• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- LowerTypeTests.cpp - type metadata lowering pass -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers type metadata and calls to the llvm.type.test intrinsic.
10 // It also ensures that globals are properly laid out for the
11 // llvm.icall.branch.funnel intrinsic.
12 // See http://llvm.org/docs/TypeMetadata.html for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/LowerTypeTests.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/EquivalenceClasses.h"
21 #include "llvm/ADT/PointerUnion.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TypeMetadataUtils.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalObject.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/ModuleSummaryIndex.h"
50 #include "llvm/IR/ModuleSummaryIndexYAML.h"
51 #include "llvm/IR/Operator.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Allocator.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/Error.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/FileSystem.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/TrailingObjects.h"
69 #include "llvm/Support/YAMLTraits.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
73 #include "llvm/Transforms/Utils/ModuleUtils.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <memory>
78 #include <set>
79 #include <string>
80 #include <system_error>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 using namespace lowertypetests;
86 
87 #define DEBUG_TYPE "lowertypetests"
88 
89 STATISTIC(ByteArraySizeBits, "Byte array size in bits");
90 STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
91 STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
92 STATISTIC(NumTypeTestCallsLowered, "Number of type test calls lowered");
93 STATISTIC(NumTypeIdDisjointSets, "Number of disjoint sets of type identifiers");
94 
95 static cl::opt<bool> AvoidReuse(
96     "lowertypetests-avoid-reuse",
97     cl::desc("Try to avoid reuse of byte array addresses using aliases"),
98     cl::Hidden, cl::init(true));
99 
100 static cl::opt<PassSummaryAction> ClSummaryAction(
101     "lowertypetests-summary-action",
102     cl::desc("What to do with the summary when running this pass"),
103     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
104                clEnumValN(PassSummaryAction::Import, "import",
105                           "Import typeid resolutions from summary and globals"),
106                clEnumValN(PassSummaryAction::Export, "export",
107                           "Export typeid resolutions to summary and globals")),
108     cl::Hidden);
109 
110 static cl::opt<std::string> ClReadSummary(
111     "lowertypetests-read-summary",
112     cl::desc("Read summary from given YAML file before running pass"),
113     cl::Hidden);
114 
115 static cl::opt<std::string> ClWriteSummary(
116     "lowertypetests-write-summary",
117     cl::desc("Write summary to given YAML file after running pass"),
118     cl::Hidden);
119 
containsGlobalOffset(uint64_t Offset) const120 bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
121   if (Offset < ByteOffset)
122     return false;
123 
124   if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
125     return false;
126 
127   uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
128   if (BitOffset >= BitSize)
129     return false;
130 
131   return Bits.count(BitOffset);
132 }
133 
print(raw_ostream & OS) const134 void BitSetInfo::print(raw_ostream &OS) const {
135   OS << "offset " << ByteOffset << " size " << BitSize << " align "
136      << (1 << AlignLog2);
137 
138   if (isAllOnes()) {
139     OS << " all-ones\n";
140     return;
141   }
142 
143   OS << " { ";
144   for (uint64_t B : Bits)
145     OS << B << ' ';
146   OS << "}\n";
147 }
148 
build()149 BitSetInfo BitSetBuilder::build() {
150   if (Min > Max)
151     Min = 0;
152 
153   // Normalize each offset against the minimum observed offset, and compute
154   // the bitwise OR of each of the offsets. The number of trailing zeros
155   // in the mask gives us the log2 of the alignment of all offsets, which
156   // allows us to compress the bitset by only storing one bit per aligned
157   // address.
158   uint64_t Mask = 0;
159   for (uint64_t &Offset : Offsets) {
160     Offset -= Min;
161     Mask |= Offset;
162   }
163 
164   BitSetInfo BSI;
165   BSI.ByteOffset = Min;
166 
167   BSI.AlignLog2 = 0;
168   if (Mask != 0)
169     BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
170 
171   // Build the compressed bitset while normalizing the offsets against the
172   // computed alignment.
173   BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
174   for (uint64_t Offset : Offsets) {
175     Offset >>= BSI.AlignLog2;
176     BSI.Bits.insert(Offset);
177   }
178 
179   return BSI;
180 }
181 
addFragment(const std::set<uint64_t> & F)182 void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
183   // Create a new fragment to hold the layout for F.
184   Fragments.emplace_back();
185   std::vector<uint64_t> &Fragment = Fragments.back();
186   uint64_t FragmentIndex = Fragments.size() - 1;
187 
188   for (auto ObjIndex : F) {
189     uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
190     if (OldFragmentIndex == 0) {
191       // We haven't seen this object index before, so just add it to the current
192       // fragment.
193       Fragment.push_back(ObjIndex);
194     } else {
195       // This index belongs to an existing fragment. Copy the elements of the
196       // old fragment into this one and clear the old fragment. We don't update
197       // the fragment map just yet, this ensures that any further references to
198       // indices from the old fragment in this fragment do not insert any more
199       // indices.
200       std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
201       Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
202       OldFragment.clear();
203     }
204   }
205 
206   // Update the fragment map to point our object indices to this fragment.
207   for (uint64_t ObjIndex : Fragment)
208     FragmentMap[ObjIndex] = FragmentIndex;
209 }
210 
allocate(const std::set<uint64_t> & Bits,uint64_t BitSize,uint64_t & AllocByteOffset,uint8_t & AllocMask)211 void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
212                                 uint64_t BitSize, uint64_t &AllocByteOffset,
213                                 uint8_t &AllocMask) {
214   // Find the smallest current allocation.
215   unsigned Bit = 0;
216   for (unsigned I = 1; I != BitsPerByte; ++I)
217     if (BitAllocs[I] < BitAllocs[Bit])
218       Bit = I;
219 
220   AllocByteOffset = BitAllocs[Bit];
221 
222   // Add our size to it.
223   unsigned ReqSize = AllocByteOffset + BitSize;
224   BitAllocs[Bit] = ReqSize;
225   if (Bytes.size() < ReqSize)
226     Bytes.resize(ReqSize);
227 
228   // Set our bits.
229   AllocMask = 1 << Bit;
230   for (uint64_t B : Bits)
231     Bytes[AllocByteOffset + B] |= AllocMask;
232 }
233 
isJumpTableCanonical(Function * F)234 bool lowertypetests::isJumpTableCanonical(Function *F) {
235   if (F->isDeclarationForLinker())
236     return false;
237   auto *CI = mdconst::extract_or_null<ConstantInt>(
238       F->getParent()->getModuleFlag("CFI Canonical Jump Tables"));
239   if (!CI || CI->getZExtValue() != 0)
240     return true;
241   return F->hasFnAttribute("cfi-canonical-jump-table");
242 }
243 
244 namespace {
245 
246 struct ByteArrayInfo {
247   std::set<uint64_t> Bits;
248   uint64_t BitSize;
249   GlobalVariable *ByteArray;
250   GlobalVariable *MaskGlobal;
251   uint8_t *MaskPtr = nullptr;
252 };
253 
254 /// A POD-like structure that we use to store a global reference together with
255 /// its metadata types. In this pass we frequently need to query the set of
256 /// metadata types referenced by a global, which at the IR level is an expensive
257 /// operation involving a map lookup; this data structure helps to reduce the
258 /// number of times we need to do this lookup.
259 class GlobalTypeMember final : TrailingObjects<GlobalTypeMember, MDNode *> {
260   friend TrailingObjects;
261 
262   GlobalObject *GO;
263   size_t NTypes;
264 
265   // For functions: true if the jump table is canonical. This essentially means
266   // whether the canonical address (i.e. the symbol table entry) of the function
267   // is provided by the local jump table. This is normally the same as whether
268   // the function is defined locally, but if canonical jump tables are disabled
269   // by the user then the jump table never provides a canonical definition.
270   bool IsJumpTableCanonical;
271 
272   // For functions: true if this function is either defined or used in a thinlto
273   // module and its jumptable entry needs to be exported to thinlto backends.
274   bool IsExported;
275 
numTrailingObjects(OverloadToken<MDNode * >) const276   size_t numTrailingObjects(OverloadToken<MDNode *>) const { return NTypes; }
277 
278 public:
create(BumpPtrAllocator & Alloc,GlobalObject * GO,bool IsJumpTableCanonical,bool IsExported,ArrayRef<MDNode * > Types)279   static GlobalTypeMember *create(BumpPtrAllocator &Alloc, GlobalObject *GO,
280                                   bool IsJumpTableCanonical, bool IsExported,
281                                   ArrayRef<MDNode *> Types) {
282     auto *GTM = static_cast<GlobalTypeMember *>(Alloc.Allocate(
283         totalSizeToAlloc<MDNode *>(Types.size()), alignof(GlobalTypeMember)));
284     GTM->GO = GO;
285     GTM->NTypes = Types.size();
286     GTM->IsJumpTableCanonical = IsJumpTableCanonical;
287     GTM->IsExported = IsExported;
288     std::uninitialized_copy(Types.begin(), Types.end(),
289                             GTM->getTrailingObjects<MDNode *>());
290     return GTM;
291   }
292 
getGlobal() const293   GlobalObject *getGlobal() const {
294     return GO;
295   }
296 
isJumpTableCanonical() const297   bool isJumpTableCanonical() const {
298     return IsJumpTableCanonical;
299   }
300 
isExported() const301   bool isExported() const {
302     return IsExported;
303   }
304 
types() const305   ArrayRef<MDNode *> types() const {
306     return makeArrayRef(getTrailingObjects<MDNode *>(), NTypes);
307   }
308 };
309 
310 struct ICallBranchFunnel final
311     : TrailingObjects<ICallBranchFunnel, GlobalTypeMember *> {
create__anoncaa44a2c0111::ICallBranchFunnel312   static ICallBranchFunnel *create(BumpPtrAllocator &Alloc, CallInst *CI,
313                                    ArrayRef<GlobalTypeMember *> Targets,
314                                    unsigned UniqueId) {
315     auto *Call = static_cast<ICallBranchFunnel *>(
316         Alloc.Allocate(totalSizeToAlloc<GlobalTypeMember *>(Targets.size()),
317                        alignof(ICallBranchFunnel)));
318     Call->CI = CI;
319     Call->UniqueId = UniqueId;
320     Call->NTargets = Targets.size();
321     std::uninitialized_copy(Targets.begin(), Targets.end(),
322                             Call->getTrailingObjects<GlobalTypeMember *>());
323     return Call;
324   }
325 
326   CallInst *CI;
targets__anoncaa44a2c0111::ICallBranchFunnel327   ArrayRef<GlobalTypeMember *> targets() const {
328     return makeArrayRef(getTrailingObjects<GlobalTypeMember *>(), NTargets);
329   }
330 
331   unsigned UniqueId;
332 
333 private:
334   size_t NTargets;
335 };
336 
337 struct ScopedSaveAliaseesAndUsed {
338   Module &M;
339   SmallPtrSet<GlobalValue *, 16> Used, CompilerUsed;
340   std::vector<std::pair<GlobalIndirectSymbol *, Function *>> FunctionAliases;
341 
ScopedSaveAliaseesAndUsed__anoncaa44a2c0111::ScopedSaveAliaseesAndUsed342   ScopedSaveAliaseesAndUsed(Module &M) : M(M) {
343     // The users of this class want to replace all function references except
344     // for aliases and llvm.used/llvm.compiler.used with references to a jump
345     // table. We avoid replacing aliases in order to avoid introducing a double
346     // indirection (or an alias pointing to a declaration in ThinLTO mode), and
347     // we avoid replacing llvm.used/llvm.compiler.used because these global
348     // variables describe properties of the global, not the jump table (besides,
349     // offseted references to the jump table in llvm.used are invalid).
350     // Unfortunately, LLVM doesn't have a "RAUW except for these (possibly
351     // indirect) users", so what we do is save the list of globals referenced by
352     // llvm.used/llvm.compiler.used and aliases, erase the used lists, let RAUW
353     // replace the aliasees and then set them back to their original values at
354     // the end.
