1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/workqueue.h>
13 #include <linux/can.h>
14 #include <linux/can/can-ml.h>
15 #include <linux/can/dev.h>
16 #include <linux/can/skb.h>
17 #include <linux/can/netlink.h>
18 #include <linux/can/led.h>
19 #include <linux/of.h>
20 #include <net/rtnetlink.h>
21
22 #define MOD_DESC "CAN device driver interface"
23
24 MODULE_DESCRIPTION(MOD_DESC);
25 MODULE_LICENSE("GPL v2");
26 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
27
28 /* CAN DLC to real data length conversion helpers */
29
30 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
31 8, 12, 16, 20, 24, 32, 48, 64};
32
33 /* get data length from can_dlc with sanitized can_dlc */
can_dlc2len(u8 can_dlc)34 u8 can_dlc2len(u8 can_dlc)
35 {
36 return dlc2len[can_dlc & 0x0F];
37 }
38 EXPORT_SYMBOL_GPL(can_dlc2len);
39
40 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
41 9, 9, 9, 9, /* 9 - 12 */
42 10, 10, 10, 10, /* 13 - 16 */
43 11, 11, 11, 11, /* 17 - 20 */
44 12, 12, 12, 12, /* 21 - 24 */
45 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
46 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
47 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
48 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
49 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
50
51 /* map the sanitized data length to an appropriate data length code */
can_len2dlc(u8 len)52 u8 can_len2dlc(u8 len)
53 {
54 if (unlikely(len > 64))
55 return 0xF;
56
57 return len2dlc[len];
58 }
59 EXPORT_SYMBOL_GPL(can_len2dlc);
60
61 #ifdef CONFIG_CAN_CALC_BITTIMING
62 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
63
64 /* Bit-timing calculation derived from:
65 *
66 * Code based on LinCAN sources and H8S2638 project
67 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
68 * Copyright 2005 Stanislav Marek
69 * email: pisa@cmp.felk.cvut.cz
70 *
71 * Calculates proper bit-timing parameters for a specified bit-rate
72 * and sample-point, which can then be used to set the bit-timing
73 * registers of the CAN controller. You can find more information
74 * in the header file linux/can/netlink.h.
75 */
76 static int
can_update_sample_point(const struct can_bittiming_const * btc,unsigned int sample_point_nominal,unsigned int tseg,unsigned int * tseg1_ptr,unsigned int * tseg2_ptr,unsigned int * sample_point_error_ptr)77 can_update_sample_point(const struct can_bittiming_const *btc,
78 unsigned int sample_point_nominal, unsigned int tseg,
79 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
80 unsigned int *sample_point_error_ptr)
81 {
82 unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
83 unsigned int sample_point, best_sample_point = 0;
84 unsigned int tseg1, tseg2;
85 int i;
86
87 for (i = 0; i <= 1; i++) {
88 tseg2 = tseg + CAN_SYNC_SEG -
89 (sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
90 1000 - i;
91 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
92 tseg1 = tseg - tseg2;
93 if (tseg1 > btc->tseg1_max) {
94 tseg1 = btc->tseg1_max;
95 tseg2 = tseg - tseg1;
96 }
97
98 sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
99 (tseg + CAN_SYNC_SEG);
100 sample_point_error = abs(sample_point_nominal - sample_point);
101
102 if (sample_point <= sample_point_nominal &&
103 sample_point_error < best_sample_point_error) {
104 best_sample_point = sample_point;
105 best_sample_point_error = sample_point_error;
106 *tseg1_ptr = tseg1;
107 *tseg2_ptr = tseg2;
108 }
109 }
110
111 if (sample_point_error_ptr)
112 *sample_point_error_ptr = best_sample_point_error;
113
114 return best_sample_point;
115 }
116
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)117 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
118 const struct can_bittiming_const *btc)
119 {
120 struct can_priv *priv = netdev_priv(dev);
121 unsigned int bitrate; /* current bitrate */
122 unsigned int bitrate_error; /* difference between current and nominal value */
123 unsigned int best_bitrate_error = UINT_MAX;
124 unsigned int sample_point_error; /* difference between current and nominal value */
125 unsigned int best_sample_point_error = UINT_MAX;
126 unsigned int sample_point_nominal; /* nominal sample point */
127 unsigned int best_tseg = 0; /* current best value for tseg */
128 unsigned int best_brp = 0; /* current best value for brp */
129 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
130 u64 v64;
131
132 /* Use CiA recommended sample points */
133 if (bt->sample_point) {
134 sample_point_nominal = bt->sample_point;
135 } else {
136 if (bt->bitrate > 800000)
137 sample_point_nominal = 750;
138 else if (bt->bitrate > 500000)
139 sample_point_nominal = 800;
140 else
141 sample_point_nominal = 875;
142 }
143
144 /* tseg even = round down, odd = round up */
145 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
146 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
147 tsegall = CAN_SYNC_SEG + tseg / 2;
148
149 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
150 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
151
152 /* choose brp step which is possible in system */
