• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/mmu.c
4  *
5  *  Copyright (C) 1995-2005 Russell King
6  */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17 
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/fixmap.h>
22 #include <asm/sections.h>
23 #include <asm/setup.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 #include <asm/system_info.h>
28 #include <asm/traps.h>
29 #include <asm/procinfo.h>
30 #include <asm/memory.h>
31 #include <asm/pgalloc.h>
32 #include <asm/kasan_def.h>
33 
34 #include <asm/mach/arch.h>
35 #include <asm/mach/map.h>
36 #include <asm/mach/pci.h>
37 #include <asm/fixmap.h>
38 
39 #include "fault.h"
40 #include "mm.h"
41 #include "tcm.h"
42 
43 extern unsigned long __atags_pointer;
44 
45 /*
46  * empty_zero_page is a special page that is used for
47  * zero-initialized data and COW.
48  */
49 struct page *empty_zero_page;
50 EXPORT_SYMBOL(empty_zero_page);
51 
52 /*
53  * The pmd table for the upper-most set of pages.
54  */
55 pmd_t *top_pmd;
56 
57 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
58 
59 #define CPOLICY_UNCACHED	0
60 #define CPOLICY_BUFFERED	1
61 #define CPOLICY_WRITETHROUGH	2
62 #define CPOLICY_WRITEBACK	3
63 #define CPOLICY_WRITEALLOC	4
64 
65 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
66 static unsigned int ecc_mask __initdata = 0;
67 pgprot_t pgprot_user;
68 pgprot_t pgprot_kernel;
69 
70 EXPORT_SYMBOL(pgprot_user);
71 EXPORT_SYMBOL(pgprot_kernel);
72 
73 struct cachepolicy {
74 	const char	policy[16];
75 	unsigned int	cr_mask;
76 	pmdval_t	pmd;
77 	pteval_t	pte;
78 };
79 
80 static struct cachepolicy cache_policies[] __initdata = {
81 	{
82 		.policy		= "uncached",
83 		.cr_mask	= CR_W|CR_C,
84 		.pmd		= PMD_SECT_UNCACHED,
85 		.pte		= L_PTE_MT_UNCACHED,
86 	}, {
87 		.policy		= "buffered",
88 		.cr_mask	= CR_C,
89 		.pmd		= PMD_SECT_BUFFERED,
90 		.pte		= L_PTE_MT_BUFFERABLE,
91 	}, {
92 		.policy		= "writethrough",
93 		.cr_mask	= 0,
94 		.pmd		= PMD_SECT_WT,
95 		.pte		= L_PTE_MT_WRITETHROUGH,
96 	}, {
97 		.policy		= "writeback",
98 		.cr_mask	= 0,
99 		.pmd		= PMD_SECT_WB,
100 		.pte		= L_PTE_MT_WRITEBACK,
101 	}, {
102 		.policy		= "writealloc",
103 		.cr_mask	= 0,
104 		.pmd		= PMD_SECT_WBWA,
105 		.pte		= L_PTE_MT_WRITEALLOC,
106 	}
107 };
108 
109 #ifdef CONFIG_CPU_CP15
110 static unsigned long initial_pmd_value __initdata = 0;
111 
112 /*
113  * Initialise the cache_policy variable with the initial state specified
114  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
115  * the C code sets the page tables up with the same policy as the head
116  * assembly code, which avoids an illegal state where the TLBs can get
117  * confused.  See comments in early_cachepolicy() for more information.
118  */
init_default_cache_policy(unsigned long pmd)119 void __init init_default_cache_policy(unsigned long pmd)
120 {
121 	int i;
122 
123 	initial_pmd_value = pmd;
124 
125 	pmd &= PMD_SECT_CACHE_MASK;
126 
127 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
128 		if (cache_policies[i].pmd == pmd) {
129 			cachepolicy = i;
130 			break;
131 		}
132 
133 	if (i == ARRAY_SIZE(cache_policies))
134 		pr_err("ERROR: could not find cache policy\n");
135 }
136 
137 /*
138  * These are useful for identifying cache coherency problems by allowing
139  * the cache or the cache and writebuffer to be turned off.  (Note: the
140  * write buffer should not be on and the cache off).