355     if (GlobalVariable *GV = collectUsedGlobalVariables(M, Used, false))
356       GV->eraseFromParent();
357     if (GlobalVariable *GV = collectUsedGlobalVariables(M, CompilerUsed, true))
358       GV->eraseFromParent();
359 
360     for (auto &GIS : concat<GlobalIndirectSymbol>(M.aliases(), M.ifuncs())) {
361       // FIXME: This should look past all aliases not just interposable ones,
362       // see discussion on D65118.
363       if (auto *F =
364               dyn_cast<Function>(GIS.getIndirectSymbol()->stripPointerCasts()))
365         FunctionAliases.push_back({&GIS, F});
366     }
367   }
368 
~ScopedSaveAliaseesAndUsed__anoncaa44a2c0111::ScopedSaveAliaseesAndUsed369   ~ScopedSaveAliaseesAndUsed() {
370     appendToUsed(M, std::vector<GlobalValue *>(Used.begin(), Used.end()));
371     appendToCompilerUsed(M, std::vector<GlobalValue *>(CompilerUsed.begin(),
372                                                        CompilerUsed.end()));
373 
374     for (auto P : FunctionAliases)
375       P.first->setIndirectSymbol(
376           ConstantExpr::getBitCast(P.second, P.first->getType()));
377   }
378 };
379 
380 class LowerTypeTestsModule {
381   Module &M;
382 
383   ModuleSummaryIndex *ExportSummary;
384   const ModuleSummaryIndex *ImportSummary;
385 
386   Triple::ArchType Arch;
387   Triple::OSType OS;
388   Triple::ObjectFormatType ObjectFormat;
389 
390   IntegerType *Int1Ty = Type::getInt1Ty(M.getContext());
391   IntegerType *Int8Ty = Type::getInt8Ty(M.getContext());
392   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
393   ArrayType *Int8Arr0Ty = ArrayType::get(Type::getInt8Ty(M.getContext()), 0);
394   IntegerType *Int32Ty = Type::getInt32Ty(M.getContext());
395   PointerType *Int32PtrTy = PointerType::getUnqual(Int32Ty);
396   IntegerType *Int64Ty = Type::getInt64Ty(M.getContext());
397   IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext(), 0);
398 
399   // Indirect function call index assignment counter for WebAssembly
400   uint64_t IndirectIndex = 1;
401 
402   // Mapping from type identifiers to the call sites that test them, as well as
403   // whether the type identifier needs to be exported to ThinLTO backends as
404   // part of the regular LTO phase of the ThinLTO pipeline (see exportTypeId).
405   struct TypeIdUserInfo {
406     std::vector<CallInst *> CallSites;
407     bool IsExported = false;
408   };
409   DenseMap<Metadata *, TypeIdUserInfo> TypeIdUsers;
410 
411   /// This structure describes how to lower type tests for a particular type
412   /// identifier. It is either built directly from the global analysis (during
413   /// regular LTO or the regular LTO phase of ThinLTO), or indirectly using type
414   /// identifier summaries and external symbol references (in ThinLTO backends).
415   struct TypeIdLowering {
416     TypeTestResolution::Kind TheKind = TypeTestResolution::Unsat;
417 
418     /// All except Unsat: the start address within the combined global.
419     Constant *OffsetedGlobal;
420 
421     /// ByteArray, Inline, AllOnes: log2 of the required global alignment
422     /// relative to the start address.
423     Constant *AlignLog2;
424 
425     /// ByteArray, Inline, AllOnes: one less than the size of the memory region
426     /// covering members of this type identifier as a multiple of 2^AlignLog2.
427     Constant *SizeM1;
428 
429     /// ByteArray: the byte array to test the address against.
430     Constant *TheByteArray;
431 
432     /// ByteArray: the bit mask to apply to bytes loaded from the byte array.
433     Constant *BitMask;
434 
435     /// Inline: the bit mask to test the address against.
436     Constant *InlineBits;
437   };
438 
439   std::vector<ByteArrayInfo> ByteArrayInfos;
440 
441   Function *WeakInitializerFn = nullptr;
442 
443   bool shouldExportConstantsAsAbsoluteSymbols();
444   uint8_t *exportTypeId(StringRef TypeId, const TypeIdLowering &TIL);
445   TypeIdLowering importTypeId(StringRef TypeId);
446   void importTypeTest(CallInst *CI);
447   void importFunction(Function *F, bool isJumpTableCanonical,
448                       std::vector<GlobalAlias *> &AliasesToErase);
449 
450   BitSetInfo
451   buildBitSet(Metadata *TypeId,
452               const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
453   ByteArrayInfo *createByteArray(BitSetInfo &BSI);
454   void allocateByteArrays();
455   Value *createBitSetTest(IRBuilder<> &B, const TypeIdLowering &TIL,
456                           Value *BitOffset);
457   void lowerTypeTestCalls(
458       ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
459       const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
460   Value *lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
461                            const TypeIdLowering &TIL);
462 
463   void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> TypeIds,
464                                        ArrayRef<GlobalTypeMember *> Globals);
465   unsigned getJumpTableEntrySize();
466   Type *getJumpTableEntryType();
467   void createJumpTableEntry(raw_ostream &AsmOS, raw_ostream &ConstraintOS,
468                             Triple::ArchType JumpTableArch,
469                             SmallVectorImpl<Value *> &AsmArgs, Function *Dest);
470   void verifyTypeMDNode(GlobalObject *GO, MDNode *Type);
471   void buildBitSetsFromFunctions(ArrayRef<Metadata *> TypeIds,
472                                  ArrayRef<GlobalTypeMember *> Functions);
473   void buildBitSetsFromFunctionsNative(ArrayRef<Metadata *> TypeIds,
474                                        ArrayRef<GlobalTypeMember *> Functions);
475   void buildBitSetsFromFunctionsWASM(ArrayRef<Metadata *> TypeIds,
476                                      ArrayRef<GlobalTypeMember *> Functions);
477   void
478   buildBitSetsFromDisjointSet(ArrayRef<Metadata *> TypeIds,
479                               ArrayRef<GlobalTypeMember *> Globals,
480                               ArrayRef<ICallBranchFunnel *> ICallBranchFunnels);
481 
482   void replaceWeakDeclarationWithJumpTablePtr(Function *F, Constant *JT,
483                                               bool IsJumpTableCanonical);
484   void moveInitializerToModuleConstructor(GlobalVariable *GV);
485   void findGlobalVariableUsersOf(Constant *C,
486                                  SmallSetVector<GlobalVariable *, 8> &Out);
487 
488   void createJumpTable(Function *F, ArrayRef<GlobalTypeMember *> Functions);
489 
490   /// replaceCfiUses - Go through the uses list for this definition
491   /// and make each use point to "V" instead of "this" when the use is outside
492   /// the block. 'This's use list is expected to have at least one element.
493   /// Unlike replaceAllUsesWith this function skips blockaddr and direct call
494   /// uses.
495   void replaceCfiUses(Function *Old, Value *New, bool IsJumpTableCanonical);
496 
497   /// replaceDirectCalls - Go through the uses list for this definition and
498   /// replace each use, which is a direct function call.
499   void replaceDirectCalls(Value *Old, Value *New);
500 
501 public:
502   LowerTypeTestsModule(Module &M, ModuleSummaryIndex *ExportSummary,
503                        const ModuleSummaryIndex *ImportSummary);
504 
505   bool lower();
506 
507   // Lower the module using the action and summary passed as command line
508   // arguments. For testing purposes only.
509   static bool runForTesting(Module &M);
510 };
511 
512 struct LowerTypeTests : public ModulePass {
513   static char ID;
514 
515   bool UseCommandLine = false;
516 
517   ModuleSummaryIndex *ExportSummary;
518   const ModuleSummaryIndex *ImportSummary;
519 
LowerTypeTests__anoncaa44a2c0111::LowerTypeTests520   LowerTypeTests() : ModulePass(ID), UseCommandLine(true) {
521     initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
522   }
523 
LowerTypeTests__anoncaa44a2c0111::LowerTypeTests524   LowerTypeTests(ModuleSummaryIndex *ExportSummary,
525                  const ModuleSummaryIndex *ImportSummary)
526       : ModulePass(ID), ExportSummary(ExportSummary),
527         ImportSummary(ImportSummary) {
528     initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
529   }
530 
runOnModule__anoncaa44a2c0111::LowerTypeTests531   bool runOnModule(Module &M) override {
532     if (UseCommandLine)
533       return LowerTypeTestsModule::runForTesting(M);
534     return LowerTypeTestsModule(M, ExportSummary, ImportSummary).lower();
535   }
536 };
537 
538 } // end anonymous namespace
539 
540 char LowerTypeTests::ID = 0;
541 
542 INITIALIZE_PASS(LowerTypeTests, "lowertypetests", "Lower type metadata", false,
543                 false)
544 
545 ModulePass *
createLowerTypeTestsPass(ModuleSummaryIndex * ExportSummary,const ModuleSummaryIndex * ImportSummary)546 llvm::createLowerTypeTestsPass(ModuleSummaryIndex *ExportSummary,
547                                const ModuleSummaryIndex *ImportSummary) {
548   return new LowerTypeTests(ExportSummary, ImportSummary);
549 }
550 
551 /// Build a bit set for TypeId using the object layouts in
552 /// GlobalLayout.
buildBitSet(Metadata * TypeId,const DenseMap<GlobalTypeMember *,uint64_t> & GlobalLayout)553 BitSetInfo LowerTypeTestsModule::buildBitSet(
554     Metadata *TypeId,
555     const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
556   BitSetBuilder BSB;
557 
558   // Compute the byte offset of each address associated with this type
559   // identifier.
560   for (auto &GlobalAndOffset : GlobalLayout) {
561     for (MDNode *Type : GlobalAndOffset.first->types()) {
562       if (Type->getOperand(1) != TypeId)
563         continue;
564       uint64_t Offset =
565           cast<ConstantInt>(
566               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
567               ->getZExtValue();
568       BSB.addOffset(GlobalAndOffset.second + Offset);
569     }
570   }
571 
572   return BSB.build();
573 }
574 
575 /// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
576 /// Bits. This pattern matches to the bt instruction on x86.
createMaskedBitTest(IRBuilder<> & B,Value * Bits,Value * BitOffset)577 static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
578                                   Value *BitOffset) {
579   auto BitsType = cast<IntegerType>(Bits->getType());
580   unsigned BitWidth = BitsType->getBitWidth();
581 
582   BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
583   Value *BitIndex =
584       B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
585   Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
586   Value *MaskedBits = B.CreateAnd(Bits, BitMask);
587   return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
588 }
589 
createByteArray(BitSetInfo & BSI)590 ByteArrayInfo *LowerTypeTestsModule::createByteArray(BitSetInfo &BSI) {
591   // Create globals to stand in for byte arrays and masks. These never actually
592   // get initialized, we RAUW and erase them later in allocateByteArrays() once
593   // we know the offset and mask to use.
594   auto ByteArrayGlobal = new GlobalVariable(
595       M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
596   auto MaskGlobal = new GlobalVariable(M, Int8Ty, /*isConstant=*/true,
597                                        GlobalValue::PrivateLinkage, nullptr);
598 
599   ByteArrayInfos.emplace_back();
600   ByteArrayInfo *BAI = &ByteArrayInfos.back();
601 
602   BAI->Bits = BSI.Bits;
603   BAI->BitSize = BSI.BitSize;
604   BAI->ByteArray = ByteArrayGlobal;
605   BAI->MaskGlobal = MaskGlobal;
606   return BAI;
607 }
608 
allocateByteArrays()609 void LowerTypeTestsModule::allocateByteArrays() {
610   llvm::stable_sort(ByteArrayInfos,
611                     [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
612                       return BAI1.BitSize > BAI2.BitSize;
613                     });
614 
615   std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
616 
617   ByteArrayBuilder BAB;
618   for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
619     ByteArrayInfo *BAI = &ByteArrayInfos[I];
620 
621     uint8_t Mask;
622     BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
623 
624     BAI->MaskGlobal->replaceAllUsesWith(
625         ConstantExpr::getIntToPtr(ConstantInt::get(Int8Ty, Mask), Int8PtrTy));
626     BAI->MaskGlobal->eraseFromParent();
627     if (BAI->MaskPtr)
628       *BAI->MaskPtr = Mask;
629   }
630 
631   Constant *ByteArrayConst = ConstantDataArray::get(M.getContext(), BAB.Bytes);
632   auto ByteArray =
633       new GlobalVariable(M, ByteArrayConst->getType(), /*isConstant=*/true,
634                          GlobalValue::PrivateLinkage, ByteArrayConst);
635 
636   for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
637     ByteArrayInfo *BAI = &ByteArrayInfos[I];
638 
639     Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
640                         ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
641     Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
642         ByteArrayConst->getType(), ByteArray, Idxs);
643 
644     // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
645     // that the pc-relative displacement is folded into the lea instead of the
646     // test instruction getting another displacement.