153 brp = (brp / btc->brp_inc) * btc->brp_inc;
154 if (brp < btc->brp_min || brp > btc->brp_max)
155 continue;
156
157 bitrate = priv->clock.freq / (brp * tsegall);
158 bitrate_error = abs(bt->bitrate - bitrate);
159
160 /* tseg brp biterror */
161 if (bitrate_error > best_bitrate_error)
162 continue;
163
164 /* reset sample point error if we have a better bitrate */
165 if (bitrate_error < best_bitrate_error)
166 best_sample_point_error = UINT_MAX;
167
168 can_update_sample_point(btc, sample_point_nominal, tseg / 2,
169 &tseg1, &tseg2, &sample_point_error);
170 if (sample_point_error > best_sample_point_error)
171 continue;
172
173 best_sample_point_error = sample_point_error;
174 best_bitrate_error = bitrate_error;
175 best_tseg = tseg / 2;
176 best_brp = brp;
177
178 if (bitrate_error == 0 && sample_point_error == 0)
179 break;
180 }
181
182 if (best_bitrate_error) {
183 /* Error in one-tenth of a percent */
184 v64 = (u64)best_bitrate_error * 1000;
185 do_div(v64, bt->bitrate);
186 bitrate_error = (u32)v64;
187 if (bitrate_error > CAN_CALC_MAX_ERROR) {
188 netdev_err(dev,
189 "bitrate error %d.%d%% too high\n",
190 bitrate_error / 10, bitrate_error % 10);
191 return -EDOM;
192 }
193 netdev_warn(dev, "bitrate error %d.%d%%\n",
194 bitrate_error / 10, bitrate_error % 10);
195 }
196
197 /* real sample point */
198 bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
199 best_tseg, &tseg1, &tseg2,
200 NULL);
201
202 v64 = (u64)best_brp * 1000 * 1000 * 1000;
203 do_div(v64, priv->clock.freq);
204 bt->tq = (u32)v64;
205 bt->prop_seg = tseg1 / 2;
206 bt->phase_seg1 = tseg1 - bt->prop_seg;
207 bt->phase_seg2 = tseg2;
208
209 /* check for sjw user settings */
210 if (!bt->sjw || !btc->sjw_max) {
211 bt->sjw = 1;
212 } else {
213 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
214 if (bt->sjw > btc->sjw_max)
215 bt->sjw = btc->sjw_max;
216 /* bt->sjw must not be higher than tseg2 */
217 if (tseg2 < bt->sjw)
218 bt->sjw = tseg2;
219 }
220
221 bt->brp = best_brp;
222
223 /* real bitrate */
224 bt->bitrate = priv->clock.freq /
225 (bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
226
227 return 0;
228 }
229 #else /* !CONFIG_CAN_CALC_BITTIMING */
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)230 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
231 const struct can_bittiming_const *btc)
232 {
233 netdev_err(dev, "bit-timing calculation not available\n");
234 return -EINVAL;
235 }
236 #endif /* CONFIG_CAN_CALC_BITTIMING */
237
238 /* Checks the validity of the specified bit-timing parameters prop_seg,
239 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
240 * prescaler value brp. You can find more information in the header
241 * file linux/can/netlink.h.
242 */
can_fixup_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)243 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
244 const struct can_bittiming_const *btc)
245 {
246 struct can_priv *priv = netdev_priv(dev);
247 int tseg1, alltseg;
248 u64 brp64;
249
250 tseg1 = bt->prop_seg + bt->phase_seg1;
251 if (!bt->sjw)
252 bt->sjw = 1;
253 if (bt->sjw > btc->sjw_max ||
254 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
255 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
256 return -ERANGE;
257
258 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
259 if (btc->brp_inc > 1)
260 do_div(brp64, btc->brp_inc);
261 brp64 += 500000000UL - 1;
262 do_div(brp64, 1000000000UL); /* the practicable BRP */
263 if (btc->brp_inc > 1)
264 brp64 *= btc->brp_inc;
265 bt->brp = (u32)brp64;
266
267 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
268 return -EINVAL;
269
270 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
271 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
272 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
273
274 return 0;
275 }
276
277 /* Checks the validity of predefined bitrate settings */
278 static int
can_validate_bitrate(struct net_device * dev,struct can_bittiming * bt,const u32 * bitrate_const,const unsigned int bitrate_const_cnt)279 can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
280 const u32 *bitrate_const,
281 const unsigned int bitrate_const_cnt)
282 {
283 struct can_priv *priv = netdev_priv(dev);
284 unsigned int i;
285
286 for (i = 0; i < bitrate_const_cnt; i++) {
287 if (bt->bitrate == bitrate_const[i])
288 break;
289 }
290
291 if (i >= priv->bitrate_const_cnt)
292 return -EINVAL;
293
294 return 0;
295 }
296
can_get_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc,const u32 * bitrate_const,const unsigned int bitrate_const_cnt)297 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
298 const struct can_bittiming_const *btc,
299 const u32 *bitrate_const,
300 const unsigned int bitrate_const_cnt)
301 {
302 int err;
303
304 /* Depending on the given can_bittiming parameter structure the CAN
305 * timing parameters are calculated based on the provided bitrate OR
306 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
307 * provided directly which are then checked and fixed up.
