• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 #include <linux/irq.h>
20 #include <linux/delay.h>
21 
22 #ifdef CONFIG_QOS_CTRL
23 #include <linux/sched/qos_ctrl.h>
24 #endif
25 
26 #include <asm/switch_to.h>
27 #include <asm/tlb.h>
28 
29 #include "../workqueue_internal.h"
30 #include "../../io_uring/io-wq.h"
31 #include "../smpboot.h"
32 
33 #include "pelt.h"
34 #include "smp.h"
35 #include "walt.h"
36 #include "rtg/rtg.h"
37 
38 /*
39  * Export tracepoints that act as a bare tracehook (ie: have no trace event
40  * associated with them) to allow external modules to probe them.
41  */
42 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
49 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
50 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
53 
54 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
55 
56 #ifdef CONFIG_SCHED_DEBUG
57 /*
58  * Debugging: various feature bits
59  *
60  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
61  * sysctl_sched_features, defined in sched.h, to allow constants propagation
62  * at compile time and compiler optimization based on features default.
63  */
64 #define SCHED_FEAT(name, enabled)	\
65 	(1UL << __SCHED_FEAT_##name) * enabled |
66 const_debug unsigned int sysctl_sched_features =
67 #include "features.h"
68 	0;
69 #undef SCHED_FEAT
70 #endif
71 
72 /*
73  * Number of tasks to iterate in a single balance run.
74  * Limited because this is done with IRQs disabled.
75  */
76 const_debug unsigned int sysctl_sched_nr_migrate = 32;
77 
78 /*
79  * period over which we measure -rt task CPU usage in us.
80  * default: 1s
81  */
82 unsigned int sysctl_sched_rt_period = 1000000;
83 
84 __read_mostly int scheduler_running;
85 
86 /*
87  * part of the period that we allow rt tasks to run in us.
88  * default: 0.95s
89  */
90 int sysctl_sched_rt_runtime = 950000;
91 
92 
93 /*
94  * Serialization rules:
95  *
96  * Lock order:
97  *
98  *   p->pi_lock
99  *     rq->lock
100  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
101  *
102  *  rq1->lock
103  *    rq2->lock  where: rq1 < rq2
104  *
105  * Regular state:
106  *
107  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
108  * local CPU's rq->lock, it optionally removes the task from the runqueue and
109  * always looks at the local rq data structures to find the most elegible task
110  * to run next.
111  *
112  * Task enqueue is also under rq->lock, possibly taken from another CPU.
113  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
114  * the local CPU to avoid bouncing the runqueue state around [ see
115  * ttwu_queue_wakelist() ]
116  *
117  * Task wakeup, specifically wakeups that involve migration, are horribly
118  * complicated to avoid having to take two rq->locks.
119  *
120  * Special state:
121  *
122  * System-calls and anything external will use task_rq_lock() which acquires
123  * both p->pi_lock and rq->lock. As a consequence the state they change is
124  * stable while holding either lock:
125  *
126  *  - sched_setaffinity()/
127  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
128  *  - set_user_nice():		p->se.load, p->*prio
129  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
130  *				p->se.load, p->rt_priority,
131  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
132  *  - sched_setnuma():		p->numa_preferred_nid
133  *  - sched_move_task()/
134  *    cpu_cgroup_fork():	p->sched_task_group
135  *  - uclamp_update_active()	p->uclamp*
136  *
137  * p->state <- TASK_*:
138  *
139  *   is changed locklessly using set_current_state(), __set_current_state() or
140  *   set_special_state(), see their respective comments, or by
141  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
142  *   concurrent self.
143  *
144  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
145  *
146  *   is set by activate_task() and cleared by deactivate_task(), under
147  *   rq->lock. Non-zero indicates the task is runnable, the special
148  *   ON_RQ_MIGRATING state is used for migration without holding both
149  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
150  *
151  * p->on_cpu <- { 0, 1 }:
152  *
153  *   is set by prepare_task() and cleared by finish_task() such that it will be
154  *   set before p is scheduled-in and cleared after p is scheduled-out, both
155  *   under rq->lock. Non-zero indicates the task is running on its CPU.
156  *
157  *   [ The astute reader will observe that it is possible for two tasks on one
158  *     CPU to have ->on_cpu = 1 at the same time. ]
159  *
160  * task_cpu(p): is changed by set_task_cpu(), the rules are:
161  *
162  *  - Don't call set_task_cpu() on a blocked task:
163  *
164  *    We don't care what CPU we're not running on, this simplifies hotplug,
165  *    the CPU assignment of blocked tasks isn't required to be valid.
166  *
167  *  - for try_to_wake_up(), called under p->pi_lock:
168  *
169  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
170  *
171  *  - for migration called under rq->lock:
172  *    [ see task_on_rq_migrating() in task_rq_lock() ]
173  *
174  *    o move_queued_task()
175  *    o detach_task()
176  *
177  *  - for migration called under double_rq_lock():
178  *
179  *    o __migrate_swap_task()
180  *    o push_rt_task() / pull_rt_task()
181  *    o push_dl_task() / pull_dl_task()
182  *    o dl_task_offline_migration()
183  *
184  */
185 
186 /*
187  * __task_rq_lock - lock the rq @p resides on.
188  */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)189 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
190 	__acquires(rq->lock)
191 {
192 	struct rq *rq;
193 
194 	lockdep_assert_held(&p->pi_lock);
195 
196 	for (;;) {
197 		rq = task_rq(p);
198 		raw_spin_lock(&rq->lock);
199 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
200 			rq_pin_lock(rq, rf);
201 			return rq;
202 		}
203 		raw_spin_unlock(&rq->lock);
204 
205 		while (unlikely(task_on_rq_migrating(p)))
206 			cpu_relax();
207 	}
208 }
209 
210 /*
211  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
212  */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)213 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
214 	__acquires(p->pi_lock)
215 	__acquires(rq->lock)
216 {
217 	struct rq *rq;
218 
219 	for (;;) {
220 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
221 		rq = task_rq(p);
222 		raw_spin_lock(&rq->lock);
223 		/*
224 		 *	move_queued_task()		task_rq_lock()
225 		 *
226 		 *	ACQUIRE (rq->lock)
227 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
228 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
229 		 *	[S] ->cpu = new_cpu		[L] task_rq()
230 		 *					[L] ->on_rq
231 		 *	RELEASE (rq->lock)
232 		 *
233 		 * If we observe the old CPU in task_rq_lock(), the acquire of
234 		 * the old rq->lock will fully serialize against the stores.
235 		 *
236 		 * If we observe the new CPU in task_rq_lock(), the address
237 		 * dependency headed by '[L] rq = task_rq()' and the acquire
238 		 * will pair with the WMB to ensure we then also see migrating.
239 		 */
240 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
241 			rq_pin_lock(rq, rf);
242 			return rq;
243 		}
244 		raw_spin_unlock(&rq->lock);
245 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
246 
247 		while (unlikely(task_on_rq_migrating(p)))
248 			cpu_relax();
249 	}
250 }
251 
252 /*
253  * RQ-clock updating methods:
254  */
255 
update_rq_clock_task(struct rq * rq,s64 delta)256 static void update_rq_clock_task(struct rq *rq, s64 delta)
257 {
258 /*
259  * In theory, the compile should just see 0 here, and optimize out the call
260  * to sched_rt_avg_update. But I don't trust it...
261  */
262 	s64 __maybe_unused steal = 0, irq_delta = 0;
263 
264 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
265 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
266 
267 	/*
268 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
269 	 * this case when a previous update_rq_clock() happened inside a
270 	 * {soft,}irq region.
271 	 *
272 	 * When this happens, we stop ->clock_task and only update the
273 	 * prev_irq_time stamp to account for the part that fit, so that a next
274 	 * update will consume the rest. This ensures ->clock_task is
275 	 * monotonic.
276 	 *
277 	 * It does however cause some slight miss-attribution of {soft,}irq
278 	 * time, a more accurate solution would be to update the irq_time using
279 	 * the current rq->clock timestamp, except that would require using
280 	 * atomic ops.
281 	 */
282 	if (irq_delta > delta)
283 		irq_delta = delta;
284 
285 	rq->prev_irq_time += irq_delta;
286 	delta -= irq_delta;
287 #endif
288 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
289 	if (static_key_false((&paravirt_steal_rq_enabled))) {
290 		steal = paravirt_steal_clock(cpu_of(rq));
291 		steal -= rq->prev_steal_time_rq;
292 
293 		if (unlikely(steal > delta))
294 			steal = delta;
295 
296 		rq->prev_steal_time_rq += steal;
297 		delta -= steal;
298 	}
299 #endif
300 
301 	rq->clock_task += delta;
302 
303 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
304 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
305 		update_irq_load_avg(rq, irq_delta + steal);
306 #endif
307 	update_rq_clock_pelt(rq, delta);
308 }
309 
update_rq_clock(struct rq * rq)310 void update_rq_clock(struct rq *rq)
311 {
312 	s64 delta;
313 
314 	lockdep_assert_held(&rq->lock);
315 
316 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
317 		return;
318 
319 #ifdef CONFIG_SCHED_DEBUG
320 	if (sched_feat(WARN_DOUBLE_CLOCK))
321 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
322 	rq->clock_update_flags |= RQCF_UPDATED;
323 #endif
324 
325 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
326 	if (delta < 0)
327 		return;
328 	rq->clock += delta;
329 	update_rq_clock_task(rq, delta);
330 }
331 
332 static inline void
rq_csd_init(struct rq * rq,struct __call_single_data * csd,smp_call_func_t func)333 rq_csd_init(struct rq *rq, struct __call_single_data *csd, smp_call_func_t func)
334 {
335 	csd->flags = 0;
336 	csd->func = func;
337 	csd->info = rq;
338 }
339 
340 #ifdef CONFIG_SCHED_HRTICK
341 /*
342  * Use HR-timers to deliver accurate preemption points.
343  */
344 
hrtick_clear(struct rq * rq)345 static void hrtick_clear(struct rq *rq)
346 {
347 	if (hrtimer_active(&rq->hrtick_timer))
348 		hrtimer_cancel(&rq->hrtick_timer);
349 }
350 
351 /*
352  * High-resolution timer tick.
353  * Runs from hardirq context with interrupts disabled.
354  */
hrtick(struct hrtimer * timer)355 static enum hrtimer_restart hrtick(struct hrtimer *timer)
356 {
357 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
358 	struct rq_flags rf;
359 
360 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
361 
362 	rq_lock(rq, &rf);
363 	update_rq_clock(rq);
364 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
365 	rq_unlock(rq, &rf);
366 
367 	return HRTIMER_NORESTART;
368 }
369 
370 #ifdef CONFIG_SMP
371 
__hrtick_restart(struct rq * rq)372 static void __hrtick_restart(struct rq *rq)
373 {
374 	struct hrtimer *timer = &rq->hrtick_timer;
375 	ktime_t time = rq->hrtick_time;
376 
377 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
378 }
379 
380 /*
381  * called from hardirq (IPI) context
382  */
__hrtick_start(void * arg)383 static void __hrtick_start(void *arg)
384 {
385 	struct rq *rq = arg;
386 	struct rq_flags rf;
387 
388 	rq_lock(rq, &rf);
389 	__hrtick_restart(rq);
390 	rq_unlock(rq, &rf);
391 }
392 
393 /*
394  * Called to set the hrtick timer state.
395  *
396  * called with rq->lock held and irqs disabled
397  */
hrtick_start(struct rq * rq,u64 delay)398 void hrtick_start(struct rq *rq, u64 delay)
399 {
400 	struct hrtimer *timer = &rq->hrtick_timer;
401 	s64 delta;
402 
403 	/*
404 	 * Don't schedule slices shorter than 10000ns, that just
405 	 * doesn't make sense and can cause timer DoS.
406 	 */
407 	delta = max_t(s64, delay, 10000LL);
408 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
409 
410 	if (rq == this_rq())
411 		__hrtick_restart(rq);
412 	else
413 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
414 }
415 
416 #else
417 /*
418  * Called to set the hrtick timer state.
419  *
420  * called with rq->lock held and irqs disabled
421  */
hrtick_start(struct rq * rq,u64 delay)422 void hrtick_start(struct rq *rq, u64 delay)
423 {
424 	/*
425 	 * Don't schedule slices shorter than 10000ns, that just
426 	 * doesn't make sense. Rely on vruntime for fairness.
427 	 */
428 	delay = max_t(u64, delay, 10000LL);
429 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
430 		      HRTIMER_MODE_REL_PINNED_HARD);
431 }
432 
433 #endif /* CONFIG_SMP */
434 
hrtick_rq_init(struct rq * rq)435 static void hrtick_rq_init(struct rq *rq)
436 {
437 #ifdef CONFIG_SMP
438 	rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
439 #endif
440 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
441 	rq->hrtick_timer.function = hrtick;
442 }
443 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)444 static inline void hrtick_clear(struct rq *rq)
445 {
446 }
447 
hrtick_rq_init(struct rq * rq)448 static inline void hrtick_rq_init(struct rq *rq)
449 {
450 }
451 #endif	/* CONFIG_SCHED_HRTICK */
452 
453 /*
454  * cmpxchg based fetch_or, macro so it works for different integer types
455  */
456 #define fetch_or(ptr, mask)						\
457 	({								\
458 		typeof(ptr) _ptr = (ptr);				\
459 		typeof(mask) _mask = (mask);				\
460 		typeof(*_ptr) _old, _val = *_ptr;			\
461 									\
462 		for (;;) {						\
463 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
464 			if (_old == _val)				\
465 				break;					\
466 			_val = _old;					\
467 		}							\
468 	_old;								\
469 })
470 
471 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
472 /*
473  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
474  * this avoids any races wrt polling state changes and thereby avoids
475  * spurious IPIs.
476  */
set_nr_and_not_polling(struct task_struct * p)477 static bool set_nr_and_not_polling(struct task_struct *p)
478 {
479 	struct thread_info *ti = task_thread_info(p);
480 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
481 }
482 
483 /*
484  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
485  *
486  * If this returns true, then the idle task promises to call
487  * sched_ttwu_pending() and reschedule soon.
488  */
set_nr_if_polling(struct task_struct * p)489 static bool set_nr_if_polling(struct task_struct *p)
490 {
491 	struct thread_info *ti = task_thread_info(p);
492 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
493 
494 	for (;;) {
495 		if (!(val & _TIF_POLLING_NRFLAG))
496 			return false;
497 		if (val & _TIF_NEED_RESCHED)
498 			return true;
499 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
500 		if (old == val)
501 			break;
502 		val = old;
503 	}
504 	return true;
505 }
506 
507 #else
set_nr_and_not_polling(struct task_struct * p)508 static bool set_nr_and_not_polling(struct task_struct *p)
509 {
510 	set_tsk_need_resched(p);
511 	return true;
512 }
513 
514 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)515 static bool set_nr_if_polling(struct task_struct *p)
516 {
517 	return false;
518 }
519 #endif
520 #endif
521 
__wake_q_add(struct wake_q_head * head,struct task_struct * task)522 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
523 {
524 	struct wake_q_node *node = &task->wake_q;
525 
526 	/*
527 	 * Atomically grab the task, if ->wake_q is !nil already it means
528 	 * its already queued (either by us or someone else) and will get the
529 	 * wakeup due to that.
530 	 *
531 	 * In order to ensure that a pending wakeup will observe our pending
532 	 * state, even in the failed case, an explicit smp_mb() must be used.
533 	 */
534 	smp_mb__before_atomic();
535 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
536 		return false;
537 
538 	/*
539 	 * The head is context local, there can be no concurrency.
540 	 */
541 	*head->lastp = node;
542 	head->lastp = &node->next;
543 	return true;
544 }
545 
546 /**
547  * wake_q_add() - queue a wakeup for 'later' waking.
548  * @head: the wake_q_head to add @task to
549  * @task: the task to queue for 'later' wakeup
550  *
551  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
552  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
553  * instantly.
554  *
555  * This function must be used as-if it were wake_up_process(); IOW the task
556  * must be ready to be woken at this location.
557  */
wake_q_add(struct wake_q_head * head,struct task_struct * task)558 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
559 {
560 	if (__wake_q_add(head, task))
561 		get_task_struct(task);
562 }
563 
564 /**
565  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
566  * @head: the wake_q_head to add @task to
567  * @task: the task to queue for 'later' wakeup
568  *
569  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
570  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
571  * instantly.
572  *
573  * This function must be used as-if it were wake_up_process(); IOW the task
574  * must be ready to be woken at this location.
575  *
576  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
577  * that already hold reference to @task can call the 'safe' version and trust
578  * wake_q to do the right thing depending whether or not the @task is already
579  * queued for wakeup.
580  */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)581 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
582 {
583 	if (!__wake_q_add(head, task))
584 		put_task_struct(task);
585 }
586 
wake_up_q(struct wake_q_head * head)587 void wake_up_q(struct wake_q_head *head)
588 {
589 	struct wake_q_node *node = head->first;
590 
591 	while (node != WAKE_Q_TAIL) {
592 		struct task_struct *task;
593 
594 		task = container_of(node, struct task_struct, wake_q);
595 		BUG_ON(!task);
596 		/* Task can safely be re-inserted now: */
597 		node = node->next;
598 		task->wake_q.next = NULL;
599 
600 		/*
601 		 * wake_up_process() executes a full barrier, which pairs with
602 		 * the queueing in wake_q_add() so as not to miss wakeups.
603 		 */
604 		wake_up_process(task);
605 		put_task_struct(task);
606 	}
607 }
608 
609 /*
610  * resched_curr - mark rq's current task 'to be rescheduled now'.
611  *
612  * On UP this means the setting of the need_resched flag, on SMP it
613  * might also involve a cross-CPU call to trigger the scheduler on
614  * the target CPU.
615  */
resched_curr(struct rq * rq)616 void resched_curr(struct rq *rq)
617 {
618 	struct task_struct *curr = rq->curr;
619 	int cpu;
620 
621 	lockdep_assert_held(&rq->lock);
622 
623 	if (test_tsk_need_resched(curr))
624 		return;
625 
626 	cpu = cpu_of(rq);
627 
628 	if (cpu == smp_processor_id()) {
629 		set_tsk_need_resched(curr);
630 		set_preempt_need_resched();
631 		return;
632 	}
633 
634 	if (set_nr_and_not_polling(curr))
635 		smp_send_reschedule(cpu);
636 	else
637 		trace_sched_wake_idle_without_ipi(cpu);
638 }
639 
resched_cpu(int cpu)640 void resched_cpu(int cpu)
641 {
642 	struct rq *rq = cpu_rq(cpu);
643 	unsigned long flags;
644 
645 	raw_spin_lock_irqsave(&rq->lock, flags);
646 	if (cpu_online(cpu) || cpu == smp_processor_id())
647 		resched_curr(rq);
648 	raw_spin_unlock_irqrestore(&rq->lock, flags);
649 }
650 
651 #ifdef CONFIG_SMP
652 #ifdef CONFIG_NO_HZ_COMMON
653 /*
654  * In the semi idle case, use the nearest busy CPU for migrating timers
655  * from an idle CPU.  This is good for power-savings.
656  *
657  * We don't do similar optimization for completely idle system, as
658  * selecting an idle CPU will add more delays to the timers than intended
659  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
660  */
get_nohz_timer_target(void)661 int get_nohz_timer_target(void)
662 {
663 	int i, cpu = smp_processor_id(), default_cpu = -1;
664 	struct sched_domain *sd;
665 
666 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
667 		if (!idle_cpu(cpu))
668 			return cpu;
669 		default_cpu = cpu;
670 	}
671 
672 	rcu_read_lock();
673 	for_each_domain(cpu, sd) {
674 		for_each_cpu_and(i, sched_domain_span(sd),
675 			housekeeping_cpumask(HK_FLAG_TIMER)) {
676 			if (cpu == i)
677 				continue;
678 
679 			if (!idle_cpu(i)) {
680 				cpu = i;
681 				goto unlock;
682 			}
683 		}
684 	}
685 
686 	if (default_cpu == -1)
687 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
688 	cpu = default_cpu;
689 unlock:
690 	rcu_read_unlock();
691 	return cpu;
692 }
693 
694 /*
695  * When add_timer_on() enqueues a timer into the timer wheel of an
696  * idle CPU then this timer might expire before the next timer event
697  * which is scheduled to wake up that CPU. In case of a completely
698  * idle system the next event might even be infinite time into the
699  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
700  * leaves the inner idle loop so the newly added timer is taken into
701  * account when the CPU goes back to idle and evaluates the timer
702  * wheel for the next timer event.
703  */
wake_up_idle_cpu(int cpu)704 static void wake_up_idle_cpu(int cpu)
705 {
706 	struct rq *rq = cpu_rq(cpu);
707 
708 	if (cpu == smp_processor_id())
709 		return;
710 
711 	if (set_nr_and_not_polling(rq->idle))
712 		smp_send_reschedule(cpu);
713 	else
714 		trace_sched_wake_idle_without_ipi(cpu);
715 }
716 
wake_up_full_nohz_cpu(int cpu)717 static bool wake_up_full_nohz_cpu(int cpu)
718 {
719 	/*
720 	 * We just need the target to call irq_exit() and re-evaluate
721 	 * the next tick. The nohz full kick at least implies that.
722 	 * If needed we can still optimize that later with an
723 	 * empty IRQ.
724 	 */
725 	if (cpu_is_offline(cpu))
726 		return true;  /* Don't try to wake offline CPUs. */
727 	if (tick_nohz_full_cpu(cpu)) {
728 		if (cpu != smp_processor_id() ||
729 		    tick_nohz_tick_stopped())
730 			tick_nohz_full_kick_cpu(cpu);
731 		return true;
732 	}
733 
734 	return false;
735 }
736 
737 /*
738  * Wake up the specified CPU.  If the CPU is going offline, it is the
739  * caller's responsibility to deal with the lost wakeup, for example,
740  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
741  */
wake_up_nohz_cpu(int cpu)742 void wake_up_nohz_cpu(int cpu)
743 {
744 	if (!wake_up_full_nohz_cpu(cpu))
745 		wake_up_idle_cpu(cpu);
746 }
747 
nohz_csd_func(void * info)748 static void nohz_csd_func(void *info)
749 {
750 	struct rq *rq = info;
751 	int cpu = cpu_of(rq);
752 	unsigned int flags;
753 
754 	/*
755 	 * Release the rq::nohz_csd.
756 	 */
757 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
758 	WARN_ON(!(flags & NOHZ_KICK_MASK));
759 
760 	rq->idle_balance = idle_cpu(cpu);
761 	if (rq->idle_balance && !need_resched()) {
762 		rq->nohz_idle_balance = flags;
763 		raise_softirq_irqoff(SCHED_SOFTIRQ);
764 	}
765 }
766 
767 #endif /* CONFIG_NO_HZ_COMMON */
768 
769 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)770 bool sched_can_stop_tick(struct rq *rq)
771 {
772 	int fifo_nr_running;
773 
774 	/* Deadline tasks, even if single, need the tick */
775 	if (rq->dl.dl_nr_running)
776 		return false;
777 
778 	/*
779 	 * If there are more than one RR tasks, we need the tick to effect the
780 	 * actual RR behaviour.
781 	 */
782 	if (rq->rt.rr_nr_running) {
783 		if (rq->rt.rr_nr_running == 1)
784 			return true;
785 		else
786 			return false;
787 	}
788 
789 	/*
790 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
791 	 * forced preemption between FIFO tasks.
792 	 */
793 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
794 	if (fifo_nr_running)
795 		return true;
796 
797 	/*
798 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
799 	 * if there's more than one we need the tick for involuntary
800 	 * preemption.
801 	 */
802 	if (rq->nr_running > 1)
803 		return false;
804 
805 	return true;
806 }
807 #endif /* CONFIG_NO_HZ_FULL */
808 #endif /* CONFIG_SMP */
809 
810 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
811 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
812 /*
813  * Iterate task_group tree rooted at *from, calling @down when first entering a
814  * node and @up when leaving it for the final time.
815  *
816  * Caller must hold rcu_lock or sufficient equivalent.
817  */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)818 int walk_tg_tree_from(struct task_group *from,
819 			     tg_visitor down, tg_visitor up, void *data)
820 {
821 	struct task_group *parent, *child;
822 	int ret;
823 
824 	parent = from;
825 
826 down:
827 	ret = (*down)(parent, data);
828 	if (ret)
829 		goto out;
830 	list_for_each_entry_rcu(child, &parent->children, siblings) {
831 		parent = child;
832 		goto down;
833 
834 up:
835 		continue;
836 	}
837 	ret = (*up)(parent, data);
838 	if (ret || parent == from)
839 		goto out;
840 
841 	child = parent;
842 	parent = parent->parent;
843 	if (parent)
844 		goto up;
845 out:
846 	return ret;
847 }
848 
tg_nop(struct task_group * tg,void * data)849 int tg_nop(struct task_group *tg, void *data)
850 {
851 	return 0;
852 }
853 #endif
854 
set_load_weight(struct task_struct * p)855 static void set_load_weight(struct task_struct *p)
856 {
857 	bool update_load = !(READ_ONCE(p->state) & TASK_NEW);
858 	int prio = p->static_prio - MAX_RT_PRIO;
859 	struct load_weight *load = &p->se.load;
860 
861 	/*
862 	 * SCHED_IDLE tasks get minimal weight:
863 	 */
864 	if (task_has_idle_policy(p)) {
865 		load->weight = scale_load(WEIGHT_IDLEPRIO);
866 		load->inv_weight = WMULT_IDLEPRIO;
867 		return;
868 	}
869 
870 	/*
871 	 * SCHED_OTHER tasks have to update their load when changing their
872 	 * weight
873 	 */
874 	if (update_load && p->sched_class == &fair_sched_class) {
875 		reweight_task(p, prio);
876 	} else {
877 		load->weight = scale_load(sched_prio_to_weight[prio]);
878 		load->inv_weight = sched_prio_to_wmult[prio];
879 	}
880 }
881 
882 #ifdef CONFIG_SCHED_LATENCY_NICE
set_latency_weight(struct task_struct * p)883 static void set_latency_weight(struct task_struct *p)
884 {
885 	p->se.latency_weight = sched_latency_to_weight[p->latency_prio];
886 }
887 
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)888 static void __setscheduler_latency(struct task_struct *p,
889 		const struct sched_attr *attr)
890 {
891 	if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE) {
892 		p->latency_prio = NICE_TO_LATENCY(attr->sched_latency_nice);
893 		set_latency_weight(p);
894 	}
895 }
896 
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)897 static int latency_nice_validate(struct task_struct *p, bool user,
898 				 const struct sched_attr *attr)
899 {
900 	if (attr->sched_latency_nice > MAX_LATENCY_NICE)
901 		return -EINVAL;
902 	if (attr->sched_latency_nice < MIN_LATENCY_NICE)
903 		return -EINVAL;
904 	/* Use the same security checks as NICE */
905 	if (user && attr->sched_latency_nice < LATENCY_TO_NICE(p->latency_prio)
906 	    && !capable(CAP_SYS_NICE))
907 		return -EPERM;
908 
909 	return 0;
910 }
911 #else
912 static void
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)913 __setscheduler_latency(struct task_struct *p, const struct sched_attr *attr)
914 {
915 }
916 
917 static inline
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)918 int latency_nice_validate(struct task_struct *p, bool user,
919 			  const struct sched_attr *attr)
920 {
921 	return -EOPNOTSUPP;
922 }
923 #endif
924 
925 #ifdef CONFIG_UCLAMP_TASK
926 /*
927  * Serializes updates of utilization clamp values
928  *
929  * The (slow-path) user-space triggers utilization clamp value updates which
930  * can require updates on (fast-path) scheduler's data structures used to
931  * support enqueue/dequeue operations.
932  * While the per-CPU rq lock protects fast-path update operations, user-space
933  * requests are serialized using a mutex to reduce the risk of conflicting
934  * updates or API abuses.
935  */
936 static DEFINE_MUTEX(uclamp_mutex);
937 
938 /* Max allowed minimum utilization */
939 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
940 
941 /* Max allowed maximum utilization */
942 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
943 
944 /*
945  * By default RT tasks run at the maximum performance point/capacity of the
946  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
947  * SCHED_CAPACITY_SCALE.
948  *
949  * This knob allows admins to change the default behavior when uclamp is being
950  * used. In battery powered devices, particularly, running at the maximum
951  * capacity and frequency will increase energy consumption and shorten the
952  * battery life.
953  *
954  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
955  *
956  * This knob will not override the system default sched_util_clamp_min defined
957  * above.
958  */
959 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
960 
961 /* All clamps are required to be less or equal than these values */
962 static struct uclamp_se uclamp_default[UCLAMP_CNT];
963 
964 /*
965  * This static key is used to reduce the uclamp overhead in the fast path. It
966  * primarily disables the call to uclamp_rq_{inc, dec}() in
967  * enqueue/dequeue_task().
968  *
969  * This allows users to continue to enable uclamp in their kernel config with
970  * minimum uclamp overhead in the fast path.
971  *
972  * As soon as userspace modifies any of the uclamp knobs, the static key is
973  * enabled, since we have an actual users that make use of uclamp
974  * functionality.
975  *
976  * The knobs that would enable this static key are:
977  *
978  *   * A task modifying its uclamp value with sched_setattr().
979  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
980  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
981  */
982 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
983 
984 /* Integer rounded range for each bucket */
985 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
986 
987 #define for_each_clamp_id(clamp_id) \
988 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
989 
uclamp_bucket_id(unsigned int clamp_value)990 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
991 {
992 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
993 }
994 
uclamp_none(enum uclamp_id clamp_id)995 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
996 {
997 	if (clamp_id == UCLAMP_MIN)
998 		return 0;
999 	return SCHED_CAPACITY_SCALE;
1000 }
1001 
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1002 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1003 				 unsigned int value, bool user_defined)
1004 {
1005 	uc_se->value = value;
1006 	uc_se->bucket_id = uclamp_bucket_id(value);
1007 	uc_se->user_defined = user_defined;
1008 }
1009 
1010 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1011 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1012 		  unsigned int clamp_value)
1013 {
1014 	/*
1015 	 * Avoid blocked utilization pushing up the frequency when we go
1016 	 * idle (which drops the max-clamp) by retaining the last known
1017 	 * max-clamp.
1018 	 */
1019 	if (clamp_id == UCLAMP_MAX) {
1020 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1021 		return clamp_value;
1022 	}
1023 
1024 	return uclamp_none(UCLAMP_MIN);
1025 }
1026 
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1027 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1028 				     unsigned int clamp_value)
1029 {
1030 	/* Reset max-clamp retention only on idle exit */
1031 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1032 		return;
1033 
1034 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1035 }
1036 
1037 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1038 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1039 				   unsigned int clamp_value)
1040 {
1041 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1042 	int bucket_id = UCLAMP_BUCKETS - 1;
1043 
1044 	/*
1045 	 * Since both min and max clamps are max aggregated, find the
1046 	 * top most bucket with tasks in.
1047 	 */
1048 	for ( ; bucket_id >= 0; bucket_id--) {
1049 		if (!bucket[bucket_id].tasks)
1050 			continue;
1051 		return bucket[bucket_id].value;
1052 	}
1053 
1054 	/* No tasks -- default clamp values */
1055 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1056 }
1057 
__uclamp_update_util_min_rt_default(struct task_struct * p)1058 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1059 {
1060 	unsigned int default_util_min;
1061 	struct uclamp_se *uc_se;
1062 
1063 	lockdep_assert_held(&p->pi_lock);
1064 
1065 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1066 
1067 	/* Only sync if user didn't override the default */
1068 	if (uc_se->user_defined)
1069 		return;
1070 
1071 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1072 	uclamp_se_set(uc_se, default_util_min, false);
1073 }
1074 
uclamp_update_util_min_rt_default(struct task_struct * p)1075 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1076 {
1077 	struct rq_flags rf;
1078 	struct rq *rq;
1079 
1080 	if (!rt_task(p))
1081 		return;
1082 
1083 	/* Protect updates to p->uclamp_* */
1084 	rq = task_rq_lock(p, &rf);
1085 	__uclamp_update_util_min_rt_default(p);
1086 	task_rq_unlock(rq, p, &rf);
1087 }
1088 
uclamp_sync_util_min_rt_default(void)1089 static void uclamp_sync_util_min_rt_default(void)
1090 {
1091 	struct task_struct *g, *p;
1092 
1093 	/*
1094 	 * copy_process()			sysctl_uclamp
1095 	 *					  uclamp_min_rt = X;
1096 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1097 	 *   // link thread			  smp_mb__after_spinlock()
1098 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1099 	 *   sched_post_fork()			  for_each_process_thread()
1100 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1101 	 *
1102 	 * Ensures that either sched_post_fork() will observe the new
1103 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1104 	 * task.
1105 	 */
1106 	read_lock(&tasklist_lock);
1107 	smp_mb__after_spinlock();
1108 	read_unlock(&tasklist_lock);
1109 
1110 	rcu_read_lock();
1111 	for_each_process_thread(g, p)
1112 		uclamp_update_util_min_rt_default(p);
1113 	rcu_read_unlock();
1114 }
1115 
1116 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1117 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1118 {
1119 	/* Copy by value as we could modify it */
1120 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1121 #ifdef CONFIG_UCLAMP_TASK_GROUP
1122 	unsigned int tg_min, tg_max, value;
1123 
1124 	/*
1125 	 * Tasks in autogroups or root task group will be
1126 	 * restricted by system defaults.
1127 	 */
1128 	if (task_group_is_autogroup(task_group(p)))
1129 		return uc_req;
1130 	if (task_group(p) == &root_task_group)
1131 		return uc_req;
1132 
1133 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1134 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1135 	value = uc_req.value;
1136 	value = clamp(value, tg_min, tg_max);
1137 	uclamp_se_set(&uc_req, value, false);
1138 #endif
1139 
1140 	return uc_req;
1141 }
1142 
1143 /*
1144  * The effective clamp bucket index of a task depends on, by increasing
1145  * priority:
1146  * - the task specific clamp value, when explicitly requested from userspace
1147  * - the task group effective clamp value, for tasks not either in the root
1148  *   group or in an autogroup
1149  * - the system default clamp value, defined by the sysadmin
1150  */
1151 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1152 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1153 {
1154 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1155 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1156 
1157 	/* System default restrictions always apply */
1158 	if (unlikely(uc_req.value > uc_max.value))
1159 		return uc_max;
1160 
1161 	return uc_req;
1162 }
1163 
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1164 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1165 {
1166 	struct uclamp_se uc_eff;
1167 
1168 	/* Task currently refcounted: use back-annotated (effective) value */
1169 	if (p->uclamp[clamp_id].active)
1170 		return (unsigned long)p->uclamp[clamp_id].value;
1171 
1172 	uc_eff = uclamp_eff_get(p, clamp_id);
1173 
1174 	return (unsigned long)uc_eff.value;
1175 }
1176 
1177 /*
1178  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1179  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1180  * updates the rq's clamp value if required.
1181  *
1182  * Tasks can have a task-specific value requested from user-space, track
1183  * within each bucket the maximum value for tasks refcounted in it.
1184  * This "local max aggregation" allows to track the exact "requested" value
1185  * for each bucket when all its RUNNABLE tasks require the same clamp.
1186  */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1187 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1188 				    enum uclamp_id clamp_id)
1189 {
1190 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1191 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1192 	struct uclamp_bucket *bucket;
1193 
1194 	lockdep_assert_held(&rq->lock);
1195 
1196 	/* Update task effective clamp */
1197 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1198 
1199 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1200 	bucket->tasks++;
1201 	uc_se->active = true;
1202 
1203 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1204 
1205 	/*
1206 	 * Local max aggregation: rq buckets always track the max
1207 	 * "requested" clamp value of its RUNNABLE tasks.
1208 	 */
1209 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1210 		bucket->value = uc_se->value;
1211 
1212 	if (uc_se->value > READ_ONCE(uc_rq->value))
1213 		WRITE_ONCE(uc_rq->value, uc_se->value);
1214 }
1215 
1216 /*
1217  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1218  * is released. If this is the last task reference counting the rq's max
1219  * active clamp value, then the rq's clamp value is updated.
1220  *
1221  * Both refcounted tasks and rq's cached clamp values are expected to be
1222  * always valid. If it's detected they are not, as defensive programming,
1223  * enforce the expected state and warn.
1224  */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1225 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1226 				    enum uclamp_id clamp_id)
1227 {
1228 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1229 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1230 	struct uclamp_bucket *bucket;
1231 	unsigned int bkt_clamp;
1232 	unsigned int rq_clamp;
1233 
1234 	lockdep_assert_held(&rq->lock);
1235 
1236 	/*
1237 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1238 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1239 	 *
1240 	 * In this case the uc_se->active flag should be false since no uclamp
1241 	 * accounting was performed at enqueue time and we can just return
1242 	 * here.
1243 	 *
1244 	 * Need to be careful of the following enqeueue/dequeue ordering
1245 	 * problem too
1246 	 *
1247 	 *	enqueue(taskA)
1248 	 *	// sched_uclamp_used gets enabled
1249 	 *	enqueue(taskB)
1250 	 *	dequeue(taskA)
1251 	 *	// Must not decrement bukcet->tasks here
1252 	 *	dequeue(taskB)
1253 	 *
1254 	 * where we could end up with stale data in uc_se and
1255 	 * bucket[uc_se->bucket_id].