647     GlobalAlias *Alias = GlobalAlias::create(
648         Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, &M);
649     BAI->ByteArray->replaceAllUsesWith(Alias);
650     BAI->ByteArray->eraseFromParent();
651   }
652 
653   ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
654                       BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
655                       BAB.BitAllocs[6] + BAB.BitAllocs[7];
656   ByteArraySizeBytes = BAB.Bytes.size();
657 }
658 
659 /// Build a test that bit BitOffset is set in the type identifier that was
660 /// lowered to TIL, which must be either an Inline or a ByteArray.
createBitSetTest(IRBuilder<> & B,const TypeIdLowering & TIL,Value * BitOffset)661 Value *LowerTypeTestsModule::createBitSetTest(IRBuilder<> &B,
662                                               const TypeIdLowering &TIL,
663                                               Value *BitOffset) {
664   if (TIL.TheKind == TypeTestResolution::Inline) {
665     // If the bit set is sufficiently small, we can avoid a load by bit testing
666     // a constant.
667     return createMaskedBitTest(B, TIL.InlineBits, BitOffset);
668   } else {
669     Constant *ByteArray = TIL.TheByteArray;
670     if (AvoidReuse && !ImportSummary) {
671       // Each use of the byte array uses a different alias. This makes the
672       // backend less likely to reuse previously computed byte array addresses,
673       // improving the security of the CFI mechanism based on this pass.
674       // This won't work when importing because TheByteArray is external.
675       ByteArray = GlobalAlias::create(Int8Ty, 0, GlobalValue::PrivateLinkage,
676                                       "bits_use", ByteArray, &M);
677     }
678 
679     Value *ByteAddr = B.CreateGEP(Int8Ty, ByteArray, BitOffset);
680     Value *Byte = B.CreateLoad(Int8Ty, ByteAddr);
681 
682     Value *ByteAndMask =
683         B.CreateAnd(Byte, ConstantExpr::getPtrToInt(TIL.BitMask, Int8Ty));
684     return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
685   }
686 }
687 
isKnownTypeIdMember(Metadata * TypeId,const DataLayout & DL,Value * V,uint64_t COffset)688 static bool isKnownTypeIdMember(Metadata *TypeId, const DataLayout &DL,
689                                 Value *V, uint64_t COffset) {
690   if (auto GV = dyn_cast<GlobalObject>(V)) {
691     SmallVector<MDNode *, 2> Types;
692     GV->getMetadata(LLVMContext::MD_type, Types);
693     for (MDNode *Type : Types) {
694       if (Type->getOperand(1) != TypeId)
695         continue;
696       uint64_t Offset =
697           cast<ConstantInt>(
698               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
699               ->getZExtValue();
700       if (COffset == Offset)
701         return true;
702     }
703     return false;
704   }
705 
706   if (auto GEP = dyn_cast<GEPOperator>(V)) {
707     APInt APOffset(DL.getPointerSizeInBits(0), 0);
708     bool Result = GEP->accumulateConstantOffset(DL, APOffset);
709     if (!Result)
710       return false;
711     COffset += APOffset.getZExtValue();
712     return isKnownTypeIdMember(TypeId, DL, GEP->getPointerOperand(), COffset);
713   }
714 
715   if (auto Op = dyn_cast<Operator>(V)) {
716     if (Op->getOpcode() == Instruction::BitCast)
717       return isKnownTypeIdMember(TypeId, DL, Op->getOperand(0), COffset);
718 
719     if (Op->getOpcode() == Instruction::Select)
720       return isKnownTypeIdMember(TypeId, DL, Op->getOperand(1), COffset) &&
721              isKnownTypeIdMember(TypeId, DL, Op->getOperand(2), COffset);
722   }
723 
724   return false;
725 }
726 
727 /// Lower a llvm.type.test call to its implementation. Returns the value to
728 /// replace the call with.
lowerTypeTestCall(Metadata * TypeId,CallInst * CI,const TypeIdLowering & TIL)729 Value *LowerTypeTestsModule::lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
730                                                const TypeIdLowering &TIL) {
731   if (TIL.TheKind == TypeTestResolution::Unsat)
732     return ConstantInt::getFalse(M.getContext());
733 
734   Value *Ptr = CI->getArgOperand(0);
735   const DataLayout &DL = M.getDataLayout();
736   if (isKnownTypeIdMember(TypeId, DL, Ptr, 0))
737     return ConstantInt::getTrue(M.getContext());
738 
739   BasicBlock *InitialBB = CI->getParent();
740 
741   IRBuilder<> B(CI);
742 
743   Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
744 
745   Constant *OffsetedGlobalAsInt =
746       ConstantExpr::getPtrToInt(TIL.OffsetedGlobal, IntPtrTy);
747   if (TIL.TheKind == TypeTestResolution::Single)
748     return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
749 
750   Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);
751 
752   // We need to check that the offset both falls within our range and is
753   // suitably aligned. We can check both properties at the same time by
754   // performing a right rotate by log2(alignment) followed by an integer
755   // comparison against the bitset size. The rotate will move the lower
756   // order bits that need to be zero into the higher order bits of the
757   // result, causing the comparison to fail if they are nonzero. The rotate
758   // also conveniently gives us a bit offset to use during the load from
759   // the bitset.
760   Value *OffsetSHR =
761       B.CreateLShr(PtrOffset, ConstantExpr::getZExt(TIL.AlignLog2, IntPtrTy));
762   Value *OffsetSHL = B.CreateShl(
763       PtrOffset, ConstantExpr::getZExt(
764                      ConstantExpr::getSub(
765                          ConstantInt::get(Int8Ty, DL.getPointerSizeInBits(0)),
766                          TIL.AlignLog2),
767                      IntPtrTy));
768   Value *BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
769 
770   Value *OffsetInRange = B.CreateICmpULE(BitOffset, TIL.SizeM1);
771 
772   // If the bit set is all ones, testing against it is unnecessary.
773   if (TIL.TheKind == TypeTestResolution::AllOnes)
774     return OffsetInRange;
775 
776   // See if the intrinsic is used in the following common pattern:
777   //   br(llvm.type.test(...), thenbb, elsebb)
778   // where nothing happens between the type test and the br.
779   // If so, create slightly simpler IR.
780   if (CI->hasOneUse())
781     if (auto *Br = dyn_cast<BranchInst>(*CI->user_begin()))
782       if (CI->getNextNode() == Br) {
783         BasicBlock *Then = InitialBB->splitBasicBlock(CI->getIterator());
784         BasicBlock *Else = Br->getSuccessor(1);
785         BranchInst *NewBr = BranchInst::Create(Then, Else, OffsetInRange);
786         NewBr->setMetadata(LLVMContext::MD_prof,
787                            Br->getMetadata(LLVMContext::MD_prof));
788         ReplaceInstWithInst(InitialBB->getTerminator(), NewBr);
789 
790         // Update phis in Else resulting from InitialBB being split
791         for (auto &Phi : Else->phis())
792           Phi.addIncoming(Phi.getIncomingValueForBlock(Then), InitialBB);
793 
794         IRBuilder<> ThenB(CI);
795         return createBitSetTest(ThenB, TIL, BitOffset);
796       }
797 
798   IRBuilder<> ThenB(SplitBlockAndInsertIfThen(OffsetInRange, CI, false));
799 
800   // Now that we know that the offset is in range and aligned, load the
801   // appropriate bit from the bitset.
802   Value *Bit = createBitSetTest(ThenB, TIL, BitOffset);
803 
804   // The value we want is 0 if we came directly from the initial block
805   // (having failed the range or alignment checks), or the loaded bit if
806   // we came from the block in which we loaded it.
807   B.SetInsertPoint(CI);
808   PHINode *P = B.CreatePHI(Int1Ty, 2);
809   P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
810   P->addIncoming(Bit, ThenB.GetInsertBlock());
811   return P;
812 }
813 
814 /// Given a disjoint set of type identifiers and globals, lay out the globals,
815 /// build the bit sets and lower the llvm.type.test calls.
buildBitSetsFromGlobalVariables(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Globals)816 void LowerTypeTestsModule::buildBitSetsFromGlobalVariables(
817     ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals) {
818   // Build a new global with the combined contents of the referenced globals.
819   // This global is a struct whose even-indexed elements contain the original
820   // contents of the referenced globals and whose odd-indexed elements contain
821   // any padding required to align the next element to the next power of 2 plus
822   // any additional padding required to meet its alignment requirements.
823   std::vector<Constant *> GlobalInits;
824   const DataLayout &DL = M.getDataLayout();
825   DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
826   Align MaxAlign;
827   uint64_t CurOffset = 0;
828   uint64_t DesiredPadding = 0;
829   for (GlobalTypeMember *G : Globals) {
830     auto *GV = cast<GlobalVariable>(G->getGlobal());
831     MaybeAlign Alignment(GV->getAlignment());
832     if (!Alignment)
833       Alignment = Align(DL.getABITypeAlignment(GV->getValueType()));
834     MaxAlign = std::max(MaxAlign, *Alignment);
835     uint64_t GVOffset = alignTo(CurOffset + DesiredPadding, *Alignment);
836     GlobalLayout[G] = GVOffset;
837     if (GVOffset != 0) {
838       uint64_t Padding = GVOffset - CurOffset;
839       GlobalInits.push_back(
840           ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
841     }
842 
843     GlobalInits.push_back(GV->getInitializer());
844     uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
845     CurOffset = GVOffset + InitSize;
846 
847     // Compute the amount of padding that we'd like for the next element.
848     DesiredPadding = NextPowerOf2(InitSize - 1) - InitSize;
849 
850     // Experiments of different caps with Chromium on both x64 and ARM64
851     // have shown that the 32-byte cap generates the smallest binary on
852     // both platforms while different caps yield similar performance.
853     // (see https://lists.llvm.org/pipermail/llvm-dev/2018-July/124694.html)
854     if (DesiredPadding > 32)
855       DesiredPadding = alignTo(InitSize, 32) - InitSize;
856   }
857 
858   Constant *NewInit = ConstantStruct::getAnon(M.getContext(), GlobalInits);
859   auto *CombinedGlobal =
860       new GlobalVariable(M, NewInit->getType(), /*isConstant=*/true,
861                          GlobalValue::PrivateLinkage, NewInit);
862   CombinedGlobal->setAlignment(MaxAlign);
863 
864   StructType *NewTy = cast<StructType>(NewInit->getType());
865   lowerTypeTestCalls(TypeIds, CombinedGlobal, GlobalLayout);
866 
867   // Build aliases pointing to offsets into the combined global for each
868   // global from which we built the combined global, and replace references
869   // to the original globals with references to the aliases.
870   for (unsigned I = 0; I != Globals.size(); ++I) {
871     GlobalVariable *GV = cast<GlobalVariable>(Globals[I]->getGlobal());
872 
873     // Multiply by 2 to account for padding elements.
874     Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
875                                       ConstantInt::get(Int32Ty, I * 2)};
876     Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
877         NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
878     assert(GV->getType()->getAddressSpace() == 0);
879     GlobalAlias *GAlias =
880         GlobalAlias::create(NewTy->getElementType(I * 2), 0, GV->getLinkage(),
881                             "", CombinedGlobalElemPtr, &M);
882     GAlias->setVisibility(GV->getVisibility());
883     GAlias->takeName(GV);
884     GV->replaceAllUsesWith(GAlias);
885     GV->eraseFromParent();
886   }
887 }
888 
shouldExportConstantsAsAbsoluteSymbols()889 bool LowerTypeTestsModule::shouldExportConstantsAsAbsoluteSymbols() {
890   return (Arch == Triple::x86 || Arch == Triple::x86_64) &&
891          ObjectFormat == Triple::ELF;
892 }
893 
894 /// Export the given type identifier so that ThinLTO backends may import it.
