1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5 *
6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst
7 */
8
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24
25 #include "clk.h"
26
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32
33 static int prepare_refcnt;
34 static int enable_refcnt;
35
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39
40 static struct hlist_head *all_lists[] = {
41 &clk_root_list,
42 &clk_orphan_list,
43 NULL,
44 };
45
46 /*** private data structures ***/
47
48 struct clk_parent_map {
49 const struct clk_hw *hw;
50 struct clk_core *core;
51 const char *fw_name;
52 const char *name;
53 int index;
54 };
55
56 struct clk_core {
57 const char *name;
58 const struct clk_ops *ops;
59 struct clk_hw *hw;
60 struct module *owner;
61 struct device *dev;
62 struct device_node *of_node;
63 struct clk_core *parent;
64 struct clk_parent_map *parents;
65 u8 num_parents;
66 u8 new_parent_index;
67 unsigned long rate;
68 unsigned long req_rate;
69 unsigned long new_rate;
70 struct clk_core *new_parent;
71 struct clk_core *new_child;
72 unsigned long flags;
73 bool orphan;
74 bool rpm_enabled;
75 unsigned int enable_count;
76 unsigned int prepare_count;
77 unsigned int protect_count;
78 unsigned long min_rate;
79 unsigned long max_rate;
80 unsigned long accuracy;
81 int phase;
82 struct clk_duty duty;
83 struct hlist_head children;
84 struct hlist_node child_node;
85 struct hlist_head clks;
86 unsigned int notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 struct dentry *dentry;
89 struct hlist_node debug_node;
90 #endif
91 struct kref ref;
92 };
93
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96
97 struct clk {
98 struct clk_core *core;
99 struct device *dev;
100 const char *dev_id;
101 const char *con_id;
102 unsigned long min_rate;
103 unsigned long max_rate;
104 unsigned int exclusive_count;
105 struct hlist_node clks_node;
106 };
107
108 /*** runtime pm ***/
clk_pm_runtime_get(struct clk_core * core)109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 int ret;
112
113 if (!core->rpm_enabled)
114 return 0;
115
116 ret = pm_runtime_get_sync(core->dev);
117 if (ret < 0) {
118 pm_runtime_put_noidle(core->dev);
119 return ret;
120 }
121 return 0;
122 }
123
clk_pm_runtime_put(struct clk_core * core)124 static void clk_pm_runtime_put(struct clk_core *core)
125 {
126 if (!core->rpm_enabled)
127 return;
128
129 pm_runtime_put_sync(core->dev);
130 }
131
132 /*** locking ***/
clk_prepare_lock(void)133 static void clk_prepare_lock(void)
134 {
135 if (!mutex_trylock(&prepare_lock)) {
136 if (prepare_owner == current) {
137 prepare_refcnt++;
138 return;
139 }
140 mutex_lock(&prepare_lock);
141 }
142 WARN_ON_ONCE(prepare_owner != NULL);
143 WARN_ON_ONCE(prepare_refcnt != 0);
144 prepare_owner = current;
145 prepare_refcnt = 1;
146 }
147
clk_prepare_unlock(void)148 static void clk_prepare_unlock(void)
149 {
150 WARN_ON_ONCE(prepare_owner != current);
151 WARN_ON_ONCE(prepare_refcnt == 0);
152
153 if (--prepare_refcnt)
154 return;
155 prepare_owner = NULL;
156 mutex_unlock(&prepare_lock);
157 }
158
clk_enable_lock(void)159 static unsigned long clk_enable_lock(void)
160 __acquires(enable_lock)
161 {
162 unsigned long flags;
163
164 /*
165 * On UP systems, spin_trylock_irqsave() always returns true, even if
166 * we already hold the lock. So, in that case, we rely only on
167 * reference counting.
168 */
169 if (!IS_ENABLED(CONFIG_SMP) ||
170 !spin_trylock_irqsave(&enable_lock, flags)) {
171 if (enable_owner == current) {
172 enable_refcnt++;
173 __acquire(enable_lock);
174 if (!IS_ENABLED(CONFIG_SMP))
175 local_save_flags(flags);
176 return flags;
177 }
178 spin_lock_irqsave(&enable_lock, flags);
179 }
180 WARN_ON_ONCE(enable_owner != NULL);
181 WARN_ON_ONCE(enable_refcnt != 0);
182 enable_owner = current;
183 enable_refcnt = 1;
184 return flags;
185 }
186
clk_enable_unlock(unsigned long flags)187 static void clk_enable_unlock(unsigned long flags)
188 __releases(enable_lock)
189 {
190 WARN_ON_ONCE(enable_owner != current);
191 WARN_ON_ONCE(enable_refcnt == 0);
192
193 if (--enable_refcnt) {
194 __release(enable_lock);
195 return;
196 }
197 enable_owner = NULL;
198 spin_unlock_irqrestore(&enable_lock, flags);
199 }
200
clk_core_rate_is_protected(struct clk_core * core)201 static bool clk_core_rate_is_protected(struct clk_core *core)
202 {
203 return core->protect_count;
204 }
205
clk_core_is_prepared(struct clk_core * core)206 static bool clk_core_is_prepared(struct clk_core *core)
207 {
208 bool ret = false;
209
210 /*
211 * .is_prepared is optional for clocks that can prepare
212 * fall back to software usage counter if it is missing
213 */
214 if (!core->ops->is_prepared)
215 return core->prepare_count;
216
217 if (!clk_pm_runtime_get(core)) {
218 ret = core->ops->is_prepared(core->hw);
219 clk_pm_runtime_put(core);
220 }
221
222 return ret;
223 }
224
clk_core_is_enabled(struct clk_core * core)225 static bool clk_core_is_enabled(struct clk_core *core)
226 {
227 bool ret = false;
228
229 /*
230 * .is_enabled is only mandatory for clocks that gate
231 * fall back to software usage counter if .is_enabled is missing
232 */
233 if (!core->ops->is_enabled)
234 return core->enable_count;
235
236 /*
237 * Check if clock controller's device is runtime active before
238 * calling .is_enabled callback. If not, assume that clock is
239 * disabled, because we might be called from atomic context, from
240 * which pm_runtime_get() is not allowed.
241 * This function is called mainly from clk_disable_unused_subtree,
242 * which ensures proper runtime pm activation of controller before
243 * taking enable spinlock, but the below check is needed if one tries
244 * to call it from other places.
245 */
246 if (core->rpm_enabled) {
247 pm_runtime_get_noresume(core->dev);
248 if (!pm_runtime_active(core->dev)) {
249 ret = false;
250 goto done;
251 }
252 }
253
254 ret = core->ops->is_enabled(core->hw);
255 done:
256 if (core->rpm_enabled)
257 pm_runtime_put(core->dev);
258
259 return ret;
260 }
261
262 /*** helper functions ***/
263
__clk_get_name(const struct clk * clk)264 const char *__clk_get_name(const struct clk *clk)
265 {
266 return !clk ? NULL : clk->core->name;
267 }
268 EXPORT_SYMBOL_GPL(__clk_get_name);
269
clk_hw_get_name(const struct clk_hw * hw)270 const char *clk_hw_get_name(const struct clk_hw *hw)
271 {
272 return hw->core->name;
273 }
274 EXPORT_SYMBOL_GPL(clk_hw_get_name);
275
__clk_get_hw(struct clk * clk)276 struct clk_hw *__clk_get_hw(struct clk *clk)
277 {
278 return !clk ? NULL : clk->core->hw;
279 }
280 EXPORT_SYMBOL_GPL(__clk_get_hw);
281
clk_hw_get_num_parents(const struct clk_hw * hw)282 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
283 {
284 return hw->core->num_parents;
285 }
286 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
287
clk_hw_get_parent(const struct clk_hw * hw)288 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
289 {
290 return hw->core->parent ? hw->core->parent->hw : NULL;
291 }
292 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
293
__clk_lookup_subtree(const char * name,struct clk_core * core)294 static struct clk_core *__clk_lookup_subtree(const char *name,
295 struct clk_core *core)
296 {
297 struct clk_core *child;
298 struct clk_core *ret;
299
300 if (!strcmp(core->name, name))
301 return core;
302
303 hlist_for_each_entry(child, &core->children, child_node) {
304 ret = __clk_lookup_subtree(name, child);
305 if (ret)
306 return ret;
307 }
308
309 return NULL;
310 }
311
clk_core_lookup(const char * name)312 static struct clk_core *clk_core_lookup(const char *name)
313 {
314 struct clk_core *root_clk;
315 struct clk_core *ret;
316
317 if (!name)
318 return NULL;
319
320 /* search the 'proper' clk tree first */
321 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
322 ret = __clk_lookup_subtree(name, root_clk);
323 if (ret)
324 return ret;
325 }
326
327 /* if not found, then search the orphan tree */
328 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
329 ret = __clk_lookup_subtree(name, root_clk);
330 if (ret)
331 return ret;
332 }
333
334 return NULL;
335 }
336
337 #ifdef CONFIG_OF
338 static int of_parse_clkspec(const struct device_node *np, int index,
339 const char *name, struct of_phandle_args *out_args);
340 static struct clk_hw *
341 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
342 #else
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)343 static inline int of_parse_clkspec(const struct device_node *np, int index,
344 const char *name,
345 struct of_phandle_args *out_args)
346 {
347 return -ENOENT;
348 }
349 static inline struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)350 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
351 {
352 return ERR_PTR(-ENOENT);
353 }
354 #endif
355
356 /**
357 * clk_core_get - Find the clk_core parent of a clk
358 * @core: clk to find parent of
359 * @p_index: parent index to search for
360 *
361 * This is the preferred method for clk providers to find the parent of a
362 * clk when that parent is external to the clk controller. The parent_names
363 * array is indexed and treated as a local name matching a string in the device
364 * node's 'clock-names' property or as the 'con_id' matching the device's
365 * dev_name() in a clk_lookup. This allows clk providers to use their own
366 * namespace instead of looking for a globally unique parent string.
367 *
368 * For example the following DT snippet would allow a clock registered by the
369 * clock-controller@c001 that has a clk_init_data::parent_data array
370 * with 'xtal' in the 'name' member to find the clock provided by the
371 * clock-controller@f00abcd without needing to get the globally unique name of
372 * the xtal clk.
373 *
374 * parent: clock-controller@f00abcd {
375 * reg = <0xf00abcd 0xabcd>;
376 * #clock-cells = <0>;
377 * };
378 *
379 * clock-controller@c001 {
380 * reg = <0xc001 0xf00d>;
381 * clocks = <&parent>;
382 * clock-names = "xtal";
383 * #clock-cells = <1>;
384 * };
385 *
386 * Returns: -ENOENT when the provider can't be found or the clk doesn't
387 * exist in the provider or the name can't be found in the DT node or
388 * in a clkdev lookup. NULL when the provider knows about the clk but it
389 * isn't provided on this system.
390 * A valid clk_core pointer when the clk can be found in the provider.
391 */
clk_core_get(struct clk_core * core,u8 p_index)392 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
393 {
394 const char *name = core->parents[p_index].fw_name;
395 int index = core->parents[p_index].index;
396 struct clk_hw *hw = ERR_PTR(-ENOENT);
397 struct device *dev = core->dev;
398 const char *dev_id = dev ? dev_name(dev) : NULL;
399 struct device_node *np = core->of_node;
400 struct of_phandle_args clkspec;
401
402 if (np && (name || index >= 0) &&
403 !of_parse_clkspec(np, index, name, &clkspec)) {
404 hw = of_clk_get_hw_from_clkspec(&clkspec);
405 of_node_put(clkspec.np);
406 } else if (name) {
407 /*
408 * If the DT search above couldn't find the provider fallback to
409 * looking up via clkdev based clk_lookups.
410 */
411 hw = clk_find_hw(dev_id, name);
412 }
413
414 if (IS_ERR(hw))
415 return ERR_CAST(hw);
416
417 return hw->core;
418 }
419
clk_core_fill_parent_index(struct clk_core * core,u8 index)420 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
421 {
422 struct clk_parent_map *entry = &core->parents[index];
423 struct clk_core *parent = ERR_PTR(-ENOENT);
424
425 if (entry->hw) {
426 parent = entry->hw->core;
427 /*
428 * We have a direct reference but it isn't registered yet?
429 * Orphan it and let clk_reparent() update the orphan status
430 * when the parent is registered.
431 */
432 if (!parent)
433 parent = ERR_PTR(-EPROBE_DEFER);
434 } else {
435 parent = clk_core_get(core, index);
436 if (PTR_ERR(parent) == -ENOENT && entry->name)
437 parent = clk_core_lookup(entry->name);
438 }
439
440 /* Only cache it if it's not an error */
441 if (!IS_ERR(parent))
442 entry->core = parent;
443 }
444
clk_core_get_parent_by_index(struct clk_core * core,u8 index)445 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
446 u8 index)
447 {
448 if (!core || index >= core->num_parents || !core->parents)
449 return NULL;
450
451 if (!core->parents[index].core)
452 clk_core_fill_parent_index(core, index);
453
454 return core->parents[index].core;
455 }
456
457 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)458 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
459 {
460 struct clk_core *parent;
461
462 parent = clk_core_get_parent_by_index(hw->core, index);
463
464 return !parent ? NULL : parent->hw;
465 }
466 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
467
__clk_get_enable_count(struct clk * clk)468 unsigned int __clk_get_enable_count(struct clk *clk)
469 {
470 return !clk ? 0 : clk->core->enable_count;
471 }
472
clk_core_get_rate_nolock(struct clk_core * core)473 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
474 {
475 if (!core)
476 return 0;
477
478 if (!core->num_parents || core->parent)
479 return core->rate;
480
481 /*
482 * Clk must have a parent because num_parents > 0 but the parent isn't
483 * known yet. Best to return 0 as the rate of this clk until we can
484 * properly recalc the rate based on the parent's rate.
485 */
486 return 0;
487 }
488
clk_hw_get_rate(const struct clk_hw * hw)489 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
490 {
491 return clk_core_get_rate_nolock(hw->core);
492 }
493 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
494
clk_core_get_accuracy_no_lock(struct clk_core * core)495 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
496 {
497 if (!core)
498 return 0;
499
500 return core->accuracy;
501 }
502
clk_hw_get_flags(const struct clk_hw * hw)503 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
504 {
505 return hw->core->flags;
506 }
507 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
508
clk_hw_is_prepared(const struct clk_hw * hw)509 bool clk_hw_is_prepared(const struct clk_hw *hw)
510 {
511 return clk_core_is_prepared(hw->core);
512 }
513 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
514
clk_hw_rate_is_protected(const struct clk_hw * hw)515 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
516 {
517 return clk_core_rate_is_protected(hw->core);
518 }
519 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
520
clk_hw_is_enabled(const struct clk_hw * hw)521 bool clk_hw_is_enabled(const struct clk_hw *hw)
522 {
523 return clk_core_is_enabled(hw->core);
524 }
525 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
526
__clk_is_enabled(struct clk * clk)527 bool __clk_is_enabled(struct clk *clk)
528 {
529 if (!clk)
530 return false;
531
532 return clk_core_is_enabled(clk->core);
533 }
534 EXPORT_SYMBOL_GPL(__clk_is_enabled);
535
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)536 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
537 unsigned long best, unsigned long flags)
538 {
539 if (flags & CLK_MUX_ROUND_CLOSEST)
540 return abs(now - rate) < abs(best - rate);
541
542 return now <= rate && now > best;
543 }
544
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)545 int clk_mux_determine_rate_flags(struct clk_hw *hw,
546 struct clk_rate_request *req,
547 unsigned long flags)
548 {
549 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
550 int i, num_parents, ret;
551 unsigned long best = 0;
552 struct clk_rate_request parent_req = *req;
553
554 /* if NO_REPARENT flag set, pass through to current parent */
555 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
556 parent = core->parent;
557 if (core->flags & CLK_SET_RATE_PARENT) {
558 ret = __clk_determine_rate(parent ? parent->hw : NULL,
559 &parent_req);
560 if (ret)
561 return ret;
562
563 best = parent_req.rate;
564 } else if (parent) {
565 best = clk_core_get_rate_nolock(parent);
566 } else {
567 best = clk_core_get_rate_nolock(core);
568 }
569
570 goto out;
571 }
572
573 /* find the parent that can provide the fastest rate <= rate */
574 num_parents = core->num_parents;
575 for (i = 0; i < num_parents; i++) {
576 parent = clk_core_get_parent_by_index(core, i);
577 if (!parent)
578 continue;
579
580 if (core->flags & CLK_SET_RATE_PARENT) {
581 parent_req = *req;
582 ret = __clk_determine_rate(parent->hw, &parent_req);
583 if (ret)
584 continue;
585 } else {
586 parent_req.rate = clk_core_get_rate_nolock(parent);
587 }
588
589 if (mux_is_better_rate(req->rate, parent_req.rate,
590 best, flags)) {
591 best_parent = parent;
592 best = parent_req.rate;
593 }
594 }
595
596 if (!best_parent)
597 return -EINVAL;
598
599 out:
600 if (best_parent)
601 req->best_parent_hw = best_parent->hw;
602 req->best_parent_rate = best;
603 req->rate = best;
604
605 return 0;
606 }
607 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
608
__clk_lookup(const char * name)609 struct clk *__clk_lookup(const char *name)
610 {
611 struct clk_core *core = clk_core_lookup(name);
612
613 return !core ? NULL : core->hw->clk;
614 }
615
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)616 static void clk_core_get_boundaries(struct clk_core *core,
617 unsigned long *min_rate,
618 unsigned long *max_rate)
619 {
620 struct clk *clk_user;
621
622 lockdep_assert_held(&prepare_lock);
623
624 *min_rate = core->min_rate;
625 *max_rate = core->max_rate;
626
627 hlist_for_each_entry(clk_user, &core->clks, clks_node)
628 *min_rate = max(*min_rate, clk_user->min_rate);
629
630 hlist_for_each_entry(clk_user, &core->clks, clks_node)
631 *max_rate = min(*max_rate, clk_user->max_rate);
632 }
633
clk_core_check_boundaries(struct clk_core * core,unsigned long min_rate,unsigned long max_rate)634 static bool clk_core_check_boundaries(struct clk_core *core,
635 unsigned long min_rate,
636 unsigned long max_rate)
637 {
638 struct clk *user;
639
640 lockdep_assert_held(&prepare_lock);
641
642 if (min_rate > core->max_rate || max_rate < core->min_rate)
643 return false;
644
645 hlist_for_each_entry(user, &core->clks, clks_node)
646 if (min_rate > user->max_rate || max_rate < user->min_rate)
647 return false;
648
649 return true;
650 }
651
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)652 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
653 unsigned long max_rate)
654 {
655 hw->core->min_rate = min_rate;
656 hw->core->max_rate = max_rate;
657 }
658 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
659
660 /*
661 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
662 * @hw: mux type clk to determine rate on
663 * @req: rate request, also used to return preferred parent and frequencies
664 *
665 * Helper for finding best parent to provide a given frequency. This can be used
666 * directly as a determine_rate callback (e.g. for a mux), or from a more
667 * complex clock that may combine a mux with other operations.
