• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27 
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63 
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76 
77 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
78 
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *	that operate in the same channel as the reported AP and that might be
89  *	detected by a STA receiving this frame, are transmitting unsolicited
90  *	Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *	colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  */
100 struct cfg80211_colocated_ap {
101 	struct list_head list;
102 	u8 bssid[ETH_ALEN];
103 	u8 ssid[IEEE80211_MAX_SSID_LEN];
104 	size_t ssid_len;
105 	u32 short_ssid;
106 	u32 center_freq;
107 	u8 unsolicited_probe:1,
108 	   oct_recommended:1,
109 	   same_ssid:1,
110 	   multi_bss:1,
111 	   transmitted_bssid:1,
112 	   colocated_ess:1,
113 	   short_ssid_valid:1;
114 };
115 
bss_free(struct cfg80211_internal_bss * bss)116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 	struct cfg80211_bss_ies *ies;
119 
120 	if (WARN_ON(atomic_read(&bss->hold)))
121 		return;
122 
123 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 	if (ies && !bss->pub.hidden_beacon_bss)
125 		kfree_rcu(ies, rcu_head);
126 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 	if (ies)
128 		kfree_rcu(ies, rcu_head);
129 
130 	/*
131 	 * This happens when the module is removed, it doesn't
132 	 * really matter any more save for completeness
133 	 */
134 	if (!list_empty(&bss->hidden_list))
135 		list_del(&bss->hidden_list);
136 
137 	kfree(bss);
138 }
139 
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 			       struct cfg80211_internal_bss *bss)
142 {
143 	lockdep_assert_held(&rdev->bss_lock);
144 
145 	bss->refcount++;
146 
147 	if (bss->pub.hidden_beacon_bss)
148 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
149 
150 	if (bss->pub.transmitted_bss)
151 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
152 }
153 
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)154 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
155 			       struct cfg80211_internal_bss *bss)
156 {
157 	lockdep_assert_held(&rdev->bss_lock);
158 
159 	if (bss->pub.hidden_beacon_bss) {
160 		struct cfg80211_internal_bss *hbss;
161 		hbss = container_of(bss->pub.hidden_beacon_bss,
162 				    struct cfg80211_internal_bss,
163 				    pub);
164 		hbss->refcount--;
165 		if (hbss->refcount == 0)
166 			bss_free(hbss);
167 	}
168 
169 	if (bss->pub.transmitted_bss) {
170 		struct cfg80211_internal_bss *tbss;
171 
172 		tbss = container_of(bss->pub.transmitted_bss,
173 				    struct cfg80211_internal_bss,
174 				    pub);
175 		tbss->refcount--;
176 		if (tbss->refcount == 0)
177 			bss_free(tbss);
178 	}
179 
180 	bss->refcount--;
181 	if (bss->refcount == 0)
182 		bss_free(bss);
183 }
184 
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 				  struct cfg80211_internal_bss *bss)
187 {
188 	lockdep_assert_held(&rdev->bss_lock);
189 
190 	if (!list_empty(&bss->hidden_list)) {
191 		/*
192 		 * don't remove the beacon entry if it has
193 		 * probe responses associated with it
194 		 */
195 		if (!bss->pub.hidden_beacon_bss)
196 			return false;
197 		/*
198 		 * if it's a probe response entry break its
199 		 * link to the other entries in the group
200 		 */
201 		list_del_init(&bss->hidden_list);
202 	}
203 
204 	list_del_init(&bss->list);
205 	list_del_init(&bss->pub.nontrans_list);
206 	rb_erase(&bss->rbn, &rdev->bss_tree);
207 	rdev->bss_entries--;
208 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 		  rdev->bss_entries, list_empty(&rdev->bss_list));
211 	bss_ref_put(rdev, bss);
212 	return true;
213 }
214 
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)215 bool cfg80211_is_element_inherited(const struct element *elem,
216 				   const struct element *non_inherit_elem)
217 {
218 	u8 id_len, ext_id_len, i, loop_len, id;
219 	const u8 *list;
220 
221 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 		return false;
223 
224 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
225 		return true;
226 
227 	/*
228 	 * non inheritance element format is:
229 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
230 	 * Both lists are optional. Both lengths are mandatory.
231 	 * This means valid length is:
232 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
233 	 */
234 	id_len = non_inherit_elem->data[1];
235 	if (non_inherit_elem->datalen < 3 + id_len)
236 		return true;
237 
238 	ext_id_len = non_inherit_elem->data[2 + id_len];
239 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
240 		return true;
241 
242 	if (elem->id == WLAN_EID_EXTENSION) {
243 		if (!ext_id_len)
244 			return true;
245 		loop_len = ext_id_len;
246 		list = &non_inherit_elem->data[3 + id_len];
247 		id = elem->data[0];
248 	} else {
249 		if (!id_len)
250 			return true;
251 		loop_len = id_len;
252 		list = &non_inherit_elem->data[2];
253 		id = elem->id;
254 	}
255 
256 	for (i = 0; i < loop_len; i++) {
257 		if (list[i] == id)
258 			return false;
259 	}
260 
261 	return true;
262 }
263 EXPORT_SYMBOL(cfg80211_is_element_inherited);
264 
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subelement,size_t subie_len,u8 * new_ie,gfp_t gfp)265 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
266 				  const u8 *subelement, size_t subie_len,
267 				  u8 *new_ie, gfp_t gfp)
268 {
269 	u8 *pos, *tmp;
270 	const u8 *tmp_old, *tmp_new;
271 	const struct element *non_inherit_elem;
272 	u8 *sub_copy;
273 
274 	/* copy subelement as we need to change its content to
275 	 * mark an ie after it is processed.
276 	 */
277 	sub_copy = kmemdup(subelement, subie_len, gfp);
278 	if (!sub_copy)
279 		return 0;
280 
281 	pos = &new_ie[0];
282 
283 	/* set new ssid */
284 	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
285 	if (tmp_new) {
286 		memcpy(pos, tmp_new, tmp_new[1] + 2);
287 		pos += (tmp_new[1] + 2);
288 	}
289 
290 	/* get non inheritance list if exists */
291 	non_inherit_elem =
292 		cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
293 				       sub_copy, subie_len);
294 
295 	/* go through IEs in ie (skip SSID) and subelement,
296 	 * merge them into new_ie
297 	 */
298 	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
299 	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
300 
301 	while (tmp_old + 2 - ie <= ielen &&
302 	       tmp_old + tmp_old[1] + 2 - ie <= ielen) {
303 		if (tmp_old[0] == 0) {
304 			tmp_old++;
305 			continue;
306 		}
307 
308 		if (tmp_old[0] == WLAN_EID_EXTENSION)
309 			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
310 							 subie_len);
311 		else
312 			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
313 						     subie_len);
314 
315 		if (!tmp) {
316 			const struct element *old_elem = (void *)tmp_old;
317 
318 			/* ie in old ie but not in subelement */
319 			if (cfg80211_is_element_inherited(old_elem,
320 							  non_inherit_elem)) {
321 				memcpy(pos, tmp_old, tmp_old[1] + 2);
322 				pos += tmp_old[1] + 2;
323 			}
324 		} else {
325 			/* ie in transmitting ie also in subelement,
326 			 * copy from subelement and flag the ie in subelement
327 			 * as copied (by setting eid field to WLAN_EID_SSID,
328 			 * which is skipped anyway).
329 			 * For vendor ie, compare OUI + type + subType to
330 			 * determine if they are the same ie.
331 			 */
332 			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
333 				if (tmp_old[1] >= 5 && tmp[1] >= 5 &&
334 				    !memcmp(tmp_old + 2, tmp + 2, 5)) {
335 					/* same vendor ie, copy from
336 					 * subelement
337 					 */
338 					memcpy(pos, tmp, tmp[1] + 2);
339 					pos += tmp[1] + 2;
340 					tmp[0] = WLAN_EID_SSID;
341 				} else {
342 					memcpy(pos, tmp_old, tmp_old[1] + 2);
343 					pos += tmp_old[1] + 2;
344 				}
345 			} else {
346 				/* copy ie from subelement into new ie */
347 				memcpy(pos, tmp, tmp[1] + 2);
348 				pos += tmp[1] + 2;
349 				tmp[0] = WLAN_EID_SSID;
350 			}
351 		}
352 
353 		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
354 			break;
355 
356 		tmp_old += tmp_old[1] + 2;
357 	}
358 
359 	/* go through subelement again to check if there is any ie not
360 	 * copied to new ie, skip ssid, capability, bssid-index ie
361 	 */
362 	tmp_new = sub_copy;
363 	while (tmp_new + 2 - sub_copy <= subie_len &&
364 	       tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
365 		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
366 		      tmp_new[0] == WLAN_EID_SSID)) {
367 			memcpy(pos, tmp_new, tmp_new[1] + 2);
368 			pos += tmp_new[1] + 2;
369 		}
370 		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
371 			break;
372 		tmp_new += tmp_new[1] + 2;
373 	}
374 
375 	kfree(sub_copy);
376 	return pos - new_ie;
377 }
378 
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)379 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
380 		   const u8 *ssid, size_t ssid_len)
381 {
382 	const struct cfg80211_bss_ies *ies;
383 	const u8 *ssidie;
384 
385 	if (bssid && !ether_addr_equal(a->bssid, bssid))
386 		return false;
387 
388 	if (!ssid)
389 		return true;
390 
391 	ies = rcu_access_pointer(a->ies);
392 	if (!ies)
393 		return false;
394 	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
395 	if (!ssidie)
396 		return false;
397 	if (ssidie[1] != ssid_len)
398 		return false;
399 	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
400 }
401 
402 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)403 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
404 			   struct cfg80211_bss *nontrans_bss)
405 {
406 	const u8 *ssid;
407 	size_t ssid_len;
408 	struct cfg80211_bss *bss = NULL;
409 
410 	rcu_read_lock();
411 	ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
412 	if (!ssid) {
413 		rcu_read_unlock();
414 		return -EINVAL;
415 	}
416 	ssid_len = ssid[1];
417 	ssid = ssid + 2;
418 
419 	/* check if nontrans_bss is in the list */
420 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
421 		if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len)) {
422 			rcu_read_unlock();
423 			return 0;
424 		}
425 	}
426 
427 	rcu_read_unlock();
428 
429 	/*
430 	 * This is a bit weird - it's not on the list, but already on another
431 	 * one! The only way that could happen is if there's some BSSID/SSID
432 	 * shared by multiple APs in their multi-BSSID profiles, potentially
433 	 * with hidden SSID mixed in ... ignore it.
434 	 */
435 	if (!list_empty(&nontrans_bss->nontrans_list))
436 		return -EINVAL;
437 
438 	/* add to the list */
439 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 	return 0;
441 }
442 
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)443 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 				  unsigned long expire_time)
445 {
446 	struct cfg80211_internal_bss *bss, *tmp;
447 	bool expired = false;
448 
449 	lockdep_assert_held(&rdev->bss_lock);
450 
451 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 		if (atomic_read(&bss->hold))
453 			continue;
454 		if (!time_after(expire_time, bss->ts))
455 			continue;
456 
457 		if (__cfg80211_unlink_bss(rdev, bss))
458 			expired = true;
459 	}
460 
461 	if (expired)
462 		rdev->bss_generation++;
463 }
464 
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)465 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466 {
467 	struct cfg80211_internal_bss *bss, *oldest = NULL;
468 	bool ret;
469 
470 	lockdep_assert_held(&rdev->bss_lock);
471 
472 	list_for_each_entry(bss, &rdev->bss_list, list) {
473 		if (atomic_read(&bss->hold))
474 			continue;
475 
476 		if (!list_empty(&bss->hidden_list) &&
477 		    !bss->pub.hidden_beacon_bss)
478 			continue;
479 
480 		if (oldest && time_before(oldest->ts, bss->ts))
481 			continue;
482 		oldest = bss;
483 	}
484 
485 	if (WARN_ON(!oldest))
486 		return false;
487 
488 	/*
489 	 * The callers make sure to increase rdev->bss_generation if anything
490 	 * gets removed (and a new entry added), so there's no need to also do
491 	 * it here.
