232 	if (boot_cpu_has(X86_FEATURE_PSE))
233 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
234 
235 	/* Enable PGE if available */
236 	__supported_pte_mask &= ~_PAGE_GLOBAL;
237 	if (boot_cpu_has(X86_FEATURE_PGE)) {
238 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
239 		__supported_pte_mask |= _PAGE_GLOBAL;
240 	}
241 
242 	/* By the default is everything supported: */
243 	__default_kernel_pte_mask = __supported_pte_mask;
244 	/* Except when with PTI where the kernel is mostly non-Global: */
245 	if (cpu_feature_enabled(X86_FEATURE_PTI))
246 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
247 
248 	/* Enable 1 GB linear kernel mappings if available: */
249 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
250 		printk(KERN_INFO "Using GB pages for direct mapping\n");
251 		page_size_mask |= 1 << PG_LEVEL_1G;
252 	} else {
253 		direct_gbpages = 0;
254 	}
255 }
256 
setup_pcid(void)257 static void setup_pcid(void)
258 {
259 	if (!IS_ENABLED(CONFIG_X86_64))
260 		return;
261 
262 	if (!boot_cpu_has(X86_FEATURE_PCID))
263 		return;
264 
265 	if (boot_cpu_has(X86_FEATURE_PGE)) {
266 		/*
267 		 * This can't be cr4_set_bits_and_update_boot() -- the
268 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
269 		 * do any good anyway.  Despite the name,
270 		 * cr4_set_bits_and_update_boot() doesn't actually cause
271 		 * the bits in question to remain set all the way through
272 		 * the secondary boot asm.
273 		 *
274 		 * Instead, we brute-force it and set CR4.PCIDE manually in
275 		 * start_secondary().
276 		 */
277 		cr4_set_bits(X86_CR4_PCIDE);
278 
279 		/*
280 		 * INVPCID's single-context modes (2/3) only work if we set
281 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
282 		 * on systems that have X86_CR4_PCIDE clear, or that have
283 		 * no INVPCID support at all.
284 		 */
285 		if (boot_cpu_has(X86_FEATURE_INVPCID))
286 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
287 	} else {
288 		/*
289 		 * flush_tlb_all(), as currently implemented, won't work if
290 		 * PCID is on but PGE is not.  Since that combination
291 		 * doesn't exist on real hardware, there's no reason to try
292 		 * to fully support it, but it's polite to avoid corrupting
293 		 * data if we're on an improperly configured VM.
294 		 */
295 		setup_clear_cpu_cap(X86_FEATURE_PCID);
296 	}
297 }
298 
299 #ifdef CONFIG_X86_32
300 #define NR_RANGE_MR 3
301 #else /* CONFIG_X86_64 */
302 #define NR_RANGE_MR 5
303 #endif
304 
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)305 static int __meminit save_mr(struct map_range *mr, int nr_range,
306 			     unsigned long start_pfn, unsigned long end_pfn,
307 			     unsigned long page_size_mask)
308 {
309 	if (start_pfn < end_pfn) {
310 		if (nr_range >= NR_RANGE_MR)
311 			panic("run out of range for init_memory_mapping\n");
312 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
313 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
314 		mr[nr_range].page_size_mask = page_size_mask;
315 		nr_range++;
316 	}
317 
318 	return nr_range;
319 }
320 
321 /*
322  * adjust the page_size_mask for small range to go with
323  *	big page size instead small one if nearby are ram too.
324  */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)325 static void __ref adjust_range_page_size_mask(struct map_range *mr,
326 							 int nr_range)
327 {
328 	int i;
329 
330 	for (i = 0; i < nr_range; i++) {
331 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
332 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
333 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
334 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
335 
336 #ifdef CONFIG_X86_32
337 			if ((end >> PAGE_SHIFT) > max_low_pfn)
338 				continue;
339 #endif
340 
341 			if (memblock_is_region_memory(start, end - start))
342 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
343 		}
344 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
345 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
346 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
347 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
348 
349 			if (memblock_is_region_memory(start, end - start))
350 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
351 		}
352 	}
353 }
354 
page_size_string(struct map_range * mr)355 static const char *page_size_string(struct map_range *mr)
356 {
357 	static const char str_1g[] = "1G";
358 	static const char str_2m[] = "2M";
359 	static const char str_4m[] = "4M";
360 	static const char str_4k[] = "4k";
361 
362 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
363 		return str_1g;
364 	/*
365 	 * 32-bit without PAE has a 4M large page size.