1256 	 *
1257 	 * The following check here eliminates the possibility of such race.
1258 	 */
1259 	if (unlikely(!uc_se->active))
1260 		return;
1261 
1262 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1263 
1264 	SCHED_WARN_ON(!bucket->tasks);
1265 	if (likely(bucket->tasks))
1266 		bucket->tasks--;
1267 
1268 	uc_se->active = false;
1269 
1270 	/*
1271 	 * Keep "local max aggregation" simple and accept to (possibly)
1272 	 * overboost some RUNNABLE tasks in the same bucket.
1273 	 * The rq clamp bucket value is reset to its base value whenever
1274 	 * there are no more RUNNABLE tasks refcounting it.
1275 	 */
1276 	if (likely(bucket->tasks))
1277 		return;
1278 
1279 	rq_clamp = READ_ONCE(uc_rq->value);
1280 	/*
1281 	 * Defensive programming: this should never happen. If it happens,
1282 	 * e.g. due to future modification, warn and fixup the expected value.
1283 	 */
1284 	SCHED_WARN_ON(bucket->value > rq_clamp);
1285 	if (bucket->value >= rq_clamp) {
1286 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1287 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1288 	}
1289 }
1290 
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1291 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1292 {
1293 	enum uclamp_id clamp_id;
1294 
1295 	/*
1296 	 * Avoid any overhead until uclamp is actually used by the userspace.
1297 	 *
1298 	 * The condition is constructed such that a NOP is generated when
1299 	 * sched_uclamp_used is disabled.
1300 	 */
1301 	if (!static_branch_unlikely(&sched_uclamp_used))
1302 		return;
1303 
1304 	if (unlikely(!p->sched_class->uclamp_enabled))
1305 		return;
1306 
1307 	for_each_clamp_id(clamp_id)
1308 		uclamp_rq_inc_id(rq, p, clamp_id);
1309 
1310 	/* Reset clamp idle holding when there is one RUNNABLE task */
1311 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1312 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1313 }
1314 
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1315 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1316 {
1317 	enum uclamp_id clamp_id;
1318 
1319 	/*
1320 	 * Avoid any overhead until uclamp is actually used by the userspace.
1321 	 *
1322 	 * The condition is constructed such that a NOP is generated when
1323 	 * sched_uclamp_used is disabled.
1324 	 */
1325 	if (!static_branch_unlikely(&sched_uclamp_used))
1326 		return;
1327 
1328 	if (unlikely(!p->sched_class->uclamp_enabled))
1329 		return;
1330 
1331 	for_each_clamp_id(clamp_id)
1332 		uclamp_rq_dec_id(rq, p, clamp_id);
1333 }
1334 
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1335 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1336 				      enum uclamp_id clamp_id)
1337 {
1338 	if (!p->uclamp[clamp_id].active)
1339 		return;
1340 
1341 	uclamp_rq_dec_id(rq, p, clamp_id);
1342 	uclamp_rq_inc_id(rq, p, clamp_id);
1343 
1344 	/*
1345 	 * Make sure to clear the idle flag if we've transiently reached 0
1346 	 * active tasks on rq.
1347 	 */
1348 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1349 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1350 }
1351 
1352 static inline void
uclamp_update_active(struct task_struct * p)1353 uclamp_update_active(struct task_struct *p)
1354 {
1355 	enum uclamp_id clamp_id;
1356 	struct rq_flags rf;
1357 	struct rq *rq;
1358 
1359 	/*
1360 	 * Lock the task and the rq where the task is (or was) queued.
1361 	 *
1362 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1363 	 * price to pay to safely serialize util_{min,max} updates with
1364 	 * enqueues, dequeues and migration operations.
1365 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1366 	 */
1367 	rq = task_rq_lock(p, &rf);
1368 
1369 	/*
1370 	 * Setting the clamp bucket is serialized by task_rq_lock().
1371 	 * If the task is not yet RUNNABLE and its task_struct is not
1372 	 * affecting a valid clamp bucket, the next time it's enqueued,
1373 	 * it will already see the updated clamp bucket value.
1374 	 */
1375 	for_each_clamp_id(clamp_id)
1376 		uclamp_rq_reinc_id(rq, p, clamp_id);
1377 
1378 	task_rq_unlock(rq, p, &rf);
1379 }
1380 
1381 #ifdef CONFIG_UCLAMP_TASK_GROUP
1382 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1383 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1384 {
1385 	struct css_task_iter it;
1386 	struct task_struct *p;
1387 
1388 	css_task_iter_start(css, 0, &it);
1389 	while ((p = css_task_iter_next(&it)))
1390 		uclamp_update_active(p);
1391 	css_task_iter_end(&it);
1392 }
1393 
1394 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
uclamp_update_root_tg(void)1395 static void uclamp_update_root_tg(void)
1396 {
1397 	struct task_group *tg = &root_task_group;
1398 
1399 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1400 		      sysctl_sched_uclamp_util_min, false);
1401 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1402 		      sysctl_sched_uclamp_util_max, false);
1403 
1404 	rcu_read_lock();
1405 	cpu_util_update_eff(&root_task_group.css);
1406 	rcu_read_unlock();
1407 }
1408 #else
uclamp_update_root_tg(void)1409 static void uclamp_update_root_tg(void) { }
1410 #endif
1411 
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1412 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1413 				void *buffer, size_t *lenp, loff_t *ppos)
1414 {
1415 	bool update_root_tg = false;
1416 	int old_min, old_max, old_min_rt;
1417 	int result;
1418 
1419 	mutex_lock(&uclamp_mutex);
1420 	old_min = sysctl_sched_uclamp_util_min;
1421 	old_max = sysctl_sched_uclamp_util_max;
1422 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1423 
1424 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1425 	if (result)
1426 		goto undo;
1427 	if (!write)
1428 		goto done;
1429 
1430 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1431 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1432 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1433 
1434 		result = -EINVAL;
1435 		goto undo;
1436 	}
1437 
1438 	if (old_min != sysctl_sched_uclamp_util_min) {
1439 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1440 			      sysctl_sched_uclamp_util_min, false);
1441 		update_root_tg = true;
1442 	}
1443 	if (old_max != sysctl_sched_uclamp_util_max) {
1444 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1445 			      sysctl_sched_uclamp_util_max, false);
1446 		update_root_tg = true;
1447 	}
1448 
1449 	if (update_root_tg) {
1450 		static_branch_enable(&sched_uclamp_used);
1451 		uclamp_update_root_tg();
1452 	}
1453 
1454 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1455 		static_branch_enable(&sched_uclamp_used);
1456 		uclamp_sync_util_min_rt_default();
1457 	}
1458 
1459 	/*
1460 	 * We update all RUNNABLE tasks only when task groups are in use.
1461 	 * Otherwise, keep it simple and do just a lazy update at each next
1462 	 * task enqueue time.
1463 	 */
1464 
1465 	goto done;
1466 
1467 undo:
1468 	sysctl_sched_uclamp_util_min = old_min;
1469 	sysctl_sched_uclamp_util_max = old_max;
1470 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1471 done:
1472 	mutex_unlock(&uclamp_mutex);
1473 
1474 	return result;
1475 }
1476 
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1477 static int uclamp_validate(struct task_struct *p,
1478 			   const struct sched_attr *attr)
1479 {
1480 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1481 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1482 
1483 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1484 		lower_bound = attr->sched_util_min;
1485 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1486 		upper_bound = attr->sched_util_max;
1487 
1488 	if (lower_bound > upper_bound)
1489 		return -EINVAL;
1490 	if (upper_bound > SCHED_CAPACITY_SCALE)
1491 		return -EINVAL;
1492 
1493 	/*
1494 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1495 	 *
1496 	 * We need to do that here, because enabling static branches is a
1497 	 * blocking operation which obviously cannot be done while holding
1498 	 * scheduler locks.
1499 	 */
1500 	static_branch_enable(&sched_uclamp_used);
1501 
1502 	return 0;
1503 }
1504 
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1505 static void __setscheduler_uclamp(struct task_struct *p,
1506 				  const struct sched_attr *attr)
1507 {
1508 	enum uclamp_id clamp_id;
1509 
1510 	/*
1511 	 * On scheduling class change, reset to default clamps for tasks
1512 	 * without a task-specific value.
1513 	 */
1514 	for_each_clamp_id(clamp_id) {
1515 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1516 
1517 		/* Keep using defined clamps across class changes */
1518 		if (uc_se->user_defined)
1519 			continue;
1520 
1521 		/*
1522 		 * RT by default have a 100% boost value that could be modified
1523 		 * at runtime.
1524 		 */
1525 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1526 			__uclamp_update_util_min_rt_default(p);
1527 		else
1528 			uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1529 
1530 	}
1531 
1532 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1533 		return;
1534 
1535 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1536 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1537 			      attr->sched_util_min, true);
1538 	}
1539 
1540 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1541 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1542 			      attr->sched_util_max, true);
1543 	}
1544 }
1545 
uclamp_fork(struct task_struct * p)1546 static void uclamp_fork(struct task_struct *p)
1547 {
1548 	enum uclamp_id clamp_id;
1549 
1550 	/*
1551 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1552 	 * as the task is still at its early fork stages.
1553 	 */
1554 	for_each_clamp_id(clamp_id)
1555 		p->uclamp[clamp_id].active = false;
1556 
1557 	if (likely(!p->sched_reset_on_fork))
1558 		return;
1559 
1560 	for_each_clamp_id(clamp_id) {
1561 		uclamp_se_set(&p->uclamp_req[clamp_id],
1562 			      uclamp_none(clamp_id), false);
1563 	}
1564 }
1565 
uclamp_post_fork(struct task_struct * p)1566 static void uclamp_post_fork(struct task_struct *p)
1567 {
1568 	uclamp_update_util_min_rt_default(p);
1569 }
1570 
init_uclamp_rq(struct rq * rq)1571 static void __init init_uclamp_rq(struct rq *rq)
1572 {
1573 	enum uclamp_id clamp_id;
1574 	struct uclamp_rq *uc_rq = rq->uclamp;
1575 
1576 	for_each_clamp_id(clamp_id) {
1577 		uc_rq[clamp_id] = (struct uclamp_rq) {
1578 			.value = uclamp_none(clamp_id)
1579 		};
1580 	}
1581 
1582 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1583 }
1584 
init_uclamp(void)1585 static void __init init_uclamp(void)
1586 {
1587 	struct uclamp_se uc_max = {};
1588 	enum uclamp_id clamp_id;
1589 	int cpu;
1590 
1591 	for_each_possible_cpu(cpu)
1592 		init_uclamp_rq(cpu_rq(cpu));
1593 
1594 	for_each_clamp_id(clamp_id) {
1595 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1596 			      uclamp_none(clamp_id), false);
1597 	}
1598 
1599 	/* System defaults allow max clamp values for both indexes */
1600 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1601 	for_each_clamp_id(clamp_id) {
1602 		uclamp_default[clamp_id] = uc_max;
1603 #ifdef CONFIG_UCLAMP_TASK_GROUP
1604 		root_task_group.uclamp_req[clamp_id] = uc_max;
1605 		root_task_group.uclamp[clamp_id] = uc_max;
1606 #endif
1607 	}
1608 }
1609 
1610 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1611 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1612 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1613 static inline int uclamp_validate(struct task_struct *p,
1614 				  const struct sched_attr *attr)
1615 {
1616 	return -EOPNOTSUPP;
1617 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1618 static void __setscheduler_uclamp(struct task_struct *p,
1619 				  const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)1620 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)1621 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)1622 static inline void init_uclamp(void) { }
1623 #endif /* CONFIG_UCLAMP_TASK */
1624 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)1625 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1626 {
1627 	if (!(flags & ENQUEUE_NOCLOCK))
1628 		update_rq_clock(rq);
1629 
1630 	if (!(flags & ENQUEUE_RESTORE)) {
1631 		sched_info_queued(rq, p);
1632 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1633 	}
1634 
1635 	uclamp_rq_inc(rq, p);
1636 	p->sched_class->enqueue_task(rq, p, flags);
1637 }
1638 
dequeue_task(struct rq * rq,struct task_struct * p,int flags)1639 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1640 {
1641 	if (!(flags & DEQUEUE_NOCLOCK))
1642 		update_rq_clock(rq);
1643 
1644 	if (!(flags & DEQUEUE_SAVE)) {
1645 		sched_info_dequeued(rq, p);
1646 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1647 	}
1648 
1649 	uclamp_rq_dec(rq, p);
1650 	p->sched_class->dequeue_task(rq, p, flags);
1651 }
1652 
activate_task(struct rq * rq,struct task_struct * p,int flags)1653 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1654 {
1655 	enqueue_task(rq, p, flags);
1656 
1657 	p->on_rq = TASK_ON_RQ_QUEUED;
1658 }
1659 
deactivate_task(struct rq * rq,struct task_struct * p,int flags)1660 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1661 {
1662 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1663 
1664 	dequeue_task(rq, p, flags);
1665 }
1666 
__normal_prio(int policy,int rt_prio,int nice)1667 static inline int __normal_prio(int policy, int rt_prio, int nice)
1668 {
1669 	int prio;
1670 
1671 	if (dl_policy(policy))
1672 		prio = MAX_DL_PRIO - 1;
1673 	else if (rt_policy(policy))
1674 		prio = MAX_RT_PRIO - 1 - rt_prio;
1675 	else
1676 		prio = NICE_TO_PRIO(nice);
1677 
1678 	return prio;
1679 }
1680 
1681 /*
1682  * Calculate the expected normal priority: i.e. priority
1683  * without taking RT-inheritance into account. Might be
1684  * boosted by interactivity modifiers. Changes upon fork,
1685  * setprio syscalls, and whenever the interactivity
1686  * estimator recalculates.
1687  */
normal_prio(struct task_struct * p)1688 static inline int normal_prio(struct task_struct *p)
1689 {
1690 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
1691 }
1692 
1693 /*
1694  * Calculate the current priority, i.e. the priority
1695  * taken into account by the scheduler. This value might
1696  * be boosted by RT tasks, or might be boosted by
1697  * interactivity modifiers. Will be RT if the task got
1698  * RT-boosted. If not then it returns p->normal_prio.
1699  */
effective_prio(struct task_struct * p)1700 static int effective_prio(struct task_struct *p)
1701 {
1702 	p->normal_prio = normal_prio(p);
1703 	/*
1704 	 * If we are RT tasks or we were boosted to RT priority,
1705 	 * keep the priority unchanged. Otherwise, update priority
1706 	 * to the normal priority:
1707 	 */
1708 	if (!rt_prio(p->prio))
1709 		return p->normal_prio;
1710 	return p->prio;
1711 }
1712 
1713 /**
1714  * task_curr - is this task currently executing on a CPU?
1715  * @p: the task in question.
1716  *
1717  * Return: 1 if the task is currently executing. 0 otherwise.
1718  */
task_curr(const struct task_struct * p)1719 inline int task_curr(const struct task_struct *p)
1720 {
1721 	return cpu_curr(task_cpu(p)) == p;
1722 }
1723 
1724 /*
1725  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1726  * use the balance_callback list if you want balancing.
1727  *
1728  * this means any call to check_class_changed() must be followed by a call to
1729  * balance_callback().
1730  */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)1731 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1732 				       const struct sched_class *prev_class,
1733 				       int oldprio)
1734 {
1735 	if (prev_class != p->sched_class) {
1736 		if (prev_class->switched_from)
1737 			prev_class->switched_from(rq, p);
1738 
1739 		p->sched_class->switched_to(rq, p);
1740 	} else if (oldprio != p->prio || dl_task(p))
1741 		p->sched_class->prio_changed(rq, p, oldprio);
1742 }
1743 
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)1744 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1745 {
1746 	if (p->sched_class == rq->curr->sched_class)
1747 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1748 	else if (p->sched_class > rq->curr->sched_class)
1749 		resched_curr(rq);
1750 
1751 	/*
1752 	 * A queue event has occurred, and we're going to schedule.  In
1753 	 * this case, we can save a useless back to back clock update.
1754 	 */
1755 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1756 		rq_clock_skip_update(rq);
1757 }
1758 
1759 #ifdef CONFIG_SMP
1760 
1761 /*
1762  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1763  * __set_cpus_allowed_ptr() and select_fallback_rq().
1764  */
is_cpu_allowed(struct task_struct * p,int cpu)1765 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1766 {
1767 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1768 		return false;
1769 
1770 	if (is_per_cpu_kthread(p))
1771 		return cpu_online(cpu);
1772 
1773 	return cpu_active(cpu);
1774 }
1775 
1776 /*
1777  * This is how migration works:
1778  *
1779  * 1) we invoke migration_cpu_stop() on the target CPU using
1780  *    stop_one_cpu().
1781  * 2) stopper starts to run (implicitly forcing the migrated thread
1782  *    off the CPU)
1783  * 3) it checks whether the migrated task is still in the wrong runqueue.
1784  * 4) if it's in the wrong runqueue then the migration thread removes
1785  *    it and puts it into the right queue.
1786  * 5) stopper completes and stop_one_cpu() returns and the migration
1787  *    is done.
1788  */
1789 
1790 /*
1791  * move_queued_task - move a queued task to new rq.
1792  *
1793  * Returns (locked) new rq. Old rq's lock is released.
1794  */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)1795 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1796 				   struct task_struct *p, int new_cpu)
1797 {
1798 	lockdep_assert_held(&rq->lock);
1799 
1800 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1801 #ifdef CONFIG_SCHED_WALT
1802 	double_lock_balance(rq, cpu_rq(new_cpu));
1803 	if (!(rq->clock_update_flags & RQCF_UPDATED))
1804 		update_rq_clock(rq);
1805 #endif
1806 	set_task_cpu(p, new_cpu);
1807 #ifdef CONFIG_SCHED_WALT
1808 	double_rq_unlock(cpu_rq(new_cpu), rq);
1809 #else
1810 	rq_unlock(rq, rf);
1811 #endif
1812 
1813 	rq = cpu_rq(new_cpu);
1814 
1815 	rq_lock(rq, rf);
1816 	BUG_ON(task_cpu(p) != new_cpu);
1817 	activate_task(rq, p, 0);
1818 	check_preempt_curr(rq, p, 0);
1819 
1820 	return rq;
1821 }
1822 
1823 struct migration_arg {
1824 	struct task_struct *task;
1825 	int dest_cpu;
1826 };
1827 
1828 /*
1829  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1830  * this because either it can't run here any more (set_cpus_allowed()
1831  * away from this CPU, or CPU going down), or because we're
1832  * attempting to rebalance this task on exec (sched_exec).
1833  *
1834  * So we race with normal scheduler movements, but that's OK, as long
1835  * as the task is no longer on this CPU.
1836  */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)1837 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1838 				 struct task_struct *p, int dest_cpu)
1839 {
1840 	/* Affinity changed (again). */
1841 	if (!is_cpu_allowed(p, dest_cpu))
1842 		return rq;
1843 
1844 	update_rq_clock(rq);
1845 	rq = move_queued_task(rq, rf, p, dest_cpu);
1846 
1847 	return rq;
1848 }
1849 
1850 /*
1851  * migration_cpu_stop - this will be executed by a highprio stopper thread
1852  * and performs thread migration by bumping thread off CPU then
1853  * 'pushing' onto another runqueue.
1854  */
migration_cpu_stop(void * data)1855 static int migration_cpu_stop(void *data)
1856 {
1857 	struct migration_arg *arg = data;
1858 	struct task_struct *p = arg->task;
1859 	struct rq *rq = this_rq();
1860 	struct rq_flags rf;
1861 
1862 	/*
1863 	 * The original target CPU might have gone down and we might
1864 	 * be on another CPU but it doesn't matter.
1865 	 */
1866 	local_irq_disable();
1867 	/*
1868 	 * We need to explicitly wake pending tasks before running
1869 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1870 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1871 	 */
1872 	flush_smp_call_function_from_idle();
1873 
1874 	raw_spin_lock(&p->pi_lock);
1875 	rq_lock(rq, &rf);
1876 	/*
1877 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1878 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1879 	 * we're holding p->pi_lock.
1880 	 */
1881 	if (task_rq(p) == rq) {
1882 		if (task_on_rq_queued(p))
1883 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1884 		else
1885 			p->wake_cpu = arg->dest_cpu;
1886 	}
1887 	rq_unlock(rq, &rf);
1888 	raw_spin_unlock(&p->pi_lock);
1889 
1890 	local_irq_enable();
1891 	return 0;
1892 }
1893 
1894 /*
1895  * sched_class::set_cpus_allowed must do the below, but is not required to
1896  * actually call this function.
1897  */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1898 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1899 {
1900 	cpumask_copy(&p->cpus_mask, new_mask);
1901 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1902 }
1903 
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1904 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1905 {
1906 	struct rq *rq = task_rq(p);
1907 	bool queued, running;
1908 
1909 	lockdep_assert_held(&p->pi_lock);
1910 
1911 	queued = task_on_rq_queued(p);
1912 	running = task_current(rq, p);
1913 
1914 	if (queued) {
1915 		/*
1916 		 * Because __kthread_bind() calls this on blocked tasks without
1917 		 * holding rq->lock.
1918 		 */
1919 		lockdep_assert_held(&rq->lock);
1920 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1921 	}
1922 	if (running)
1923 		put_prev_task(rq, p);
1924 
1925 	p->sched_class->set_cpus_allowed(p, new_mask);
1926 
1927 	if (queued)
1928 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1929 	if (running)
1930 		set_next_task(rq, p);
1931 }
1932 
1933 /*
1934  * Change a given task's CPU affinity. Migrate the thread to a
1935  * proper CPU and schedule it away if the CPU it's executing on
1936  * is removed from the allowed bitmask.
1937  *
1938  * NOTE: the caller must have a valid reference to the task, the
1939  * task must not exit() & deallocate itself prematurely. The
1940  * call is not atomic; no spinlocks may be held.
1941  */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1942 static int __set_cpus_allowed_ptr(struct task_struct *p,
1943 				  const struct cpumask *new_mask, bool check)
1944 {
1945 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1946 	unsigned int dest_cpu;
1947 	struct rq_flags rf;
1948 	struct rq *rq;
1949 	int ret = 0;
1950 #ifdef CONFIG_CPU_ISOLATION_OPT
1951 	cpumask_t allowed_mask;
1952 #endif
1953 
1954 	rq = task_rq_lock(p, &rf);
1955 	update_rq_clock(rq);
1956 
1957 	if (p->flags & PF_KTHREAD) {
1958 		/*
1959 		 * Kernel threads are allowed on online && !active CPUs
1960 		 */
1961 		cpu_valid_mask = cpu_online_mask;
1962 	}
1963 
1964 	/*
1965 	 * Must re-check here, to close a race against __kthread_bind(),
1966 	 * sched_setaffinity() is not guaranteed to observe the flag.
1967 	 */
1968 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1969 		ret = -EINVAL;
1970 		goto out;
1971 	}
1972 
1973 	if (cpumask_equal(&p->cpus_mask, new_mask))
1974 		goto out;
1975 
1976 #ifdef CONFIG_CPU_ISOLATION_OPT
1977 	cpumask_andnot(&allowed_mask, new_mask, cpu_isolated_mask);
1978 	cpumask_and(&allowed_mask, &allowed_mask, cpu_valid_mask);
1979 
1980 	dest_cpu = cpumask_any(&allowed_mask);
1981 	if (dest_cpu >= nr_cpu_ids) {
1982 		cpumask_and(&allowed_mask, cpu_valid_mask, new_mask);
1983 		dest_cpu = cpumask_any(&allowed_mask);
1984 		if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1985 			ret = -EINVAL;
1986 			goto out;
1987 		}
1988 	}
1989 #else
1990 	/*
1991 	 * Picking a ~random cpu helps in cases where we are changing affinity
1992 	 * for groups of tasks (ie. cpuset), so that load balancing is not
1993 	 * immediately required to distribute the tasks within their new mask.
1994 	 */
1995 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1996 	if (dest_cpu >= nr_cpu_ids) {
1997 		ret = -EINVAL;
1998 		goto out;
1999 	}
2000 #endif
2001 
2002 	do_set_cpus_allowed(p, new_mask);
2003 
2004 	if (p->flags & PF_KTHREAD) {
2005 		/*
2006 		 * For kernel threads that do indeed end up on online &&
2007 		 * !active we want to ensure they are strict per-CPU threads.
2008 		 */
2009 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
2010 			!cpumask_intersects(new_mask, cpu_active_mask) &&
2011 			p->nr_cpus_allowed != 1);
2012 	}
2013 
2014 	/* Can the task run on the task's current CPU? If so, we're done */
2015 #ifdef CONFIG_CPU_ISOLATION_OPT
2016 	if (cpumask_test_cpu(task_cpu(p), &allowed_mask))
2017 		goto out;
2018 #else
2019 	if (cpumask_test_cpu(task_cpu(p), new_mask))
2020 		goto out;
2021 #endif
2022 
2023 	if (task_running(rq, p) || p->state == TASK_WAKING) {
2024 		struct migration_arg arg = { p, dest_cpu };
2025 		/* Need help from migration thread: drop lock and wait. */
2026 		task_rq_unlock(rq, p, &rf);
2027 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2028 		return 0;
2029 	} else if (task_on_rq_queued(p)) {
2030 		/*
2031 		 * OK, since we're going to drop the lock immediately
2032 		 * afterwards anyway.
2033 		 */
2034 		rq = move_queued_task(rq, &rf, p, dest_cpu);
2035 	}
2036 out:
2037 	task_rq_unlock(rq, p, &rf);
2038 
2039 	return ret;
2040 }
2041 
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2042 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2043 {
2044 	return __set_cpus_allowed_ptr(p, new_mask, false);
2045 }
2046 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2047 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)2048 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2049 {
2050 #ifdef CONFIG_SCHED_DEBUG
2051 	/*
2052 	 * We should never call set_task_cpu() on a blocked task,
2053 	 * ttwu() will sort out the placement.
2054 	 */
2055 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2056 			!p->on_rq);
2057 
2058 	/*
2059 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2060 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2061 	 * time relying on p->on_rq.
2062 	 */
2063 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
2064 		     p->sched_class == &fair_sched_class &&
2065 		     (p->on_rq && !task_on_rq_migrating(p)));
2066 
2067 #ifdef CONFIG_LOCKDEP
2068 	/*
2069 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2070 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2071 	 *
2072 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2073 	 * see task_group().
2074 	 *
2075 	 * Furthermore, all task_rq users should acquire both locks, see
2076 	 * task_rq_lock().
2077 	 */
2078 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2079 				      lockdep_is_held(&task_rq(p)->lock)));
2080 #endif
2081 	/*
2082 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2083 	 */
2084 	WARN_ON_ONCE(!cpu_online(new_cpu));
2085 #endif
2086 
2087 	trace_sched_migrate_task(p, new_cpu);
2088 
2089 	if (task_cpu(p) != new_cpu) {
2090 		if (p->sched_class->migrate_task_rq)
2091 			p->sched_class->migrate_task_rq(p, new_cpu);
2092 		p->se.nr_migrations++;
2093 		rseq_migrate(p);
2094 		perf_event_task_migrate(p);
2095 		fixup_busy_time(p, new_cpu);
2096 	}
2097 
2098 	__set_task_cpu(p, new_cpu);
2099 }
2100 
2101 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)2102 static void __migrate_swap_task(struct task_struct *p, int cpu)
2103 {
2104 	if (task_on_rq_queued(p)) {
2105 		struct rq *src_rq, *dst_rq;
2106 		struct rq_flags srf, drf;
2107 
2108 		src_rq = task_rq(p);
2109 		dst_rq = cpu_rq(cpu);
2110 
2111 		rq_pin_lock(src_rq, &srf);
2112 		rq_pin_lock(dst_rq, &drf);
2113 
2114 		deactivate_task(src_rq, p, 0);
2115 		set_task_cpu(p, cpu);
2116 		activate_task(dst_rq, p, 0);
2117 		check_preempt_curr(dst_rq, p, 0);
2118 
2119 		rq_unpin_lock(dst_rq, &drf);
2120 		rq_unpin_lock(src_rq, &srf);
2121 
2122 	} else {
2123 		/*
2124 		 * Task isn't running anymore; make it appear like we migrated
2125 		 * it before it went to sleep. This means on wakeup we make the
2126 		 * previous CPU our target instead of where it really is.
2127 		 */
2128 		p->wake_cpu = cpu;
2129 	}
2130 }
2131 
2132 struct migration_swap_arg {
2133 	struct task_struct *src_task, *dst_task;
2134 	int src_cpu, dst_cpu;
2135 };
2136 
migrate_swap_stop(void * data)2137 static int migrate_swap_stop(void *data)
2138 {
2139 	struct migration_swap_arg *arg = data;
2140 	struct rq *src_rq, *dst_rq;
2141 	int ret = -EAGAIN;
2142 
2143 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2144 		return -EAGAIN;
2145 
2146 	src_rq = cpu_rq(arg->src_cpu);
2147 	dst_rq = cpu_rq(arg->dst_cpu);
2148 
2149 	double_raw_lock(&arg->src_task->pi_lock,
2150 			&arg->dst_task->pi_lock);
2151 	double_rq_lock(src_rq, dst_rq);
2152 
2153 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2154 		goto unlock;
2155 
2156 	if (task_cpu(arg->src_task) != arg->src_cpu)
2157 		goto unlock;
2158 
2159 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2160 		goto unlock;
2161 
2162 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2163 		goto unlock;
2164 
2165 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2166 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2167 
2168 	ret = 0;
2169 
2170 unlock:
2171 	double_rq_unlock(src_rq, dst_rq);
2172 	raw_spin_unlock(&arg->dst_task->pi_lock);
2173 	raw_spin_unlock(&arg->src_task->pi_lock);
2174 
2175 	return ret;
2176 }
2177 
2178 /*
2179  * Cross migrate two tasks
2180  */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)2181 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2182 		int target_cpu, int curr_cpu)
2183 {
2184 	struct migration_swap_arg arg;
2185 	int ret = -EINVAL;
2186 
2187 	arg = (struct migration_swap_arg){
2188 		.src_task = cur,
2189 		.src_cpu = curr_cpu,
2190 		.dst_task = p,
2191 		.dst_cpu = target_cpu,
2192 	};
2193 
2194 	if (arg.src_cpu == arg.dst_cpu)
2195 		goto out;
2196 
2197 	/*
2198 	 * These three tests are all lockless; this is OK since all of them
2199 	 * will be re-checked with proper locks held further down the line.
2200 	 */
2201 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2202 		goto out;
2203 
2204 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2205 		goto out;
2206 
2207 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2208 		goto out;
2209 
2210 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2211 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2212 
2213 out:
2214 	return ret;
2215 }
2216 #endif /* CONFIG_NUMA_BALANCING */
2217 
2218 /*
2219  * wait_task_inactive - wait for a thread to unschedule.
2220  *
2221  * If @match_state is nonzero, it's the @p->state value just checked and
2222  * not expected to change.  If it changes, i.e. @p might have woken up,
2223  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2224  * we return a positive number (its total switch count).  If a second call
2225  * a short while later returns the same number, the caller can be sure that
2226  * @p has remained unscheduled the whole time.
2227  *
2228  * The caller must ensure that the task *will* unschedule sometime soon,
2229  * else this function might spin for a *long* time. This function can't
2230  * be called with interrupts off, or it may introduce deadlock with
2231  * smp_call_function() if an IPI is sent by the same process we are
2232  * waiting to become inactive.
2233  */
wait_task_inactive(struct task_struct * p,long match_state)2234 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2235 {
2236 	int running, queued;
2237 	struct rq_flags rf;
2238 	unsigned long ncsw;
2239 	struct rq *rq;
2240 
2241 	for (;;) {
2242 		/*
2243 		 * We do the initial early heuristics without holding
2244 		 * any task-queue locks at all. We'll only try to get
2245 		 * the runqueue lock when things look like they will
2246 		 * work out!
2247 		 */
2248 		rq = task_rq(p);
2249 
2250 		/*
2251 		 * If the task is actively running on another CPU
2252 		 * still, just relax and busy-wait without holding
2253 		 * any locks.
2254 		 *
2255 		 * NOTE! Since we don't hold any locks, it's not
2256 		 * even sure that "rq" stays as the right runqueue!
2257 		 * But we don't care, since "task_running()" will
2258 		 * return false if the runqueue has changed and p
2259 		 * is actually now running somewhere else!
2260 		 */
2261 		while (task_running(rq, p)) {
2262 			if (match_state && unlikely(p->state != match_state))
2263 				return 0;
2264 			cpu_relax();
2265 		}
2266 
2267 		/*
2268 		 * Ok, time to look more closely! We need the rq
2269 		 * lock now, to be *sure*. If we're wrong, we'll
2270 		 * just go back and repeat.
2271 		 */
2272 		rq = task_rq_lock(p, &rf);
2273 		trace_sched_wait_task(p);
2274 		running = task_running(rq, p);
2275 		queued = task_on_rq_queued(p);
2276 		ncsw = 0;
2277 		if (!match_state || p->state == match_state)
2278 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2279 		task_rq_unlock(rq, p, &rf);
2280 
2281 		/*
2282 		 * If it changed from the expected state, bail out now.
2283 		 */
2284 		if (unlikely(!ncsw))
2285 			break;
2286 
2287 		/*
2288 		 * Was it really running after all now that we
2289 		 * checked with the proper locks actually held?
2290 		 *
2291 		 * Oops. Go back and try again..
2292 		 */
2293 		if (unlikely(running)) {
2294 			cpu_relax();
2295 			continue;
2296 		}
2297 
2298 		/*
2299 		 * It's not enough that it's not actively running,
2300 		 * it must be off the runqueue _entirely_, and not
2301 		 * preempted!
2302 		 *
2303 		 * So if it was still runnable (but just not actively
2304 		 * running right now), it's preempted, and we should
2305 		 * yield - it could be a while.
2306 		 */
2307 		if (unlikely(queued)) {
2308 			ktime_t to = NSEC_PER_SEC / HZ;
2309 
2310 			set_current_state(TASK_UNINTERRUPTIBLE);
2311 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2312 			continue;
2313 		}
2314 
2315 		/*
2316 		 * Ahh, all good. It wasn't running, and it wasn't
2317 		 * runnable, which means that it will never become
2318 		 * running in the future either. We're all done!
2319 		 */
2320 		break;
2321 	}
2322 
2323 	return ncsw;
2324 }
2325 
2326 /***
2327  * kick_process - kick a running thread to enter/exit the kernel
2328  * @p: the to-be-kicked thread
2329  *
2330  * Cause a process which is running on another CPU to enter
2331  * kernel-mode, without any delay. (to get signals handled.)
2332  *
2333  * NOTE: this function doesn't have to take the runqueue lock,
2334  * because all it wants to ensure is that the remote task enters
2335  * the kernel. If the IPI races and the task has been migrated
2336  * to another CPU then no harm is done and the purpose has been
2337  * achieved as well.
2338  */
kick_process(struct task_struct * p)2339 void kick_process(struct task_struct *p)
2340 {
2341 	int cpu;
2342 
2343 	preempt_disable();
2344 	cpu = task_cpu(p);
2345 	if ((cpu != smp_processor_id()) && task_curr(p))
2346 		smp_send_reschedule(cpu);
2347 	preempt_enable();
2348 }
2349 EXPORT_SYMBOL_GPL(kick_process);
2350 
2351 /*
2352  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2353  *
2354  * A few notes on cpu_active vs cpu_online:
2355  *
2356  *  - cpu_active must be a subset of cpu_online
2357  *
2358  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2359  *    see __set_cpus_allowed_ptr(). At this point the newly online
2360  *    CPU isn't yet part of the sched domains, and balancing will not
2361  *    see it.
2362  *
2363  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2364  *    avoid the load balancer to place new tasks on the to be removed
2365  *    CPU. Existing tasks will remain running there and will be taken
2366  *    off.
2367  *
2368  * This means that fallback selection must not select !active CPUs.
2369  * And can assume that any active CPU must be online. Conversely
2370  * select_task_rq() below may allow selection of !active CPUs in order
2371  * to satisfy the above rules.
2372  */
2373 #ifdef CONFIG_CPU_ISOLATION_OPT
select_fallback_rq(int cpu,struct task_struct * p,bool allow_iso)2374 static int select_fallback_rq(int cpu, struct task_struct *p, bool allow_iso)
2375 #else
2376 static int select_fallback_rq(int cpu, struct task_struct *p)
2377 #endif
2378 {
2379 	int nid = cpu_to_node(cpu);
2380 	const struct cpumask *nodemask = NULL;
2381 	enum { cpuset, possible, fail, bug } state = cpuset;
2382 	int dest_cpu;
2383 #ifdef CONFIG_CPU_ISOLATION_OPT
2384 	int isolated_candidate = -1;
2385 #endif
2386 
2387 	/*
2388 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2389 	 * will return -1. There is no CPU on the node, and we should
2390 	 * select the CPU on the other node.