308 */
309 if (!bt->tq && bt->bitrate && btc)
310 err = can_calc_bittiming(dev, bt, btc);
311 else if (bt->tq && !bt->bitrate && btc)
312 err = can_fixup_bittiming(dev, bt, btc);
313 else if (!bt->tq && bt->bitrate && bitrate_const)
314 err = can_validate_bitrate(dev, bt, bitrate_const,
315 bitrate_const_cnt);
316 else
317 err = -EINVAL;
318
319 return err;
320 }
321
can_update_state_error_stats(struct net_device * dev,enum can_state new_state)322 static void can_update_state_error_stats(struct net_device *dev,
323 enum can_state new_state)
324 {
325 struct can_priv *priv = netdev_priv(dev);
326
327 if (new_state <= priv->state)
328 return;
329
330 switch (new_state) {
331 case CAN_STATE_ERROR_WARNING:
332 priv->can_stats.error_warning++;
333 break;
334 case CAN_STATE_ERROR_PASSIVE:
335 priv->can_stats.error_passive++;
336 break;
337 case CAN_STATE_BUS_OFF:
338 priv->can_stats.bus_off++;
339 break;
340 default:
341 break;
342 }
343 }
344
can_tx_state_to_frame(struct net_device * dev,enum can_state state)345 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
346 {
347 switch (state) {
348 case CAN_STATE_ERROR_ACTIVE:
349 return CAN_ERR_CRTL_ACTIVE;
350 case CAN_STATE_ERROR_WARNING:
351 return CAN_ERR_CRTL_TX_WARNING;
352 case CAN_STATE_ERROR_PASSIVE:
353 return CAN_ERR_CRTL_TX_PASSIVE;
354 default:
355 return 0;
356 }
357 }
358
can_rx_state_to_frame(struct net_device * dev,enum can_state state)359 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
360 {
361 switch (state) {
362 case CAN_STATE_ERROR_ACTIVE:
363 return CAN_ERR_CRTL_ACTIVE;
364 case CAN_STATE_ERROR_WARNING:
365 return CAN_ERR_CRTL_RX_WARNING;
366 case CAN_STATE_ERROR_PASSIVE:
367 return CAN_ERR_CRTL_RX_PASSIVE;
368 default:
369 return 0;
370 }
371 }
372
can_get_state_str(const enum can_state state)373 static const char *can_get_state_str(const enum can_state state)
374 {
375 switch (state) {
376 case CAN_STATE_ERROR_ACTIVE:
377 return "Error Active";
378 case CAN_STATE_ERROR_WARNING:
379 return "Error Warning";
380 case CAN_STATE_ERROR_PASSIVE:
381 return "Error Passive";
382 case CAN_STATE_BUS_OFF:
383 return "Bus Off";
384 case CAN_STATE_STOPPED:
385 return "Stopped";
386 case CAN_STATE_SLEEPING:
387 return "Sleeping";
388 default:
389 return "<unknown>";
390 }
391
392 return "<unknown>";
393 }
394
can_change_state(struct net_device * dev,struct can_frame * cf,enum can_state tx_state,enum can_state rx_state)395 void can_change_state(struct net_device *dev, struct can_frame *cf,
396 enum can_state tx_state, enum can_state rx_state)
397 {
398 struct can_priv *priv = netdev_priv(dev);
399 enum can_state new_state = max(tx_state, rx_state);
400
401 if (unlikely(new_state == priv->state)) {
402 netdev_warn(dev, "%s: oops, state did not change", __func__);
403 return;
404 }
405
406 netdev_dbg(dev, "Controller changed from %s State (%d) into %s State (%d).\n",
407 can_get_state_str(priv->state), priv->state,
408 can_get_state_str(new_state), new_state);
409
410 can_update_state_error_stats(dev, new_state);
411 priv->state = new_state;
412
413 if (!cf)
414 return;
415
416 if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
417 cf->can_id |= CAN_ERR_BUSOFF;
418 return;
419 }
420
421 cf->can_id |= CAN_ERR_CRTL;
422 cf->data[1] |= tx_state >= rx_state ?
423 can_tx_state_to_frame(dev, tx_state) : 0;
424 cf->data[1] |= tx_state <= rx_state ?
425 can_rx_state_to_frame(dev, rx_state) : 0;
426 }
427 EXPORT_SYMBOL_GPL(can_change_state);
428
429 /* Local echo of CAN messages
430 *
431 * CAN network devices *should* support a local echo functionality
432 * (see Documentation/networking/can.rst). To test the handling of CAN
433 * interfaces that do not support the local echo both driver types are
434 * implemented. In the case that the driver does not support the echo
435 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
436 * to perform the echo as a fallback solution.
437 */
can_flush_echo_skb(struct net_device * dev)438 static void can_flush_echo_skb(struct net_device *dev)
439 {
440 struct can_priv *priv = netdev_priv(dev);
441 struct net_device_stats *stats = &dev->stats;
442 int i;
443
444 for (i = 0; i < priv->echo_skb_max; i++) {
445 if (priv->echo_skb[i]) {
446 kfree_skb(priv->echo_skb[i]);
447 priv->echo_skb[i] = NULL;
448 stats->tx_dropped++;
449 stats->tx_aborted_errors++;
450 }
451 }
452 }
453
454 /* Put the skb on the stack to be looped backed locally lateron
455 *
456 * The function is typically called in the start_xmit function
457 * of the device driver. The driver must protect access to
458 * priv->echo_skb, if necessary.