492 	 */
493 
494 	ret = __cfg80211_unlink_bss(rdev, oldest);
495 	WARN_ON(!ret);
496 	return ret;
497 }
498 
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)499 static u8 cfg80211_parse_bss_param(u8 data,
500 				   struct cfg80211_colocated_ap *coloc_ap)
501 {
502 	coloc_ap->oct_recommended =
503 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 	coloc_ap->same_ssid =
505 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 	coloc_ap->multi_bss =
507 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 	coloc_ap->transmitted_bssid =
509 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 	coloc_ap->unsolicited_probe =
511 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 	coloc_ap->colocated_ess =
513 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514 
515 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516 }
517 
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)518 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 				    const struct element **elem, u32 *s_ssid)
520 {
521 
522 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 		return -EINVAL;
525 
526 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 	return 0;
528 }
529 
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)530 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
531 {
532 	struct cfg80211_colocated_ap *ap, *tmp_ap;
533 
534 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
535 		list_del(&ap->list);
536 		kfree(ap);
537 	}
538 }
539 
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,int s_ssid_tmp)540 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
541 				  const u8 *pos, u8 length,
542 				  const struct element *ssid_elem,
543 				  int s_ssid_tmp)
544 {
545 	/* skip the TBTT offset */
546 	pos++;
547 
548 	memcpy(entry->bssid, pos, ETH_ALEN);
549 	pos += ETH_ALEN;
550 
551 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
552 		memcpy(&entry->short_ssid, pos,
553 		       sizeof(entry->short_ssid));
554 		entry->short_ssid_valid = true;
555 		pos += 4;
556 	}
557 
558 	/* skip non colocated APs */
559 	if (!cfg80211_parse_bss_param(*pos, entry))
560 		return -EINVAL;
561 	pos++;
562 
563 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
564 		/*
565 		 * no information about the short ssid. Consider the entry valid
566 		 * for now. It would later be dropped in case there are explicit
567 		 * SSIDs that need to be matched
568 		 */
569 		if (!entry->same_ssid)
570 			return 0;
571 	}
572 
573 	if (entry->same_ssid) {
574 		entry->short_ssid = s_ssid_tmp;
575 		entry->short_ssid_valid = true;
576 
577 		/*
578 		 * This is safe because we validate datalen in
579 		 * cfg80211_parse_colocated_ap(), before calling this
580 		 * function.
581 		 */
582 		memcpy(&entry->ssid, &ssid_elem->data,
583 		       ssid_elem->datalen);
584 		entry->ssid_len = ssid_elem->datalen;
585 	}
586 	return 0;
587 }
588 
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)589 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
590 				       struct list_head *list)
591 {
592 	struct ieee80211_neighbor_ap_info *ap_info;
593 	const struct element *elem, *ssid_elem;
594 	const u8 *pos, *end;
595 	u32 s_ssid_tmp;
596 	int n_coloc = 0, ret;
597 	LIST_HEAD(ap_list);
598 
599 	elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
600 				  ies->len);
601 	if (!elem || elem->datalen > IEEE80211_MAX_SSID_LEN)
602 		return 0;
603 
604 	pos = elem->data;
605 	end = pos + elem->datalen;
606 
607 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
608 	if (ret)
609 		return ret;
610 
611 	/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
612 	while (pos + sizeof(*ap_info) <= end) {
613 		enum nl80211_band band;
614 		int freq;
615 		u8 length, i, count;
616 
617 		ap_info = (void *)pos;
618 		count = u8_get_bits(ap_info->tbtt_info_hdr,
619 				    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
620 		length = ap_info->tbtt_info_len;
621 
622 		pos += sizeof(*ap_info);
623 
624 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
625 						       &band))
626 			break;
627 
628 		freq = ieee80211_channel_to_frequency(ap_info->channel, band);
629 
630 		if (end - pos < count * ap_info->tbtt_info_len)
631 			break;
632 
633 		/*
634 		 * TBTT info must include bss param + BSSID +
635 		 * (short SSID or same_ssid bit to be set).
636 		 * ignore other options, and move to the
637 		 * next AP info
638 		 */
639 		if (band != NL80211_BAND_6GHZ ||
640 		    (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
641 		     length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
642 			pos += count * ap_info->tbtt_info_len;
643 			continue;
644 		}
645 
646 		for (i = 0; i < count; i++) {
647 			struct cfg80211_colocated_ap *entry;
648 
649 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
650 					GFP_ATOMIC);
651 
652 			if (!entry)
653 				break;
654 
655 			entry->center_freq = freq;
656 
657 			if (!cfg80211_parse_ap_info(entry, pos, length,
658 						    ssid_elem, s_ssid_tmp)) {
659 				n_coloc++;
660 				list_add_tail(&entry->list, &ap_list);
661 			} else {
662 				kfree(entry);
663 			}
664 
665 			pos += ap_info->tbtt_info_len;
666 		}
667 	}
668 
669 	if (pos != end) {
670 		cfg80211_free_coloc_ap_list(&ap_list);
671 		return 0;
672 	}
673 
674 	list_splice_tail(&ap_list, list);
675 	return n_coloc;
676 }
677 
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)678 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
679 					struct ieee80211_channel *chan,
680 					bool add_to_6ghz)
681 {
682 	int i;
683 	u32 n_channels = request->n_channels;
684 	struct cfg80211_scan_6ghz_params *params =
685 		&request->scan_6ghz_params[request->n_6ghz_params];
686 
687 	for (i = 0; i < n_channels; i++) {
688 		if (request->channels[i] == chan) {
689 			if (add_to_6ghz)
690 				params->channel_idx = i;
691 			return;
692 		}
693 	}
694 
695 	request->channels[n_channels] = chan;
696 	if (add_to_6ghz)
697 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
698 			n_channels;
699 
700 	request->n_channels++;
701 }
702 
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)703 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
704 				     struct cfg80211_scan_request *request)
705 {
706 	int i;
707 	u32 s_ssid;
708 
709 	for (i = 0; i < request->n_ssids; i++) {
710 		/* wildcard ssid in the scan request */
711 		if (!request->ssids[i].ssid_len) {
712 			if (ap->multi_bss && !ap->transmitted_bssid)
713 				continue;
714 
715 			return true;
716 		}
717 
718 		if (ap->ssid_len &&
719 		    ap->ssid_len == request->ssids[i].ssid_len) {
720 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
721 				    ap->ssid_len))
722 				return true;
723 		} else if (ap->short_ssid_valid) {
724 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
725 					   request->ssids[i].ssid_len);
726 
727 			if (ap->short_ssid == s_ssid)
728 				return true;
729 		}
730 	}
731 
732 	return false;
733 }
734 
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)735 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
736 {
737 	u8 i;
738 	struct cfg80211_colocated_ap *ap;
739 	int n_channels, count = 0, err;
740 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
741 	LIST_HEAD(coloc_ap_list);
742 	bool need_scan_psc;
743 	const struct ieee80211_sband_iftype_data *iftd;
744 
745 	rdev_req->scan_6ghz = true;
746 
747 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
748 		return -EOPNOTSUPP;
749 
750 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
751 					       rdev_req->wdev->iftype);
752 	if (!iftd || !iftd->he_cap.has_he)
753 		return -EOPNOTSUPP;
754 
755 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
756 
757 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
758 		struct cfg80211_internal_bss *intbss;
759 
760 		spin_lock_bh(&rdev->bss_lock);
761 		list_for_each_entry(intbss, &rdev->bss_list, list) {
762 			struct cfg80211_bss *res = &intbss->pub;
763 			const struct cfg80211_bss_ies *ies;
764 
765 			ies = rcu_access_pointer(res->ies);
766 			count += cfg80211_parse_colocated_ap(ies,
767 							     &coloc_ap_list);
768 		}
769 		spin_unlock_bh(&rdev->bss_lock);
770 	}
771 
772 	request = kzalloc(struct_size(request, channels, n_channels) +
773 			  sizeof(*request->scan_6ghz_params) * count,
774 			  GFP_KERNEL);
775 	if (!request) {
776 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
777 		return -ENOMEM;
778 	}
779 
780 	*request = *rdev_req;
781 	request->n_channels = 0;
782 	request->scan_6ghz_params =
783 		(void *)&request->channels[n_channels];
784 
785 	/*
786 	 * PSC channels should not be scanned if all the reported co-located APs
787 	 * are indicating that all APs in the same ESS are co-located
788 	 */
789 	if (count) {
790 		need_scan_psc = false;
791 
792 		list_for_each_entry(ap, &coloc_ap_list, list) {
793 			if (!ap->colocated_ess) {
794 				need_scan_psc = true;
795 				break;
796 			}
797 		}
798 	} else {
799 		need_scan_psc = true;
800 	}
801 
802 	/*
803 	 * add to the scan request the channels that need to be scanned
804 	 * regardless of the collocated APs (PSC channels or all channels
805 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
806 	 */
807 	for (i = 0; i < rdev_req->n_channels; i++) {
808 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
809 		    ((need_scan_psc &&
810 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
811 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
812 			cfg80211_scan_req_add_chan(request,
813 						   rdev_req->channels[i],
814 						   false);
815 		}
816 	}
817 
818 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
819 		goto skip;
820 
821 	list_for_each_entry(ap, &coloc_ap_list, list) {
822 		bool found = false;
823 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
824 			&request->scan_6ghz_params[request->n_6ghz_params];
825 		struct ieee80211_channel *chan =
826 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
827 
828 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
829 			continue;
830 
831 		for (i = 0; i < rdev_req->n_channels; i++) {
832 			if (rdev_req->channels[i] == chan)
833 				found = true;
834 		}
835 
836 		if (!found)
837 			continue;
838 
839 		if (request->n_ssids > 0 &&
840 		    !cfg80211_find_ssid_match(ap, request))
841 			continue;
842 
843 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
844 			continue;
845 
846 		cfg80211_scan_req_add_chan(request, chan, true);
847 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
848 		scan_6ghz_params->short_ssid = ap->short_ssid;
849 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
850 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
851 
852 		/*
853 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
854 		 * set to false, then all the APs that the scan logic is
855 		 * interested with on the channel are collocated and thus there
856 		 * is no need to perform the initial PSC channel listen.
857 		 */
858 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
859 			scan_6ghz_params->psc_no_listen = true;
860 
861 		request->n_6ghz_params++;
862 	}
863 
864 skip:
865 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
866 
867 	if (request->n_channels) {
868 		struct cfg80211_scan_request *old = rdev->int_scan_req;
869 
870 		rdev->int_scan_req = request;
871 
872 		/*
873 		 * If this scan follows a previous scan, save the scan start
874 		 * info from the first part of the scan
875 		 */
876 		if (old)
877 			rdev->int_scan_req->info = old->info;
878 
879 		err = rdev_scan(rdev, request);
880 		if (err) {
881 			rdev->int_scan_req = old;
882 			kfree(request);
883 		} else {
884 			kfree(old);
885 		}
886 
887 		return err;
888 	}
889 
890 	kfree(request);
891 	return -EINVAL;
892 }
893 
cfg80211_scan(struct cfg80211_registered_device * rdev)894 int cfg80211_scan(struct cfg80211_registered_device *rdev)
895 {
896 	struct cfg80211_scan_request *request;
897 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
898 	u32 n_channels = 0, idx, i;
899 
900 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
901 		return rdev_scan(rdev, rdev_req);
902 
903 	for (i = 0; i < rdev_req->n_channels; i++) {
904 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
905 			n_channels++;
906 	}
907 
908 	if (!n_channels)
909 		return cfg80211_scan_6ghz(rdev);
910 
911 	request = kzalloc(struct_size(request, channels, n_channels),
912 			  GFP_KERNEL);
913 	if (!request)
914 		return -ENOMEM;
915 
916 	*request = *rdev_req;
917 	request->n_channels = n_channels;
918 
919 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
920 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
921 			request->channels[idx++] = rdev_req->channels[i];
922 	}
923 
924 	rdev_req->scan_6ghz = false;
925 	rdev->int_scan_req = request;
926 	return rdev_scan(rdev, request);
927 }
928 
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)929 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
930 			   bool send_message)
931 {
932 	struct cfg80211_scan_request *request, *rdev_req;
933 	struct wireless_dev *wdev;
934 	struct sk_buff *msg;
935 #ifdef CONFIG_CFG80211_WEXT
936 	union iwreq_data wrqu;
937 #endif
938 
939 	ASSERT_RTNL();
940 
941 	if (rdev->scan_msg) {
942 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
943 		rdev->scan_msg = NULL;
944 		return;
945 	}
946 
947 	rdev_req = rdev->scan_req;
948 	if (!rdev_req)
949 		return;
950 
951 	wdev = rdev_req->wdev;
952 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
953 
954 	if (wdev_running(wdev) &&
955 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
956 	    !rdev_req->scan_6ghz && !request->info.aborted &&
957 	    !cfg80211_scan_6ghz(rdev))
958 		return;
959 
960 	/*
961 	 * This must be before sending the other events!