2391 	 */
2392 	if (nid != -1) {
2393 		nodemask = cpumask_of_node(nid);
2394 
2395 		/* Look for allowed, online CPU in same node. */
2396 		for_each_cpu(dest_cpu, nodemask) {
2397 			if (!cpu_active(dest_cpu))
2398 				continue;
2399 			if (cpu_isolated(dest_cpu))
2400 				continue;
2401 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2402 				return dest_cpu;
2403 		}
2404 	}
2405 
2406 	for (;;) {
2407 		/* Any allowed, online CPU? */
2408 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2409 			if (!is_cpu_allowed(p, dest_cpu))
2410 				continue;
2411 #ifdef CONFIG_CPU_ISOLATION_OPT
2412 			if (cpu_isolated(dest_cpu)) {
2413 				if (allow_iso)
2414 					isolated_candidate = dest_cpu;
2415 				continue;
2416 			}
2417 			goto out;
2418 		}
2419 
2420 		if (isolated_candidate != -1) {
2421 			dest_cpu = isolated_candidate;
2422 #endif
2423 			goto out;
2424 		}
2425 
2426 		/* No more Mr. Nice Guy. */
2427 		switch (state) {
2428 		case cpuset:
2429 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2430 				cpuset_cpus_allowed_fallback(p);
2431 				state = possible;
2432 				break;
2433 			}
2434 			fallthrough;
2435 		case possible:
2436 			do_set_cpus_allowed(p, cpu_possible_mask);
2437 			state = fail;
2438 			break;
2439 
2440 		case fail:
2441 #ifdef CONFIG_CPU_ISOLATION_OPT
2442 			allow_iso = true;
2443 			state = bug;
2444 			break;
2445 #else
2446 			/* fall through; */
2447 #endif
2448 
2449 		case bug:
2450 			BUG();
2451 			break;
2452 		}
2453 	}
2454 
2455 out:
2456 	if (state != cpuset) {
2457 		/*
2458 		 * Don't tell them about moving exiting tasks or
2459 		 * kernel threads (both mm NULL), since they never
2460 		 * leave kernel.
2461 		 */
2462 		if (p->mm && printk_ratelimit()) {
2463 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2464 					task_pid_nr(p), p->comm, cpu);
2465 		}
2466 	}
2467 
2468 	return dest_cpu;
2469 }
2470 
2471 /*
2472  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2473  */
2474 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)2475 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2476 {
2477 #ifdef CONFIG_CPU_ISOLATION_OPT
2478 	bool allow_isolated = (p->flags & PF_KTHREAD);
2479 #endif
2480 
2481 	lockdep_assert_held(&p->pi_lock);
2482 
2483 	if (p->nr_cpus_allowed > 1)
2484 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2485 	else
2486 		cpu = cpumask_any(p->cpus_ptr);
2487 
2488 	/*
2489 	 * In order not to call set_task_cpu() on a blocking task we need
2490 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2491 	 * CPU.
2492 	 *
2493 	 * Since this is common to all placement strategies, this lives here.
2494 	 *
2495 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2496 	 *   not worry about this generic constraint ]
2497 	 */
2498 #ifdef CONFIG_CPU_ISOLATION_OPT
2499 	if (unlikely(!is_cpu_allowed(p, cpu)) ||
2500 			(cpu_isolated(cpu) && !allow_isolated))
2501 		cpu = select_fallback_rq(task_cpu(p), p, allow_isolated);
2502 #else
2503 	if (unlikely(!is_cpu_allowed(p, cpu)))
2504 		cpu = select_fallback_rq(task_cpu(p), p);
2505 #endif
2506 
2507 	return cpu;
2508 }
2509 
sched_set_stop_task(int cpu,struct task_struct * stop)2510 void sched_set_stop_task(int cpu, struct task_struct *stop)
2511 {
2512 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2513 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2514 
2515 	if (stop) {
2516 		/*
2517 		 * Make it appear like a SCHED_FIFO task, its something
2518 		 * userspace knows about and won't get confused about.
2519 		 *
2520 		 * Also, it will make PI more or less work without too
2521 		 * much confusion -- but then, stop work should not
2522 		 * rely on PI working anyway.
2523 		 */
2524 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2525 
2526 		stop->sched_class = &stop_sched_class;
2527 	}
2528 
2529 	cpu_rq(cpu)->stop = stop;
2530 
2531 	if (old_stop) {
2532 		/*
2533 		 * Reset it back to a normal scheduling class so that
2534 		 * it can die in pieces.
2535 		 */
2536 		old_stop->sched_class = &rt_sched_class;
2537 	}
2538 }
2539 
2540 #else
2541 
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)2542 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2543 					 const struct cpumask *new_mask, bool check)
2544 {
2545 	return set_cpus_allowed_ptr(p, new_mask);
2546 }
2547 
2548 #endif /* CONFIG_SMP */
2549 
2550 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)2551 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2552 {
2553 	struct rq *rq;
2554 
2555 	if (!schedstat_enabled())
2556 		return;
2557 
2558 	rq = this_rq();
2559 
2560 #ifdef CONFIG_SMP
2561 	if (cpu == rq->cpu) {
2562 		__schedstat_inc(rq->ttwu_local);
2563 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2564 	} else {
2565 		struct sched_domain *sd;
2566 
2567 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2568 		rcu_read_lock();
2569 		for_each_domain(rq->cpu, sd) {
2570 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2571 				__schedstat_inc(sd->ttwu_wake_remote);
2572 				break;
2573 			}
2574 		}
2575 		rcu_read_unlock();
2576 	}
2577 
2578 	if (wake_flags & WF_MIGRATED)
2579 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2580 #endif /* CONFIG_SMP */
2581 
2582 	__schedstat_inc(rq->ttwu_count);
2583 	__schedstat_inc(p->se.statistics.nr_wakeups);
2584 
2585 	if (wake_flags & WF_SYNC)
2586 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2587 }
2588 
2589 /*
2590  * Mark the task runnable and perform wakeup-preemption.
2591  */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2592 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2593 			   struct rq_flags *rf)
2594 {
2595 	check_preempt_curr(rq, p, wake_flags);
2596 	p->state = TASK_RUNNING;
2597 	trace_sched_wakeup(p);
2598 
2599 #ifdef CONFIG_SMP
2600 	if (p->sched_class->task_woken) {
2601 		/*
2602 		 * Our task @p is fully woken up and running; so its safe to
2603 		 * drop the rq->lock, hereafter rq is only used for statistics.
2604 		 */
2605 		rq_unpin_lock(rq, rf);
2606 		p->sched_class->task_woken(rq, p);
2607 		rq_repin_lock(rq, rf);
2608 	}
2609 
2610 	if (rq->idle_stamp) {
2611 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2612 		u64 max = 2*rq->max_idle_balance_cost;
2613 
2614 		update_avg(&rq->avg_idle, delta);
2615 
2616 		if (rq->avg_idle > max)
2617 			rq->avg_idle = max;
2618 
2619 		rq->idle_stamp = 0;
2620 	}
2621 #endif
2622 }
2623 
2624 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2625 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2626 		 struct rq_flags *rf)
2627 {
2628 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2629 
2630 	lockdep_assert_held(&rq->lock);
2631 
2632 	if (p->sched_contributes_to_load)
2633 		rq->nr_uninterruptible--;
2634 
2635 #ifdef CONFIG_SMP
2636 	if (wake_flags & WF_MIGRATED)
2637 		en_flags |= ENQUEUE_MIGRATED;
2638 	else
2639 #endif
2640 	if (p->in_iowait) {
2641 		delayacct_blkio_end(p);
2642 		atomic_dec(&task_rq(p)->nr_iowait);
2643 	}
2644 
2645 	activate_task(rq, p, en_flags);
2646 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2647 }
2648 
2649 /*
2650  * Consider @p being inside a wait loop:
2651  *
2652  *   for (;;) {
2653  *      set_current_state(TASK_UNINTERRUPTIBLE);
2654  *
2655  *      if (CONDITION)
2656  *         break;
2657  *
2658  *      schedule();
2659  *   }
2660  *   __set_current_state(TASK_RUNNING);
2661  *
2662  * between set_current_state() and schedule(). In this case @p is still
2663  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2664  * an atomic manner.
2665  *
2666  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2667  * then schedule() must still happen and p->state can be changed to
2668  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2669  * need to do a full wakeup with enqueue.
2670  *
2671  * Returns: %true when the wakeup is done,
2672  *          %false otherwise.
2673  */
ttwu_runnable(struct task_struct * p,int wake_flags)2674 static int ttwu_runnable(struct task_struct *p, int wake_flags)
2675 {
2676 	struct rq_flags rf;
2677 	struct rq *rq;
2678 	int ret = 0;
2679 
2680 	rq = __task_rq_lock(p, &rf);
2681 	if (task_on_rq_queued(p)) {
2682 		/* check_preempt_curr() may use rq clock */
2683 		update_rq_clock(rq);
2684 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2685 		ret = 1;
2686 	}
2687 	__task_rq_unlock(rq, &rf);
2688 
2689 	return ret;
2690 }
2691 
2692 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)2693 void sched_ttwu_pending(void *arg)
2694 {
2695 	struct llist_node *llist = arg;
2696 	struct rq *rq = this_rq();
2697 	struct task_struct *p, *t;
2698 	struct rq_flags rf;
2699 
2700 	if (!llist)
2701 		return;
2702 
2703 	/*
2704 	 * rq::ttwu_pending racy indication of out-standing wakeups.
2705 	 * Races such that false-negatives are possible, since they
2706 	 * are shorter lived that false-positives would be.
2707 	 */
2708 	WRITE_ONCE(rq->ttwu_pending, 0);
2709 
2710 	rq_lock_irqsave(rq, &rf);
2711 	update_rq_clock(rq);
2712 
2713 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2714 		if (WARN_ON_ONCE(p->on_cpu))
2715 			smp_cond_load_acquire(&p->on_cpu, !VAL);
2716 
2717 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2718 			set_task_cpu(p, cpu_of(rq));
2719 
2720 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2721 	}
2722 
2723 	rq_unlock_irqrestore(rq, &rf);
2724 }
2725 
send_call_function_single_ipi(int cpu)2726 void send_call_function_single_ipi(int cpu)
2727 {
2728 	struct rq *rq = cpu_rq(cpu);
2729 
2730 	if (!set_nr_if_polling(rq->idle))
2731 		arch_send_call_function_single_ipi(cpu);
2732 	else
2733 		trace_sched_wake_idle_without_ipi(cpu);
2734 }
2735 
2736 /*
2737  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2738  * necessary. The wakee CPU on receipt of the IPI will queue the task
2739  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2740  * of the wakeup instead of the waker.
2741  */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2742 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2743 {
2744 	struct rq *rq = cpu_rq(cpu);
2745 
2746 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2747 
2748 	WRITE_ONCE(rq->ttwu_pending, 1);
2749 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
2750 }
2751 
wake_up_if_idle(int cpu)2752 void wake_up_if_idle(int cpu)
2753 {
2754 	struct rq *rq = cpu_rq(cpu);
2755 	struct rq_flags rf;
2756 
2757 	rcu_read_lock();
2758 
2759 	if (!is_idle_task(rcu_dereference(rq->curr)))
2760 		goto out;
2761 
2762 	if (set_nr_if_polling(rq->idle)) {
2763 		trace_sched_wake_idle_without_ipi(cpu);
2764 	} else {
2765 		rq_lock_irqsave(rq, &rf);
2766 		if (is_idle_task(rq->curr))
2767 			smp_send_reschedule(cpu);
2768 		/* Else CPU is not idle, do nothing here: */
2769 		rq_unlock_irqrestore(rq, &rf);
2770 	}
2771 
2772 out:
2773 	rcu_read_unlock();
2774 }
2775 
cpus_share_cache(int this_cpu,int that_cpu)2776 bool cpus_share_cache(int this_cpu, int that_cpu)
2777 {
2778 	if (this_cpu == that_cpu)
2779 		return true;
2780 
2781 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2782 }
2783 
ttwu_queue_cond(int cpu,int wake_flags)2784 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2785 {
2786 	/*
2787 	 * If the CPU does not share cache, then queue the task on the
2788 	 * remote rqs wakelist to avoid accessing remote data.
2789 	 */
2790 	if (!cpus_share_cache(smp_processor_id(), cpu))
2791 		return true;
2792 
2793 	/*
2794 	 * If the task is descheduling and the only running task on the
2795 	 * CPU then use the wakelist to offload the task activation to
2796 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
2797 	 * nr_running is checked to avoid unnecessary task stacking.
2798 	 *
2799 	 * Note that we can only get here with (wakee) p->on_rq=0,
2800 	 * p->on_cpu can be whatever, we've done the dequeue, so
2801 	 * the wakee has been accounted out of ->nr_running.
2802 	 */
2803 	if ((wake_flags & WF_ON_CPU) && !cpu_rq(cpu)->nr_running)
2804 		return true;
2805 
2806 	return false;
2807 }
2808 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2809 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2810 {
2811 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2812 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
2813 			return false;
2814 
2815 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2816 		__ttwu_queue_wakelist(p, cpu, wake_flags);
2817 		return true;
2818 	}
2819 
2820 	return false;
2821 }
2822 
2823 #else /* !CONFIG_SMP */
2824 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2825 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2826 {
2827 	return false;
2828 }
2829 
2830 #endif /* CONFIG_SMP */
2831 
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)2832 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2833 {
2834 	struct rq *rq = cpu_rq(cpu);
2835 	struct rq_flags rf;
2836 
2837 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
2838 		return;
2839 
2840 	rq_lock(rq, &rf);
2841 	update_rq_clock(rq);
2842 	ttwu_do_activate(rq, p, wake_flags, &rf);
2843 	rq_unlock(rq, &rf);
2844 }
2845 
2846 /*
2847  * Notes on Program-Order guarantees on SMP systems.
2848  *
2849  *  MIGRATION
2850  *
2851  * The basic program-order guarantee on SMP systems is that when a task [t]
2852  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2853  * execution on its new CPU [c1].
2854  *
2855  * For migration (of runnable tasks) this is provided by the following means:
2856  *
2857  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2858  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2859  *     rq(c1)->lock (if not at the same time, then in that order).
2860  *  C) LOCK of the rq(c1)->lock scheduling in task
2861  *
2862  * Release/acquire chaining guarantees that B happens after A and C after B.
2863  * Note: the CPU doing B need not be c0 or c1
2864  *
2865  * Example:
2866  *
2867  *   CPU0            CPU1            CPU2
2868  *
2869  *   LOCK rq(0)->lock
2870  *   sched-out X
2871  *   sched-in Y
2872  *   UNLOCK rq(0)->lock
2873  *
2874  *                                   LOCK rq(0)->lock // orders against CPU0
2875  *                                   dequeue X
2876  *                                   UNLOCK rq(0)->lock
2877  *
2878  *                                   LOCK rq(1)->lock
2879  *                                   enqueue X
2880  *                                   UNLOCK rq(1)->lock
2881  *
2882  *                   LOCK rq(1)->lock // orders against CPU2
2883  *                   sched-out Z
2884  *                   sched-in X
2885  *                   UNLOCK rq(1)->lock
2886  *
2887  *
2888  *  BLOCKING -- aka. SLEEP + WAKEUP
2889  *
2890  * For blocking we (obviously) need to provide the same guarantee as for
2891  * migration. However the means are completely different as there is no lock
2892  * chain to provide order. Instead we do:
2893  *
2894  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
2895  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2896  *
2897  * Example:
2898  *
2899  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2900  *
2901  *   LOCK rq(0)->lock LOCK X->pi_lock
2902  *   dequeue X
2903  *   sched-out X
2904  *   smp_store_release(X->on_cpu, 0);
2905  *
2906  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2907  *                    X->state = WAKING
2908  *                    set_task_cpu(X,2)
2909  *
2910  *                    LOCK rq(2)->lock
2911  *                    enqueue X
2912  *                    X->state = RUNNING
2913  *                    UNLOCK rq(2)->lock
2914  *
2915  *                                          LOCK rq(2)->lock // orders against CPU1
2916  *                                          sched-out Z
2917  *                                          sched-in X
2918  *                                          UNLOCK rq(2)->lock
2919  *
2920  *                    UNLOCK X->pi_lock
2921  *   UNLOCK rq(0)->lock
2922  *
2923  *
2924  * However, for wakeups there is a second guarantee we must provide, namely we
2925  * must ensure that CONDITION=1 done by the caller can not be reordered with
2926  * accesses to the task state; see try_to_wake_up() and set_current_state().
2927  */
2928 
2929 #ifdef CONFIG_SMP
2930 #ifdef CONFIG_SCHED_WALT
2931 /* utility function to update walt signals at wakeup */
walt_try_to_wake_up(struct task_struct * p)2932 static inline void walt_try_to_wake_up(struct task_struct *p)
2933 {
2934 	struct rq *rq = cpu_rq(task_cpu(p));
2935 	struct rq_flags rf;
2936 	u64 wallclock;
2937 
2938 	rq_lock_irqsave(rq, &rf);
2939 	wallclock = sched_ktime_clock();
2940 	update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2941 	update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2942 	rq_unlock_irqrestore(rq, &rf);
2943 }
2944 #else
2945 #define walt_try_to_wake_up(a) {}
2946 #endif
2947 #endif
2948 
2949 /**
2950  * try_to_wake_up - wake up a thread
2951  * @p: the thread to be awakened
2952  * @state: the mask of task states that can be woken
2953  * @wake_flags: wake modifier flags (WF_*)
2954  *
2955  * Conceptually does:
2956  *
2957  *   If (@state & @p->state) @p->state = TASK_RUNNING.
2958  *
2959  * If the task was not queued/runnable, also place it back on a runqueue.
2960  *
2961  * This function is atomic against schedule() which would dequeue the task.
2962  *
2963  * It issues a full memory barrier before accessing @p->state, see the comment
2964  * with set_current_state().
2965  *
2966  * Uses p->pi_lock to serialize against concurrent wake-ups.
2967  *
2968  * Relies on p->pi_lock stabilizing:
2969  *  - p->sched_class
2970  *  - p->cpus_ptr
2971  *  - p->sched_task_group
2972  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2973  *
2974  * Tries really hard to only take one task_rq(p)->lock for performance.
2975  * Takes rq->lock in:
2976  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
2977  *  - ttwu_queue()       -- new rq, for enqueue of the task;
2978  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2979  *
2980  * As a consequence we race really badly with just about everything. See the
2981  * many memory barriers and their comments for details.
2982  *
2983  * Return: %true if @p->state changes (an actual wakeup was done),
2984  *	   %false otherwise.
2985  */
2986 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)2987 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2988 {
2989 	unsigned long flags;
2990 	int cpu, success = 0;
2991 
2992 	preempt_disable();
2993 	if (p == current) {
2994 		/*
2995 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2996 		 * == smp_processor_id()'. Together this means we can special
2997 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
2998 		 * without taking any locks.
2999 		 *
3000 		 * In particular:
3001 		 *  - we rely on Program-Order guarantees for all the ordering,
3002 		 *  - we're serialized against set_special_state() by virtue of
3003 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3004 		 */
3005 		if (!(p->state & state))
3006 			goto out;
3007 
3008 		success = 1;
3009 		trace_sched_waking(p);
3010 		p->state = TASK_RUNNING;
3011 		trace_sched_wakeup(p);
3012 		goto out;
3013 	}
3014 
3015 	/*
3016 	 * If we are going to wake up a thread waiting for CONDITION we
3017 	 * need to ensure that CONDITION=1 done by the caller can not be
3018 	 * reordered with p->state check below. This pairs with smp_store_mb()
3019 	 * in set_current_state() that the waiting thread does.
3020 	 */
3021 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3022 	smp_mb__after_spinlock();
3023 	if (!(p->state & state))
3024 		goto unlock;
3025 
3026 	trace_sched_waking(p);
3027 
3028 	/* We're going to change ->state: */
3029 	success = 1;
3030 
3031 	/*
3032 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3033 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3034 	 * in smp_cond_load_acquire() below.
3035 	 *
3036 	 * sched_ttwu_pending()			try_to_wake_up()
3037 	 *   STORE p->on_rq = 1			  LOAD p->state
3038 	 *   UNLOCK rq->lock
3039 	 *
3040 	 * __schedule() (switch to task 'p')
3041 	 *   LOCK rq->lock			  smp_rmb();
3042 	 *   smp_mb__after_spinlock();
3043 	 *   UNLOCK rq->lock
3044 	 *
3045 	 * [task p]
3046 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3047 	 *
3048 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3049 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3050 	 *
3051 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3052 	 */
3053 	smp_rmb();
3054 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3055 		goto unlock;
3056 
3057 #ifdef CONFIG_SMP
3058 	/*
3059 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3060 	 * possible to, falsely, observe p->on_cpu == 0.
3061 	 *
3062 	 * One must be running (->on_cpu == 1) in order to remove oneself
3063 	 * from the runqueue.
3064 	 *
3065 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3066 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3067 	 *   UNLOCK rq->lock
3068 	 *
3069 	 * __schedule() (put 'p' to sleep)
3070 	 *   LOCK rq->lock			  smp_rmb();
3071 	 *   smp_mb__after_spinlock();
3072 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3073 	 *
3074 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3075 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3076 	 *
3077 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3078 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3079 	 * care about it's own p->state. See the comment in __schedule().
3080 	 */
3081 	smp_acquire__after_ctrl_dep();
3082 
3083 	walt_try_to_wake_up(p);
3084 
3085 	/*
3086 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3087 	 * == 0), which means we need to do an enqueue, change p->state to
3088 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3089 	 * enqueue, such as ttwu_queue_wakelist().
3090 	 */
3091 	p->state = TASK_WAKING;
3092 
3093 	/*
3094 	 * If the owning (remote) CPU is still in the middle of schedule() with
3095 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3096 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3097 	 * let the waker make forward progress. This is safe because IRQs are
3098 	 * disabled and the IPI will deliver after on_cpu is cleared.
3099 	 *
3100 	 * Ensure we load task_cpu(p) after p->on_cpu:
3101 	 *
3102 	 * set_task_cpu(p, cpu);
3103 	 *   STORE p->cpu = @cpu
3104 	 * __schedule() (switch to task 'p')
3105 	 *   LOCK rq->lock
3106 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3107 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3108 	 *
3109 	 * to ensure we observe the correct CPU on which the task is currently
3110 	 * scheduling.
3111 	 */
3112 	if (smp_load_acquire(&p->on_cpu) &&
3113 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3114 		goto unlock;
3115 
3116 	/*
3117 	 * If the owning (remote) CPU is still in the middle of schedule() with
3118 	 * this task as prev, wait until its done referencing the task.
3119 	 *
3120 	 * Pairs with the smp_store_release() in finish_task().
3121 	 *
3122 	 * This ensures that tasks getting woken will be fully ordered against
3123 	 * their previous state and preserve Program Order.
3124 	 */
3125 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3126 
3127 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
3128 	if (task_cpu(p) != cpu) {
3129 		if (p->in_iowait) {
3130 			delayacct_blkio_end(p);
3131 			atomic_dec(&task_rq(p)->nr_iowait);
3132 		}
3133 
3134 		wake_flags |= WF_MIGRATED;
3135 		psi_ttwu_dequeue(p);
3136 		set_task_cpu(p, cpu);
3137 	}
3138 #else
3139 	cpu = task_cpu(p);
3140 #endif /* CONFIG_SMP */
3141 
3142 	ttwu_queue(p, cpu, wake_flags);
3143 unlock:
3144 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3145 out:
3146 	if (success)
3147 		ttwu_stat(p, task_cpu(p), wake_flags);
3148 	preempt_enable();
3149 
3150 	return success;
3151 }
3152 
3153 /**
3154  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3155  * @p: Process for which the function is to be invoked, can be @current.
3156  * @func: Function to invoke.
3157  * @arg: Argument to function.
3158  *
3159  * If the specified task can be quickly locked into a definite state
3160  * (either sleeping or on a given runqueue), arrange to keep it in that
3161  * state while invoking @func(@arg).  This function can use ->on_rq and
3162  * task_curr() to work out what the state is, if required.  Given that
3163  * @func can be invoked with a runqueue lock held, it had better be quite
3164  * lightweight.
3165  *
3166  * Returns:
3167  *	@false if the task slipped out from under the locks.
3168  *	@true if the task was locked onto a runqueue or is sleeping.
3169  *		However, @func can override this by returning @false.
3170  */
try_invoke_on_locked_down_task(struct task_struct * p,bool (* func)(struct task_struct * t,void * arg),void * arg)3171 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3172 {
3173 	struct rq_flags rf;
3174 	bool ret = false;
3175 	struct rq *rq;
3176 
3177 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3178 	if (p->on_rq) {
3179 		rq = __task_rq_lock(p, &rf);
3180 		if (task_rq(p) == rq)
3181 			ret = func(p, arg);
3182 		rq_unlock(rq, &rf);
3183 	} else {
3184 		switch (p->state) {
3185 		case TASK_RUNNING:
3186 		case TASK_WAKING:
3187 			break;
3188 		default:
3189 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3190 			if (!p->on_rq)
3191 				ret = func(p, arg);
3192 		}
3193 	}
3194 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3195 	return ret;
3196 }
3197 
3198 /**
3199  * wake_up_process - Wake up a specific process
3200  * @p: The process to be woken up.
3201  *
3202  * Attempt to wake up the nominated process and move it to the set of runnable
3203  * processes.
3204  *
3205  * Return: 1 if the process was woken up, 0 if it was already running.
3206  *
3207  * This function executes a full memory barrier before accessing the task state.
3208  */
wake_up_process(struct task_struct * p)3209 int wake_up_process(struct task_struct *p)
3210 {
3211 	return try_to_wake_up(p, TASK_NORMAL, 0);
3212 }
3213 EXPORT_SYMBOL(wake_up_process);
3214 
wake_up_state(struct task_struct * p,unsigned int state)3215 int wake_up_state(struct task_struct *p, unsigned int state)
3216 {
3217 	return try_to_wake_up(p, state, 0);
3218 }
3219 
3220 /*
3221  * Perform scheduler related setup for a newly forked process p.
3222  * p is forked by current.
3223  *
3224  * __sched_fork() is basic setup used by init_idle() too:
3225  */
__sched_fork(unsigned long clone_flags,struct task_struct * p)3226 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3227 {
3228 	p->on_rq			= 0;
3229 
3230 	p->se.on_rq			= 0;
3231 	p->se.exec_start		= 0;
3232 	p->se.sum_exec_runtime		= 0;
3233 	p->se.prev_sum_exec_runtime	= 0;
3234 	p->se.nr_migrations		= 0;
3235 	p->se.vruntime			= 0;
3236 	INIT_LIST_HEAD(&p->se.group_node);
3237 
3238 #ifdef CONFIG_FAIR_GROUP_SCHED
3239 	p->se.cfs_rq			= NULL;
3240 #endif
3241 
3242 #ifdef CONFIG_SCHEDSTATS
3243 	/* Even if schedstat is disabled, there should not be garbage */
3244 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3245 #endif
3246 
3247 	RB_CLEAR_NODE(&p->dl.rb_node);
3248 	init_dl_task_timer(&p->dl);
3249 	init_dl_inactive_task_timer(&p->dl);
3250 	__dl_clear_params(p);
3251 
3252 	INIT_LIST_HEAD(&p->rt.run_list);
3253 	p->rt.timeout		= 0;
3254 	p->rt.time_slice	= sched_rr_timeslice;
3255 	p->rt.on_rq		= 0;
3256 	p->rt.on_list		= 0;
3257 
3258 #ifdef CONFIG_PREEMPT_NOTIFIERS
3259 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3260 #endif
3261 
3262 #ifdef CONFIG_COMPACTION
3263 	p->capture_control = NULL;
3264 #endif
3265 	init_numa_balancing(clone_flags, p);
3266 #ifdef CONFIG_SMP
3267 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3268 #endif
3269 #ifdef CONFIG_SCHED_RTG
3270 	p->rtg_depth = 0;
3271 #endif
3272 }
3273 
3274 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3275 
3276 #ifdef CONFIG_NUMA_BALANCING
3277 
set_numabalancing_state(bool enabled)3278 void set_numabalancing_state(bool enabled)
3279 {
3280 	if (enabled)
3281 		static_branch_enable(&sched_numa_balancing);
3282 	else
3283 		static_branch_disable(&sched_numa_balancing);
3284 }
3285 
3286 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3287 int sysctl_numa_balancing(struct ctl_table *table, int write,
3288 			  void *buffer, size_t *lenp, loff_t *ppos)
3289 {
3290 	struct ctl_table t;
3291 	int err;
3292 	int state = static_branch_likely(&sched_numa_balancing);
3293 
3294 	if (write && !capable(CAP_SYS_ADMIN))
3295 		return -EPERM;
3296 
3297 	t = *table;
3298 	t.data = &state;
3299 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3300 	if (err < 0)
3301 		return err;
3302 	if (write)
3303 		set_numabalancing_state(state);
3304 	return err;
3305 }
3306 #endif
3307 #endif
3308 
3309 #ifdef CONFIG_SCHEDSTATS
3310 
3311 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3312 static bool __initdata __sched_schedstats = false;
3313 
set_schedstats(bool enabled)3314 static void set_schedstats(bool enabled)
3315 {
3316 	if (enabled)
3317 		static_branch_enable(&sched_schedstats);
3318 	else
3319 		static_branch_disable(&sched_schedstats);
3320 }
3321 
force_schedstat_enabled(void)3322 void force_schedstat_enabled(void)
3323 {
3324 	if (!schedstat_enabled()) {
3325 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3326 		static_branch_enable(&sched_schedstats);
3327 	}
3328 }
3329 
setup_schedstats(char * str)3330 static int __init setup_schedstats(char *str)
3331 {
3332 	int ret = 0;
3333 	if (!str)
3334 		goto out;
3335 
3336 	/*
3337 	 * This code is called before jump labels have been set up, so we can't
3338 	 * change the static branch directly just yet.  Instead set a temporary
3339 	 * variable so init_schedstats() can do it later.
3340 	 */
3341 	if (!strcmp(str, "enable")) {
3342 		__sched_schedstats = true;
3343 		ret = 1;
3344 	} else if (!strcmp(str, "disable")) {
3345 		__sched_schedstats = false;
3346 		ret = 1;
3347 	}
3348 out:
3349 	if (!ret)
3350 		pr_warn("Unable to parse schedstats=\n");
3351 
3352 	return ret;
3353 }
3354 __setup("schedstats=", setup_schedstats);
3355 
init_schedstats(void)3356 static void __init init_schedstats(void)
3357 {
3358 	set_schedstats(__sched_schedstats);
3359 }
3360 
3361 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3362 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3363 		size_t *lenp, loff_t *ppos)
3364 {
3365 	struct ctl_table t;
3366 	int err;
3367 	int state = static_branch_likely(&sched_schedstats);
3368 
3369 	if (write && !capable(CAP_SYS_ADMIN))
3370 		return -EPERM;
3371 
3372 	t = *table;
3373 	t.data = &state;
3374 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3375 	if (err < 0)
3376 		return err;
3377 	if (write)
3378 		set_schedstats(state);
3379 	return err;
3380 }
3381 #endif /* CONFIG_PROC_SYSCTL */
3382 #else  /* !CONFIG_SCHEDSTATS */
init_schedstats(void)3383 static inline void init_schedstats(void) {}
3384 #endif /* CONFIG_SCHEDSTATS */
3385 
3386 /*
3387  * fork()/clone()-time setup:
3388  */
sched_fork(unsigned long clone_flags,struct task_struct * p)3389 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3390 {
3391 	init_new_task_load(p);
3392 
3393 #ifdef CONFIG_QOS_CTRL
3394 	init_task_qos(p);
3395 #endif
3396 
3397 	__sched_fork(clone_flags, p);
3398 	/*
3399 	 * We mark the process as NEW here. This guarantees that
3400 	 * nobody will actually run it, and a signal or other external
3401 	 * event cannot wake it up and insert it on the runqueue either.
3402 	 */
3403 	p->state = TASK_NEW;
3404 
3405 	/*
3406 	 * Make sure we do not leak PI boosting priority to the child.
3407 	 */
3408 	p->prio = current->normal_prio;
3409 
3410 #ifdef CONFIG_SCHED_LATENCY_NICE
3411 	/* Propagate the parent's latency requirements to the child as well */
3412 	p->latency_prio = current->latency_prio;
3413 #endif
3414 
3415 	uclamp_fork(p);
3416 
3417 	/*
3418 	 * Revert to default priority/policy on fork if requested.
3419 	 */
3420 	if (unlikely(p->sched_reset_on_fork)) {
3421 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3422 			p->policy = SCHED_NORMAL;
3423 #ifdef CONFIG_SCHED_RTG
3424 			if (current->rtg_depth != 0)
3425 				p->static_prio = current->static_prio;
3426 			else
3427 				p->static_prio = NICE_TO_PRIO(0);
3428 #else
3429 			p->static_prio = NICE_TO_PRIO(0);
3430 #endif
3431 			p->rt_priority = 0;
3432 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3433 			p->static_prio = NICE_TO_PRIO(0);
3434 
3435 		p->prio = p->normal_prio = p->static_prio;
3436 		set_load_weight(p);
3437 
3438 #ifdef CONFIG_SCHED_LATENCY_NICE
3439 		p->latency_prio = NICE_TO_LATENCY(0);
3440 		set_latency_weight(p);
3441 #endif
3442 
3443 		/*
3444 		 * We don't need the reset flag anymore after the fork. It has
3445 		 * fulfilled its duty:
3446 		 */
3447 		p->sched_reset_on_fork = 0;
3448 	}
3449 
3450 	if (dl_prio(p->prio))
3451 		return -EAGAIN;
3452 	else if (rt_prio(p->prio))
3453 		p->sched_class = &rt_sched_class;
3454 	else
3455 		p->sched_class = &fair_sched_class;
3456 
3457 	init_entity_runnable_average(&p->se);
3458 
3459 #ifdef CONFIG_SCHED_INFO
3460 	if (likely(sched_info_on()))
3461 		memset(&p->sched_info, 0, sizeof(p->sched_info));
3462 #endif
3463 #if defined(CONFIG_SMP)
3464 	p->on_cpu = 0;
3465 #endif
3466 	init_task_preempt_count(p);
3467 #ifdef CONFIG_SMP
3468 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3469 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3470 #endif
3471 	return 0;
3472 }
3473 
sched_post_fork(struct task_struct * p,struct kernel_clone_args * kargs)3474 void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs)
3475 {
3476 	unsigned long flags;
3477 #ifdef CONFIG_CGROUP_SCHED
3478 	struct task_group *tg;
3479 #endif
3480 
3481 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3482 #ifdef CONFIG_CGROUP_SCHED
3483 	tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
3484 			  struct task_group, css);
3485 	p->sched_task_group = autogroup_task_group(p, tg);
3486 #endif
3487 	rseq_migrate(p);
3488 	/*
3489 	 * We're setting the CPU for the first time, we don't migrate,
3490 	 * so use __set_task_cpu().
3491 	 */
3492 	__set_task_cpu(p, smp_processor_id());
3493 	if (p->sched_class->task_fork)
3494 		p->sched_class->task_fork(p);
3495 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3496 
3497 	uclamp_post_fork(p);
3498 }
3499 
to_ratio(u64 period,u64 runtime)3500 unsigned long to_ratio(u64 period, u64 runtime)
3501 {
3502 	if (runtime == RUNTIME_INF)
3503 		return BW_UNIT;
3504 
3505 	/*
3506 	 * Doing this here saves a lot of checks in all
3507 	 * the calling paths, and returning zero seems
3508 	 * safe for them anyway.
3509 	 */
3510 	if (period == 0)
3511 		return 0;
3512 
3513 	return div64_u64(runtime << BW_SHIFT, period);
3514 }
3515 
3516 /*
3517  * wake_up_new_task - wake up a newly created task for the first time.
3518  *
3519  * This function will do some initial scheduler statistics housekeeping
3520  * that must be done for every newly created context, then puts the task
3521  * on the runqueue and wakes it.
3522  */
wake_up_new_task(struct task_struct * p)3523 void wake_up_new_task(struct task_struct *p)
3524 {
3525 	struct rq_flags rf;
3526 	struct rq *rq;
3527 
3528 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3529 	add_new_task_to_grp(p);
3530 
3531 	p->state = TASK_RUNNING;
3532 #ifdef CONFIG_SMP
3533 	/*
3534 	 * Fork balancing, do it here and not earlier because:
3535 	 *  - cpus_ptr can change in the fork path
3536 	 *  - any previously selected CPU might disappear through hotplug
3537 	 *
3538 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3539 	 * as we're not fully set-up yet.
3540 	 */
3541 	p->recent_used_cpu = task_cpu(p);
3542 	rseq_migrate(p);
3543 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3544 #endif
3545 	rq = __task_rq_lock(p, &rf);
3546 	update_rq_clock(rq);
3547 	post_init_entity_util_avg(p);
3548 
3549 	mark_task_starting(p);
3550 
3551 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3552 	trace_sched_wakeup_new(p);
3553 	check_preempt_curr(rq, p, WF_FORK);
3554 #ifdef CONFIG_SMP
3555 	if (p->sched_class->task_woken) {
3556 		/*
3557 		 * Nothing relies on rq->lock after this, so its fine to
3558 		 * drop it.