366 	 * PG_LEVEL_2M is misnamed, but we can at least
367 	 * print out the right size in the string.
368 	 */
369 	if (IS_ENABLED(CONFIG_X86_32) &&
370 	    !IS_ENABLED(CONFIG_X86_PAE) &&
371 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
372 		return str_4m;
373 
374 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
375 		return str_2m;
376 
377 	return str_4k;
378 }
379 
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)380 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
381 				     unsigned long start,
382 				     unsigned long end)
383 {
384 	unsigned long start_pfn, end_pfn, limit_pfn;
385 	unsigned long pfn;
386 	int i;
387 
388 	limit_pfn = PFN_DOWN(end);
389 
390 	/* head if not big page alignment ? */
391 	pfn = start_pfn = PFN_DOWN(start);
392 #ifdef CONFIG_X86_32
393 	/*
394 	 * Don't use a large page for the first 2/4MB of memory
395 	 * because there are often fixed size MTRRs in there
396 	 * and overlapping MTRRs into large pages can cause
397 	 * slowdowns.
398 	 */
399 	if (pfn == 0)
400 		end_pfn = PFN_DOWN(PMD_SIZE);
401 	else
402 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
403 #else /* CONFIG_X86_64 */
404 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
405 #endif
406 	if (end_pfn > limit_pfn)
407 		end_pfn = limit_pfn;
408 	if (start_pfn < end_pfn) {
409 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
410 		pfn = end_pfn;
411 	}
412 
413 	/* big page (2M) range */
414 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
415 #ifdef CONFIG_X86_32
416 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
417 #else /* CONFIG_X86_64 */
418 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
419 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
420 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
421 #endif
422 
423 	if (start_pfn < end_pfn) {
424 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
425 				page_size_mask & (1<<PG_LEVEL_2M));
426 		pfn = end_pfn;
427 	}
428 
429 #ifdef CONFIG_X86_64
430 	/* big page (1G) range */
431 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
432 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
433 	if (start_pfn < end_pfn) {
434 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
435 				page_size_mask &
436 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
437 		pfn = end_pfn;
438 	}
439 
440 	/* tail is not big page (1G) alignment */
441 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
442 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
443 	if (start_pfn < end_pfn) {
444 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
445 				page_size_mask & (1<<PG_LEVEL_2M));
446 		pfn = end_pfn;
447 	}
448 #endif
449 
450 	/* tail is not big page (2M) alignment */
451 	start_pfn = pfn;
452 	end_pfn = limit_pfn;
453 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
454 
455 	if (!after_bootmem)
456 		adjust_range_page_size_mask(mr, nr_range);
457 
458 	/* try to merge same page size and continuous */
459 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
460 		unsigned long old_start;
461 		if (mr[i].end != mr[i+1].start ||
462 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
463 			continue;
464 		/* move it */
465 		old_start = mr[i].start;
466 		memmove(&mr[i], &mr[i+1],
467 			(nr_range - 1 - i) * sizeof(struct map_range));
468 		mr[i--].start = old_start;
469 		nr_range--;
470 	}
471 
472 	for (i = 0; i < nr_range; i++)
473 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
474 				mr[i].start, mr[i].end - 1,
475 				page_size_string(&mr[i]));
476 
477 	return nr_range;
478 }
479 
480 struct range pfn_mapped[E820_MAX_ENTRIES];
481 int nr_pfn_mapped;
482 
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)483 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
484 {
485 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
486 					     nr_pfn_mapped, start_pfn, end_pfn);
487 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
488 
489 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
490 
491 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
492 		max_low_pfn_mapped = max(max_low_pfn_mapped,
493 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
494 }
495 
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)496 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
497 {
498 	int i;
499 
500 	for (i = 0; i < nr_pfn_mapped; i++)
501 		if ((start_pfn >= pfn_mapped[i].start) &&
502 		    (end_pfn <= pfn_mapped[i].end))
503 			return true;
504 
505 	return false;
506 }
507 
508 /*
509  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
510  * This runs before bootmem is initialized and gets pages directly from
511  * the physical memory. To access them they are temporarily mapped.