962 	 * Otherwise, wpa_supplicant gets completely confused with
963 	 * wext events.
964 	 */
965 	if (wdev->netdev)
966 		cfg80211_sme_scan_done(wdev->netdev);
967 
968 	if (!request->info.aborted &&
969 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
970 		/* flush entries from previous scans */
971 		spin_lock_bh(&rdev->bss_lock);
972 		__cfg80211_bss_expire(rdev, request->scan_start);
973 		spin_unlock_bh(&rdev->bss_lock);
974 	}
975 
976 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
977 
978 #ifdef CONFIG_CFG80211_WEXT
979 	if (wdev->netdev && !request->info.aborted) {
980 		memset(&wrqu, 0, sizeof(wrqu));
981 
982 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
983 	}
984 #endif
985 
986 	if (wdev->netdev)
987 		dev_put(wdev->netdev);
988 
989 	kfree(rdev->int_scan_req);
990 	rdev->int_scan_req = NULL;
991 
992 	kfree(rdev->scan_req);
993 	rdev->scan_req = NULL;
994 
995 	if (!send_message)
996 		rdev->scan_msg = msg;
997 	else
998 		nl80211_send_scan_msg(rdev, msg);
999 }
1000 
__cfg80211_scan_done(struct work_struct * wk)1001 void __cfg80211_scan_done(struct work_struct *wk)
1002 {
1003 	struct cfg80211_registered_device *rdev;
1004 
1005 	rdev = container_of(wk, struct cfg80211_registered_device,
1006 			    scan_done_wk);
1007 
1008 	rtnl_lock();
1009 	___cfg80211_scan_done(rdev, true);
1010 	rtnl_unlock();
1011 }
1012 
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1013 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1014 			struct cfg80211_scan_info *info)
1015 {
1016 	struct cfg80211_scan_info old_info = request->info;
1017 
1018 	trace_cfg80211_scan_done(request, info);
1019 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1020 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1021 
1022 	request->info = *info;
1023 
1024 	/*
1025 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1026 	 * be of the first part. In such a case old_info.scan_start_tsf should
1027 	 * be non zero.
1028 	 */
1029 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1030 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1031 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1032 		       sizeof(request->info.tsf_bssid));
1033 	}
1034 
1035 	request->notified = true;
1036 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1037 }
1038 EXPORT_SYMBOL(cfg80211_scan_done);
1039 
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1040 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1041 				 struct cfg80211_sched_scan_request *req)
1042 {
1043 	ASSERT_RTNL();
1044 
1045 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1046 }
1047 
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1048 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1049 					struct cfg80211_sched_scan_request *req)
1050 {
1051 	ASSERT_RTNL();
1052 
1053 	list_del_rcu(&req->list);
1054 	kfree_rcu(req, rcu_head);
1055 }
1056 
1057 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1058 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1059 {
1060 	struct cfg80211_sched_scan_request *pos;
1061 
1062 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1063 				lockdep_rtnl_is_held()) {
1064 		if (pos->reqid == reqid)
1065 			return pos;
1066 	}
1067 	return NULL;
1068 }
1069 
1070 /*
1071  * Determines if a scheduled scan request can be handled. When a legacy
1072  * scheduled scan is running no other scheduled scan is allowed regardless
1073  * whether the request is for legacy or multi-support scan. When a multi-support
1074  * scheduled scan is running a request for legacy scan is not allowed. In this
1075  * case a request for multi-support scan can be handled if resources are
1076  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1077  */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1078 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1079 				     bool want_multi)
1080 {
1081 	struct cfg80211_sched_scan_request *pos;
1082 	int i = 0;
1083 
1084 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1085 		/* request id zero means legacy in progress */
1086 		if (!i && !pos->reqid)
1087 			return -EINPROGRESS;
1088 		i++;
1089 	}
1090 
1091 	if (i) {
1092 		/* no legacy allowed when multi request(s) are active */
1093 		if (!want_multi)
1094 			return -EINPROGRESS;
1095 
1096 		/* resource limit reached */
1097 		if (i == rdev->wiphy.max_sched_scan_reqs)
1098 			return -ENOSPC;
1099 	}
1100 	return 0;
1101 }
1102 
cfg80211_sched_scan_results_wk(struct work_struct * work)1103 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1104 {
1105 	struct cfg80211_registered_device *rdev;
1106 	struct cfg80211_sched_scan_request *req, *tmp;
1107 
1108 	rdev = container_of(work, struct cfg80211_registered_device,
1109 			   sched_scan_res_wk);
1110 
1111 	rtnl_lock();
1112 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1113 		if (req->report_results) {
1114 			req->report_results = false;
1115 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1116 				/* flush entries from previous scans */
1117 				spin_lock_bh(&rdev->bss_lock);
1118 				__cfg80211_bss_expire(rdev, req->scan_start);
1119 				spin_unlock_bh(&rdev->bss_lock);
1120 				req->scan_start = jiffies;
1121 			}
1122 			nl80211_send_sched_scan(req,
1123 						NL80211_CMD_SCHED_SCAN_RESULTS);
1124 		}
1125 	}
1126 	rtnl_unlock();
1127 }
1128 
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1129 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1130 {
1131 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1132 	struct cfg80211_sched_scan_request *request;
1133 
1134 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1135 	/* ignore if we're not scanning */
1136 
1137 	rcu_read_lock();
1138 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1139 	if (request) {
1140 		request->report_results = true;
1141 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1142 	}
1143 	rcu_read_unlock();
1144 }
1145 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1146 
cfg80211_sched_scan_stopped_rtnl(struct wiphy * wiphy,u64 reqid)1147 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
1148 {
1149 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1150 
1151 	ASSERT_RTNL();
1152 
1153 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1154 
1155 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1156 }
1157 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
1158 
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1159 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1160 {
1161 	rtnl_lock();
1162 	cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
1163 	rtnl_unlock();
1164 }
1165 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1166 
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1167 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1168 				 struct cfg80211_sched_scan_request *req,
1169 				 bool driver_initiated)
1170 {
1171 	ASSERT_RTNL();
1172 
1173 	if (!driver_initiated) {
1174 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1175 		if (err)
1176 			return err;
1177 	}
1178 
1179 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1180 
1181 	cfg80211_del_sched_scan_req(rdev, req);
1182 
1183 	return 0;
1184 }
1185 
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1186 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1187 			       u64 reqid, bool driver_initiated)
1188 {
1189 	struct cfg80211_sched_scan_request *sched_scan_req;
1190 
1191 	ASSERT_RTNL();
1192 
1193 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1194 	if (!sched_scan_req)
1195 		return -ENOENT;
1196 
1197 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1198 					    driver_initiated);
1199 }
1200 
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1201 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1202                       unsigned long age_secs)
1203 {
1204 	struct cfg80211_internal_bss *bss;
1205 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1206 
1207 	spin_lock_bh(&rdev->bss_lock);
1208 	list_for_each_entry(bss, &rdev->bss_list, list)
1209 		bss->ts -= age_jiffies;
1210 	spin_unlock_bh(&rdev->bss_lock);
1211 }
1212 
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1213 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1214 {
1215 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1216 }
1217 
cfg80211_bss_flush(struct wiphy * wiphy)1218 void cfg80211_bss_flush(struct wiphy *wiphy)
1219 {
1220 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1221 
1222 	spin_lock_bh(&rdev->bss_lock);
1223 	__cfg80211_bss_expire(rdev, jiffies);
1224 	spin_unlock_bh(&rdev->bss_lock);
1225 }
1226 EXPORT_SYMBOL(cfg80211_bss_flush);
1227 
1228 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1229 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1230 			 const u8 *match, unsigned int match_len,
1231 			 unsigned int match_offset)
1232 {
1233 	const struct element *elem;
1234 
1235 	for_each_element_id(elem, eid, ies, len) {
1236 		if (elem->datalen >= match_offset + match_len &&
1237 		    !memcmp(elem->data + match_offset, match, match_len))
1238 			return elem;
1239 	}
1240 
1241 	return NULL;
1242 }
1243 EXPORT_SYMBOL(cfg80211_find_elem_match);
1244 
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1245 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1246 						const u8 *ies,
1247 						unsigned int len)
1248 {
1249 	const struct element *elem;
1250 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1251 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1252 
1253 	if (WARN_ON(oui_type > 0xff))
1254 		return NULL;
1255 
1256 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1257 					match, match_len, 0);
1258 
1259 	if (!elem || elem->datalen < 4)
1260 		return NULL;
1261 
1262 	return elem;
1263 }
1264 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1265 
1266 /**
1267  * enum bss_compare_mode - BSS compare mode
1268  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1269  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1270  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1271  */
1272 enum bss_compare_mode {
1273 	BSS_CMP_REGULAR,
1274 	BSS_CMP_HIDE_ZLEN,
1275 	BSS_CMP_HIDE_NUL,
1276 };
1277 
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1278 static int cmp_bss(struct cfg80211_bss *a,
1279 		   struct cfg80211_bss *b,
1280 		   enum bss_compare_mode mode)
1281 {
1282 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1283 	const u8 *ie1 = NULL;
1284 	const u8 *ie2 = NULL;
1285 	int i, r;
1286 
1287 	if (a->channel != b->channel)
1288 		return b->channel->center_freq - a->channel->center_freq;
1289 
1290 	a_ies = rcu_access_pointer(a->ies);
1291 	if (!a_ies)
1292 		return -1;
1293 	b_ies = rcu_access_pointer(b->ies);
1294 	if (!b_ies)
1295 		return 1;
1296 
1297 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1298 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1299 				       a_ies->data, a_ies->len);
1300 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1301 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1302 				       b_ies->data, b_ies->len);
1303 	if (ie1 && ie2) {
1304 		int mesh_id_cmp;
1305 
1306 		if (ie1[1] == ie2[1])
1307 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1308 		else
1309 			mesh_id_cmp = ie2[1] - ie1[1];
1310 
1311 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1312 				       a_ies->data, a_ies->len);
1313 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1314 				       b_ies->data, b_ies->len);
1315 		if (ie1 && ie2) {
1316 			if (mesh_id_cmp)
1317 				return mesh_id_cmp;
1318 			if (ie1[1] != ie2[1])
1319 				return ie2[1] - ie1[1];
1320 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1321 		}
1322 	}
1323 
1324 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1325 	if (r)
1326 		return r;
1327 
1328 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1329 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1330 
1331 	if (!ie1 && !ie2)
1332 		return 0;
1333 
1334 	/*
1335 	 * Note that with "hide_ssid", the function returns a match if
1336 	 * the already-present BSS ("b") is a hidden SSID beacon for
1337 	 * the new BSS ("a").
1338 	 */
1339 
1340 	/* sort missing IE before (left of) present IE */
1341 	if (!ie1)
1342 		return -1;
1343 	if (!ie2)
1344 		return 1;
1345 
1346 	switch (mode) {
1347 	case BSS_CMP_HIDE_ZLEN:
1348 		/*
1349 		 * In ZLEN mode we assume the BSS entry we're
1350 		 * looking for has a zero-length SSID. So if
1351 		 * the one we're looking at right now has that,
1352 		 * return 0. Otherwise, return the difference
1353 		 * in length, but since we're looking for the
1354 		 * 0-length it's really equivalent to returning
1355 		 * the length of the one we're looking at.