3559 		 */
3560 		rq_unpin_lock(rq, &rf);
3561 		p->sched_class->task_woken(rq, p);
3562 		rq_repin_lock(rq, &rf);
3563 	}
3564 #endif
3565 	task_rq_unlock(rq, p, &rf);
3566 }
3567 
3568 #ifdef CONFIG_PREEMPT_NOTIFIERS
3569 
3570 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3571 
preempt_notifier_inc(void)3572 void preempt_notifier_inc(void)
3573 {
3574 	static_branch_inc(&preempt_notifier_key);
3575 }
3576 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3577 
preempt_notifier_dec(void)3578 void preempt_notifier_dec(void)
3579 {
3580 	static_branch_dec(&preempt_notifier_key);
3581 }
3582 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3583 
3584 /**
3585  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3586  * @notifier: notifier struct to register
3587  */
preempt_notifier_register(struct preempt_notifier * notifier)3588 void preempt_notifier_register(struct preempt_notifier *notifier)
3589 {
3590 	if (!static_branch_unlikely(&preempt_notifier_key))
3591 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3592 
3593 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3594 }
3595 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3596 
3597 /**
3598  * preempt_notifier_unregister - no longer interested in preemption notifications
3599  * @notifier: notifier struct to unregister
3600  *
3601  * This is *not* safe to call from within a preemption notifier.
3602  */
preempt_notifier_unregister(struct preempt_notifier * notifier)3603 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3604 {
3605 	hlist_del(&notifier->link);
3606 }
3607 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3608 
__fire_sched_in_preempt_notifiers(struct task_struct * curr)3609 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3610 {
3611 	struct preempt_notifier *notifier;
3612 
3613 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3614 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3615 }
3616 
fire_sched_in_preempt_notifiers(struct task_struct * curr)3617 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3618 {
3619 	if (static_branch_unlikely(&preempt_notifier_key))
3620 		__fire_sched_in_preempt_notifiers(curr);
3621 }
3622 
3623 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3624 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3625 				   struct task_struct *next)
3626 {
3627 	struct preempt_notifier *notifier;
3628 
3629 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3630 		notifier->ops->sched_out(notifier, next);
3631 }
3632 
3633 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3634 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3635 				 struct task_struct *next)
3636 {
3637 	if (static_branch_unlikely(&preempt_notifier_key))
3638 		__fire_sched_out_preempt_notifiers(curr, next);
3639 }
3640 
3641 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3642 
fire_sched_in_preempt_notifiers(struct task_struct * curr)3643 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3644 {
3645 }
3646 
3647 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3648 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3649 				 struct task_struct *next)
3650 {
3651 }
3652 
3653 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3654 
prepare_task(struct task_struct * next)3655 static inline void prepare_task(struct task_struct *next)
3656 {
3657 #ifdef CONFIG_SMP
3658 	/*
3659 	 * Claim the task as running, we do this before switching to it
3660 	 * such that any running task will have this set.
3661 	 *
3662 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3663 	 */
3664 	WRITE_ONCE(next->on_cpu, 1);
3665 #endif
3666 }
3667 
finish_task(struct task_struct * prev)3668 static inline void finish_task(struct task_struct *prev)
3669 {
3670 #ifdef CONFIG_SMP
3671 	/*
3672 	 * This must be the very last reference to @prev from this CPU. After
3673 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3674 	 * must ensure this doesn't happen until the switch is completely
3675 	 * finished.
3676 	 *
3677 	 * In particular, the load of prev->state in finish_task_switch() must
3678 	 * happen before this.
3679 	 *
3680 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3681 	 */
3682 	smp_store_release(&prev->on_cpu, 0);
3683 #endif
3684 }
3685 
3686 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)3687 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3688 {
3689 	/*
3690 	 * Since the runqueue lock will be released by the next
3691 	 * task (which is an invalid locking op but in the case
3692 	 * of the scheduler it's an obvious special-case), so we
3693 	 * do an early lockdep release here:
3694 	 */
3695 	rq_unpin_lock(rq, rf);
3696 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3697 #ifdef CONFIG_DEBUG_SPINLOCK
3698 	/* this is a valid case when another task releases the spinlock */
3699 	rq->lock.owner = next;
3700 #endif
3701 }
3702 
finish_lock_switch(struct rq * rq)3703 static inline void finish_lock_switch(struct rq *rq)
3704 {
3705 	/*
3706 	 * If we are tracking spinlock dependencies then we have to
3707 	 * fix up the runqueue lock - which gets 'carried over' from
3708 	 * prev into current:
3709 	 */
3710 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3711 	raw_spin_unlock_irq(&rq->lock);
3712 }
3713 
3714 /*
3715  * NOP if the arch has not defined these:
3716  */
3717 
3718 #ifndef prepare_arch_switch
3719 # define prepare_arch_switch(next)	do { } while (0)
3720 #endif
3721 
3722 #ifndef finish_arch_post_lock_switch
3723 # define finish_arch_post_lock_switch()	do { } while (0)
3724 #endif
3725 
3726 /**
3727  * prepare_task_switch - prepare to switch tasks
3728  * @rq: the runqueue preparing to switch
3729  * @prev: the current task that is being switched out
3730  * @next: the task we are going to switch to.
3731  *
3732  * This is called with the rq lock held and interrupts off. It must
3733  * be paired with a subsequent finish_task_switch after the context
3734  * switch.
3735  *
3736  * prepare_task_switch sets up locking and calls architecture specific
3737  * hooks.
3738  */
3739 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)3740 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3741 		    struct task_struct *next)
3742 {
3743 	kcov_prepare_switch(prev);
3744 	sched_info_switch(rq, prev, next);
3745 	perf_event_task_sched_out(prev, next);
3746 	rseq_preempt(prev);
3747 	fire_sched_out_preempt_notifiers(prev, next);
3748 	prepare_task(next);
3749 	prepare_arch_switch(next);
3750 }
3751 
3752 /**
3753  * finish_task_switch - clean up after a task-switch
3754  * @prev: the thread we just switched away from.
3755  *
3756  * finish_task_switch must be called after the context switch, paired
3757  * with a prepare_task_switch call before the context switch.
3758  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3759  * and do any other architecture-specific cleanup actions.
3760  *
3761  * Note that we may have delayed dropping an mm in context_switch(). If
3762  * so, we finish that here outside of the runqueue lock. (Doing it
3763  * with the lock held can cause deadlocks; see schedule() for
3764  * details.)
3765  *
3766  * The context switch have flipped the stack from under us and restored the
3767  * local variables which were saved when this task called schedule() in the
3768  * past. prev == current is still correct but we need to recalculate this_rq
3769  * because prev may have moved to another CPU.
3770  */
finish_task_switch(struct task_struct * prev)3771 static struct rq *finish_task_switch(struct task_struct *prev)
3772 	__releases(rq->lock)
3773 {
3774 	struct rq *rq = this_rq();
3775 	struct mm_struct *mm = rq->prev_mm;
3776 	long prev_state;
3777 
3778 	/*
3779 	 * The previous task will have left us with a preempt_count of 2
3780 	 * because it left us after:
3781 	 *
3782 	 *	schedule()
3783 	 *	  preempt_disable();			// 1
3784 	 *	  __schedule()
3785 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3786 	 *
3787 	 * Also, see FORK_PREEMPT_COUNT.
3788 	 */
3789 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3790 		      "corrupted preempt_count: %s/%d/0x%x\n",
3791 		      current->comm, current->pid, preempt_count()))
3792 		preempt_count_set(FORK_PREEMPT_COUNT);
3793 
3794 	rq->prev_mm = NULL;
3795 
3796 	/*
3797 	 * A task struct has one reference for the use as "current".
3798 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3799 	 * schedule one last time. The schedule call will never return, and
3800 	 * the scheduled task must drop that reference.
3801 	 *
3802 	 * We must observe prev->state before clearing prev->on_cpu (in
3803 	 * finish_task), otherwise a concurrent wakeup can get prev
3804 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3805 	 * transition, resulting in a double drop.
3806 	 */
3807 	prev_state = prev->state;
3808 	vtime_task_switch(prev);
3809 	perf_event_task_sched_in(prev, current);
3810 	finish_task(prev);
3811 	finish_lock_switch(rq);
3812 	finish_arch_post_lock_switch();
3813 	kcov_finish_switch(current);
3814 
3815 	fire_sched_in_preempt_notifiers(current);
3816 	/*
3817 	 * When switching through a kernel thread, the loop in
3818 	 * membarrier_{private,global}_expedited() may have observed that
3819 	 * kernel thread and not issued an IPI. It is therefore possible to
3820 	 * schedule between user->kernel->user threads without passing though
3821 	 * switch_mm(). Membarrier requires a barrier after storing to
3822 	 * rq->curr, before returning to userspace, so provide them here:
3823 	 *
3824 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3825 	 *   provided by mmdrop(),
3826 	 * - a sync_core for SYNC_CORE.
3827 	 */
3828 	if (mm) {
3829 		membarrier_mm_sync_core_before_usermode(mm);
3830 		mmdrop(mm);
3831 	}
3832 	if (unlikely(prev_state == TASK_DEAD)) {
3833 		if (prev->sched_class->task_dead)
3834 			prev->sched_class->task_dead(prev);
3835 
3836 		/*
3837 		 * Remove function-return probe instances associated with this
3838 		 * task and put them back on the free list.
3839 		 */
3840 		kprobe_flush_task(prev);
3841 
3842 		/* Task is done with its stack. */
3843 		put_task_stack(prev);
3844 
3845 		put_task_struct_rcu_user(prev);
3846 	}
3847 
3848 	tick_nohz_task_switch();
3849 	return rq;
3850 }
3851 
3852 #ifdef CONFIG_SMP
3853 
3854 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)3855 static void __balance_callback(struct rq *rq)
3856 {
3857 	struct callback_head *head, *next;
3858 	void (*func)(struct rq *rq);
3859 	unsigned long flags;
3860 
3861 	raw_spin_lock_irqsave(&rq->lock, flags);
3862 	head = rq->balance_callback;
3863 	rq->balance_callback = NULL;
3864 	while (head) {
3865 		func = (void (*)(struct rq *))head->func;
3866 		next = head->next;
3867 		head->next = NULL;
3868 		head = next;
3869 
3870 		func(rq);
3871 	}
3872 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3873 }
3874 
balance_callback(struct rq * rq)3875 static inline void balance_callback(struct rq *rq)
3876 {
3877 	if (unlikely(rq->balance_callback))
3878 		__balance_callback(rq);
3879 }
3880 
3881 #else
3882 
balance_callback(struct rq * rq)3883 static inline void balance_callback(struct rq *rq)
3884 {
3885 }
3886 
3887 #endif
3888 
3889 /**
3890  * schedule_tail - first thing a freshly forked thread must call.
3891  * @prev: the thread we just switched away from.
3892  */
schedule_tail(struct task_struct * prev)3893 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3894 	__releases(rq->lock)
3895 {
3896 	struct rq *rq;
3897 
3898 	/*
3899 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3900 	 * finish_task_switch() for details.
3901 	 *
3902 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3903 	 * and the preempt_enable() will end up enabling preemption (on
3904 	 * PREEMPT_COUNT kernels).
3905 	 */
3906 
3907 	rq = finish_task_switch(prev);
3908 	balance_callback(rq);
3909 	preempt_enable();
3910 
3911 	if (current->set_child_tid)
3912 		put_user(task_pid_vnr(current), current->set_child_tid);
3913 
3914 	calculate_sigpending();
3915 }
3916 
3917 /*
3918  * context_switch - switch to the new MM and the new thread's register state.
3919  */
3920 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)3921 context_switch(struct rq *rq, struct task_struct *prev,
3922 	       struct task_struct *next, struct rq_flags *rf)
3923 {
3924 	prepare_task_switch(rq, prev, next);
3925 
3926 	/*
3927 	 * For paravirt, this is coupled with an exit in switch_to to
3928 	 * combine the page table reload and the switch backend into
3929 	 * one hypercall.
3930 	 */
3931 	arch_start_context_switch(prev);
3932 
3933 	/*
3934 	 * kernel -> kernel   lazy + transfer active
3935 	 *   user -> kernel   lazy + mmgrab() active
3936 	 *
3937 	 * kernel ->   user   switch + mmdrop() active
3938 	 *   user ->   user   switch
3939 	 */
3940 	if (!next->mm) {                                // to kernel
3941 		enter_lazy_tlb(prev->active_mm, next);
3942 
3943 		next->active_mm = prev->active_mm;
3944 		if (prev->mm)                           // from user
3945 			mmgrab(prev->active_mm);
3946 		else
3947 			prev->active_mm = NULL;
3948 	} else {                                        // to user
3949 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3950 		/*
3951 		 * sys_membarrier() requires an smp_mb() between setting
3952 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3953 		 *
3954 		 * The below provides this either through switch_mm(), or in
3955 		 * case 'prev->active_mm == next->mm' through
3956 		 * finish_task_switch()'s mmdrop().
3957 		 */
3958 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3959 
3960 		if (!prev->mm) {                        // from kernel
3961 			/* will mmdrop() in finish_task_switch(). */
3962 			rq->prev_mm = prev->active_mm;
3963 			prev->active_mm = NULL;
3964 		}
3965 	}
3966 
3967 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3968 
3969 	prepare_lock_switch(rq, next, rf);
3970 
3971 	/* Here we just switch the register state and the stack. */
3972 	switch_to(prev, next, prev);
3973 	barrier();
3974 
3975 	return finish_task_switch(prev);
3976 }
3977 
3978 /*
3979  * nr_running and nr_context_switches:
3980  *
3981  * externally visible scheduler statistics: current number of runnable
3982  * threads, total number of context switches performed since bootup.
3983  */
nr_running(void)3984 unsigned long nr_running(void)
3985 {
3986 	unsigned long i, sum = 0;
3987 
3988 	for_each_online_cpu(i)
3989 		sum += cpu_rq(i)->nr_running;
3990 
3991 	return sum;
3992 }
3993 
3994 /*
3995  * Check if only the current task is running on the CPU.
3996  *
3997  * Caution: this function does not check that the caller has disabled
3998  * preemption, thus the result might have a time-of-check-to-time-of-use
3999  * race.  The caller is responsible to use it correctly, for example:
4000  *
4001  * - from a non-preemptible section (of course)
4002  *
4003  * - from a thread that is bound to a single CPU
4004  *
4005  * - in a loop with very short iterations (e.g. a polling loop)
4006  */
single_task_running(void)4007 bool single_task_running(void)
4008 {
4009 	return raw_rq()->nr_running == 1;
4010 }
4011 EXPORT_SYMBOL(single_task_running);
4012 
nr_context_switches(void)4013 unsigned long long nr_context_switches(void)
4014 {
4015 	int i;
4016 	unsigned long long sum = 0;
4017 
4018 	for_each_possible_cpu(i)
4019 		sum += cpu_rq(i)->nr_switches;
4020 
4021 	return sum;
4022 }
4023 
4024 /*
4025  * Consumers of these two interfaces, like for example the cpuidle menu
4026  * governor, are using nonsensical data. Preferring shallow idle state selection
4027  * for a CPU that has IO-wait which might not even end up running the task when
4028  * it does become runnable.
4029  */
4030 
nr_iowait_cpu(int cpu)4031 unsigned long nr_iowait_cpu(int cpu)
4032 {
4033 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4034 }
4035 
4036 /*
4037  * IO-wait accounting, and how its mostly bollocks (on SMP).
4038  *
4039  * The idea behind IO-wait account is to account the idle time that we could
4040  * have spend running if it were not for IO. That is, if we were to improve the
4041  * storage performance, we'd have a proportional reduction in IO-wait time.
4042  *
4043  * This all works nicely on UP, where, when a task blocks on IO, we account
4044  * idle time as IO-wait, because if the storage were faster, it could've been
4045  * running and we'd not be idle.
4046  *
4047  * This has been extended to SMP, by doing the same for each CPU. This however
4048  * is broken.
4049  *
4050  * Imagine for instance the case where two tasks block on one CPU, only the one
4051  * CPU will have IO-wait accounted, while the other has regular idle. Even
4052  * though, if the storage were faster, both could've ran at the same time,
4053  * utilising both CPUs.
4054  *
4055  * This means, that when looking globally, the current IO-wait accounting on
4056  * SMP is a lower bound, by reason of under accounting.
4057  *
4058  * Worse, since the numbers are provided per CPU, they are sometimes
4059  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4060  * associated with any one particular CPU, it can wake to another CPU than it
4061  * blocked on. This means the per CPU IO-wait number is meaningless.
4062  *
4063  * Task CPU affinities can make all that even more 'interesting'.
4064  */
4065 
nr_iowait(void)4066 unsigned long nr_iowait(void)
4067 {
4068 	unsigned long i, sum = 0;
4069 
4070 	for_each_possible_cpu(i)
4071 		sum += nr_iowait_cpu(i);
4072 
4073 	return sum;
4074 }
4075 
4076 #ifdef CONFIG_SMP
4077 
4078 /*
4079  * sched_exec - execve() is a valuable balancing opportunity, because at
4080  * this point the task has the smallest effective memory and cache footprint.
4081  */
sched_exec(void)4082 void sched_exec(void)
4083 {
4084 	struct task_struct *p = current;
4085 	unsigned long flags;
4086 	int dest_cpu;
4087 
4088 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4089 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
4090 	if (dest_cpu == smp_processor_id())
4091 		goto unlock;
4092 
4093 	if (likely(cpu_active(dest_cpu) && likely(!cpu_isolated(dest_cpu)))) {
4094 		struct migration_arg arg = { p, dest_cpu };
4095 
4096 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4097 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4098 		return;
4099 	}
4100 unlock:
4101 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4102 }
4103 
4104 #endif
4105 
4106 DEFINE_PER_CPU(struct kernel_stat, kstat);
4107 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4108 
4109 EXPORT_PER_CPU_SYMBOL(kstat);
4110 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4111 
4112 /*
4113  * The function fair_sched_class.update_curr accesses the struct curr
4114  * and its field curr->exec_start; when called from task_sched_runtime(),
4115  * we observe a high rate of cache misses in practice.
4116  * Prefetching this data results in improved performance.
4117  */
prefetch_curr_exec_start(struct task_struct * p)4118 static inline void prefetch_curr_exec_start(struct task_struct *p)
4119 {
4120 #ifdef CONFIG_FAIR_GROUP_SCHED
4121 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4122 #else
4123 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4124 #endif
4125 	prefetch(curr);
4126 	prefetch(&curr->exec_start);
4127 }
4128 
4129 /*
4130  * Return accounted runtime for the task.
4131  * In case the task is currently running, return the runtime plus current's
4132  * pending runtime that have not been accounted yet.
4133  */
task_sched_runtime(struct task_struct * p)4134 unsigned long long task_sched_runtime(struct task_struct *p)
4135 {
4136 	struct rq_flags rf;
4137 	struct rq *rq;
4138 	u64 ns;
4139 
4140 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4141 	/*
4142 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4143 	 * So we have a optimization chance when the task's delta_exec is 0.
4144 	 * Reading ->on_cpu is racy, but this is ok.
4145 	 *
4146 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4147 	 * If we race with it entering CPU, unaccounted time is 0. This is
4148 	 * indistinguishable from the read occurring a few cycles earlier.
4149 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4150 	 * been accounted, so we're correct here as well.
4151 	 */
4152 	if (!p->on_cpu || !task_on_rq_queued(p))
4153 		return p->se.sum_exec_runtime;
4154 #endif
4155 
4156 	rq = task_rq_lock(p, &rf);
4157 	/*
4158 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4159 	 * project cycles that may never be accounted to this
4160 	 * thread, breaking clock_gettime().
4161 	 */
4162 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4163 		prefetch_curr_exec_start(p);
4164 		update_rq_clock(rq);
4165 		p->sched_class->update_curr(rq);
4166 	}
4167 	ns = p->se.sum_exec_runtime;
4168 	task_rq_unlock(rq, p, &rf);
4169 
4170 	return ns;
4171 }
4172 
4173 /*
4174  * This function gets called by the timer code, with HZ frequency.
4175  * We call it with interrupts disabled.
4176  */
scheduler_tick(void)4177 void scheduler_tick(void)
4178 {
4179 	int cpu = smp_processor_id();
4180 	struct rq *rq = cpu_rq(cpu);
4181 	struct task_struct *curr = rq->curr;
4182 	struct rq_flags rf;
4183 	u64 wallclock;
4184 	unsigned long thermal_pressure;
4185 
4186 	arch_scale_freq_tick();
4187 	sched_clock_tick();
4188 
4189 	rq_lock(rq, &rf);
4190 
4191 	set_window_start(rq);
4192 	wallclock = sched_ktime_clock();
4193 	update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
4194 	update_rq_clock(rq);
4195 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4196 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4197 	curr->sched_class->task_tick(rq, curr, 0);
4198 	calc_global_load_tick(rq);
4199 	psi_task_tick(rq);
4200 
4201 	rq_unlock(rq, &rf);
4202 
4203 #ifdef CONFIG_SCHED_RTG
4204 	sched_update_rtg_tick(curr);
4205 #endif
4206 	perf_event_task_tick();
4207 
4208 #ifdef CONFIG_SMP
4209 	rq->idle_balance = idle_cpu(cpu);
4210 	trigger_load_balance(rq);
4211 
4212 #ifdef CONFIG_SCHED_EAS
4213 	if (curr->sched_class->check_for_migration)
4214 		curr->sched_class->check_for_migration(rq, curr);
4215 #endif
4216 #endif
4217 }
4218 
4219 #ifdef CONFIG_NO_HZ_FULL
4220 
4221 struct tick_work {
4222 	int			cpu;
4223 	atomic_t		state;
4224 	struct delayed_work	work;
4225 };
4226 /* Values for ->state, see diagram below. */
4227 #define TICK_SCHED_REMOTE_OFFLINE	0
4228 #define TICK_SCHED_REMOTE_OFFLINING	1
4229 #define TICK_SCHED_REMOTE_RUNNING	2
4230 
4231 /*
4232  * State diagram for ->state:
4233  *
4234  *
4235  *          TICK_SCHED_REMOTE_OFFLINE
4236  *                    |   ^
4237  *                    |   |
4238  *                    |   | sched_tick_remote()
4239  *                    |   |
4240  *                    |   |
4241  *                    +--TICK_SCHED_REMOTE_OFFLINING
4242  *                    |   ^
4243  *                    |   |
4244  * sched_tick_start() |   | sched_tick_stop()
4245  *                    |   |
4246  *                    V   |
4247  *          TICK_SCHED_REMOTE_RUNNING
4248  *
4249  *
4250  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4251  * and sched_tick_start() are happy to leave the state in RUNNING.
4252  */
4253 
4254 static struct tick_work __percpu *tick_work_cpu;
4255 
sched_tick_remote(struct work_struct * work)4256 static void sched_tick_remote(struct work_struct *work)
4257 {
4258 	struct delayed_work *dwork = to_delayed_work(work);
4259 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4260 	int cpu = twork->cpu;
4261 	struct rq *rq = cpu_rq(cpu);
4262 	struct task_struct *curr;
4263 	struct rq_flags rf;
4264 	u64 delta;
4265 	int os;
4266 
4267 	/*
4268 	 * Handle the tick only if it appears the remote CPU is running in full
4269 	 * dynticks mode. The check is racy by nature, but missing a tick or
4270 	 * having one too much is no big deal because the scheduler tick updates
4271 	 * statistics and checks timeslices in a time-independent way, regardless
4272 	 * of when exactly it is running.
4273 	 */
4274 	if (!tick_nohz_tick_stopped_cpu(cpu))
4275 		goto out_requeue;
4276 
4277 	rq_lock_irq(rq, &rf);
4278 	curr = rq->curr;
4279 	if (cpu_is_offline(cpu))
4280 		goto out_unlock;
4281 
4282 	update_rq_clock(rq);
4283 
4284 	if (!is_idle_task(curr)) {
4285 		/*
4286 		 * Make sure the next tick runs within a reasonable
4287 		 * amount of time.
4288 		 */
4289 		delta = rq_clock_task(rq) - curr->se.exec_start;
4290 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4291 	}
4292 	curr->sched_class->task_tick(rq, curr, 0);
4293 
4294 	calc_load_nohz_remote(rq);
4295 out_unlock:
4296 	rq_unlock_irq(rq, &rf);
4297 out_requeue:
4298 
4299 	/*
4300 	 * Run the remote tick once per second (1Hz). This arbitrary
4301 	 * frequency is large enough to avoid overload but short enough
4302 	 * to keep scheduler internal stats reasonably up to date.  But
4303 	 * first update state to reflect hotplug activity if required.
4304 	 */
4305 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4306 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4307 	if (os == TICK_SCHED_REMOTE_RUNNING)
4308 		queue_delayed_work(system_unbound_wq, dwork, HZ);
4309 }
4310 
sched_tick_start(int cpu)4311 static void sched_tick_start(int cpu)
4312 {
4313 	int os;
4314 	struct tick_work *twork;
4315 
4316 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4317 		return;
4318 
4319 	WARN_ON_ONCE(!tick_work_cpu);
4320 
4321 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4322 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4323 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4324 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4325 		twork->cpu = cpu;
4326 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4327 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4328 	}
4329 }
4330 
4331 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)4332 static void sched_tick_stop(int cpu)
4333 {
4334 	struct tick_work *twork;
4335 	int os;
4336 
4337 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4338 		return;
4339 
4340 	WARN_ON_ONCE(!tick_work_cpu);
4341 
4342 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4343 	/* There cannot be competing actions, but don't rely on stop-machine. */
4344 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4345 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4346 	/* Don't cancel, as this would mess up the state machine. */
4347 }
4348 #endif /* CONFIG_HOTPLUG_CPU */
4349 
sched_tick_offload_init(void)4350 int __init sched_tick_offload_init(void)
4351 {
4352 	tick_work_cpu = alloc_percpu(struct tick_work);
4353 	BUG_ON(!tick_work_cpu);
4354 	return 0;
4355 }
4356 
4357 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)4358 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)4359 static inline void sched_tick_stop(int cpu) { }
4360 #endif
4361 
4362 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4363 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4364 /*
4365  * If the value passed in is equal to the current preempt count
4366  * then we just disabled preemption. Start timing the latency.
4367  */
preempt_latency_start(int val)4368 static inline void preempt_latency_start(int val)
4369 {
4370 	if (preempt_count() == val) {
4371 		unsigned long ip = get_lock_parent_ip();
4372 #ifdef CONFIG_DEBUG_PREEMPT
4373 		current->preempt_disable_ip = ip;
4374 #endif
4375 		trace_preempt_off(CALLER_ADDR0, ip);
4376 	}
4377 }
4378 
preempt_count_add(int val)4379 void preempt_count_add(int val)
4380 {
4381 #ifdef CONFIG_DEBUG_PREEMPT
4382 	/*
4383 	 * Underflow?
4384 	 */
4385 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4386 		return;
4387 #endif
4388 	__preempt_count_add(val);
4389 #ifdef CONFIG_DEBUG_PREEMPT
4390 	/*
4391 	 * Spinlock count overflowing soon?
4392 	 */
4393 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4394 				PREEMPT_MASK - 10);
4395 #endif
4396 	preempt_latency_start(val);
4397 }
4398 EXPORT_SYMBOL(preempt_count_add);
4399 NOKPROBE_SYMBOL(preempt_count_add);
4400 
4401 /*
4402  * If the value passed in equals to the current preempt count
4403  * then we just enabled preemption. Stop timing the latency.
4404  */
preempt_latency_stop(int val)4405 static inline void preempt_latency_stop(int val)
4406 {
4407 	if (preempt_count() == val)
4408 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4409 }
4410 
preempt_count_sub(int val)4411 void preempt_count_sub(int val)
4412 {
4413 #ifdef CONFIG_DEBUG_PREEMPT
4414 	/*
4415 	 * Underflow?
4416 	 */
4417 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4418 		return;
4419 	/*
4420 	 * Is the spinlock portion underflowing?
4421 	 */
4422 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4423 			!(preempt_count() & PREEMPT_MASK)))
4424 		return;
4425 #endif
4426 
4427 	preempt_latency_stop(val);
4428 	__preempt_count_sub(val);
4429 }
4430 EXPORT_SYMBOL(preempt_count_sub);
4431 NOKPROBE_SYMBOL(preempt_count_sub);
4432 
4433 #else
preempt_latency_start(int val)4434 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)4435 static inline void preempt_latency_stop(int val) { }
4436 #endif
4437 
get_preempt_disable_ip(struct task_struct * p)4438 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4439 {
4440 #ifdef CONFIG_DEBUG_PREEMPT
4441 	return p->preempt_disable_ip;
4442 #else
4443 	return 0;
4444 #endif
4445 }
4446 
4447 /*
4448  * Print scheduling while atomic bug:
4449  */
__schedule_bug(struct task_struct * prev)4450 static noinline void __schedule_bug(struct task_struct *prev)
4451 {
4452 	/* Save this before calling printk(), since that will clobber it */
4453 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4454 
4455 	if (oops_in_progress)
4456 		return;
4457 
4458 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4459 		prev->comm, prev->pid, preempt_count());
4460 
4461 	debug_show_held_locks(prev);
4462 	print_modules();
4463 	if (irqs_disabled())
4464 		print_irqtrace_events(prev);
4465 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4466 	    && in_atomic_preempt_off()) {
4467 		pr_err("Preemption disabled at:");
4468 		print_ip_sym(KERN_ERR, preempt_disable_ip);
4469 	}
4470 	if (panic_on_warn)
4471 		panic("scheduling while atomic\n");
4472 
4473 	dump_stack();
4474 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4475 }
4476 
4477 /*
4478  * Various schedule()-time debugging checks and statistics:
4479  */
schedule_debug(struct task_struct * prev,bool preempt)4480 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4481 {
4482 #ifdef CONFIG_SCHED_STACK_END_CHECK
4483 	if (task_stack_end_corrupted(prev))
4484 		panic("corrupted stack end detected inside scheduler\n");
4485 
4486 	if (task_scs_end_corrupted(prev))
4487 		panic("corrupted shadow stack detected inside scheduler\n");
4488 #endif
4489 
4490 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4491 	if (!preempt && prev->state && prev->non_block_count) {
4492 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4493 			prev->comm, prev->pid, prev->non_block_count);
4494 		dump_stack();
4495 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4496 	}
4497 #endif
4498 
4499 	if (unlikely(in_atomic_preempt_off())) {
4500 		__schedule_bug(prev);
4501 		preempt_count_set(PREEMPT_DISABLED);
4502 	}
4503 	rcu_sleep_check();
4504 
4505 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4506 
4507 	schedstat_inc(this_rq()->sched_count);
4508 }
4509 
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4510 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4511 				  struct rq_flags *rf)
4512 {
4513 #ifdef CONFIG_SMP
4514 	const struct sched_class *class;
4515 	/*
4516 	 * We must do the balancing pass before put_prev_task(), such
4517 	 * that when we release the rq->lock the task is in the same
4518 	 * state as before we took rq->lock.
4519 	 *
4520 	 * We can terminate the balance pass as soon as we know there is
4521 	 * a runnable task of @class priority or higher.
4522 	 */
4523 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4524 		if (class->balance(rq, prev, rf))
4525 			break;
4526 	}
4527 #endif
4528 
4529 	put_prev_task(rq, prev);
4530 }
4531 
4532 /*
4533  * Pick up the highest-prio task:
4534  */
4535 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4536 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4537 {
4538 	const struct sched_class *class;
4539 	struct task_struct *p;
4540 
4541 	/*
4542 	 * Optimization: we know that if all tasks are in the fair class we can
4543 	 * call that function directly, but only if the @prev task wasn't of a
4544 	 * higher scheduling class, because otherwise those loose the
4545 	 * opportunity to pull in more work from other CPUs.
4546 	 */
4547 	if (likely(prev->sched_class <= &fair_sched_class &&
4548 		   rq->nr_running == rq->cfs.h_nr_running)) {
4549 
4550 		p = pick_next_task_fair(rq, prev, rf);
4551 		if (unlikely(p == RETRY_TASK))
4552 			goto restart;
4553 
4554 		/* Assumes fair_sched_class->next == idle_sched_class */
4555 		if (!p) {
4556 			put_prev_task(rq, prev);
4557 			p = pick_next_task_idle(rq);
4558 		}
4559 
4560 		return p;
4561 	}
4562 
4563 restart:
4564 	put_prev_task_balance(rq, prev, rf);
4565 
4566 	for_each_class(class) {
4567 		p = class->pick_next_task(rq);
4568 		if (p)
4569 			return p;
4570 	}
4571 
4572 	/* The idle class should always have a runnable task: */
4573 	BUG();
4574 }
4575 
4576 /*
4577  * __schedule() is the main scheduler function.
4578  *
4579  * The main means of driving the scheduler and thus entering this function are:
4580  *
4581  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4582  *
4583  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4584  *      paths. For example, see arch/x86/entry_64.S.
4585  *
4586  *      To drive preemption between tasks, the scheduler sets the flag in timer
4587  *      interrupt handler scheduler_tick().
4588  *
4589  *   3. Wakeups don't really cause entry into schedule(). They add a
4590  *      task to the run-queue and that's it.
4591  *
4592  *      Now, if the new task added to the run-queue preempts the current
4593  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4594  *      called on the nearest possible occasion:
4595  *
4596  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4597  *
4598  *         - in syscall or exception context, at the next outmost
4599  *           preempt_enable(). (this might be as soon as the wake_up()'s
4600  *           spin_unlock()!)
4601  *
4602  *         - in IRQ context, return from interrupt-handler to
4603  *           preemptible context
4604  *
4605  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4606  *         then at the next:
4607  *
4608  *          - cond_resched() call
4609  *          - explicit schedule() call
4610  *          - return from syscall or exception to user-space
4611  *          - return from interrupt-handler to user-space
4612  *
4613  * WARNING: must be called with preemption disabled!
4614  */
__schedule(bool preempt)4615 static void __sched notrace __schedule(bool preempt)
4616 {
4617 	struct task_struct *prev, *next;
4618 	unsigned long *switch_count;
4619 	unsigned long prev_state;
4620 	struct rq_flags rf;
4621 	struct rq *rq;
4622 	int cpu;
4623 	u64 wallclock;
4624 
4625 	cpu = smp_processor_id();
4626 	rq = cpu_rq(cpu);
4627 	prev = rq->curr;
4628 
4629 	schedule_debug(prev, preempt);
4630 
4631 	if (sched_feat(HRTICK))
4632 		hrtick_clear(rq);
4633 
4634 	local_irq_disable();
4635 	rcu_note_context_switch(preempt);
4636 
4637 	/*
4638 	 * Make sure that signal_pending_state()->signal_pending() below
4639 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4640 	 * done by the caller to avoid the race with signal_wake_up():
4641 	 *
4642 	 * __set_current_state(@state)		signal_wake_up()
4643 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4644 	 *					  wake_up_state(p, state)
4645 	 *   LOCK rq->lock			    LOCK p->pi_state
4646 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4647 	 *     if (signal_pending_state())	    if (p->state & @state)
4648 	 *
4649 	 * Also, the membarrier system call requires a full memory barrier
4650 	 * after coming from user-space, before storing to rq->curr.
4651 	 */
4652 	rq_lock(rq, &rf);
4653 	smp_mb__after_spinlock();
4654 
4655 	/* Promote REQ to ACT */
4656 	rq->clock_update_flags <<= 1;
4657 	update_rq_clock(rq);
4658 
4659 	switch_count = &prev->nivcsw;
4660 
4661 	/*
4662 	 * We must load prev->state once (task_struct::state is volatile), such
4663 	 * that:
4664 	 *
4665 	 *  - we form a control dependency vs deactivate_task() below.
4666 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4667 	 */
4668 	prev_state = prev->state;
4669 	if (!preempt && prev_state) {
4670 		if (signal_pending_state(prev_state, prev)) {
4671 			prev->state = TASK_RUNNING;
4672 		} else {
4673 			prev->sched_contributes_to_load =
4674 				(prev_state & TASK_UNINTERRUPTIBLE) &&
4675 				!(prev_state & TASK_NOLOAD) &&
4676 				!(prev->flags & PF_FROZEN);
4677 
4678 			if (prev->sched_contributes_to_load)
4679 				rq->nr_uninterruptible++;
4680 
4681 			/*
4682 			 * __schedule()			ttwu()
4683 			 *   prev_state = prev->state;    if (p->on_rq && ...)
4684 			 *   if (prev_state)		    goto out;
4685 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
4686 			 *				  p->state = TASK_WAKING
4687 			 *
4688 			 * Where __schedule() and ttwu() have matching control dependencies.
4689 			 *
4690 			 * After this, schedule() must not care about p->state any more.