512  */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)513 unsigned long __ref init_memory_mapping(unsigned long start,
514 					unsigned long end, pgprot_t prot)
515 {
516 	struct map_range mr[NR_RANGE_MR];
517 	unsigned long ret = 0;
518 	int nr_range, i;
519 
520 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
521 	       start, end - 1);
522 
523 	memset(mr, 0, sizeof(mr));
524 	nr_range = split_mem_range(mr, 0, start, end);
525 
526 	for (i = 0; i < nr_range; i++)
527 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
528 						   mr[i].page_size_mask,
529 						   prot);
530 
531 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
532 
533 	return ret >> PAGE_SHIFT;
534 }
535 
536 /*
537  * We need to iterate through the E820 memory map and create direct mappings
538  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
539  * create direct mappings for all pfns from [0 to max_low_pfn) and
540  * [4GB to max_pfn) because of possible memory holes in high addresses
541  * that cannot be marked as UC by fixed/variable range MTRRs.
542  * Depending on the alignment of E820 ranges, this may possibly result
543  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
544  *
545  * init_mem_mapping() calls init_range_memory_mapping() with big range.
546  * That range would have hole in the middle or ends, and only ram parts
547  * will be mapped in init_range_memory_mapping().
548  */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)549 static unsigned long __init init_range_memory_mapping(
550 					   unsigned long r_start,
551 					   unsigned long r_end)
552 {
553 	unsigned long start_pfn, end_pfn;
554 	unsigned long mapped_ram_size = 0;
555 	int i;
556 
557 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
558 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
559 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
560 		if (start >= end)
561 			continue;
562 
563 		/*
564 		 * if it is overlapping with brk pgt, we need to
565 		 * alloc pgt buf from memblock instead.
566 		 */
567 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
568 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
569 		init_memory_mapping(start, end, PAGE_KERNEL);
570 		mapped_ram_size += end - start;
571 		can_use_brk_pgt = true;
572 	}
573 
574 	return mapped_ram_size;
575 }
576 
get_new_step_size(unsigned long step_size)577 static unsigned long __init get_new_step_size(unsigned long step_size)
578 {
579 	/*
580 	 * Initial mapped size is PMD_SIZE (2M).
581 	 * We can not set step_size to be PUD_SIZE (1G) yet.
582 	 * In worse case, when we cross the 1G boundary, and
583 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
584 	 * to map 1G range with PTE. Hence we use one less than the
585 	 * difference of page table level shifts.
586 	 *
587 	 * Don't need to worry about overflow in the top-down case, on 32bit,
588 	 * when step_size is 0, round_down() returns 0 for start, and that
589 	 * turns it into 0x100000000ULL.
590 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
591 	 * needs to be taken into consideration by the code below.
592 	 */
593 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
594 }
595 
596 /**
597  * memory_map_top_down - Map [map_start, map_end) top down
598  * @map_start: start address of the target memory range
599  * @map_end: end address of the target memory range
600  *
601  * This function will setup direct mapping for memory range
602  * [map_start, map_end) in top-down. That said, the page tables
603  * will be allocated at the end of the memory, and we map the
604  * memory in top-down.
605  */
memory_map_top_down(unsigned long map_start,unsigned long map_end)606 static void __init memory_map_top_down(unsigned long map_start,
607 				       unsigned long map_end)
608 {
609 	unsigned long real_end, start, last_start;
610 	unsigned long step_size;
611 	unsigned long addr;
612 	unsigned long mapped_ram_size = 0;
613 
614 	/* xen has big range in reserved near end of ram, skip it at first.*/
615 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
616 	real_end = addr + PMD_SIZE;
617 
618 	/* step_size need to be small so pgt_buf from BRK could cover it */
619 	step_size = PMD_SIZE;
620 	max_pfn_mapped = 0; /* will get exact value next */
621 	min_pfn_mapped = real_end >> PAGE_SHIFT;
622 	last_start = start = real_end;
623 
624 	/*
625 	 * We start from the top (end of memory) and go to the bottom.
626 	 * The memblock_find_in_range() gets us a block of RAM from the
627 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
628 	 * for page table.