895 /// Type identifiers are exported by adding coarse-grained information about how
896 /// to test the type identifier to the summary, and creating symbols in the
897 /// object file (aliases and absolute symbols) containing fine-grained
898 /// information about the type identifier.
899 ///
900 /// Returns a pointer to the location in which to store the bitmask, if
901 /// applicable.
exportTypeId(StringRef TypeId,const TypeIdLowering & TIL)902 uint8_t *LowerTypeTestsModule::exportTypeId(StringRef TypeId,
903                                             const TypeIdLowering &TIL) {
904   TypeTestResolution &TTRes =
905       ExportSummary->getOrInsertTypeIdSummary(TypeId).TTRes;
906   TTRes.TheKind = TIL.TheKind;
907 
908   auto ExportGlobal = [&](StringRef Name, Constant *C) {
909     GlobalAlias *GA =
910         GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
911                             "__typeid_" + TypeId + "_" + Name, C, &M);
912     GA->setVisibility(GlobalValue::HiddenVisibility);
913   };
914 
915   auto ExportConstant = [&](StringRef Name, uint64_t &Storage, Constant *C) {
916     if (shouldExportConstantsAsAbsoluteSymbols())
917       ExportGlobal(Name, ConstantExpr::getIntToPtr(C, Int8PtrTy));
918     else
919       Storage = cast<ConstantInt>(C)->getZExtValue();
920   };
921 
922   if (TIL.TheKind != TypeTestResolution::Unsat)
923     ExportGlobal("global_addr", TIL.OffsetedGlobal);
924 
925   if (TIL.TheKind == TypeTestResolution::ByteArray ||
926       TIL.TheKind == TypeTestResolution::Inline ||
927       TIL.TheKind == TypeTestResolution::AllOnes) {
928     ExportConstant("align", TTRes.AlignLog2, TIL.AlignLog2);
929     ExportConstant("size_m1", TTRes.SizeM1, TIL.SizeM1);
930 
931     uint64_t BitSize = cast<ConstantInt>(TIL.SizeM1)->getZExtValue() + 1;
932     if (TIL.TheKind == TypeTestResolution::Inline)
933       TTRes.SizeM1BitWidth = (BitSize <= 32) ? 5 : 6;
934     else
935       TTRes.SizeM1BitWidth = (BitSize <= 128) ? 7 : 32;
936   }
937 
938   if (TIL.TheKind == TypeTestResolution::ByteArray) {
939     ExportGlobal("byte_array", TIL.TheByteArray);
940     if (shouldExportConstantsAsAbsoluteSymbols())
941       ExportGlobal("bit_mask", TIL.BitMask);
942     else
943       return &TTRes.BitMask;
944   }
945 
946   if (TIL.TheKind == TypeTestResolution::Inline)
947     ExportConstant("inline_bits", TTRes.InlineBits, TIL.InlineBits);
948 
949   return nullptr;
950 }
951 
952 LowerTypeTestsModule::TypeIdLowering
importTypeId(StringRef TypeId)953 LowerTypeTestsModule::importTypeId(StringRef TypeId) {
954   const TypeIdSummary *TidSummary = ImportSummary->getTypeIdSummary(TypeId);
955   if (!TidSummary)
956     return {}; // Unsat: no globals match this type id.
957   const TypeTestResolution &TTRes = TidSummary->TTRes;
958 
959   TypeIdLowering TIL;
960   TIL.TheKind = TTRes.TheKind;
961 
962   auto ImportGlobal = [&](StringRef Name) {
963     // Give the global a type of length 0 so that it is not assumed not to alias
964     // with any other global.
965     Constant *C = M.getOrInsertGlobal(("__typeid_" + TypeId + "_" + Name).str(),
966                                       Int8Arr0Ty);
967     if (auto *GV = dyn_cast<GlobalVariable>(C))
968       GV->setVisibility(GlobalValue::HiddenVisibility);
969     C = ConstantExpr::getBitCast(C, Int8PtrTy);
970     return C;
971   };
972 
973   auto ImportConstant = [&](StringRef Name, uint64_t Const, unsigned AbsWidth,
974                             Type *Ty) {
975     if (!shouldExportConstantsAsAbsoluteSymbols()) {
976       Constant *C =
977           ConstantInt::get(isa<IntegerType>(Ty) ? Ty : Int64Ty, Const);
978       if (!isa<IntegerType>(Ty))
979         C = ConstantExpr::getIntToPtr(C, Ty);
980       return C;
981     }
982 
983     Constant *C = ImportGlobal(Name);
984     auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
985     if (isa<IntegerType>(Ty))
986       C = ConstantExpr::getPtrToInt(C, Ty);
987     if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
988       return C;
989 
990     auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
991       auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
992       auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
993       GV->setMetadata(LLVMContext::MD_absolute_symbol,
994                       MDNode::get(M.getContext(), {MinC, MaxC}));
995     };
996     if (AbsWidth == IntPtrTy->getBitWidth())
997       SetAbsRange(~0ull, ~0ull); // Full set.
998     else
999       SetAbsRange(0, 1ull << AbsWidth);
1000     return C;
1001   };
1002 
1003   if (TIL.TheKind != TypeTestResolution::Unsat)
1004     TIL.OffsetedGlobal = ImportGlobal("global_addr");
1005 
1006   if (TIL.TheKind == TypeTestResolution::ByteArray ||
1007       TIL.TheKind == TypeTestResolution::Inline ||
1008       TIL.TheKind == TypeTestResolution::AllOnes) {
1009     TIL.AlignLog2 = ImportConstant("align", TTRes.AlignLog2, 8, Int8Ty);
1010     TIL.SizeM1 =
1011         ImportConstant("size_m1", TTRes.SizeM1, TTRes.SizeM1BitWidth, IntPtrTy);
1012   }
1013 
1014   if (TIL.TheKind == TypeTestResolution::ByteArray) {
1015     TIL.TheByteArray = ImportGlobal("byte_array");
1016     TIL.BitMask = ImportConstant("bit_mask", TTRes.BitMask, 8, Int8PtrTy);
1017   }
1018 
1019   if (TIL.TheKind == TypeTestResolution::Inline)
1020     TIL.InlineBits = ImportConstant(
1021         "inline_bits", TTRes.InlineBits, 1 << TTRes.SizeM1BitWidth,
1022         TTRes.SizeM1BitWidth <= 5 ? Int32Ty : Int64Ty);
1023 
1024   return TIL;
1025 }
1026 
importTypeTest(CallInst * CI)1027 void LowerTypeTestsModule::importTypeTest(CallInst *CI) {
1028   auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
1029   if (!TypeIdMDVal)
1030     report_fatal_error("Second argument of llvm.type.test must be metadata");
1031 
1032   auto TypeIdStr = dyn_cast<MDString>(TypeIdMDVal->getMetadata());
1033   if (!TypeIdStr)
1034     report_fatal_error(
1035         "Second argument of llvm.type.test must be a metadata string");
1036 
1037   TypeIdLowering TIL = importTypeId(TypeIdStr->getString());
1038   Value *Lowered = lowerTypeTestCall(TypeIdStr, CI, TIL);
1039   CI->replaceAllUsesWith(Lowered);
1040   CI->eraseFromParent();
1041 }
1042 
1043 // ThinLTO backend: the function F has a jump table entry; update this module
1044 // accordingly. isJumpTableCanonical describes the type of the jump table entry.
importFunction(Function * F,bool isJumpTableCanonical,std::vector<GlobalAlias * > & AliasesToErase)1045 void LowerTypeTestsModule::importFunction(
1046     Function *F, bool isJumpTableCanonical,
1047     std::vector<GlobalAlias *> &AliasesToErase) {
1048   assert(F->getType()->getAddressSpace() == 0);
1049 
1050   GlobalValue::VisibilityTypes Visibility = F->getVisibility();
1051   std::string Name = F->getName();
1052 
1053   if (F->isDeclarationForLinker() && isJumpTableCanonical) {
1054     // Non-dso_local functions may be overriden at run time,
1055     // don't short curcuit them
1056     if (F->isDSOLocal()) {
1057       Function *RealF = Function::Create(F->getFunctionType(),
1058                                          GlobalValue::ExternalLinkage,
1059                                          F->getAddressSpace(),
1060                                          Name + ".cfi", &M);
1061       RealF->setVisibility(GlobalVariable::HiddenVisibility);
1062       replaceDirectCalls(F, RealF);
1063     }
1064     return;
1065   }
1066 
1067   Function *FDecl;
1068   if (!isJumpTableCanonical) {
1069     // Either a declaration of an external function or a reference to a locally
1070     // defined jump table.
1071     FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1072                              F->getAddressSpace(), Name + ".cfi_jt", &M);
1073     FDecl->setVisibility(GlobalValue::HiddenVisibility);
1074   } else {
1075     F->setName(Name + ".cfi");
1076     F->setLinkage(GlobalValue::ExternalLinkage);
1077     FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1078                              F->getAddressSpace(), Name, &M);
1079     FDecl->setVisibility(Visibility);
1080     Visibility = GlobalValue::HiddenVisibility;
1081 
1082     // Delete aliases pointing to this function, they'll be re-created in the
1083     // merged output. Don't do it yet though because ScopedSaveAliaseesAndUsed
1084     // will want to reset the aliasees first.
1085     for (auto &U : F->uses()) {
1086       if (auto *A = dyn_cast<GlobalAlias>(U.getUser())) {
1087         Function *AliasDecl = Function::Create(
1088             F->getFunctionType(), GlobalValue::ExternalLinkage,
1089             F->getAddressSpace(), "", &M);
1090         AliasDecl->takeName(A);
1091         A->replaceAllUsesWith(AliasDecl);
1092         AliasesToErase.push_back(A);
1093       }
1094     }
1095   }
1096 
1097   if (F->hasExternalWeakLinkage())
1098     replaceWeakDeclarationWithJumpTablePtr(F, FDecl, isJumpTableCanonical);
1099   else
1100     replaceCfiUses(F, FDecl, isJumpTableCanonical);
1101 
1102   // Set visibility late because it's used in replaceCfiUses() to determine
1103   // whether uses need to to be replaced.
1104   F->setVisibility(Visibility);
1105 }
1106 
lowerTypeTestCalls(ArrayRef<Metadata * > TypeIds,Constant * CombinedGlobalAddr,const DenseMap<GlobalTypeMember *,uint64_t> & GlobalLayout)1107 void LowerTypeTestsModule::lowerTypeTestCalls(
1108     ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
1109     const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
1110   CombinedGlobalAddr = ConstantExpr::getBitCast(CombinedGlobalAddr, Int8PtrTy);
1111 
1112   // For each type identifier in this disjoint set...
1113   for (Metadata *TypeId : TypeIds) {
1114     // Build the bitset.
1115     BitSetInfo BSI = buildBitSet(TypeId, GlobalLayout);
1116     LLVM_DEBUG({
1117       if (auto MDS = dyn_cast<MDString>(TypeId))
1118         dbgs() << MDS->getString() << ": ";
1119       else
1120         dbgs() << "<unnamed>: ";
1121       BSI.print(dbgs());
1122     });
1123 
1124     ByteArrayInfo *BAI = nullptr;
1125     TypeIdLowering TIL;
1126     TIL.OffsetedGlobal = ConstantExpr::getGetElementPtr(
1127         Int8Ty, CombinedGlobalAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset)),
1128     TIL.AlignLog2 = ConstantInt::get(Int8Ty, BSI.AlignLog2);
1129     TIL.SizeM1 = ConstantInt::get(IntPtrTy, BSI.BitSize - 1);
1130     if (BSI.isAllOnes()) {
1131       TIL.TheKind = (BSI.BitSize == 1) ? TypeTestResolution::Single
1132                                        : TypeTestResolution::AllOnes;
1133     } else if (BSI.BitSize <= 64) {
1134       TIL.TheKind = TypeTestResolution::Inline;
1135       uint64_t InlineBits = 0;
1136       for (auto Bit : BSI.Bits)
1137         InlineBits |= uint64_t(1) << Bit;
1138       if (InlineBits == 0)
1139         TIL.TheKind = TypeTestResolution::Unsat;
1140       else
1141         TIL.InlineBits = ConstantInt::get(
1142             (BSI.BitSize <= 32) ? Int32Ty : Int64Ty, InlineBits);
1143     } else {
1144       TIL.TheKind = TypeTestResolution::ByteArray;
1145       ++NumByteArraysCreated;
1146       BAI = createByteArray(BSI);
1147       TIL.TheByteArray = BAI->ByteArray;
1148       TIL.BitMask = BAI->MaskGlobal;
1149     }
1150 
1151     TypeIdUserInfo &TIUI = TypeIdUsers[TypeId];
1152 
1153     if (TIUI.IsExported) {
1154       uint8_t *MaskPtr = exportTypeId(cast<MDString>(TypeId)->getString(), TIL);
1155       if (BAI)
1156         BAI->MaskPtr = MaskPtr;
1157     }
1158 
1159     // Lower each call to llvm.type.test for this type identifier.