459 */
can_put_echo_skb(struct sk_buff * skb,struct net_device * dev,unsigned int idx)460 int can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
461 unsigned int idx)
462 {
463 struct can_priv *priv = netdev_priv(dev);
464
465 BUG_ON(idx >= priv->echo_skb_max);
466
467 /* check flag whether this packet has to be looped back */
468 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
469 (skb->protocol != htons(ETH_P_CAN) &&
470 skb->protocol != htons(ETH_P_CANFD))) {
471 kfree_skb(skb);
472 return 0;
473 }
474
475 if (!priv->echo_skb[idx]) {
476 skb = can_create_echo_skb(skb);
477 if (!skb)
478 return -ENOMEM;
479
480 /* make settings for echo to reduce code in irq context */
481 skb->pkt_type = PACKET_BROADCAST;
482 skb->ip_summed = CHECKSUM_UNNECESSARY;
483 skb->dev = dev;
484
485 /* save this skb for tx interrupt echo handling */
486 priv->echo_skb[idx] = skb;
487 } else {
488 /* locking problem with netif_stop_queue() ?? */
489 netdev_err(dev, "%s: BUG! echo_skb %d is occupied!\n", __func__, idx);
490 kfree_skb(skb);
491 return -EBUSY;
492 }
493
494 return 0;
495 }
496 EXPORT_SYMBOL_GPL(can_put_echo_skb);
497
498 struct sk_buff *
__can_get_echo_skb(struct net_device * dev,unsigned int idx,u8 * len_ptr)499 __can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
500 {
501 struct can_priv *priv = netdev_priv(dev);
502
503 if (idx >= priv->echo_skb_max) {
504 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
505 __func__, idx, priv->echo_skb_max);
506 return NULL;
507 }
508
509 if (priv->echo_skb[idx]) {
510 /* Using "struct canfd_frame::len" for the frame
511 * length is supported on both CAN and CANFD frames.
512 */
513 struct sk_buff *skb = priv->echo_skb[idx];
514 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
515
516 /* get the real payload length for netdev statistics */
517 if (cf->can_id & CAN_RTR_FLAG)
518 *len_ptr = 0;
519 else
520 *len_ptr = cf->len;
521
522 priv->echo_skb[idx] = NULL;
523
524 return skb;
525 }
526
527 return NULL;
528 }
529
530 /* Get the skb from the stack and loop it back locally
531 *
532 * The function is typically called when the TX done interrupt
533 * is handled in the device driver. The driver must protect
534 * access to priv->echo_skb, if necessary.
535 */
can_get_echo_skb(struct net_device * dev,unsigned int idx)536 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
537 {
538 struct sk_buff *skb;
539 u8 len;
540
541 skb = __can_get_echo_skb(dev, idx, &len);
542 if (!skb)
543 return 0;
544
545 skb_get(skb);
546 if (netif_rx(skb) == NET_RX_SUCCESS)
547 dev_consume_skb_any(skb);
548 else
549 dev_kfree_skb_any(skb);
550
551 return len;
552 }
553 EXPORT_SYMBOL_GPL(can_get_echo_skb);
554
555 /* Remove the skb from the stack and free it.
556 *
557 * The function is typically called when TX failed.
558 */
can_free_echo_skb(struct net_device * dev,unsigned int idx)559 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
560 {
561 struct can_priv *priv = netdev_priv(dev);
562
563 BUG_ON(idx >= priv->echo_skb_max);
564
565 if (priv->echo_skb[idx]) {
566 dev_kfree_skb_any(priv->echo_skb[idx]);
567 priv->echo_skb[idx] = NULL;
568 }
569 }
570 EXPORT_SYMBOL_GPL(can_free_echo_skb);
571
572 /* CAN device restart for bus-off recovery */
can_restart(struct net_device * dev)573 static void can_restart(struct net_device *dev)
574 {
575 struct can_priv *priv = netdev_priv(dev);
576 struct net_device_stats *stats = &dev->stats;
577 struct sk_buff *skb;
578 struct can_frame *cf;
579 int err;
580
581 BUG_ON(netif_carrier_ok(dev));
582
583 /* No synchronization needed because the device is bus-off and
584 * no messages can come in or go out.
585 */
586 can_flush_echo_skb(dev);
587
588 /* send restart message upstream */
589 skb = alloc_can_err_skb(dev, &cf);
590 if (!skb)
591 goto restart;
592
593 cf->can_id |= CAN_ERR_RESTARTED;
594
595 stats->rx_packets++;
596 stats->rx_bytes += cf->can_dlc;
597
598 netif_rx_ni(skb);
599
600 restart:
601 netdev_dbg(dev, "restarted\n");
602 priv->can_stats.restarts++;
603
604 /* Now restart the device */
605 err = priv->do_set_mode(dev, CAN_MODE_START);
606
607 netif_carrier_on(dev);
608 if (err)
609 netdev_err(dev, "Error %d during restart", err);
610 }
611
can_restart_work(struct work_struct * work)612 static void can_restart_work(struct work_struct *work)
613 {
614 struct delayed_work *dwork = to_delayed_work(work);
615 struct can_priv *priv = container_of(dwork, struct can_priv,
616 restart_work);
617
618 can_restart(priv->dev);
619 }
620
can_restart_now(struct net_device * dev)621 int can_restart_now(struct net_device *dev)
622 {
623 struct can_priv *priv = netdev_priv(dev);
624
625 /* A manual restart is only permitted if automatic restart is
626 * disabled and the device is in the bus-off state
627 */
628 if (priv->restart_ms)
629 return -EINVAL;
630 if (priv->state != CAN_STATE_BUS_OFF)
631 return -EBUSY;
632
633 cancel_delayed_work_sync(&priv->restart_work);
634 can_restart(dev);
635
636 return 0;
637 }
638
639 /* CAN bus-off
640 *
641 * This functions should be called when the device goes bus-off to
642 * tell the netif layer that no more packets can be sent or received.
643 * If enabled, a timer is started to trigger bus-off recovery.