668 *
669 * Returns: 0 on success, -EERROR value on error
670 */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)671 int __clk_mux_determine_rate(struct clk_hw *hw,
672 struct clk_rate_request *req)
673 {
674 return clk_mux_determine_rate_flags(hw, req, 0);
675 }
676 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
677
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)678 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
679 struct clk_rate_request *req)
680 {
681 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
682 }
683 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
684
685 /*** clk api ***/
686
clk_core_rate_unprotect(struct clk_core * core)687 static void clk_core_rate_unprotect(struct clk_core *core)
688 {
689 lockdep_assert_held(&prepare_lock);
690
691 if (!core)
692 return;
693
694 if (WARN(core->protect_count == 0,
695 "%s already unprotected\n", core->name))
696 return;
697
698 if (--core->protect_count > 0)
699 return;
700
701 clk_core_rate_unprotect(core->parent);
702 }
703
clk_core_rate_nuke_protect(struct clk_core * core)704 static int clk_core_rate_nuke_protect(struct clk_core *core)
705 {
706 int ret;
707
708 lockdep_assert_held(&prepare_lock);
709
710 if (!core)
711 return -EINVAL;
712
713 if (core->protect_count == 0)
714 return 0;
715
716 ret = core->protect_count;
717 core->protect_count = 1;
718 clk_core_rate_unprotect(core);
719
720 return ret;
721 }
722
723 /**
724 * clk_rate_exclusive_put - release exclusivity over clock rate control
725 * @clk: the clk over which the exclusivity is released
726 *
727 * clk_rate_exclusive_put() completes a critical section during which a clock
728 * consumer cannot tolerate any other consumer making any operation on the
729 * clock which could result in a rate change or rate glitch. Exclusive clocks
730 * cannot have their rate changed, either directly or indirectly due to changes
731 * further up the parent chain of clocks. As a result, clocks up parent chain
732 * also get under exclusive control of the calling consumer.
733 *
734 * If exlusivity is claimed more than once on clock, even by the same consumer,
735 * the rate effectively gets locked as exclusivity can't be preempted.
736 *
737 * Calls to clk_rate_exclusive_put() must be balanced with calls to
738 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
739 * error status.
740 */
clk_rate_exclusive_put(struct clk * clk)741 void clk_rate_exclusive_put(struct clk *clk)
742 {
743 if (!clk)
744 return;
745
746 clk_prepare_lock();
747
748 /*
749 * if there is something wrong with this consumer protect count, stop
750 * here before messing with the provider
751 */
752 if (WARN_ON(clk->exclusive_count <= 0))
753 goto out;
754
755 clk_core_rate_unprotect(clk->core);
756 clk->exclusive_count--;
757 out:
758 clk_prepare_unlock();
759 }
760 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
761
clk_core_rate_protect(struct clk_core * core)762 static void clk_core_rate_protect(struct clk_core *core)
763 {
764 lockdep_assert_held(&prepare_lock);
765
766 if (!core)
767 return;
768
769 if (core->protect_count == 0)
770 clk_core_rate_protect(core->parent);
771
772 core->protect_count++;
773 }
774
clk_core_rate_restore_protect(struct clk_core * core,int count)775 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
776 {
777 lockdep_assert_held(&prepare_lock);
778
779 if (!core)
780 return;
781
782 if (count == 0)
783 return;
784
785 clk_core_rate_protect(core);
786 core->protect_count = count;
787 }
788
789 /**
790 * clk_rate_exclusive_get - get exclusivity over the clk rate control
791 * @clk: the clk over which the exclusity of rate control is requested
792 *
793 * clk_rate_exclusive_get() begins a critical section during which a clock
794 * consumer cannot tolerate any other consumer making any operation on the
795 * clock which could result in a rate change or rate glitch. Exclusive clocks
796 * cannot have their rate changed, either directly or indirectly due to changes
797 * further up the parent chain of clocks. As a result, clocks up parent chain
798 * also get under exclusive control of the calling consumer.
799 *
800 * If exlusivity is claimed more than once on clock, even by the same consumer,
801 * the rate effectively gets locked as exclusivity can't be preempted.
802 *
803 * Calls to clk_rate_exclusive_get() should be balanced with calls to
804 * clk_rate_exclusive_put(). Calls to this function may sleep.
805 * Returns 0 on success, -EERROR otherwise
806 */
clk_rate_exclusive_get(struct clk * clk)807 int clk_rate_exclusive_get(struct clk *clk)
808 {
809 if (!clk)
810 return 0;
811
812 clk_prepare_lock();
813 clk_core_rate_protect(clk->core);
814 clk->exclusive_count++;
815 clk_prepare_unlock();
816
817 return 0;
818 }
819 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
820
clk_core_unprepare(struct clk_core * core)821 static void clk_core_unprepare(struct clk_core *core)
822 {
823 lockdep_assert_held(&prepare_lock);
824
825 if (!core)
826 return;
827
828 if (WARN(core->prepare_count == 0,
829 "%s already unprepared\n", core->name))
830 return;
831
832 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
833 "Unpreparing critical %s\n", core->name))
834 return;
835
836 if (core->flags & CLK_SET_RATE_GATE)
837 clk_core_rate_unprotect(core);
838
839 if (--core->prepare_count > 0)
840 return;
841
842 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
843
844 trace_clk_unprepare(core);
845
846 if (core->ops->unprepare)
847 core->ops->unprepare(core->hw);
848
849 trace_clk_unprepare_complete(core);
850 clk_core_unprepare(core->parent);
851 clk_pm_runtime_put(core);
852 }
853
clk_core_unprepare_lock(struct clk_core * core)854 static void clk_core_unprepare_lock(struct clk_core *core)
855 {
856 clk_prepare_lock();
857 clk_core_unprepare(core);
858 clk_prepare_unlock();
859 }
860
861 /**
862 * clk_unprepare - undo preparation of a clock source
863 * @clk: the clk being unprepared
864 *
865 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
866 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
867 * if the operation may sleep. One example is a clk which is accessed over
868 * I2c. In the complex case a clk gate operation may require a fast and a slow
869 * part. It is this reason that clk_unprepare and clk_disable are not mutually
870 * exclusive. In fact clk_disable must be called before clk_unprepare.
871 */
clk_unprepare(struct clk * clk)872 void clk_unprepare(struct clk *clk)
873 {
874 if (IS_ERR_OR_NULL(clk))
875 return;
876
877 clk_core_unprepare_lock(clk->core);
878 }
879 EXPORT_SYMBOL_GPL(clk_unprepare);
880
clk_core_prepare(struct clk_core * core)881 static int clk_core_prepare(struct clk_core *core)
882 {
883 int ret = 0;
884
885 lockdep_assert_held(&prepare_lock);
886
887 if (!core)
888 return 0;
889
890 if (core->prepare_count == 0) {
891 ret = clk_pm_runtime_get(core);
892 if (ret)
893 return ret;
894
895 ret = clk_core_prepare(core->parent);
896 if (ret)
897 goto runtime_put;
898
899 trace_clk_prepare(core);
900
901 if (core->ops->prepare)
902 ret = core->ops->prepare(core->hw);
903
904 trace_clk_prepare_complete(core);
905
906 if (ret)
907 goto unprepare;
908 }
909
910 core->prepare_count++;
911
912 /*
913 * CLK_SET_RATE_GATE is a special case of clock protection
914 * Instead of a consumer claiming exclusive rate control, it is
915 * actually the provider which prevents any consumer from making any
916 * operation which could result in a rate change or rate glitch while
917 * the clock is prepared.
918 */
919 if (core->flags & CLK_SET_RATE_GATE)
920 clk_core_rate_protect(core);
921
922 return 0;
923 unprepare:
924 clk_core_unprepare(core->parent);
925 runtime_put:
926 clk_pm_runtime_put(core);
927 return ret;
928 }
929
clk_core_prepare_lock(struct clk_core * core)930 static int clk_core_prepare_lock(struct clk_core *core)
931 {
932 int ret;
933
934 clk_prepare_lock();
935 ret = clk_core_prepare(core);
936 clk_prepare_unlock();
937
938 return ret;
939 }
940
941 /**
942 * clk_prepare - prepare a clock source
943 * @clk: the clk being prepared
944 *
945 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
946 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
947 * operation may sleep. One example is a clk which is accessed over I2c. In
948 * the complex case a clk ungate operation may require a fast and a slow part.
949 * It is this reason that clk_prepare and clk_enable are not mutually
950 * exclusive. In fact clk_prepare must be called before clk_enable.
951 * Returns 0 on success, -EERROR otherwise.
952 */
clk_prepare(struct clk * clk)953 int clk_prepare(struct clk *clk)
954 {
955 if (!clk)
956 return 0;
957
958 return clk_core_prepare_lock(clk->core);
959 }
960 EXPORT_SYMBOL_GPL(clk_prepare);
961
clk_core_disable(struct clk_core * core)962 static void clk_core_disable(struct clk_core *core)
963 {
964 lockdep_assert_held(&enable_lock);
965
966 if (!core)
967 return;
968
969 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
970 return;
971
972 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
973 "Disabling critical %s\n", core->name))
974 return;
975
976 if (--core->enable_count > 0)
977 return;
978
979 trace_clk_disable_rcuidle(core);
980
981 if (core->ops->disable)
982 core->ops->disable(core->hw);
983
984 trace_clk_disable_complete_rcuidle(core);
985
986 clk_core_disable(core->parent);
987 }
988
clk_core_disable_lock(struct clk_core * core)989 static void clk_core_disable_lock(struct clk_core *core)
990 {
991 unsigned long flags;
992
993 flags = clk_enable_lock();
994 clk_core_disable(core);
995 clk_enable_unlock(flags);
996 }
997
998 /**
999 * clk_disable - gate a clock
1000 * @clk: the clk being gated
1001 *
1002 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
1003 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1004 * clk if the operation is fast and will never sleep. One example is a
1005 * SoC-internal clk which is controlled via simple register writes. In the
1006 * complex case a clk gate operation may require a fast and a slow part. It is
1007 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1008 * In fact clk_disable must be called before clk_unprepare.
1009 */
clk_disable(struct clk * clk)1010 void clk_disable(struct clk *clk)
1011 {
1012 if (IS_ERR_OR_NULL(clk))
1013 return;
1014
1015 clk_core_disable_lock(clk->core);
1016 }
1017 EXPORT_SYMBOL_GPL(clk_disable);
1018
clk_core_enable(struct clk_core * core)1019 static int clk_core_enable(struct clk_core *core)
1020 {
1021 int ret = 0;
1022
1023 lockdep_assert_held(&enable_lock);
1024
1025 if (!core)
1026 return 0;
1027
1028 if (WARN(core->prepare_count == 0,
1029 "Enabling unprepared %s\n", core->name))
1030 return -ESHUTDOWN;
1031
1032 if (core->enable_count == 0) {
1033 ret = clk_core_enable(core->parent);
1034
1035 if (ret)
1036 return ret;
1037
1038 trace_clk_enable_rcuidle(core);
1039
1040 if (core->ops->enable)
1041 ret = core->ops->enable(core->hw);
1042
1043 trace_clk_enable_complete_rcuidle(core);
1044
1045 if (ret) {
1046 clk_core_disable(core->parent);
1047 return ret;
1048 }
1049 }
1050
1051 core->enable_count++;
1052 return 0;
1053 }
1054
clk_core_enable_lock(struct clk_core * core)1055 static int clk_core_enable_lock(struct clk_core *core)
1056 {
1057 unsigned long flags;
1058 int ret;
1059
1060 flags = clk_enable_lock();
1061 ret = clk_core_enable(core);
1062 clk_enable_unlock(flags);
1063
1064 return ret;
1065 }
1066
1067 /**
1068 * clk_gate_restore_context - restore context for poweroff
1069 * @hw: the clk_hw pointer of clock whose state is to be restored
1070 *
1071 * The clock gate restore context function enables or disables
1072 * the gate clocks based on the enable_count. This is done in cases
1073 * where the clock context is lost and based on the enable_count
1074 * the clock either needs to be enabled/disabled. This
1075 * helps restore the state of gate clocks.
1076 */
clk_gate_restore_context(struct clk_hw * hw)1077 void clk_gate_restore_context(struct clk_hw *hw)
1078 {
1079 struct clk_core *core = hw->core;
1080
1081 if (core->enable_count)
1082 core->ops->enable(hw);
1083 else
1084 core->ops->disable(hw);
1085 }
1086 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1087
clk_core_save_context(struct clk_core * core)1088 static int clk_core_save_context(struct clk_core *core)
1089 {
1090 struct clk_core *child;
1091 int ret = 0;
1092
1093 hlist_for_each_entry(child, &core->children, child_node) {
1094 ret = clk_core_save_context(child);
1095 if (ret < 0)
1096 return ret;
1097 }
1098
1099 if (core->ops && core->ops->save_context)
1100 ret = core->ops->save_context(core->hw);
1101
1102 return ret;
1103 }
1104
clk_core_restore_context(struct clk_core * core)1105 static void clk_core_restore_context(struct clk_core *core)
1106 {
1107 struct clk_core *child;
1108
1109 if (core->ops && core->ops->restore_context)
1110 core->ops->restore_context(core->hw);
1111
1112 hlist_for_each_entry(child, &core->children, child_node)
1113 clk_core_restore_context(child);
1114 }
1115
1116 /**
1117 * clk_save_context - save clock context for poweroff
1118 *
1119 * Saves the context of the clock register for powerstates in which the
1120 * contents of the registers will be lost. Occurs deep within the suspend
1121 * code. Returns 0 on success.
1122 */
clk_save_context(void)1123 int clk_save_context(void)
1124 {
1125 struct clk_core *clk;
1126 int ret;
1127
1128 hlist_for_each_entry(clk, &clk_root_list, child_node) {
1129 ret = clk_core_save_context(clk);
1130 if (ret < 0)
1131 return ret;
1132 }
1133
1134 hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1135 ret = clk_core_save_context(clk);
1136 if (ret < 0)
1137 return ret;
1138 }
1139
1140 return 0;
1141 }
1142 EXPORT_SYMBOL_GPL(clk_save_context);
1143
1144 /**
1145 * clk_restore_context - restore clock context after poweroff
1146 *
1147 * Restore the saved clock context upon resume.
1148 *
1149 */
clk_restore_context(void)1150 void clk_restore_context(void)
1151 {
1152 struct clk_core *core;
1153
1154 hlist_for_each_entry(core, &clk_root_list, child_node)
1155 clk_core_restore_context(core);
1156
1157 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1158 clk_core_restore_context(core);
1159 }
1160 EXPORT_SYMBOL_GPL(clk_restore_context);
1161
1162 /**
1163 * clk_enable - ungate a clock
1164 * @clk: the clk being ungated
1165 *
1166 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
1167 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1168 * if the operation will never sleep. One example is a SoC-internal clk which
1169 * is controlled via simple register writes. In the complex case a clk ungate
1170 * operation may require a fast and a slow part. It is this reason that
1171 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
1172 * must be called before clk_enable. Returns 0 on success, -EERROR
1173 * otherwise.
1174 */
clk_enable(struct clk * clk)1175 int clk_enable(struct clk *clk)
1176 {
1177 if (!clk)
1178 return 0;
1179
1180 return clk_core_enable_lock(clk->core);
1181 }
1182 EXPORT_SYMBOL_GPL(clk_enable);
1183
clk_core_prepare_enable(struct clk_core * core)1184 static int clk_core_prepare_enable(struct clk_core *core)
1185 {
1186 int ret;
1187
1188 ret = clk_core_prepare_lock(core);
1189 if (ret)
1190 return ret;
1191
1192 ret = clk_core_enable_lock(core);
1193 if (ret)
1194 clk_core_unprepare_lock(core);
1195
1196 return ret;
1197 }
1198
clk_core_disable_unprepare(struct clk_core * core)1199 static void clk_core_disable_unprepare(struct clk_core *core)
1200 {
1201 clk_core_disable_lock(core);
1202 clk_core_unprepare_lock(core);
1203 }
1204
clk_unprepare_unused_subtree(struct clk_core * core)1205 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1206 {
1207 struct clk_core *child;
1208
1209 lockdep_assert_held(&prepare_lock);
1210
1211 hlist_for_each_entry(child, &core->children, child_node)
1212 clk_unprepare_unused_subtree(child);
1213
1214 if (core->prepare_count)
1215 return;
1216
1217 if (core->flags & CLK_IGNORE_UNUSED)
1218 return;
1219
1220 if (clk_pm_runtime_get(core))
1221 return;
1222
1223 if (clk_core_is_prepared(core)) {
1224 trace_clk_unprepare(core);
1225 if (core->ops->unprepare_unused)
1226 core->ops->unprepare_unused(core->hw);
1227 else if (core->ops->unprepare)
1228 core->ops->unprepare(core->hw);
1229 trace_clk_unprepare_complete(core);
1230 }
1231
1232 clk_pm_runtime_put(core);
1233 }
1234
clk_disable_unused_subtree(struct clk_core * core)1235 static void __init clk_disable_unused_subtree(struct clk_core *core)
1236 {
1237 struct clk_core *child;
1238 unsigned long flags;
1239
1240 lockdep_assert_held(&prepare_lock);
1241
1242 hlist_for_each_entry(child, &core->children, child_node)
1243 clk_disable_unused_subtree(child);
1244
1245 if (core->flags & CLK_OPS_PARENT_ENABLE)
1246 clk_core_prepare_enable(core->parent);
1247
1248 if (clk_pm_runtime_get(core))
1249 goto unprepare_out;
1250
1251 flags = clk_enable_lock();
1252
1253 if (core->enable_count)
1254 goto unlock_out;
1255
1256 if (core->flags & CLK_IGNORE_UNUSED)
1257 goto unlock_out;
1258
1259 /*
1260 * some gate clocks have special needs during the disable-unused
1261 * sequence. call .disable_unused if available, otherwise fall
1262 * back to .disable
1263 */
1264 if (clk_core_is_enabled(core)) {
1265 trace_clk_disable(core);
1266 if (core->ops->disable_unused)
1267 core->ops->disable_unused(core->hw);
1268 else if (core->ops->disable)
1269 core->ops->disable(core->hw);
1270 trace_clk_disable_complete(core);
1271 }
1272
1273 unlock_out:
1274 clk_enable_unlock(flags);
1275 clk_pm_runtime_put(core);
1276 unprepare_out:
1277 if (core->flags & CLK_OPS_PARENT_ENABLE)
1278 clk_core_disable_unprepare(core->parent);
1279 }
1280
1281 static bool clk_ignore_unused __initdata;
clk_ignore_unused_setup(char * __unused)1282 static int __init clk_ignore_unused_setup(char *__unused)
1283 {
1284 clk_ignore_unused = true;
1285 return 1;
1286 }
1287 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1288
clk_disable_unused(void)1289 static int __init clk_disable_unused(void)
1290 {
1291 struct clk_core *core;
1292
1293 if (clk_ignore_unused) {
1294 pr_warn("clk: Not disabling unused clocks\n");
1295 return 0;
1296 }
1297
1298 clk_prepare_lock();
1299
1300 hlist_for_each_entry(core, &clk_root_list, child_node)
1301 clk_disable_unused_subtree(core);
1302
1303 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1304 clk_disable_unused_subtree(core);
1305
1306 hlist_for_each_entry(core, &clk_root_list, child_node)
1307 clk_unprepare_unused_subtree(core);
1308
1309 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1310 clk_unprepare_unused_subtree(core);
1311
1312 clk_prepare_unlock();
1313
1314 return 0;
1315 }
1316 late_initcall_sync(clk_disable_unused);
1317
clk_core_determine_round_nolock(struct clk_core * core,struct clk_rate_request * req)1318 static int clk_core_determine_round_nolock(struct clk_core *core,
1319 struct clk_rate_request *req)
1320 {
1321 long rate;
1322
1323 lockdep_assert_held(&prepare_lock);
1324
1325 if (!core)
1326 return 0;
1327
1328 /*
1329 * At this point, core protection will be disabled if
1330 * - if the provider is not protected at all
1331 * - if the calling consumer is the only one which has exclusivity
1332 * over the provider
1333 */
1334 if (clk_core_rate_is_protected(core)) {
1335 req->rate = core->rate;
1336 } else if (core->ops->determine_rate) {
1337 return core->ops->determine_rate(core->hw, req);
1338 } else if (core->ops->round_rate) {
1339 rate = core->ops->round_rate(core->hw, req->rate,
1340 &req->best_parent_rate);
1341 if (rate < 0)
1342 return rate;
1343
1344 req->rate = rate;
1345 } else {
1346 return -EINVAL;
1347 }
1348
1349 return 0;
1350 }
1351
clk_core_init_rate_req(struct clk_core * const core,struct clk_rate_request * req)1352 static void clk_core_init_rate_req(struct clk_core * const core,
1353 struct clk_rate_request *req)
1354 {
1355 struct clk_core *parent;
1356
1357 if (WARN_ON(!core || !req))
1358 return;
1359
1360 parent = core->parent;
1361 if (parent) {
1362 req->best_parent_hw = parent->hw;
1363 req->best_parent_rate = parent->rate;
1364 } else {
1365 req->best_parent_hw = NULL;
1366 req->best_parent_rate = 0;
1367 }
1368 }
1369
clk_core_can_round(struct clk_core * const core)1370 static bool clk_core_can_round(struct clk_core * const core)
1371 {
1372 return core->ops->determine_rate || core->ops->round_rate;
1373 }
1374
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)1375 static int clk_core_round_rate_nolock(struct clk_core *core,
1376 struct clk_rate_request *req)
1377 {
1378 lockdep_assert_held(&prepare_lock);
1379
1380 if (!core) {
1381 req->rate = 0;
1382 return 0;
1383 }
1384
1385 clk_core_init_rate_req(core, req);
1386
1387 if (clk_core_can_round(core))
1388 return clk_core_determine_round_nolock(core, req);
1389 else if (core->flags & CLK_SET_RATE_PARENT)
1390 return clk_core_round_rate_nolock(core->parent, req);
1391
1392 req->rate = core->rate;
1393 return 0;
1394 }
1395
1396 /**
1397 * __clk_determine_rate - get the closest rate actually supported by a clock
1398 * @hw: determine the rate of this clock
1399 * @req: target rate request
1400 *
1401 * Useful for clk_ops such as .set_rate and .determine_rate.