1356 		 *
1357 		 * No content comparison is needed as we assume
1358 		 * the content length is zero.
1359 		 */
1360 		return ie2[1];
1361 	case BSS_CMP_REGULAR:
1362 	default:
1363 		/* sort by length first, then by contents */
1364 		if (ie1[1] != ie2[1])
1365 			return ie2[1] - ie1[1];
1366 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1367 	case BSS_CMP_HIDE_NUL:
1368 		if (ie1[1] != ie2[1])
1369 			return ie2[1] - ie1[1];
1370 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1371 		for (i = 0; i < ie2[1]; i++)
1372 			if (ie2[i + 2])
1373 				return -1;
1374 		return 0;
1375 	}
1376 }
1377 
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1378 static bool cfg80211_bss_type_match(u16 capability,
1379 				    enum nl80211_band band,
1380 				    enum ieee80211_bss_type bss_type)
1381 {
1382 	bool ret = true;
1383 	u16 mask, val;
1384 
1385 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1386 		return ret;
1387 
1388 	if (band == NL80211_BAND_60GHZ) {
1389 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1390 		switch (bss_type) {
1391 		case IEEE80211_BSS_TYPE_ESS:
1392 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1393 			break;
1394 		case IEEE80211_BSS_TYPE_PBSS:
1395 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1396 			break;
1397 		case IEEE80211_BSS_TYPE_IBSS:
1398 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1399 			break;
1400 		default:
1401 			return false;
1402 		}
1403 	} else {
1404 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1405 		switch (bss_type) {
1406 		case IEEE80211_BSS_TYPE_ESS:
1407 			val = WLAN_CAPABILITY_ESS;
1408 			break;
1409 		case IEEE80211_BSS_TYPE_IBSS:
1410 			val = WLAN_CAPABILITY_IBSS;
1411 			break;
1412 		case IEEE80211_BSS_TYPE_MBSS:
1413 			val = 0;
1414 			break;
1415 		default:
1416 			return false;
1417 		}
1418 	}
1419 
1420 	ret = ((capability & mask) == val);
1421 	return ret;
1422 }
1423 
1424 /* Returned bss is reference counted and must be cleaned up appropriately. */
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)1425 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1426 				      struct ieee80211_channel *channel,
1427 				      const u8 *bssid,
1428 				      const u8 *ssid, size_t ssid_len,
1429 				      enum ieee80211_bss_type bss_type,
1430 				      enum ieee80211_privacy privacy)
1431 {
1432 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1433 	struct cfg80211_internal_bss *bss, *res = NULL;
1434 	unsigned long now = jiffies;
1435 	int bss_privacy;
1436 
1437 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1438 			       privacy);
1439 
1440 	spin_lock_bh(&rdev->bss_lock);
1441 
1442 	list_for_each_entry(bss, &rdev->bss_list, list) {
1443 		if (!cfg80211_bss_type_match(bss->pub.capability,
1444 					     bss->pub.channel->band, bss_type))
1445 			continue;
1446 
1447 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1448 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1449 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1450 			continue;
1451 		if (channel && bss->pub.channel != channel)
1452 			continue;
1453 		if (!is_valid_ether_addr(bss->pub.bssid))
1454 			continue;
1455 		/* Don't get expired BSS structs */
1456 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1457 		    !atomic_read(&bss->hold))
1458 			continue;
1459 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1460 			res = bss;
1461 			bss_ref_get(rdev, res);
1462 			break;
1463 		}
1464 	}
1465 
1466 	spin_unlock_bh(&rdev->bss_lock);
1467 	if (!res)
1468 		return NULL;
1469 	trace_cfg80211_return_bss(&res->pub);
1470 	return &res->pub;
1471 }
1472 EXPORT_SYMBOL(cfg80211_get_bss);
1473 
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1474 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1475 			  struct cfg80211_internal_bss *bss)
1476 {
1477 	struct rb_node **p = &rdev->bss_tree.rb_node;
1478 	struct rb_node *parent = NULL;
1479 	struct cfg80211_internal_bss *tbss;
1480 	int cmp;
1481 
1482 	while (*p) {
1483 		parent = *p;
1484 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1485 
1486 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1487 
1488 		if (WARN_ON(!cmp)) {
1489 			/* will sort of leak this BSS */
1490 			return;
1491 		}
1492 
1493 		if (cmp < 0)
1494 			p = &(*p)->rb_left;
1495 		else
1496 			p = &(*p)->rb_right;
1497 	}
1498 
1499 	rb_link_node(&bss->rbn, parent, p);
1500 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1501 }
1502 
1503 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1504 rb_find_bss(struct cfg80211_registered_device *rdev,
1505 	    struct cfg80211_internal_bss *res,
1506 	    enum bss_compare_mode mode)
1507 {
1508 	struct rb_node *n = rdev->bss_tree.rb_node;
1509 	struct cfg80211_internal_bss *bss;
1510 	int r;
1511 
1512 	while (n) {
1513 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1514 		r = cmp_bss(&res->pub, &bss->pub, mode);
1515 
1516 		if (r == 0)
1517 			return bss;
1518 		else if (r < 0)
1519 			n = n->rb_left;
1520 		else
1521 			n = n->rb_right;
1522 	}
1523 
1524 	return NULL;
1525 }
1526 
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1527 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1528 				   struct cfg80211_internal_bss *new)
1529 {
1530 	const struct cfg80211_bss_ies *ies;
1531 	struct cfg80211_internal_bss *bss;
1532 	const u8 *ie;
1533 	int i, ssidlen;
1534 	u8 fold = 0;
1535 	u32 n_entries = 0;
1536 
1537 	ies = rcu_access_pointer(new->pub.beacon_ies);
1538 	if (WARN_ON(!ies))
1539 		return false;
1540 
1541 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1542 	if (!ie) {
1543 		/* nothing to do */
1544 		return true;
1545 	}
1546 
1547 	ssidlen = ie[1];
1548 	for (i = 0; i < ssidlen; i++)
1549 		fold |= ie[2 + i];
1550 
1551 	if (fold) {
1552 		/* not a hidden SSID */
1553 		return true;
1554 	}
1555 
1556 	/* This is the bad part ... */
1557 
1558 	list_for_each_entry(bss, &rdev->bss_list, list) {
1559 		/*
1560 		 * we're iterating all the entries anyway, so take the
1561 		 * opportunity to validate the list length accounting
1562 		 */
1563 		n_entries++;
1564 
1565 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1566 			continue;
1567 		if (bss->pub.channel != new->pub.channel)
1568 			continue;
1569 		if (bss->pub.scan_width != new->pub.scan_width)
1570 			continue;
1571 		if (rcu_access_pointer(bss->pub.beacon_ies))
1572 			continue;
1573 		ies = rcu_access_pointer(bss->pub.ies);
1574 		if (!ies)
1575 			continue;
1576 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1577 		if (!ie)
1578 			continue;
1579 		if (ssidlen && ie[1] != ssidlen)
1580 			continue;
1581 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1582 			continue;
1583 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1584 			list_del(&bss->hidden_list);
1585 		/* combine them */
1586 		list_add(&bss->hidden_list, &new->hidden_list);
1587 		bss->pub.hidden_beacon_bss = &new->pub;
1588 		new->refcount += bss->refcount;
1589 		rcu_assign_pointer(bss->pub.beacon_ies,
1590 				   new->pub.beacon_ies);
1591 	}
1592 
1593 	WARN_ONCE(n_entries != rdev->bss_entries,
1594 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1595 		  rdev->bss_entries, n_entries);
1596 
1597 	return true;
1598 }
1599 
1600 struct cfg80211_non_tx_bss {
1601 	struct cfg80211_bss *tx_bss;
1602 	u8 max_bssid_indicator;
1603 	u8 bssid_index;
1604 };
1605 
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1606 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1607 					 const struct cfg80211_bss_ies *new_ies,
1608 					 const struct cfg80211_bss_ies *old_ies)
1609 {
1610 	struct cfg80211_internal_bss *bss;
1611 
1612 	/* Assign beacon IEs to all sub entries */
1613 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1614 		const struct cfg80211_bss_ies *ies;
1615 
1616 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1617 		WARN_ON(ies != old_ies);
1618 
1619 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1620 	}
1621 }
1622 
1623 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1624 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1625 			  struct cfg80211_internal_bss *known,
1626 			  struct cfg80211_internal_bss *new,
1627 			  bool signal_valid)
1628 {
1629 	lockdep_assert_held(&rdev->bss_lock);
1630 
1631 	/* Update IEs */
1632 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1633 		const struct cfg80211_bss_ies *old;
1634 
1635 		old = rcu_access_pointer(known->pub.proberesp_ies);
1636 
1637 		rcu_assign_pointer(known->pub.proberesp_ies,
1638 				   new->pub.proberesp_ies);
1639 		/* Override possible earlier Beacon frame IEs */
1640 		rcu_assign_pointer(known->pub.ies,
1641 				   new->pub.proberesp_ies);
1642 		if (old)
1643 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1644 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1645 		const struct cfg80211_bss_ies *old;
1646 
1647 		if (known->pub.hidden_beacon_bss &&
1648 		    !list_empty(&known->hidden_list)) {
1649 			const struct cfg80211_bss_ies *f;
1650 
1651 			/* The known BSS struct is one of the probe
1652 			 * response members of a group, but we're
1653 			 * receiving a beacon (beacon_ies in the new
1654 			 * bss is used). This can only mean that the
1655 			 * AP changed its beacon from not having an
1656 			 * SSID to showing it, which is confusing so
1657 			 * drop this information.
1658 			 */
1659 
1660 			f = rcu_access_pointer(new->pub.beacon_ies);
1661 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1662 			return false;
1663 		}
1664 
1665 		old = rcu_access_pointer(known->pub.beacon_ies);
1666 
1667 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1668 
1669 		/* Override IEs if they were from a beacon before */
1670 		if (old == rcu_access_pointer(known->pub.ies))
1671 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1672 
1673 		cfg80211_update_hidden_bsses(known,
1674 					     rcu_access_pointer(new->pub.beacon_ies),
1675 					     old);
1676 
1677 		if (old)
1678 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1679 	}
1680 
1681 	known->pub.beacon_interval = new->pub.beacon_interval;
1682 
1683 	/* don't update the signal if beacon was heard on
1684 	 * adjacent channel.
1685 	 */
1686 	if (signal_valid)
1687 		known->pub.signal = new->pub.signal;
1688 	known->pub.capability = new->pub.capability;
1689 	known->ts = new->ts;
1690 	known->ts_boottime = new->ts_boottime;
1691 	known->parent_tsf = new->parent_tsf;
1692 	known->pub.chains = new->pub.chains;
1693 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1694 	       IEEE80211_MAX_CHAINS);
1695 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1696 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1697 	known->pub.bssid_index = new->pub.bssid_index;
1698 
1699 	return true;
1700 }
1701 
1702 /* Returned bss is reference counted and must be cleaned up appropriately. */
1703 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1704 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1705 		    struct cfg80211_internal_bss *tmp,
1706 		    bool signal_valid, unsigned long ts)
1707 {
1708 	struct cfg80211_internal_bss *found = NULL;
1709 
1710 	if (WARN_ON(!tmp->pub.channel))
1711 		return NULL;
1712 
1713 	tmp->ts = ts;
1714 
1715 	spin_lock_bh(&rdev->bss_lock);
1716 
1717 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1718 		spin_unlock_bh(&rdev->bss_lock);
1719 		return NULL;
1720 	}
1721 
1722 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1723 
1724 	if (found) {
1725 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1726 			goto drop;
1727 	} else {
1728 		struct cfg80211_internal_bss *new;
1729 		struct cfg80211_internal_bss *hidden;
1730 		struct cfg80211_bss_ies *ies;
1731 
1732 		/*
1733 		 * create a copy -- the "res" variable that is passed in
1734 		 * is allocated on the stack since it's not needed in the
1735 		 * more common case of an update
1736 		 */
1737 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1738 			      GFP_ATOMIC);
1739 		if (!new) {
1740 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1741 			if (ies)
1742 				kfree_rcu(ies, rcu_head);
1743 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1744 			if (ies)
1745 				kfree_rcu(ies, rcu_head);
1746 			goto drop;
1747 		}
1748 		memcpy(new, tmp, sizeof(*new));
1749 		new->refcount = 1;
1750 		INIT_LIST_HEAD(&new->hidden_list);
1751 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1752 		/* we'll set this later if it was non-NULL */
1753 		new->pub.transmitted_bss = NULL;
1754 
1755 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1756 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1757 			if (!hidden)
1758 				hidden = rb_find_bss(rdev, tmp,
1759 						     BSS_CMP_HIDE_NUL);
1760 			if (hidden) {
1761 				new->pub.hidden_beacon_bss = &hidden->pub;
1762 				list_add(&new->hidden_list,
1763 					 &hidden->hidden_list);
1764 				hidden->refcount++;
1765 				rcu_assign_pointer(new->pub.beacon_ies,
1766 						   hidden->pub.beacon_ies);
1767 			}
1768 		} else {
1769 			/*
1770 			 * Ok so we found a beacon, and don't have an entry. If
1771 			 * it's a beacon with hidden SSID, we might be in for an
1772 			 * expensive search for any probe responses that should
1773 			 * be grouped with this beacon for updates ...