629 	 */
630 	while (last_start > map_start) {
631 		if (last_start > step_size) {
632 			start = round_down(last_start - 1, step_size);
633 			if (start < map_start)
634 				start = map_start;
635 		} else
636 			start = map_start;
637 		mapped_ram_size += init_range_memory_mapping(start,
638 							last_start);
639 		last_start = start;
640 		min_pfn_mapped = last_start >> PAGE_SHIFT;
641 		if (mapped_ram_size >= step_size)
642 			step_size = get_new_step_size(step_size);
643 	}
644 
645 	if (real_end < map_end)
646 		init_range_memory_mapping(real_end, map_end);
647 }
648 
649 /**
650  * memory_map_bottom_up - Map [map_start, map_end) bottom up
651  * @map_start: start address of the target memory range
652  * @map_end: end address of the target memory range
653  *
654  * This function will setup direct mapping for memory range
655  * [map_start, map_end) in bottom-up. Since we have limited the
656  * bottom-up allocation above the kernel, the page tables will
657  * be allocated just above the kernel and we map the memory
658  * in [map_start, map_end) in bottom-up.
659  */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)660 static void __init memory_map_bottom_up(unsigned long map_start,
661 					unsigned long map_end)
662 {
663 	unsigned long next, start;
664 	unsigned long mapped_ram_size = 0;
665 	/* step_size need to be small so pgt_buf from BRK could cover it */
666 	unsigned long step_size = PMD_SIZE;
667 
668 	start = map_start;
669 	min_pfn_mapped = start >> PAGE_SHIFT;
670 
671 	/*
672 	 * We start from the bottom (@map_start) and go to the top (@map_end).
673 	 * The memblock_find_in_range() gets us a block of RAM from the
674 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
675 	 * for page table.
676 	 */
677 	while (start < map_end) {
678 		if (step_size && map_end - start > step_size) {
679 			next = round_up(start + 1, step_size);
680 			if (next > map_end)
681 				next = map_end;
682 		} else {
683 			next = map_end;
684 		}
685 
686 		mapped_ram_size += init_range_memory_mapping(start, next);
687 		start = next;
688 
689 		if (mapped_ram_size >= step_size)
690 			step_size = get_new_step_size(step_size);
691 	}
692 }
693 
694 /*
695  * The real mode trampoline, which is required for bootstrapping CPUs
696  * occupies only a small area under the low 1MB.  See reserve_real_mode()
697  * for details.
698  *
699  * If KASLR is disabled the first PGD entry of the direct mapping is copied
700  * to map the real mode trampoline.
701  *
702  * If KASLR is enabled, copy only the PUD which covers the low 1MB
703  * area. This limits the randomization granularity to 1GB for both 4-level
704  * and 5-level paging.
705  */
init_trampoline(void)706 static void __init init_trampoline(void)
707 {
708 #ifdef CONFIG_X86_64
709 	if (!kaslr_memory_enabled())
710 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
711 	else
712 		init_trampoline_kaslr();
713 #endif
714 }
715 
init_mem_mapping(void)716 void __init init_mem_mapping(void)
717 {
718 	unsigned long end;
719 
720 	pti_check_boottime_disable();
721 	probe_page_size_mask();
722 	setup_pcid();
723 
724 #ifdef CONFIG_X86_64
725 	end = max_pfn << PAGE_SHIFT;
726 #else
727 	end = max_low_pfn << PAGE_SHIFT;
728 #endif
729 
730 	/* the ISA range is always mapped regardless of memory holes */
731 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
732 
733 	/* Init the trampoline, possibly with KASLR memory offset */
734 	init_trampoline();
735 
736 	/*
737 	 * If the allocation is in bottom-up direction, we setup direct mapping
738 	 * in bottom-up, otherwise we setup direct mapping in top-down.
739 	 */
740 	if (memblock_bottom_up()) {
741 		unsigned long kernel_end = __pa_symbol(_end);
742 
743 		/*
744 		 * we need two separate calls here. This is because we want to
745 		 * allocate page tables above the kernel. So we first map
746 		 * [kernel_end, end) to make memory above the kernel be mapped
747 		 * as soon as possible. And then use page tables allocated above
748 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
749 		 */
750 		memory_map_bottom_up(kernel_end, end);
751 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
752 	} else {
753 		memory_map_top_down(ISA_END_ADDRESS, end);
754 	}
755 
756 #ifdef CONFIG_X86_64
757 	if (max_pfn > max_low_pfn) {
758 		/* can we preseve max_low_pfn ?*/
759 		max_low_pfn = max_pfn;
760 	}
761 #else
762 	early_ioremap_page_table_range_init();
763 #endif
764 
765 	load_cr3(swapper_pg_dir);
766 	__flush_tlb_all();
767 
768 	x86_init.hyper.init_mem_mapping();
769 
770 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
771 }
772 
773 /*
774  * Initialize an mm_struct to be used during poking and a pointer to be used
775  * during patching.
