• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/cpupri.c
4  *
5  *  CPU priority management
6  *
7  *  Copyright (C) 2007-2008 Novell
8  *
9  *  Author: Gregory Haskins <ghaskins@novell.com>
10  *
11  *  This code tracks the priority of each CPU so that global migration
12  *  decisions are easy to calculate.  Each CPU can be in a state as follows:
13  *
14  *                 (INVALID), IDLE, NORMAL, RT1, ... RT99
15  *
16  *  going from the lowest priority to the highest.  CPUs in the INVALID state
17  *  are not eligible for routing.  The system maintains this state with
18  *  a 2 dimensional bitmap (the first for priority class, the second for CPUs
19  *  in that class).  Therefore a typical application without affinity
20  *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
21  *  searches).  For tasks with affinity restrictions, the algorithm has a
22  *  worst case complexity of O(min(102, nr_domcpus)), though the scenario that
23  *  yields the worst case search is fairly contrived.
24  */
25 #include "sched.h"
26 
27 /* Convert between a 140 based task->prio, and our 102 based cpupri */
convert_prio(int prio)28 static int convert_prio(int prio)
29 {
30 	int cpupri;
31 
32 	if (prio == CPUPRI_INVALID)
33 		cpupri = CPUPRI_INVALID;
34 	else if (prio == MAX_PRIO)
35 		cpupri = CPUPRI_IDLE;
36 	else if (prio >= MAX_RT_PRIO)
37 		cpupri = CPUPRI_NORMAL;
38 	else
39 		cpupri = MAX_RT_PRIO - prio + 1;
40 
41 	return cpupri;
42 }
43 
__cpupri_find(struct cpupri * cp,struct task_struct * p,struct cpumask * lowest_mask,int idx)44 static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p,
45 				struct cpumask *lowest_mask, int idx)
46 {
47 	struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
48 	int skip = 0;
49 
50 	if (!atomic_read(&(vec)->count))
51 		skip = 1;
52 	/*
53 	 * When looking at the vector, we need to read the counter,
54 	 * do a memory barrier, then read the mask.
55 	 *
56 	 * Note: This is still all racey, but we can deal with it.
57 	 *  Ideally, we only want to look at masks that are set.
58 	 *
59 	 *  If a mask is not set, then the only thing wrong is that we
60 	 *  did a little more work than necessary.
61 	 *
62 	 *  If we read a zero count but the mask is set, because of the
63 	 *  memory barriers, that can only happen when the highest prio
64 	 *  task for a run queue has left the run queue, in which case,
65 	 *  it will be followed by a pull. If the task we are processing
66 	 *  fails to find a proper place to go, that pull request will
67 	 *  pull this task if the run queue is running at a lower
68 	 *  priority.
69 	 */
70 	smp_rmb();
71 
72 	/* Need to do the rmb for every iteration */
73 	if (skip)
74 		return 0;
75 
76 	if (cpumask_any_and(p->cpus_ptr, vec->mask) >= nr_cpu_ids)
77 		return 0;
78 
79 	if (lowest_mask) {
80 		cpumask_and(lowest_mask, p->cpus_ptr, vec->mask);
81 
82 #ifdef CONFIG_CPU_ISOLATION_OPT
83 		cpumask_andnot(lowest_mask, lowest_mask, cpu_isolated_mask);
84 #endif
85 		/*
86 		 * We have to ensure that we have at least one bit
87 		 * still set in the array, since the map could have
88 		 * been concurrently emptied between the first and
89 		 * second reads of vec->mask.  If we hit this
90 		 * condition, simply act as though we never hit this
91 		 * priority level and continue on.
92 		 */
93 		if (cpumask_empty(lowest_mask))
94 			return 0;
95 	}
96 
97 	return 1;
98 }
99 
cpupri_find(struct cpupri * cp,struct task_struct * p,struct cpumask * lowest_mask)100 int cpupri_find(struct cpupri *cp, struct task_struct *p,
101 		struct cpumask *lowest_mask)
102 {
103 	return cpupri_find_fitness(cp, p, lowest_mask, NULL);
104 }
105 
106 /**
107  * cpupri_find_fitness - find the best (lowest-pri) CPU in the system
108  * @cp: The cpupri context
109  * @p: The task
110  * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
111  * @fitness_fn: A pointer to a function to do custom checks whether the CPU
112  *              fits a specific criteria so that we only return those CPUs.
113  *
114  * Note: This function returns the recommended CPUs as calculated during the
115  * current invocation.  By the time the call returns, the CPUs may have in
116  * fact changed priorities any number of times.  While not ideal, it is not
117  * an issue of correctness since the normal rebalancer logic will correct
118  * any discrepancies created by racing against the uncertainty of the current
119  * priority configuration.