1160     for (CallInst *CI : TIUI.CallSites) {
1161       ++NumTypeTestCallsLowered;
1162       Value *Lowered = lowerTypeTestCall(TypeId, CI, TIL);
1163       CI->replaceAllUsesWith(Lowered);
1164       CI->eraseFromParent();
1165     }
1166   }
1167 }
1168 
verifyTypeMDNode(GlobalObject * GO,MDNode * Type)1169 void LowerTypeTestsModule::verifyTypeMDNode(GlobalObject *GO, MDNode *Type) {
1170   if (Type->getNumOperands() != 2)
1171     report_fatal_error("All operands of type metadata must have 2 elements");
1172 
1173   if (GO->isThreadLocal())
1174     report_fatal_error("Bit set element may not be thread-local");
1175   if (isa<GlobalVariable>(GO) && GO->hasSection())
1176     report_fatal_error(
1177         "A member of a type identifier may not have an explicit section");
1178 
1179   // FIXME: We previously checked that global var member of a type identifier
1180   // must be a definition, but the IR linker may leave type metadata on
1181   // declarations. We should restore this check after fixing PR31759.
1182 
1183   auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Type->getOperand(0));
1184   if (!OffsetConstMD)
1185     report_fatal_error("Type offset must be a constant");
1186   auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
1187   if (!OffsetInt)
1188     report_fatal_error("Type offset must be an integer constant");
1189 }
1190 
1191 static const unsigned kX86JumpTableEntrySize = 8;
1192 static const unsigned kARMJumpTableEntrySize = 4;
1193 
getJumpTableEntrySize()1194 unsigned LowerTypeTestsModule::getJumpTableEntrySize() {
1195   switch (Arch) {
1196     case Triple::x86:
1197     case Triple::x86_64:
1198       return kX86JumpTableEntrySize;
1199     case Triple::arm:
1200     case Triple::thumb:
1201     case Triple::aarch64:
1202       return kARMJumpTableEntrySize;
1203     default:
1204       report_fatal_error("Unsupported architecture for jump tables");
1205   }
1206 }
1207 
1208 // Create a jump table entry for the target. This consists of an instruction
1209 // sequence containing a relative branch to Dest. Appends inline asm text,
1210 // constraints and arguments to AsmOS, ConstraintOS and AsmArgs.
createJumpTableEntry(raw_ostream & AsmOS,raw_ostream & ConstraintOS,Triple::ArchType JumpTableArch,SmallVectorImpl<Value * > & AsmArgs,Function * Dest)1211 void LowerTypeTestsModule::createJumpTableEntry(
1212     raw_ostream &AsmOS, raw_ostream &ConstraintOS,
1213     Triple::ArchType JumpTableArch, SmallVectorImpl<Value *> &AsmArgs,
1214     Function *Dest) {
1215   unsigned ArgIndex = AsmArgs.size();
1216 
1217   if (JumpTableArch == Triple::x86 || JumpTableArch == Triple::x86_64) {
1218     AsmOS << "jmp ${" << ArgIndex << ":c}@plt\n";
1219     AsmOS << "int3\nint3\nint3\n";
1220   } else if (JumpTableArch == Triple::arm || JumpTableArch == Triple::aarch64) {
1221     AsmOS << "b $" << ArgIndex << "\n";
1222   } else if (JumpTableArch == Triple::thumb) {
1223     AsmOS << "b.w $" << ArgIndex << "\n";
1224   } else {
1225     report_fatal_error("Unsupported architecture for jump tables");
1226   }
1227 
1228   ConstraintOS << (ArgIndex > 0 ? ",s" : "s");
1229   AsmArgs.push_back(Dest);
1230 }
1231 
getJumpTableEntryType()1232 Type *LowerTypeTestsModule::getJumpTableEntryType() {
1233   return ArrayType::get(Int8Ty, getJumpTableEntrySize());
1234 }
1235 
1236 /// Given a disjoint set of type identifiers and functions, build the bit sets
1237 /// and lower the llvm.type.test calls, architecture dependently.
buildBitSetsFromFunctions(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Functions)1238 void LowerTypeTestsModule::buildBitSetsFromFunctions(
1239     ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1240   if (Arch == Triple::x86 || Arch == Triple::x86_64 || Arch == Triple::arm ||
1241       Arch == Triple::thumb || Arch == Triple::aarch64)
1242     buildBitSetsFromFunctionsNative(TypeIds, Functions);
1243   else if (Arch == Triple::wasm32 || Arch == Triple::wasm64)
1244     buildBitSetsFromFunctionsWASM(TypeIds, Functions);
1245   else
1246     report_fatal_error("Unsupported architecture for jump tables");
1247 }
1248 
moveInitializerToModuleConstructor(GlobalVariable * GV)1249 void LowerTypeTestsModule::moveInitializerToModuleConstructor(
1250     GlobalVariable *GV) {
1251   if (WeakInitializerFn == nullptr) {
1252     WeakInitializerFn = Function::Create(
1253         FunctionType::get(Type::getVoidTy(M.getContext()),
1254                           /* IsVarArg */ false),
1255         GlobalValue::InternalLinkage,
1256         M.getDataLayout().getProgramAddressSpace(),
1257         "__cfi_global_var_init", &M);
1258     BasicBlock *BB =
1259         BasicBlock::Create(M.getContext(), "entry", WeakInitializerFn);
1260     ReturnInst::Create(M.getContext(), BB);
1261     WeakInitializerFn->setSection(
1262         ObjectFormat == Triple::MachO
1263             ? "__TEXT,__StaticInit,regular,pure_instructions"
1264             : ".text.startup");
1265     // This code is equivalent to relocation application, and should run at the
1266     // earliest possible time (i.e. with the highest priority).
1267     appendToGlobalCtors(M, WeakInitializerFn, /* Priority */ 0);
1268   }
1269 
1270   IRBuilder<> IRB(WeakInitializerFn->getEntryBlock().getTerminator());
1271   GV->setConstant(false);
1272   IRB.CreateAlignedStore(GV->getInitializer(), GV, GV->getAlignment());
1273   GV->setInitializer(Constant::getNullValue(GV->getValueType()));
1274 }
1275 
findGlobalVariableUsersOf(Constant * C,SmallSetVector<GlobalVariable *,8> & Out)1276 void LowerTypeTestsModule::findGlobalVariableUsersOf(
1277     Constant *C, SmallSetVector<GlobalVariable *, 8> &Out) {
1278   for (auto *U : C->users()){
1279     if (auto *GV = dyn_cast<GlobalVariable>(U))
1280       Out.insert(GV);
1281     else if (auto *C2 = dyn_cast<Constant>(U))
1282       findGlobalVariableUsersOf(C2, Out);
1283   }
1284 }
1285 
1286 // Replace all uses of F with (F ? JT : 0).
replaceWeakDeclarationWithJumpTablePtr(Function * F,Constant * JT,bool IsJumpTableCanonical)1287 void LowerTypeTestsModule::replaceWeakDeclarationWithJumpTablePtr(
1288     Function *F, Constant *JT, bool IsJumpTableCanonical) {
1289   // The target expression can not appear in a constant initializer on most
1290   // (all?) targets. Switch to a runtime initializer.
1291   SmallSetVector<GlobalVariable *, 8> GlobalVarUsers;
1292   findGlobalVariableUsersOf(F, GlobalVarUsers);
1293   for (auto GV : GlobalVarUsers)
1294     moveInitializerToModuleConstructor(GV);
1295 
1296   // Can not RAUW F with an expression that uses F. Replace with a temporary
1297   // placeholder first.
1298   Function *PlaceholderFn =
1299       Function::Create(cast<FunctionType>(F->getValueType()),
1300                        GlobalValue::ExternalWeakLinkage,
1301                        F->getAddressSpace(), "", &M);
1302   replaceCfiUses(F, PlaceholderFn, IsJumpTableCanonical);
1303 
1304   Constant *Target = ConstantExpr::getSelect(
1305       ConstantExpr::getICmp(CmpInst::ICMP_NE, F,
1306                             Constant::getNullValue(F->getType())),
1307       JT, Constant::getNullValue(F->getType()));
1308   PlaceholderFn->replaceAllUsesWith(Target);
1309   PlaceholderFn->eraseFromParent();
1310 }
1311 
isThumbFunction(Function * F,Triple::ArchType ModuleArch)1312 static bool isThumbFunction(Function *F, Triple::ArchType ModuleArch) {
1313   Attribute TFAttr = F->getFnAttribute("target-features");
1314   if (!TFAttr.hasAttribute(Attribute::None)) {
1315     SmallVector<StringRef, 6> Features;
1316     TFAttr.getValueAsString().split(Features, ',');
1317     for (StringRef Feature : Features) {
1318       if (Feature == "-thumb-mode")
1319         return false;
1320       else if (Feature == "+thumb-mode")
1321         return true;
1322     }
1323   }
1324 
1325   return ModuleArch == Triple::thumb;
1326 }
1327 
1328 // Each jump table must be either ARM or Thumb as a whole for the bit-test math
1329 // to work. Pick one that matches the majority of members to minimize interop
1330 // veneers inserted by the linker.
1331 static Triple::ArchType
selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember * > Functions,Triple::ArchType ModuleArch)1332 selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember *> Functions,
1333                            Triple::ArchType ModuleArch) {
1334   if (ModuleArch != Triple::arm && ModuleArch != Triple::thumb)
1335     return ModuleArch;
1336 
1337   unsigned ArmCount = 0, ThumbCount = 0;
1338   for (const auto GTM : Functions) {
1339     if (!GTM->isJumpTableCanonical()) {
1340       // PLT stubs are always ARM.
1341       // FIXME: This is the wrong heuristic for non-canonical jump tables.
1342       ++ArmCount;
1343       continue;
1344     }
1345 
1346     Function *F = cast<Function>(GTM->getGlobal());
1347     ++(isThumbFunction(F, ModuleArch) ? ThumbCount : ArmCount);
1348   }
1349 
1350   return ArmCount > ThumbCount ? Triple::arm : Triple::thumb;
1351 }
1352 
createJumpTable(Function * F,ArrayRef<GlobalTypeMember * > Functions)1353 void LowerTypeTestsModule::createJumpTable(
1354     Function *F, ArrayRef<GlobalTypeMember *> Functions) {
1355   std::string AsmStr, ConstraintStr;
1356   raw_string_ostream AsmOS(AsmStr), ConstraintOS(ConstraintStr);
1357   SmallVector<Value *, 16> AsmArgs;
1358   AsmArgs.reserve(Functions.size() * 2);
1359 
1360   Triple::ArchType JumpTableArch = selectJumpTableArmEncoding(Functions, Arch);
1361 
1362   for (unsigned I = 0; I != Functions.size(); ++I)
1363     createJumpTableEntry(AsmOS, ConstraintOS, JumpTableArch, AsmArgs,
1364                          cast<Function>(Functions[I]->getGlobal()));
1365 
1366   // Align the whole table by entry size.
1367   F->setAlignment(Align(getJumpTableEntrySize()));
1368   // Skip prologue.
1369   // Disabled on win32 due to https://llvm.org/bugs/show_bug.cgi?id=28641#c3.
1370   // Luckily, this function does not get any prologue even without the
1371   // attribute.