644 */
can_bus_off(struct net_device * dev)645 void can_bus_off(struct net_device *dev)
646 {
647 struct can_priv *priv = netdev_priv(dev);
648
649 if (priv->restart_ms)
650 netdev_info(dev, "bus-off, scheduling restart in %d ms\n",
651 priv->restart_ms);
652 else
653 netdev_info(dev, "bus-off\n");
654
655 netif_carrier_off(dev);
656
657 if (priv->restart_ms)
658 schedule_delayed_work(&priv->restart_work,
659 msecs_to_jiffies(priv->restart_ms));
660 }
661 EXPORT_SYMBOL_GPL(can_bus_off);
662
can_setup(struct net_device * dev)663 static void can_setup(struct net_device *dev)
664 {
665 dev->type = ARPHRD_CAN;
666 dev->mtu = CAN_MTU;
667 dev->hard_header_len = 0;
668 dev->addr_len = 0;
669 dev->tx_queue_len = 10;
670
671 /* New-style flags. */
672 dev->flags = IFF_NOARP;
673 dev->features = NETIF_F_HW_CSUM;
674 }
675
alloc_can_skb(struct net_device * dev,struct can_frame ** cf)676 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
677 {
678 struct sk_buff *skb;
679
680 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
681 sizeof(struct can_frame));
682 if (unlikely(!skb))
683 return NULL;
684
685 skb->protocol = htons(ETH_P_CAN);
686 skb->pkt_type = PACKET_BROADCAST;
687 skb->ip_summed = CHECKSUM_UNNECESSARY;
688
689 skb_reset_mac_header(skb);
690 skb_reset_network_header(skb);
691 skb_reset_transport_header(skb);
692
693 can_skb_reserve(skb);
694 can_skb_prv(skb)->ifindex = dev->ifindex;
695 can_skb_prv(skb)->skbcnt = 0;
696
697 *cf = skb_put_zero(skb, sizeof(struct can_frame));
698
699 return skb;
700 }
701 EXPORT_SYMBOL_GPL(alloc_can_skb);
702
alloc_canfd_skb(struct net_device * dev,struct canfd_frame ** cfd)703 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
704 struct canfd_frame **cfd)
705 {
706 struct sk_buff *skb;
707
708 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
709 sizeof(struct canfd_frame));
710 if (unlikely(!skb))
711 return NULL;
712
713 skb->protocol = htons(ETH_P_CANFD);
714 skb->pkt_type = PACKET_BROADCAST;
715 skb->ip_summed = CHECKSUM_UNNECESSARY;
716
717 skb_reset_mac_header(skb);
718 skb_reset_network_header(skb);
719 skb_reset_transport_header(skb);
720
721 can_skb_reserve(skb);
722 can_skb_prv(skb)->ifindex = dev->ifindex;
723 can_skb_prv(skb)->skbcnt = 0;
724
725 *cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
726
727 return skb;
728 }
729 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
730
alloc_can_err_skb(struct net_device * dev,struct can_frame ** cf)731 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
732 {
733 struct sk_buff *skb;
734
735 skb = alloc_can_skb(dev, cf);
736 if (unlikely(!skb))
737 return NULL;
738
739 (*cf)->can_id = CAN_ERR_FLAG;
740 (*cf)->can_dlc = CAN_ERR_DLC;
741
742 return skb;
743 }
744 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
745
746 /* Allocate and setup space for the CAN network device */
alloc_candev_mqs(int sizeof_priv,unsigned int echo_skb_max,unsigned int txqs,unsigned int rxqs)747 struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
748 unsigned int txqs, unsigned int rxqs)
749 {
750 struct can_ml_priv *can_ml;
751 struct net_device *dev;
752 struct can_priv *priv;
753 int size;
754
755 /* We put the driver's priv, the CAN mid layer priv and the
756 * echo skb into the netdevice's priv. The memory layout for
757 * the netdev_priv is like this:
758 *
759 * +-------------------------+
760 * | driver's priv |
761 * +-------------------------+
762 * | struct can_ml_priv |
763 * +-------------------------+
764 * | array of struct sk_buff |
765 * +-------------------------+
766 */
767
768 size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv);
769
770 if (echo_skb_max)
771 size = ALIGN(size, sizeof(struct sk_buff *)) +
772 echo_skb_max * sizeof(struct sk_buff *);
773
774 dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
775 txqs, rxqs);
776 if (!dev)
777 return NULL;
778
779 priv = netdev_priv(dev);
780 priv->dev = dev;
781
782 can_ml = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN);
783 can_set_ml_priv(dev, can_ml);
784
785 if (echo_skb_max) {
786 priv->echo_skb_max = echo_skb_max;
787 priv->echo_skb = (void *)priv +
788 (size - echo_skb_max * sizeof(struct sk_buff *));
789 }
790
791 priv->state = CAN_STATE_STOPPED;
792
793 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
794
795 return dev;
796 }
797 EXPORT_SYMBOL_GPL(alloc_candev_mqs);
798
799 /* Free space of the CAN network device */
free_candev(struct net_device * dev)800 void free_candev(struct net_device *dev)
801 {
802 free_netdev(dev);
803 }
804 EXPORT_SYMBOL_GPL(free_candev);
805
806 /* changing MTU and control mode for CAN/CANFD devices */
can_change_mtu(struct net_device * dev,int new_mtu)807 int can_change_mtu(struct net_device *dev, int new_mtu)
808 {
809 struct can_priv *priv = netdev_priv(dev);
810
811 /* Do not allow changing the MTU while running */
812 if (dev->flags & IFF_UP)
813 return -EBUSY;
814
815 /* allow change of MTU according to the CANFD ability of the device */
816 switch (new_mtu) {
817 case CAN_MTU:
818 /* 'CANFD-only' controllers can not switch to CAN_MTU */
819 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
820 return -EINVAL;
821
822 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
823 break;
824
825 case CANFD_MTU:
826 /* check for potential CANFD ability */
827 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
828 !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
829 return -EINVAL;
830
831 priv->ctrlmode |= CAN_CTRLMODE_FD;
832 break;
833
834 default:
835 return -EINVAL;
836 }
837
838 dev->mtu = new_mtu;
839 return 0;
840 }
841 EXPORT_SYMBOL_GPL(can_change_mtu);
842
843 /* Common open function when the device gets opened.