4691 			 */
4692 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4693 
4694 			if (prev->in_iowait) {
4695 				atomic_inc(&rq->nr_iowait);
4696 				delayacct_blkio_start();
4697 			}
4698 		}
4699 		switch_count = &prev->nvcsw;
4700 	}
4701 
4702 	next = pick_next_task(rq, prev, &rf);
4703 	clear_tsk_need_resched(prev);
4704 	clear_preempt_need_resched();
4705 
4706 	wallclock = sched_ktime_clock();
4707 	if (likely(prev != next)) {
4708 #ifdef CONFIG_SCHED_WALT
4709 		if (!prev->on_rq)
4710 			prev->last_sleep_ts = wallclock;
4711 #endif
4712 		update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
4713 		update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
4714 		rq->nr_switches++;
4715 		/*
4716 		 * RCU users of rcu_dereference(rq->curr) may not see
4717 		 * changes to task_struct made by pick_next_task().
4718 		 */
4719 		RCU_INIT_POINTER(rq->curr, next);
4720 		/*
4721 		 * The membarrier system call requires each architecture
4722 		 * to have a full memory barrier after updating
4723 		 * rq->curr, before returning to user-space.
4724 		 *
4725 		 * Here are the schemes providing that barrier on the
4726 		 * various architectures:
4727 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4728 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4729 		 * - finish_lock_switch() for weakly-ordered
4730 		 *   architectures where spin_unlock is a full barrier,
4731 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4732 		 *   is a RELEASE barrier),
4733 		 */
4734 		++*switch_count;
4735 
4736 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4737 
4738 		trace_sched_switch(preempt, prev, next);
4739 
4740 		/* Also unlocks the rq: */
4741 		rq = context_switch(rq, prev, next, &rf);
4742 	} else {
4743 		update_task_ravg(prev, rq, TASK_UPDATE, wallclock, 0);
4744 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4745 		rq_unlock_irq(rq, &rf);
4746 	}
4747 
4748 	balance_callback(rq);
4749 }
4750 
do_task_dead(void)4751 void __noreturn do_task_dead(void)
4752 {
4753 	/* Causes final put_task_struct in finish_task_switch(): */
4754 	set_special_state(TASK_DEAD);
4755 
4756 	/* Tell freezer to ignore us: */
4757 	current->flags |= PF_NOFREEZE;
4758 
4759 	__schedule(false);
4760 	BUG();
4761 
4762 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4763 	for (;;)
4764 		cpu_relax();
4765 }
4766 
sched_submit_work(struct task_struct * tsk)4767 static inline void sched_submit_work(struct task_struct *tsk)
4768 {
4769 	unsigned int task_flags;
4770 
4771 	if (!tsk->state)
4772 		return;
4773 
4774 	task_flags = tsk->flags;
4775 	/*
4776 	 * If a worker went to sleep, notify and ask workqueue whether
4777 	 * it wants to wake up a task to maintain concurrency.
4778 	 * As this function is called inside the schedule() context,
4779 	 * we disable preemption to avoid it calling schedule() again
4780 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4781 	 * requires it.
4782 	 */
4783 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4784 		preempt_disable();
4785 		if (task_flags & PF_WQ_WORKER)
4786 			wq_worker_sleeping(tsk);
4787 		else
4788 			io_wq_worker_sleeping(tsk);
4789 		preempt_enable_no_resched();
4790 	}
4791 
4792 	if (tsk_is_pi_blocked(tsk))
4793 		return;
4794 
4795 	/*
4796 	 * If we are going to sleep and we have plugged IO queued,
4797 	 * make sure to submit it to avoid deadlocks.
4798 	 */
4799 	if (blk_needs_flush_plug(tsk))
4800 		blk_schedule_flush_plug(tsk);
4801 }
4802 
sched_update_worker(struct task_struct * tsk)4803 static void sched_update_worker(struct task_struct *tsk)
4804 {
4805 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4806 		if (tsk->flags & PF_WQ_WORKER)
4807 			wq_worker_running(tsk);
4808 		else
4809 			io_wq_worker_running(tsk);
4810 	}
4811 }
4812 
schedule(void)4813 asmlinkage __visible void __sched schedule(void)
4814 {
4815 	struct task_struct *tsk = current;
4816 
4817 	sched_submit_work(tsk);
4818 	do {
4819 		preempt_disable();
4820 		__schedule(false);
4821 		sched_preempt_enable_no_resched();
4822 	} while (need_resched());
4823 	sched_update_worker(tsk);
4824 }
4825 EXPORT_SYMBOL(schedule);
4826 
4827 /*
4828  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4829  * state (have scheduled out non-voluntarily) by making sure that all
4830  * tasks have either left the run queue or have gone into user space.
4831  * As idle tasks do not do either, they must not ever be preempted
4832  * (schedule out non-voluntarily).
4833  *
4834  * schedule_idle() is similar to schedule_preempt_disable() except that it
4835  * never enables preemption because it does not call sched_submit_work().
4836  */
schedule_idle(void)4837 void __sched schedule_idle(void)
4838 {
4839 	/*
4840 	 * As this skips calling sched_submit_work(), which the idle task does
4841 	 * regardless because that function is a nop when the task is in a
4842 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4843 	 * current task can be in any other state. Note, idle is always in the
4844 	 * TASK_RUNNING state.
4845 	 */
4846 	WARN_ON_ONCE(current->state);
4847 	do {
4848 		__schedule(false);
4849 	} while (need_resched());
4850 }
4851 
4852 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)4853 asmlinkage __visible void __sched schedule_user(void)
4854 {
4855 	/*
4856 	 * If we come here after a random call to set_need_resched(),
4857 	 * or we have been woken up remotely but the IPI has not yet arrived,
4858 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4859 	 * we find a better solution.
4860 	 *
4861 	 * NB: There are buggy callers of this function.  Ideally we
4862 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4863 	 * too frequently to make sense yet.
4864 	 */
4865 	enum ctx_state prev_state = exception_enter();
4866 	schedule();
4867 	exception_exit(prev_state);
4868 }
4869 #endif
4870 
4871 /**
4872  * schedule_preempt_disabled - called with preemption disabled
4873  *
4874  * Returns with preemption disabled. Note: preempt_count must be 1
4875  */
schedule_preempt_disabled(void)4876 void __sched schedule_preempt_disabled(void)
4877 {
4878 	sched_preempt_enable_no_resched();
4879 	schedule();
4880 	preempt_disable();
4881 }
4882 
preempt_schedule_common(void)4883 static void __sched notrace preempt_schedule_common(void)
4884 {
4885 	do {
4886 		/*
4887 		 * Because the function tracer can trace preempt_count_sub()
4888 		 * and it also uses preempt_enable/disable_notrace(), if
4889 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4890 		 * by the function tracer will call this function again and
4891 		 * cause infinite recursion.
4892 		 *
4893 		 * Preemption must be disabled here before the function
4894 		 * tracer can trace. Break up preempt_disable() into two
4895 		 * calls. One to disable preemption without fear of being
4896 		 * traced. The other to still record the preemption latency,
4897 		 * which can also be traced by the function tracer.
4898 		 */
4899 		preempt_disable_notrace();
4900 		preempt_latency_start(1);
4901 		__schedule(true);
4902 		preempt_latency_stop(1);
4903 		preempt_enable_no_resched_notrace();
4904 
4905 		/*
4906 		 * Check again in case we missed a preemption opportunity
4907 		 * between schedule and now.
4908 		 */
4909 	} while (need_resched());
4910 }
4911 
4912 #ifdef CONFIG_PREEMPTION
4913 /*
4914  * This is the entry point to schedule() from in-kernel preemption
4915  * off of preempt_enable.
4916  */
preempt_schedule(void)4917 asmlinkage __visible void __sched notrace preempt_schedule(void)
4918 {
4919 	/*
4920 	 * If there is a non-zero preempt_count or interrupts are disabled,
4921 	 * we do not want to preempt the current task. Just return..
4922 	 */
4923 	if (likely(!preemptible()))
4924 		return;
4925 
4926 	preempt_schedule_common();
4927 }
4928 NOKPROBE_SYMBOL(preempt_schedule);
4929 EXPORT_SYMBOL(preempt_schedule);
4930 
4931 /**
4932  * preempt_schedule_notrace - preempt_schedule called by tracing
4933  *
4934  * The tracing infrastructure uses preempt_enable_notrace to prevent
4935  * recursion and tracing preempt enabling caused by the tracing
4936  * infrastructure itself. But as tracing can happen in areas coming
4937  * from userspace or just about to enter userspace, a preempt enable
4938  * can occur before user_exit() is called. This will cause the scheduler
4939  * to be called when the system is still in usermode.
4940  *
4941  * To prevent this, the preempt_enable_notrace will use this function
4942  * instead of preempt_schedule() to exit user context if needed before
4943  * calling the scheduler.
4944  */
preempt_schedule_notrace(void)4945 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4946 {
4947 	enum ctx_state prev_ctx;
4948 
4949 	if (likely(!preemptible()))
4950 		return;
4951 
4952 	do {
4953 		/*
4954 		 * Because the function tracer can trace preempt_count_sub()
4955 		 * and it also uses preempt_enable/disable_notrace(), if
4956 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4957 		 * by the function tracer will call this function again and
4958 		 * cause infinite recursion.
4959 		 *
4960 		 * Preemption must be disabled here before the function
4961 		 * tracer can trace. Break up preempt_disable() into two
4962 		 * calls. One to disable preemption without fear of being
4963 		 * traced. The other to still record the preemption latency,
4964 		 * which can also be traced by the function tracer.
4965 		 */
4966 		preempt_disable_notrace();
4967 		preempt_latency_start(1);
4968 		/*
4969 		 * Needs preempt disabled in case user_exit() is traced
4970 		 * and the tracer calls preempt_enable_notrace() causing
4971 		 * an infinite recursion.
4972 		 */
4973 		prev_ctx = exception_enter();
4974 		__schedule(true);
4975 		exception_exit(prev_ctx);
4976 
4977 		preempt_latency_stop(1);
4978 		preempt_enable_no_resched_notrace();
4979 	} while (need_resched());
4980 }
4981 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4982 
4983 #endif /* CONFIG_PREEMPTION */
4984 
4985 /*
4986  * This is the entry point to schedule() from kernel preemption
4987  * off of irq context.
4988  * Note, that this is called and return with irqs disabled. This will
4989  * protect us against recursive calling from irq.
4990  */
preempt_schedule_irq(void)4991 asmlinkage __visible void __sched preempt_schedule_irq(void)
4992 {
4993 	enum ctx_state prev_state;
4994 
4995 	/* Catch callers which need to be fixed */
4996 	BUG_ON(preempt_count() || !irqs_disabled());
4997 
4998 	prev_state = exception_enter();
4999 
5000 	do {
5001 		preempt_disable();
5002 		local_irq_enable();
5003 		__schedule(true);
5004 		local_irq_disable();
5005 		sched_preempt_enable_no_resched();
5006 	} while (need_resched());
5007 
5008 	exception_exit(prev_state);
5009 }
5010 
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)5011 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5012 			  void *key)
5013 {
5014 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5015 	return try_to_wake_up(curr->private, mode, wake_flags);
5016 }
5017 EXPORT_SYMBOL(default_wake_function);
5018 
__setscheduler_prio(struct task_struct * p,int prio)5019 static void __setscheduler_prio(struct task_struct *p, int prio)
5020 {
5021 	if (dl_prio(prio))
5022 		p->sched_class = &dl_sched_class;
5023 	else if (rt_prio(prio))
5024 		p->sched_class = &rt_sched_class;
5025 	else
5026 		p->sched_class = &fair_sched_class;
5027 
5028 	p->prio = prio;
5029 }
5030 
5031 #ifdef CONFIG_RT_MUTEXES
5032 
__rt_effective_prio(struct task_struct * pi_task,int prio)5033 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5034 {
5035 	if (pi_task)
5036 		prio = min(prio, pi_task->prio);
5037 
5038 	return prio;
5039 }
5040 
rt_effective_prio(struct task_struct * p,int prio)5041 static inline int rt_effective_prio(struct task_struct *p, int prio)
5042 {
5043 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
5044 
5045 	return __rt_effective_prio(pi_task, prio);
5046 }
5047 
5048 /*
5049  * rt_mutex_setprio - set the current priority of a task
5050  * @p: task to boost
5051  * @pi_task: donor task
5052  *
5053  * This function changes the 'effective' priority of a task. It does
5054  * not touch ->normal_prio like __setscheduler().
5055  *
5056  * Used by the rt_mutex code to implement priority inheritance
5057  * logic. Call site only calls if the priority of the task changed.
5058  */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)5059 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5060 {
5061 	int prio, oldprio, queued, running, queue_flag =
5062 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5063 	const struct sched_class *prev_class;
5064 	struct rq_flags rf;
5065 	struct rq *rq;
5066 
5067 	/* XXX used to be waiter->prio, not waiter->task->prio */
5068 	prio = __rt_effective_prio(pi_task, p->normal_prio);
5069 
5070 	/*
5071 	 * If nothing changed; bail early.
5072 	 */
5073 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5074 		return;
5075 
5076 	rq = __task_rq_lock(p, &rf);
5077 	update_rq_clock(rq);
5078 	/*
5079 	 * Set under pi_lock && rq->lock, such that the value can be used under
5080 	 * either lock.
5081 	 *
5082 	 * Note that there is loads of tricky to make this pointer cache work
5083 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5084 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
5085 	 * task is allowed to run again (and can exit). This ensures the pointer
5086 	 * points to a blocked task -- which guaratees the task is present.
5087 	 */
5088 	p->pi_top_task = pi_task;
5089 
5090 	/*
5091 	 * For FIFO/RR we only need to set prio, if that matches we're done.
5092 	 */
5093 	if (prio == p->prio && !dl_prio(prio))
5094 		goto out_unlock;
5095 
5096 	/*
5097 	 * Idle task boosting is a nono in general. There is one
5098 	 * exception, when PREEMPT_RT and NOHZ is active:
5099 	 *
5100 	 * The idle task calls get_next_timer_interrupt() and holds
5101 	 * the timer wheel base->lock on the CPU and another CPU wants
5102 	 * to access the timer (probably to cancel it). We can safely
5103 	 * ignore the boosting request, as the idle CPU runs this code
5104 	 * with interrupts disabled and will complete the lock
5105 	 * protected section without being interrupted. So there is no
5106 	 * real need to boost.
5107 	 */
5108 	if (unlikely(p == rq->idle)) {
5109 		WARN_ON(p != rq->curr);
5110 		WARN_ON(p->pi_blocked_on);
5111 		goto out_unlock;
5112 	}
5113 
5114 	trace_sched_pi_setprio(p, pi_task);
5115 	oldprio = p->prio;
5116 
5117 	if (oldprio == prio)
5118 		queue_flag &= ~DEQUEUE_MOVE;
5119 
5120 	prev_class = p->sched_class;
5121 	queued = task_on_rq_queued(p);
5122 	running = task_current(rq, p);
5123 	if (queued)
5124 		dequeue_task(rq, p, queue_flag);
5125 	if (running)
5126 		put_prev_task(rq, p);
5127 
5128 	/*
5129 	 * Boosting condition are:
5130 	 * 1. -rt task is running and holds mutex A
5131 	 *      --> -dl task blocks on mutex A
5132 	 *
5133 	 * 2. -dl task is running and holds mutex A
5134 	 *      --> -dl task blocks on mutex A and could preempt the
5135 	 *          running task
5136 	 */
5137 	if (dl_prio(prio)) {
5138 		if (!dl_prio(p->normal_prio) ||
5139 		    (pi_task && dl_prio(pi_task->prio) &&
5140 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
5141 			p->dl.pi_se = pi_task->dl.pi_se;
5142 			queue_flag |= ENQUEUE_REPLENISH;
5143 		} else {
5144 			p->dl.pi_se = &p->dl;
5145 		}
5146 	} else if (rt_prio(prio)) {
5147 		if (dl_prio(oldprio))
5148 			p->dl.pi_se = &p->dl;
5149 		if (oldprio < prio)
5150 			queue_flag |= ENQUEUE_HEAD;
5151 	} else {
5152 		if (dl_prio(oldprio))
5153 			p->dl.pi_se = &p->dl;
5154 		if (rt_prio(oldprio))
5155 			p->rt.timeout = 0;
5156 	}
5157 
5158 	__setscheduler_prio(p, prio);
5159 
5160 	if (queued)
5161 		enqueue_task(rq, p, queue_flag);
5162 	if (running)
5163 		set_next_task(rq, p);
5164 
5165 	check_class_changed(rq, p, prev_class, oldprio);
5166 out_unlock:
5167 	/* Avoid rq from going away on us: */
5168 	preempt_disable();
5169 	__task_rq_unlock(rq, &rf);
5170 
5171 	balance_callback(rq);
5172 	preempt_enable();
5173 }
5174 #else
rt_effective_prio(struct task_struct * p,int prio)5175 static inline int rt_effective_prio(struct task_struct *p, int prio)
5176 {
5177 	return prio;
5178 }
5179 #endif
5180 
set_user_nice(struct task_struct * p,long nice)5181 void set_user_nice(struct task_struct *p, long nice)
5182 {
5183 	bool queued, running;
5184 	int old_prio;
5185 	struct rq_flags rf;
5186 	struct rq *rq;
5187 
5188 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5189 		return;
5190 	/*
5191 	 * We have to be careful, if called from sys_setpriority(),
5192 	 * the task might be in the middle of scheduling on another CPU.
5193 	 */
5194 	rq = task_rq_lock(p, &rf);
5195 	update_rq_clock(rq);
5196 
5197 	/*
5198 	 * The RT priorities are set via sched_setscheduler(), but we still
5199 	 * allow the 'normal' nice value to be set - but as expected
5200 	 * it wont have any effect on scheduling until the task is
5201 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5202 	 */
5203 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5204 		p->static_prio = NICE_TO_PRIO(nice);
5205 		goto out_unlock;
5206 	}
5207 	queued = task_on_rq_queued(p);
5208 	running = task_current(rq, p);
5209 	if (queued)
5210 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5211 	if (running)
5212 		put_prev_task(rq, p);
5213 
5214 	p->static_prio = NICE_TO_PRIO(nice);
5215 	set_load_weight(p);
5216 	old_prio = p->prio;
5217 	p->prio = effective_prio(p);
5218 
5219 	if (queued)
5220 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5221 	if (running)
5222 		set_next_task(rq, p);
5223 
5224 	/*
5225 	 * If the task increased its priority or is running and
5226 	 * lowered its priority, then reschedule its CPU:
5227 	 */
5228 	p->sched_class->prio_changed(rq, p, old_prio);
5229 
5230 out_unlock:
5231 	task_rq_unlock(rq, p, &rf);
5232 }
5233 EXPORT_SYMBOL(set_user_nice);
5234 
5235 /*
5236  * can_nice - check if a task can reduce its nice value
5237  * @p: task
5238  * @nice: nice value
5239  */
can_nice(const struct task_struct * p,const int nice)5240 int can_nice(const struct task_struct *p, const int nice)
5241 {
5242 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5243 	int nice_rlim = nice_to_rlimit(nice);
5244 
5245 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5246 		capable(CAP_SYS_NICE));
5247 }
5248 
5249 #ifdef __ARCH_WANT_SYS_NICE
5250 
5251 /*
5252  * sys_nice - change the priority of the current process.
5253  * @increment: priority increment
5254  *
5255  * sys_setpriority is a more generic, but much slower function that
5256  * does similar things.
5257  */
SYSCALL_DEFINE1(nice,int,increment)5258 SYSCALL_DEFINE1(nice, int, increment)
5259 {
5260 	long nice, retval;
5261 
5262 	/*
5263 	 * Setpriority might change our priority at the same moment.
5264 	 * We don't have to worry. Conceptually one call occurs first
5265 	 * and we have a single winner.
5266 	 */
5267 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5268 	nice = task_nice(current) + increment;
5269 
5270 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5271 	if (increment < 0 && !can_nice(current, nice))
5272 		return -EPERM;
5273 
5274 	retval = security_task_setnice(current, nice);
5275 	if (retval)
5276 		return retval;
5277 
5278 	set_user_nice(current, nice);
5279 	return 0;
5280 }
5281 
5282 #endif
5283 
5284 /**
5285  * task_prio - return the priority value of a given task.
5286  * @p: the task in question.
5287  *
5288  * Return: The priority value as seen by users in /proc.
5289  * RT tasks are offset by -200. Normal tasks are centered
5290  * around 0, value goes from -16 to +15.
5291  */
task_prio(const struct task_struct * p)5292 int task_prio(const struct task_struct *p)
5293 {
5294 	return p->prio - MAX_RT_PRIO;
5295 }
5296 
5297 /**
5298  * idle_cpu - is a given CPU idle currently?
5299  * @cpu: the processor in question.
5300  *
5301  * Return: 1 if the CPU is currently idle. 0 otherwise.
5302  */
idle_cpu(int cpu)5303 int idle_cpu(int cpu)
5304 {
5305 	struct rq *rq = cpu_rq(cpu);
5306 
5307 	if (rq->curr != rq->idle)
5308 		return 0;
5309 
5310 	if (rq->nr_running)
5311 		return 0;
5312 
5313 #ifdef CONFIG_SMP
5314 	if (rq->ttwu_pending)
5315 		return 0;
5316 #endif
5317 
5318 	return 1;
5319 }
5320 
5321 /**
5322  * available_idle_cpu - is a given CPU idle for enqueuing work.
5323  * @cpu: the CPU in question.
5324  *
5325  * Return: 1 if the CPU is currently idle. 0 otherwise.
5326  */
available_idle_cpu(int cpu)5327 int available_idle_cpu(int cpu)
5328 {
5329 	if (!idle_cpu(cpu))
5330 		return 0;
5331 
5332 	if (vcpu_is_preempted(cpu))
5333 		return 0;
5334 
5335 	return 1;
5336 }
5337 
5338 /**
5339  * idle_task - return the idle task for a given CPU.
5340  * @cpu: the processor in question.
5341  *
5342  * Return: The idle task for the CPU @cpu.
5343  */
idle_task(int cpu)5344 struct task_struct *idle_task(int cpu)
5345 {
5346 	return cpu_rq(cpu)->idle;
5347 }
5348 
5349 /**
5350  * find_process_by_pid - find a process with a matching PID value.
5351  * @pid: the pid in question.
5352  *
5353  * The task of @pid, if found. %NULL otherwise.
5354  */
find_process_by_pid(pid_t pid)5355 static struct task_struct *find_process_by_pid(pid_t pid)
5356 {
5357 	return pid ? find_task_by_vpid(pid) : current;
5358 }
5359 
5360 /*
5361  * sched_setparam() passes in -1 for its policy, to let the functions
5362  * it calls know not to change it.
5363  */
5364 #define SETPARAM_POLICY	-1
5365 
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)5366 static void __setscheduler_params(struct task_struct *p,
5367 		const struct sched_attr *attr)
5368 {
5369 	int policy = attr->sched_policy;
5370 
5371 	if (policy == SETPARAM_POLICY)
5372 		policy = p->policy;
5373 
5374 	p->policy = policy;
5375 
5376 	if (dl_policy(policy))
5377 		__setparam_dl(p, attr);
5378 	else if (fair_policy(policy))
5379 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5380 
5381 	/*
5382 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5383 	 * !rt_policy. Always setting this ensures that things like
5384 	 * getparam()/getattr() don't report silly values for !rt tasks.
5385 	 */
5386 	p->rt_priority = attr->sched_priority;
5387 	p->normal_prio = normal_prio(p);
5388 	set_load_weight(p);
5389 }
5390 
5391 /*
5392  * Check the target process has a UID that matches the current process's:
5393  */
check_same_owner(struct task_struct * p)5394 static bool check_same_owner(struct task_struct *p)
5395 {
5396 	const struct cred *cred = current_cred(), *pcred;
5397 	bool match;
5398 
5399 	rcu_read_lock();
5400 	pcred = __task_cred(p);
5401 	match = (uid_eq(cred->euid, pcred->euid) ||
5402 		 uid_eq(cred->euid, pcred->uid));
5403 	rcu_read_unlock();
5404 	return match;
5405 }
5406 
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)5407 static int __sched_setscheduler(struct task_struct *p,
5408 				const struct sched_attr *attr,
5409 				bool user, bool pi)
5410 {
5411 	int oldpolicy = -1, policy = attr->sched_policy;
5412 	int retval, oldprio, newprio, queued, running;
5413 	const struct sched_class *prev_class;
5414 	struct rq_flags rf;
5415 	int reset_on_fork;
5416 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5417 	struct rq *rq;
5418 
5419 	/* The pi code expects interrupts enabled */
5420 	BUG_ON(pi && in_interrupt());
5421 recheck:
5422 	/* Double check policy once rq lock held: */
5423 	if (policy < 0) {
5424 		reset_on_fork = p->sched_reset_on_fork;
5425 		policy = oldpolicy = p->policy;
5426 	} else {
5427 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5428 
5429 		if (!valid_policy(policy))
5430 			return -EINVAL;
5431 	}
5432 
5433 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5434 		return -EINVAL;
5435 
5436 	/*
5437 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
5438 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5439 	 * SCHED_BATCH and SCHED_IDLE is 0.
5440 	 */
5441 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5442 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5443 		return -EINVAL;
5444 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5445 	    (rt_policy(policy) != (attr->sched_priority != 0)))
5446 		return -EINVAL;
5447 
5448 	/*
5449 	 * Allow unprivileged RT tasks to decrease priority:
5450 	 */
5451 	if (user && !capable(CAP_SYS_NICE)) {
5452 		if (fair_policy(policy)) {
5453 			if (attr->sched_nice < task_nice(p) &&
5454 			    !can_nice(p, attr->sched_nice))
5455 				return -EPERM;
5456 		}
5457 
5458 		if (rt_policy(policy)) {
5459 			unsigned long rlim_rtprio =
5460 					task_rlimit(p, RLIMIT_RTPRIO);
5461 
5462 			/* Can't set/change the rt policy: */
5463 			if (policy != p->policy && !rlim_rtprio)
5464 				return -EPERM;
5465 
5466 			/* Can't increase priority: */
5467 			if (attr->sched_priority > p->rt_priority &&
5468 			    attr->sched_priority > rlim_rtprio)
5469 				return -EPERM;
5470 		}
5471 
5472 		 /*
5473 		  * Can't set/change SCHED_DEADLINE policy at all for now
5474 		  * (safest behavior); in the future we would like to allow
5475 		  * unprivileged DL tasks to increase their relative deadline
5476 		  * or reduce their runtime (both ways reducing utilization)
5477 		  */
5478 		if (dl_policy(policy))
5479 			return -EPERM;
5480 
5481 		/*
5482 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5483 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5484 		 */
5485 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
5486 			if (!can_nice(p, task_nice(p)))
5487 				return -EPERM;
5488 		}
5489 
5490 		/* Can't change other user's priorities: */
5491 		if (!check_same_owner(p))
5492 			return -EPERM;
5493 
5494 		/* Normal users shall not reset the sched_reset_on_fork flag: */
5495 		if (p->sched_reset_on_fork && !reset_on_fork)
5496 			return -EPERM;
5497 	}
5498 
5499 	if (user) {
5500 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
5501 			return -EINVAL;
5502 
5503 		retval = security_task_setscheduler(p);
5504 		if (retval)
5505 			return retval;
5506 	}
5507 
5508 	/* Update task specific "requested" clamps */
5509 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5510 		retval = uclamp_validate(p, attr);
5511 		if (retval)
5512 			return retval;
5513 	}
5514 
5515 	if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE) {
5516 		retval = latency_nice_validate(p, user, attr);
5517 		if (retval)
5518 			return retval;
5519 	}
5520 
5521 	if (pi)
5522 		cpuset_read_lock();
5523 
5524 	/*
5525 	 * Make sure no PI-waiters arrive (or leave) while we are
5526 	 * changing the priority of the task:
5527 	 *
5528 	 * To be able to change p->policy safely, the appropriate
5529 	 * runqueue lock must be held.
5530 	 */
5531 	rq = task_rq_lock(p, &rf);
5532 	update_rq_clock(rq);
5533 
5534 	/*
5535 	 * Changing the policy of the stop threads its a very bad idea:
5536 	 */
5537 	if (p == rq->stop) {
5538 		retval = -EINVAL;
5539 		goto unlock;
5540 	}
5541 
5542 	/*
5543 	 * If not changing anything there's no need to proceed further,
5544 	 * but store a possible modification of reset_on_fork.
5545 	 */
5546 	if (unlikely(policy == p->policy)) {
5547 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5548 			goto change;
5549 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5550 			goto change;
5551 		if (dl_policy(policy) && dl_param_changed(p, attr))
5552 			goto change;
5553 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5554 			goto change;
5555 #ifdef CONFIG_SCHED_LATENCY_NICE
5556 		if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE &&
5557 		    attr->sched_latency_nice != LATENCY_TO_NICE(p->latency_prio))
5558 			goto change;
5559 #endif
5560 
5561 		p->sched_reset_on_fork = reset_on_fork;
5562 		retval = 0;
5563 		goto unlock;
5564 	}
5565 change:
5566 
5567 	if (user) {
5568 #ifdef CONFIG_RT_GROUP_SCHED
5569 		/*
5570 		 * Do not allow realtime tasks into groups that have no runtime
5571 		 * assigned.
5572 		 */
5573 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5574 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5575 				!task_group_is_autogroup(task_group(p))) {
5576 			retval = -EPERM;
5577 			goto unlock;
5578 		}
5579 #endif
5580 #ifdef CONFIG_SMP
5581 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5582 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5583 			cpumask_t *span = rq->rd->span;
5584 
5585 			/*
5586 			 * Don't allow tasks with an affinity mask smaller than
5587 			 * the entire root_domain to become SCHED_DEADLINE. We
5588 			 * will also fail if there's no bandwidth available.
5589 			 */
5590 			if (!cpumask_subset(span, p->cpus_ptr) ||
5591 			    rq->rd->dl_bw.bw == 0) {
5592 				retval = -EPERM;
5593 				goto unlock;
5594 			}
5595 		}
5596 #endif
5597 	}
5598 
5599 	/* Re-check policy now with rq lock held: */
5600 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5601 		policy = oldpolicy = -1;
5602 		task_rq_unlock(rq, p, &rf);
5603 		if (pi)
5604 			cpuset_read_unlock();
5605 		goto recheck;
5606 	}
5607 
5608 	/*
5609 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5610 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5611 	 * is available.
5612 	 */
5613 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5614 		retval = -EBUSY;
5615 		goto unlock;
5616 	}
5617 
5618 	p->sched_reset_on_fork = reset_on_fork;
5619 	oldprio = p->prio;
5620 
5621 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
5622 	if (pi) {
5623 		/*
5624 		 * Take priority boosted tasks into account. If the new
5625 		 * effective priority is unchanged, we just store the new
5626 		 * normal parameters and do not touch the scheduler class and
5627 		 * the runqueue. This will be done when the task deboost
5628 		 * itself.
5629 		 */
5630 		newprio = rt_effective_prio(p, newprio);
5631 		if (newprio == oldprio)
5632 			queue_flags &= ~DEQUEUE_MOVE;
5633 	}
5634 
5635 	queued = task_on_rq_queued(p);
5636 	running = task_current(rq, p);
5637 	if (queued)
5638 		dequeue_task(rq, p, queue_flags);
5639 	if (running)
5640 		put_prev_task(rq, p);
5641 
5642 	prev_class = p->sched_class;
5643 
5644 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
5645 		__setscheduler_params(p, attr);
5646 		__setscheduler_prio(p, newprio);
5647 	}
5648 	__setscheduler_latency(p, attr);
5649 	__setscheduler_uclamp(p, attr);
5650 
5651 	if (queued) {
5652 		/*
5653 		 * We enqueue to tail when the priority of a task is
5654 		 * increased (user space view).
5655 		 */
5656 		if (oldprio < p->prio)
5657 			queue_flags |= ENQUEUE_HEAD;
5658 
5659 		enqueue_task(rq, p, queue_flags);
5660 	}
5661 	if (running)
5662 		set_next_task(rq, p);
5663 
5664 	check_class_changed(rq, p, prev_class, oldprio);
5665 
5666 	/* Avoid rq from going away on us: */
5667 	preempt_disable();
5668 	task_rq_unlock(rq, p, &rf);
5669 
5670 	if (pi) {
5671 		cpuset_read_unlock();
5672 		rt_mutex_adjust_pi(p);
5673 	}
5674 
5675 	/* Run balance callbacks after we've adjusted the PI chain: */
5676 	balance_callback(rq);
5677 	preempt_enable();
5678 
5679 	return 0;
5680 
5681 unlock:
5682 	task_rq_unlock(rq, p, &rf);
5683 	if (pi)
5684 		cpuset_read_unlock();
5685 	return retval;
5686 }
5687 
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)5688 static int _sched_setscheduler(struct task_struct *p, int policy,
5689 			       const struct sched_param *param, bool check)
5690 {
5691 	struct sched_attr attr = {
5692 		.sched_policy   = policy,
5693 		.sched_priority = param->sched_priority,
5694 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5695 	};
5696 
5697 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5698 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5699 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5700 		policy &= ~SCHED_RESET_ON_FORK;
5701 		attr.sched_policy = policy;
5702 	}
5703 
5704 	return __sched_setscheduler(p, &attr, check, true);
5705 }
5706 /**
5707  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5708  * @p: the task in question.
5709  * @policy: new policy.
5710  * @param: structure containing the new RT priority.
5711  *
5712  * Use sched_set_fifo(), read its comment.
5713  *
5714  * Return: 0 on success. An error code otherwise.
5715  *
5716  * NOTE that the task may be already dead.
5717  */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)5718 int sched_setscheduler(struct task_struct *p, int policy,
5719 		       const struct sched_param *param)
5720 {
5721 	return _sched_setscheduler(p, policy, param, true);
5722 }
5723 
sched_setattr(struct task_struct * p,const struct sched_attr * attr)5724 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5725 {
5726 	return __sched_setscheduler(p, attr, true, true);
5727 }
5728 
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)5729 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5730 {
5731 	return __sched_setscheduler(p, attr, false, true);
5732 }
5733 
5734 /**
5735  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5736  * @p: the task in question.
5737  * @policy: new policy.
5738  * @param: structure containing the new RT priority.
5739  *
5740  * Just like sched_setscheduler, only don't bother checking if the
5741  * current context has permission.  For example, this is needed in
5742  * stop_machine(): we create temporary high priority worker threads,
5743  * but our caller might not have that capability.
5744  *
5745  * Return: 0 on success. An error code otherwise.
5746  */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)5747 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5748 			       const struct sched_param *param)
5749 {
5750 	return _sched_setscheduler(p, policy, param, false);
5751 }
5752 
5753 /*
5754  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5755  * incapable of resource management, which is the one thing an OS really should
5756  * be doing.
5757  *
5758  * This is of course the reason it is limited to privileged users only.
5759  *
5760  * Worse still; it is fundamentally impossible to compose static priority
5761  * workloads. You cannot take two correctly working static prio workloads
5762  * and smash them together and still expect them to work.
5763  *
5764  * For this reason 'all' FIFO tasks the kernel creates are basically at:
5765  *
5766  *   MAX_RT_PRIO / 2
5767  *
5768  * The administrator _MUST_ configure the system, the kernel simply doesn't
5769  * know enough information to make a sensible choice.
5770  */
sched_set_fifo(struct task_struct * p)5771 void sched_set_fifo(struct task_struct *p)
5772 {
5773 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5774 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5775 }
5776 EXPORT_SYMBOL_GPL(sched_set_fifo);
5777 
5778 /*
5779  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5780  */
sched_set_fifo_low(struct task_struct * p)5781 void sched_set_fifo_low(struct task_struct *p)
5782 {
5783 	struct sched_param sp = { .sched_priority = 1 };
5784 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5785 }
5786 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5787 
sched_set_normal(struct task_struct * p,int nice)5788 void sched_set_normal(struct task_struct *p, int nice)
5789 {
5790 	struct sched_attr attr = {
5791 		.sched_policy = SCHED_NORMAL,
5792 		.sched_nice = nice,
5793 	};
5794 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5795 }
5796 EXPORT_SYMBOL_GPL(sched_set_normal);
5797 
5798 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)5799 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5800 {
5801 	struct sched_param lparam;
5802 	struct task_struct *p;
5803 	int retval;
5804 
5805 	if (!param || pid < 0)
5806 		return -EINVAL;
5807 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5808 		return -EFAULT;
5809 
5810 	rcu_read_lock();
5811 	retval = -ESRCH;
5812 	p = find_process_by_pid(pid);
5813 	if (likely(p))
5814 		get_task_struct(p);
5815 	rcu_read_unlock();
5816 
5817 	if (likely(p)) {
5818 		retval = sched_setscheduler(p, policy, &lparam);
5819 		put_task_struct(p);
5820 	}
5821 
5822 	return retval;
5823 }
5824 
5825 /*
5826  * Mimics kernel/events/core.c perf_copy_attr().