1774 			 */
1775 			if (!cfg80211_combine_bsses(rdev, new)) {
1776 				bss_ref_put(rdev, new);
1777 				goto drop;
1778 			}
1779 		}
1780 
1781 		if (rdev->bss_entries >= bss_entries_limit &&
1782 		    !cfg80211_bss_expire_oldest(rdev)) {
1783 			bss_ref_put(rdev, new);
1784 			goto drop;
1785 		}
1786 
1787 		/* This must be before the call to bss_ref_get */
1788 		if (tmp->pub.transmitted_bss) {
1789 			struct cfg80211_internal_bss *pbss =
1790 				container_of(tmp->pub.transmitted_bss,
1791 					     struct cfg80211_internal_bss,
1792 					     pub);
1793 
1794 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1795 			bss_ref_get(rdev, pbss);
1796 		}
1797 
1798 		list_add_tail(&new->list, &rdev->bss_list);
1799 		rdev->bss_entries++;
1800 		rb_insert_bss(rdev, new);
1801 		found = new;
1802 	}
1803 
1804 	rdev->bss_generation++;
1805 	bss_ref_get(rdev, found);
1806 	spin_unlock_bh(&rdev->bss_lock);
1807 
1808 	return found;
1809  drop:
1810 	spin_unlock_bh(&rdev->bss_lock);
1811 	return NULL;
1812 }
1813 
1814 /*
1815  * Update RX channel information based on the available frame payload
1816  * information. This is mainly for the 2.4 GHz band where frames can be received
1817  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1818  * element to indicate the current (transmitting) channel, but this might also
1819  * be needed on other bands if RX frequency does not match with the actual
1820  * operating channel of a BSS.
1821  */
1822 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel,enum nl80211_bss_scan_width scan_width)1823 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1824 			 struct ieee80211_channel *channel,
1825 			 enum nl80211_bss_scan_width scan_width)
1826 {
1827 	const u8 *tmp;
1828 	u32 freq;
1829 	int channel_number = -1;
1830 	struct ieee80211_channel *alt_channel;
1831 
1832 	if (channel->band == NL80211_BAND_S1GHZ) {
1833 		tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1834 		if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1835 			struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1836 
1837 			channel_number = s1gop->primary_ch;
1838 		}
1839 	} else {
1840 		tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1841 		if (tmp && tmp[1] == 1) {
1842 			channel_number = tmp[2];
1843 		} else {
1844 			tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1845 			if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1846 				struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1847 
1848 				channel_number = htop->primary_chan;
1849 			}
1850 		}
1851 	}
1852 
1853 	if (channel_number < 0) {
1854 		/* No channel information in frame payload */
1855 		return channel;
1856 	}
1857 
1858 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1859 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1860 	if (!alt_channel) {
1861 		if (channel->band == NL80211_BAND_2GHZ) {
1862 			/*
1863 			 * Better not allow unexpected channels when that could
1864 			 * be going beyond the 1-11 range (e.g., discovering
1865 			 * BSS on channel 12 when radio is configured for
1866 			 * channel 11.
1867 			 */
1868 			return NULL;
1869 		}
1870 
1871 		/* No match for the payload channel number - ignore it */
1872 		return channel;
1873 	}
1874 
1875 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1876 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1877 		/*
1878 		 * Ignore channel number in 5 and 10 MHz channels where there
1879 		 * may not be an n:1 or 1:n mapping between frequencies and
1880 		 * channel numbers.
1881 		 */
1882 		return channel;
1883 	}
1884 
1885 	/*
1886 	 * Use the channel determined through the payload channel number
1887 	 * instead of the RX channel reported by the driver.
1888 	 */
1889 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1890 		return NULL;
1891 	return alt_channel;
1892 }
1893 
1894 /* Returned bss is reference counted and must be cleaned up appropriately. */
1895 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)1896 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1897 				struct cfg80211_inform_bss *data,
1898 				enum cfg80211_bss_frame_type ftype,
1899 				const u8 *bssid, u64 tsf, u16 capability,
1900 				u16 beacon_interval, const u8 *ie, size_t ielen,
1901 				struct cfg80211_non_tx_bss *non_tx_data,
1902 				gfp_t gfp)
1903 {
1904 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1905 	struct cfg80211_bss_ies *ies;
1906 	struct ieee80211_channel *channel;
1907 	struct cfg80211_internal_bss tmp = {}, *res;
1908 	int bss_type;
1909 	bool signal_valid;
1910 	unsigned long ts;
1911 
1912 	if (WARN_ON(!wiphy))
1913 		return NULL;
1914 
1915 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1916 		    (data->signal < 0 || data->signal > 100)))
1917 		return NULL;
1918 
1919 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1920 					   data->scan_width);
1921 	if (!channel)
1922 		return NULL;
1923 
1924 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1925 	tmp.pub.channel = channel;
1926 	tmp.pub.scan_width = data->scan_width;
1927 	tmp.pub.signal = data->signal;
1928 	tmp.pub.beacon_interval = beacon_interval;
1929 	tmp.pub.capability = capability;
1930 	tmp.ts_boottime = data->boottime_ns;
1931 	if (non_tx_data) {
1932 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1933 		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1934 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1935 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1936 	} else {
1937 		ts = jiffies;
1938 	}
1939 
1940 	/*
1941 	 * If we do not know here whether the IEs are from a Beacon or Probe
1942 	 * Response frame, we need to pick one of the options and only use it
1943 	 * with the driver that does not provide the full Beacon/Probe Response
1944 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1945 	 * override the IEs pointer should we have received an earlier
1946 	 * indication of Probe Response data.
1947 	 */
1948 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1949 	if (!ies)
1950 		return NULL;
1951 	ies->len = ielen;
1952 	ies->tsf = tsf;
1953 	ies->from_beacon = false;
1954 	memcpy(ies->data, ie, ielen);
1955 
1956 	switch (ftype) {
1957 	case CFG80211_BSS_FTYPE_BEACON:
1958 		ies->from_beacon = true;
1959 		fallthrough;
1960 	case CFG80211_BSS_FTYPE_UNKNOWN:
1961 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1962 		break;
1963 	case CFG80211_BSS_FTYPE_PRESP:
1964 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1965 		break;
1966 	}
1967 	rcu_assign_pointer(tmp.pub.ies, ies);
1968 
1969 	signal_valid = data->chan == channel;
1970 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1971 	if (!res)
1972 		return NULL;
1973 
1974 	if (channel->band == NL80211_BAND_60GHZ) {
1975 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1976 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1977 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1978 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1979 	} else {
1980 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1981 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1982 	}
1983 
1984 	if (non_tx_data) {
1985 		/* this is a nontransmitting bss, we need to add it to
1986 		 * transmitting bss' list if it is not there
1987 		 */
1988 		spin_lock_bh(&rdev->bss_lock);
1989 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1990 					       &res->pub)) {
1991 			if (__cfg80211_unlink_bss(rdev, res)) {
1992 				rdev->bss_generation++;
1993 				res = NULL;
1994 			}
1995 		}
1996 		spin_unlock_bh(&rdev->bss_lock);
1997 
1998 		if (!res)
1999 			return NULL;
2000 	}
2001 
2002 	trace_cfg80211_return_bss(&res->pub);
2003 	/* cfg80211_bss_update gives us a referenced result */
2004 	return &res->pub;
2005 }
2006 
2007 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2008 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2009 				   const struct element *mbssid_elem,
2010 				   const struct element *sub_elem)
2011 {
2012 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2013 	const struct element *next_mbssid;
2014 	const struct element *next_sub;
2015 
2016 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2017 					 mbssid_end,
2018 					 ielen - (mbssid_end - ie));
2019 
2020 	/*
2021 	 * If it is not the last subelement in current MBSSID IE or there isn't
2022 	 * a next MBSSID IE - profile is complete.
2023 	*/
2024 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2025 	    !next_mbssid)
2026 		return NULL;
2027 
2028 	/* For any length error, just return NULL */
2029 
2030 	if (next_mbssid->datalen < 4)
2031 		return NULL;
2032 
2033 	next_sub = (void *)&next_mbssid->data[1];
2034 
2035 	if (next_mbssid->data + next_mbssid->datalen <
2036 	    next_sub->data + next_sub->datalen)
2037 		return NULL;
2038 
2039 	if (next_sub->id != 0 || next_sub->datalen < 2)
2040 		return NULL;
2041 
2042 	/*
2043 	 * Check if the first element in the next sub element is a start
2044 	 * of a new profile
2045 	 */
2046 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2047 	       NULL : next_mbssid;
2048 }
2049 
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2050 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2051 			      const struct element *mbssid_elem,
2052 			      const struct element *sub_elem,
2053 			      u8 *merged_ie, size_t max_copy_len)
2054 {
2055 	size_t copied_len = sub_elem->datalen;
2056 	const struct element *next_mbssid;
2057 
2058 	if (sub_elem->datalen > max_copy_len)
2059 		return 0;
2060 
2061 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2062 
2063 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2064 								mbssid_elem,
2065 								sub_elem))) {
2066 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2067 
2068 		if (copied_len + next_sub->datalen > max_copy_len)
2069 			break;
2070 		memcpy(merged_ie + copied_len, next_sub->data,
2071 		       next_sub->datalen);
2072 		copied_len += next_sub->datalen;
2073 	}
2074 
2075 	return copied_len;
2076 }
2077 EXPORT_SYMBOL(cfg80211_merge_profile);
2078 
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2079 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2080 				       struct cfg80211_inform_bss *data,
2081 				       enum cfg80211_bss_frame_type ftype,
2082 				       const u8 *bssid, u64 tsf,
2083 				       u16 beacon_interval, const u8 *ie,
2084 				       size_t ielen,
2085 				       struct cfg80211_non_tx_bss *non_tx_data,
2086 				       gfp_t gfp)
2087 {
2088 	const u8 *mbssid_index_ie;
2089 	const struct element *elem, *sub;
2090 	size_t new_ie_len;
2091 	u8 new_bssid[ETH_ALEN];
2092 	u8 *new_ie, *profile;
2093 	u64 seen_indices = 0;
2094 	u16 capability;
2095 	struct cfg80211_bss *bss;
2096 
2097 	if (!non_tx_data)
2098 		return;
2099 	if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2100 		return;
2101 	if (!wiphy->support_mbssid)
2102 		return;
2103 	if (wiphy->support_only_he_mbssid &&
2104 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2105 		return;
2106 
2107 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2108 	if (!new_ie)
2109 		return;
2110 
2111 	profile = kmalloc(ielen, gfp);
2112 	if (!profile)
2113 		goto out;
2114 
2115 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2116 		if (elem->datalen < 4)
2117 			continue;
2118 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2119 			continue;
2120 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2121 			u8 profile_len;
2122 
2123 			if (sub->id != 0 || sub->datalen < 4) {
2124 				/* not a valid BSS profile */
2125 				continue;
2126 			}
2127 
2128 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2129 			    sub->data[1] != 2) {
2130 				/* The first element within the Nontransmitted
2131 				 * BSSID Profile is not the Nontransmitted
2132 				 * BSSID Capability element.