120  *
121  * Return: (int)bool - CPUs were found
122  */
cpupri_find_fitness(struct cpupri * cp,struct task_struct * p,struct cpumask * lowest_mask,bool (* fitness_fn)(struct task_struct * p,int cpu))123 int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
124 		struct cpumask *lowest_mask,
125 		bool (*fitness_fn)(struct task_struct *p, int cpu))
126 {
127 	int task_pri = convert_prio(p->prio);
128 	int idx, cpu;
129 
130 	BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
131 
132 	for (idx = 0; idx < task_pri; idx++) {
133 
134 		if (!__cpupri_find(cp, p, lowest_mask, idx))
135 			continue;
136 
137 		if (!lowest_mask || !fitness_fn)
138 			return 1;
139 
140 		/* Ensure the capacity of the CPUs fit the task */
141 		for_each_cpu(cpu, lowest_mask) {
142 			if (!fitness_fn(p, cpu))
143 				cpumask_clear_cpu(cpu, lowest_mask);
144 		}
145 
146 		/*
147 		 * If no CPU at the current priority can fit the task
148 		 * continue looking
149 		 */
150 		if (cpumask_empty(lowest_mask))
151 			continue;
152 
153 		return 1;
154 	}
155 
156 	/*
157 	 * If we failed to find a fitting lowest_mask, kick off a new search
158 	 * but without taking into account any fitness criteria this time.
159 	 *
160 	 * This rule favours honouring priority over fitting the task in the
161 	 * correct CPU (Capacity Awareness being the only user now).
162 	 * The idea is that if a higher priority task can run, then it should
163 	 * run even if this ends up being on unfitting CPU.
164 	 *
165 	 * The cost of this trade-off is not entirely clear and will probably
166 	 * be good for some workloads and bad for others.
167 	 *
168 	 * The main idea here is that if some CPUs were overcommitted, we try
169 	 * to spread which is what the scheduler traditionally did. Sys admins
170 	 * must do proper RT planning to avoid overloading the system if they
171 	 * really care.
172 	 */
173 	if (fitness_fn)
174 		return cpupri_find(cp, p, lowest_mask);
175 
176 	return 0;
177 }
178 
179 /**
180  * cpupri_set - update the CPU priority setting
181  * @cp: The cpupri context
182  * @cpu: The target CPU
183  * @newpri: The priority (INVALID-RT99) to assign to this CPU
184  *
185  * Note: Assumes cpu_rq(cpu)->lock is locked
186  *
187  * Returns: (void)
188  */
cpupri_set(struct cpupri * cp,int cpu,int newpri)189 void cpupri_set(struct cpupri *cp, int cpu, int newpri)
190 {
191 	int *currpri = &cp->cpu_to_pri[cpu];
192 	int oldpri = *currpri;
193 	int do_mb = 0;
194 
195 	newpri = convert_prio(newpri);
196 
197 	BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
198 
199 	if (newpri == oldpri)
200 		return;
201 
202 	/*
203 	 * If the CPU was currently mapped to a different value, we
204 	 * need to map it to the new value then remove the old value.
205 	 * Note, we must add the new value first, otherwise we risk the
206 	 * cpu being missed by the priority loop in cpupri_find.
207 	 */
208 	if (likely(newpri != CPUPRI_INVALID)) {
209 		struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
210 
211 		cpumask_set_cpu(cpu, vec->mask);
212 		/*
213 		 * When adding a new vector, we update the mask first,
214 		 * do a write memory barrier, and then update the count, to
215 		 * make sure the vector is visible when count is set.
216 		 */
217 		smp_mb__before_atomic();
218 		atomic_inc(&(vec)->count);
219 		do_mb = 1;
220 	}
221 	if (likely(oldpri != CPUPRI_INVALID)) {
222 		struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];
223 
224 		/*
225 		 * Because the order of modification of the vec->count
226 		 * is important, we must make sure that the update
227 		 * of the new prio is seen before we decrement the
228 		 * old prio. This makes sure that the loop sees
229 		 * one or the other when we raise the priority of
230 		 * the run queue. We don't care about when we lower the
231 		 * priority, as that will trigger an rt pull anyway.
232 		 *
233 		 * We only need to do a memory barrier if we updated
234 		 * the new priority vec.
235 		 */
236 		if (do_mb)
237 			smp_mb__after_atomic();
238 
239 		/*
240 		 * When removing from the vector, we decrement the counter first
241 		 * do a memory barrier and then clear the mask.
242 		 */
243 		atomic_dec(&(vec)->count);
244 		smp_mb__after_atomic();
245 		cpumask_clear_cpu(cpu, vec->mask);
246 	}
247 
248 	*currpri = newpri;
249 }
250 
251 /**
252  * cpupri_init - initialize the cpupri structure
253  * @cp: The cpupri context
254  *
255  * Return: -ENOMEM on memory allocation failure.
256  */
cpupri_init(struct cpupri * cp)257 int cpupri_init(struct cpupri *cp)
258 {
259 	int i;
260 
261 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
262 		struct cpupri_vec *vec = &cp->pri_to_cpu[i];
263 
264 		atomic_set(&vec->count, 0);
265 		if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
266 			goto cleanup;
267 	}
268 
269 	cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
270 	if (!cp->cpu_to_pri)
271 		goto cleanup;
272 
273 	for_each_possible_cpu(i)
274 		cp->cpu_to_pri[i] = CPUPRI_INVALID;
275 
276 	return 0;
277 
278 cleanup:
279 	for (i--; i >= 0; i--)
280 		free_cpumask_var(cp->pri_to_cpu[i].mask);
281 	return -ENOMEM;
282 }
283 
284 /**
285  * cpupri_cleanup - clean up the cpupri structure
286  * @cp: The cpupri context
287  */
cpupri_cleanup(struct cpupri * cp)288 void cpupri_cleanup(struct cpupri *cp)
289 {
290 	int i;
291 
292 	kfree(cp->cpu_to_pri);
293 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
294 		free_cpumask_var(cp->pri_to_cpu[i].mask);
295 }
296