5827  */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)5828 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5829 {
5830 	u32 size;
5831 	int ret;
5832 
5833 	/* Zero the full structure, so that a short copy will be nice: */
5834 	memset(attr, 0, sizeof(*attr));
5835 
5836 	ret = get_user(size, &uattr->size);
5837 	if (ret)
5838 		return ret;
5839 
5840 	/* ABI compatibility quirk: */
5841 	if (!size)
5842 		size = SCHED_ATTR_SIZE_VER0;
5843 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5844 		goto err_size;
5845 
5846 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5847 	if (ret) {
5848 		if (ret == -E2BIG)
5849 			goto err_size;
5850 		return ret;
5851 	}
5852 
5853 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5854 	    size < SCHED_ATTR_SIZE_VER1)
5855 		return -EINVAL;
5856 
5857 #ifdef CONFIG_SCHED_LATENCY_NICE
5858 	if ((attr->sched_flags & SCHED_FLAG_LATENCY_NICE) &&
5859 	    size < SCHED_ATTR_SIZE_VER2)
5860 		return -EINVAL;
5861 #endif
5862 	/*
5863 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5864 	 * to be strict and return an error on out-of-bounds values?
5865 	 */
5866 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5867 
5868 	return 0;
5869 
5870 err_size:
5871 	put_user(sizeof(*attr), &uattr->size);
5872 	return -E2BIG;
5873 }
5874 
5875 /**
5876  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5877  * @pid: the pid in question.
5878  * @policy: new policy.
5879  * @param: structure containing the new RT priority.
5880  *
5881  * Return: 0 on success. An error code otherwise.
5882  */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)5883 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5884 {
5885 	if (policy < 0)
5886 		return -EINVAL;
5887 
5888 	return do_sched_setscheduler(pid, policy, param);
5889 }
5890 
5891 /**
5892  * sys_sched_setparam - set/change the RT priority of a thread
5893  * @pid: the pid in question.
5894  * @param: structure containing the new RT priority.
5895  *
5896  * Return: 0 on success. An error code otherwise.
5897  */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)5898 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5899 {
5900 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5901 }
5902 
5903 /**
5904  * sys_sched_setattr - same as above, but with extended sched_attr
5905  * @pid: the pid in question.
5906  * @uattr: structure containing the extended parameters.
5907  * @flags: for future extension.
5908  */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)5909 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5910 			       unsigned int, flags)
5911 {
5912 	struct sched_attr attr;
5913 	struct task_struct *p;
5914 	int retval;
5915 
5916 	if (!uattr || pid < 0 || flags)
5917 		return -EINVAL;
5918 
5919 	retval = sched_copy_attr(uattr, &attr);
5920 	if (retval)
5921 		return retval;
5922 
5923 	if ((int)attr.sched_policy < 0)
5924 		return -EINVAL;
5925 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5926 		attr.sched_policy = SETPARAM_POLICY;
5927 
5928 	rcu_read_lock();
5929 	retval = -ESRCH;
5930 	p = find_process_by_pid(pid);
5931 	if (likely(p))
5932 		get_task_struct(p);
5933 	rcu_read_unlock();
5934 
5935 	if (likely(p)) {
5936 		retval = sched_setattr(p, &attr);
5937 		put_task_struct(p);
5938 	}
5939 
5940 	return retval;
5941 }
5942 
5943 /**
5944  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5945  * @pid: the pid in question.
5946  *
5947  * Return: On success, the policy of the thread. Otherwise, a negative error
5948  * code.
5949  */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)5950 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5951 {
5952 	struct task_struct *p;
5953 	int retval;
5954 
5955 	if (pid < 0)
5956 		return -EINVAL;
5957 
5958 	retval = -ESRCH;
5959 	rcu_read_lock();
5960 	p = find_process_by_pid(pid);
5961 	if (p) {
5962 		retval = security_task_getscheduler(p);
5963 		if (!retval)
5964 			retval = p->policy
5965 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5966 	}
5967 	rcu_read_unlock();
5968 	return retval;
5969 }
5970 
5971 /**
5972  * sys_sched_getparam - get the RT priority of a thread
5973  * @pid: the pid in question.
5974  * @param: structure containing the RT priority.
5975  *
5976  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5977  * code.
5978  */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)5979 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5980 {
5981 	struct sched_param lp = { .sched_priority = 0 };
5982 	struct task_struct *p;
5983 	int retval;
5984 
5985 	if (!param || pid < 0)
5986 		return -EINVAL;
5987 
5988 	rcu_read_lock();
5989 	p = find_process_by_pid(pid);
5990 	retval = -ESRCH;
5991 	if (!p)
5992 		goto out_unlock;
5993 
5994 	retval = security_task_getscheduler(p);
5995 	if (retval)
5996 		goto out_unlock;
5997 
5998 	if (task_has_rt_policy(p))
5999 		lp.sched_priority = p->rt_priority;
6000 	rcu_read_unlock();
6001 
6002 	/*
6003 	 * This one might sleep, we cannot do it with a spinlock held ...
6004 	 */
6005 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6006 
6007 	return retval;
6008 
6009 out_unlock:
6010 	rcu_read_unlock();
6011 	return retval;
6012 }
6013 
6014 /*
6015  * Copy the kernel size attribute structure (which might be larger
6016  * than what user-space knows about) to user-space.
6017  *
6018  * Note that all cases are valid: user-space buffer can be larger or
6019  * smaller than the kernel-space buffer. The usual case is that both
6020  * have the same size.
6021  */
6022 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)6023 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6024 			struct sched_attr *kattr,
6025 			unsigned int usize)
6026 {
6027 	unsigned int ksize = sizeof(*kattr);
6028 
6029 	if (!access_ok(uattr, usize))
6030 		return -EFAULT;
6031 
6032 	/*
6033 	 * sched_getattr() ABI forwards and backwards compatibility:
6034 	 *
6035 	 * If usize == ksize then we just copy everything to user-space and all is good.
6036 	 *
6037 	 * If usize < ksize then we only copy as much as user-space has space for,
6038 	 * this keeps ABI compatibility as well. We skip the rest.
6039 	 *
6040 	 * If usize > ksize then user-space is using a newer version of the ABI,
6041 	 * which part the kernel doesn't know about. Just ignore it - tooling can
6042 	 * detect the kernel's knowledge of attributes from the attr->size value
6043 	 * which is set to ksize in this case.
6044 	 */
6045 	kattr->size = min(usize, ksize);
6046 
6047 	if (copy_to_user(uattr, kattr, kattr->size))
6048 		return -EFAULT;
6049 
6050 	return 0;
6051 }
6052 
6053 /**
6054  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6055  * @pid: the pid in question.
6056  * @uattr: structure containing the extended parameters.
6057  * @usize: sizeof(attr) for fwd/bwd comp.
6058  * @flags: for future extension.
6059  */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)6060 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6061 		unsigned int, usize, unsigned int, flags)
6062 {
6063 	struct sched_attr kattr = { };
6064 	struct task_struct *p;
6065 	int retval;
6066 
6067 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6068 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
6069 		return -EINVAL;
6070 
6071 	rcu_read_lock();
6072 	p = find_process_by_pid(pid);
6073 	retval = -ESRCH;
6074 	if (!p)
6075 		goto out_unlock;
6076 
6077 	retval = security_task_getscheduler(p);
6078 	if (retval)
6079 		goto out_unlock;
6080 
6081 	kattr.sched_policy = p->policy;
6082 	if (p->sched_reset_on_fork)
6083 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6084 	if (task_has_dl_policy(p))
6085 		__getparam_dl(p, &kattr);
6086 	else if (task_has_rt_policy(p))
6087 		kattr.sched_priority = p->rt_priority;
6088 	else
6089 		kattr.sched_nice = task_nice(p);
6090 
6091 #ifdef CONFIG_SCHED_LATENCY_NICE
6092 	kattr.sched_latency_nice = LATENCY_TO_NICE(p->latency_prio);
6093 #endif
6094 
6095 #ifdef CONFIG_UCLAMP_TASK
6096 	/*
6097 	 * This could race with another potential updater, but this is fine
6098 	 * because it'll correctly read the old or the new value. We don't need
6099 	 * to guarantee who wins the race as long as it doesn't return garbage.
6100 	 */
6101 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6102 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6103 #endif
6104 
6105 	rcu_read_unlock();
6106 
6107 	return sched_attr_copy_to_user(uattr, &kattr, usize);
6108 
6109 out_unlock:
6110 	rcu_read_unlock();
6111 	return retval;
6112 }
6113 
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)6114 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6115 {
6116 	cpumask_var_t cpus_allowed, new_mask;
6117 	struct task_struct *p;
6118 	int retval;
6119 #ifdef CONFIG_CPU_ISOLATION_OPT
6120 	int dest_cpu;
6121 	cpumask_t allowed_mask;
6122 #endif
6123 
6124 	rcu_read_lock();
6125 
6126 	p = find_process_by_pid(pid);
6127 	if (!p) {
6128 		rcu_read_unlock();
6129 		return -ESRCH;
6130 	}
6131 
6132 	/* Prevent p going away */
6133 	get_task_struct(p);
6134 	rcu_read_unlock();
6135 
6136 	if (p->flags & PF_NO_SETAFFINITY) {
6137 		retval = -EINVAL;
6138 		goto out_put_task;
6139 	}
6140 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6141 		retval = -ENOMEM;
6142 		goto out_put_task;
6143 	}
6144 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6145 		retval = -ENOMEM;
6146 		goto out_free_cpus_allowed;
6147 	}
6148 	retval = -EPERM;
6149 	if (!check_same_owner(p)) {
6150 		rcu_read_lock();
6151 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6152 			rcu_read_unlock();
6153 			goto out_free_new_mask;
6154 		}
6155 		rcu_read_unlock();
6156 	}
6157 
6158 	retval = security_task_setscheduler(p);
6159 	if (retval)
6160 		goto out_free_new_mask;
6161 
6162 
6163 	cpuset_cpus_allowed(p, cpus_allowed);
6164 	cpumask_and(new_mask, in_mask, cpus_allowed);
6165 
6166 	/*
6167 	 * Since bandwidth control happens on root_domain basis,
6168 	 * if admission test is enabled, we only admit -deadline
6169 	 * tasks allowed to run on all the CPUs in the task's
6170 	 * root_domain.
6171 	 */
6172 #ifdef CONFIG_SMP
6173 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6174 		rcu_read_lock();
6175 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6176 			retval = -EBUSY;
6177 			rcu_read_unlock();
6178 			goto out_free_new_mask;
6179 		}
6180 		rcu_read_unlock();
6181 	}
6182 #endif
6183 again:
6184 #ifdef CONFIG_CPU_ISOLATION_OPT
6185 	cpumask_andnot(&allowed_mask, new_mask, cpu_isolated_mask);
6186 	dest_cpu = cpumask_any_and(cpu_active_mask, &allowed_mask);
6187 	if (dest_cpu < nr_cpu_ids) {
6188 #endif
6189 		retval = __set_cpus_allowed_ptr(p, new_mask, true);
6190 		if (!retval) {
6191 			cpuset_cpus_allowed(p, cpus_allowed);
6192 			if (!cpumask_subset(new_mask, cpus_allowed)) {
6193 				/*
6194 				 * We must have raced with a concurrent cpuset
6195 				 * update. Just reset the cpus_allowed to the
6196 				 * cpuset's cpus_allowed
6197 				 */
6198 				cpumask_copy(new_mask, cpus_allowed);
6199 				goto again;
6200 			}
6201 		}
6202 #ifdef CONFIG_CPU_ISOLATION_OPT
6203 	} else {
6204 		retval = -EINVAL;
6205 	}
6206 #endif
6207 
6208 out_free_new_mask:
6209 	free_cpumask_var(new_mask);
6210 out_free_cpus_allowed:
6211 	free_cpumask_var(cpus_allowed);
6212 out_put_task:
6213 	put_task_struct(p);
6214 	return retval;
6215 }
6216 
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)6217 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6218 			     struct cpumask *new_mask)
6219 {
6220 	if (len < cpumask_size())
6221 		cpumask_clear(new_mask);
6222 	else if (len > cpumask_size())
6223 		len = cpumask_size();
6224 
6225 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6226 }
6227 
6228 /**
6229  * sys_sched_setaffinity - set the CPU affinity of a process
6230  * @pid: pid of the process
6231  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6232  * @user_mask_ptr: user-space pointer to the new CPU mask
6233  *
6234  * Return: 0 on success. An error code otherwise.
6235  */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6236 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6237 		unsigned long __user *, user_mask_ptr)
6238 {
6239 	cpumask_var_t new_mask;
6240 	int retval;
6241 
6242 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6243 		return -ENOMEM;
6244 
6245 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6246 	if (retval == 0)
6247 		retval = sched_setaffinity(pid, new_mask);
6248 	free_cpumask_var(new_mask);
6249 	return retval;
6250 }
6251 
sched_getaffinity(pid_t pid,struct cpumask * mask)6252 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6253 {
6254 	struct task_struct *p;
6255 	unsigned long flags;
6256 	int retval;
6257 
6258 	rcu_read_lock();
6259 
6260 	retval = -ESRCH;
6261 	p = find_process_by_pid(pid);
6262 	if (!p)
6263 		goto out_unlock;
6264 
6265 	retval = security_task_getscheduler(p);
6266 	if (retval)
6267 		goto out_unlock;
6268 
6269 	raw_spin_lock_irqsave(&p->pi_lock, flags);
6270 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6271 
6272 #ifdef CONFIG_CPU_ISOLATION_OPT
6273 	/* The userspace tasks are forbidden to run on
6274 	 * isolated CPUs. So exclude isolated CPUs from
6275 	 * the getaffinity.
6276 	 */
6277 	if (!(p->flags & PF_KTHREAD))
6278 		cpumask_andnot(mask, mask, cpu_isolated_mask);
6279 #endif
6280 
6281 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6282 
6283 out_unlock:
6284 	rcu_read_unlock();
6285 
6286 	return retval;
6287 }
6288 
6289 /**
6290  * sys_sched_getaffinity - get the CPU affinity of a process
6291  * @pid: pid of the process
6292  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6293  * @user_mask_ptr: user-space pointer to hold the current CPU mask
6294  *
6295  * Return: size of CPU mask copied to user_mask_ptr on success. An
6296  * error code otherwise.
6297  */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6298 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6299 		unsigned long __user *, user_mask_ptr)
6300 {
6301 	int ret;
6302 	cpumask_var_t mask;
6303 
6304 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6305 		return -EINVAL;
6306 	if (len & (sizeof(unsigned long)-1))
6307 		return -EINVAL;
6308 
6309 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6310 		return -ENOMEM;
6311 
6312 	ret = sched_getaffinity(pid, mask);
6313 	if (ret == 0) {
6314 		unsigned int retlen = min(len, cpumask_size());
6315 
6316 		if (copy_to_user(user_mask_ptr, mask, retlen))
6317 			ret = -EFAULT;
6318 		else
6319 			ret = retlen;
6320 	}
6321 	free_cpumask_var(mask);
6322 
6323 	return ret;
6324 }
6325 
6326 /**
6327  * sys_sched_yield - yield the current processor to other threads.
6328  *
6329  * This function yields the current CPU to other tasks. If there are no
6330  * other threads running on this CPU then this function will return.
6331  *
6332  * Return: 0.
6333  */
do_sched_yield(void)6334 static void do_sched_yield(void)
6335 {
6336 	struct rq_flags rf;
6337 	struct rq *rq;
6338 
6339 	rq = this_rq_lock_irq(&rf);
6340 
6341 	schedstat_inc(rq->yld_count);
6342 	current->sched_class->yield_task(rq);
6343 
6344 	preempt_disable();
6345 	rq_unlock_irq(rq, &rf);
6346 	sched_preempt_enable_no_resched();
6347 
6348 	schedule();
6349 }
6350 
SYSCALL_DEFINE0(sched_yield)6351 SYSCALL_DEFINE0(sched_yield)
6352 {
6353 	do_sched_yield();
6354 	return 0;
6355 }
6356 
6357 #ifndef CONFIG_PREEMPTION
_cond_resched(void)6358 int __sched _cond_resched(void)
6359 {
6360 	if (should_resched(0)) {
6361 		preempt_schedule_common();
6362 		return 1;
6363 	}
6364 	rcu_all_qs();
6365 	return 0;
6366 }
6367 EXPORT_SYMBOL(_cond_resched);
6368 #endif
6369 
6370 /*
6371  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6372  * call schedule, and on return reacquire the lock.
6373  *
6374  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6375  * operations here to prevent schedule() from being called twice (once via
6376  * spin_unlock(), once by hand).
6377  */
__cond_resched_lock(spinlock_t * lock)6378 int __cond_resched_lock(spinlock_t *lock)
6379 {
6380 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
6381 	int ret = 0;
6382 
6383 	lockdep_assert_held(lock);
6384 
6385 	if (spin_needbreak(lock) || resched) {
6386 		spin_unlock(lock);
6387 		if (resched)
6388 			preempt_schedule_common();
6389 		else
6390 			cpu_relax();
6391 		ret = 1;
6392 		spin_lock(lock);
6393 	}
6394 	return ret;
6395 }
6396 EXPORT_SYMBOL(__cond_resched_lock);
6397 
6398 /**
6399  * yield - yield the current processor to other threads.
6400  *
6401  * Do not ever use this function, there's a 99% chance you're doing it wrong.
6402  *
6403  * The scheduler is at all times free to pick the calling task as the most
6404  * eligible task to run, if removing the yield() call from your code breaks
6405  * it, its already broken.
6406  *
6407  * Typical broken usage is:
6408  *
6409  * while (!event)
6410  *	yield();
6411  *
6412  * where one assumes that yield() will let 'the other' process run that will
6413  * make event true. If the current task is a SCHED_FIFO task that will never
6414  * happen. Never use yield() as a progress guarantee!!
6415  *
6416  * If you want to use yield() to wait for something, use wait_event().
6417  * If you want to use yield() to be 'nice' for others, use cond_resched().
6418  * If you still want to use yield(), do not!
6419  */
yield(void)6420 void __sched yield(void)
6421 {
6422 	set_current_state(TASK_RUNNING);
6423 	do_sched_yield();
6424 }
6425 EXPORT_SYMBOL(yield);
6426 
6427 /**
6428  * yield_to - yield the current processor to another thread in
6429  * your thread group, or accelerate that thread toward the
6430  * processor it's on.
6431  * @p: target task
6432  * @preempt: whether task preemption is allowed or not
6433  *
6434  * It's the caller's job to ensure that the target task struct
6435  * can't go away on us before we can do any checks.
6436  *
6437  * Return:
6438  *	true (>0) if we indeed boosted the target task.
6439  *	false (0) if we failed to boost the target.
6440  *	-ESRCH if there's no task to yield to.
6441  */
yield_to(struct task_struct * p,bool preempt)6442 int __sched yield_to(struct task_struct *p, bool preempt)
6443 {
6444 	struct task_struct *curr = current;
6445 	struct rq *rq, *p_rq;
6446 	unsigned long flags;
6447 	int yielded = 0;
6448 
6449 	local_irq_save(flags);
6450 	rq = this_rq();
6451 
6452 again:
6453 	p_rq = task_rq(p);
6454 	/*
6455 	 * If we're the only runnable task on the rq and target rq also
6456 	 * has only one task, there's absolutely no point in yielding.
6457 	 */
6458 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6459 		yielded = -ESRCH;
6460 		goto out_irq;
6461 	}
6462 
6463 	double_rq_lock(rq, p_rq);
6464 	if (task_rq(p) != p_rq) {
6465 		double_rq_unlock(rq, p_rq);
6466 		goto again;
6467 	}
6468 
6469 	if (!curr->sched_class->yield_to_task)
6470 		goto out_unlock;
6471 
6472 	if (curr->sched_class != p->sched_class)
6473 		goto out_unlock;
6474 
6475 	if (task_running(p_rq, p) || p->state)
6476 		goto out_unlock;
6477 
6478 	yielded = curr->sched_class->yield_to_task(rq, p);
6479 	if (yielded) {
6480 		schedstat_inc(rq->yld_count);
6481 		/*
6482 		 * Make p's CPU reschedule; pick_next_entity takes care of
6483 		 * fairness.
6484 		 */
6485 		if (preempt && rq != p_rq)
6486 			resched_curr(p_rq);
6487 	}
6488 
6489 out_unlock:
6490 	double_rq_unlock(rq, p_rq);
6491 out_irq:
6492 	local_irq_restore(flags);
6493 
6494 	if (yielded > 0)
6495 		schedule();
6496 
6497 	return yielded;
6498 }
6499 EXPORT_SYMBOL_GPL(yield_to);
6500 
io_schedule_prepare(void)6501 int io_schedule_prepare(void)
6502 {
6503 	int old_iowait = current->in_iowait;
6504 
6505 	current->in_iowait = 1;
6506 	blk_schedule_flush_plug(current);
6507 
6508 	return old_iowait;
6509 }
6510 
io_schedule_finish(int token)6511 void io_schedule_finish(int token)
6512 {
6513 	current->in_iowait = token;
6514 }
6515 
6516 /*
6517  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6518  * that process accounting knows that this is a task in IO wait state.
6519  */
io_schedule_timeout(long timeout)6520 long __sched io_schedule_timeout(long timeout)
6521 {
6522 	int token;
6523 	long ret;
6524 
6525 	token = io_schedule_prepare();
6526 	ret = schedule_timeout(timeout);
6527 	io_schedule_finish(token);
6528 
6529 	return ret;
6530 }
6531 EXPORT_SYMBOL(io_schedule_timeout);
6532 
io_schedule(void)6533 void __sched io_schedule(void)
6534 {
6535 	int token;
6536 
6537 	token = io_schedule_prepare();
6538 	schedule();
6539 	io_schedule_finish(token);
6540 }
6541 EXPORT_SYMBOL(io_schedule);
6542 
6543 /**
6544  * sys_sched_get_priority_max - return maximum RT priority.
6545  * @policy: scheduling class.
6546  *
6547  * Return: On success, this syscall returns the maximum
6548  * rt_priority that can be used by a given scheduling class.
6549  * On failure, a negative error code is returned.
6550  */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)6551 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6552 {
6553 	int ret = -EINVAL;
6554 
6555 	switch (policy) {
6556 	case SCHED_FIFO:
6557 	case SCHED_RR:
6558 		ret = MAX_USER_RT_PRIO-1;
6559 		break;
6560 	case SCHED_DEADLINE:
6561 	case SCHED_NORMAL:
6562 	case SCHED_BATCH:
6563 	case SCHED_IDLE:
6564 		ret = 0;
6565 		break;
6566 	}
6567 	return ret;
6568 }
6569 
6570 /**
6571  * sys_sched_get_priority_min - return minimum RT priority.
6572  * @policy: scheduling class.
6573  *
6574  * Return: On success, this syscall returns the minimum
6575  * rt_priority that can be used by a given scheduling class.
6576  * On failure, a negative error code is returned.
6577  */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)6578 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6579 {
6580 	int ret = -EINVAL;
6581 
6582 	switch (policy) {
6583 	case SCHED_FIFO:
6584 	case SCHED_RR:
6585 		ret = 1;
6586 		break;
6587 	case SCHED_DEADLINE:
6588 	case SCHED_NORMAL:
6589 	case SCHED_BATCH:
6590 	case SCHED_IDLE:
6591 		ret = 0;
6592 	}
6593 	return ret;
6594 }
6595 
sched_rr_get_interval(pid_t pid,struct timespec64 * t)6596 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6597 {
6598 	struct task_struct *p;
6599 	unsigned int time_slice;
6600 	struct rq_flags rf;
6601 	struct rq *rq;
6602 	int retval;
6603 
6604 	if (pid < 0)
6605 		return -EINVAL;
6606 
6607 	retval = -ESRCH;
6608 	rcu_read_lock();
6609 	p = find_process_by_pid(pid);
6610 	if (!p)
6611 		goto out_unlock;
6612 
6613 	retval = security_task_getscheduler(p);
6614 	if (retval)
6615 		goto out_unlock;
6616 
6617 	rq = task_rq_lock(p, &rf);
6618 	time_slice = 0;
6619 	if (p->sched_class->get_rr_interval)
6620 		time_slice = p->sched_class->get_rr_interval(rq, p);
6621 	task_rq_unlock(rq, p, &rf);
6622 
6623 	rcu_read_unlock();
6624 	jiffies_to_timespec64(time_slice, t);
6625 	return 0;
6626 
6627 out_unlock:
6628 	rcu_read_unlock();
6629 	return retval;
6630 }
6631 
6632 /**
6633  * sys_sched_rr_get_interval - return the default timeslice of a process.
6634  * @pid: pid of the process.
6635  * @interval: userspace pointer to the timeslice value.
6636  *
6637  * this syscall writes the default timeslice value of a given process
6638  * into the user-space timespec buffer. A value of '0' means infinity.
6639  *
6640  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6641  * an error code.
6642  */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)6643 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6644 		struct __kernel_timespec __user *, interval)
6645 {
6646 	struct timespec64 t;
6647 	int retval = sched_rr_get_interval(pid, &t);
6648 
6649 	if (retval == 0)
6650 		retval = put_timespec64(&t, interval);
6651 
6652 	return retval;
6653 }
6654 
6655 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)6656 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6657 		struct old_timespec32 __user *, interval)
6658 {
6659 	struct timespec64 t;
6660 	int retval = sched_rr_get_interval(pid, &t);
6661 
6662 	if (retval == 0)
6663 		retval = put_old_timespec32(&t, interval);
6664 	return retval;
6665 }
6666 #endif
6667 
sched_show_task(struct task_struct * p)6668 void sched_show_task(struct task_struct *p)
6669 {
6670 	unsigned long free = 0;
6671 	int ppid;
6672 
6673 	if (!try_get_task_stack(p))
6674 		return;
6675 
6676 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6677 
6678 	if (p->state == TASK_RUNNING)
6679 		pr_cont("  running task    ");
6680 #ifdef CONFIG_DEBUG_STACK_USAGE
6681 	free = stack_not_used(p);
6682 #endif
6683 	ppid = 0;
6684 	rcu_read_lock();
6685 	if (pid_alive(p))
6686 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
6687 	rcu_read_unlock();
6688 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6689 		free, task_pid_nr(p), ppid,
6690 		(unsigned long)task_thread_info(p)->flags);
6691 
6692 	print_worker_info(KERN_INFO, p);
6693 	show_stack(p, NULL, KERN_INFO);
6694 	put_task_stack(p);
6695 }
6696 EXPORT_SYMBOL_GPL(sched_show_task);
6697 
6698 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)6699 state_filter_match(unsigned long state_filter, struct task_struct *p)
6700 {
6701 	/* no filter, everything matches */
6702 	if (!state_filter)
6703 		return true;
6704 
6705 	/* filter, but doesn't match */
6706 	if (!(p->state & state_filter))
6707 		return false;
6708 
6709 	/*
6710 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6711 	 * TASK_KILLABLE).
6712 	 */
6713 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6714 		return false;
6715 
6716 	return true;
6717 }
6718 
6719 
show_state_filter(unsigned long state_filter)6720 void show_state_filter(unsigned long state_filter)
6721 {
6722 	struct task_struct *g, *p;
6723 
6724 	rcu_read_lock();
6725 	for_each_process_thread(g, p) {
6726 		/*
6727 		 * reset the NMI-timeout, listing all files on a slow
6728 		 * console might take a lot of time:
6729 		 * Also, reset softlockup watchdogs on all CPUs, because
6730 		 * another CPU might be blocked waiting for us to process
6731 		 * an IPI.
6732 		 */
6733 		touch_nmi_watchdog();
6734 		touch_all_softlockup_watchdogs();
6735 		if (state_filter_match(state_filter, p))
6736 			sched_show_task(p);
6737 	}
6738 
6739 #ifdef CONFIG_SCHED_DEBUG
6740 	if (!state_filter)
6741 		sysrq_sched_debug_show();
6742 #endif
6743 	rcu_read_unlock();
6744 	/*
6745 	 * Only show locks if all tasks are dumped:
6746 	 */
6747 	if (!state_filter)
6748 		debug_show_all_locks();
6749 }
6750 
6751 /**
6752  * init_idle - set up an idle thread for a given CPU
6753  * @idle: task in question
6754  * @cpu: CPU the idle task belongs to
6755  *
6756  * NOTE: this function does not set the idle thread's NEED_RESCHED
6757  * flag, to make booting more robust.
6758  */
init_idle(struct task_struct * idle,int cpu)6759 void __init init_idle(struct task_struct *idle, int cpu)
6760 {
6761 	struct rq *rq = cpu_rq(cpu);
6762 	unsigned long flags;
6763 
6764 	__sched_fork(0, idle);
6765 
6766 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6767 	raw_spin_lock(&rq->lock);
6768 
6769 	idle->state = TASK_RUNNING;
6770 	idle->se.exec_start = sched_clock();
6771 	idle->flags |= PF_IDLE;
6772 
6773 #ifdef CONFIG_SMP
6774 	/*
6775 	 * Its possible that init_idle() gets called multiple times on a task,
6776 	 * in that case do_set_cpus_allowed() will not do the right thing.
6777 	 *
6778 	 * And since this is boot we can forgo the serialization.
6779 	 */
6780 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6781 #endif
6782 	/*
6783 	 * We're having a chicken and egg problem, even though we are
6784 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6785 	 * lockdep check in task_group() will fail.
6786 	 *
6787 	 * Similar case to sched_fork(). / Alternatively we could
6788 	 * use task_rq_lock() here and obtain the other rq->lock.
6789 	 *
6790 	 * Silence PROVE_RCU
6791 	 */
6792 	rcu_read_lock();
6793 	__set_task_cpu(idle, cpu);
6794 	rcu_read_unlock();
6795 
6796 	rq->idle = idle;
6797 	rcu_assign_pointer(rq->curr, idle);
6798 	idle->on_rq = TASK_ON_RQ_QUEUED;
6799 #ifdef CONFIG_SMP
6800 	idle->on_cpu = 1;
6801 #endif
6802 	raw_spin_unlock(&rq->lock);
6803 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6804 
6805 	/* Set the preempt count _outside_ the spinlocks! */
6806 	init_idle_preempt_count(idle, cpu);
6807 
6808 	/*
6809 	 * The idle tasks have their own, simple scheduling class:
6810 	 */
6811 	idle->sched_class = &idle_sched_class;
6812 	ftrace_graph_init_idle_task(idle, cpu);
6813 	vtime_init_idle(idle, cpu);
6814 #ifdef CONFIG_SMP
6815 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6816 #endif
6817 }
6818 
6819 #ifdef CONFIG_SMP
6820 
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)6821 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6822 			      const struct cpumask *trial)
6823 {
6824 	int ret = 1;
6825 
6826 	if (!cpumask_weight(cur))
6827 		return ret;
6828 
6829 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6830 
6831 	return ret;
6832 }
6833 
task_can_attach(struct task_struct * p,const struct cpumask * cs_effective_cpus)6834 int task_can_attach(struct task_struct *p,
6835 		    const struct cpumask *cs_effective_cpus)
6836 {
6837 	int ret = 0;
6838 
6839 	/*
6840 	 * Kthreads which disallow setaffinity shouldn't be moved
6841 	 * to a new cpuset; we don't want to change their CPU
6842 	 * affinity and isolating such threads by their set of
6843 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6844 	 * applicable for such threads.  This prevents checking for
6845 	 * success of set_cpus_allowed_ptr() on all attached tasks
6846 	 * before cpus_mask may be changed.
6847 	 */
6848 	if (p->flags & PF_NO_SETAFFINITY) {
6849 		ret = -EINVAL;
6850 		goto out;
6851 	}
6852 
6853 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6854 					      cs_effective_cpus)) {
6855 		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
6856 
6857 		if (unlikely(cpu >= nr_cpu_ids))
6858 			return -EINVAL;
6859 		ret = dl_cpu_busy(cpu, p);
6860 	}
6861 
6862 out:
6863 	return ret;
6864 }
6865 
6866 bool sched_smp_initialized __read_mostly;
6867 
6868 #ifdef CONFIG_NUMA_BALANCING
6869 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)6870 int migrate_task_to(struct task_struct *p, int target_cpu)
6871 {
6872 	struct migration_arg arg = { p, target_cpu };
6873 	int curr_cpu = task_cpu(p);
6874 
6875 	if (curr_cpu == target_cpu)
6876 		return 0;
6877 
6878 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6879 		return -EINVAL;
6880 
6881 	/* TODO: This is not properly updating schedstats */
6882 
6883 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6884 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6885 }
6886 
6887 /*
6888  * Requeue a task on a given node and accurately track the number of NUMA
6889  * tasks on the runqueues
6890  */
sched_setnuma(struct task_struct * p,int nid)6891 void sched_setnuma(struct task_struct *p, int nid)
6892 {
6893 	bool queued, running;
6894 	struct rq_flags rf;
6895 	struct rq *rq;
6896 
6897 	rq = task_rq_lock(p, &rf);
6898 	queued = task_on_rq_queued(p);
6899 	running = task_current(rq, p);
6900 
6901 	if (queued)
6902 		dequeue_task(rq, p, DEQUEUE_SAVE);
6903 	if (running)
6904 		put_prev_task(rq, p);
6905 
6906 	p->numa_preferred_nid = nid;
6907 
6908 	if (queued)
6909 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6910 	if (running)
6911 		set_next_task(rq, p);
6912 	task_rq_unlock(rq, p, &rf);
6913 }
6914 #endif /* CONFIG_NUMA_BALANCING */
6915 
6916 #ifdef CONFIG_HOTPLUG_CPU
6917 /*
6918  * Ensure that the idle task is using init_mm right before its CPU goes
6919  * offline.
6920  */
idle_task_exit(void)6921 void idle_task_exit(void)
6922 {
6923 	struct mm_struct *mm = current->active_mm;
6924 
6925 	BUG_ON(cpu_online(smp_processor_id()));
6926 	BUG_ON(current != this_rq()->idle);
6927 
6928 	if (mm != &init_mm) {
6929 		switch_mm(mm, &init_mm, current);
6930 		finish_arch_post_lock_switch();
6931 	}
6932 
6933 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6934 }
6935 
6936 /*
6937  * Since this CPU is going 'away' for a while, fold any nr_active delta
6938  * we might have. Assumes we're called after migrate_tasks() so that the
6939  * nr_active count is stable. We need to take the teardown thread which
6940  * is calling this into account, so we hand in adjust = 1 to the load
6941  * calculation.
6942  *
6943  * Also see the comment "Global load-average calculations".
6944  */
calc_load_migrate(struct rq * rq)6945 static void calc_load_migrate(struct rq *rq)
6946 {
6947 	long delta = calc_load_fold_active(rq, 1);
6948 	if (delta)
6949 		atomic_long_add(delta, &calc_load_tasks);
6950 }
6951 
__pick_migrate_task(struct rq * rq)6952 static struct task_struct *__pick_migrate_task(struct rq *rq)
6953 {
6954 	const struct sched_class *class;
6955 	struct task_struct *next;
6956 
6957 	for_each_class(class) {
6958 		next = class->pick_next_task(rq);
6959 		if (next) {
6960 			next->sched_class->put_prev_task(rq, next);
6961 			return next;
6962 		}
6963 	}
6964 
6965 	/* The idle class should always have a runnable task */
6966 	BUG();
6967 }
6968 
6969 #ifdef CONFIG_CPU_ISOLATION_OPT
6970 /*
6971  * Remove a task from the runqueue and pretend that it's migrating. This
6972  * should prevent migrations for the detached task and disallow further
6973  * changes to tsk_cpus_allowed.
6974  */
6975 static void
detach_one_task_core(struct task_struct * p,struct rq * rq,struct list_head * tasks)6976 detach_one_task_core(struct task_struct *p, struct rq *rq,
6977 		     struct list_head *tasks)
6978 {
6979 	lockdep_assert_held(&rq->lock);
6980 
6981 	p->on_rq = TASK_ON_RQ_MIGRATING;
6982 	deactivate_task(rq, p, 0);
6983 	list_add(&p->se.group_node, tasks);
6984 }
6985 
attach_tasks_core(struct list_head * tasks,struct rq * rq)6986 static void attach_tasks_core(struct list_head *tasks, struct rq *rq)
6987 {
6988 	struct task_struct *p;
6989 
6990 	lockdep_assert_held(&rq->lock);
6991 
6992 	while (!list_empty(tasks)) {
6993 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6994 		list_del_init(&p->se.group_node);
6995 
6996 		BUG_ON(task_rq(p) != rq);
6997 		activate_task(rq, p, 0);
6998 		p->on_rq = TASK_ON_RQ_QUEUED;
6999 	}
7000 }
7001 
7002 #else
7003 
7004 static void
detach_one_task_core(struct task_struct * p,struct rq * rq,struct list_head * tasks)7005 detach_one_task_core(struct task_struct *p, struct rq *rq,
7006 		     struct list_head *tasks)
7007 {
7008 }
7009 
attach_tasks_core(struct list_head * tasks,struct rq * rq)7010 static void attach_tasks_core(struct list_head *tasks, struct rq *rq)
7011 {
7012 }
7013 
7014 #endif /* CONFIG_CPU_ISOLATION_OPT */
7015 
7016 /*
7017  * Migrate all tasks (not pinned if pinned argument say so) from the rq,
7018  * sleeping tasks will be migrated by try_to_wake_up()->select_task_rq().