776  */
poking_init(void)777 void __init poking_init(void)
778 {
779 	spinlock_t *ptl;
780 	pte_t *ptep;
781 
782 	poking_mm = copy_init_mm();
783 	BUG_ON(!poking_mm);
784 
785 	/*
786 	 * Randomize the poking address, but make sure that the following page
787 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
788 	 * and adjust the address if the PMD ends after the first one.
789 	 */
790 	poking_addr = TASK_UNMAPPED_BASE;
791 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
792 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
793 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
794 
795 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
796 		poking_addr += PAGE_SIZE;
797 
798 	/*
799 	 * We need to trigger the allocation of the page-tables that will be
800 	 * needed for poking now. Later, poking may be performed in an atomic
801 	 * section, which might cause allocation to fail.
802 	 */
803 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
804 	BUG_ON(!ptep);
805 	pte_unmap_unlock(ptep, ptl);
806 }
807 
808 /*
809  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
810  * is valid. The argument is a physical page number.
811  *
812  * On x86, access has to be given to the first megabyte of RAM because that
813  * area traditionally contains BIOS code and data regions used by X, dosemu,
814  * and similar apps. Since they map the entire memory range, the whole range
815  * must be allowed (for mapping), but any areas that would otherwise be
816  * disallowed are flagged as being "zero filled" instead of rejected.
817  * Access has to be given to non-kernel-ram areas as well, these contain the
818  * PCI mmio resources as well as potential bios/acpi data regions.
819  */
devmem_is_allowed(unsigned long pagenr)820 int devmem_is_allowed(unsigned long pagenr)
821 {
822 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
823 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
824 			!= REGION_DISJOINT) {
825 		/*
826 		 * For disallowed memory regions in the low 1MB range,
827 		 * request that the page be shown as all zeros.
828 		 */
829 		if (pagenr < 256)
830 			return 2;
831 
832 		return 0;
833 	}
834 
835 	/*
836 	 * This must follow RAM test, since System RAM is considered a
837 	 * restricted resource under CONFIG_STRICT_IOMEM.
838 	 */
839 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
840 		/* Low 1MB bypasses iomem restrictions. */
841 		if (pagenr < 256)
842 			return 1;
843 
844 		return 0;
845 	}
846 
847 	return 1;
848 }
849 
free_init_pages(const char * what,unsigned long begin,unsigned long end)850 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
851 {
852 	unsigned long begin_aligned, end_aligned;
853 
854 	/* Make sure boundaries are page aligned */
855 	begin_aligned = PAGE_ALIGN(begin);
856 	end_aligned   = end & PAGE_MASK;
857 
858 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
859 		begin = begin_aligned;
860 		end   = end_aligned;
861 	}
862 
863 	if (begin >= end)
864 		return;
865 
866 	/*
867 	 * If debugging page accesses then do not free this memory but
868 	 * mark them not present - any buggy init-section access will
869 	 * create a kernel page fault:
870 	 */
871 	if (debug_pagealloc_enabled()) {
872 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
873 			begin, end - 1);
874 		/*
875 		 * Inform kmemleak about the hole in the memory since the
876 		 * corresponding pages will be unmapped.
877 		 */
878 		kmemleak_free_part((void *)begin, end - begin);
879 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
880 	} else {
881 		/*
882 		 * We just marked the kernel text read only above, now that
883 		 * we are going to free part of that, we need to make that
884 		 * writeable and non-executable first.
885 		 */
886 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
887 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
888 
889 		free_reserved_area((void *)begin, (void *)end,
890 				   POISON_FREE_INITMEM, what);
891 	}
892 }
893 
894 /*
895  * begin/end can be in the direct map or the "high kernel mapping"
896  * used for the kernel image only.  free_init_pages() will do the
897  * right thing for either kind of address.
898  */
free_kernel_image_pages(const char * what,void * begin,void * end)899 void free_kernel_image_pages(const char *what, void *begin, void *end)
900 {
901 	unsigned long begin_ul = (unsigned long)begin;
902 	unsigned long end_ul = (unsigned long)end;
903 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
904 
905 	free_init_pages(what, begin_ul, end_ul);
906 
907 	/*
908 	 * PTI maps some of the kernel into userspace.  For performance,
909 	 * this includes some kernel areas that do not contain secrets.