1372   if (OS != Triple::Win32)
1373     F->addFnAttr(Attribute::Naked);
1374   if (JumpTableArch == Triple::arm)
1375     F->addFnAttr("target-features", "-thumb-mode");
1376   if (JumpTableArch == Triple::thumb) {
1377     F->addFnAttr("target-features", "+thumb-mode");
1378     // Thumb jump table assembly needs Thumb2. The following attribute is added
1379     // by Clang for -march=armv7.
1380     F->addFnAttr("target-cpu", "cortex-a8");
1381   }
1382   // Make sure we don't emit .eh_frame for this function.
1383   F->addFnAttr(Attribute::NoUnwind);
1384 
1385   BasicBlock *BB = BasicBlock::Create(M.getContext(), "entry", F);
1386   IRBuilder<> IRB(BB);
1387 
1388   SmallVector<Type *, 16> ArgTypes;
1389   ArgTypes.reserve(AsmArgs.size());
1390   for (const auto &Arg : AsmArgs)
1391     ArgTypes.push_back(Arg->getType());
1392   InlineAsm *JumpTableAsm =
1393       InlineAsm::get(FunctionType::get(IRB.getVoidTy(), ArgTypes, false),
1394                      AsmOS.str(), ConstraintOS.str(),
1395                      /*hasSideEffects=*/true);
1396 
1397   IRB.CreateCall(JumpTableAsm, AsmArgs);
1398   IRB.CreateUnreachable();
1399 }
1400 
1401 /// Given a disjoint set of type identifiers and functions, build a jump table
1402 /// for the functions, build the bit sets and lower the llvm.type.test calls.
buildBitSetsFromFunctionsNative(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Functions)1403 void LowerTypeTestsModule::buildBitSetsFromFunctionsNative(
1404     ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1405   // Unlike the global bitset builder, the function bitset builder cannot
1406   // re-arrange functions in a particular order and base its calculations on the
1407   // layout of the functions' entry points, as we have no idea how large a
1408   // particular function will end up being (the size could even depend on what
1409   // this pass does!) Instead, we build a jump table, which is a block of code
1410   // consisting of one branch instruction for each of the functions in the bit
1411   // set that branches to the target function, and redirect any taken function
1412   // addresses to the corresponding jump table entry. In the object file's
1413   // symbol table, the symbols for the target functions also refer to the jump
1414   // table entries, so that addresses taken outside the module will pass any
1415   // verification done inside the module.
1416   //
1417   // In more concrete terms, suppose we have three functions f, g, h which are
1418   // of the same type, and a function foo that returns their addresses:
1419   //
1420   // f:
1421   // mov 0, %eax
1422   // ret
1423   //
1424   // g:
1425   // mov 1, %eax
1426   // ret
1427   //
1428   // h:
1429   // mov 2, %eax
1430   // ret
1431   //
1432   // foo:
1433   // mov f, %eax
1434   // mov g, %edx
1435   // mov h, %ecx
1436   // ret
1437   //
1438   // We output the jump table as module-level inline asm string. The end result
1439   // will (conceptually) look like this:
1440   //
1441   // f = .cfi.jumptable
1442   // g = .cfi.jumptable + 4
1443   // h = .cfi.jumptable + 8
1444   // .cfi.jumptable:
1445   // jmp f.cfi  ; 5 bytes
1446   // int3       ; 1 byte
1447   // int3       ; 1 byte
1448   // int3       ; 1 byte
1449   // jmp g.cfi  ; 5 bytes
1450   // int3       ; 1 byte
1451   // int3       ; 1 byte
1452   // int3       ; 1 byte
1453   // jmp h.cfi  ; 5 bytes
1454   // int3       ; 1 byte
1455   // int3       ; 1 byte
1456   // int3       ; 1 byte
1457   //
1458   // f.cfi:
1459   // mov 0, %eax
1460   // ret
1461   //
1462   // g.cfi:
1463   // mov 1, %eax
1464   // ret
1465   //
1466   // h.cfi:
1467   // mov 2, %eax
1468   // ret
1469   //
1470   // foo:
1471   // mov f, %eax
1472   // mov g, %edx
1473   // mov h, %ecx
1474   // ret
1475   //
1476   // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
1477   // normal case the check can be carried out using the same kind of simple
1478   // arithmetic that we normally use for globals.
1479 
1480   // FIXME: find a better way to represent the jumptable in the IR.
1481   assert(!Functions.empty());
1482 
1483   // Build a simple layout based on the regular layout of jump tables.
1484   DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1485   unsigned EntrySize = getJumpTableEntrySize();
1486   for (unsigned I = 0; I != Functions.size(); ++I)
1487     GlobalLayout[Functions[I]] = I * EntrySize;
1488 
1489   Function *JumpTableFn =
1490       Function::Create(FunctionType::get(Type::getVoidTy(M.getContext()),
1491                                          /* IsVarArg */ false),
1492                        GlobalValue::PrivateLinkage,
1493                        M.getDataLayout().getProgramAddressSpace(),
1494                        ".cfi.jumptable", &M);
1495   ArrayType *JumpTableType =
1496       ArrayType::get(getJumpTableEntryType(), Functions.size());
1497   auto JumpTable =
1498       ConstantExpr::getPointerCast(JumpTableFn, JumpTableType->getPointerTo(0));
1499 
1500   lowerTypeTestCalls(TypeIds, JumpTable, GlobalLayout);
1501 
1502   {
1503     ScopedSaveAliaseesAndUsed S(M);
1504 
1505     // Build aliases pointing to offsets into the jump table, and replace
1506     // references to the original functions with references to the aliases.
1507     for (unsigned I = 0; I != Functions.size(); ++I) {
1508       Function *F = cast<Function>(Functions[I]->getGlobal());
1509       bool IsJumpTableCanonical = Functions[I]->isJumpTableCanonical();
1510 
1511       Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
1512           ConstantExpr::getInBoundsGetElementPtr(
1513               JumpTableType, JumpTable,
1514               ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
1515                                    ConstantInt::get(IntPtrTy, I)}),
1516           F->getType());
1517       if (Functions[I]->isExported()) {
1518         if (IsJumpTableCanonical) {
1519           ExportSummary->cfiFunctionDefs().insert(F->getName());
1520         } else {
1521           GlobalAlias *JtAlias = GlobalAlias::create(
1522               F->getValueType(), 0, GlobalValue::ExternalLinkage,
1523               F->getName() + ".cfi_jt", CombinedGlobalElemPtr, &M);
1524           JtAlias->setVisibility(GlobalValue::HiddenVisibility);
1525           ExportSummary->cfiFunctionDecls().insert(F->getName());
1526         }
1527       }
1528       if (!IsJumpTableCanonical) {
1529         if (F->hasExternalWeakLinkage())
1530           replaceWeakDeclarationWithJumpTablePtr(F, CombinedGlobalElemPtr,
1531                                                  IsJumpTableCanonical);
1532         else
1533           replaceCfiUses(F, CombinedGlobalElemPtr, IsJumpTableCanonical);
1534       } else {
1535         assert(F->getType()->getAddressSpace() == 0);
1536 
1537         GlobalAlias *FAlias =
1538             GlobalAlias::create(F->getValueType(), 0, F->getLinkage(), "",
1539                                 CombinedGlobalElemPtr, &M);
1540         FAlias->setVisibility(F->getVisibility());
1541         FAlias->takeName(F);
1542         if (FAlias->hasName())
1543           F->setName(FAlias->getName() + ".cfi");
1544         replaceCfiUses(F, FAlias, IsJumpTableCanonical);
1545         if (!F->hasLocalLinkage())
1546           F->setVisibility(GlobalVariable::HiddenVisibility);
1547       }
1548     }
1549   }
1550 
1551   createJumpTable(JumpTableFn, Functions);
1552 }
1553 
1554 /// Assign a dummy layout using an incrementing counter, tag each function
1555 /// with its index represented as metadata, and lower each type test to an
1556 /// integer range comparison. During generation of the indirect function call
1557 /// table in the backend, it will assign the given indexes.
1558 /// Note: Dynamic linking is not supported, as the WebAssembly ABI has not yet
1559 /// been finalized.
buildBitSetsFromFunctionsWASM(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Functions)1560 void LowerTypeTestsModule::buildBitSetsFromFunctionsWASM(
1561     ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1562   assert(!Functions.empty());
1563 
1564   // Build consecutive monotonic integer ranges for each call target set
1565   DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1566 
1567   for (GlobalTypeMember *GTM : Functions) {
1568     Function *F = cast<Function>(GTM->getGlobal());
1569 
1570     // Skip functions that are not address taken, to avoid bloating the table
1571     if (!F->hasAddressTaken())
1572       continue;
1573 
1574     // Store metadata with the index for each function
1575     MDNode *MD = MDNode::get(F->getContext(),
1576                              ArrayRef<Metadata *>(ConstantAsMetadata::get(
1577                                  ConstantInt::get(Int64Ty, IndirectIndex))));
1578     F->setMetadata("wasm.index", MD);
1579 
1580     // Assign the counter value
1581     GlobalLayout[GTM] = IndirectIndex++;
1582   }
1583 
1584   // The indirect function table index space starts at zero, so pass a NULL
1585   // pointer as the subtracted "jump table" offset.
1586   lowerTypeTestCalls(TypeIds, ConstantPointerNull::get(Int32PtrTy),
1587                      GlobalLayout);
1588 }
1589 
buildBitSetsFromDisjointSet(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Globals,ArrayRef<ICallBranchFunnel * > ICallBranchFunnels)1590 void LowerTypeTestsModule::buildBitSetsFromDisjointSet(
1591     ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals,
1592     ArrayRef<ICallBranchFunnel *> ICallBranchFunnels) {
1593   DenseMap<Metadata *, uint64_t> TypeIdIndices;
1594   for (unsigned I = 0; I != TypeIds.size(); ++I)
1595     TypeIdIndices[TypeIds[I]] = I;
1596 
1597   // For each type identifier, build a set of indices that refer to members of
1598   // the type identifier.
1599   std::vector<std::set<uint64_t>> TypeMembers(TypeIds.size());
1600   unsigned GlobalIndex = 0;
1601   DenseMap<GlobalTypeMember *, uint64_t> GlobalIndices;
1602   for (GlobalTypeMember *GTM : Globals) {
1603     for (MDNode *Type : GTM->types()) {
1604       // Type = { offset, type identifier }
1605       auto I = TypeIdIndices.find(Type->getOperand(1));
1606       if (I != TypeIdIndices.end())
1607         TypeMembers[I->second].insert(GlobalIndex);
1608     }
1609     GlobalIndices[GTM] = GlobalIndex;
1610     GlobalIndex++;
1611   }
1612 
1613   for (ICallBranchFunnel *JT : ICallBranchFunnels) {
1614     TypeMembers.emplace_back();
1615     std::set<uint64_t> &TMSet = TypeMembers.back();
1616     for (GlobalTypeMember *T : JT->targets())
1617       TMSet.insert(GlobalIndices[T]);
1618   }
1619 
1620   // Order the sets of indices by size. The GlobalLayoutBuilder works best
1621   // when given small index sets first.
1622   llvm::stable_sort(TypeMembers, [](const std::set<uint64_t> &O1,
1623                                     const std::set<uint64_t> &O2) {
1624     return O1.size() < O2.size();
1625   });
1626 
1627   // Create a GlobalLayoutBuilder and provide it with index sets as layout
1628   // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
1629   // close together as possible.
1630   GlobalLayoutBuilder GLB(Globals.size());
1631   for (auto &&MemSet : TypeMembers)
1632     GLB.addFragment(MemSet);
1633 
1634   // Build a vector of globals with the computed layout.
1635   bool IsGlobalSet =
1636       Globals.empty() || isa<GlobalVariable>(Globals[0]->getGlobal());
1637   std::vector<GlobalTypeMember *> OrderedGTMs(Globals.size());
1638   auto OGTMI = OrderedGTMs.begin();
1639   for (auto &&F : GLB.Fragments) {
1640     for (auto &&Offset : F) {
1641       if (IsGlobalSet != isa<GlobalVariable>(Globals[Offset]->getGlobal()))
1642         report_fatal_error("Type identifier may not contain both global "
1643                            "variables and functions");
1644       *OGTMI++ = Globals[Offset];
1645     }
1646   }
1647 
1648   // Build the bitsets from this disjoint set.