1402 */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1403 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1404 {
1405 if (!hw) {
1406 req->rate = 0;
1407 return 0;
1408 }
1409
1410 return clk_core_round_rate_nolock(hw->core, req);
1411 }
1412 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1413
1414 /**
1415 * clk_hw_round_rate() - round the given rate for a hw clk
1416 * @hw: the hw clk for which we are rounding a rate
1417 * @rate: the rate which is to be rounded
1418 *
1419 * Takes in a rate as input and rounds it to a rate that the clk can actually
1420 * use.
1421 *
1422 * Context: prepare_lock must be held.
1423 * For clk providers to call from within clk_ops such as .round_rate,
1424 * .determine_rate.
1425 *
1426 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1427 * else returns the parent rate.
1428 */
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)1429 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1430 {
1431 int ret;
1432 struct clk_rate_request req;
1433
1434 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1435 req.rate = rate;
1436
1437 ret = clk_core_round_rate_nolock(hw->core, &req);
1438 if (ret)
1439 return 0;
1440
1441 return req.rate;
1442 }
1443 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1444
1445 /**
1446 * clk_round_rate - round the given rate for a clk
1447 * @clk: the clk for which we are rounding a rate
1448 * @rate: the rate which is to be rounded
1449 *
1450 * Takes in a rate as input and rounds it to a rate that the clk can actually
1451 * use which is then returned. If clk doesn't support round_rate operation
1452 * then the parent rate is returned.
1453 */
clk_round_rate(struct clk * clk,unsigned long rate)1454 long clk_round_rate(struct clk *clk, unsigned long rate)
1455 {
1456 struct clk_rate_request req;
1457 int ret;
1458
1459 if (!clk)
1460 return 0;
1461
1462 clk_prepare_lock();
1463
1464 if (clk->exclusive_count)
1465 clk_core_rate_unprotect(clk->core);
1466
1467 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1468 req.rate = rate;
1469
1470 ret = clk_core_round_rate_nolock(clk->core, &req);
1471
1472 if (clk->exclusive_count)
1473 clk_core_rate_protect(clk->core);
1474
1475 clk_prepare_unlock();
1476
1477 if (ret)
1478 return ret;
1479
1480 return req.rate;
1481 }
1482 EXPORT_SYMBOL_GPL(clk_round_rate);
1483
1484 /**
1485 * __clk_notify - call clk notifier chain
1486 * @core: clk that is changing rate
1487 * @msg: clk notifier type (see include/linux/clk.h)
1488 * @old_rate: old clk rate
1489 * @new_rate: new clk rate
1490 *
1491 * Triggers a notifier call chain on the clk rate-change notification
1492 * for 'clk'. Passes a pointer to the struct clk and the previous
1493 * and current rates to the notifier callback. Intended to be called by
1494 * internal clock code only. Returns NOTIFY_DONE from the last driver
1495 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1496 * a driver returns that.
1497 */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1498 static int __clk_notify(struct clk_core *core, unsigned long msg,
1499 unsigned long old_rate, unsigned long new_rate)
1500 {
1501 struct clk_notifier *cn;
1502 struct clk_notifier_data cnd;
1503 int ret = NOTIFY_DONE;
1504
1505 cnd.old_rate = old_rate;
1506 cnd.new_rate = new_rate;
1507
1508 list_for_each_entry(cn, &clk_notifier_list, node) {
1509 if (cn->clk->core == core) {
1510 cnd.clk = cn->clk;
1511 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1512 &cnd);
1513 if (ret & NOTIFY_STOP_MASK)
1514 return ret;
1515 }
1516 }
1517
1518 return ret;
1519 }
1520
1521 /**
1522 * __clk_recalc_accuracies
1523 * @core: first clk in the subtree
1524 *
1525 * Walks the subtree of clks starting with clk and recalculates accuracies as
1526 * it goes. Note that if a clk does not implement the .recalc_accuracy
1527 * callback then it is assumed that the clock will take on the accuracy of its
1528 * parent.
1529 */
__clk_recalc_accuracies(struct clk_core * core)1530 static void __clk_recalc_accuracies(struct clk_core *core)
1531 {
1532 unsigned long parent_accuracy = 0;
1533 struct clk_core *child;
1534
1535 lockdep_assert_held(&prepare_lock);
1536
1537 if (core->parent)
1538 parent_accuracy = core->parent->accuracy;
1539
1540 if (core->ops->recalc_accuracy)
1541 core->accuracy = core->ops->recalc_accuracy(core->hw,
1542 parent_accuracy);
1543 else
1544 core->accuracy = parent_accuracy;
1545
1546 hlist_for_each_entry(child, &core->children, child_node)
1547 __clk_recalc_accuracies(child);
1548 }
1549
clk_core_get_accuracy_recalc(struct clk_core * core)1550 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1551 {
1552 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1553 __clk_recalc_accuracies(core);
1554
1555 return clk_core_get_accuracy_no_lock(core);
1556 }
1557
1558 /**
1559 * clk_get_accuracy - return the accuracy of clk
1560 * @clk: the clk whose accuracy is being returned
1561 *
1562 * Simply returns the cached accuracy of the clk, unless
1563 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1564 * issued.
1565 * If clk is NULL then returns 0.
1566 */
clk_get_accuracy(struct clk * clk)1567 long clk_get_accuracy(struct clk *clk)
1568 {
1569 long accuracy;
1570
1571 if (!clk)
1572 return 0;
1573
1574 clk_prepare_lock();
1575 accuracy = clk_core_get_accuracy_recalc(clk->core);
1576 clk_prepare_unlock();
1577
1578 return accuracy;
1579 }
1580 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1581
clk_recalc(struct clk_core * core,unsigned long parent_rate)1582 static unsigned long clk_recalc(struct clk_core *core,
1583 unsigned long parent_rate)
1584 {
1585 unsigned long rate = parent_rate;
1586
1587 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1588 rate = core->ops->recalc_rate(core->hw, parent_rate);
1589 clk_pm_runtime_put(core);
1590 }
1591 return rate;
1592 }
1593
1594 /**
1595 * __clk_recalc_rates
1596 * @core: first clk in the subtree
1597 * @msg: notification type (see include/linux/clk.h)
1598 *
1599 * Walks the subtree of clks starting with clk and recalculates rates as it
1600 * goes. Note that if a clk does not implement the .recalc_rate callback then
1601 * it is assumed that the clock will take on the rate of its parent.
1602 *
1603 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1604 * if necessary.
1605 */
__clk_recalc_rates(struct clk_core * core,unsigned long msg)1606 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1607 {
1608 unsigned long old_rate;
1609 unsigned long parent_rate = 0;
1610 struct clk_core *child;
1611
1612 lockdep_assert_held(&prepare_lock);
1613
1614 old_rate = core->rate;
1615
1616 if (core->parent)
1617 parent_rate = core->parent->rate;
1618
1619 core->rate = clk_recalc(core, parent_rate);
1620
1621 /*
1622 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1623 * & ABORT_RATE_CHANGE notifiers
1624 */
1625 if (core->notifier_count && msg)
1626 __clk_notify(core, msg, old_rate, core->rate);
1627
1628 hlist_for_each_entry(child, &core->children, child_node)
1629 __clk_recalc_rates(child, msg);
1630 }
1631
clk_core_get_rate_recalc(struct clk_core * core)1632 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1633 {
1634 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1635 __clk_recalc_rates(core, 0);
1636
1637 return clk_core_get_rate_nolock(core);
1638 }
1639
1640 /**
1641 * clk_get_rate - return the rate of clk
1642 * @clk: the clk whose rate is being returned
1643 *
1644 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1645 * is set, which means a recalc_rate will be issued.
1646 * If clk is NULL then returns 0.
1647 */
clk_get_rate(struct clk * clk)1648 unsigned long clk_get_rate(struct clk *clk)
1649 {
1650 unsigned long rate;
1651
1652 if (!clk)
1653 return 0;
1654
1655 clk_prepare_lock();
1656 rate = clk_core_get_rate_recalc(clk->core);
1657 clk_prepare_unlock();
1658
1659 return rate;
1660 }
1661 EXPORT_SYMBOL_GPL(clk_get_rate);
1662
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)1663 static int clk_fetch_parent_index(struct clk_core *core,
1664 struct clk_core *parent)
1665 {
1666 int i;
1667
1668 if (!parent)
1669 return -EINVAL;
1670
1671 for (i = 0; i < core->num_parents; i++) {
1672 /* Found it first try! */
1673 if (core->parents[i].core == parent)
1674 return i;
1675
1676 /* Something else is here, so keep looking */
1677 if (core->parents[i].core)
1678 continue;
1679
1680 /* Maybe core hasn't been cached but the hw is all we know? */
1681 if (core->parents[i].hw) {
1682 if (core->parents[i].hw == parent->hw)
1683 break;
1684
1685 /* Didn't match, but we're expecting a clk_hw */
1686 continue;
1687 }
1688
1689 /* Maybe it hasn't been cached (clk_set_parent() path) */
1690 if (parent == clk_core_get(core, i))
1691 break;
1692
1693 /* Fallback to comparing globally unique names */
1694 if (core->parents[i].name &&
1695 !strcmp(parent->name, core->parents[i].name))
1696 break;
1697 }
1698
1699 if (i == core->num_parents)
1700 return -EINVAL;
1701
1702 core->parents[i].core = parent;
1703 return i;
1704 }
1705
1706 /**
1707 * clk_hw_get_parent_index - return the index of the parent clock
1708 * @hw: clk_hw associated with the clk being consumed
1709 *
1710 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1711 * clock does not have a current parent.
1712 */
clk_hw_get_parent_index(struct clk_hw * hw)1713 int clk_hw_get_parent_index(struct clk_hw *hw)
1714 {
1715 struct clk_hw *parent = clk_hw_get_parent(hw);
1716
1717 if (WARN_ON(parent == NULL))
1718 return -EINVAL;
1719
1720 return clk_fetch_parent_index(hw->core, parent->core);
1721 }
1722 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1723
1724 /*
1725 * Update the orphan status of @core and all its children.
1726 */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)1727 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1728 {
1729 struct clk_core *child;
1730
1731 core->orphan = is_orphan;
1732
1733 hlist_for_each_entry(child, &core->children, child_node)
1734 clk_core_update_orphan_status(child, is_orphan);
1735 }
1736
clk_reparent(struct clk_core * core,struct clk_core * new_parent)1737 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1738 {
1739 bool was_orphan = core->orphan;
1740
1741 hlist_del(&core->child_node);
1742
1743 if (new_parent) {
1744 bool becomes_orphan = new_parent->orphan;
1745
1746 /* avoid duplicate POST_RATE_CHANGE notifications */
1747 if (new_parent->new_child == core)
1748 new_parent->new_child = NULL;
1749
1750 hlist_add_head(&core->child_node, &new_parent->children);
1751
1752 if (was_orphan != becomes_orphan)
1753 clk_core_update_orphan_status(core, becomes_orphan);
1754 } else {
1755 hlist_add_head(&core->child_node, &clk_orphan_list);
1756 if (!was_orphan)
1757 clk_core_update_orphan_status(core, true);
1758 }
1759
1760 core->parent = new_parent;
1761 }
1762
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)1763 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1764 struct clk_core *parent)
1765 {
1766 unsigned long flags;
1767 struct clk_core *old_parent = core->parent;
1768
1769 /*
1770 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1771 *
1772 * 2. Migrate prepare state between parents and prevent race with
1773 * clk_enable().
1774 *
1775 * If the clock is not prepared, then a race with
1776 * clk_enable/disable() is impossible since we already have the
1777 * prepare lock (future calls to clk_enable() need to be preceded by
1778 * a clk_prepare()).
1779 *
1780 * If the clock is prepared, migrate the prepared state to the new
1781 * parent and also protect against a race with clk_enable() by
1782 * forcing the clock and the new parent on. This ensures that all
1783 * future calls to clk_enable() are practically NOPs with respect to
1784 * hardware and software states.
1785 *
1786 * See also: Comment for clk_set_parent() below.
1787 */
1788
1789 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1790 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1791 clk_core_prepare_enable(old_parent);
1792 clk_core_prepare_enable(parent);
1793 }
1794
1795 /* migrate prepare count if > 0 */
1796 if (core->prepare_count) {
1797 clk_core_prepare_enable(parent);
1798 clk_core_enable_lock(core);
1799 }
1800
1801 /* update the clk tree topology */
1802 flags = clk_enable_lock();
1803 clk_reparent(core, parent);
1804 clk_enable_unlock(flags);
1805
1806 return old_parent;
1807 }
1808
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)1809 static void __clk_set_parent_after(struct clk_core *core,
1810 struct clk_core *parent,
1811 struct clk_core *old_parent)
1812 {
1813 /*
1814 * Finish the migration of prepare state and undo the changes done
1815 * for preventing a race with clk_enable().
1816 */
1817 if (core->prepare_count) {
1818 clk_core_disable_lock(core);
1819 clk_core_disable_unprepare(old_parent);
1820 }
1821
1822 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1823 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1824 clk_core_disable_unprepare(parent);
1825 clk_core_disable_unprepare(old_parent);
1826 }
1827 }
1828
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)1829 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1830 u8 p_index)
1831 {
1832 unsigned long flags;
1833 int ret = 0;
1834 struct clk_core *old_parent;
1835
1836 old_parent = __clk_set_parent_before(core, parent);
1837
1838 trace_clk_set_parent(core, parent);
1839
1840 /* change clock input source */
1841 if (parent && core->ops->set_parent)
1842 ret = core->ops->set_parent(core->hw, p_index);
1843
1844 trace_clk_set_parent_complete(core, parent);
1845
1846 if (ret) {
1847 flags = clk_enable_lock();
1848 clk_reparent(core, old_parent);
1849 clk_enable_unlock(flags);
1850 __clk_set_parent_after(core, old_parent, parent);
1851
1852 return ret;
1853 }
1854
1855 __clk_set_parent_after(core, parent, old_parent);
1856
1857 return 0;
1858 }
1859
1860 /**
1861 * __clk_speculate_rates
1862 * @core: first clk in the subtree
1863 * @parent_rate: the "future" rate of clk's parent
1864 *
1865 * Walks the subtree of clks starting with clk, speculating rates as it
1866 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1867 *
1868 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1869 * pre-rate change notifications and returns early if no clks in the
1870 * subtree have subscribed to the notifications. Note that if a clk does not
1871 * implement the .recalc_rate callback then it is assumed that the clock will
1872 * take on the rate of its parent.
1873 */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)1874 static int __clk_speculate_rates(struct clk_core *core,
1875 unsigned long parent_rate)
1876 {
1877 struct clk_core *child;
1878 unsigned long new_rate;
1879 int ret = NOTIFY_DONE;
1880
1881 lockdep_assert_held(&prepare_lock);
1882
1883 new_rate = clk_recalc(core, parent_rate);
1884
1885 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1886 if (core->notifier_count)
1887 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1888
1889 if (ret & NOTIFY_STOP_MASK) {
1890 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1891 __func__, core->name, ret);
1892 goto out;
1893 }
1894
1895 hlist_for_each_entry(child, &core->children, child_node) {
1896 ret = __clk_speculate_rates(child, new_rate);
1897 if (ret & NOTIFY_STOP_MASK)
1898 break;
1899 }
1900
1901 out:
1902 return ret;
1903 }
1904
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)1905 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1906 struct clk_core *new_parent, u8 p_index)
1907 {
1908 struct clk_core *child;
1909
1910 core->new_rate = new_rate;
1911 core->new_parent = new_parent;
1912 core->new_parent_index = p_index;
1913 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1914 core->new_child = NULL;
1915 if (new_parent && new_parent != core->parent)
1916 new_parent->new_child = core;
1917
1918 hlist_for_each_entry(child, &core->children, child_node) {
1919 child->new_rate = clk_recalc(child, new_rate);
1920 clk_calc_subtree(child, child->new_rate, NULL, 0);
1921 }
1922 }
1923
1924 /*
1925 * calculate the new rates returning the topmost clock that has to be
1926 * changed.