2133 				 */
2134 				continue;
2135 			}
2136 
2137 			memset(profile, 0, ielen);
2138 			profile_len = cfg80211_merge_profile(ie, ielen,
2139 							     elem,
2140 							     sub,
2141 							     profile,
2142 							     ielen);
2143 
2144 			/* found a Nontransmitted BSSID Profile */
2145 			mbssid_index_ie = cfg80211_find_ie
2146 				(WLAN_EID_MULTI_BSSID_IDX,
2147 				 profile, profile_len);
2148 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2149 			    mbssid_index_ie[2] == 0 ||
2150 			    mbssid_index_ie[2] > 46) {
2151 				/* No valid Multiple BSSID-Index element */
2152 				continue;
2153 			}
2154 
2155 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2156 				/* We don't support legacy split of a profile */
2157 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2158 						    mbssid_index_ie[2]);
2159 
2160 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2161 
2162 			non_tx_data->bssid_index = mbssid_index_ie[2];
2163 			non_tx_data->max_bssid_indicator = elem->data[0];
2164 
2165 			cfg80211_gen_new_bssid(bssid,
2166 					       non_tx_data->max_bssid_indicator,
2167 					       non_tx_data->bssid_index,
2168 					       new_bssid);
2169 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2170 			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2171 							 profile,
2172 							 profile_len, new_ie,
2173 							 gfp);
2174 			if (!new_ie_len)
2175 				continue;
2176 
2177 			capability = get_unaligned_le16(profile + 2);
2178 			bss = cfg80211_inform_single_bss_data(wiphy, data,
2179 							      ftype,
2180 							      new_bssid, tsf,
2181 							      capability,
2182 							      beacon_interval,
2183 							      new_ie,
2184 							      new_ie_len,
2185 							      non_tx_data,
2186 							      gfp);
2187 			if (!bss)
2188 				break;
2189 			cfg80211_put_bss(wiphy, bss);
2190 		}
2191 	}
2192 
2193 out:
2194 	kfree(new_ie);
2195 	kfree(profile);
2196 }
2197 
2198 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)2199 cfg80211_inform_bss_data(struct wiphy *wiphy,
2200 			 struct cfg80211_inform_bss *data,
2201 			 enum cfg80211_bss_frame_type ftype,
2202 			 const u8 *bssid, u64 tsf, u16 capability,
2203 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2204 			 gfp_t gfp)
2205 {
2206 	struct cfg80211_bss *res;
2207 	struct cfg80211_non_tx_bss non_tx_data;
2208 
2209 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2210 					      capability, beacon_interval, ie,
2211 					      ielen, NULL, gfp);
2212 	if (!res)
2213 		return NULL;
2214 	non_tx_data.tx_bss = res;
2215 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2216 				   beacon_interval, ie, ielen, &non_tx_data,
2217 				   gfp);
2218 	return res;
2219 }
2220 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2221 
2222 static void
cfg80211_parse_mbssid_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2223 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2224 				 struct cfg80211_inform_bss *data,
2225 				 struct ieee80211_mgmt *mgmt, size_t len,
2226 				 struct cfg80211_non_tx_bss *non_tx_data,
2227 				 gfp_t gfp)
2228 {
2229 	enum cfg80211_bss_frame_type ftype;
2230 	const u8 *ie = mgmt->u.probe_resp.variable;
2231 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2232 				      u.probe_resp.variable);
2233 
2234 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2235 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2236 
2237 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2238 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
2239 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2240 				   ie, ielen, non_tx_data, gfp);
2241 }
2242 
2243 static void
cfg80211_update_notlisted_nontrans(struct wiphy * wiphy,struct cfg80211_bss * nontrans_bss,struct ieee80211_mgmt * mgmt,size_t len)2244 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2245 				   struct cfg80211_bss *nontrans_bss,
2246 				   struct ieee80211_mgmt *mgmt, size_t len)
2247 {
2248 	u8 *ie, *new_ie, *pos;
2249 	const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2250 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2251 				      u.probe_resp.variable);
2252 	size_t new_ie_len;
2253 	struct cfg80211_bss_ies *new_ies;
2254 	const struct cfg80211_bss_ies *old;
2255 	size_t cpy_len;
2256 
2257 	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2258 
2259 	ie = mgmt->u.probe_resp.variable;
2260 
2261 	new_ie_len = ielen;
2262 	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2263 	if (!trans_ssid)
2264 		return;
2265 	new_ie_len -= trans_ssid[1];
2266 	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2267 	/*
2268 	 * It's not valid to have the MBSSID element before SSID
2269 	 * ignore if that happens - the code below assumes it is
2270 	 * after (while copying things inbetween).
2271 	 */
2272 	if (!mbssid || mbssid < trans_ssid)
2273 		return;
2274 	new_ie_len -= mbssid[1];
2275 
2276 	nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2277 	if (!nontrans_ssid)
2278 		return;
2279 
2280 	new_ie_len += nontrans_ssid[1];
2281 
2282 	/* generate new ie for nontrans BSS
2283 	 * 1. replace SSID with nontrans BSS' SSID
2284 	 * 2. skip MBSSID IE
2285 	 */
2286 	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2287 	if (!new_ie)
2288 		return;
2289 
2290 	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2291 	if (!new_ies)
2292 		goto out_free;
2293 
2294 	pos = new_ie;
2295 
2296 	/* copy the nontransmitted SSID */
2297 	cpy_len = nontrans_ssid[1] + 2;
2298 	memcpy(pos, nontrans_ssid, cpy_len);
2299 	pos += cpy_len;
2300 	/* copy the IEs between SSID and MBSSID */
2301 	cpy_len = trans_ssid[1] + 2;
2302 	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2303 	pos += (mbssid - (trans_ssid + cpy_len));
2304 	/* copy the IEs after MBSSID */
2305 	cpy_len = mbssid[1] + 2;
2306 	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2307 
2308 	/* update ie */
2309 	new_ies->len = new_ie_len;
2310 	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2311 	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2312 	memcpy(new_ies->data, new_ie, new_ie_len);
2313 	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2314 		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2315 		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2316 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2317 		if (old)
2318 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2319 	} else {
2320 		old = rcu_access_pointer(nontrans_bss->beacon_ies);
2321 		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2322 		cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss),
2323 					     new_ies, old);
2324 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2325 		if (old)
2326 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2327 	}
2328 
2329 out_free:
2330 	kfree(new_ie);
2331 }
2332 
2333 /* cfg80211_inform_bss_width_frame helper */
2334 static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2335 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2336 				      struct cfg80211_inform_bss *data,
2337 				      struct ieee80211_mgmt *mgmt, size_t len,
2338 				      gfp_t gfp)
2339 {
2340 	struct cfg80211_internal_bss tmp = {}, *res;
2341 	struct cfg80211_bss_ies *ies;
2342 	struct ieee80211_channel *channel;
2343 	bool signal_valid;
2344 	struct ieee80211_ext *ext = NULL;
2345 	u8 *bssid, *variable;
2346 	u16 capability, beacon_int;
2347 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2348 					     u.probe_resp.variable);
2349 	int bss_type;
2350 
2351 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2352 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2353 
2354 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2355 
2356 	if (WARN_ON(!mgmt))
2357 		return NULL;
2358 
2359 	if (WARN_ON(!wiphy))
2360 		return NULL;
2361 
2362 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2363 		    (data->signal < 0 || data->signal > 100)))
2364 		return NULL;
2365 
2366 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2367 		ext = (void *) mgmt;
2368 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2369 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2370 			min_hdr_len = offsetof(struct ieee80211_ext,
2371 					       u.s1g_short_beacon.variable);
2372 	}
2373 
2374 	if (WARN_ON(len < min_hdr_len))
2375 		return NULL;
2376 
2377 	ielen = len - min_hdr_len;
2378 	variable = mgmt->u.probe_resp.variable;
2379 	if (ext) {
2380 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2381 			variable = ext->u.s1g_short_beacon.variable;
2382 		else
2383 			variable = ext->u.s1g_beacon.variable;
2384 	}
2385 
2386 	channel = cfg80211_get_bss_channel(wiphy, variable,
2387 					   ielen, data->chan, data->scan_width);
2388 	if (!channel)
2389 		return NULL;
2390 
2391 	if (ext) {
2392 		const struct ieee80211_s1g_bcn_compat_ie *compat;
2393 		const struct element *elem;
2394 
2395 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2396 					  variable, ielen);
2397 		if (!elem)
2398 			return NULL;
2399 		if (elem->datalen < sizeof(*compat))
2400 			return NULL;
2401 		compat = (void *)elem->data;
2402 		bssid = ext->u.s1g_beacon.sa;
2403 		capability = le16_to_cpu(compat->compat_info);
2404 		beacon_int = le16_to_cpu(compat->beacon_int);
2405 	} else {
2406 		bssid = mgmt->bssid;
2407 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2408 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2409 	}
2410 
2411 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2412 	if (!ies)
2413 		return NULL;
2414 	ies->len = ielen;
2415 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2416 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2417 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2418 	memcpy(ies->data, variable, ielen);
2419 
2420 	if (ieee80211_is_probe_resp(mgmt->frame_control))
2421 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2422 	else
2423 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2424 	rcu_assign_pointer(tmp.pub.ies, ies);
2425 
2426 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2427 	tmp.pub.beacon_interval = beacon_int;
2428 	tmp.pub.capability = capability;
2429 	tmp.pub.channel = channel;
2430 	tmp.pub.scan_width = data->scan_width;
2431 	tmp.pub.signal = data->signal;
2432 	tmp.ts_boottime = data->boottime_ns;
2433 	tmp.parent_tsf = data->parent_tsf;
2434 	tmp.pub.chains = data->chains;
2435 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2436 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2437 
2438 	signal_valid = data->chan == channel;