910 	 * Those areas might be adjacent to the parts of the kernel image
911 	 * being freed, which may contain secrets.  Remove the "high kernel
912 	 * image mapping" for these freed areas, ensuring they are not even
913 	 * potentially vulnerable to Meltdown regardless of the specific
914 	 * optimizations PTI is currently using.
915 	 *
916 	 * The "noalias" prevents unmapping the direct map alias which is
917 	 * needed to access the freed pages.
918 	 *
919 	 * This is only valid for 64bit kernels. 32bit has only one mapping
920 	 * which can't be treated in this way for obvious reasons.
921 	 */
922 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
923 		set_memory_np_noalias(begin_ul, len_pages);
924 }
925 
free_initmem(void)926 void __ref free_initmem(void)
927 {
928 	e820__reallocate_tables();
929 
930 	mem_encrypt_free_decrypted_mem();
931 
932 	free_kernel_image_pages("unused kernel image (initmem)",
933 				&__init_begin, &__init_end);
934 }
935 
936 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)937 void __init free_initrd_mem(unsigned long start, unsigned long end)
938 {
939 	/*
940 	 * end could be not aligned, and We can not align that,
941 	 * decompresser could be confused by aligned initrd_end
942 	 * We already reserve the end partial page before in
943 	 *   - i386_start_kernel()
944 	 *   - x86_64_start_kernel()
945 	 *   - relocate_initrd()
946 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
947 	 */
948 	free_init_pages("initrd", start, PAGE_ALIGN(end));
949 }
950 #endif
951 
952 /*
953  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
954  * and pass it to the MM layer - to help it set zone watermarks more
955  * accurately.
956  *
957  * Done on 64-bit systems only for the time being, although 32-bit systems
958  * might benefit from this as well.
959  */
memblock_find_dma_reserve(void)960 void __init memblock_find_dma_reserve(void)
961 {
962 #ifdef CONFIG_X86_64
963 	u64 nr_pages = 0, nr_free_pages = 0;
964 	unsigned long start_pfn, end_pfn;
965 	phys_addr_t start_addr, end_addr;
966 	int i;
967 	u64 u;
968 
969 	/*
970 	 * Iterate over all memory ranges (free and reserved ones alike),
971 	 * to calculate the total number of pages in the first 16 MB of RAM:
972 	 */
973 	nr_pages = 0;
974 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
975 		start_pfn = min(start_pfn, MAX_DMA_PFN);
976 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
977 
978 		nr_pages += end_pfn - start_pfn;
979 	}
980 
981 	/*
982 	 * Iterate over free memory ranges to calculate the number of free
983 	 * pages in the DMA zone, while not counting potential partial
984 	 * pages at the beginning or the end of the range:
985 	 */
986 	nr_free_pages = 0;
987 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
988 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
989 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
990 
991 		if (start_pfn < end_pfn)
992 			nr_free_pages += end_pfn - start_pfn;
993 	}
994 
995 	set_dma_reserve(nr_pages - nr_free_pages);
996 #endif
997 }
998 
zone_sizes_init(void)999 void __init zone_sizes_init(void)
1000 {
1001 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1002 
1003 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1004 
1005 #ifdef CONFIG_ZONE_DMA
1006 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1007 #endif
1008 #ifdef CONFIG_ZONE_DMA32
1009 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
1010 #endif
1011 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1012 #ifdef CONFIG_HIGHMEM
1013 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1014 #endif
1015 
1016 	free_area_init(max_zone_pfns);
1017 }
1018 
1019 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1020 	.loaded_mm = &init_mm,
1021 	.next_asid = 1,
1022 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1023 };
1024 
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1025 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1026 {
1027 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1028 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1029 
1030 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1031 	__pte2cachemode_tbl[entry] = cache;
1032 }
1033 
1034 #ifdef CONFIG_SWAP
max_swapfile_size(void)1035 unsigned long max_swapfile_size(void)
1036 {
1037 	unsigned long pages;
1038 
1039 	pages = generic_max_swapfile_size();
1040 
1041 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1042 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1043 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1044 		/*
1045 		 * We encode swap offsets also with 3 bits below those for pfn
1046 		 * which makes the usable limit higher.
1047 		 */
1048 #if CONFIG_PGTABLE_LEVELS > 2
1049 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1050 #endif
1051 		pages = min_t(unsigned long long, l1tf_limit, pages);
1052 	}
1053 	return pages;
1054 }
1055 #endif
1056