1927 */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)1928 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1929 unsigned long rate)
1930 {
1931 struct clk_core *top = core;
1932 struct clk_core *old_parent, *parent;
1933 unsigned long best_parent_rate = 0;
1934 unsigned long new_rate;
1935 unsigned long min_rate;
1936 unsigned long max_rate;
1937 int p_index = 0;
1938 long ret;
1939
1940 /* sanity */
1941 if (IS_ERR_OR_NULL(core))
1942 return NULL;
1943
1944 /* save parent rate, if it exists */
1945 parent = old_parent = core->parent;
1946 if (parent)
1947 best_parent_rate = parent->rate;
1948
1949 clk_core_get_boundaries(core, &min_rate, &max_rate);
1950
1951 /* find the closest rate and parent clk/rate */
1952 if (clk_core_can_round(core)) {
1953 struct clk_rate_request req;
1954
1955 req.rate = rate;
1956 req.min_rate = min_rate;
1957 req.max_rate = max_rate;
1958
1959 clk_core_init_rate_req(core, &req);
1960
1961 ret = clk_core_determine_round_nolock(core, &req);
1962 if (ret < 0)
1963 return NULL;
1964
1965 best_parent_rate = req.best_parent_rate;
1966 new_rate = req.rate;
1967 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1968
1969 if (new_rate < min_rate || new_rate > max_rate)
1970 return NULL;
1971 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1972 /* pass-through clock without adjustable parent */
1973 core->new_rate = core->rate;
1974 return NULL;
1975 } else {
1976 /* pass-through clock with adjustable parent */
1977 top = clk_calc_new_rates(parent, rate);
1978 new_rate = parent->new_rate;
1979 goto out;
1980 }
1981
1982 /* some clocks must be gated to change parent */
1983 if (parent != old_parent &&
1984 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1985 pr_debug("%s: %s not gated but wants to reparent\n",
1986 __func__, core->name);
1987 return NULL;
1988 }
1989
1990 /* try finding the new parent index */
1991 if (parent && core->num_parents > 1) {
1992 p_index = clk_fetch_parent_index(core, parent);
1993 if (p_index < 0) {
1994 pr_debug("%s: clk %s can not be parent of clk %s\n",
1995 __func__, parent->name, core->name);
1996 return NULL;
1997 }
1998 }
1999
2000 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2001 best_parent_rate != parent->rate)
2002 top = clk_calc_new_rates(parent, best_parent_rate);
2003
2004 out:
2005 clk_calc_subtree(core, new_rate, parent, p_index);
2006
2007 return top;
2008 }
2009
2010 /*
2011 * Notify about rate changes in a subtree. Always walk down the whole tree
2012 * so that in case of an error we can walk down the whole tree again and
2013 * abort the change.
2014 */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)2015 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2016 unsigned long event)
2017 {
2018 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2019 int ret = NOTIFY_DONE;
2020
2021 if (core->rate == core->new_rate)
2022 return NULL;
2023
2024 if (core->notifier_count) {
2025 ret = __clk_notify(core, event, core->rate, core->new_rate);
2026 if (ret & NOTIFY_STOP_MASK)
2027 fail_clk = core;
2028 }
2029
2030 hlist_for_each_entry(child, &core->children, child_node) {
2031 /* Skip children who will be reparented to another clock */
2032 if (child->new_parent && child->new_parent != core)
2033 continue;
2034 tmp_clk = clk_propagate_rate_change(child, event);
2035 if (tmp_clk)
2036 fail_clk = tmp_clk;
2037 }
2038
2039 /* handle the new child who might not be in core->children yet */
2040 if (core->new_child) {
2041 tmp_clk = clk_propagate_rate_change(core->new_child, event);
2042 if (tmp_clk)
2043 fail_clk = tmp_clk;
2044 }
2045
2046 return fail_clk;
2047 }
2048
2049 /*
2050 * walk down a subtree and set the new rates notifying the rate
2051 * change on the way
2052 */
clk_change_rate(struct clk_core * core)2053 static void clk_change_rate(struct clk_core *core)
2054 {
2055 struct clk_core *child;
2056 struct hlist_node *tmp;
2057 unsigned long old_rate;
2058 unsigned long best_parent_rate = 0;
2059 bool skip_set_rate = false;
2060 struct clk_core *old_parent;
2061 struct clk_core *parent = NULL;
2062
2063 old_rate = core->rate;
2064
2065 if (core->new_parent) {
2066 parent = core->new_parent;
2067 best_parent_rate = core->new_parent->rate;
2068 } else if (core->parent) {
2069 parent = core->parent;
2070 best_parent_rate = core->parent->rate;
2071 }
2072
2073 if (clk_pm_runtime_get(core))
2074 return;
2075
2076 if (core->flags & CLK_SET_RATE_UNGATE) {
2077 unsigned long flags;
2078
2079 clk_core_prepare(core);
2080 flags = clk_enable_lock();
2081 clk_core_enable(core);
2082 clk_enable_unlock(flags);
2083 }
2084
2085 if (core->new_parent && core->new_parent != core->parent) {
2086 old_parent = __clk_set_parent_before(core, core->new_parent);
2087 trace_clk_set_parent(core, core->new_parent);
2088
2089 if (core->ops->set_rate_and_parent) {
2090 skip_set_rate = true;
2091 core->ops->set_rate_and_parent(core->hw, core->new_rate,
2092 best_parent_rate,
2093 core->new_parent_index);
2094 } else if (core->ops->set_parent) {
2095 core->ops->set_parent(core->hw, core->new_parent_index);
2096 }
2097
2098 trace_clk_set_parent_complete(core, core->new_parent);
2099 __clk_set_parent_after(core, core->new_parent, old_parent);
2100 }
2101
2102 if (core->flags & CLK_OPS_PARENT_ENABLE)
2103 clk_core_prepare_enable(parent);
2104
2105 trace_clk_set_rate(core, core->new_rate);
2106
2107 if (!skip_set_rate && core->ops->set_rate)
2108 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2109
2110 trace_clk_set_rate_complete(core, core->new_rate);
2111
2112 core->rate = clk_recalc(core, best_parent_rate);
2113
2114 if (core->flags & CLK_SET_RATE_UNGATE) {
2115 unsigned long flags;
2116
2117 flags = clk_enable_lock();
2118 clk_core_disable(core);
2119 clk_enable_unlock(flags);
2120 clk_core_unprepare(core);
2121 }
2122
2123 if (core->flags & CLK_OPS_PARENT_ENABLE)
2124 clk_core_disable_unprepare(parent);
2125
2126 if (core->notifier_count && old_rate != core->rate)
2127 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2128
2129 if (core->flags & CLK_RECALC_NEW_RATES)
2130 (void)clk_calc_new_rates(core, core->new_rate);
2131
2132 /*
2133 * Use safe iteration, as change_rate can actually swap parents
2134 * for certain clock types.
2135 */
2136 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2137 /* Skip children who will be reparented to another clock */
2138 if (child->new_parent && child->new_parent != core)
2139 continue;
2140 clk_change_rate(child);
2141 }
2142
2143 /* handle the new child who might not be in core->children yet */
2144 if (core->new_child)
2145 clk_change_rate(core->new_child);
2146
2147 clk_pm_runtime_put(core);
2148 }
2149
clk_core_req_round_rate_nolock(struct clk_core * core,unsigned long req_rate)2150 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2151 unsigned long req_rate)
2152 {
2153 int ret, cnt;
2154 struct clk_rate_request req;
2155
2156 lockdep_assert_held(&prepare_lock);
2157
2158 if (!core)
2159 return 0;
2160
2161 /* simulate what the rate would be if it could be freely set */
2162 cnt = clk_core_rate_nuke_protect(core);
2163 if (cnt < 0)
2164 return cnt;
2165
2166 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2167 req.rate = req_rate;
2168
2169 ret = clk_core_round_rate_nolock(core, &req);
2170
2171 /* restore the protection */
2172 clk_core_rate_restore_protect(core, cnt);
2173
2174 return ret ? 0 : req.rate;
2175 }
2176
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)2177 static int clk_core_set_rate_nolock(struct clk_core *core,
2178 unsigned long req_rate)
2179 {
2180 struct clk_core *top, *fail_clk;
2181 unsigned long rate;
2182 int ret = 0;
2183
2184 if (!core)
2185 return 0;
2186
2187 rate = clk_core_req_round_rate_nolock(core, req_rate);
2188
2189 /* bail early if nothing to do */
2190 if (rate == clk_core_get_rate_nolock(core))
2191 return 0;
2192
2193 /* fail on a direct rate set of a protected provider */
2194 if (clk_core_rate_is_protected(core))
2195 return -EBUSY;
2196
2197 /* calculate new rates and get the topmost changed clock */
2198 top = clk_calc_new_rates(core, req_rate);
2199 if (!top)
2200 return -EINVAL;
2201
2202 ret = clk_pm_runtime_get(core);
2203 if (ret)
2204 return ret;
2205
2206 /* notify that we are about to change rates */
2207 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2208 if (fail_clk) {
2209 pr_debug("%s: failed to set %s rate\n", __func__,
2210 fail_clk->name);
2211 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2212 ret = -EBUSY;
2213 goto err;
2214 }
2215
2216 /* change the rates */
2217 clk_change_rate(top);
2218
2219 core->req_rate = req_rate;
2220 err:
2221 clk_pm_runtime_put(core);
2222
2223 return ret;
2224 }
2225
2226 /**
2227 * clk_set_rate - specify a new rate for clk
2228 * @clk: the clk whose rate is being changed
2229 * @rate: the new rate for clk
2230 *
2231 * In the simplest case clk_set_rate will only adjust the rate of clk.
2232 *
2233 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2234 * propagate up to clk's parent; whether or not this happens depends on the
2235 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
2236 * after calling .round_rate then upstream parent propagation is ignored. If
2237 * *parent_rate comes back with a new rate for clk's parent then we propagate
2238 * up to clk's parent and set its rate. Upward propagation will continue
2239 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2240 * .round_rate stops requesting changes to clk's parent_rate.
2241 *
2242 * Rate changes are accomplished via tree traversal that also recalculates the
2243 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2244 *
2245 * Returns 0 on success, -EERROR otherwise.
2246 */
clk_set_rate(struct clk * clk,unsigned long rate)2247 int clk_set_rate(struct clk *clk, unsigned long rate)
2248 {
2249 int ret;
2250
2251 if (!clk)
2252 return 0;
2253
2254 /* prevent racing with updates to the clock topology */
2255 clk_prepare_lock();
2256
2257 if (clk->exclusive_count)
2258 clk_core_rate_unprotect(clk->core);
2259
2260 ret = clk_core_set_rate_nolock(clk->core, rate);
2261
2262 if (clk->exclusive_count)
2263 clk_core_rate_protect(clk->core);
2264
2265 clk_prepare_unlock();
2266
2267 return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(clk_set_rate);
2270
2271 /**
2272 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2273 * @clk: the clk whose rate is being changed
2274 * @rate: the new rate for clk
2275 *
2276 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2277 * within a critical section
2278 *
2279 * This can be used initially to ensure that at least 1 consumer is
2280 * satisfied when several consumers are competing for exclusivity over the
2281 * same clock provider.
2282 *
2283 * The exclusivity is not applied if setting the rate failed.
2284 *
2285 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2286 * clk_rate_exclusive_put().
2287 *
2288 * Returns 0 on success, -EERROR otherwise.
2289 */
clk_set_rate_exclusive(struct clk * clk,unsigned long rate)2290 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2291 {
2292 int ret;
2293
2294 if (!clk)
2295 return 0;
2296
2297 /* prevent racing with updates to the clock topology */
2298 clk_prepare_lock();
2299
2300 /*
2301 * The temporary protection removal is not here, on purpose
2302 * This function is meant to be used instead of clk_rate_protect,
2303 * so before the consumer code path protect the clock provider
2304 */
2305
2306 ret = clk_core_set_rate_nolock(clk->core, rate);
2307 if (!ret) {
2308 clk_core_rate_protect(clk->core);
2309 clk->exclusive_count++;
2310 }
2311
2312 clk_prepare_unlock();
2313
2314 return ret;
2315 }
2316 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2317
2318 /**
2319 * clk_set_rate_range - set a rate range for a clock source
2320 * @clk: clock source
2321 * @min: desired minimum clock rate in Hz, inclusive
2322 * @max: desired maximum clock rate in Hz, inclusive
2323 *
2324 * Returns success (0) or negative errno.
2325 */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)2326 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2327 {
2328 int ret = 0;
2329 unsigned long old_min, old_max, rate;
2330
2331 if (!clk)
2332 return 0;
2333
2334 if (min > max) {
2335 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2336 __func__, clk->core->name, clk->dev_id, clk->con_id,
2337 min, max);
2338 return -EINVAL;
2339 }
2340
2341 clk_prepare_lock();
2342
2343 if (clk->exclusive_count)
2344 clk_core_rate_unprotect(clk->core);
2345
2346 /* Save the current values in case we need to rollback the change */
2347 old_min = clk->min_rate;
2348 old_max = clk->max_rate;
2349 clk->min_rate = min;
2350 clk->max_rate = max;
2351
2352 if (!clk_core_check_boundaries(clk->core, min, max)) {
2353 ret = -EINVAL;
2354 goto out;
2355 }
2356
2357 rate = clk_core_get_rate_nolock(clk->core);
2358 if (rate < min || rate > max) {
2359 /*
2360 * FIXME:
2361 * We are in bit of trouble here, current rate is outside the
2362 * the requested range. We are going try to request appropriate
2363 * range boundary but there is a catch. It may fail for the
2364 * usual reason (clock broken, clock protected, etc) but also
2365 * because:
2366 * - round_rate() was not favorable and fell on the wrong
2367 * side of the boundary
2368 * - the determine_rate() callback does not really check for
2369 * this corner case when determining the rate
2370 */
2371
2372 if (rate < min)
2373 rate = min;
2374 else
2375 rate = max;
2376
2377 ret = clk_core_set_rate_nolock(clk->core, rate);
2378 if (ret) {
2379 /* rollback the changes */
2380 clk->min_rate = old_min;
2381 clk->max_rate = old_max;
2382 }
2383 }
2384
2385 out:
2386 if (clk->exclusive_count)
2387 clk_core_rate_protect(clk->core);
2388
2389 clk_prepare_unlock();
2390
2391 return ret;
2392 }
2393 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2394
2395 /**
2396 * clk_set_min_rate - set a minimum clock rate for a clock source
2397 * @clk: clock source
2398 * @rate: desired minimum clock rate in Hz, inclusive
2399 *
2400 * Returns success (0) or negative errno.
2401 */
clk_set_min_rate(struct clk * clk,unsigned long rate)2402 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2403 {
2404 if (!clk)
2405 return 0;
2406
2407 return clk_set_rate_range(clk, rate, clk->max_rate);
2408 }
2409 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2410
2411 /**
2412 * clk_set_max_rate - set a maximum clock rate for a clock source
2413 * @clk: clock source
2414 * @rate: desired maximum clock rate in Hz, inclusive
2415 *
2416 * Returns success (0) or negative errno.
2417 */
clk_set_max_rate(struct clk * clk,unsigned long rate)2418 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2419 {
2420 if (!clk)
2421 return 0;
2422
2423 return clk_set_rate_range(clk, clk->min_rate, rate);
2424 }
2425 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2426
2427 /**
2428 * clk_get_parent - return the parent of a clk
2429 * @clk: the clk whose parent gets returned
2430 *
2431 * Simply returns clk->parent. Returns NULL if clk is NULL.
2432 */
clk_get_parent(struct clk * clk)2433 struct clk *clk_get_parent(struct clk *clk)
2434 {
2435 struct clk *parent;
2436
2437 if (!clk)
2438 return NULL;
2439
2440 clk_prepare_lock();
2441 /* TODO: Create a per-user clk and change callers to call clk_put */
2442 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2443 clk_prepare_unlock();
2444
2445 return parent;
2446 }
2447 EXPORT_SYMBOL_GPL(clk_get_parent);
2448
__clk_init_parent(struct clk_core * core)2449 static struct clk_core *__clk_init_parent(struct clk_core *core)
2450 {
2451 u8 index = 0;
2452
2453 if (core->num_parents > 1 && core->ops->get_parent)
2454 index = core->ops->get_parent(core->hw);
2455
2456 return clk_core_get_parent_by_index(core, index);
2457 }
2458
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)2459 static void clk_core_reparent(struct clk_core *core,
2460 struct clk_core *new_parent)
2461 {
2462 clk_reparent(core, new_parent);
2463 __clk_recalc_accuracies(core);
2464 __clk_recalc_rates(core, POST_RATE_CHANGE);
2465 }
2466
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)2467 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2468 {
2469 if (!hw)
2470 return;
2471
2472 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2473 }
2474
2475 /**
2476 * clk_has_parent - check if a clock is a possible parent for another
2477 * @clk: clock source
2478 * @parent: parent clock source
2479 *
2480 * This function can be used in drivers that need to check that a clock can be
2481 * the parent of another without actually changing the parent.
2482 *
2483 * Returns true if @parent is a possible parent for @clk, false otherwise.
2484 */
clk_has_parent(struct clk * clk,struct clk * parent)2485 bool clk_has_parent(struct clk *clk, struct clk *parent)
2486 {
2487 struct clk_core *core, *parent_core;
2488 int i;
2489
2490 /* NULL clocks should be nops, so return success if either is NULL. */
2491 if (!clk || !parent)
2492 return true;
2493
2494 core = clk->core;
2495 parent_core = parent->core;
2496
2497 /* Optimize for the case where the parent is already the parent. */
2498 if (core->parent == parent_core)
2499 return true;
2500
2501 for (i = 0; i < core->num_parents; i++)
2502 if (!strcmp(core->parents[i].name, parent_core->name))
2503 return true;
2504
2505 return false;
2506 }
2507 EXPORT_SYMBOL_GPL(clk_has_parent);
2508
clk_core_set_parent_nolock(struct clk_core * core,struct clk_core * parent)2509 static int clk_core_set_parent_nolock(struct clk_core *core,
2510 struct clk_core *parent)
2511 {
2512 int ret = 0;
2513 int p_index = 0;
2514 unsigned long p_rate = 0;
2515
2516 lockdep_assert_held(&prepare_lock);
2517
2518 if (!core)
2519 return 0;
2520
2521 if (core->parent == parent)
2522 return 0;
2523
2524 /* verify ops for multi-parent clks */
2525 if (core->num_parents > 1 && !core->ops->set_parent)
2526 return -EPERM;
2527
2528 /* check that we are allowed to re-parent if the clock is in use */
2529 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2530 return -EBUSY;
2531
2532 if (clk_core_rate_is_protected(core))
2533 return -EBUSY;
2534
2535 /* try finding the new parent index */
2536 if (parent) {
2537 p_index = clk_fetch_parent_index(core, parent);
2538 if (p_index < 0) {
2539 pr_debug("%s: clk %s can not be parent of clk %s\n",
2540 __func__, parent->name, core->name);
2541 return p_index;
2542 }
2543 p_rate = parent->rate;
2544 }
2545
2546 ret = clk_pm_runtime_get(core);
2547 if (ret)
2548 return ret;
2549
2550 /* propagate PRE_RATE_CHANGE notifications */
2551 ret = __clk_speculate_rates(core, p_rate);
2552
2553 /* abort if a driver objects */
2554 if (ret & NOTIFY_STOP_MASK)
2555 goto runtime_put;
2556
2557 /* do the re-parent */
2558 ret = __clk_set_parent(core, parent, p_index);
2559
2560 /* propagate rate an accuracy recalculation accordingly */
2561 if (ret) {
2562 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
2563 } else {
2564 __clk_recalc_rates(core, POST_RATE_CHANGE);
2565 __clk_recalc_accuracies(core);
2566 }
2567
2568 runtime_put:
2569 clk_pm_runtime_put(core);
2570
2571 return ret;
2572 }
2573
clk_hw_set_parent(struct clk_hw * hw,struct clk_hw * parent)2574 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2575 {
2576 return clk_core_set_parent_nolock(hw->core, parent->core);
2577 }
2578 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2579
2580 /**
2581 * clk_set_parent - switch the parent of a mux clk
2582 * @clk: the mux clk whose input we are switching
2583 * @parent: the new input to clk
2584 *
2585 * Re-parent clk to use parent as its new input source. If clk is in
2586 * prepared state, the clk will get enabled for the duration of this call. If
2587 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2588 * that, the reparenting is glitchy in hardware, etc), use the
2589 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2590 *
2591 * After successfully changing clk's parent clk_set_parent will update the
2592 * clk topology, sysfs topology and propagate rate recalculation via
2593 * __clk_recalc_rates.
2594 *
2595 * Returns 0 on success, -EERROR otherwise.