141  */
early_cachepolicy(char * p)142 static int __init early_cachepolicy(char *p)
143 {
144 	int i, selected = -1;
145 
146 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
147 		int len = strlen(cache_policies[i].policy);
148 
149 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
150 			selected = i;
151 			break;
152 		}
153 	}
154 
155 	if (selected == -1)
156 		pr_err("ERROR: unknown or unsupported cache policy\n");
157 
158 	/*
159 	 * This restriction is partly to do with the way we boot; it is
160 	 * unpredictable to have memory mapped using two different sets of
161 	 * memory attributes (shared, type, and cache attribs).  We can not
162 	 * change these attributes once the initial assembly has setup the
163 	 * page tables.
164 	 */
165 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
166 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
167 			cache_policies[cachepolicy].policy);
168 		return 0;
169 	}
170 
171 	if (selected != cachepolicy) {
172 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
173 		cachepolicy = selected;
174 		flush_cache_all();
175 		set_cr(cr);
176 	}
177 	return 0;
178 }
179 early_param("cachepolicy", early_cachepolicy);
180 
early_nocache(char * __unused)181 static int __init early_nocache(char *__unused)
182 {
183 	char *p = "buffered";
184 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
185 	early_cachepolicy(p);
186 	return 0;
187 }
188 early_param("nocache", early_nocache);
189 
early_nowrite(char * __unused)190 static int __init early_nowrite(char *__unused)
191 {
192 	char *p = "uncached";
193 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
194 	early_cachepolicy(p);
195 	return 0;
196 }
197 early_param("nowb", early_nowrite);
198 
199 #ifndef CONFIG_ARM_LPAE
early_ecc(char * p)200 static int __init early_ecc(char *p)
201 {
202 	if (memcmp(p, "on", 2) == 0)
203 		ecc_mask = PMD_PROTECTION;
204 	else if (memcmp(p, "off", 3) == 0)
205 		ecc_mask = 0;
206 	return 0;
207 }
208 early_param("ecc", early_ecc);
209 #endif
210 
211 #else /* ifdef CONFIG_CPU_CP15 */
212 
early_cachepolicy(char * p)213 static int __init early_cachepolicy(char *p)
214 {
215 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
216 	return 0;
217 }
218 early_param("cachepolicy", early_cachepolicy);
219 
noalign_setup(char * __unused)220 static int __init noalign_setup(char *__unused)
221 {
222 	pr_warn("noalign kernel parameter not supported without cp15\n");
223 	return 1;
224 }
225 __setup("noalign", noalign_setup);
226 
227 #endif /* ifdef CONFIG_CPU_CP15 / else */
228 
229 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
230 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
231 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
232 
233 static struct mem_type mem_types[] __ro_after_init = {
234 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
235 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
236 				  L_PTE_SHARED,
237 		.prot_l1	= PMD_TYPE_TABLE,
238 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
239 		.domain		= DOMAIN_IO,
240 	},
241 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
242 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
243 		.prot_l1	= PMD_TYPE_TABLE,
244 		.prot_sect	= PROT_SECT_DEVICE,
245 		.domain		= DOMAIN_IO,
246 	},
247 	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
248 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
249 		.prot_l1	= PMD_TYPE_TABLE,
250 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
251 		.domain		= DOMAIN_IO,
252 	},
253 	[MT_DEVICE_WC] = {	/* ioremap_wc */
254 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
255 		.prot_l1	= PMD_TYPE_TABLE,
256 		.prot_sect	= PROT_SECT_DEVICE,
257 		.domain		= DOMAIN_IO,
258 	},
259 	[MT_UNCACHED] = {
260 		.prot_pte	= PROT_PTE_DEVICE,
261 		.prot_l1	= PMD_TYPE_TABLE,
262 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
263 		.domain		= DOMAIN_IO,
264 	},
265 	[MT_CACHECLEAN] = {
266 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
267 		.domain    = DOMAIN_KERNEL,
268 	},
269 #ifndef CONFIG_ARM_LPAE