1649   if (IsGlobalSet)
1650     buildBitSetsFromGlobalVariables(TypeIds, OrderedGTMs);
1651   else
1652     buildBitSetsFromFunctions(TypeIds, OrderedGTMs);
1653 }
1654 
1655 /// Lower all type tests in this module.
LowerTypeTestsModule(Module & M,ModuleSummaryIndex * ExportSummary,const ModuleSummaryIndex * ImportSummary)1656 LowerTypeTestsModule::LowerTypeTestsModule(
1657     Module &M, ModuleSummaryIndex *ExportSummary,
1658     const ModuleSummaryIndex *ImportSummary)
1659     : M(M), ExportSummary(ExportSummary), ImportSummary(ImportSummary) {
1660   assert(!(ExportSummary && ImportSummary));
1661   Triple TargetTriple(M.getTargetTriple());
1662   Arch = TargetTriple.getArch();
1663   OS = TargetTriple.getOS();
1664   ObjectFormat = TargetTriple.getObjectFormat();
1665 }
1666 
runForTesting(Module & M)1667 bool LowerTypeTestsModule::runForTesting(Module &M) {
1668   ModuleSummaryIndex Summary(/*HaveGVs=*/false);
1669 
1670   // Handle the command-line summary arguments. This code is for testing
1671   // purposes only, so we handle errors directly.
1672   if (!ClReadSummary.empty()) {
1673     ExitOnError ExitOnErr("-lowertypetests-read-summary: " + ClReadSummary +
1674                           ": ");
1675     auto ReadSummaryFile =
1676         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
1677 
1678     yaml::Input In(ReadSummaryFile->getBuffer());
1679     In >> Summary;
1680     ExitOnErr(errorCodeToError(In.error()));
1681   }
1682 
1683   bool Changed =
1684       LowerTypeTestsModule(
1685           M, ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
1686           ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
1687           .lower();
1688 
1689   if (!ClWriteSummary.empty()) {
1690     ExitOnError ExitOnErr("-lowertypetests-write-summary: " + ClWriteSummary +
1691                           ": ");
1692     std::error_code EC;
1693     raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
1694     ExitOnErr(errorCodeToError(EC));
1695 
1696     yaml::Output Out(OS);
1697     Out << Summary;
1698   }
1699 
1700   return Changed;
1701 }
1702 
isDirectCall(Use & U)1703 static bool isDirectCall(Use& U) {
1704   auto *Usr = dyn_cast<CallInst>(U.getUser());
1705   if (Usr) {
1706     CallSite CS(Usr);
1707     if (CS.isCallee(&U))
1708       return true;
1709   }
1710   return false;
1711 }
1712 
replaceCfiUses(Function * Old,Value * New,bool IsJumpTableCanonical)1713 void LowerTypeTestsModule::replaceCfiUses(Function *Old, Value *New,
1714                                           bool IsJumpTableCanonical) {
1715   SmallSetVector<Constant *, 4> Constants;
1716   auto UI = Old->use_begin(), E = Old->use_end();
1717   for (; UI != E;) {
1718     Use &U = *UI;
1719     ++UI;
1720 
1721     // Skip block addresses
1722     if (isa<BlockAddress>(U.getUser()))
1723       continue;
1724 
1725     // Skip direct calls to externally defined or non-dso_local functions
1726     if (isDirectCall(U) && (Old->isDSOLocal() || !IsJumpTableCanonical))
1727       continue;
1728 
1729     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
1730     // constant because they are uniqued.
1731     if (auto *C = dyn_cast<Constant>(U.getUser())) {
1732       if (!isa<GlobalValue>(C)) {
1733         // Save unique users to avoid processing operand replacement
1734         // more than once.
1735         Constants.insert(C);
1736         continue;
1737       }
1738     }
1739 
1740     U.set(New);
1741   }
1742 
1743   // Process operand replacement of saved constants.
1744   for (auto *C : Constants)
1745     C->handleOperandChange(Old, New);
1746 }
1747 
replaceDirectCalls(Value * Old,Value * New)1748 void LowerTypeTestsModule::replaceDirectCalls(Value *Old, Value *New) {
1749   Old->replaceUsesWithIf(New, [](Use &U) { return isDirectCall(U); });
1750 }
1751 
lower()1752 bool LowerTypeTestsModule::lower() {
1753   // If only some of the modules were split, we cannot correctly perform
1754   // this transformation. We already checked for the presense of type tests
1755   // with partially split modules during the thin link, and would have emitted
1756   // an error if any were found, so here we can simply return.
1757   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1758       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1759     return false;
1760 
1761   Function *TypeTestFunc =
1762       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1763   Function *ICallBranchFunnelFunc =
1764       M.getFunction(Intrinsic::getName(Intrinsic::icall_branch_funnel));
1765   if ((!TypeTestFunc || TypeTestFunc->use_empty()) &&
1766       (!ICallBranchFunnelFunc || ICallBranchFunnelFunc->use_empty()) &&
1767       !ExportSummary && !ImportSummary)
1768     return false;
1769 
1770   if (ImportSummary) {
1771     if (TypeTestFunc) {
1772       for (auto UI = TypeTestFunc->use_begin(), UE = TypeTestFunc->use_end();
1773            UI != UE;) {
1774         auto *CI = cast<CallInst>((*UI++).getUser());
1775         importTypeTest(CI);
1776       }
1777     }
1778 
1779     if (ICallBranchFunnelFunc && !ICallBranchFunnelFunc->use_empty())
1780       report_fatal_error(
1781           "unexpected call to llvm.icall.branch.funnel during import phase");
1782 
1783     SmallVector<Function *, 8> Defs;
1784     SmallVector<Function *, 8> Decls;
1785     for (auto &F : M) {
1786       // CFI functions are either external, or promoted. A local function may
1787       // have the same name, but it's not the one we are looking for.
1788       if (F.hasLocalLinkage())
1789         continue;
1790       if (ImportSummary->cfiFunctionDefs().count(F.getName()))
1791         Defs.push_back(&F);
1792       else if (ImportSummary->cfiFunctionDecls().count(F.getName()))
1793         Decls.push_back(&F);
1794     }
1795 
1796     std::vector<GlobalAlias *> AliasesToErase;
1797     {
1798       ScopedSaveAliaseesAndUsed S(M);
1799       for (auto F : Defs)
1800         importFunction(F, /*isJumpTableCanonical*/ true, AliasesToErase);
1801       for (auto F : Decls)
1802         importFunction(F, /*isJumpTableCanonical*/ false, AliasesToErase);
1803     }
1804     for (GlobalAlias *GA : AliasesToErase)
1805       GA->eraseFromParent();
1806 
1807     return true;
1808   }
1809 
1810   // Equivalence class set containing type identifiers and the globals that
1811   // reference them. This is used to partition the set of type identifiers in
1812   // the module into disjoint sets.
1813   using GlobalClassesTy = EquivalenceClasses<
1814       PointerUnion<GlobalTypeMember *, Metadata *, ICallBranchFunnel *>>;
1815   GlobalClassesTy GlobalClasses;
1816 
1817   // Verify the type metadata and build a few data structures to let us
1818   // efficiently enumerate the type identifiers associated with a global:
1819   // a list of GlobalTypeMembers (a GlobalObject stored alongside a vector
1820   // of associated type metadata) and a mapping from type identifiers to their
1821   // list of GlobalTypeMembers and last observed index in the list of globals.
1822   // The indices will be used later to deterministically order the list of type
1823   // identifiers.
1824   BumpPtrAllocator Alloc;
1825   struct TIInfo {
1826     unsigned UniqueId;
1827     std::vector<GlobalTypeMember *> RefGlobals;
1828   };
1829   DenseMap<Metadata *, TIInfo> TypeIdInfo;
1830   unsigned CurUniqueId = 0;
1831   SmallVector<MDNode *, 2> Types;
1832 
1833   // Cross-DSO CFI emits jumptable entries for exported functions as well as
1834   // address taken functions in case they are address taken in other modules.
1835   const bool CrossDsoCfi = M.getModuleFlag("Cross-DSO CFI") != nullptr;
1836 
1837   struct ExportedFunctionInfo {
1838     CfiFunctionLinkage Linkage;
1839     MDNode *FuncMD; // {name, linkage, type[, type...]}
1840   };
1841   DenseMap<StringRef, ExportedFunctionInfo> ExportedFunctions;
1842   if (ExportSummary) {
1843     // A set of all functions that are address taken by a live global object.
1844     DenseSet<GlobalValue::GUID> AddressTaken;
1845     for (auto &I : *ExportSummary)
1846       for (auto &GVS : I.second.SummaryList)
1847         if (GVS->isLive())
1848           for (auto &Ref : GVS->refs())
1849             AddressTaken.insert(Ref.getGUID());
1850 
1851     NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions");
1852     if (CfiFunctionsMD) {
1853       for (auto FuncMD : CfiFunctionsMD->operands()) {
1854         assert(FuncMD->getNumOperands() >= 2);
1855         StringRef FunctionName =
1856             cast<MDString>(FuncMD->getOperand(0))->getString();
1857         CfiFunctionLinkage Linkage = static_cast<CfiFunctionLinkage>(
1858             cast<ConstantAsMetadata>(FuncMD->getOperand(1))
1859                 ->getValue()
1860                 ->getUniqueInteger()
1861                 .getZExtValue());
1862         const GlobalValue::GUID GUID = GlobalValue::getGUID(
1863                 GlobalValue::dropLLVMManglingEscape(FunctionName));
1864         // Do not emit jumptable entries for functions that are not-live and
1865         // have no live references (and are not exported with cross-DSO CFI.)
1866         if (!ExportSummary->isGUIDLive(GUID))
1867           continue;
1868         if (!AddressTaken.count(GUID)) {
1869           if (!CrossDsoCfi || Linkage != CFL_Definition)
1870             continue;
1871 
1872           bool Exported = false;
1873           if (auto VI = ExportSummary->getValueInfo(GUID))
1874             for (auto &GVS : VI.getSummaryList())
1875               if (GVS->isLive() && !GlobalValue::isLocalLinkage(GVS->linkage()))
1876                 Exported = true;
1877 
1878           if (!Exported)
1879             continue;
1880         }
1881         auto P = ExportedFunctions.insert({FunctionName, {Linkage, FuncMD}});
1882         if (!P.second && P.first->second.Linkage != CFL_Definition)
1883           P.first->second = {Linkage, FuncMD};
1884       }
1885 
1886       for (const auto &P : ExportedFunctions) {
1887         StringRef FunctionName = P.first;
1888         CfiFunctionLinkage Linkage = P.second.Linkage;
1889         MDNode *FuncMD = P.second.FuncMD;
1890         Function *F = M.getFunction(FunctionName);
1891         if (F && F->hasLocalLinkage()) {
1892           // Locally defined function that happens to have the same name as a
1893           // function defined in a ThinLTO module. Rename it to move it out of
1894           // the way of the external reference that we're about to create.
1895           // Note that setName will find a unique name for the function, so even
1896           // if there is an existing function with the suffix there won't be a
1897           // name collision.
1898           F->setName(F->getName() + ".1");
1899           F = nullptr;
1900         }
1901 
1902         if (!F)
1903           F = Function::Create(
1904               FunctionType::get(Type::getVoidTy(M.getContext()), false),
1905               GlobalVariable::ExternalLinkage,
1906               M.getDataLayout().getProgramAddressSpace(), FunctionName, &M);
1907 
1908         // If the function is available_externally, remove its definition so
1909         // that it is handled the same way as a declaration. Later we will try
1910         // to create an alias using this function's linkage, which will fail if
1911         // the linkage is available_externally. This will also result in us
1912         // following the code path below to replace the type metadata.
1913         if (F->hasAvailableExternallyLinkage()) {
1914           F->setLinkage(GlobalValue::ExternalLinkage);
1915           F->deleteBody();
1916           F->setComdat(nullptr);
1917           F->clearMetadata();
1918         }
1919 
1920         // Update the linkage for extern_weak declarations when a definition
1921         // exists.