844 *
845 * This function should be called in the open function of the device
846 * driver.
847 */
open_candev(struct net_device * dev)848 int open_candev(struct net_device *dev)
849 {
850 struct can_priv *priv = netdev_priv(dev);
851
852 if (!priv->bittiming.bitrate) {
853 netdev_err(dev, "bit-timing not yet defined\n");
854 return -EINVAL;
855 }
856
857 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
858 if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
859 (!priv->data_bittiming.bitrate ||
860 priv->data_bittiming.bitrate < priv->bittiming.bitrate)) {
861 netdev_err(dev, "incorrect/missing data bit-timing\n");
862 return -EINVAL;
863 }
864
865 /* Switch carrier on if device was stopped while in bus-off state */
866 if (!netif_carrier_ok(dev))
867 netif_carrier_on(dev);
868
869 return 0;
870 }
871 EXPORT_SYMBOL_GPL(open_candev);
872
873 #ifdef CONFIG_OF
874 /* Common function that can be used to understand the limitation of
875 * a transceiver when it provides no means to determine these limitations
876 * at runtime.
877 */
of_can_transceiver(struct net_device * dev)878 void of_can_transceiver(struct net_device *dev)
879 {
880 struct device_node *dn;
881 struct can_priv *priv = netdev_priv(dev);
882 struct device_node *np = dev->dev.parent->of_node;
883 int ret;
884
885 dn = of_get_child_by_name(np, "can-transceiver");
886 if (!dn)
887 return;
888
889 ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
890 of_node_put(dn);
891 if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
892 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
893 }
894 EXPORT_SYMBOL_GPL(of_can_transceiver);
895 #endif
896
897 /* Common close function for cleanup before the device gets closed.
898 *
899 * This function should be called in the close function of the device
900 * driver.
901 */
close_candev(struct net_device * dev)902 void close_candev(struct net_device *dev)
903 {
904 struct can_priv *priv = netdev_priv(dev);
905
906 cancel_delayed_work_sync(&priv->restart_work);
907 can_flush_echo_skb(dev);
908 }
909 EXPORT_SYMBOL_GPL(close_candev);
910
911 /* CAN netlink interface */
912 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
913 [IFLA_CAN_STATE] = { .type = NLA_U32 },
914 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
915 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
916 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
917 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
918 [IFLA_CAN_BITTIMING_CONST]
919 = { .len = sizeof(struct can_bittiming_const) },
920 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
921 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
922 [IFLA_CAN_DATA_BITTIMING]
923 = { .len = sizeof(struct can_bittiming) },
924 [IFLA_CAN_DATA_BITTIMING_CONST]
925 = { .len = sizeof(struct can_bittiming_const) },
926 [IFLA_CAN_TERMINATION] = { .type = NLA_U16 },
927 };
928
can_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)929 static int can_validate(struct nlattr *tb[], struct nlattr *data[],
930 struct netlink_ext_ack *extack)
931 {
932 bool is_can_fd = false;
933
934 /* Make sure that valid CAN FD configurations always consist of
935 * - nominal/arbitration bittiming
936 * - data bittiming
937 * - control mode with CAN_CTRLMODE_FD set
938 */
939
940 if (!data)
941 return 0;
942
943 if (data[IFLA_CAN_CTRLMODE]) {
944 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
945
946 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
947 }
948
949 if (is_can_fd) {
950 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
951 return -EOPNOTSUPP;
952 }
953
954 if (data[IFLA_CAN_DATA_BITTIMING]) {
955 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
956 return -EOPNOTSUPP;
957 }
958
959 return 0;
960 }
961
can_changelink(struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)962 static int can_changelink(struct net_device *dev, struct nlattr *tb[],
963 struct nlattr *data[],
964 struct netlink_ext_ack *extack)
965 {
966 struct can_priv *priv = netdev_priv(dev);
967 int err;
968
969 /* We need synchronization with dev->stop() */
970 ASSERT_RTNL();
971
972 if (data[IFLA_CAN_BITTIMING]) {
973 struct can_bittiming bt;
974
975 /* Do not allow changing bittiming while running */
976 if (dev->flags & IFF_UP)
977 return -EBUSY;
978
979 /* Calculate bittiming parameters based on
980 * bittiming_const if set, otherwise pass bitrate
981 * directly via do_set_bitrate(). Bail out if neither
982 * is given.