7019  *
7020  * Called with rq->lock held even though we'er in stop_machine() and
7021  * there's no concurrency possible, we hold the required locks anyway
7022  * because of lock validation efforts.
7023  */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf,bool migrate_pinned_tasks)7024 void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf,
7025 			  bool migrate_pinned_tasks)
7026 {
7027 	struct rq *rq = dead_rq;
7028 	struct task_struct *next, *stop = rq->stop;
7029 	struct rq_flags orf = *rf;
7030 	int dest_cpu;
7031 	unsigned int num_pinned_kthreads = 1; /* this thread */
7032 	LIST_HEAD(tasks);
7033 	cpumask_t avail_cpus;
7034 
7035 #ifdef CONFIG_CPU_ISOLATION_OPT
7036 	cpumask_andnot(&avail_cpus, cpu_online_mask, cpu_isolated_mask);
7037 #else
7038 	cpumask_copy(&avail_cpus, cpu_online_mask);
7039 #endif
7040 
7041 	/*
7042 	 * Fudge the rq selection such that the below task selection loop
7043 	 * doesn't get stuck on the currently eligible stop task.
7044 	 *
7045 	 * We're currently inside stop_machine() and the rq is either stuck
7046 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
7047 	 * either way we should never end up calling schedule() until we're
7048 	 * done here.
7049 	 */
7050 	rq->stop = NULL;
7051 
7052 	/*
7053 	 * put_prev_task() and pick_next_task() sched
7054 	 * class method both need to have an up-to-date
7055 	 * value of rq->clock[_task]
7056 	 */
7057 	update_rq_clock(rq);
7058 
7059 	for (;;) {
7060 		/*
7061 		 * There's this thread running, bail when that's the only
7062 		 * remaining thread.
7063 		 */
7064 		if (rq->nr_running == 1)
7065 			break;
7066 
7067 		next = __pick_migrate_task(rq);
7068 
7069 		if (!migrate_pinned_tasks && next->flags & PF_KTHREAD &&
7070 			!cpumask_intersects(&avail_cpus, &next->cpus_mask)) {
7071 			detach_one_task_core(next, rq, &tasks);
7072 			num_pinned_kthreads += 1;
7073 			continue;
7074 		}
7075 
7076 		/*
7077 		 * Rules for changing task_struct::cpus_mask are holding
7078 		 * both pi_lock and rq->lock, such that holding either
7079 		 * stabilizes the mask.
7080 		 *
7081 		 * Drop rq->lock is not quite as disastrous as it usually is
7082 		 * because !cpu_active at this point, which means load-balance
7083 		 * will not interfere. Also, stop-machine.
7084 		 */
7085 		rq_unlock(rq, rf);
7086 		raw_spin_lock(&next->pi_lock);
7087 		rq_relock(rq, rf);
7088 		if (!(rq->clock_update_flags & RQCF_UPDATED))
7089 			update_rq_clock(rq);
7090 
7091 		/*
7092 		 * Since we're inside stop-machine, _nothing_ should have
7093 		 * changed the task, WARN if weird stuff happened, because in
7094 		 * that case the above rq->lock drop is a fail too.
7095 		 * However, during cpu isolation the load balancer might have
7096 		 * interferred since we don't stop all CPUs. Ignore warning for
7097 		 * this case.
7098 		 */
7099 		if (task_rq(next) != rq || !task_on_rq_queued(next)) {
7100 			WARN_ON(migrate_pinned_tasks);
7101 			raw_spin_unlock(&next->pi_lock);
7102 			continue;
7103 		}
7104 
7105 		/* Find suitable destination for @next, with force if needed. */
7106 #ifdef CONFIG_CPU_ISOLATION_OPT
7107 		dest_cpu = select_fallback_rq(dead_rq->cpu, next, false);
7108 #else
7109 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
7110 #endif
7111 		rq = __migrate_task(rq, rf, next, dest_cpu);
7112 		if (rq != dead_rq) {
7113 			rq_unlock(rq, rf);
7114 			rq = dead_rq;
7115 			*rf = orf;
7116 			rq_relock(rq, rf);
7117 			if (!(rq->clock_update_flags & RQCF_UPDATED))
7118 				update_rq_clock(rq);
7119 		}
7120 		raw_spin_unlock(&next->pi_lock);
7121 	}
7122 
7123 	rq->stop = stop;
7124 
7125 	if (num_pinned_kthreads > 1)
7126 		attach_tasks_core(&tasks, rq);
7127 }
7128 
7129 #ifdef CONFIG_SCHED_EAS
clear_eas_migration_request(int cpu)7130 static void clear_eas_migration_request(int cpu)
7131 {
7132 	struct rq *rq = cpu_rq(cpu);
7133 	unsigned long flags;
7134 
7135 	clear_reserved(cpu);
7136 	if (rq->push_task) {
7137 		struct task_struct *push_task = NULL;
7138 
7139 		raw_spin_lock_irqsave(&rq->lock, flags);
7140 		if (rq->push_task) {
7141 			clear_reserved(rq->push_cpu);
7142 			push_task = rq->push_task;
7143 			rq->push_task = NULL;
7144 		}
7145 		rq->active_balance = 0;
7146 		raw_spin_unlock_irqrestore(&rq->lock, flags);
7147 		if (push_task)
7148 			put_task_struct(push_task);
7149 	}
7150 }
7151 #else
clear_eas_migration_request(int cpu)7152 static inline void clear_eas_migration_request(int cpu) {}
7153 #endif
7154 
7155 #ifdef CONFIG_CPU_ISOLATION_OPT
do_isolation_work_cpu_stop(void * data)7156 int do_isolation_work_cpu_stop(void *data)
7157 {
7158 	unsigned int cpu = smp_processor_id();
7159 	struct rq *rq = cpu_rq(cpu);
7160 	struct rq_flags rf;
7161 
7162 	watchdog_disable(cpu);
7163 
7164 	local_irq_disable();
7165 
7166 	irq_migrate_all_off_this_cpu();
7167 
7168 	flush_smp_call_function_from_idle();
7169 
7170 	/* Update our root-domain */
7171 	rq_lock(rq, &rf);
7172 
7173 	/*
7174 	 * Temporarily mark the rq as offline. This will allow us to
7175 	 * move tasks off the CPU.
7176 	 */
7177 	if (rq->rd) {
7178 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7179 		set_rq_offline(rq);
7180 	}
7181 
7182 	migrate_tasks(rq, &rf, false);
7183 
7184 	if (rq->rd)
7185 		set_rq_online(rq);
7186 	rq_unlock(rq, &rf);
7187 
7188 	clear_eas_migration_request(cpu);
7189 	local_irq_enable();
7190 	return 0;
7191 }
7192 
do_unisolation_work_cpu_stop(void * data)7193 int do_unisolation_work_cpu_stop(void *data)
7194 {
7195 	watchdog_enable(smp_processor_id());
7196 	return 0;
7197 }
7198 
sched_update_group_capacities(int cpu)7199 static void sched_update_group_capacities(int cpu)
7200 {
7201 	struct sched_domain *sd;
7202 
7203 	mutex_lock(&sched_domains_mutex);
7204 	rcu_read_lock();
7205 
7206 	for_each_domain(cpu, sd) {
7207 		int balance_cpu = group_balance_cpu(sd->groups);
7208 
7209 		init_sched_groups_capacity(cpu, sd);
7210 		/*
7211 		 * Need to ensure this is also called with balancing
7212 		 * cpu.
7213 		 */
7214 		if (cpu != balance_cpu)
7215 			init_sched_groups_capacity(balance_cpu, sd);
7216 	}
7217 
7218 	rcu_read_unlock();
7219 	mutex_unlock(&sched_domains_mutex);
7220 }
7221 
7222 static unsigned int cpu_isolation_vote[NR_CPUS];
7223 
sched_isolate_count(const cpumask_t * mask,bool include_offline)7224 int sched_isolate_count(const cpumask_t *mask, bool include_offline)
7225 {
7226 	cpumask_t count_mask = CPU_MASK_NONE;
7227 
7228 	if (include_offline) {
7229 		cpumask_complement(&count_mask, cpu_online_mask);
7230 		cpumask_or(&count_mask, &count_mask, cpu_isolated_mask);
7231 		cpumask_and(&count_mask, &count_mask, mask);
7232 	} else {
7233 		cpumask_and(&count_mask, mask, cpu_isolated_mask);
7234 	}
7235 
7236 	return cpumask_weight(&count_mask);
7237 }
7238 
7239 /*
7240  * 1) CPU is isolated and cpu is offlined:
7241  *	Unisolate the core.
7242  * 2) CPU is not isolated and CPU is offlined:
7243  *	No action taken.
7244  * 3) CPU is offline and request to isolate
7245  *	Request ignored.
7246  * 4) CPU is offline and isolated:
7247  *	Not a possible state.
7248  * 5) CPU is online and request to isolate
7249  *	Normal case: Isolate the CPU
7250  * 6) CPU is not isolated and comes back online
7251  *	Nothing to do
7252  *
7253  * Note: The client calling sched_isolate_cpu() is repsonsible for ONLY
7254  * calling sched_unisolate_cpu() on a CPU that the client previously isolated.
7255  * Client is also responsible for unisolating when a core goes offline
7256  * (after CPU is marked offline).
7257  */
sched_isolate_cpu(int cpu)7258 int sched_isolate_cpu(int cpu)
7259 {
7260 	struct rq *rq;
7261 	cpumask_t avail_cpus;
7262 	int ret_code = 0;
7263 	u64 start_time = 0;
7264 
7265 	if (trace_sched_isolate_enabled())
7266 		start_time = sched_clock();
7267 
7268 	cpu_maps_update_begin();
7269 
7270 	cpumask_andnot(&avail_cpus, cpu_online_mask, cpu_isolated_mask);
7271 
7272 	if (cpu < 0 || cpu >= nr_cpu_ids || !cpu_possible(cpu) ||
7273 				!cpu_online(cpu) || cpu >= NR_CPUS) {
7274 		ret_code = -EINVAL;
7275 		goto out;
7276 	}
7277 
7278 	rq = cpu_rq(cpu);
7279 
7280 	if (++cpu_isolation_vote[cpu] > 1)
7281 		goto out;
7282 
7283 	/* We cannot isolate ALL cpus in the system */
7284 	if (cpumask_weight(&avail_cpus) == 1) {
7285 		--cpu_isolation_vote[cpu];
7286 		ret_code = -EINVAL;
7287 		goto out;
7288 	}
7289 
7290 	/*
7291 	 * There is a race between watchdog being enabled by hotplug and
7292 	 * core isolation disabling the watchdog. When a CPU is hotplugged in
7293 	 * and the hotplug lock has been released the watchdog thread might
7294 	 * not have run yet to enable the watchdog.
7295 	 * We have to wait for the watchdog to be enabled before proceeding.
7296 	 */
7297 	if (!watchdog_configured(cpu)) {
7298 		msleep(20);
7299 		if (!watchdog_configured(cpu)) {
7300 			--cpu_isolation_vote[cpu];
7301 			ret_code = -EBUSY;
7302 			goto out;
7303 		}
7304 	}
7305 
7306 	set_cpu_isolated(cpu, true);
7307 	cpumask_clear_cpu(cpu, &avail_cpus);
7308 
7309 	/* Migrate timers */
7310 	smp_call_function_any(&avail_cpus, hrtimer_quiesce_cpu, &cpu, 1);
7311 	smp_call_function_any(&avail_cpus, timer_quiesce_cpu, &cpu, 1);
7312 
7313 	watchdog_disable(cpu);
7314 	irq_lock_sparse();
7315 	stop_cpus(cpumask_of(cpu), do_isolation_work_cpu_stop, 0);
7316 	irq_unlock_sparse();
7317 
7318 	calc_load_migrate(rq);
7319 	update_max_interval();
7320 	sched_update_group_capacities(cpu);
7321 
7322 out:
7323 	cpu_maps_update_done();
7324 	trace_sched_isolate(cpu, cpumask_bits(cpu_isolated_mask)[0],
7325 			    start_time, 1);
7326 	return ret_code;
7327 }
7328 
7329 /*
7330  * Note: The client calling sched_isolate_cpu() is repsonsible for ONLY
7331  * calling sched_unisolate_cpu() on a CPU that the client previously isolated.
7332  * Client is also responsible for unisolating when a core goes offline
7333  * (after CPU is marked offline).
7334  */
sched_unisolate_cpu_unlocked(int cpu)7335 int sched_unisolate_cpu_unlocked(int cpu)
7336 {
7337 	int ret_code = 0;
7338 	u64 start_time = 0;
7339 
7340 	if (cpu < 0 || cpu >= nr_cpu_ids || !cpu_possible(cpu)
7341 						|| cpu >= NR_CPUS) {
7342 		ret_code = -EINVAL;
7343 		goto out;
7344 	}
7345 
7346 	if (trace_sched_isolate_enabled())
7347 		start_time = sched_clock();
7348 
7349 	if (!cpu_isolation_vote[cpu]) {
7350 		ret_code = -EINVAL;
7351 		goto out;
7352 	}
7353 
7354 	if (--cpu_isolation_vote[cpu])
7355 		goto out;
7356 
7357 	set_cpu_isolated(cpu, false);
7358 	update_max_interval();
7359 	sched_update_group_capacities(cpu);
7360 
7361 	if (cpu_online(cpu)) {
7362 		stop_cpus(cpumask_of(cpu), do_unisolation_work_cpu_stop, 0);
7363 
7364 		/* Kick CPU to immediately do load balancing */
7365 		if (!atomic_fetch_or(NOHZ_KICK_MASK, nohz_flags(cpu)))
7366 			smp_send_reschedule(cpu);
7367 	}
7368 
7369 out:
7370 	trace_sched_isolate(cpu, cpumask_bits(cpu_isolated_mask)[0],
7371 			    start_time, 0);
7372 	return ret_code;
7373 }
7374 
sched_unisolate_cpu(int cpu)7375 int sched_unisolate_cpu(int cpu)
7376 {
7377 	int ret_code;
7378 
7379 	cpu_maps_update_begin();
7380 	ret_code = sched_unisolate_cpu_unlocked(cpu);
7381 	cpu_maps_update_done();
7382 	return ret_code;
7383 }
7384 
7385 #endif /* CONFIG_CPU_ISOLATION_OPT */
7386 
7387 #endif /* CONFIG_HOTPLUG_CPU */
7388 
set_rq_online(struct rq * rq)7389 void set_rq_online(struct rq *rq)
7390 {
7391 	if (!rq->online) {
7392 		const struct sched_class *class;
7393 
7394 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7395 		rq->online = 1;
7396 
7397 		for_each_class(class) {
7398 			if (class->rq_online)
7399 				class->rq_online(rq);
7400 		}
7401 	}
7402 }
7403 
set_rq_offline(struct rq * rq)7404 void set_rq_offline(struct rq *rq)
7405 {
7406 	if (rq->online) {
7407 		const struct sched_class *class;
7408 
7409 		for_each_class(class) {
7410 			if (class->rq_offline)
7411 				class->rq_offline(rq);
7412 		}
7413 
7414 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7415 		rq->online = 0;
7416 	}
7417 }
7418 
7419 /*
7420  * used to mark begin/end of suspend/resume:
7421  */
7422 static int num_cpus_frozen;
7423 
7424 /*
7425  * Update cpusets according to cpu_active mask.  If cpusets are
7426  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7427  * around partition_sched_domains().
7428  *
7429  * If we come here as part of a suspend/resume, don't touch cpusets because we
7430  * want to restore it back to its original state upon resume anyway.
7431  */
cpuset_cpu_active(void)7432 static void cpuset_cpu_active(void)
7433 {
7434 	if (cpuhp_tasks_frozen) {
7435 		/*
7436 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7437 		 * resume sequence. As long as this is not the last online
7438 		 * operation in the resume sequence, just build a single sched
7439 		 * domain, ignoring cpusets.
7440 		 */
7441 		partition_sched_domains(1, NULL, NULL);
7442 		if (--num_cpus_frozen)
7443 			return;
7444 		/*
7445 		 * This is the last CPU online operation. So fall through and
7446 		 * restore the original sched domains by considering the
7447 		 * cpuset configurations.
7448 		 */
7449 		cpuset_force_rebuild();
7450 	}
7451 	cpuset_update_active_cpus();
7452 }
7453 
cpuset_cpu_inactive(unsigned int cpu)7454 static int cpuset_cpu_inactive(unsigned int cpu)
7455 {
7456 	if (!cpuhp_tasks_frozen) {
7457 		int ret = dl_cpu_busy(cpu, NULL);
7458 
7459 		if (ret)
7460 			return ret;
7461 		cpuset_update_active_cpus();
7462 	} else {
7463 		num_cpus_frozen++;
7464 		partition_sched_domains(1, NULL, NULL);
7465 	}
7466 	return 0;
7467 }
7468 
sched_cpu_activate(unsigned int cpu)7469 int sched_cpu_activate(unsigned int cpu)
7470 {
7471 	struct rq *rq = cpu_rq(cpu);
7472 	struct rq_flags rf;
7473 
7474 #ifdef CONFIG_SCHED_SMT
7475 	/*
7476 	 * When going up, increment the number of cores with SMT present.
7477 	 */
7478 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7479 		static_branch_inc_cpuslocked(&sched_smt_present);
7480 #endif
7481 	set_cpu_active(cpu, true);
7482 
7483 	if (sched_smp_initialized) {
7484 		sched_domains_numa_masks_set(cpu);
7485 		cpuset_cpu_active();
7486 	}
7487 
7488 	/*
7489 	 * Put the rq online, if not already. This happens:
7490 	 *
7491 	 * 1) In the early boot process, because we build the real domains
7492 	 *    after all CPUs have been brought up.
7493 	 *
7494 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7495 	 *    domains.
7496 	 */
7497 	rq_lock_irqsave(rq, &rf);
7498 	if (rq->rd) {
7499 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7500 		set_rq_online(rq);
7501 	}
7502 	rq_unlock_irqrestore(rq, &rf);
7503 
7504 	return 0;
7505 }
7506 
sched_cpu_deactivate(unsigned int cpu)7507 int sched_cpu_deactivate(unsigned int cpu)
7508 {
7509 	int ret;
7510 
7511 	set_cpu_active(cpu, false);
7512 	/*
7513 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7514 	 * users of this state to go away such that all new such users will
7515 	 * observe it.
7516 	 *
7517 	 * Do sync before park smpboot threads to take care the rcu boost case.
7518 	 */
7519 	synchronize_rcu();
7520 
7521 #ifdef CONFIG_SCHED_SMT
7522 	/*
7523 	 * When going down, decrement the number of cores with SMT present.
7524 	 */
7525 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7526 		static_branch_dec_cpuslocked(&sched_smt_present);
7527 #endif
7528 
7529 	if (!sched_smp_initialized)
7530 		return 0;
7531 
7532 	ret = cpuset_cpu_inactive(cpu);
7533 	if (ret) {
7534 		set_cpu_active(cpu, true);
7535 		return ret;
7536 	}
7537 	sched_domains_numa_masks_clear(cpu);
7538 	return 0;
7539 }
7540 
sched_rq_cpu_starting(unsigned int cpu)7541 static void sched_rq_cpu_starting(unsigned int cpu)
7542 {
7543 	struct rq *rq = cpu_rq(cpu);
7544 	unsigned long flags;
7545 
7546 	raw_spin_lock_irqsave(&rq->lock, flags);
7547 	set_window_start(rq);
7548 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7549 
7550 	rq->calc_load_update = calc_load_update;
7551 	update_max_interval();
7552 }
7553 
sched_cpu_starting(unsigned int cpu)7554 int sched_cpu_starting(unsigned int cpu)
7555 {
7556 	sched_rq_cpu_starting(cpu);
7557 	sched_tick_start(cpu);
7558 	clear_eas_migration_request(cpu);
7559 	return 0;
7560 }
7561 
7562 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)7563 int sched_cpu_dying(unsigned int cpu)
7564 {
7565 	struct rq *rq = cpu_rq(cpu);
7566 	struct rq_flags rf;
7567 
7568 	/* Handle pending wakeups and then migrate everything off */
7569 	sched_tick_stop(cpu);
7570 
7571 	rq_lock_irqsave(rq, &rf);
7572 
7573 	if (rq->rd) {
7574 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7575 		set_rq_offline(rq);
7576 	}
7577 	migrate_tasks(rq, &rf, true);
7578 	BUG_ON(rq->nr_running != 1);
7579 	rq_unlock_irqrestore(rq, &rf);
7580 
7581 	clear_eas_migration_request(cpu);
7582 
7583 	calc_load_migrate(rq);
7584 	update_max_interval();
7585 	nohz_balance_exit_idle(rq);
7586 	hrtick_clear(rq);
7587 	return 0;
7588 }
7589 #endif
7590 
sched_init_smp(void)7591 void __init sched_init_smp(void)
7592 {
7593 	sched_init_numa();
7594 
7595 	/*
7596 	 * There's no userspace yet to cause hotplug operations; hence all the
7597 	 * CPU masks are stable and all blatant races in the below code cannot
7598 	 * happen.
7599 	 */
7600 	mutex_lock(&sched_domains_mutex);
7601 	sched_init_domains(cpu_active_mask);
7602 	mutex_unlock(&sched_domains_mutex);
7603 
7604 	update_cluster_topology();
7605 
7606 	/* Move init over to a non-isolated CPU */
7607 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7608 		BUG();
7609 	sched_init_granularity();
7610 
7611 	init_sched_rt_class();
7612 	init_sched_dl_class();
7613 
7614 	sched_smp_initialized = true;
7615 }
7616 
migration_init(void)7617 static int __init migration_init(void)
7618 {
7619 	sched_cpu_starting(smp_processor_id());
7620 	return 0;
7621 }
7622 early_initcall(migration_init);
7623 
7624 #else
sched_init_smp(void)7625 void __init sched_init_smp(void)
7626 {
7627 	sched_init_granularity();
7628 }
7629 #endif /* CONFIG_SMP */
7630 
in_sched_functions(unsigned long addr)7631 int in_sched_functions(unsigned long addr)
7632 {
7633 	return in_lock_functions(addr) ||
7634 		(addr >= (unsigned long)__sched_text_start
7635 		&& addr < (unsigned long)__sched_text_end);
7636 }
7637 
7638 #ifdef CONFIG_CGROUP_SCHED
7639 /*
7640  * Default task group.
7641  * Every task in system belongs to this group at bootup.
7642  */
7643 struct task_group root_task_group;
7644 LIST_HEAD(task_groups);
7645 
7646 /* Cacheline aligned slab cache for task_group */
7647 static struct kmem_cache *task_group_cache __read_mostly;
7648 #endif
7649 
7650 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7651 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7652 
sched_init(void)7653 void __init sched_init(void)
7654 {
7655 	unsigned long ptr = 0;
7656 	int i;
7657 
7658 	/* Make sure the linker didn't screw up */
7659 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7660 	       &fair_sched_class + 1 != &rt_sched_class ||
7661 	       &rt_sched_class + 1   != &dl_sched_class);
7662 #ifdef CONFIG_SMP
7663 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7664 #endif
7665 
7666 	wait_bit_init();
7667 
7668 	init_clusters();
7669 
7670 #ifdef CONFIG_FAIR_GROUP_SCHED
7671 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7672 #endif
7673 #ifdef CONFIG_RT_GROUP_SCHED
7674 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7675 #endif
7676 	if (ptr) {
7677 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7678 
7679 #ifdef CONFIG_FAIR_GROUP_SCHED
7680 		root_task_group.se = (struct sched_entity **)ptr;
7681 		ptr += nr_cpu_ids * sizeof(void **);
7682 
7683 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7684 		ptr += nr_cpu_ids * sizeof(void **);
7685 
7686 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7687 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7688 #endif /* CONFIG_FAIR_GROUP_SCHED */
7689 #ifdef CONFIG_RT_GROUP_SCHED
7690 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7691 		ptr += nr_cpu_ids * sizeof(void **);
7692 
7693 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7694 		ptr += nr_cpu_ids * sizeof(void **);
7695 
7696 #endif /* CONFIG_RT_GROUP_SCHED */
7697 	}
7698 #ifdef CONFIG_CPUMASK_OFFSTACK
7699 	for_each_possible_cpu(i) {
7700 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7701 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7702 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7703 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7704 	}
7705 #endif /* CONFIG_CPUMASK_OFFSTACK */
7706 
7707 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7708 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7709 
7710 #ifdef CONFIG_SMP
7711 	init_defrootdomain();
7712 #endif
7713 
7714 #ifdef CONFIG_RT_GROUP_SCHED
7715 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7716 			global_rt_period(), global_rt_runtime());
7717 #endif /* CONFIG_RT_GROUP_SCHED */
7718 
7719 #ifdef CONFIG_CGROUP_SCHED
7720 	task_group_cache = KMEM_CACHE(task_group, 0);
7721 
7722 	list_add(&root_task_group.list, &task_groups);
7723 	INIT_LIST_HEAD(&root_task_group.children);
7724 	INIT_LIST_HEAD(&root_task_group.siblings);
7725 	autogroup_init(&init_task);
7726 #endif /* CONFIG_CGROUP_SCHED */
7727 
7728 	for_each_possible_cpu(i) {
7729 		struct rq *rq;
7730 
7731 		rq = cpu_rq(i);
7732 		raw_spin_lock_init(&rq->lock);
7733 		rq->nr_running = 0;
7734 		rq->calc_load_active = 0;
7735 		rq->calc_load_update = jiffies + LOAD_FREQ;
7736 		init_cfs_rq(&rq->cfs);
7737 		init_rt_rq(&rq->rt);
7738 		init_dl_rq(&rq->dl);
7739 #ifdef CONFIG_FAIR_GROUP_SCHED
7740 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7741 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7742 		/*
7743 		 * How much CPU bandwidth does root_task_group get?
7744 		 *
7745 		 * In case of task-groups formed thr' the cgroup filesystem, it
7746 		 * gets 100% of the CPU resources in the system. This overall
7747 		 * system CPU resource is divided among the tasks of
7748 		 * root_task_group and its child task-groups in a fair manner,
7749 		 * based on each entity's (task or task-group's) weight
7750 		 * (se->load.weight).
7751 		 *
7752 		 * In other words, if root_task_group has 10 tasks of weight
7753 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7754 		 * then A0's share of the CPU resource is:
7755 		 *
7756 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7757 		 *
7758 		 * We achieve this by letting root_task_group's tasks sit
7759 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7760 		 */
7761 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7762 #endif /* CONFIG_FAIR_GROUP_SCHED */
7763 
7764 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7765 #ifdef CONFIG_RT_GROUP_SCHED
7766 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7767 #endif
7768 #ifdef CONFIG_SMP
7769 		rq->sd = NULL;
7770 		rq->rd = NULL;
7771 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7772 		rq->balance_callback = NULL;
7773 		rq->active_balance = 0;
7774 		rq->next_balance = jiffies;
7775 		rq->push_cpu = 0;
7776 		rq->cpu = i;
7777 		rq->online = 0;
7778 		rq->idle_stamp = 0;
7779 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7780 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7781 		walt_sched_init_rq(rq);
7782 
7783 		INIT_LIST_HEAD(&rq->cfs_tasks);
7784 
7785 		rq_attach_root(rq, &def_root_domain);
7786 #ifdef CONFIG_NO_HZ_COMMON
7787 		rq->last_blocked_load_update_tick = jiffies;
7788 		atomic_set(&rq->nohz_flags, 0);
7789 
7790 		rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7791 #endif
7792 #endif /* CONFIG_SMP */
7793 		hrtick_rq_init(rq);
7794 		atomic_set(&rq->nr_iowait, 0);
7795 	}
7796 
7797 	BUG_ON(alloc_related_thread_groups());
7798 	set_load_weight(&init_task);
7799 
7800 	/*
7801 	 * The boot idle thread does lazy MMU switching as well:
7802 	 */
7803 	mmgrab(&init_mm);
7804 	enter_lazy_tlb(&init_mm, current);
7805 
7806 	/*
7807 	 * Make us the idle thread. Technically, schedule() should not be
7808 	 * called from this thread, however somewhere below it might be,
7809 	 * but because we are the idle thread, we just pick up running again
7810 	 * when this runqueue becomes "idle".
7811 	 */
7812 	init_idle(current, smp_processor_id());
7813 	init_new_task_load(current);
7814 
7815 #ifdef CONIG_QOS_CTRL
7816 	init_task_qos(current);
7817 #endif
7818 
7819 	calc_load_update = jiffies + LOAD_FREQ;
7820 
7821 #ifdef CONFIG_SMP
7822 	idle_thread_set_boot_cpu();
7823 #endif
7824 	init_sched_fair_class();
7825 
7826 	init_schedstats();
7827 
7828 	psi_init();
7829 
7830 	init_uclamp();
7831 
7832 	scheduler_running = 1;
7833 }
7834 
7835 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7836 static inline int preempt_count_equals(int preempt_offset)
7837 {
7838 	int nested = preempt_count() + rcu_preempt_depth();
7839 
7840 	return (nested == preempt_offset);
7841 }
7842 
__might_sleep(const char * file,int line,int preempt_offset)7843 void __might_sleep(const char *file, int line, int preempt_offset)
7844 {
7845 	/*
7846 	 * Blocking primitives will set (and therefore destroy) current->state,
7847 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7848 	 * otherwise we will destroy state.
7849 	 */
7850 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7851 			"do not call blocking ops when !TASK_RUNNING; "
7852 			"state=%lx set at [<%p>] %pS\n",
7853 			current->state,
7854 			(void *)current->task_state_change,
7855 			(void *)current->task_state_change);
7856 
7857 	___might_sleep(file, line, preempt_offset);
7858 }
7859 EXPORT_SYMBOL(__might_sleep);
7860 
___might_sleep(const char * file,int line,int preempt_offset)7861 void ___might_sleep(const char *file, int line, int preempt_offset)
7862 {
7863 	/* Ratelimiting timestamp: */
7864 	static unsigned long prev_jiffy;
7865 
7866 	unsigned long preempt_disable_ip;
7867 
7868 	/* WARN_ON_ONCE() by default, no rate limit required: */
7869 	rcu_sleep_check();
7870 
7871 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7872 	     !is_idle_task(current) && !current->non_block_count) ||
7873 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7874 	    oops_in_progress)
7875 		return;
7876 
7877 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7878 		return;
7879 	prev_jiffy = jiffies;
7880 
7881 	/* Save this before calling printk(), since that will clobber it: */
7882 	preempt_disable_ip = get_preempt_disable_ip(current);
7883 
7884 	printk(KERN_ERR
7885 		"BUG: sleeping function called from invalid context at %s:%d\n",
7886 			file, line);
7887 	printk(KERN_ERR
7888 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7889 			in_atomic(), irqs_disabled(), current->non_block_count,
7890 			current->pid, current->comm);
7891 
7892 	if (task_stack_end_corrupted(current))
7893 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7894 
7895 	debug_show_held_locks(current);
7896 	if (irqs_disabled())
7897 		print_irqtrace_events(current);
7898 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7899 	    && !preempt_count_equals(preempt_offset)) {
7900 		pr_err("Preemption disabled at:");
7901 		print_ip_sym(KERN_ERR, preempt_disable_ip);
7902 	}
7903 	dump_stack();
7904 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7905 }
7906 EXPORT_SYMBOL(___might_sleep);
7907 
__cant_sleep(const char * file,int line,int preempt_offset)7908 void __cant_sleep(const char *file, int line, int preempt_offset)
7909 {
7910 	static unsigned long prev_jiffy;
7911 
7912 	if (irqs_disabled())
7913 		return;
7914 
7915 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7916 		return;
7917 
7918 	if (preempt_count() > preempt_offset)
7919 		return;
7920 
7921 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7922 		return;
7923 	prev_jiffy = jiffies;
7924 
7925 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7926 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7927 			in_atomic(), irqs_disabled(),
7928 			current->pid, current->comm);
7929 
7930 	debug_show_held_locks(current);
7931 	dump_stack();
7932 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7933 }
7934 EXPORT_SYMBOL_GPL(__cant_sleep);
7935 #endif
7936 
7937 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)7938 void normalize_rt_tasks(void)
7939 {
7940 	struct task_struct *g, *p;
7941 	struct sched_attr attr = {
7942 		.sched_policy = SCHED_NORMAL,
7943 	};
7944 
7945 	read_lock(&tasklist_lock);
7946 	for_each_process_thread(g, p) {
7947 		/*
7948 		 * Only normalize user tasks:
7949 		 */
7950 		if (p->flags & PF_KTHREAD)
7951 			continue;
7952 
7953 		p->se.exec_start = 0;
7954 		schedstat_set(p->se.statistics.wait_start,  0);
7955 		schedstat_set(p->se.statistics.sleep_start, 0);
7956 		schedstat_set(p->se.statistics.block_start, 0);
7957 
7958 		if (!dl_task(p) && !rt_task(p)) {
7959 			/*
7960 			 * Renice negative nice level userspace
7961 			 * tasks back to 0:
7962 			 */
7963 			if (task_nice(p) < 0)
7964 				set_user_nice(p, 0);
7965 			continue;
7966 		}
7967 
7968 		__sched_setscheduler(p, &attr, false, false);
7969 	}
7970 	read_unlock(&tasklist_lock);
7971 }
7972 
7973 #endif /* CONFIG_MAGIC_SYSRQ */
7974 
7975 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7976 /*
7977  * These functions are only useful for the IA64 MCA handling, or kdb.
7978  *
7979  * They can only be called when the whole system has been
7980  * stopped - every CPU needs to be quiescent, and no scheduling
7981  * activity can take place. Using them for anything else would
7982  * be a serious bug, and as a result, they aren't even visible
7983  * under any other configuration.
7984  */
7985 
7986 /**
7987  * curr_task - return the current task for a given CPU.
7988  * @cpu: the processor in question.
7989  *
7990  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7991  *
7992  * Return: The current task for @cpu.
7993  */
curr_task(int cpu)7994 struct task_struct *curr_task(int cpu)
7995 {
7996 	return cpu_curr(cpu);
7997 }
7998 
7999 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8000 
8001 #ifdef CONFIG_IA64
8002 /**
8003  * ia64_set_curr_task - set the current task for a given CPU.
8004  * @cpu: the processor in question.
8005  * @p: the task pointer to set.
8006  *
8007  * Description: This function must only be used when non-maskable interrupts
8008  * are serviced on a separate stack. It allows the architecture to switch the
8009  * notion of the current task on a CPU in a non-blocking manner. This function
8010  * must be called with all CPU's synchronized, and interrupts disabled, the
8011  * and caller must save the original value of the current task (see
8012  * curr_task() above) and restore that value before reenabling interrupts and
8013  * re-starting the system.
8014  *
8015  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8016  */
ia64_set_curr_task(int cpu,struct task_struct * p)8017 void ia64_set_curr_task(int cpu, struct task_struct *p)
8018 {
8019 	cpu_curr(cpu) = p;
8020 }
8021 
8022 #endif
8023 
8024 #ifdef CONFIG_CGROUP_SCHED
8025 /* task_group_lock serializes the addition/removal of task groups */
8026 static DEFINE_SPINLOCK(task_group_lock);
8027 
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)8028 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8029 					    struct task_group *parent)
8030 {
8031 #ifdef CONFIG_UCLAMP_TASK_GROUP
8032 	enum uclamp_id clamp_id;
8033 
8034 	for_each_clamp_id(clamp_id) {
8035 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8036 			      uclamp_none(clamp_id), false);
8037 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8038 	}
8039 #endif
8040 }
8041 
sched_free_group(struct task_group * tg)8042 static void sched_free_group(struct task_group *tg)
8043 {
8044 	free_fair_sched_group(tg);
8045 	free_rt_sched_group(tg);
8046 	autogroup_free(tg);
8047 	kmem_cache_free(task_group_cache, tg);
8048 }
8049 
8050 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)8051 struct task_group *sched_create_group(struct task_group *parent)
8052 {
8053 	struct task_group *tg;
8054 
8055 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8056 	if (!tg)
8057 		return ERR_PTR(-ENOMEM);
8058 
8059 	if (!alloc_fair_sched_group(tg, parent))
8060 		goto err;
8061 
8062 	if (!alloc_rt_sched_group(tg, parent))
8063 		goto err;
8064 
8065 	alloc_uclamp_sched_group(tg, parent);
8066 
8067 	return tg;
8068 
8069 err:
8070 	sched_free_group(tg);
8071 	return ERR_PTR(-ENOMEM);
8072 }
8073 
sched_online_group(struct task_group * tg,struct task_group * parent)8074 void sched_online_group(struct task_group *tg, struct task_group *parent)
8075 {
8076 	unsigned long flags;
8077 
8078 	spin_lock_irqsave(&task_group_lock, flags);
8079 	list_add_rcu(&tg->list, &task_groups);
8080 
8081 	/* Root should already exist: */
8082 	WARN_ON(!parent);
8083 
8084 	tg->parent = parent;
8085 	INIT_LIST_HEAD(&tg->children);
8086 	list_add_rcu(&tg->siblings, &parent->children);
8087 	spin_unlock_irqrestore(&task_group_lock, flags);
8088 
8089 	online_fair_sched_group(tg);
8090 }
8091 
8092 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)8093 static void sched_free_group_rcu(struct rcu_head *rhp)
8094 {
8095 	/* Now it should be safe to free those cfs_rqs: */
8096 	sched_free_group(container_of(rhp, struct task_group, rcu));
8097 }
8098 
sched_destroy_group(struct task_group * tg)8099 void sched_destroy_group(struct task_group *tg)
8100 {
8101 	/* Wait for possible concurrent references to cfs_rqs complete: */
8102 	call_rcu(&tg->rcu, sched_free_group_rcu);
8103 }
8104 
sched_offline_group(struct task_group * tg)8105 void sched_offline_group(struct task_group *tg)
8106 {
8107 	unsigned long flags;
8108 
8109 	/* End participation in shares distribution: */
8110 	unregister_fair_sched_group(tg);
8111 
8112 	spin_lock_irqsave(&task_group_lock, flags);
8113 	list_del_rcu(&tg->list);
8114 	list_del_rcu(&tg->siblings);
8115 	spin_unlock_irqrestore(&task_group_lock, flags);
8116 }
8117 
sched_change_group(struct task_struct * tsk,int type)8118 static void sched_change_group(struct task_struct *tsk, int type)
8119 {
8120 	struct task_group *tg;
8121 
8122 	/*
8123 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8124 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8125 	 * to prevent lockdep warnings.