2439 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2440 				  jiffies);
2441 	if (!res)
2442 		return NULL;
2443 
2444 	if (channel->band == NL80211_BAND_60GHZ) {
2445 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2446 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2447 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2448 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2449 	} else {
2450 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2451 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2452 	}
2453 
2454 	trace_cfg80211_return_bss(&res->pub);
2455 	/* cfg80211_bss_update gives us a referenced result */
2456 	return &res->pub;
2457 }
2458 
2459 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2460 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2461 			       struct cfg80211_inform_bss *data,
2462 			       struct ieee80211_mgmt *mgmt, size_t len,
2463 			       gfp_t gfp)
2464 {
2465 	struct cfg80211_bss *res, *tmp_bss;
2466 	const u8 *ie = mgmt->u.probe_resp.variable;
2467 	const struct cfg80211_bss_ies *ies1, *ies2;
2468 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2469 				      u.probe_resp.variable);
2470 	struct cfg80211_non_tx_bss non_tx_data = {};
2471 
2472 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2473 						    len, gfp);
2474 
2475 	/* don't do any further MBSSID handling for S1G */
2476 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2477 		return res;
2478 
2479 	if (!res || !wiphy->support_mbssid ||
2480 	    !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2481 		return res;
2482 	if (wiphy->support_only_he_mbssid &&
2483 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2484 		return res;
2485 
2486 	non_tx_data.tx_bss = res;
2487 	/* process each non-transmitting bss */
2488 	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2489 					 &non_tx_data, gfp);
2490 
2491 	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2492 
2493 	/* check if the res has other nontransmitting bss which is not
2494 	 * in MBSSID IE
2495 	 */
2496 	ies1 = rcu_access_pointer(res->ies);
2497 
2498 	/* go through nontrans_list, if the timestamp of the BSS is
2499 	 * earlier than the timestamp of the transmitting BSS then
2500 	 * update it
2501 	 */
2502 	list_for_each_entry(tmp_bss, &res->nontrans_list,
2503 			    nontrans_list) {
2504 		ies2 = rcu_access_pointer(tmp_bss->ies);
2505 		if (ies2->tsf < ies1->tsf)
2506 			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2507 							   mgmt, len);
2508 	}
2509 	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2510 
2511 	return res;
2512 }
2513 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2514 
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2515 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2516 {
2517 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2518 	struct cfg80211_internal_bss *bss;
2519 
2520 	if (!pub)
2521 		return;
2522 
2523 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2524 
2525 	spin_lock_bh(&rdev->bss_lock);
2526 	bss_ref_get(rdev, bss);
2527 	spin_unlock_bh(&rdev->bss_lock);
2528 }
2529 EXPORT_SYMBOL(cfg80211_ref_bss);
2530 
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2531 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2532 {
2533 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2534 	struct cfg80211_internal_bss *bss;
2535 
2536 	if (!pub)
2537 		return;
2538 
2539 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2540 
2541 	spin_lock_bh(&rdev->bss_lock);
2542 	bss_ref_put(rdev, bss);
2543 	spin_unlock_bh(&rdev->bss_lock);
2544 }
2545 EXPORT_SYMBOL(cfg80211_put_bss);
2546 
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2547 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2548 {
2549 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2550 	struct cfg80211_internal_bss *bss, *tmp1;
2551 	struct cfg80211_bss *nontrans_bss, *tmp;
2552 
2553 	if (WARN_ON(!pub))
2554 		return;
2555 
2556 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2557 
2558 	spin_lock_bh(&rdev->bss_lock);
2559 	if (list_empty(&bss->list))
2560 		goto out;
2561 
2562 	list_for_each_entry_safe(nontrans_bss, tmp,
2563 				 &pub->nontrans_list,
2564 				 nontrans_list) {
2565 		tmp1 = container_of(nontrans_bss,
2566 				    struct cfg80211_internal_bss, pub);
2567 		if (__cfg80211_unlink_bss(rdev, tmp1))
2568 			rdev->bss_generation++;
2569 	}
2570 
2571 	if (__cfg80211_unlink_bss(rdev, bss))
2572 		rdev->bss_generation++;
2573 out:
2574 	spin_unlock_bh(&rdev->bss_lock);
2575 }
2576 EXPORT_SYMBOL(cfg80211_unlink_bss);
2577 
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)2578 void cfg80211_bss_iter(struct wiphy *wiphy,
2579 		       struct cfg80211_chan_def *chandef,
2580 		       void (*iter)(struct wiphy *wiphy,
2581 				    struct cfg80211_bss *bss,
2582 				    void *data),
2583 		       void *iter_data)
2584 {
2585 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2586 	struct cfg80211_internal_bss *bss;
2587 
2588 	spin_lock_bh(&rdev->bss_lock);
2589 
2590 	list_for_each_entry(bss, &rdev->bss_list, list) {
2591 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2592 			iter(wiphy, &bss->pub, iter_data);
2593 	}
2594 
2595 	spin_unlock_bh(&rdev->bss_lock);
2596 }
2597 EXPORT_SYMBOL(cfg80211_bss_iter);
2598 
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,struct ieee80211_channel * chan)2599 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2600 				     struct ieee80211_channel *chan)
2601 {
2602 	struct wiphy *wiphy = wdev->wiphy;
2603 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2604 	struct cfg80211_internal_bss *cbss = wdev->current_bss;
2605 	struct cfg80211_internal_bss *new = NULL;
2606 	struct cfg80211_internal_bss *bss;
2607 	struct cfg80211_bss *nontrans_bss;
2608 	struct cfg80211_bss *tmp;
2609 
2610 	spin_lock_bh(&rdev->bss_lock);
2611 
2612 	/*
2613 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2614 	 * changing the control channel, so no need to update in such a case.
2615 	 */
2616 	if (cbss->pub.channel == chan)
2617 		goto done;
2618 
2619 	/* use transmitting bss */
2620 	if (cbss->pub.transmitted_bss)
2621 		cbss = container_of(cbss->pub.transmitted_bss,
2622 				    struct cfg80211_internal_bss,
2623 				    pub);
2624 
2625 	cbss->pub.channel = chan;
2626 
2627 	list_for_each_entry(bss, &rdev->bss_list, list) {
2628 		if (!cfg80211_bss_type_match(bss->pub.capability,
2629 					     bss->pub.channel->band,
2630 					     wdev->conn_bss_type))
2631 			continue;
2632 
2633 		if (bss == cbss)
2634 			continue;
2635 
2636 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2637 			new = bss;
2638 			break;
2639 		}
2640 	}
2641 
2642 	if (new) {
2643 		/* to save time, update IEs for transmitting bss only */
2644 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2645 			new->pub.proberesp_ies = NULL;
2646 			new->pub.beacon_ies = NULL;
2647 		}
2648 
2649 		list_for_each_entry_safe(nontrans_bss, tmp,
2650 					 &new->pub.nontrans_list,
2651 					 nontrans_list) {
2652 			bss = container_of(nontrans_bss,
2653 					   struct cfg80211_internal_bss, pub);
2654 			if (__cfg80211_unlink_bss(rdev, bss))
2655 				rdev->bss_generation++;
2656 		}
2657 
2658 		WARN_ON(atomic_read(&new->hold));
2659 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2660 			rdev->bss_generation++;
2661 	}
2662 
2663 	rb_erase(&cbss->rbn, &rdev->bss_tree);
2664 	rb_insert_bss(rdev, cbss);
2665 	rdev->bss_generation++;
2666 
2667 	list_for_each_entry_safe(nontrans_bss, tmp,
2668 				 &cbss->pub.nontrans_list,
2669 				 nontrans_list) {
2670 		bss = container_of(nontrans_bss,
2671 				   struct cfg80211_internal_bss, pub);
2672 		bss->pub.channel = chan;
2673 		rb_erase(&bss->rbn, &rdev->bss_tree);
2674 		rb_insert_bss(rdev, bss);
2675 		rdev->bss_generation++;
2676 	}
2677 
2678 done:
2679 	spin_unlock_bh(&rdev->bss_lock);
2680 }
2681 
2682 #ifdef CONFIG_CFG80211_WEXT
2683 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)2684 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2685 {
2686 	struct cfg80211_registered_device *rdev;
2687 	struct net_device *dev;
2688 
2689 	ASSERT_RTNL();
2690 
2691 	dev = dev_get_by_index(net, ifindex);
2692 	if (!dev)
2693 		return ERR_PTR(-ENODEV);
2694 	if (dev->ieee80211_ptr)
2695 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2696 	else
2697 		rdev = ERR_PTR(-ENODEV);
2698 	dev_put(dev);
2699 	return rdev;
2700 }
2701 
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)2702 int cfg80211_wext_siwscan(struct net_device *dev,
2703 			  struct iw_request_info *info,
2704 			  union iwreq_data *wrqu, char *extra)
2705 {
2706 	struct cfg80211_registered_device *rdev;
2707 	struct wiphy *wiphy;
2708 	struct iw_scan_req *wreq = NULL;
2709 	struct cfg80211_scan_request *creq = NULL;
2710 	int i, err, n_channels = 0;
2711 	enum nl80211_band band;
2712 
2713 	if (!netif_running(dev))
2714 		return -ENETDOWN;
2715 
2716 	if (wrqu->data.length == sizeof(struct iw_scan_req))
2717 		wreq = (struct iw_scan_req *)extra;
2718 
2719 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2720 
2721 	if (IS_ERR(rdev))
2722 		return PTR_ERR(rdev);
2723 
2724 	if (rdev->scan_req || rdev->scan_msg) {
2725 		err = -EBUSY;
2726 		goto out;
2727 	}
2728 
2729 	wiphy = &rdev->wiphy;
2730 
2731 	/* Determine number of channels, needed to allocate creq */
2732 	if (wreq && wreq->num_channels)
2733 		n_channels = wreq->num_channels;
2734 	else
2735 		n_channels = ieee80211_get_num_supported_channels(wiphy);
2736 
2737 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2738 		       n_channels * sizeof(void *),
2739 		       GFP_ATOMIC);
2740 	if (!creq) {
2741 		err = -ENOMEM;
2742 		goto out;
2743 	}
2744 
2745 	creq->wiphy = wiphy;
2746 	creq->wdev = dev->ieee80211_ptr;
2747 	/* SSIDs come after channels */
2748 	creq->ssids = (void *)&creq->channels[n_channels];
2749 	creq->n_channels = n_channels;
2750 	creq->n_ssids = 1;
2751 	creq->scan_start = jiffies;
2752 
2753 	/* translate "Scan on frequencies" request */
2754 	i = 0;
2755 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2756 		int j;
2757 
2758 		if (!wiphy->bands[band])
2759 			continue;
2760 
2761 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2762 			/* ignore disabled channels */
2763 			if (wiphy->bands[band]->channels[j].flags &
2764 						IEEE80211_CHAN_DISABLED)
2765 				continue;
2766 
2767 			/* If we have a wireless request structure and the
2768 			 * wireless request specifies frequencies, then search
2769 			 * for the matching hardware channel.