983 */
984 if (!priv->bittiming_const && !priv->do_set_bittiming)
985 return -EOPNOTSUPP;
986
987 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
988 err = can_get_bittiming(dev, &bt,
989 priv->bittiming_const,
990 priv->bitrate_const,
991 priv->bitrate_const_cnt);
992 if (err)
993 return err;
994
995 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
996 netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
997 priv->bitrate_max);
998 return -EINVAL;
999 }
1000
1001 memcpy(&priv->bittiming, &bt, sizeof(bt));
1002
1003 if (priv->do_set_bittiming) {
1004 /* Finally, set the bit-timing registers */
1005 err = priv->do_set_bittiming(dev);
1006 if (err)
1007 return err;
1008 }
1009 }
1010
1011 if (data[IFLA_CAN_CTRLMODE]) {
1012 struct can_ctrlmode *cm;
1013 u32 ctrlstatic;
1014 u32 maskedflags;
1015
1016 /* Do not allow changing controller mode while running */
1017 if (dev->flags & IFF_UP)
1018 return -EBUSY;
1019 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
1020 ctrlstatic = priv->ctrlmode_static;
1021 maskedflags = cm->flags & cm->mask;
1022
1023 /* check whether provided bits are allowed to be passed */
1024 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
1025 return -EOPNOTSUPP;
1026
1027 /* do not check for static fd-non-iso if 'fd' is disabled */
1028 if (!(maskedflags & CAN_CTRLMODE_FD))
1029 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
1030
1031 /* make sure static options are provided by configuration */
1032 if ((maskedflags & ctrlstatic) != ctrlstatic)
1033 return -EOPNOTSUPP;
1034
1035 /* clear bits to be modified and copy the flag values */
1036 priv->ctrlmode &= ~cm->mask;
1037 priv->ctrlmode |= maskedflags;
1038
1039 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
1040 if (priv->ctrlmode & CAN_CTRLMODE_FD)
1041 dev->mtu = CANFD_MTU;
1042 else
1043 dev->mtu = CAN_MTU;
1044 }
1045
1046 if (data[IFLA_CAN_RESTART_MS]) {
1047 /* Do not allow changing restart delay while running */
1048 if (dev->flags & IFF_UP)
1049 return -EBUSY;
1050 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1051 }
1052
1053 if (data[IFLA_CAN_RESTART]) {
1054 /* Do not allow a restart while not running */
1055 if (!(dev->flags & IFF_UP))
1056 return -EINVAL;
1057 err = can_restart_now(dev);
1058 if (err)
1059 return err;
1060 }
1061
1062 if (data[IFLA_CAN_DATA_BITTIMING]) {
1063 struct can_bittiming dbt;
1064
1065 /* Do not allow changing bittiming while running */
1066 if (dev->flags & IFF_UP)
1067 return -EBUSY;
1068
1069 /* Calculate bittiming parameters based on
1070 * data_bittiming_const if set, otherwise pass bitrate
1071 * directly via do_set_bitrate(). Bail out if neither
1072 * is given.
1073 */
1074 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1075 return -EOPNOTSUPP;
1076
1077 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1078 sizeof(dbt));
1079 err = can_get_bittiming(dev, &dbt,
1080 priv->data_bittiming_const,
1081 priv->data_bitrate_const,
1082 priv->data_bitrate_const_cnt);
1083 if (err)
1084 return err;
1085
1086 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1087 netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1088 priv->bitrate_max);
1089 return -EINVAL;
1090 }
1091
1092 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1093
1094 if (priv->do_set_data_bittiming) {
1095 /* Finally, set the bit-timing registers */
1096 err = priv->do_set_data_bittiming(dev);
1097 if (err)
1098 return err;
1099 }
1100 }
1101
1102 if (data[IFLA_CAN_TERMINATION]) {
1103 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1104 const unsigned int num_term = priv->termination_const_cnt;
1105 unsigned int i;
1106
1107 if (!priv->do_set_termination)
1108 return -EOPNOTSUPP;
1109
1110 /* check whether given value is supported by the interface */
1111 for (i = 0; i < num_term; i++) {
1112 if (termval == priv->termination_const[i])
1113 break;
1114 }
1115 if (i >= num_term)
1116 return -EINVAL;
1117
1118 /* Finally, set the termination value */
1119 err = priv->do_set_termination(dev, termval);
1120 if (err)
1121 return err;
1122
1123 priv->termination = termval;
1124 }
1125
1126 return 0;
1127 }
1128
can_get_size(const struct net_device * dev)1129 static size_t can_get_size(const struct net_device *dev)
1130 {
1131 struct can_priv *priv = netdev_priv(dev);
1132 size_t size = 0;
1133
1134 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
1135 size += nla_total_size(sizeof(struct can_bittiming));
1136 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
1137 size += nla_total_size(sizeof(struct can_bittiming_const));
1138 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
1139 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
1140 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
1141 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
1142 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
1143 size += nla_total_size(sizeof(struct can_berr_counter));
1144 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
1145 size += nla_total_size(sizeof(struct can_bittiming));
1146 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
1147 size += nla_total_size(sizeof(struct can_bittiming_const));
1148 if (priv->termination_const) {
1149 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */
1150 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */
1151 priv->termination_const_cnt);
1152 }
1153 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */
1154 size += nla_total_size(sizeof(*priv->bitrate_const) *
1155 priv->bitrate_const_cnt);
1156 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */
1157 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1158 priv->data_bitrate_const_cnt);
1159 size += sizeof(priv->bitrate_max); /* IFLA_CAN_BITRATE_MAX */