2596 */
clk_set_parent(struct clk * clk,struct clk * parent)2597 int clk_set_parent(struct clk *clk, struct clk *parent)
2598 {
2599 int ret;
2600
2601 if (!clk)
2602 return 0;
2603
2604 clk_prepare_lock();
2605
2606 if (clk->exclusive_count)
2607 clk_core_rate_unprotect(clk->core);
2608
2609 ret = clk_core_set_parent_nolock(clk->core,
2610 parent ? parent->core : NULL);
2611
2612 if (clk->exclusive_count)
2613 clk_core_rate_protect(clk->core);
2614
2615 clk_prepare_unlock();
2616
2617 return ret;
2618 }
2619 EXPORT_SYMBOL_GPL(clk_set_parent);
2620
clk_core_set_phase_nolock(struct clk_core * core,int degrees)2621 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2622 {
2623 int ret = -EINVAL;
2624
2625 lockdep_assert_held(&prepare_lock);
2626
2627 if (!core)
2628 return 0;
2629
2630 if (clk_core_rate_is_protected(core))
2631 return -EBUSY;
2632
2633 trace_clk_set_phase(core, degrees);
2634
2635 if (core->ops->set_phase) {
2636 ret = core->ops->set_phase(core->hw, degrees);
2637 if (!ret)
2638 core->phase = degrees;
2639 }
2640
2641 trace_clk_set_phase_complete(core, degrees);
2642
2643 return ret;
2644 }
2645
2646 /**
2647 * clk_set_phase - adjust the phase shift of a clock signal
2648 * @clk: clock signal source
2649 * @degrees: number of degrees the signal is shifted
2650 *
2651 * Shifts the phase of a clock signal by the specified
2652 * degrees. Returns 0 on success, -EERROR otherwise.
2653 *
2654 * This function makes no distinction about the input or reference
2655 * signal that we adjust the clock signal phase against. For example
2656 * phase locked-loop clock signal generators we may shift phase with
2657 * respect to feedback clock signal input, but for other cases the
2658 * clock phase may be shifted with respect to some other, unspecified
2659 * signal.
2660 *
2661 * Additionally the concept of phase shift does not propagate through
2662 * the clock tree hierarchy, which sets it apart from clock rates and
2663 * clock accuracy. A parent clock phase attribute does not have an
2664 * impact on the phase attribute of a child clock.
2665 */
clk_set_phase(struct clk * clk,int degrees)2666 int clk_set_phase(struct clk *clk, int degrees)
2667 {
2668 int ret;
2669
2670 if (!clk)
2671 return 0;
2672
2673 /* sanity check degrees */
2674 degrees %= 360;
2675 if (degrees < 0)
2676 degrees += 360;
2677
2678 clk_prepare_lock();
2679
2680 if (clk->exclusive_count)
2681 clk_core_rate_unprotect(clk->core);
2682
2683 ret = clk_core_set_phase_nolock(clk->core, degrees);
2684
2685 if (clk->exclusive_count)
2686 clk_core_rate_protect(clk->core);
2687
2688 clk_prepare_unlock();
2689
2690 return ret;
2691 }
2692 EXPORT_SYMBOL_GPL(clk_set_phase);
2693
clk_core_get_phase(struct clk_core * core)2694 static int clk_core_get_phase(struct clk_core *core)
2695 {
2696 int ret;
2697
2698 lockdep_assert_held(&prepare_lock);
2699 if (!core->ops->get_phase)
2700 return 0;
2701
2702 /* Always try to update cached phase if possible */
2703 ret = core->ops->get_phase(core->hw);
2704 if (ret >= 0)
2705 core->phase = ret;
2706
2707 return ret;
2708 }
2709
2710 /**
2711 * clk_get_phase - return the phase shift of a clock signal
2712 * @clk: clock signal source
2713 *
2714 * Returns the phase shift of a clock node in degrees, otherwise returns
2715 * -EERROR.
2716 */
clk_get_phase(struct clk * clk)2717 int clk_get_phase(struct clk *clk)
2718 {
2719 int ret;
2720
2721 if (!clk)
2722 return 0;
2723
2724 clk_prepare_lock();
2725 ret = clk_core_get_phase(clk->core);
2726 clk_prepare_unlock();
2727
2728 return ret;
2729 }
2730 EXPORT_SYMBOL_GPL(clk_get_phase);
2731
clk_core_reset_duty_cycle_nolock(struct clk_core * core)2732 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2733 {
2734 /* Assume a default value of 50% */
2735 core->duty.num = 1;
2736 core->duty.den = 2;
2737 }
2738
2739 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2740
clk_core_update_duty_cycle_nolock(struct clk_core * core)2741 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2742 {
2743 struct clk_duty *duty = &core->duty;
2744 int ret = 0;
2745
2746 if (!core->ops->get_duty_cycle)
2747 return clk_core_update_duty_cycle_parent_nolock(core);
2748
2749 ret = core->ops->get_duty_cycle(core->hw, duty);
2750 if (ret)
2751 goto reset;
2752
2753 /* Don't trust the clock provider too much */
2754 if (duty->den == 0 || duty->num > duty->den) {
2755 ret = -EINVAL;
2756 goto reset;
2757 }
2758
2759 return 0;
2760
2761 reset:
2762 clk_core_reset_duty_cycle_nolock(core);
2763 return ret;
2764 }
2765
clk_core_update_duty_cycle_parent_nolock(struct clk_core * core)2766 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2767 {
2768 int ret = 0;
2769
2770 if (core->parent &&
2771 core->flags & CLK_DUTY_CYCLE_PARENT) {
2772 ret = clk_core_update_duty_cycle_nolock(core->parent);
2773 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2774 } else {
2775 clk_core_reset_duty_cycle_nolock(core);
2776 }
2777
2778 return ret;
2779 }
2780
2781 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2782 struct clk_duty *duty);
2783
clk_core_set_duty_cycle_nolock(struct clk_core * core,struct clk_duty * duty)2784 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2785 struct clk_duty *duty)
2786 {
2787 int ret;
2788
2789 lockdep_assert_held(&prepare_lock);
2790
2791 if (clk_core_rate_is_protected(core))
2792 return -EBUSY;
2793
2794 trace_clk_set_duty_cycle(core, duty);
2795
2796 if (!core->ops->set_duty_cycle)
2797 return clk_core_set_duty_cycle_parent_nolock(core, duty);
2798
2799 ret = core->ops->set_duty_cycle(core->hw, duty);
2800 if (!ret)
2801 memcpy(&core->duty, duty, sizeof(*duty));
2802
2803 trace_clk_set_duty_cycle_complete(core, duty);
2804
2805 return ret;
2806 }
2807
clk_core_set_duty_cycle_parent_nolock(struct clk_core * core,struct clk_duty * duty)2808 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2809 struct clk_duty *duty)
2810 {
2811 int ret = 0;
2812
2813 if (core->parent &&
2814 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2815 ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2816 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2817 }
2818
2819 return ret;
2820 }
2821
2822 /**
2823 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2824 * @clk: clock signal source
2825 * @num: numerator of the duty cycle ratio to be applied
2826 * @den: denominator of the duty cycle ratio to be applied
2827 *
2828 * Apply the duty cycle ratio if the ratio is valid and the clock can
2829 * perform this operation
2830 *
2831 * Returns (0) on success, a negative errno otherwise.
2832 */
clk_set_duty_cycle(struct clk * clk,unsigned int num,unsigned int den)2833 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2834 {
2835 int ret;
2836 struct clk_duty duty;
2837
2838 if (!clk)
2839 return 0;
2840
2841 /* sanity check the ratio */
2842 if (den == 0 || num > den)
2843 return -EINVAL;
2844
2845 duty.num = num;
2846 duty.den = den;
2847
2848 clk_prepare_lock();
2849
2850 if (clk->exclusive_count)
2851 clk_core_rate_unprotect(clk->core);
2852
2853 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2854
2855 if (clk->exclusive_count)
2856 clk_core_rate_protect(clk->core);
2857
2858 clk_prepare_unlock();
2859
2860 return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2863
clk_core_get_scaled_duty_cycle(struct clk_core * core,unsigned int scale)2864 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2865 unsigned int scale)
2866 {
2867 struct clk_duty *duty = &core->duty;
2868 int ret;
2869
2870 clk_prepare_lock();
2871
2872 ret = clk_core_update_duty_cycle_nolock(core);
2873 if (!ret)
2874 ret = mult_frac(scale, duty->num, duty->den);
2875
2876 clk_prepare_unlock();
2877
2878 return ret;
2879 }
2880
2881 /**
2882 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2883 * @clk: clock signal source
2884 * @scale: scaling factor to be applied to represent the ratio as an integer
2885 *
2886 * Returns the duty cycle ratio of a clock node multiplied by the provided
2887 * scaling factor, or negative errno on error.
2888 */
clk_get_scaled_duty_cycle(struct clk * clk,unsigned int scale)2889 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2890 {
2891 if (!clk)
2892 return 0;
2893
2894 return clk_core_get_scaled_duty_cycle(clk->core, scale);
2895 }
2896 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2897
2898 /**
2899 * clk_is_match - check if two clk's point to the same hardware clock
2900 * @p: clk compared against q
2901 * @q: clk compared against p
2902 *
2903 * Returns true if the two struct clk pointers both point to the same hardware
2904 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2905 * share the same struct clk_core object.
2906 *
2907 * Returns false otherwise. Note that two NULL clks are treated as matching.
2908 */
clk_is_match(const struct clk * p,const struct clk * q)2909 bool clk_is_match(const struct clk *p, const struct clk *q)
2910 {
2911 /* trivial case: identical struct clk's or both NULL */
2912 if (p == q)
2913 return true;
2914
2915 /* true if clk->core pointers match. Avoid dereferencing garbage */
2916 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2917 if (p->core == q->core)
2918 return true;
2919
2920 return false;
2921 }
2922 EXPORT_SYMBOL_GPL(clk_is_match);
2923
2924 /*** debugfs support ***/
2925
2926 #ifdef CONFIG_DEBUG_FS
2927 #include <linux/debugfs.h>
2928
2929 static struct dentry *rootdir;
2930 static int inited = 0;
2931 static DEFINE_MUTEX(clk_debug_lock);
2932 static HLIST_HEAD(clk_debug_list);
2933
2934 static struct hlist_head *orphan_list[] = {
2935 &clk_orphan_list,
2936 NULL,
2937 };
2938
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)2939 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2940 int level)
2941 {
2942 int phase;
2943
2944 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2945 level * 3 + 1, "",
2946 30 - level * 3, c->name,
2947 c->enable_count, c->prepare_count, c->protect_count,
2948 clk_core_get_rate_recalc(c),
2949 clk_core_get_accuracy_recalc(c));
2950
2951 phase = clk_core_get_phase(c);
2952 if (phase >= 0)
2953 seq_printf(s, "%5d", phase);
2954 else
2955 seq_puts(s, "-----");
2956
2957 seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000));
2958 }
2959
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)2960 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2961 int level)
2962 {
2963 struct clk_core *child;
2964
2965 clk_summary_show_one(s, c, level);
2966
2967 hlist_for_each_entry(child, &c->children, child_node)
2968 clk_summary_show_subtree(s, child, level + 1);
2969 }
2970
clk_summary_show(struct seq_file * s,void * data)2971 static int clk_summary_show(struct seq_file *s, void *data)
2972 {
2973 struct clk_core *c;
2974 struct hlist_head **lists = (struct hlist_head **)s->private;
2975
2976 seq_puts(s, " enable prepare protect duty\n");
2977 seq_puts(s, " clock count count count rate accuracy phase cycle\n");
2978 seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2979
2980 clk_prepare_lock();
2981
2982 for (; *lists; lists++)
2983 hlist_for_each_entry(c, *lists, child_node)
2984 clk_summary_show_subtree(s, c, 0);
2985
2986 clk_prepare_unlock();
2987
2988 return 0;
2989 }
2990 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2991
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)2992 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2993 {
2994 int phase;
2995 unsigned long min_rate, max_rate;
2996
2997 clk_core_get_boundaries(c, &min_rate, &max_rate);
2998
2999 /* This should be JSON format, i.e. elements separated with a comma */
3000 seq_printf(s, "\"%s\": { ", c->name);
3001 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3002 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3003 seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3004 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3005 seq_printf(s, "\"min_rate\": %lu,", min_rate);
3006 seq_printf(s, "\"max_rate\": %lu,", max_rate);
3007 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3008 phase = clk_core_get_phase(c);
3009 if (phase >= 0)
3010 seq_printf(s, "\"phase\": %d,", phase);
3011 seq_printf(s, "\"duty_cycle\": %u",
3012 clk_core_get_scaled_duty_cycle(c, 100000));
3013 }
3014
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)3015 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3016 {
3017 struct clk_core *child;
3018
3019 clk_dump_one(s, c, level);
3020
3021 hlist_for_each_entry(child, &c->children, child_node) {
3022 seq_putc(s, ',');
3023 clk_dump_subtree(s, child, level + 1);
3024 }
3025
3026 seq_putc(s, '}');
3027 }
3028
clk_dump_show(struct seq_file * s,void * data)3029 static int clk_dump_show(struct seq_file *s, void *data)
3030 {
3031 struct clk_core *c;
3032 bool first_node = true;
3033 struct hlist_head **lists = (struct hlist_head **)s->private;
3034
3035 seq_putc(s, '{');
3036 clk_prepare_lock();
3037
3038 for (; *lists; lists++) {
3039 hlist_for_each_entry(c, *lists, child_node) {
3040 if (!first_node)
3041 seq_putc(s, ',');
3042 first_node = false;
3043 clk_dump_subtree(s, c, 0);
3044 }
3045 }
3046
3047 clk_prepare_unlock();
3048
3049 seq_puts(s, "}\n");
3050 return 0;
3051 }
3052 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3053
3054 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3055 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3056 /*
3057 * This can be dangerous, therefore don't provide any real compile time
3058 * configuration option for this feature.
3059 * People who want to use this will need to modify the source code directly.
3060 */
clk_rate_set(void * data,u64 val)3061 static int clk_rate_set(void *data, u64 val)
3062 {
3063 struct clk_core *core = data;
3064 int ret;
3065
3066 clk_prepare_lock();
3067 ret = clk_core_set_rate_nolock(core, val);
3068 clk_prepare_unlock();
3069
3070 return ret;
3071 }
3072
3073 #define clk_rate_mode 0644
3074
clk_prepare_enable_set(void * data,u64 val)3075 static int clk_prepare_enable_set(void *data, u64 val)
3076 {
3077 struct clk_core *core = data;
3078 int ret = 0;
3079
3080 if (val)
3081 ret = clk_prepare_enable(core->hw->clk);
3082 else
3083 clk_disable_unprepare(core->hw->clk);
3084
3085 return ret;
3086 }
3087
clk_prepare_enable_get(void * data,u64 * val)3088 static int clk_prepare_enable_get(void *data, u64 *val)
3089 {
3090 struct clk_core *core = data;
3091
3092 *val = core->enable_count && core->prepare_count;
3093 return 0;
3094 }
3095
3096 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3097 clk_prepare_enable_set, "%llu\n");
3098
3099 #else
3100 #define clk_rate_set NULL
3101 #define clk_rate_mode 0444
3102 #endif
3103
clk_rate_get(void * data,u64 * val)3104 static int clk_rate_get(void *data, u64 *val)
3105 {
3106 struct clk_core *core = data;
3107
3108 *val = core->rate;
3109 return 0;
3110 }
3111
3112 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3113
3114 static const struct {
3115 unsigned long flag;
3116 const char *name;
3117 } clk_flags[] = {
3118 #define ENTRY(f) { f, #f }
3119 ENTRY(CLK_SET_RATE_GATE),
3120 ENTRY(CLK_SET_PARENT_GATE),
3121 ENTRY(CLK_SET_RATE_PARENT),
3122 ENTRY(CLK_IGNORE_UNUSED),
3123 ENTRY(CLK_GET_RATE_NOCACHE),
3124 ENTRY(CLK_SET_RATE_NO_REPARENT),
3125 ENTRY(CLK_GET_ACCURACY_NOCACHE),
3126 ENTRY(CLK_RECALC_NEW_RATES),
3127 ENTRY(CLK_SET_RATE_UNGATE),
3128 ENTRY(CLK_IS_CRITICAL),
3129 ENTRY(CLK_OPS_PARENT_ENABLE),
3130 ENTRY(CLK_DUTY_CYCLE_PARENT),
3131 #undef ENTRY
3132 };
3133
clk_flags_show(struct seq_file * s,void * data)3134 static int clk_flags_show(struct seq_file *s, void *data)
3135 {
3136 struct clk_core *core = s->private;
3137 unsigned long flags = core->flags;
3138 unsigned int i;
3139
3140 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3141 if (flags & clk_flags[i].flag) {
3142 seq_printf(s, "%s\n", clk_flags[i].name);
3143 flags &= ~clk_flags[i].flag;
3144 }
3145 }
3146 if (flags) {
3147 /* Unknown flags */
3148 seq_printf(s, "0x%lx\n", flags);
3149 }
3150
3151 return 0;
3152 }
3153 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3154
possible_parent_show(struct seq_file * s,struct clk_core * core,unsigned int i,char terminator)3155 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3156 unsigned int i, char terminator)
3157 {
3158 struct clk_core *parent;
3159
3160 /*
3161 * Go through the following options to fetch a parent's name.
3162 *
3163 * 1. Fetch the registered parent clock and use its name
3164 * 2. Use the global (fallback) name if specified
3165 * 3. Use the local fw_name if provided
3166 * 4. Fetch parent clock's clock-output-name if DT index was set
3167 *
3168 * This may still fail in some cases, such as when the parent is
3169 * specified directly via a struct clk_hw pointer, but it isn't
3170 * registered (yet).