270 	[MT_MINICLEAN] = {
271 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
272 		.domain    = DOMAIN_KERNEL,
273 	},
274 #endif
275 	[MT_LOW_VECTORS] = {
276 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
277 				L_PTE_RDONLY,
278 		.prot_l1   = PMD_TYPE_TABLE,
279 		.domain    = DOMAIN_VECTORS,
280 	},
281 	[MT_HIGH_VECTORS] = {
282 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
283 				L_PTE_USER | L_PTE_RDONLY,
284 		.prot_l1   = PMD_TYPE_TABLE,
285 		.domain    = DOMAIN_VECTORS,
286 	},
287 	[MT_MEMORY_RWX] = {
288 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
289 		.prot_l1   = PMD_TYPE_TABLE,
290 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
291 		.domain    = DOMAIN_KERNEL,
292 	},
293 	[MT_MEMORY_RW] = {
294 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
295 			     L_PTE_XN,
296 		.prot_l1   = PMD_TYPE_TABLE,
297 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
298 		.domain    = DOMAIN_KERNEL,
299 	},
300 	[MT_MEMORY_RO] = {
301 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
302 			     L_PTE_XN | L_PTE_RDONLY,
303 		.prot_l1   = PMD_TYPE_TABLE,
304 #ifdef CONFIG_ARM_LPAE
305 		.prot_sect = PMD_TYPE_SECT | L_PMD_SECT_RDONLY | PMD_SECT_AP2,
306 #else
307 		.prot_sect = PMD_TYPE_SECT,
308 #endif
309 		.domain    = DOMAIN_KERNEL,
310 	},
311 	[MT_ROM] = {
312 		.prot_sect = PMD_TYPE_SECT,
313 		.domain    = DOMAIN_KERNEL,
314 	},
315 	[MT_MEMORY_RWX_NONCACHED] = {
316 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
317 				L_PTE_MT_BUFFERABLE,
318 		.prot_l1   = PMD_TYPE_TABLE,
319 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
320 		.domain    = DOMAIN_KERNEL,
321 	},
322 	[MT_MEMORY_RW_DTCM] = {
323 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
324 				L_PTE_XN,
325 		.prot_l1   = PMD_TYPE_TABLE,
326 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
327 		.domain    = DOMAIN_KERNEL,
328 	},
329 	[MT_MEMORY_RWX_ITCM] = {
330 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
331 		.prot_l1   = PMD_TYPE_TABLE,
332 		.domain    = DOMAIN_KERNEL,
333 	},
334 	[MT_MEMORY_RW_SO] = {
335 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
336 				L_PTE_MT_UNCACHED | L_PTE_XN,
337 		.prot_l1   = PMD_TYPE_TABLE,
338 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
339 				PMD_SECT_UNCACHED | PMD_SECT_XN,
340 		.domain    = DOMAIN_KERNEL,
341 	},
342 	[MT_MEMORY_DMA_READY] = {
343 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
344 				L_PTE_XN,
345 		.prot_l1   = PMD_TYPE_TABLE,
346 		.domain    = DOMAIN_KERNEL,
347 	},
348 };
349 
get_mem_type(unsigned int type)350 const struct mem_type *get_mem_type(unsigned int type)
351 {
352 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
353 }
354 EXPORT_SYMBOL(get_mem_type);
355 
356 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
357 
358 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
359 	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
360 
pte_offset_early_fixmap(pmd_t * dir,unsigned long addr)361 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
362 {
363 	return &bm_pte[pte_index(addr)];
364 }
365 
pte_offset_late_fixmap(pmd_t * dir,unsigned long addr)366 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
367 {
368 	return pte_offset_kernel(dir, addr);
369 }
370 
fixmap_pmd(unsigned long addr)371 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
372 {
373 	return pmd_off_k(addr);
374 }
375 
early_fixmap_init(void)376 void __init early_fixmap_init(void)
377 {
378 	pmd_t *pmd;
379 
380 	/*
381 	 * The early fixmap range spans multiple pmds, for which
382 	 * we are not prepared:
383 	 */
384 	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
385 		     != FIXADDR_TOP >> PMD_SHIFT);
386 
387 	pmd = fixmap_pmd(FIXADDR_TOP);
388 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
389 
390 	pte_offset_fixmap = pte_offset_early_fixmap;
391 }
392 
393 /*
394  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
395  * As a result, this can only be called with preemption disabled, as under
396  * stop_machine().