1922         if (Linkage == CFL_Definition && F->hasExternalWeakLinkage())
1923           F->setLinkage(GlobalValue::ExternalLinkage);
1924 
1925         // If the function in the full LTO module is a declaration, replace its
1926         // type metadata with the type metadata we found in cfi.functions. That
1927         // metadata is presumed to be more accurate than the metadata attached
1928         // to the declaration.
1929         if (F->isDeclaration()) {
1930           if (Linkage == CFL_WeakDeclaration)
1931             F->setLinkage(GlobalValue::ExternalWeakLinkage);
1932 
1933           F->eraseMetadata(LLVMContext::MD_type);
1934           for (unsigned I = 2; I < FuncMD->getNumOperands(); ++I)
1935             F->addMetadata(LLVMContext::MD_type,
1936                            *cast<MDNode>(FuncMD->getOperand(I).get()));
1937         }
1938       }
1939     }
1940   }
1941 
1942   DenseMap<GlobalObject *, GlobalTypeMember *> GlobalTypeMembers;
1943   for (GlobalObject &GO : M.global_objects()) {
1944     if (isa<GlobalVariable>(GO) && GO.isDeclarationForLinker())
1945       continue;
1946 
1947     Types.clear();
1948     GO.getMetadata(LLVMContext::MD_type, Types);
1949 
1950     bool IsJumpTableCanonical = false;
1951     bool IsExported = false;
1952     if (Function *F = dyn_cast<Function>(&GO)) {
1953       IsJumpTableCanonical = isJumpTableCanonical(F);
1954       if (ExportedFunctions.count(F->getName())) {
1955         IsJumpTableCanonical |=
1956             ExportedFunctions[F->getName()].Linkage == CFL_Definition;
1957         IsExported = true;
1958       // TODO: The logic here checks only that the function is address taken,
1959       // not that the address takers are live. This can be updated to check
1960       // their liveness and emit fewer jumptable entries once monolithic LTO
1961       // builds also emit summaries.
1962       } else if (!F->hasAddressTaken()) {
1963         if (!CrossDsoCfi || !IsJumpTableCanonical || F->hasLocalLinkage())
1964           continue;
1965       }
1966     }
1967 
1968     auto *GTM = GlobalTypeMember::create(Alloc, &GO, IsJumpTableCanonical,
1969                                          IsExported, Types);
1970     GlobalTypeMembers[&GO] = GTM;
1971     for (MDNode *Type : Types) {
1972       verifyTypeMDNode(&GO, Type);
1973       auto &Info = TypeIdInfo[Type->getOperand(1)];
1974       Info.UniqueId = ++CurUniqueId;
1975       Info.RefGlobals.push_back(GTM);
1976     }
1977   }
1978 
1979   auto AddTypeIdUse = [&](Metadata *TypeId) -> TypeIdUserInfo & {
1980     // Add the call site to the list of call sites for this type identifier. We
1981     // also use TypeIdUsers to keep track of whether we have seen this type
1982     // identifier before. If we have, we don't need to re-add the referenced
1983     // globals to the equivalence class.
1984     auto Ins = TypeIdUsers.insert({TypeId, {}});
1985     if (Ins.second) {
1986       // Add the type identifier to the equivalence class.
1987       GlobalClassesTy::iterator GCI = GlobalClasses.insert(TypeId);
1988       GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
1989 
1990       // Add the referenced globals to the type identifier's equivalence class.
1991       for (GlobalTypeMember *GTM : TypeIdInfo[TypeId].RefGlobals)
1992         CurSet = GlobalClasses.unionSets(
1993             CurSet, GlobalClasses.findLeader(GlobalClasses.insert(GTM)));
1994     }
1995 
1996     return Ins.first->second;
1997   };
1998 
1999   if (TypeTestFunc) {
2000     for (const Use &U : TypeTestFunc->uses()) {
2001       auto CI = cast<CallInst>(U.getUser());
2002 
2003       auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
2004       if (!TypeIdMDVal)
2005         report_fatal_error("Second argument of llvm.type.test must be metadata");
2006       auto TypeId = TypeIdMDVal->getMetadata();
2007       AddTypeIdUse(TypeId).CallSites.push_back(CI);
2008     }
2009   }
2010 
2011   if (ICallBranchFunnelFunc) {
2012     for (const Use &U : ICallBranchFunnelFunc->uses()) {
2013       if (Arch != Triple::x86_64)
2014         report_fatal_error(
2015             "llvm.icall.branch.funnel not supported on this target");
2016 
2017       auto CI = cast<CallInst>(U.getUser());
2018 
2019       std::vector<GlobalTypeMember *> Targets;
2020       if (CI->getNumArgOperands() % 2 != 1)
2021         report_fatal_error("number of arguments should be odd");
2022 
2023       GlobalClassesTy::member_iterator CurSet;
2024       for (unsigned I = 1; I != CI->getNumArgOperands(); I += 2) {
2025         int64_t Offset;
2026         auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
2027             CI->getOperand(I), Offset, M.getDataLayout()));
2028         if (!Base)
2029           report_fatal_error(
2030               "Expected branch funnel operand to be global value");
2031 
2032         GlobalTypeMember *GTM = GlobalTypeMembers[Base];
2033         Targets.push_back(GTM);
2034         GlobalClassesTy::member_iterator NewSet =
2035             GlobalClasses.findLeader(GlobalClasses.insert(GTM));
2036         if (I == 1)
2037           CurSet = NewSet;
2038         else
2039           CurSet = GlobalClasses.unionSets(CurSet, NewSet);
2040       }
2041 
2042       GlobalClasses.unionSets(
2043           CurSet, GlobalClasses.findLeader(
2044                       GlobalClasses.insert(ICallBranchFunnel::create(
2045                           Alloc, CI, Targets, ++CurUniqueId))));
2046     }
2047   }
2048 
2049   if (ExportSummary) {
2050     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2051     for (auto &P : TypeIdInfo) {
2052       if (auto *TypeId = dyn_cast<MDString>(P.first))
2053         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2054             TypeId);
2055     }
2056 
2057     for (auto &P : *ExportSummary) {
2058       for (auto &S : P.second.SummaryList) {
2059         if (!ExportSummary->isGlobalValueLive(S.get()))
2060           continue;
2061         if (auto *FS = dyn_cast<FunctionSummary>(S->getBaseObject()))
2062           for (GlobalValue::GUID G : FS->type_tests())
2063             for (Metadata *MD : MetadataByGUID[G])
2064               AddTypeIdUse(MD).IsExported = true;
2065       }
2066     }
2067   }
2068 
2069   if (GlobalClasses.empty())
2070     return false;
2071 
2072   // Build a list of disjoint sets ordered by their maximum global index for
2073   // determinism.
2074   std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
2075   for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
2076                                  E = GlobalClasses.end();
2077        I != E; ++I) {
2078     if (!I->isLeader())
2079       continue;
2080     ++NumTypeIdDisjointSets;
2081 
2082     unsigned MaxUniqueId = 0;
2083     for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
2084          MI != GlobalClasses.member_end(); ++MI) {
2085       if (auto *MD = MI->dyn_cast<Metadata *>())
2086         MaxUniqueId = std::max(MaxUniqueId, TypeIdInfo[MD].UniqueId);
2087       else if (auto *BF = MI->dyn_cast<ICallBranchFunnel *>())
2088         MaxUniqueId = std::max(MaxUniqueId, BF->UniqueId);
2089     }
2090     Sets.emplace_back(I, MaxUniqueId);
2091   }
2092   llvm::sort(Sets,
2093              [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
2094                 const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
2095                return S1.second < S2.second;
2096              });
2097 
2098   // For each disjoint set we found...
2099   for (const auto &S : Sets) {
2100     // Build the list of type identifiers in this disjoint set.
2101     std::vector<Metadata *> TypeIds;
2102     std::vector<GlobalTypeMember *> Globals;
2103     std::vector<ICallBranchFunnel *> ICallBranchFunnels;
2104     for (GlobalClassesTy::member_iterator MI =
2105              GlobalClasses.member_begin(S.first);
2106          MI != GlobalClasses.member_end(); ++MI) {
2107       if (MI->is<Metadata *>())
2108         TypeIds.push_back(MI->get<Metadata *>());
2109       else if (MI->is<GlobalTypeMember *>())
2110         Globals.push_back(MI->get<GlobalTypeMember *>());
2111       else
2112         ICallBranchFunnels.push_back(MI->get<ICallBranchFunnel *>());
2113     }
2114 
2115     // Order type identifiers by unique ID for determinism. This ordering is
2116     // stable as there is a one-to-one mapping between metadata and unique IDs.
2117     llvm::sort(TypeIds, [&](Metadata *M1, Metadata *M2) {
2118       return TypeIdInfo[M1].UniqueId < TypeIdInfo[M2].UniqueId;
2119     });
2120 
2121     // Same for the branch funnels.
2122     llvm::sort(ICallBranchFunnels,
2123                [&](ICallBranchFunnel *F1, ICallBranchFunnel *F2) {
2124                  return F1->UniqueId < F2->UniqueId;
2125                });
2126 
2127     // Build bitsets for this disjoint set.
2128     buildBitSetsFromDisjointSet(TypeIds, Globals, ICallBranchFunnels);
2129   }
2130 
2131   allocateByteArrays();
2132 
2133   // Parse alias data to replace stand-in function declarations for aliases
2134   // with an alias to the intended target.
2135   if (ExportSummary) {
2136     if (NamedMDNode *AliasesMD = M.getNamedMetadata("aliases")) {
2137       for (auto AliasMD : AliasesMD->operands()) {
2138         assert(AliasMD->getNumOperands() >= 4);
2139         StringRef AliasName =
2140             cast<MDString>(AliasMD->getOperand(0))->getString();
2141         StringRef Aliasee = cast<MDString>(AliasMD->getOperand(1))->getString();
2142 
2143         if (!ExportedFunctions.count(Aliasee) ||
2144             ExportedFunctions[Aliasee].Linkage != CFL_Definition ||
2145             !M.getNamedAlias(Aliasee))
2146           continue;
2147 
2148         GlobalValue::VisibilityTypes Visibility =
2149             static_cast<GlobalValue::VisibilityTypes>(
2150                 cast<ConstantAsMetadata>(AliasMD->getOperand(2))
2151                     ->getValue()
2152                     ->getUniqueInteger()
2153                     .getZExtValue());
2154         bool Weak =
2155             static_cast<bool>(cast<ConstantAsMetadata>(AliasMD->getOperand(3))
2156                                   ->getValue()
2157                                   ->getUniqueInteger()
2158                                   .getZExtValue());
2159 
2160         auto *Alias = GlobalAlias::create("", M.getNamedAlias(Aliasee));
2161         Alias->setVisibility(Visibility);
2162         if (Weak)
2163           Alias->setLinkage(GlobalValue::WeakAnyLinkage);
2164 
2165         if (auto *F = M.getFunction(AliasName)) {
2166           Alias->takeName(F);
2167           F->replaceAllUsesWith(Alias);
2168           F->eraseFromParent();
2169         } else {
2170           Alias->setName(AliasName);
2171         }
2172       }
2173     }
2174   }
2175 
2176   // Emit .symver directives for exported functions, if they exist.
2177   if (ExportSummary) {
2178     if (NamedMDNode *SymversMD = M.getNamedMetadata("symvers")) {
2179       for (auto Symver : SymversMD->operands()) {
2180         assert(Symver->getNumOperands() >= 2);
2181         StringRef SymbolName =
2182             cast<MDString>(Symver->getOperand(0))->getString();
2183         StringRef Alias = cast<MDString>(Symver->getOperand(1))->getString();
2184 
2185         if (!ExportedFunctions.count(SymbolName))
2186           continue;
2187 
2188         M.appendModuleInlineAsm(
2189             (llvm::Twine(".symver ") + SymbolName + ", " + Alias).str());
2190       }
2191     }
2192   }
2193 
2194   return true;
2195 }
2196 
run(Module & M,ModuleAnalysisManager & AM)2197 PreservedAnalyses LowerTypeTestsPass::run(Module &M,
2198                                           ModuleAnalysisManager &AM) {
2199   bool Changed = LowerTypeTestsModule(M, ExportSummary, ImportSummary).lower();
2200   if (!Changed)
2201     return PreservedAnalyses::all();
2202   return PreservedAnalyses::none();
2203 }
2204