3171 */
3172 parent = clk_core_get_parent_by_index(core, i);
3173 if (parent)
3174 seq_puts(s, parent->name);
3175 else if (core->parents[i].name)
3176 seq_puts(s, core->parents[i].name);
3177 else if (core->parents[i].fw_name)
3178 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3179 else if (core->parents[i].index >= 0)
3180 seq_puts(s,
3181 of_clk_get_parent_name(core->of_node,
3182 core->parents[i].index));
3183 else
3184 seq_puts(s, "(missing)");
3185
3186 seq_putc(s, terminator);
3187 }
3188
possible_parents_show(struct seq_file * s,void * data)3189 static int possible_parents_show(struct seq_file *s, void *data)
3190 {
3191 struct clk_core *core = s->private;
3192 int i;
3193
3194 for (i = 0; i < core->num_parents - 1; i++)
3195 possible_parent_show(s, core, i, ' ');
3196
3197 possible_parent_show(s, core, i, '\n');
3198
3199 return 0;
3200 }
3201 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3202
current_parent_show(struct seq_file * s,void * data)3203 static int current_parent_show(struct seq_file *s, void *data)
3204 {
3205 struct clk_core *core = s->private;
3206
3207 if (core->parent)
3208 seq_printf(s, "%s\n", core->parent->name);
3209
3210 return 0;
3211 }
3212 DEFINE_SHOW_ATTRIBUTE(current_parent);
3213
clk_duty_cycle_show(struct seq_file * s,void * data)3214 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3215 {
3216 struct clk_core *core = s->private;
3217 struct clk_duty *duty = &core->duty;
3218
3219 seq_printf(s, "%u/%u\n", duty->num, duty->den);
3220
3221 return 0;
3222 }
3223 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3224
clk_min_rate_show(struct seq_file * s,void * data)3225 static int clk_min_rate_show(struct seq_file *s, void *data)
3226 {
3227 struct clk_core *core = s->private;
3228 unsigned long min_rate, max_rate;
3229
3230 clk_prepare_lock();
3231 clk_core_get_boundaries(core, &min_rate, &max_rate);
3232 clk_prepare_unlock();
3233 seq_printf(s, "%lu\n", min_rate);
3234
3235 return 0;
3236 }
3237 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3238
clk_max_rate_show(struct seq_file * s,void * data)3239 static int clk_max_rate_show(struct seq_file *s, void *data)
3240 {
3241 struct clk_core *core = s->private;
3242 unsigned long min_rate, max_rate;
3243
3244 clk_prepare_lock();
3245 clk_core_get_boundaries(core, &min_rate, &max_rate);
3246 clk_prepare_unlock();
3247 seq_printf(s, "%lu\n", max_rate);
3248
3249 return 0;
3250 }
3251 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3252
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)3253 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3254 {
3255 struct dentry *root;
3256
3257 if (!core || !pdentry)
3258 return;
3259
3260 root = debugfs_create_dir(core->name, pdentry);
3261 core->dentry = root;
3262
3263 debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3264 &clk_rate_fops);
3265 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3266 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3267 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3268 debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3269 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3270 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3271 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3272 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3273 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3274 debugfs_create_file("clk_duty_cycle", 0444, root, core,
3275 &clk_duty_cycle_fops);
3276 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3277 debugfs_create_file("clk_prepare_enable", 0644, root, core,
3278 &clk_prepare_enable_fops);
3279 #endif
3280
3281 if (core->num_parents > 0)
3282 debugfs_create_file("clk_parent", 0444, root, core,
3283 ¤t_parent_fops);
3284
3285 if (core->num_parents > 1)
3286 debugfs_create_file("clk_possible_parents", 0444, root, core,
3287 &possible_parents_fops);
3288
3289 if (core->ops->debug_init)
3290 core->ops->debug_init(core->hw, core->dentry);
3291 }
3292
3293 /**
3294 * clk_debug_register - add a clk node to the debugfs clk directory
3295 * @core: the clk being added to the debugfs clk directory
3296 *
3297 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3298 * initialized. Otherwise it bails out early since the debugfs clk directory
3299 * will be created lazily by clk_debug_init as part of a late_initcall.
3300 */
clk_debug_register(struct clk_core * core)3301 static void clk_debug_register(struct clk_core *core)
3302 {
3303 mutex_lock(&clk_debug_lock);
3304 hlist_add_head(&core->debug_node, &clk_debug_list);
3305 if (inited)
3306 clk_debug_create_one(core, rootdir);
3307 mutex_unlock(&clk_debug_lock);
3308 }
3309
3310 /**
3311 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3312 * @core: the clk being removed from the debugfs clk directory
3313 *
3314 * Dynamically removes a clk and all its child nodes from the
3315 * debugfs clk directory if clk->dentry points to debugfs created by
3316 * clk_debug_register in __clk_core_init.
3317 */
clk_debug_unregister(struct clk_core * core)3318 static void clk_debug_unregister(struct clk_core *core)
3319 {
3320 mutex_lock(&clk_debug_lock);
3321 hlist_del_init(&core->debug_node);
3322 debugfs_remove_recursive(core->dentry);
3323 core->dentry = NULL;
3324 mutex_unlock(&clk_debug_lock);
3325 }
3326
3327 /**
3328 * clk_debug_init - lazily populate the debugfs clk directory
3329 *
3330 * clks are often initialized very early during boot before memory can be
3331 * dynamically allocated and well before debugfs is setup. This function
3332 * populates the debugfs clk directory once at boot-time when we know that
3333 * debugfs is setup. It should only be called once at boot-time, all other clks
3334 * added dynamically will be done so with clk_debug_register.
3335 */
clk_debug_init(void)3336 static int __init clk_debug_init(void)
3337 {
3338 struct clk_core *core;
3339
3340 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3341 pr_warn("\n");
3342 pr_warn("********************************************************************\n");
3343 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
3344 pr_warn("** **\n");
3345 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3346 pr_warn("** **\n");
3347 pr_warn("** This means that this kernel is built to expose clk operations **\n");
3348 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n");
3349 pr_warn("** to userspace, which may compromise security on your system. **\n");
3350 pr_warn("** **\n");
3351 pr_warn("** If you see this message and you are not debugging the **\n");
3352 pr_warn("** kernel, report this immediately to your vendor! **\n");
3353 pr_warn("** **\n");
3354 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
3355 pr_warn("********************************************************************\n");
3356 #endif
3357
3358 rootdir = debugfs_create_dir("clk", NULL);
3359
3360 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3361 &clk_summary_fops);
3362 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3363 &clk_dump_fops);
3364 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3365 &clk_summary_fops);
3366 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3367 &clk_dump_fops);
3368
3369 mutex_lock(&clk_debug_lock);
3370 hlist_for_each_entry(core, &clk_debug_list, debug_node)
3371 clk_debug_create_one(core, rootdir);
3372
3373 inited = 1;
3374 mutex_unlock(&clk_debug_lock);
3375
3376 return 0;
3377 }
3378 late_initcall(clk_debug_init);
3379 #else
clk_debug_register(struct clk_core * core)3380 static inline void clk_debug_register(struct clk_core *core) { }
clk_debug_unregister(struct clk_core * core)3381 static inline void clk_debug_unregister(struct clk_core *core)
3382 {
3383 }
3384 #endif
3385
clk_core_reparent_orphans_nolock(void)3386 static void clk_core_reparent_orphans_nolock(void)
3387 {
3388 struct clk_core *orphan;
3389 struct hlist_node *tmp2;
3390
3391 /*
3392 * walk the list of orphan clocks and reparent any that newly finds a
3393 * parent.
3394 */
3395 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3396 struct clk_core *parent = __clk_init_parent(orphan);
3397
3398 /*
3399 * We need to use __clk_set_parent_before() and _after() to
3400 * to properly migrate any prepare/enable count of the orphan
3401 * clock. This is important for CLK_IS_CRITICAL clocks, which
3402 * are enabled during init but might not have a parent yet.
3403 */
3404 if (parent) {
3405 /* update the clk tree topology */
3406 __clk_set_parent_before(orphan, parent);
3407 __clk_set_parent_after(orphan, parent, NULL);
3408 __clk_recalc_accuracies(orphan);
3409 __clk_recalc_rates(orphan, 0);
3410
3411 /*
3412 * __clk_init_parent() will set the initial req_rate to
3413 * 0 if the clock doesn't have clk_ops::recalc_rate and
3414 * is an orphan when it's registered.
3415 *
3416 * 'req_rate' is used by clk_set_rate_range() and
3417 * clk_put() to trigger a clk_set_rate() call whenever
3418 * the boundaries are modified. Let's make sure
3419 * 'req_rate' is set to something non-zero so that
3420 * clk_set_rate_range() doesn't drop the frequency.
3421 */
3422 orphan->req_rate = orphan->rate;
3423 }
3424 }
3425 }
3426
3427 /**
3428 * __clk_core_init - initialize the data structures in a struct clk_core
3429 * @core: clk_core being initialized
3430 *
3431 * Initializes the lists in struct clk_core, queries the hardware for the
3432 * parent and rate and sets them both.
3433 */
__clk_core_init(struct clk_core * core)3434 static int __clk_core_init(struct clk_core *core)
3435 {
3436 int ret;
3437 struct clk_core *parent;
3438 unsigned long rate;
3439 int phase;
3440
3441 if (!core)
3442 return -EINVAL;
3443
3444 clk_prepare_lock();
3445
3446 /*
3447 * Set hw->core after grabbing the prepare_lock to synchronize with
3448 * callers of clk_core_fill_parent_index() where we treat hw->core
3449 * being NULL as the clk not being registered yet. This is crucial so
3450 * that clks aren't parented until their parent is fully registered.
3451 */
3452 core->hw->core = core;
3453
3454 ret = clk_pm_runtime_get(core);
3455 if (ret)
3456 goto unlock;
3457
3458 /* check to see if a clock with this name is already registered */
3459 if (clk_core_lookup(core->name)) {
3460 pr_debug("%s: clk %s already initialized\n",
3461 __func__, core->name);
3462 ret = -EEXIST;
3463 goto out;
3464 }
3465
3466 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */
3467 if (core->ops->set_rate &&
3468 !((core->ops->round_rate || core->ops->determine_rate) &&
3469 core->ops->recalc_rate)) {
3470 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3471 __func__, core->name);
3472 ret = -EINVAL;
3473 goto out;
3474 }
3475
3476 if (core->ops->set_parent && !core->ops->get_parent) {
3477 pr_err("%s: %s must implement .get_parent & .set_parent\n",
3478 __func__, core->name);
3479 ret = -EINVAL;
3480 goto out;
3481 }
3482
3483 if (core->num_parents > 1 && !core->ops->get_parent) {
3484 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3485 __func__, core->name);
3486 ret = -EINVAL;
3487 goto out;
3488 }
3489
3490 if (core->ops->set_rate_and_parent &&
3491 !(core->ops->set_parent && core->ops->set_rate)) {
3492 pr_err("%s: %s must implement .set_parent & .set_rate\n",
3493 __func__, core->name);
3494 ret = -EINVAL;
3495 goto out;
3496 }
3497
3498 /*
3499 * optional platform-specific magic
3500 *
3501 * The .init callback is not used by any of the basic clock types, but
3502 * exists for weird hardware that must perform initialization magic for
3503 * CCF to get an accurate view of clock for any other callbacks. It may
3504 * also be used needs to perform dynamic allocations. Such allocation
3505 * must be freed in the terminate() callback.
3506 * This callback shall not be used to initialize the parameters state,
3507 * such as rate, parent, etc ...
3508 *
3509 * If it exist, this callback should called before any other callback of
3510 * the clock
3511 */
3512 if (core->ops->init) {
3513 ret = core->ops->init(core->hw);
3514 if (ret)
3515 goto out;
3516 }
3517
3518 parent = core->parent = __clk_init_parent(core);
3519
3520 /*
3521 * Populate core->parent if parent has already been clk_core_init'd. If
3522 * parent has not yet been clk_core_init'd then place clk in the orphan
3523 * list. If clk doesn't have any parents then place it in the root
3524 * clk list.
3525 *
3526 * Every time a new clk is clk_init'd then we walk the list of orphan
3527 * clocks and re-parent any that are children of the clock currently
3528 * being clk_init'd.
3529 */
3530 if (parent) {
3531 hlist_add_head(&core->child_node, &parent->children);
3532 core->orphan = parent->orphan;
3533 } else if (!core->num_parents) {
3534 hlist_add_head(&core->child_node, &clk_root_list);
3535 core->orphan = false;
3536 } else {
3537 hlist_add_head(&core->child_node, &clk_orphan_list);
3538 core->orphan = true;
3539 }
3540
3541 /*
3542 * Set clk's accuracy. The preferred method is to use
3543 * .recalc_accuracy. For simple clocks and lazy developers the default
3544 * fallback is to use the parent's accuracy. If a clock doesn't have a
3545 * parent (or is orphaned) then accuracy is set to zero (perfect
3546 * clock).
3547 */
3548 if (core->ops->recalc_accuracy)
3549 core->accuracy = core->ops->recalc_accuracy(core->hw,
3550 clk_core_get_accuracy_no_lock(parent));
3551 else if (parent)
3552 core->accuracy = parent->accuracy;
3553 else
3554 core->accuracy = 0;
3555
3556 /*
3557 * Set clk's phase by clk_core_get_phase() caching the phase.
3558 * Since a phase is by definition relative to its parent, just
3559 * query the current clock phase, or just assume it's in phase.
3560 */
3561 phase = clk_core_get_phase(core);
3562 if (phase < 0) {
3563 ret = phase;
3564 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3565 core->name);
3566 goto out;
3567 }
3568
3569 /*
3570 * Set clk's duty cycle.
3571 */
3572 clk_core_update_duty_cycle_nolock(core);
3573
3574 /*
3575 * Set clk's rate. The preferred method is to use .recalc_rate. For
3576 * simple clocks and lazy developers the default fallback is to use the
3577 * parent's rate. If a clock doesn't have a parent (or is orphaned)
3578 * then rate is set to zero.
3579 */
3580 if (core->ops->recalc_rate)
3581 rate = core->ops->recalc_rate(core->hw,
3582 clk_core_get_rate_nolock(parent));
3583 else if (parent)
3584 rate = parent->rate;
3585 else
3586 rate = 0;
3587 core->rate = core->req_rate = rate;
3588
3589 /*
3590 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3591 * don't get accidentally disabled when walking the orphan tree and
3592 * reparenting clocks
3593 */
3594 if (core->flags & CLK_IS_CRITICAL) {
3595 unsigned long flags;
3596
3597 ret = clk_core_prepare(core);
3598 if (ret) {
3599 pr_warn("%s: critical clk '%s' failed to prepare\n",
3600 __func__, core->name);
3601 goto out;
3602 }
3603
3604 flags = clk_enable_lock();
3605 ret = clk_core_enable(core);
3606 clk_enable_unlock(flags);
3607 if (ret) {
3608 pr_warn("%s: critical clk '%s' failed to enable\n",
3609 __func__, core->name);
3610 clk_core_unprepare(core);
3611 goto out;
3612 }
3613 }
3614
3615 clk_core_reparent_orphans_nolock();
3616
3617
3618 kref_init(&core->ref);
3619 out:
3620 clk_pm_runtime_put(core);
3621 unlock:
3622 if (ret) {
3623 hlist_del_init(&core->child_node);
3624 core->hw->core = NULL;
3625 }
3626
3627 clk_prepare_unlock();
3628
3629 if (!ret)
3630 clk_debug_register(core);
3631
3632 return ret;
3633 }
3634
3635 /**
3636 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3637 * @core: clk to add consumer to
3638 * @clk: consumer to link to a clk
3639 */
clk_core_link_consumer(struct clk_core * core,struct clk * clk)3640 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3641 {
3642 clk_prepare_lock();
3643 hlist_add_head(&clk->clks_node, &core->clks);
3644 clk_prepare_unlock();
3645 }
3646
3647 /**
3648 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3649 * @clk: consumer to unlink
3650 */
clk_core_unlink_consumer(struct clk * clk)3651 static void clk_core_unlink_consumer(struct clk *clk)
3652 {
3653 lockdep_assert_held(&prepare_lock);
3654 hlist_del(&clk->clks_node);
3655 }
3656
3657 /**
3658 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3659 * @core: clk to allocate a consumer for
3660 * @dev_id: string describing device name
3661 * @con_id: connection ID string on device
3662 *
3663 * Returns: clk consumer left unlinked from the consumer list
3664 */
alloc_clk(struct clk_core * core,const char * dev_id,const char * con_id)3665 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3666 const char *con_id)
3667 {
3668 struct clk *clk;
3669
3670 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3671 if (!clk)
3672 return ERR_PTR(-ENOMEM);
3673
3674 clk->core = core;
3675 clk->dev_id = dev_id;
3676 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3677 clk->max_rate = ULONG_MAX;
3678
3679 return clk;
3680 }
3681
3682 /**
3683 * free_clk - Free a clk consumer
3684 * @clk: clk consumer to free
3685 *
3686 * Note, this assumes the clk has been unlinked from the clk_core consumer
3687 * list.
3688 */
free_clk(struct clk * clk)3689 static void free_clk(struct clk *clk)
3690 {
3691 kfree_const(clk->con_id);
3692 kfree(clk);
3693 }
3694
3695 /**
3696 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3697 * a clk_hw
3698 * @dev: clk consumer device
3699 * @hw: clk_hw associated with the clk being consumed
3700 * @dev_id: string describing device name
3701 * @con_id: connection ID string on device
3702 *
3703 * This is the main function used to create a clk pointer for use by clk
3704 * consumers. It connects a consumer to the clk_core and clk_hw structures
3705 * used by the framework and clk provider respectively.
3706 */
clk_hw_create_clk(struct device * dev,struct clk_hw * hw,const char * dev_id,const char * con_id)3707 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3708 const char *dev_id, const char *con_id)
3709 {
3710 struct clk *clk;
3711 struct clk_core *core;
3712
3713 /* This is to allow this function to be chained to others */
3714 if (IS_ERR_OR_NULL(hw))
3715 return ERR_CAST(hw);
3716
3717 core = hw->core;
3718 clk = alloc_clk(core, dev_id, con_id);
3719 if (IS_ERR(clk))
3720 return clk;
3721 clk->dev = dev;
3722
3723 if (!try_module_get(core->owner)) {
3724 free_clk(clk);
3725 return ERR_PTR(-ENOENT);
3726 }
3727
3728 kref_get(&core->ref);
3729 clk_core_link_consumer(core, clk);
3730
3731 return clk;
3732 }
3733
clk_cpy_name(const char ** dst_p,const char * src,bool must_exist)3734 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3735 {
3736 const char *dst;
3737
3738 if (!src) {
3739 if (must_exist)
3740 return -EINVAL;
3741 return 0;
3742 }
3743
3744 *dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3745 if (!dst)
3746 return -ENOMEM;
3747
3748 return 0;
3749 }
3750
clk_core_populate_parent_map(struct clk_core * core,const struct clk_init_data * init)3751 static int clk_core_populate_parent_map(struct clk_core *core,
3752 const struct clk_init_data *init)
3753 {
3754 u8 num_parents = init->num_parents;
3755 const char * const *parent_names = init->parent_names;
3756 const struct clk_hw **parent_hws = init->parent_hws;
3757 const struct clk_parent_data *parent_data = init->parent_data;
3758 int i, ret = 0;
3759 struct clk_parent_map *parents, *parent;
3760
3761 if (!num_parents)
3762 return 0;
3763
3764 /*
3765 * Avoid unnecessary string look-ups of clk_core's possible parents by
3766 * having a cache of names/clk_hw pointers to clk_core pointers.
3767 */
3768 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3769 core->parents = parents;
3770 if (!parents)
3771 return -ENOMEM;
3772
3773 /* Copy everything over because it might be __initdata */
3774 for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3775 parent->index = -1;
3776 if (parent_names) {
3777 /* throw a WARN if any entries are NULL */
3778 WARN(!parent_names[i],
3779 "%s: invalid NULL in %s's .parent_names\n",
3780 __func__, core->name);
3781 ret = clk_cpy_name(&parent->name, parent_names[i],
3782 true);
3783 } else if (parent_data) {
3784 parent->hw = parent_data[i].hw;
3785 parent->index = parent_data[i].index;
3786 ret = clk_cpy_name(&parent->fw_name,
3787 parent_data[i].fw_name, false);
3788 if (!ret)
3789 ret = clk_cpy_name(&parent->name,
3790 parent_data[i].name,
3791 false);
3792 } else if (parent_hws) {
3793 parent->hw = parent_hws[i];
3794 } else {
3795 ret = -EINVAL;
3796 WARN(1, "Must specify parents if num_parents > 0\n");
3797 }
3798
3799 if (ret) {
3800 do {
3801 kfree_const(parents[i].name);
3802 kfree_const(parents[i].fw_name);
3803 } while (--i >= 0);
3804 kfree(parents);
3805
3806 return ret;
3807 }
3808 }
3809
3810 return 0;
3811 }
3812
clk_core_free_parent_map(struct clk_core * core)3813 static void clk_core_free_parent_map(struct clk_core *core)
3814 {
3815 int i = core->num_parents;
3816
3817 if (!core->num_parents)
3818 return;
3819
3820 while (--i >= 0) {
3821 kfree_const(core->parents[i].name);
3822 kfree_const(core->parents[i].fw_name);
3823 }
3824
3825 kfree(core->parents);
3826 }
3827
3828 static struct clk *
__clk_register(struct device * dev,struct device_node * np,struct clk_hw * hw)3829 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3830 {
3831 int ret;
3832 struct clk_core *core;
3833 const struct clk_init_data *init = hw->init;
3834
3835 /*
3836 * The init data is not supposed to be used outside of registration path.