397  */
__set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t prot)398 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
399 {
400 	unsigned long vaddr = __fix_to_virt(idx);
401 	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
402 
403 	/* Make sure fixmap region does not exceed available allocation. */
404 	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
405 		     FIXADDR_END);
406 	BUG_ON(idx >= __end_of_fixed_addresses);
407 
408 	/* We support only device mappings before pgprot_kernel is set. */
409 	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
410 		    pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
411 		return;
412 
413 	if (pgprot_val(prot))
414 		set_pte_at(NULL, vaddr, pte,
415 			pfn_pte(phys >> PAGE_SHIFT, prot));
416 	else
417 		pte_clear(NULL, vaddr, pte);
418 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
419 }
420 
421 /*
422  * Adjust the PMD section entries according to the CPU in use.
423  */
build_mem_type_table(void)424 static void __init build_mem_type_table(void)
425 {
426 	struct cachepolicy *cp;
427 	unsigned int cr = get_cr();
428 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
429 	int cpu_arch = cpu_architecture();
430 	int i;
431 
432 	if (cpu_arch < CPU_ARCH_ARMv6) {
433 #if defined(CONFIG_CPU_DCACHE_DISABLE)
434 		if (cachepolicy > CPOLICY_BUFFERED)
435 			cachepolicy = CPOLICY_BUFFERED;
436 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
437 		if (cachepolicy > CPOLICY_WRITETHROUGH)
438 			cachepolicy = CPOLICY_WRITETHROUGH;
439 #endif
440 	}
441 	if (cpu_arch < CPU_ARCH_ARMv5) {
442 		if (cachepolicy >= CPOLICY_WRITEALLOC)
443 			cachepolicy = CPOLICY_WRITEBACK;
444 		ecc_mask = 0;
445 	}
446 
447 	if (is_smp()) {
448 		if (cachepolicy != CPOLICY_WRITEALLOC) {
449 			pr_warn("Forcing write-allocate cache policy for SMP\n");
450 			cachepolicy = CPOLICY_WRITEALLOC;
451 		}
452 		if (!(initial_pmd_value & PMD_SECT_S)) {
453 			pr_warn("Forcing shared mappings for SMP\n");
454 			initial_pmd_value |= PMD_SECT_S;
455 		}
456 	}
457 
458 	/*
459 	 * Strip out features not present on earlier architectures.
460 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
461 	 * without extended page tables don't have the 'Shared' bit.
462 	 */
463 	if (cpu_arch < CPU_ARCH_ARMv5)
464 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
465 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
466 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
467 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
468 			mem_types[i].prot_sect &= ~PMD_SECT_S;
469 
470 	/*
471 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
472 	 * "update-able on write" bit on ARM610).  However, Xscale and
473 	 * Xscale3 require this bit to be cleared.
474 	 */
475 	if (cpu_is_xscale_family()) {
476 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
477 			mem_types[i].prot_sect &= ~PMD_BIT4;
478 			mem_types[i].prot_l1 &= ~PMD_BIT4;
479 		}
480 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
481 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
482 			if (mem_types[i].prot_l1)
483 				mem_types[i].prot_l1 |= PMD_BIT4;
484 			if (mem_types[i].prot_sect)
485 				mem_types[i].prot_sect |= PMD_BIT4;
486 		}
487 	}
488 
489 	/*
490 	 * Mark the device areas according to the CPU/architecture.