1160
1161 return size;
1162 }
1163
can_fill_info(struct sk_buff * skb,const struct net_device * dev)1164 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1165 {
1166 struct can_priv *priv = netdev_priv(dev);
1167 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1168 struct can_berr_counter bec = { };
1169 enum can_state state = priv->state;
1170
1171 if (priv->do_get_state)
1172 priv->do_get_state(dev, &state);
1173
1174 if ((priv->bittiming.bitrate &&
1175 nla_put(skb, IFLA_CAN_BITTIMING,
1176 sizeof(priv->bittiming), &priv->bittiming)) ||
1177
1178 (priv->bittiming_const &&
1179 nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1180 sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1181
1182 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1183 nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1184 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1185 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1186
1187 (priv->do_get_berr_counter &&
1188 !priv->do_get_berr_counter(dev, &bec) &&
1189 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1190
1191 (priv->data_bittiming.bitrate &&
1192 nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1193 sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1194
1195 (priv->data_bittiming_const &&
1196 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1197 sizeof(*priv->data_bittiming_const),
1198 priv->data_bittiming_const)) ||
1199
1200 (priv->termination_const &&
1201 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1202 nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1203 sizeof(*priv->termination_const) *
1204 priv->termination_const_cnt,
1205 priv->termination_const))) ||
1206
1207 (priv->bitrate_const &&
1208 nla_put(skb, IFLA_CAN_BITRATE_CONST,
1209 sizeof(*priv->bitrate_const) *
1210 priv->bitrate_const_cnt,
1211 priv->bitrate_const)) ||
1212
1213 (priv->data_bitrate_const &&
1214 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1215 sizeof(*priv->data_bitrate_const) *
1216 priv->data_bitrate_const_cnt,
1217 priv->data_bitrate_const)) ||
1218
1219 (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1220 sizeof(priv->bitrate_max),
1221 &priv->bitrate_max))
1222 )
1223
1224 return -EMSGSIZE;
1225
1226 return 0;
1227 }
1228
can_get_xstats_size(const struct net_device * dev)1229 static size_t can_get_xstats_size(const struct net_device *dev)
1230 {
1231 return sizeof(struct can_device_stats);
1232 }
1233
can_fill_xstats(struct sk_buff * skb,const struct net_device * dev)1234 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1235 {
1236 struct can_priv *priv = netdev_priv(dev);
1237
1238 if (nla_put(skb, IFLA_INFO_XSTATS,
1239 sizeof(priv->can_stats), &priv->can_stats))
1240 goto nla_put_failure;
1241 return 0;
1242
1243 nla_put_failure:
1244 return -EMSGSIZE;
1245 }
1246
can_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1247 static int can_newlink(struct net *src_net, struct net_device *dev,
1248 struct nlattr *tb[], struct nlattr *data[],
1249 struct netlink_ext_ack *extack)
1250 {
1251 return -EOPNOTSUPP;
1252 }
1253
can_dellink(struct net_device * dev,struct list_head * head)1254 static void can_dellink(struct net_device *dev, struct list_head *head)
1255 {
1256 }
1257
1258 static struct rtnl_link_ops can_link_ops __read_mostly = {
1259 .kind = "can",
1260 .netns_refund = true,
1261 .maxtype = IFLA_CAN_MAX,
1262 .policy = can_policy,
1263 .setup = can_setup,
1264 .validate = can_validate,
1265 .newlink = can_newlink,
1266 .changelink = can_changelink,
1267 .dellink = can_dellink,
1268 .get_size = can_get_size,
1269 .fill_info = can_fill_info,
1270 .get_xstats_size = can_get_xstats_size,
1271 .fill_xstats = can_fill_xstats,
1272 };
1273
1274 /* Register the CAN network device */
register_candev(struct net_device * dev)1275 int register_candev(struct net_device *dev)
1276 {
1277 struct can_priv *priv = netdev_priv(dev);
1278
1279 /* Ensure termination_const, termination_const_cnt and
1280 * do_set_termination consistency. All must be either set or
1281 * unset.
1282 */
1283 if ((!priv->termination_const != !priv->termination_const_cnt) ||
1284 (!priv->termination_const != !priv->do_set_termination))
1285 return -EINVAL;
1286
1287 if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1288 return -EINVAL;
1289
1290 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1291 return -EINVAL;
1292
1293 dev->rtnl_link_ops = &can_link_ops;
1294 netif_carrier_off(dev);
1295
1296 return register_netdev(dev);
1297 }
1298 EXPORT_SYMBOL_GPL(register_candev);
1299
1300 /* Unregister the CAN network device */
unregister_candev(struct net_device * dev)1301 void unregister_candev(struct net_device *dev)
1302 {
1303 unregister_netdev(dev);
1304 }
1305 EXPORT_SYMBOL_GPL(unregister_candev);
1306
1307 /* Test if a network device is a candev based device
1308 * and return the can_priv* if so.
1309 */
safe_candev_priv(struct net_device * dev)1310 struct can_priv *safe_candev_priv(struct net_device *dev)
1311 {
1312 if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops)
1313 return NULL;
1314
1315 return netdev_priv(dev);
1316 }
1317 EXPORT_SYMBOL_GPL(safe_candev_priv);
1318
can_dev_init(void)1319 static __init int can_dev_init(void)
1320 {
1321 int err;
1322
1323 can_led_notifier_init();
1324
1325 err = rtnl_link_register(&can_link_ops);
1326 if (!err)
1327 pr_info(MOD_DESC "\n");
1328
1329 return err;
1330 }
1331 module_init(can_dev_init);
1332
can_dev_exit(void)1333 static __exit void can_dev_exit(void)
1334 {
1335 rtnl_link_unregister(&can_link_ops);
1336
1337 can_led_notifier_exit();
1338 }
1339 module_exit(can_dev_exit);
1340
1341 MODULE_ALIAS_RTNL_LINK("can");
1342