3837 * Set it to NULL so that provider drivers can't use it either and so that
3838 * we catch use of hw->init early on in the core.
3839 */
3840 hw->init = NULL;
3841
3842 core = kzalloc(sizeof(*core), GFP_KERNEL);
3843 if (!core) {
3844 ret = -ENOMEM;
3845 goto fail_out;
3846 }
3847
3848 core->name = kstrdup_const(init->name, GFP_KERNEL);
3849 if (!core->name) {
3850 ret = -ENOMEM;
3851 goto fail_name;
3852 }
3853
3854 if (WARN_ON(!init->ops)) {
3855 ret = -EINVAL;
3856 goto fail_ops;
3857 }
3858 core->ops = init->ops;
3859
3860 if (dev && pm_runtime_enabled(dev))
3861 core->rpm_enabled = true;
3862 core->dev = dev;
3863 core->of_node = np;
3864 if (dev && dev->driver)
3865 core->owner = dev->driver->owner;
3866 core->hw = hw;
3867 core->flags = init->flags;
3868 core->num_parents = init->num_parents;
3869 core->min_rate = 0;
3870 core->max_rate = ULONG_MAX;
3871
3872 ret = clk_core_populate_parent_map(core, init);
3873 if (ret)
3874 goto fail_parents;
3875
3876 INIT_HLIST_HEAD(&core->clks);
3877
3878 /*
3879 * Don't call clk_hw_create_clk() here because that would pin the
3880 * provider module to itself and prevent it from ever being removed.
3881 */
3882 hw->clk = alloc_clk(core, NULL, NULL);
3883 if (IS_ERR(hw->clk)) {
3884 ret = PTR_ERR(hw->clk);
3885 goto fail_create_clk;
3886 }
3887
3888 clk_core_link_consumer(core, hw->clk);
3889
3890 ret = __clk_core_init(core);
3891 if (!ret)
3892 return hw->clk;
3893
3894 clk_prepare_lock();
3895 clk_core_unlink_consumer(hw->clk);
3896 clk_prepare_unlock();
3897
3898 free_clk(hw->clk);
3899 hw->clk = NULL;
3900
3901 fail_create_clk:
3902 clk_core_free_parent_map(core);
3903 fail_parents:
3904 fail_ops:
3905 kfree_const(core->name);
3906 fail_name:
3907 kfree(core);
3908 fail_out:
3909 return ERR_PTR(ret);
3910 }
3911
3912 /**
3913 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3914 * @dev: Device to get device node of
3915 *
3916 * Return: device node pointer of @dev, or the device node pointer of
3917 * @dev->parent if dev doesn't have a device node, or NULL if neither
3918 * @dev or @dev->parent have a device node.
3919 */
dev_or_parent_of_node(struct device * dev)3920 static struct device_node *dev_or_parent_of_node(struct device *dev)
3921 {
3922 struct device_node *np;
3923
3924 if (!dev)
3925 return NULL;
3926
3927 np = dev_of_node(dev);
3928 if (!np)
3929 np = dev_of_node(dev->parent);
3930
3931 return np;
3932 }
3933
3934 /**
3935 * clk_register - allocate a new clock, register it and return an opaque cookie
3936 * @dev: device that is registering this clock
3937 * @hw: link to hardware-specific clock data
3938 *
3939 * clk_register is the *deprecated* interface for populating the clock tree with
3940 * new clock nodes. Use clk_hw_register() instead.
3941 *
3942 * Returns: a pointer to the newly allocated struct clk which
3943 * cannot be dereferenced by driver code but may be used in conjunction with the
3944 * rest of the clock API. In the event of an error clk_register will return an
3945 * error code; drivers must test for an error code after calling clk_register.
3946 */
clk_register(struct device * dev,struct clk_hw * hw)3947 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3948 {
3949 return __clk_register(dev, dev_or_parent_of_node(dev), hw);
3950 }
3951 EXPORT_SYMBOL_GPL(clk_register);
3952
3953 /**
3954 * clk_hw_register - register a clk_hw and return an error code
3955 * @dev: device that is registering this clock
3956 * @hw: link to hardware-specific clock data
3957 *
3958 * clk_hw_register is the primary interface for populating the clock tree with
3959 * new clock nodes. It returns an integer equal to zero indicating success or
3960 * less than zero indicating failure. Drivers must test for an error code after
3961 * calling clk_hw_register().
3962 */
clk_hw_register(struct device * dev,struct clk_hw * hw)3963 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3964 {
3965 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
3966 hw));
3967 }
3968 EXPORT_SYMBOL_GPL(clk_hw_register);
3969
3970 /*
3971 * of_clk_hw_register - register a clk_hw and return an error code
3972 * @node: device_node of device that is registering this clock
3973 * @hw: link to hardware-specific clock data
3974 *
3975 * of_clk_hw_register() is the primary interface for populating the clock tree
3976 * with new clock nodes when a struct device is not available, but a struct
3977 * device_node is. It returns an integer equal to zero indicating success or
3978 * less than zero indicating failure. Drivers must test for an error code after
3979 * calling of_clk_hw_register().
3980 */
of_clk_hw_register(struct device_node * node,struct clk_hw * hw)3981 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3982 {
3983 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3984 }
3985 EXPORT_SYMBOL_GPL(of_clk_hw_register);
3986
3987 /* Free memory allocated for a clock. */
__clk_release(struct kref * ref)3988 static void __clk_release(struct kref *ref)
3989 {
3990 struct clk_core *core = container_of(ref, struct clk_core, ref);
3991
3992 lockdep_assert_held(&prepare_lock);
3993
3994 clk_core_free_parent_map(core);
3995 kfree_const(core->name);
3996 kfree(core);
3997 }
3998
3999 /*
4000 * Empty clk_ops for unregistered clocks. These are used temporarily
4001 * after clk_unregister() was called on a clock and until last clock
4002 * consumer calls clk_put() and the struct clk object is freed.
4003 */
clk_nodrv_prepare_enable(struct clk_hw * hw)4004 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4005 {
4006 return -ENXIO;
4007 }
4008
clk_nodrv_disable_unprepare(struct clk_hw * hw)4009 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4010 {
4011 WARN_ON_ONCE(1);
4012 }
4013
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)4014 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4015 unsigned long parent_rate)
4016 {
4017 return -ENXIO;
4018 }
4019
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)4020 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4021 {
4022 return -ENXIO;
4023 }
4024
4025 static const struct clk_ops clk_nodrv_ops = {
4026 .enable = clk_nodrv_prepare_enable,
4027 .disable = clk_nodrv_disable_unprepare,
4028 .prepare = clk_nodrv_prepare_enable,
4029 .unprepare = clk_nodrv_disable_unprepare,
4030 .set_rate = clk_nodrv_set_rate,
4031 .set_parent = clk_nodrv_set_parent,
4032 };
4033
clk_core_evict_parent_cache_subtree(struct clk_core * root,struct clk_core * target)4034 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4035 struct clk_core *target)
4036 {
4037 int i;
4038 struct clk_core *child;
4039
4040 for (i = 0; i < root->num_parents; i++)
4041 if (root->parents[i].core == target)
4042 root->parents[i].core = NULL;
4043
4044 hlist_for_each_entry(child, &root->children, child_node)
4045 clk_core_evict_parent_cache_subtree(child, target);
4046 }
4047
4048 /* Remove this clk from all parent caches */
clk_core_evict_parent_cache(struct clk_core * core)4049 static void clk_core_evict_parent_cache(struct clk_core *core)
4050 {
4051 struct hlist_head **lists;
4052 struct clk_core *root;
4053
4054 lockdep_assert_held(&prepare_lock);
4055
4056 for (lists = all_lists; *lists; lists++)
4057 hlist_for_each_entry(root, *lists, child_node)
4058 clk_core_evict_parent_cache_subtree(root, core);
4059
4060 }
4061
4062 /**
4063 * clk_unregister - unregister a currently registered clock
4064 * @clk: clock to unregister
4065 */
clk_unregister(struct clk * clk)4066 void clk_unregister(struct clk *clk)
4067 {
4068 unsigned long flags;
4069 const struct clk_ops *ops;
4070
4071 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4072 return;
4073
4074 clk_debug_unregister(clk->core);
4075
4076 clk_prepare_lock();
4077
4078 ops = clk->core->ops;
4079 if (ops == &clk_nodrv_ops) {
4080 pr_err("%s: unregistered clock: %s\n", __func__,
4081 clk->core->name);
4082 goto unlock;
4083 }
4084 /*
4085 * Assign empty clock ops for consumers that might still hold
4086 * a reference to this clock.
4087 */
4088 flags = clk_enable_lock();
4089 clk->core->ops = &clk_nodrv_ops;
4090 clk_enable_unlock(flags);
4091
4092 if (ops->terminate)
4093 ops->terminate(clk->core->hw);
4094
4095 if (!hlist_empty(&clk->core->children)) {
4096 struct clk_core *child;
4097 struct hlist_node *t;
4098
4099 /* Reparent all children to the orphan list. */
4100 hlist_for_each_entry_safe(child, t, &clk->core->children,
4101 child_node)
4102 clk_core_set_parent_nolock(child, NULL);
4103 }
4104
4105 clk_core_evict_parent_cache(clk->core);
4106
4107 hlist_del_init(&clk->core->child_node);
4108
4109 if (clk->core->prepare_count)
4110 pr_warn("%s: unregistering prepared clock: %s\n",
4111 __func__, clk->core->name);
4112
4113 if (clk->core->protect_count)
4114 pr_warn("%s: unregistering protected clock: %s\n",
4115 __func__, clk->core->name);
4116
4117 kref_put(&clk->core->ref, __clk_release);
4118 free_clk(clk);
4119 unlock:
4120 clk_prepare_unlock();
4121 }
4122 EXPORT_SYMBOL_GPL(clk_unregister);
4123
4124 /**
4125 * clk_hw_unregister - unregister a currently registered clk_hw
4126 * @hw: hardware-specific clock data to unregister
4127 */
clk_hw_unregister(struct clk_hw * hw)4128 void clk_hw_unregister(struct clk_hw *hw)
4129 {
4130 clk_unregister(hw->clk);
4131 }
4132 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4133
devm_clk_release(struct device * dev,void * res)4134 static void devm_clk_release(struct device *dev, void *res)
4135 {
4136 clk_unregister(*(struct clk **)res);
4137 }
4138
devm_clk_hw_release(struct device * dev,void * res)4139 static void devm_clk_hw_release(struct device *dev, void *res)
4140 {
4141 clk_hw_unregister(*(struct clk_hw **)res);
4142 }
4143
4144 /**
4145 * devm_clk_register - resource managed clk_register()
4146 * @dev: device that is registering this clock
4147 * @hw: link to hardware-specific clock data
4148 *
4149 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4150 *
4151 * Clocks returned from this function are automatically clk_unregister()ed on
4152 * driver detach. See clk_register() for more information.
4153 */
devm_clk_register(struct device * dev,struct clk_hw * hw)4154 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4155 {
4156 struct clk *clk;
4157 struct clk **clkp;
4158
4159 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4160 if (!clkp)
4161 return ERR_PTR(-ENOMEM);
4162
4163 clk = clk_register(dev, hw);
4164 if (!IS_ERR(clk)) {
4165 *clkp = clk;
4166 devres_add(dev, clkp);
4167 } else {
4168 devres_free(clkp);
4169 }
4170
4171 return clk;
4172 }
4173 EXPORT_SYMBOL_GPL(devm_clk_register);
4174
4175 /**
4176 * devm_clk_hw_register - resource managed clk_hw_register()
4177 * @dev: device that is registering this clock
4178 * @hw: link to hardware-specific clock data
4179 *
4180 * Managed clk_hw_register(). Clocks registered by this function are
4181 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4182 * for more information.
4183 */
devm_clk_hw_register(struct device * dev,struct clk_hw * hw)4184 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4185 {
4186 struct clk_hw **hwp;
4187 int ret;
4188
4189 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
4190 if (!hwp)
4191 return -ENOMEM;
4192
4193 ret = clk_hw_register(dev, hw);
4194 if (!ret) {
4195 *hwp = hw;
4196 devres_add(dev, hwp);
4197 } else {
4198 devres_free(hwp);
4199 }
4200
4201 return ret;
4202 }
4203 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4204
devm_clk_match(struct device * dev,void * res,void * data)4205 static int devm_clk_match(struct device *dev, void *res, void *data)
4206 {
4207 struct clk *c = res;
4208 if (WARN_ON(!c))
4209 return 0;
4210 return c == data;
4211 }
4212
devm_clk_hw_match(struct device * dev,void * res,void * data)4213 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4214 {
4215 struct clk_hw *hw = res;
4216
4217 if (WARN_ON(!hw))
4218 return 0;
4219 return hw == data;
4220 }
4221
4222 /**
4223 * devm_clk_unregister - resource managed clk_unregister()
4224 * @dev: device that is unregistering the clock data
4225 * @clk: clock to unregister
4226 *
4227 * Deallocate a clock allocated with devm_clk_register(). Normally
4228 * this function will not need to be called and the resource management
4229 * code will ensure that the resource is freed.
4230 */
devm_clk_unregister(struct device * dev,struct clk * clk)4231 void devm_clk_unregister(struct device *dev, struct clk *clk)
4232 {
4233 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
4234 }
4235 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4236
4237 /**
4238 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4239 * @dev: device that is unregistering the hardware-specific clock data
4240 * @hw: link to hardware-specific clock data
4241 *
4242 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4243 * this function will not need to be called and the resource management
4244 * code will ensure that the resource is freed.
4245 */
devm_clk_hw_unregister(struct device * dev,struct clk_hw * hw)4246 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4247 {
4248 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4249 hw));
4250 }
4251 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4252
4253 /*
4254 * clkdev helpers
4255 */
4256
__clk_put(struct clk * clk)4257 void __clk_put(struct clk *clk)
4258 {
4259 struct module *owner;
4260
4261 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4262 return;
4263
4264 clk_prepare_lock();
4265
4266 /*
4267 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4268 * given user should be balanced with calls to clk_rate_exclusive_put()
4269 * and by that same consumer
4270 */
4271 if (WARN_ON(clk->exclusive_count)) {
4272 /* We voiced our concern, let's sanitize the situation */
4273 clk->core->protect_count -= (clk->exclusive_count - 1);
4274 clk_core_rate_unprotect(clk->core);
4275 clk->exclusive_count = 0;
4276 }
4277
4278 hlist_del(&clk->clks_node);
4279 if (clk->min_rate > clk->core->req_rate ||
4280 clk->max_rate < clk->core->req_rate)
4281 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4282
4283 owner = clk->core->owner;
4284 kref_put(&clk->core->ref, __clk_release);
4285
4286 clk_prepare_unlock();
4287
4288 module_put(owner);
4289
4290 free_clk(clk);
4291 }
4292
4293 /*** clk rate change notifiers ***/
4294
4295 /**
4296 * clk_notifier_register - add a clk rate change notifier
4297 * @clk: struct clk * to watch
4298 * @nb: struct notifier_block * with callback info
4299 *
4300 * Request notification when clk's rate changes. This uses an SRCU
4301 * notifier because we want it to block and notifier unregistrations are
4302 * uncommon. The callbacks associated with the notifier must not
4303 * re-enter into the clk framework by calling any top-level clk APIs;
4304 * this will cause a nested prepare_lock mutex.
4305 *
4306 * In all notification cases (pre, post and abort rate change) the original
4307 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4308 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4309 *
4310 * clk_notifier_register() must be called from non-atomic context.
4311 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4312 * allocation failure; otherwise, passes along the return value of
4313 * srcu_notifier_chain_register().
4314 */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)4315 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4316 {
4317 struct clk_notifier *cn;
4318 int ret = -ENOMEM;
4319
4320 if (!clk || !nb)
4321 return -EINVAL;
4322
4323 clk_prepare_lock();
4324
4325 /* search the list of notifiers for this clk */
4326 list_for_each_entry(cn, &clk_notifier_list, node)
4327 if (cn->clk == clk)
4328 goto found;
4329
4330 /* if clk wasn't in the notifier list, allocate new clk_notifier */
4331 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4332 if (!cn)
4333 goto out;
4334
4335 cn->clk = clk;
4336 srcu_init_notifier_head(&cn->notifier_head);
4337
4338 list_add(&cn->node, &clk_notifier_list);
4339
4340 found:
4341 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4342
4343 clk->core->notifier_count++;
4344
4345 out:
4346 clk_prepare_unlock();
4347
4348 return ret;
4349 }
4350 EXPORT_SYMBOL_GPL(clk_notifier_register);
4351
4352 /**
4353 * clk_notifier_unregister - remove a clk rate change notifier
4354 * @clk: struct clk *
4355 * @nb: struct notifier_block * with callback info
4356 *
4357 * Request no further notification for changes to 'clk' and frees memory
4358 * allocated in clk_notifier_register.
4359 *
4360 * Returns -EINVAL if called with null arguments; otherwise, passes
4361 * along the return value of srcu_notifier_chain_unregister().
4362 */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)4363 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4364 {
4365 struct clk_notifier *cn;
4366 int ret = -ENOENT;
4367
4368 if (!clk || !nb)
4369 return -EINVAL;
4370
4371 clk_prepare_lock();
4372
4373 list_for_each_entry(cn, &clk_notifier_list, node) {
4374 if (cn->clk == clk) {
4375 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4376
4377 clk->core->notifier_count--;
4378
4379 /* XXX the notifier code should handle this better */
4380 if (!cn->notifier_head.head) {
4381 srcu_cleanup_notifier_head(&cn->notifier_head);
4382 list_del(&cn->node);
4383 kfree(cn);
4384 }
4385 break;
4386 }
4387 }
4388
4389 clk_prepare_unlock();
4390
4391 return ret;
4392 }
4393 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4394
4395 #ifdef CONFIG_OF
clk_core_reparent_orphans(void)4396 static void clk_core_reparent_orphans(void)
4397 {
4398 clk_prepare_lock();
4399 clk_core_reparent_orphans_nolock();
4400 clk_prepare_unlock();
4401 }
4402
4403 /**
4404 * struct of_clk_provider - Clock provider registration structure
4405 * @link: Entry in global list of clock providers
4406 * @node: Pointer to device tree node of clock provider
4407 * @get: Get clock callback. Returns NULL or a struct clk for the
4408 * given clock specifier
4409 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a
4410 * struct clk_hw for the given clock specifier
4411 * @data: context pointer to be passed into @get callback
4412 */
4413 struct of_clk_provider {
4414 struct list_head link;
4415
4416 struct device_node *node;
4417 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4418 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4419 void *data;
4420 };
4421
4422 extern struct of_device_id __clk_of_table;
4423 static const struct of_device_id __clk_of_table_sentinel
4424 __used __section("__clk_of_table_end");
4425
4426 static LIST_HEAD(of_clk_providers);
4427 static DEFINE_MUTEX(of_clk_mutex);
4428
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)4429 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4430 void *data)
4431 {
4432 return data;
4433 }
4434 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4435
of_clk_hw_simple_get(struct of_phandle_args * clkspec,void * data)4436 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4437 {
4438 return data;
4439 }
4440 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4441
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)4442 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4443 {
4444 struct clk_onecell_data *clk_data = data;
4445 unsigned int idx = clkspec->args[0];
4446
4447 if (idx >= clk_data->clk_num) {
4448 pr_err("%s: invalid clock index %u\n", __func__, idx);
4449 return ERR_PTR(-EINVAL);
4450 }
4451
4452 return clk_data->clks[idx];
4453 }
4454 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4455
4456 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args * clkspec,void * data)4457 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4458 {
4459 struct clk_hw_onecell_data *hw_data = data;
4460 unsigned int idx = clkspec->args[0];
4461
4462 if (idx >= hw_data->num) {
4463 pr_err("%s: invalid index %u\n", __func__, idx);
4464 return ERR_PTR(-EINVAL);
4465 }
4466
4467 return hw_data->hws[idx];
4468 }
4469 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4470
4471 /**
4472 * of_clk_add_provider() - Register a clock provider for a node
4473 * @np: Device node pointer associated with clock provider
4474 * @clk_src_get: callback for decoding clock
4475 * @data: context pointer for @clk_src_get callback.