491 	 */
492 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
493 		if (!cpu_is_xsc3()) {
494 			/*
495 			 * Mark device regions on ARMv6+ as execute-never
496 			 * to prevent speculative instruction fetches.
497 			 */
498 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
499 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
500 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
501 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
502 
503 			/* Also setup NX memory mapping */
504 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
505 			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
506 		}
507 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
508 			/*
509 			 * For ARMv7 with TEX remapping,
510 			 * - shared device is SXCB=1100
511 			 * - nonshared device is SXCB=0100
512 			 * - write combine device mem is SXCB=0001
513 			 * (Uncached Normal memory)
514 			 */
515 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
516 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
517 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
518 		} else if (cpu_is_xsc3()) {
519 			/*
520 			 * For Xscale3,
521 			 * - shared device is TEXCB=00101
522 			 * - nonshared device is TEXCB=01000
523 			 * - write combine device mem is TEXCB=00100
524 			 * (Inner/Outer Uncacheable in xsc3 parlance)
525 			 */
526 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
527 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
528 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
529 		} else {
530 			/*
531 			 * For ARMv6 and ARMv7 without TEX remapping,
532 			 * - shared device is TEXCB=00001
533 			 * - nonshared device is TEXCB=01000
534 			 * - write combine device mem is TEXCB=00100
535 			 * (Uncached Normal in ARMv6 parlance).
536 			 */
537 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
538 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
539 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
540 		}
541 	} else {
542 		/*
543 		 * On others, write combining is "Uncached/Buffered"
544 		 */
545 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
546 	}
547 
548 	/*
549 	 * Now deal with the memory-type mappings
550 	 */
551 	cp = &cache_policies[cachepolicy];
552 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
553 
554 #ifndef CONFIG_ARM_LPAE
555 	/*
556 	 * We don't use domains on ARMv6 (since this causes problems with
557 	 * v6/v7 kernels), so we must use a separate memory type for user
558 	 * r/o, kernel r/w to map the vectors page.
559 	 */
560 	if (cpu_arch == CPU_ARCH_ARMv6)
561 		vecs_pgprot |= L_PTE_MT_VECTORS;
562 
563 	/*
564 	 * Check is it with support for the PXN bit
565 	 * in the Short-descriptor translation table format descriptors.
566 	 */
567 	if (cpu_arch == CPU_ARCH_ARMv7 &&
568 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
569 		user_pmd_table |= PMD_PXNTABLE;
570 	}
571 #endif
572 
573 	/*
574 	 * ARMv6 and above have extended page tables.
575 	 */
576 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
577 #ifndef CONFIG_ARM_LPAE
578 		/*
579 		 * Mark cache clean areas and XIP ROM read only
580 		 * from SVC mode and no access from userspace.
581 		 */
582 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
583 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
584 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
585 		mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
586 #endif
587 
588 		/*
589 		 * If the initial page tables were created with the S bit
590 		 * set, then we need to do the same here for the same
591 		 * reasons given in early_cachepolicy().
592 		 */
593 		if (initial_pmd_value & PMD_SECT_S) {
594 			user_pgprot |= L_PTE_SHARED;
595 			kern_pgprot |= L_PTE_SHARED;
596 			vecs_pgprot |= L_PTE_SHARED;
597 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
598 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
599 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
600 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
601 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
602 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
603 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
604 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
605 			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
606 			mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
607 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
608 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
609 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
610 		}
611 	}
612 
613 	/*
614 	 * Non-cacheable Normal - intended for memory areas that must
615 	 * not cause dirty cache line writebacks when used
616 	 */
617 	if (cpu_arch >= CPU_ARCH_ARMv6) {
618 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
619 			/* Non-cacheable Normal is XCB = 001 */
620 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
621 				PMD_SECT_BUFFERED;
622 		} else {
623 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
624 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
625 				PMD_SECT_TEX(1);
626 		}
627 	} else {
628 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
629 	}
630 
631 #ifdef CONFIG_ARM_LPAE
632 	/*
633 	 * Do not generate access flag faults for the kernel mappings.