8126 	 */
8127 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8128 			  struct task_group, css);
8129 	tg = autogroup_task_group(tsk, tg);
8130 	tsk->sched_task_group = tg;
8131 
8132 #ifdef CONFIG_FAIR_GROUP_SCHED
8133 	if (tsk->sched_class->task_change_group)
8134 		tsk->sched_class->task_change_group(tsk, type);
8135 	else
8136 #endif
8137 		set_task_rq(tsk, task_cpu(tsk));
8138 }
8139 
8140 /*
8141  * Change task's runqueue when it moves between groups.
8142  *
8143  * The caller of this function should have put the task in its new group by
8144  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8145  * its new group.
8146  */
sched_move_task(struct task_struct * tsk)8147 void sched_move_task(struct task_struct *tsk)
8148 {
8149 	int queued, running, queue_flags =
8150 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8151 	struct rq_flags rf;
8152 	struct rq *rq;
8153 
8154 	rq = task_rq_lock(tsk, &rf);
8155 	update_rq_clock(rq);
8156 
8157 	running = task_current(rq, tsk);
8158 	queued = task_on_rq_queued(tsk);
8159 
8160 	if (queued)
8161 		dequeue_task(rq, tsk, queue_flags);
8162 	if (running)
8163 		put_prev_task(rq, tsk);
8164 
8165 	sched_change_group(tsk, TASK_MOVE_GROUP);
8166 
8167 	if (queued)
8168 		enqueue_task(rq, tsk, queue_flags);
8169 	if (running) {
8170 		set_next_task(rq, tsk);
8171 		/*
8172 		 * After changing group, the running task may have joined a
8173 		 * throttled one but it's still the running task. Trigger a
8174 		 * resched to make sure that task can still run.
8175 		 */
8176 		resched_curr(rq);
8177 	}
8178 
8179 	task_rq_unlock(rq, tsk, &rf);
8180 }
8181 
css_tg(struct cgroup_subsys_state * css)8182 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8183 {
8184 	return css ? container_of(css, struct task_group, css) : NULL;
8185 }
8186 
8187 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)8188 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8189 {
8190 	struct task_group *parent = css_tg(parent_css);
8191 	struct task_group *tg;
8192 
8193 	if (!parent) {
8194 		/* This is early initialization for the top cgroup */
8195 		return &root_task_group.css;
8196 	}
8197 
8198 	tg = sched_create_group(parent);
8199 	if (IS_ERR(tg))
8200 		return ERR_PTR(-ENOMEM);
8201 
8202 #ifdef CONFIG_SCHED_RTG_CGROUP
8203 	tg->colocate = false;
8204 	tg->colocate_update_disabled = false;
8205 #endif
8206 
8207 	return &tg->css;
8208 }
8209 
8210 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)8211 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8212 {
8213 	struct task_group *tg = css_tg(css);
8214 	struct task_group *parent = css_tg(css->parent);
8215 
8216 	if (parent)
8217 		sched_online_group(tg, parent);
8218 
8219 #ifdef CONFIG_UCLAMP_TASK_GROUP
8220 	/* Propagate the effective uclamp value for the new group */
8221 	mutex_lock(&uclamp_mutex);
8222 	rcu_read_lock();
8223 	cpu_util_update_eff(css);
8224 	rcu_read_unlock();
8225 	mutex_unlock(&uclamp_mutex);
8226 #endif
8227 
8228 	return 0;
8229 }
8230 
cpu_cgroup_css_released(struct cgroup_subsys_state * css)8231 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8232 {
8233 	struct task_group *tg = css_tg(css);
8234 
8235 	sched_offline_group(tg);
8236 }
8237 
cpu_cgroup_css_free(struct cgroup_subsys_state * css)8238 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8239 {
8240 	struct task_group *tg = css_tg(css);
8241 
8242 	/*
8243 	 * Relies on the RCU grace period between css_released() and this.
8244 	 */
8245 	sched_free_group(tg);
8246 }
8247 
8248 /*
8249  * This is called before wake_up_new_task(), therefore we really only
8250  * have to set its group bits, all the other stuff does not apply.
8251  */
cpu_cgroup_fork(struct task_struct * task)8252 static void cpu_cgroup_fork(struct task_struct *task)
8253 {
8254 	struct rq_flags rf;
8255 	struct rq *rq;
8256 
8257 	rq = task_rq_lock(task, &rf);
8258 
8259 	update_rq_clock(rq);
8260 	sched_change_group(task, TASK_SET_GROUP);
8261 
8262 	task_rq_unlock(rq, task, &rf);
8263 }
8264 
cpu_cgroup_can_attach(struct cgroup_taskset * tset)8265 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8266 {
8267 	struct task_struct *task;
8268 	struct cgroup_subsys_state *css;
8269 	int ret = 0;
8270 
8271 	cgroup_taskset_for_each(task, css, tset) {
8272 #ifdef CONFIG_RT_GROUP_SCHED
8273 		if (!sched_rt_can_attach(css_tg(css), task))
8274 			return -EINVAL;
8275 #endif
8276 		/*
8277 		 * Serialize against wake_up_new_task() such that if its
8278 		 * running, we're sure to observe its full state.
8279 		 */
8280 		raw_spin_lock_irq(&task->pi_lock);
8281 		/*
8282 		 * Avoid calling sched_move_task() before wake_up_new_task()
8283 		 * has happened. This would lead to problems with PELT, due to
8284 		 * move wanting to detach+attach while we're not attached yet.
8285 		 */
8286 		if (task->state == TASK_NEW)
8287 			ret = -EINVAL;
8288 		raw_spin_unlock_irq(&task->pi_lock);
8289 
8290 		if (ret)
8291 			break;
8292 	}
8293 	return ret;
8294 }
8295 
8296 #if defined(CONFIG_UCLAMP_TASK_GROUP) && defined(CONFIG_SCHED_RTG_CGROUP)
schedgp_attach(struct cgroup_taskset * tset)8297 static void schedgp_attach(struct cgroup_taskset *tset)
8298 {
8299 	struct task_struct *task;
8300 	struct cgroup_subsys_state *css;
8301 	bool colocate;
8302 	struct task_group *tg;
8303 
8304 	cgroup_taskset_first(tset, &css);
8305 	tg = css_tg(css);
8306 
8307 	colocate = tg->colocate;
8308 
8309 	cgroup_taskset_for_each(task, css, tset)
8310 		sync_cgroup_colocation(task, colocate);
8311 }
8312 #else
schedgp_attach(struct cgroup_taskset * tset)8313 static void schedgp_attach(struct cgroup_taskset *tset) { }
8314 #endif
cpu_cgroup_attach(struct cgroup_taskset * tset)8315 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8316 {
8317 	struct task_struct *task;
8318 	struct cgroup_subsys_state *css;
8319 
8320 	cgroup_taskset_for_each(task, css, tset)
8321 		sched_move_task(task);
8322 
8323 	schedgp_attach(tset);
8324 }
8325 
8326 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)8327 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8328 {
8329 	struct cgroup_subsys_state *top_css = css;
8330 	struct uclamp_se *uc_parent = NULL;
8331 	struct uclamp_se *uc_se = NULL;
8332 	unsigned int eff[UCLAMP_CNT];
8333 	enum uclamp_id clamp_id;
8334 	unsigned int clamps;
8335 
8336 	lockdep_assert_held(&uclamp_mutex);
8337 	SCHED_WARN_ON(!rcu_read_lock_held());
8338 
8339 	css_for_each_descendant_pre(css, top_css) {
8340 		uc_parent = css_tg(css)->parent
8341 			? css_tg(css)->parent->uclamp : NULL;
8342 
8343 		for_each_clamp_id(clamp_id) {
8344 			/* Assume effective clamps matches requested clamps */
8345 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8346 			/* Cap effective clamps with parent's effective clamps */
8347 			if (uc_parent &&
8348 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8349 				eff[clamp_id] = uc_parent[clamp_id].value;
8350 			}
8351 		}
8352 		/* Ensure protection is always capped by limit */
8353 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8354 
8355 		/* Propagate most restrictive effective clamps */
8356 		clamps = 0x0;
8357 		uc_se = css_tg(css)->uclamp;
8358 		for_each_clamp_id(clamp_id) {
8359 			if (eff[clamp_id] == uc_se[clamp_id].value)
8360 				continue;
8361 			uc_se[clamp_id].value = eff[clamp_id];
8362 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8363 			clamps |= (0x1 << clamp_id);
8364 		}
8365 		if (!clamps) {
8366 			css = css_rightmost_descendant(css);
8367 			continue;
8368 		}
8369 
8370 		/* Immediately update descendants RUNNABLE tasks */
8371 		uclamp_update_active_tasks(css);
8372 	}
8373 }
8374 
8375 /*
8376  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8377  * C expression. Since there is no way to convert a macro argument (N) into a
8378  * character constant, use two levels of macros.
8379  */
8380 #define _POW10(exp) ((unsigned int)1e##exp)
8381 #define POW10(exp) _POW10(exp)
8382 
8383 struct uclamp_request {
8384 #define UCLAMP_PERCENT_SHIFT	2
8385 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8386 	s64 percent;
8387 	u64 util;
8388 	int ret;
8389 };
8390 
8391 static inline struct uclamp_request
capacity_from_percent(char * buf)8392 capacity_from_percent(char *buf)
8393 {
8394 	struct uclamp_request req = {
8395 		.percent = UCLAMP_PERCENT_SCALE,
8396 		.util = SCHED_CAPACITY_SCALE,
8397 		.ret = 0,
8398 	};
8399 
8400 	buf = strim(buf);
8401 	if (strcmp(buf, "max")) {
8402 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8403 					     &req.percent);
8404 		if (req.ret)
8405 			return req;
8406 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8407 			req.ret = -ERANGE;
8408 			return req;
8409 		}
8410 
8411 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
8412 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8413 	}
8414 
8415 	return req;
8416 }
8417 
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)8418 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8419 				size_t nbytes, loff_t off,
8420 				enum uclamp_id clamp_id)
8421 {
8422 	struct uclamp_request req;
8423 	struct task_group *tg;
8424 
8425 	req = capacity_from_percent(buf);
8426 	if (req.ret)
8427 		return req.ret;
8428 
8429 	static_branch_enable(&sched_uclamp_used);
8430 
8431 	mutex_lock(&uclamp_mutex);
8432 	rcu_read_lock();
8433 
8434 	tg = css_tg(of_css(of));
8435 	if (tg->uclamp_req[clamp_id].value != req.util)
8436 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8437 
8438 	/*
8439 	 * Because of not recoverable conversion rounding we keep track of the
8440 	 * exact requested value
8441 	 */
8442 	tg->uclamp_pct[clamp_id] = req.percent;
8443 
8444 	/* Update effective clamps to track the most restrictive value */
8445 	cpu_util_update_eff(of_css(of));
8446 
8447 	rcu_read_unlock();
8448 	mutex_unlock(&uclamp_mutex);
8449 
8450 	return nbytes;
8451 }
8452 
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8453 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8454 				    char *buf, size_t nbytes,
8455 				    loff_t off)
8456 {
8457 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8458 }
8459 
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8460 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8461 				    char *buf, size_t nbytes,
8462 				    loff_t off)
8463 {
8464 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8465 }
8466 
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)8467 static inline void cpu_uclamp_print(struct seq_file *sf,
8468 				    enum uclamp_id clamp_id)
8469 {
8470 	struct task_group *tg;
8471 	u64 util_clamp;
8472 	u64 percent;
8473 	u32 rem;
8474 
8475 	rcu_read_lock();
8476 	tg = css_tg(seq_css(sf));
8477 	util_clamp = tg->uclamp_req[clamp_id].value;
8478 	rcu_read_unlock();
8479 
8480 	if (util_clamp == SCHED_CAPACITY_SCALE) {
8481 		seq_puts(sf, "max\n");
8482 		return;
8483 	}
8484 
8485 	percent = tg->uclamp_pct[clamp_id];
8486 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8487 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8488 }
8489 
cpu_uclamp_min_show(struct seq_file * sf,void * v)8490 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8491 {
8492 	cpu_uclamp_print(sf, UCLAMP_MIN);
8493 	return 0;
8494 }
8495 
cpu_uclamp_max_show(struct seq_file * sf,void * v)8496 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8497 {
8498 	cpu_uclamp_print(sf, UCLAMP_MAX);
8499 	return 0;
8500 }
8501 
8502 #ifdef CONFIG_SCHED_RTG_CGROUP
sched_colocate_read(struct cgroup_subsys_state * css,struct cftype * cft)8503 static u64 sched_colocate_read(struct cgroup_subsys_state *css,
8504 				struct cftype *cft)
8505 {
8506 	struct task_group *tg = css_tg(css);
8507 
8508 	return (u64) tg->colocate;
8509 }
8510 
sched_colocate_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 colocate)8511 static int sched_colocate_write(struct cgroup_subsys_state *css,
8512 				struct cftype *cft, u64 colocate)
8513 {
8514 	struct task_group *tg = css_tg(css);
8515 
8516 	if (tg->colocate_update_disabled)
8517 		return -EPERM;
8518 
8519 	tg->colocate = !!colocate;
8520 	tg->colocate_update_disabled = true;
8521 
8522 	return 0;
8523 }
8524 #endif /* CONFIG_SCHED_RTG_CGROUP */
8525 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8526 
8527 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)8528 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8529 				struct cftype *cftype, u64 shareval)
8530 {
8531 	if (shareval > scale_load_down(ULONG_MAX))
8532 		shareval = MAX_SHARES;
8533 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8534 }
8535 
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8536 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8537 			       struct cftype *cft)
8538 {
8539 	struct task_group *tg = css_tg(css);
8540 
8541 	return (u64) scale_load_down(tg->shares);
8542 }
8543 
8544 #ifdef CONFIG_CFS_BANDWIDTH
8545 static DEFINE_MUTEX(cfs_constraints_mutex);
8546 
8547 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8548 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8549 /* More than 203 days if BW_SHIFT equals 20. */
8550 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8551 
8552 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8553 
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)8554 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8555 {
8556 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8557 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8558 
8559 	if (tg == &root_task_group)
8560 		return -EINVAL;
8561 
8562 	/*
8563 	 * Ensure we have at some amount of bandwidth every period.  This is
8564 	 * to prevent reaching a state of large arrears when throttled via
8565 	 * entity_tick() resulting in prolonged exit starvation.
8566 	 */
8567 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8568 		return -EINVAL;
8569 
8570 	/*
8571 	 * Likewise, bound things on the otherside by preventing insane quota
8572 	 * periods.  This also allows us to normalize in computing quota
8573 	 * feasibility.
8574 	 */
8575 	if (period > max_cfs_quota_period)
8576 		return -EINVAL;
8577 
8578 	/*
8579 	 * Bound quota to defend quota against overflow during bandwidth shift.
8580 	 */
8581 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8582 		return -EINVAL;
8583 
8584 	/*
8585 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8586 	 * unthrottle_offline_cfs_rqs().
8587 	 */
8588 	get_online_cpus();
8589 	mutex_lock(&cfs_constraints_mutex);
8590 	ret = __cfs_schedulable(tg, period, quota);
8591 	if (ret)
8592 		goto out_unlock;
8593 
8594 	runtime_enabled = quota != RUNTIME_INF;
8595 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8596 	/*
8597 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8598 	 * before making related changes, and on->off must occur afterwards
8599 	 */
8600 	if (runtime_enabled && !runtime_was_enabled)
8601 		cfs_bandwidth_usage_inc();
8602 	raw_spin_lock_irq(&cfs_b->lock);
8603 	cfs_b->period = ns_to_ktime(period);
8604 	cfs_b->quota = quota;
8605 
8606 	__refill_cfs_bandwidth_runtime(cfs_b);
8607 
8608 	/* Restart the period timer (if active) to handle new period expiry: */
8609 	if (runtime_enabled)
8610 		start_cfs_bandwidth(cfs_b);
8611 
8612 	raw_spin_unlock_irq(&cfs_b->lock);
8613 
8614 	for_each_online_cpu(i) {
8615 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8616 		struct rq *rq = cfs_rq->rq;
8617 		struct rq_flags rf;
8618 
8619 		rq_lock_irq(rq, &rf);
8620 		cfs_rq->runtime_enabled = runtime_enabled;
8621 		cfs_rq->runtime_remaining = 0;
8622 
8623 		if (cfs_rq->throttled)
8624 			unthrottle_cfs_rq(cfs_rq);
8625 		rq_unlock_irq(rq, &rf);
8626 	}
8627 	if (runtime_was_enabled && !runtime_enabled)
8628 		cfs_bandwidth_usage_dec();
8629 out_unlock:
8630 	mutex_unlock(&cfs_constraints_mutex);
8631 	put_online_cpus();
8632 
8633 	return ret;
8634 }
8635 
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)8636 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8637 {
8638 	u64 quota, period;
8639 
8640 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8641 	if (cfs_quota_us < 0)
8642 		quota = RUNTIME_INF;
8643 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8644 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8645 	else
8646 		return -EINVAL;
8647 
8648 	return tg_set_cfs_bandwidth(tg, period, quota);
8649 }
8650 
tg_get_cfs_quota(struct task_group * tg)8651 static long tg_get_cfs_quota(struct task_group *tg)
8652 {
8653 	u64 quota_us;
8654 
8655 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8656 		return -1;
8657 
8658 	quota_us = tg->cfs_bandwidth.quota;
8659 	do_div(quota_us, NSEC_PER_USEC);
8660 
8661 	return quota_us;
8662 }
8663 
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)8664 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8665 {
8666 	u64 quota, period;
8667 
8668 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8669 		return -EINVAL;
8670 
8671 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8672 	quota = tg->cfs_bandwidth.quota;
8673 
8674 	return tg_set_cfs_bandwidth(tg, period, quota);
8675 }
8676 
tg_get_cfs_period(struct task_group * tg)8677 static long tg_get_cfs_period(struct task_group *tg)
8678 {
8679 	u64 cfs_period_us;
8680 
8681 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8682 	do_div(cfs_period_us, NSEC_PER_USEC);
8683 
8684 	return cfs_period_us;
8685 }
8686 
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8687 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8688 				  struct cftype *cft)
8689 {
8690 	return tg_get_cfs_quota(css_tg(css));
8691 }
8692 
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)8693 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8694 				   struct cftype *cftype, s64 cfs_quota_us)
8695 {
8696 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8697 }
8698 
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8699 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8700 				   struct cftype *cft)
8701 {
8702 	return tg_get_cfs_period(css_tg(css));
8703 }
8704 
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)8705 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8706 				    struct cftype *cftype, u64 cfs_period_us)
8707 {
8708 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8709 }
8710 
8711 struct cfs_schedulable_data {
8712 	struct task_group *tg;
8713 	u64 period, quota;
8714 };
8715 
8716 /*
8717  * normalize group quota/period to be quota/max_period
8718  * note: units are usecs
8719  */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)8720 static u64 normalize_cfs_quota(struct task_group *tg,
8721 			       struct cfs_schedulable_data *d)
8722 {
8723 	u64 quota, period;
8724 
8725 	if (tg == d->tg) {
8726 		period = d->period;
8727 		quota = d->quota;
8728 	} else {
8729 		period = tg_get_cfs_period(tg);
8730 		quota = tg_get_cfs_quota(tg);
8731 	}
8732 
8733 	/* note: these should typically be equivalent */
8734 	if (quota == RUNTIME_INF || quota == -1)
8735 		return RUNTIME_INF;
8736 
8737 	return to_ratio(period, quota);
8738 }
8739 
tg_cfs_schedulable_down(struct task_group * tg,void * data)8740 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8741 {
8742 	struct cfs_schedulable_data *d = data;
8743 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8744 	s64 quota = 0, parent_quota = -1;
8745 
8746 	if (!tg->parent) {
8747 		quota = RUNTIME_INF;
8748 	} else {
8749 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8750 
8751 		quota = normalize_cfs_quota(tg, d);
8752 		parent_quota = parent_b->hierarchical_quota;
8753 
8754 		/*
8755 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
8756 		 * always take the min.  On cgroup1, only inherit when no
8757 		 * limit is set:
8758 		 */
8759 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8760 			quota = min(quota, parent_quota);
8761 		} else {
8762 			if (quota == RUNTIME_INF)
8763 				quota = parent_quota;
8764 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8765 				return -EINVAL;
8766 		}
8767 	}
8768 	cfs_b->hierarchical_quota = quota;
8769 
8770 	return 0;
8771 }
8772 
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)8773 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8774 {
8775 	int ret;
8776 	struct cfs_schedulable_data data = {
8777 		.tg = tg,
8778 		.period = period,
8779 		.quota = quota,
8780 	};
8781 
8782 	if (quota != RUNTIME_INF) {
8783 		do_div(data.period, NSEC_PER_USEC);
8784 		do_div(data.quota, NSEC_PER_USEC);
8785 	}
8786 
8787 	rcu_read_lock();
8788 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8789 	rcu_read_unlock();
8790 
8791 	return ret;
8792 }
8793 
cpu_cfs_stat_show(struct seq_file * sf,void * v)8794 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8795 {
8796 	struct task_group *tg = css_tg(seq_css(sf));
8797 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8798 
8799 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8800 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8801 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8802 
8803 	if (schedstat_enabled() && tg != &root_task_group) {
8804 		u64 ws = 0;
8805 		int i;
8806 
8807 		for_each_possible_cpu(i)
8808 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8809 
8810 		seq_printf(sf, "wait_sum %llu\n", ws);
8811 	}
8812 
8813 	return 0;
8814 }
8815 #endif /* CONFIG_CFS_BANDWIDTH */
8816 #endif /* CONFIG_FAIR_GROUP_SCHED */
8817 
8818 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)8819 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8820 				struct cftype *cft, s64 val)
8821 {
8822 	return sched_group_set_rt_runtime(css_tg(css), val);
8823 }
8824 
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)8825 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8826 			       struct cftype *cft)
8827 {
8828 	return sched_group_rt_runtime(css_tg(css));
8829 }
8830 
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)8831 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8832 				    struct cftype *cftype, u64 rt_period_us)
8833 {
8834 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8835 }
8836 
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)8837 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8838 				   struct cftype *cft)
8839 {
8840 	return sched_group_rt_period(css_tg(css));
8841 }
8842 #endif /* CONFIG_RT_GROUP_SCHED */
8843 
8844 static struct cftype cpu_legacy_files[] = {
8845 #ifdef CONFIG_FAIR_GROUP_SCHED
8846 	{
8847 		.name = "shares",
8848 		.read_u64 = cpu_shares_read_u64,
8849 		.write_u64 = cpu_shares_write_u64,
8850 	},
8851 #endif
8852 #ifdef CONFIG_CFS_BANDWIDTH
8853 	{
8854 		.name = "cfs_quota_us",
8855 		.read_s64 = cpu_cfs_quota_read_s64,
8856 		.write_s64 = cpu_cfs_quota_write_s64,
8857 	},
8858 	{
8859 		.name = "cfs_period_us",
8860 		.read_u64 = cpu_cfs_period_read_u64,
8861 		.write_u64 = cpu_cfs_period_write_u64,
8862 	},
8863 	{
8864 		.name = "stat",
8865 		.seq_show = cpu_cfs_stat_show,
8866 	},
8867 #endif
8868 #ifdef CONFIG_RT_GROUP_SCHED
8869 	{
8870 		.name = "rt_runtime_us",
8871 		.read_s64 = cpu_rt_runtime_read,
8872 		.write_s64 = cpu_rt_runtime_write,
8873 	},
8874 	{
8875 		.name = "rt_period_us",
8876 		.read_u64 = cpu_rt_period_read_uint,
8877 		.write_u64 = cpu_rt_period_write_uint,
8878 	},
8879 #endif
8880 #ifdef CONFIG_UCLAMP_TASK_GROUP
8881 	{
8882 		.name = "uclamp.min",
8883 		.flags = CFTYPE_NOT_ON_ROOT,
8884 		.seq_show = cpu_uclamp_min_show,
8885 		.write = cpu_uclamp_min_write,
8886 	},
8887 	{
8888 		.name = "uclamp.max",
8889 		.flags = CFTYPE_NOT_ON_ROOT,
8890 		.seq_show = cpu_uclamp_max_show,
8891 		.write = cpu_uclamp_max_write,
8892 	},
8893 #ifdef CONFIG_SCHED_RTG_CGROUP
8894 	{
8895 		.name = "uclamp.colocate",
8896 		.flags = CFTYPE_NOT_ON_ROOT,
8897 		.read_u64 = sched_colocate_read,
8898 		.write_u64 = sched_colocate_write,
8899 	},
8900 #endif
8901 #endif
8902 	{ }	/* Terminate */
8903 };
8904 
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)8905 static int cpu_extra_stat_show(struct seq_file *sf,
8906 			       struct cgroup_subsys_state *css)
8907 {
8908 #ifdef CONFIG_CFS_BANDWIDTH
8909 	{
8910 		struct task_group *tg = css_tg(css);
8911 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8912 		u64 throttled_usec;
8913 
8914 		throttled_usec = cfs_b->throttled_time;
8915 		do_div(throttled_usec, NSEC_PER_USEC);
8916 
8917 		seq_printf(sf, "nr_periods %d\n"
8918 			   "nr_throttled %d\n"
8919 			   "throttled_usec %llu\n",
8920 			   cfs_b->nr_periods, cfs_b->nr_throttled,
8921 			   throttled_usec);
8922 	}
8923 #endif
8924 	return 0;
8925 }
8926 
8927 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8928 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8929 			       struct cftype *cft)
8930 {
8931 	struct task_group *tg = css_tg(css);
8932 	u64 weight = scale_load_down(tg->shares);
8933 
8934 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8935 }
8936 
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)8937 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8938 				struct cftype *cft, u64 weight)
8939 {
8940 	/*
8941 	 * cgroup weight knobs should use the common MIN, DFL and MAX
8942 	 * values which are 1, 100 and 10000 respectively.  While it loses
8943 	 * a bit of range on both ends, it maps pretty well onto the shares
8944 	 * value used by scheduler and the round-trip conversions preserve
8945 	 * the original value over the entire range.
8946 	 */
8947 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8948 		return -ERANGE;
8949 
8950 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8951 
8952 	return sched_group_set_shares(css_tg(css), scale_load(weight));
8953 }
8954 
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8955 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8956 				    struct cftype *cft)
8957 {
8958 	unsigned long weight = scale_load_down(css_tg(css)->shares);
8959 	int last_delta = INT_MAX;
8960 	int prio, delta;
8961 
8962 	/* find the closest nice value to the current weight */
8963 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8964 		delta = abs(sched_prio_to_weight[prio] - weight);
8965 		if (delta >= last_delta)
8966 			break;
8967 		last_delta = delta;
8968 	}
8969 
8970 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8971 }
8972 
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)8973 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8974 				     struct cftype *cft, s64 nice)
8975 {
8976 	unsigned long weight;
8977 	int idx;
8978 
8979 	if (nice < MIN_NICE || nice > MAX_NICE)
8980 		return -ERANGE;
8981 
8982 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8983 	idx = array_index_nospec(idx, 40);
8984 	weight = sched_prio_to_weight[idx];
8985 
8986 	return sched_group_set_shares(css_tg(css), scale_load(weight));
8987 }
8988 #endif
8989 
cpu_period_quota_print(struct seq_file * sf,long period,long quota)8990 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8991 						  long period, long quota)
8992 {
8993 	if (quota < 0)
8994 		seq_puts(sf, "max");
8995 	else
8996 		seq_printf(sf, "%ld", quota);
8997 
8998 	seq_printf(sf, " %ld\n", period);
8999 }
9000 
9001 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)9002 static int __maybe_unused cpu_period_quota_parse(char *buf,
9003 						 u64 *periodp, u64 *quotap)
9004 {
9005 	char tok[21];	/* U64_MAX */
9006 
9007 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9008 		return -EINVAL;
9009 
9010 	*periodp *= NSEC_PER_USEC;
9011 
9012 	if (sscanf(tok, "%llu", quotap))
9013 		*quotap *= NSEC_PER_USEC;
9014 	else if (!strcmp(tok, "max"))
9015 		*quotap = RUNTIME_INF;
9016 	else
9017 		return -EINVAL;
9018 
9019 	return 0;
9020 }
9021 
9022 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)9023 static int cpu_max_show(struct seq_file *sf, void *v)
9024 {
9025 	struct task_group *tg = css_tg(seq_css(sf));
9026 
9027 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9028 	return 0;
9029 }
9030 
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9031 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9032 			     char *buf, size_t nbytes, loff_t off)
9033 {
9034 	struct task_group *tg = css_tg(of_css(of));
9035 	u64 period = tg_get_cfs_period(tg);
9036 	u64 quota;
9037 	int ret;
9038 
9039 	ret = cpu_period_quota_parse(buf, &period, &quota);
9040 	if (!ret)
9041 		ret = tg_set_cfs_bandwidth(tg, period, quota);
9042 	return ret ?: nbytes;
9043 }
9044 #endif
9045 
9046 static struct cftype cpu_files[] = {
9047 #ifdef CONFIG_FAIR_GROUP_SCHED
9048 	{
9049 		.name = "weight",
9050 		.flags = CFTYPE_NOT_ON_ROOT,
9051 		.read_u64 = cpu_weight_read_u64,
9052 		.write_u64 = cpu_weight_write_u64,
9053 	},
9054 	{
9055 		.name = "weight.nice",
9056 		.flags = CFTYPE_NOT_ON_ROOT,
9057 		.read_s64 = cpu_weight_nice_read_s64,
9058 		.write_s64 = cpu_weight_nice_write_s64,
9059 	},
9060 #endif
9061 #ifdef CONFIG_CFS_BANDWIDTH
9062 	{
9063 		.name = "max",
9064 		.flags = CFTYPE_NOT_ON_ROOT,
9065 		.seq_show = cpu_max_show,
9066 		.write = cpu_max_write,
9067 	},
9068 #endif
9069 #ifdef CONFIG_UCLAMP_TASK_GROUP
9070 	{
9071 		.name = "uclamp.min",
9072 		.flags = CFTYPE_NOT_ON_ROOT,
9073 		.seq_show = cpu_uclamp_min_show,
9074 		.write = cpu_uclamp_min_write,
9075 	},
9076 	{
9077 		.name = "uclamp.max",
9078 		.flags = CFTYPE_NOT_ON_ROOT,
9079 		.seq_show = cpu_uclamp_max_show,
9080 		.write = cpu_uclamp_max_write,
9081 	},
9082 #endif
9083 	{ }	/* terminate */
9084 };
9085 
9086 struct cgroup_subsys cpu_cgrp_subsys = {
9087 	.css_alloc	= cpu_cgroup_css_alloc,
9088 	.css_online	= cpu_cgroup_css_online,
9089 	.css_released	= cpu_cgroup_css_released,
9090 	.css_free	= cpu_cgroup_css_free,
9091 	.css_extra_stat_show = cpu_extra_stat_show,
9092 	.fork		= cpu_cgroup_fork,
9093 	.can_attach	= cpu_cgroup_can_attach,
9094 	.attach		= cpu_cgroup_attach,
9095 	.legacy_cftypes	= cpu_legacy_files,
9096 	.dfl_cftypes	= cpu_files,
9097 	.early_init	= true,
9098 	.threaded	= true,
9099 };
9100 
9101 #endif	/* CONFIG_CGROUP_SCHED */
9102 
dump_cpu_task(int cpu)9103 void dump_cpu_task(int cpu)
9104 {
9105 	pr_info("Task dump for CPU %d:\n", cpu);
9106 	sched_show_task(cpu_curr(cpu));
9107 }
9108 
9109 /*
9110  * Nice levels are multiplicative, with a gentle 10% change for every
9111  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9112  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9113  * that remained on nice 0.
9114  *
9115  * The "10% effect" is relative and cumulative: from _any_ nice level,
9116  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9117  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9118  * If a task goes up by ~10% and another task goes down by ~10% then
9119  * the relative distance between them is ~25%.)
9120  */
9121 const int sched_prio_to_weight[40] = {
9122  /* -20 */     88761,     71755,     56483,     46273,     36291,
9123  /* -15 */     29154,     23254,     18705,     14949,     11916,
9124  /* -10 */      9548,      7620,      6100,      4904,      3906,
9125  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9126  /*   0 */      1024,       820,       655,       526,       423,
9127  /*   5 */       335,       272,       215,       172,       137,
9128  /*  10 */       110,        87,        70,        56,        45,
9129  /*  15 */        36,        29,        23,        18,        15,
9130 };
9131 
9132 /*
9133  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9134  *
9135  * In cases where the weight does not change often, we can use the
9136  * precalculated inverse to speed up arithmetics by turning divisions
9137  * into multiplications:
9138  */
9139 const u32 sched_prio_to_wmult[40] = {
9140  /* -20 */     48388,     59856,     76040,     92818,    118348,
9141  /* -15 */    147320,    184698,    229616,    287308,    360437,
9142  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9143  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9144  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9145  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9146  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9147  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9148 };
9149 
9150 #ifdef CONFIG_SCHED_LATENCY_NICE
9151 /*
9152  * latency weight for wakeup preemption
9153  */
9154 const int sched_latency_to_weight[40] = {
9155  /* -20 */      1024,       973,       922,       870,       819,
9156  /* -15 */       768,       717,       666,       614,       563,
9157  /* -10 */       512,       461,       410,       358,       307,
9158  /*  -5 */       256,       205,       154,       102,       51,
9159  /*   0 */	   0,       -51,      -102,      -154,      -205,
9160  /*   5 */      -256,      -307,      -358,      -410,      -461,
9161  /*  10 */      -512,      -563,      -614,      -666,      -717,
9162  /*  15 */      -768,      -819,      -870,      -922,      -973,
9163 };
9164 #endif
9165 
call_trace_sched_update_nr_running(struct rq * rq,int count)9166 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9167 {
9168         trace_sched_update_nr_running_tp(rq, count);
9169 }
9170 
9171 #ifdef CONFIG_SCHED_WALT
9172 /*
9173  * sched_exit() - Set EXITING_TASK_MARKER in task's ravg.demand field
9174  *
9175  * Stop accounting (exiting) task's future cpu usage
9176  *
9177  * We need this so that reset_all_windows_stats() can function correctly.
9178  * reset_all_window_stats() depends on do_each_thread/for_each_thread task
9179  * iterators to reset *all* task's statistics. Exiting tasks however become
9180  * invisible to those iterators. sched_exit() is called on a exiting task prior
9181  * to being removed from task_list, which will let reset_all_window_stats()
9182  * function correctly.
9183  */
sched_exit(struct task_struct * p)9184 void sched_exit(struct task_struct *p)
9185 {
9186 	struct rq_flags rf;
9187 	struct rq *rq;
9188 	u64 wallclock;
9189 
9190 #ifdef CONFIG_SCHED_RTG
9191 	sched_set_group_id(p, 0);
9192 #endif
9193 
9194 	rq = task_rq_lock(p, &rf);
9195 
9196 	/* rq->curr == p */
9197 	wallclock = sched_ktime_clock();
9198 	update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
9199 	dequeue_task(rq, p, 0);
9200 	/*
9201 	 * task's contribution is already removed from the
9202 	 * cumulative window demand in dequeue. As the
9203 	 * task's stats are reset, the next enqueue does
9204 	 * not change the cumulative window demand.
9205 	 */
9206 	reset_task_stats(p);
9207 	p->ravg.mark_start = wallclock;
9208 	p->ravg.sum_history[0] = EXITING_TASK_MARKER;
9209 
9210 	enqueue_task(rq, p, 0);
9211 	task_rq_unlock(rq, p, &rf);
9212 	free_task_load_ptrs(p);
9213 }
9214 #endif /* CONFIG_SCHED_WALT */
9215