4476 *
4477 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4478 */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)4479 int of_clk_add_provider(struct device_node *np,
4480 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4481 void *data),
4482 void *data)
4483 {
4484 struct of_clk_provider *cp;
4485 int ret;
4486
4487 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4488 if (!cp)
4489 return -ENOMEM;
4490
4491 cp->node = of_node_get(np);
4492 cp->data = data;
4493 cp->get = clk_src_get;
4494
4495 mutex_lock(&of_clk_mutex);
4496 list_add(&cp->link, &of_clk_providers);
4497 mutex_unlock(&of_clk_mutex);
4498 pr_debug("Added clock from %pOF\n", np);
4499
4500 clk_core_reparent_orphans();
4501
4502 ret = of_clk_set_defaults(np, true);
4503 if (ret < 0)
4504 of_clk_del_provider(np);
4505
4506 return ret;
4507 }
4508 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4509
4510 /**
4511 * of_clk_add_hw_provider() - Register a clock provider for a node
4512 * @np: Device node pointer associated with clock provider
4513 * @get: callback for decoding clk_hw
4514 * @data: context pointer for @get callback.
4515 */
of_clk_add_hw_provider(struct device_node * np,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4516 int of_clk_add_hw_provider(struct device_node *np,
4517 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4518 void *data),
4519 void *data)
4520 {
4521 struct of_clk_provider *cp;
4522 int ret;
4523
4524 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4525 if (!cp)
4526 return -ENOMEM;
4527
4528 cp->node = of_node_get(np);
4529 cp->data = data;
4530 cp->get_hw = get;
4531
4532 mutex_lock(&of_clk_mutex);
4533 list_add(&cp->link, &of_clk_providers);
4534 mutex_unlock(&of_clk_mutex);
4535 pr_debug("Added clk_hw provider from %pOF\n", np);
4536
4537 clk_core_reparent_orphans();
4538
4539 ret = of_clk_set_defaults(np, true);
4540 if (ret < 0)
4541 of_clk_del_provider(np);
4542
4543 return ret;
4544 }
4545 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4546
devm_of_clk_release_provider(struct device * dev,void * res)4547 static void devm_of_clk_release_provider(struct device *dev, void *res)
4548 {
4549 of_clk_del_provider(*(struct device_node **)res);
4550 }
4551
4552 /*
4553 * We allow a child device to use its parent device as the clock provider node
4554 * for cases like MFD sub-devices where the child device driver wants to use
4555 * devm_*() APIs but not list the device in DT as a sub-node.
4556 */
get_clk_provider_node(struct device * dev)4557 static struct device_node *get_clk_provider_node(struct device *dev)
4558 {
4559 struct device_node *np, *parent_np;
4560
4561 np = dev->of_node;
4562 parent_np = dev->parent ? dev->parent->of_node : NULL;
4563
4564 if (!of_find_property(np, "#clock-cells", NULL))
4565 if (of_find_property(parent_np, "#clock-cells", NULL))
4566 np = parent_np;
4567
4568 return np;
4569 }
4570
4571 /**
4572 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4573 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4574 * @get: callback for decoding clk_hw
4575 * @data: context pointer for @get callback
4576 *
4577 * Registers clock provider for given device's node. If the device has no DT
4578 * node or if the device node lacks of clock provider information (#clock-cells)
4579 * then the parent device's node is scanned for this information. If parent node
4580 * has the #clock-cells then it is used in registration. Provider is
4581 * automatically released at device exit.
4582 *
4583 * Return: 0 on success or an errno on failure.
4584 */
devm_of_clk_add_hw_provider(struct device * dev,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4585 int devm_of_clk_add_hw_provider(struct device *dev,
4586 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4587 void *data),
4588 void *data)
4589 {
4590 struct device_node **ptr, *np;
4591 int ret;
4592
4593 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4594 GFP_KERNEL);
4595 if (!ptr)
4596 return -ENOMEM;
4597
4598 np = get_clk_provider_node(dev);
4599 ret = of_clk_add_hw_provider(np, get, data);
4600 if (!ret) {
4601 *ptr = np;
4602 devres_add(dev, ptr);
4603 } else {
4604 devres_free(ptr);
4605 }
4606
4607 return ret;
4608 }
4609 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4610
4611 /**
4612 * of_clk_del_provider() - Remove a previously registered clock provider
4613 * @np: Device node pointer associated with clock provider
4614 */
of_clk_del_provider(struct device_node * np)4615 void of_clk_del_provider(struct device_node *np)
4616 {
4617 struct of_clk_provider *cp;
4618
4619 mutex_lock(&of_clk_mutex);
4620 list_for_each_entry(cp, &of_clk_providers, link) {
4621 if (cp->node == np) {
4622 list_del(&cp->link);
4623 of_node_put(cp->node);
4624 kfree(cp);
4625 break;
4626 }
4627 }
4628 mutex_unlock(&of_clk_mutex);
4629 }
4630 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4631
devm_clk_provider_match(struct device * dev,void * res,void * data)4632 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4633 {
4634 struct device_node **np = res;
4635
4636 if (WARN_ON(!np || !*np))
4637 return 0;
4638
4639 return *np == data;
4640 }
4641
4642 /**
4643 * devm_of_clk_del_provider() - Remove clock provider registered using devm
4644 * @dev: Device to whose lifetime the clock provider was bound
4645 */
devm_of_clk_del_provider(struct device * dev)4646 void devm_of_clk_del_provider(struct device *dev)
4647 {
4648 int ret;
4649 struct device_node *np = get_clk_provider_node(dev);
4650
4651 ret = devres_release(dev, devm_of_clk_release_provider,
4652 devm_clk_provider_match, np);
4653
4654 WARN_ON(ret);
4655 }
4656 EXPORT_SYMBOL(devm_of_clk_del_provider);
4657
4658 /**
4659 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4660 * @np: device node to parse clock specifier from
4661 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4662 * @name: clock name to find and parse. If name is NULL, the index is used
4663 * @out_args: Result of parsing the clock specifier
4664 *
4665 * Parses a device node's "clocks" and "clock-names" properties to find the
4666 * phandle and cells for the index or name that is desired. The resulting clock
4667 * specifier is placed into @out_args, or an errno is returned when there's a
4668 * parsing error. The @index argument is ignored if @name is non-NULL.
4669 *
4670 * Example:
4671 *
4672 * phandle1: clock-controller@1 {
4673 * #clock-cells = <2>;
4674 * }
4675 *
4676 * phandle2: clock-controller@2 {
4677 * #clock-cells = <1>;
4678 * }
4679 *
4680 * clock-consumer@3 {
4681 * clocks = <&phandle1 1 2 &phandle2 3>;
4682 * clock-names = "name1", "name2";
4683 * }
4684 *
4685 * To get a device_node for `clock-controller@2' node you may call this
4686 * function a few different ways:
4687 *
4688 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4689 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4690 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4691 *
4692 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4693 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4694 * the "clock-names" property of @np.
4695 */
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)4696 static int of_parse_clkspec(const struct device_node *np, int index,
4697 const char *name, struct of_phandle_args *out_args)
4698 {
4699 int ret = -ENOENT;
4700
4701 /* Walk up the tree of devices looking for a clock property that matches */
4702 while (np) {
4703 /*
4704 * For named clocks, first look up the name in the
4705 * "clock-names" property. If it cannot be found, then index
4706 * will be an error code and of_parse_phandle_with_args() will
4707 * return -EINVAL.
4708 */
4709 if (name)
4710 index = of_property_match_string(np, "clock-names", name);
4711 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4712 index, out_args);
4713 if (!ret)
4714 break;
4715 if (name && index >= 0)
4716 break;
4717
4718 /*
4719 * No matching clock found on this node. If the parent node
4720 * has a "clock-ranges" property, then we can try one of its
4721 * clocks.
4722 */
4723 np = np->parent;
4724 if (np && !of_get_property(np, "clock-ranges", NULL))
4725 break;
4726 index = 0;
4727 }
4728
4729 return ret;
4730 }
4731
4732 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider * provider,struct of_phandle_args * clkspec)4733 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4734 struct of_phandle_args *clkspec)
4735 {
4736 struct clk *clk;
4737
4738 if (provider->get_hw)
4739 return provider->get_hw(clkspec, provider->data);
4740
4741 clk = provider->get(clkspec, provider->data);
4742 if (IS_ERR(clk))
4743 return ERR_CAST(clk);
4744 return __clk_get_hw(clk);
4745 }
4746
4747 static struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)4748 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4749 {
4750 struct of_clk_provider *provider;
4751 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4752
4753 if (!clkspec)
4754 return ERR_PTR(-EINVAL);
4755
4756 mutex_lock(&of_clk_mutex);
4757 list_for_each_entry(provider, &of_clk_providers, link) {
4758 if (provider->node == clkspec->np) {
4759 hw = __of_clk_get_hw_from_provider(provider, clkspec);
4760 if (!IS_ERR(hw))
4761 break;
4762 }
4763 }
4764 mutex_unlock(&of_clk_mutex);
4765
4766 return hw;
4767 }
4768
4769 /**
4770 * of_clk_get_from_provider() - Lookup a clock from a clock provider
4771 * @clkspec: pointer to a clock specifier data structure
4772 *
4773 * This function looks up a struct clk from the registered list of clock
4774 * providers, an input is a clock specifier data structure as returned
4775 * from the of_parse_phandle_with_args() function call.
4776 */
of_clk_get_from_provider(struct of_phandle_args * clkspec)4777 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4778 {
4779 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4780
4781 return clk_hw_create_clk(NULL, hw, NULL, __func__);
4782 }
4783 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4784
of_clk_get_hw(struct device_node * np,int index,const char * con_id)4785 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4786 const char *con_id)
4787 {
4788 int ret;
4789 struct clk_hw *hw;
4790 struct of_phandle_args clkspec;
4791
4792 ret = of_parse_clkspec(np, index, con_id, &clkspec);
4793 if (ret)
4794 return ERR_PTR(ret);
4795
4796 hw = of_clk_get_hw_from_clkspec(&clkspec);
4797 of_node_put(clkspec.np);
4798
4799 return hw;
4800 }
4801
__of_clk_get(struct device_node * np,int index,const char * dev_id,const char * con_id)4802 static struct clk *__of_clk_get(struct device_node *np,
4803 int index, const char *dev_id,
4804 const char *con_id)
4805 {
4806 struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4807
4808 return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4809 }
4810
of_clk_get(struct device_node * np,int index)4811 struct clk *of_clk_get(struct device_node *np, int index)
4812 {
4813 return __of_clk_get(np, index, np->full_name, NULL);
4814 }
4815 EXPORT_SYMBOL(of_clk_get);
4816
4817 /**
4818 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4819 * @np: pointer to clock consumer node
4820 * @name: name of consumer's clock input, or NULL for the first clock reference
4821 *
4822 * This function parses the clocks and clock-names properties,
4823 * and uses them to look up the struct clk from the registered list of clock
4824 * providers.
4825 */
of_clk_get_by_name(struct device_node * np,const char * name)4826 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4827 {
4828 if (!np)
4829 return ERR_PTR(-ENOENT);
4830
4831 return __of_clk_get(np, 0, np->full_name, name);
4832 }
4833 EXPORT_SYMBOL(of_clk_get_by_name);
4834
4835 /**
4836 * of_clk_get_parent_count() - Count the number of clocks a device node has
4837 * @np: device node to count
4838 *
4839 * Returns: The number of clocks that are possible parents of this node
4840 */
of_clk_get_parent_count(const struct device_node * np)4841 unsigned int of_clk_get_parent_count(const struct device_node *np)
4842 {
4843 int count;
4844
4845 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4846 if (count < 0)
4847 return 0;
4848
4849 return count;
4850 }
4851 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4852
of_clk_get_parent_name(const struct device_node * np,int index)4853 const char *of_clk_get_parent_name(const struct device_node *np, int index)
4854 {
4855 struct of_phandle_args clkspec;
4856 struct property *prop;
4857 const char *clk_name;
4858 const __be32 *vp;
4859 u32 pv;
4860 int rc;
4861 int count;
4862 struct clk *clk;
4863
4864 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4865 &clkspec);
4866 if (rc)
4867 return NULL;
4868
4869 index = clkspec.args_count ? clkspec.args[0] : 0;
4870 count = 0;
4871
4872 /* if there is an indices property, use it to transfer the index
4873 * specified into an array offset for the clock-output-names property.
4874 */
4875 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4876 if (index == pv) {
4877 index = count;
4878 break;
4879 }
4880 count++;
4881 }
4882 /* We went off the end of 'clock-indices' without finding it */
4883 if (prop && !vp)
4884 return NULL;
4885
4886 if (of_property_read_string_index(clkspec.np, "clock-output-names",
4887 index,
4888 &clk_name) < 0) {
4889 /*
4890 * Best effort to get the name if the clock has been
4891 * registered with the framework. If the clock isn't
4892 * registered, we return the node name as the name of
4893 * the clock as long as #clock-cells = 0.
4894 */
4895 clk = of_clk_get_from_provider(&clkspec);
4896 if (IS_ERR(clk)) {
4897 if (clkspec.args_count == 0)
4898 clk_name = clkspec.np->name;
4899 else
4900 clk_name = NULL;
4901 } else {
4902 clk_name = __clk_get_name(clk);
4903 clk_put(clk);
4904 }
4905 }
4906
4907
4908 of_node_put(clkspec.np);
4909 return clk_name;
4910 }
4911 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4912
4913 /**
4914 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4915 * number of parents
4916 * @np: Device node pointer associated with clock provider
4917 * @parents: pointer to char array that hold the parents' names
4918 * @size: size of the @parents array
4919 *
4920 * Return: number of parents for the clock node.
4921 */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)4922 int of_clk_parent_fill(struct device_node *np, const char **parents,
4923 unsigned int size)
4924 {
4925 unsigned int i = 0;
4926
4927 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4928 i++;
4929
4930 return i;
4931 }
4932 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4933
4934 struct clock_provider {
4935 void (*clk_init_cb)(struct device_node *);
4936 struct device_node *np;
4937 struct list_head node;
4938 };
4939
4940 /*
4941 * This function looks for a parent clock. If there is one, then it
4942 * checks that the provider for this parent clock was initialized, in
4943 * this case the parent clock will be ready.
4944 */
parent_ready(struct device_node * np)4945 static int parent_ready(struct device_node *np)
4946 {
4947 int i = 0;
4948
4949 while (true) {
4950 struct clk *clk = of_clk_get(np, i);
4951
4952 /* this parent is ready we can check the next one */
4953 if (!IS_ERR(clk)) {
4954 clk_put(clk);
4955 i++;
4956 continue;
4957 }
4958
4959 /* at least one parent is not ready, we exit now */
4960 if (PTR_ERR(clk) == -EPROBE_DEFER)
4961 return 0;
4962
4963 /*
4964 * Here we make assumption that the device tree is
4965 * written correctly. So an error means that there is
4966 * no more parent. As we didn't exit yet, then the
4967 * previous parent are ready. If there is no clock
4968 * parent, no need to wait for them, then we can
4969 * consider their absence as being ready
4970 */
4971 return 1;
4972 }
4973 }
4974
4975 /**
4976 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4977 * @np: Device node pointer associated with clock provider
4978 * @index: clock index
4979 * @flags: pointer to top-level framework flags
4980 *
4981 * Detects if the clock-critical property exists and, if so, sets the
4982 * corresponding CLK_IS_CRITICAL flag.
4983 *
4984 * Do not use this function. It exists only for legacy Device Tree
4985 * bindings, such as the one-clock-per-node style that are outdated.
4986 * Those bindings typically put all clock data into .dts and the Linux
4987 * driver has no clock data, thus making it impossible to set this flag
4988 * correctly from the driver. Only those drivers may call
4989 * of_clk_detect_critical from their setup functions.
4990 *
4991 * Return: error code or zero on success
4992 */
of_clk_detect_critical(struct device_node * np,int index,unsigned long * flags)4993 int of_clk_detect_critical(struct device_node *np, int index,
4994 unsigned long *flags)
4995 {
4996 struct property *prop;
4997 const __be32 *cur;
4998 uint32_t idx;
4999
5000 if (!np || !flags)
5001 return -EINVAL;
5002
5003 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5004 if (index == idx)
5005 *flags |= CLK_IS_CRITICAL;
5006
5007 return 0;
5008 }
5009
5010 /**
5011 * of_clk_init() - Scan and init clock providers from the DT
5012 * @matches: array of compatible values and init functions for providers.
5013 *
5014 * This function scans the device tree for matching clock providers
5015 * and calls their initialization functions. It also does it by trying
5016 * to follow the dependencies.
5017 */
of_clk_init(const struct of_device_id * matches)5018 void __init of_clk_init(const struct of_device_id *matches)
5019 {
5020 const struct of_device_id *match;
5021 struct device_node *np;
5022 struct clock_provider *clk_provider, *next;
5023 bool is_init_done;
5024 bool force = false;
5025 LIST_HEAD(clk_provider_list);
5026
5027 if (!matches)
5028 matches = &__clk_of_table;
5029
5030 /* First prepare the list of the clocks providers */
5031 for_each_matching_node_and_match(np, matches, &match) {
5032 struct clock_provider *parent;
5033
5034 if (!of_device_is_available(np))
5035 continue;
5036
5037 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5038 if (!parent) {
5039 list_for_each_entry_safe(clk_provider, next,
5040 &clk_provider_list, node) {
5041 list_del(&clk_provider->node);
5042 of_node_put(clk_provider->np);
5043 kfree(clk_provider);
5044 }
5045 of_node_put(np);
5046 return;
5047 }
5048
5049 parent->clk_init_cb = match->data;
5050 parent->np = of_node_get(np);
5051 list_add_tail(&parent->node, &clk_provider_list);
5052 }
5053
5054 while (!list_empty(&clk_provider_list)) {
5055 is_init_done = false;
5056 list_for_each_entry_safe(clk_provider, next,
5057 &clk_provider_list, node) {
5058 if (force || parent_ready(clk_provider->np)) {
5059
5060 /* Don't populate platform devices */
5061 of_node_set_flag(clk_provider->np,
5062 OF_POPULATED);
5063
5064 clk_provider->clk_init_cb(clk_provider->np);
5065 of_clk_set_defaults(clk_provider->np, true);
5066
5067 list_del(&clk_provider->node);
5068 of_node_put(clk_provider->np);
5069 kfree(clk_provider);
5070 is_init_done = true;
5071 }
5072 }
5073
5074 /*
5075 * We didn't manage to initialize any of the
5076 * remaining providers during the last loop, so now we
5077 * initialize all the remaining ones unconditionally
5078 * in case the clock parent was not mandatory
5079 */
5080 if (!is_init_done)
5081 force = true;
5082 }
5083 }
5084 #endif
5085