2770 			 */
2771 			if (wreq && wreq->num_channels) {
2772 				int k;
2773 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2774 				for (k = 0; k < wreq->num_channels; k++) {
2775 					struct iw_freq *freq =
2776 						&wreq->channel_list[k];
2777 					int wext_freq =
2778 						cfg80211_wext_freq(freq);
2779 
2780 					if (wext_freq == wiphy_freq)
2781 						goto wext_freq_found;
2782 				}
2783 				goto wext_freq_not_found;
2784 			}
2785 
2786 		wext_freq_found:
2787 			creq->channels[i] = &wiphy->bands[band]->channels[j];
2788 			i++;
2789 		wext_freq_not_found: ;
2790 		}
2791 	}
2792 	/* No channels found? */
2793 	if (!i) {
2794 		err = -EINVAL;
2795 		goto out;
2796 	}
2797 
2798 	/* Set real number of channels specified in creq->channels[] */
2799 	creq->n_channels = i;
2800 
2801 	/* translate "Scan for SSID" request */
2802 	if (wreq) {
2803 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2804 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2805 				err = -EINVAL;
2806 				goto out;
2807 			}
2808 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2809 			creq->ssids[0].ssid_len = wreq->essid_len;
2810 		}
2811 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2812 			creq->n_ssids = 0;
2813 	}
2814 
2815 	for (i = 0; i < NUM_NL80211_BANDS; i++)
2816 		if (wiphy->bands[i])
2817 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2818 
2819 	eth_broadcast_addr(creq->bssid);
2820 
2821 	rdev->scan_req = creq;
2822 	err = rdev_scan(rdev, creq);
2823 	if (err) {
2824 		rdev->scan_req = NULL;
2825 		/* creq will be freed below */
2826 	} else {
2827 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2828 		/* creq now owned by driver */
2829 		creq = NULL;
2830 		dev_hold(dev);
2831 	}
2832  out:
2833 	kfree(creq);
2834 	return err;
2835 }
2836 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2837 
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)2838 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2839 				    const struct cfg80211_bss_ies *ies,
2840 				    char *current_ev, char *end_buf)
2841 {
2842 	const u8 *pos, *end, *next;
2843 	struct iw_event iwe;
2844 
2845 	if (!ies)
2846 		return current_ev;
2847 
2848 	/*
2849 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2850 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2851 	 */
2852 	pos = ies->data;
2853 	end = pos + ies->len;
2854 
2855 	while (end - pos > IW_GENERIC_IE_MAX) {
2856 		next = pos + 2 + pos[1];
2857 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2858 			next = next + 2 + next[1];
2859 
2860 		memset(&iwe, 0, sizeof(iwe));
2861 		iwe.cmd = IWEVGENIE;
2862 		iwe.u.data.length = next - pos;
2863 		current_ev = iwe_stream_add_point_check(info, current_ev,
2864 							end_buf, &iwe,
2865 							(void *)pos);
2866 		if (IS_ERR(current_ev))
2867 			return current_ev;
2868 		pos = next;
2869 	}
2870 
2871 	if (end > pos) {
2872 		memset(&iwe, 0, sizeof(iwe));
2873 		iwe.cmd = IWEVGENIE;
2874 		iwe.u.data.length = end - pos;
2875 		current_ev = iwe_stream_add_point_check(info, current_ev,
2876 							end_buf, &iwe,
2877 							(void *)pos);
2878 		if (IS_ERR(current_ev))
2879 			return current_ev;
2880 	}
2881 
2882 	return current_ev;
2883 }
2884 
2885 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)2886 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2887 	      struct cfg80211_internal_bss *bss, char *current_ev,
2888 	      char *end_buf)
2889 {
2890 	const struct cfg80211_bss_ies *ies;
2891 	struct iw_event iwe;
2892 	const u8 *ie;
2893 	u8 buf[50];
2894 	u8 *cfg, *p, *tmp;
2895 	int rem, i, sig;
2896 	bool ismesh = false;
2897 
2898 	memset(&iwe, 0, sizeof(iwe));
2899 	iwe.cmd = SIOCGIWAP;
2900 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2901 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2902 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2903 						IW_EV_ADDR_LEN);
2904 	if (IS_ERR(current_ev))
2905 		return current_ev;
2906 
2907 	memset(&iwe, 0, sizeof(iwe));
2908 	iwe.cmd = SIOCGIWFREQ;
2909 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2910 	iwe.u.freq.e = 0;
2911 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2912 						IW_EV_FREQ_LEN);
2913 	if (IS_ERR(current_ev))
2914 		return current_ev;
2915 
2916 	memset(&iwe, 0, sizeof(iwe));
2917 	iwe.cmd = SIOCGIWFREQ;
2918 	iwe.u.freq.m = bss->pub.channel->center_freq;
2919 	iwe.u.freq.e = 6;
2920 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2921 						IW_EV_FREQ_LEN);
2922 	if (IS_ERR(current_ev))
2923 		return current_ev;
2924 
2925 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2926 		memset(&iwe, 0, sizeof(iwe));
2927 		iwe.cmd = IWEVQUAL;
2928 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2929 				     IW_QUAL_NOISE_INVALID |
2930 				     IW_QUAL_QUAL_UPDATED;
2931 		switch (wiphy->signal_type) {
2932 		case CFG80211_SIGNAL_TYPE_MBM:
2933 			sig = bss->pub.signal / 100;
2934 			iwe.u.qual.level = sig;
2935 			iwe.u.qual.updated |= IW_QUAL_DBM;
2936 			if (sig < -110)		/* rather bad */
2937 				sig = -110;
2938 			else if (sig > -40)	/* perfect */
2939 				sig = -40;
2940 			/* will give a range of 0 .. 70 */
2941 			iwe.u.qual.qual = sig + 110;
2942 			break;
2943 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2944 			iwe.u.qual.level = bss->pub.signal;
2945 			/* will give range 0 .. 100 */
2946 			iwe.u.qual.qual = bss->pub.signal;
2947 			break;
2948 		default:
2949 			/* not reached */
2950 			break;
2951 		}
2952 		current_ev = iwe_stream_add_event_check(info, current_ev,
2953 							end_buf, &iwe,
2954 							IW_EV_QUAL_LEN);
2955 		if (IS_ERR(current_ev))
2956 			return current_ev;
2957 	}
2958 
2959 	memset(&iwe, 0, sizeof(iwe));
2960 	iwe.cmd = SIOCGIWENCODE;
2961 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2962 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2963 	else
2964 		iwe.u.data.flags = IW_ENCODE_DISABLED;
2965 	iwe.u.data.length = 0;
2966 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2967 						&iwe, "");
2968 	if (IS_ERR(current_ev))
2969 		return current_ev;
2970 
2971 	rcu_read_lock();
2972 	ies = rcu_dereference(bss->pub.ies);
2973 	rem = ies->len;
2974 	ie = ies->data;
2975 
2976 	while (rem >= 2) {
2977 		/* invalid data */
2978 		if (ie[1] > rem - 2)
2979 			break;
2980 
2981 		switch (ie[0]) {
2982 		case WLAN_EID_SSID:
2983 			memset(&iwe, 0, sizeof(iwe));
2984 			iwe.cmd = SIOCGIWESSID;
2985 			iwe.u.data.length = ie[1];
2986 			iwe.u.data.flags = 1;
2987 			current_ev = iwe_stream_add_point_check(info,
2988 								current_ev,
2989 								end_buf, &iwe,
2990 								(u8 *)ie + 2);
2991 			if (IS_ERR(current_ev))
2992 				goto unlock;
2993 			break;
2994 		case WLAN_EID_MESH_ID:
2995 			memset(&iwe, 0, sizeof(iwe));
2996 			iwe.cmd = SIOCGIWESSID;
2997 			iwe.u.data.length = ie[1];
2998 			iwe.u.data.flags = 1;
2999 			current_ev = iwe_stream_add_point_check(info,
3000 								current_ev,
3001 								end_buf, &iwe,
3002 								(u8 *)ie + 2);
3003 			if (IS_ERR(current_ev))
3004 				goto unlock;
3005 			break;
3006 		case WLAN_EID_MESH_CONFIG:
3007 			ismesh = true;
3008 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3009 				break;
3010 			cfg = (u8 *)ie + 2;
3011 			memset(&iwe, 0, sizeof(iwe));
3012 			iwe.cmd = IWEVCUSTOM;
3013 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3014 				"0x%02X", cfg[0]);
3015 			iwe.u.data.length = strlen(buf);
3016 			current_ev = iwe_stream_add_point_check(info,
3017 								current_ev,
3018 								end_buf,
3019 								&iwe, buf);
3020 			if (IS_ERR(current_ev))
3021 				goto unlock;
3022 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
3023 				cfg[1]);
3024 			iwe.u.data.length = strlen(buf);
3025 			current_ev = iwe_stream_add_point_check(info,
3026 								current_ev,
3027 								end_buf,
3028 								&iwe, buf);
3029 			if (IS_ERR(current_ev))
3030 				goto unlock;
3031 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3032 				cfg[2]);
3033 			iwe.u.data.length = strlen(buf);
3034 			current_ev = iwe_stream_add_point_check(info,
3035 								current_ev,
3036 								end_buf,
3037 								&iwe, buf);
3038 			if (IS_ERR(current_ev))
3039 				goto unlock;
3040 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3041 			iwe.u.data.length = strlen(buf);
3042 			current_ev = iwe_stream_add_point_check(info,
3043 								current_ev,
3044 								end_buf,
3045 								&iwe, buf);
3046 			if (IS_ERR(current_ev))
3047 				goto unlock;
3048 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3049 			iwe.u.data.length = strlen(buf);
3050 			current_ev = iwe_stream_add_point_check(info,
3051 								current_ev,
3052 								end_buf,
3053 								&iwe, buf);
3054 			if (IS_ERR(current_ev))
3055 				goto unlock;
3056 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3057 			iwe.u.data.length = strlen(buf);
3058 			current_ev = iwe_stream_add_point_check(info,
3059 								current_ev,
3060 								end_buf,
3061 								&iwe, buf);
3062 			if (IS_ERR(current_ev))
3063 				goto unlock;
3064 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3065 			iwe.u.data.length = strlen(buf);
3066 			current_ev = iwe_stream_add_point_check(info,
3067 								current_ev,
3068 								end_buf,
3069 								&iwe, buf);
3070 			if (IS_ERR(current_ev))
3071 				goto unlock;
3072 			break;
3073 		case WLAN_EID_SUPP_RATES:
3074 		case WLAN_EID_EXT_SUPP_RATES:
3075 			/* display all supported rates in readable format */
3076 			p = current_ev + iwe_stream_lcp_len(info);
3077 
3078 			memset(&iwe, 0, sizeof(iwe));
3079 			iwe.cmd = SIOCGIWRATE;
3080 			/* Those two flags are ignored... */
3081 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3082 
3083 			for (i = 0; i < ie[1]; i++) {
3084 				iwe.u.bitrate.value =
3085 					((ie[i + 2] & 0x7f) * 500000);
3086 				tmp = p;
3087 				p = iwe_stream_add_value(info, current_ev, p,
3088 							 end_buf, &iwe,
3089 							 IW_EV_PARAM_LEN);
3090 				if (p == tmp) {
3091 					current_ev = ERR_PTR(-E2BIG);
3092 					goto unlock;
3093 				}
3094 			}
3095 			current_ev = p;
3096 			break;
3097 		}
3098 		rem -= ie[1] + 2;
3099 		ie += ie[1] + 2;
3100 	}
3101 
3102 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3103 	    ismesh) {
3104 		memset(&iwe, 0, sizeof(iwe));
3105 		iwe.cmd = SIOCGIWMODE;
3106 		if (ismesh)
3107 			iwe.u.mode = IW_MODE_MESH;
3108 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3109 			iwe.u.mode = IW_MODE_MASTER;
3110 		else
3111 			iwe.u.mode = IW_MODE_ADHOC;
3112 		current_ev = iwe_stream_add_event_check(info, current_ev,
3113 							end_buf, &iwe,
3114 							IW_EV_UINT_LEN);
3115 		if (IS_ERR(current_ev))
3116 			goto unlock;
3117 	}
3118 
3119 	memset(&iwe, 0, sizeof(iwe));
3120 	iwe.cmd = IWEVCUSTOM;
3121 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3122 	iwe.u.data.length = strlen(buf);
3123 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3124 						&iwe, buf);
3125 	if (IS_ERR(current_ev))
3126 		goto unlock;
3127 	memset(&iwe, 0, sizeof(iwe));
3128 	iwe.cmd = IWEVCUSTOM;
3129 	sprintf(buf, " Last beacon: %ums ago",
3130 		elapsed_jiffies_msecs(bss->ts));
3131 	iwe.u.data.length = strlen(buf);
3132 	current_ev = iwe_stream_add_point_check(info, current_ev,
3133 						end_buf, &iwe, buf);
3134 	if (IS_ERR(current_ev))
3135 		goto unlock;
3136 
3137 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3138 
3139  unlock:
3140 	rcu_read_unlock();
3141 	return current_ev;
3142 }
3143 
3144 
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3145 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3146 				  struct iw_request_info *info,
3147 				  char *buf, size_t len)
3148 {
3149 	char *current_ev = buf;
3150 	char *end_buf = buf + len;
3151 	struct cfg80211_internal_bss *bss;
3152 	int err = 0;
3153 
3154 	spin_lock_bh(&rdev->bss_lock);
3155 	cfg80211_bss_expire(rdev);
3156 
3157 	list_for_each_entry(bss, &rdev->bss_list, list) {
3158 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3159 			err = -E2BIG;
3160 			break;
3161 		}
3162 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3163 					   current_ev, end_buf);
3164 		if (IS_ERR(current_ev)) {
3165 			err = PTR_ERR(current_ev);
3166 			break;
3167 		}
3168 	}
3169 	spin_unlock_bh(&rdev->bss_lock);
3170 
3171 	if (err)
3172 		return err;
3173 	return current_ev - buf;
3174 }
3175 
3176 
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,struct iw_point * data,char * extra)3177 int cfg80211_wext_giwscan(struct net_device *dev,
3178 			  struct iw_request_info *info,
3179 			  struct iw_point *data, char *extra)
3180 {
3181 	struct cfg80211_registered_device *rdev;
3182 	int res;
3183 
3184 	if (!netif_running(dev))
3185 		return -ENETDOWN;
3186 
3187 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3188 
3189 	if (IS_ERR(rdev))
3190 		return PTR_ERR(rdev);
3191 
3192 	if (rdev->scan_req || rdev->scan_msg)
3193 		return -EAGAIN;
3194 
3195 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3196 	data->length = 0;
3197 	if (res >= 0) {
3198 		data->length = res;
3199 		res = 0;
3200 	}
3201 
3202 	return res;
3203 }
3204 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3205 #endif
3206