634 	 */
635 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
636 		mem_types[i].prot_pte |= PTE_EXT_AF;
637 		if (mem_types[i].prot_sect)
638 			mem_types[i].prot_sect |= PMD_SECT_AF;
639 	}
640 	kern_pgprot |= PTE_EXT_AF;
641 	vecs_pgprot |= PTE_EXT_AF;
642 
643 	/*
644 	 * Set PXN for user mappings
645 	 */
646 	user_pgprot |= PTE_EXT_PXN;
647 #endif
648 
649 	for (i = 0; i < 16; i++) {
650 		pteval_t v = pgprot_val(protection_map[i]);
651 		protection_map[i] = __pgprot(v | user_pgprot);
652 	}
653 
654 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
655 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
656 
657 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
658 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
659 				 L_PTE_DIRTY | kern_pgprot);
660 
661 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
662 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
663 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
664 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
665 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
666 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
667 	mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
668 	mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
669 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
670 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
671 	mem_types[MT_ROM].prot_sect |= cp->pmd;
672 
673 	switch (cp->pmd) {
674 	case PMD_SECT_WT:
675 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
676 		break;
677 	case PMD_SECT_WB:
678 	case PMD_SECT_WBWA:
679 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
680 		break;
681 	}
682 	pr_info("Memory policy: %sData cache %s\n",
683 		ecc_mask ? "ECC enabled, " : "", cp->policy);
684 
685 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
686 		struct mem_type *t = &mem_types[i];
687 		if (t->prot_l1)
688 			t->prot_l1 |= PMD_DOMAIN(t->domain);
689 		if (t->prot_sect)
690 			t->prot_sect |= PMD_DOMAIN(t->domain);
691 	}
692 }
693 
694 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)695 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
696 			      unsigned long size, pgprot_t vma_prot)
697 {
698 	if (!pfn_valid(pfn))
699 		return pgprot_noncached(vma_prot);
700 	else if (file->f_flags & O_SYNC)
701 		return pgprot_writecombine(vma_prot);
702 	return vma_prot;
703 }
704 EXPORT_SYMBOL(phys_mem_access_prot);
705 #endif
706 
707 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
708 
early_alloc(unsigned long sz)709 static void __init *early_alloc(unsigned long sz)
710 {
711 	void *ptr = memblock_alloc(sz, sz);
712 
713 	if (!ptr)
714 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
715 		      __func__, sz, sz);
716 
717 	return ptr;
718 }
719 
late_alloc(unsigned long sz)720 static void *__init late_alloc(unsigned long sz)
721 {
722 	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
723 
724 	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
725 		BUG();
726 	return ptr;
727 }
728 
arm_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot,void * (* alloc)(unsigned long sz))729 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
730 				unsigned long prot,
731 				void *(*alloc)(unsigned long sz))
732 {
733 	if (pmd_none(*pmd)) {
734 		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
735 		__pmd_populate(pmd, __pa(pte), prot);
736 	}
737 	BUG_ON(pmd_bad(*pmd));
738 	return pte_offset_kernel(pmd, addr);
739 }
740 
early_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot)741 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
742 				      unsigned long prot)
743 {
744 	return arm_pte_alloc(pmd, addr, prot, early_alloc);
745 }
746 
alloc_init_pte(pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)747 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
748 				  unsigned long end, unsigned long pfn,
749 				  const struct mem_type *type,
750 				  void *(*alloc)(unsigned long sz),
751 				  bool ng)
752 {
753 	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
754 	do {
755 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
756 			    ng ? PTE_EXT_NG : 0);
757 		pfn++;
758 	} while (pte++, addr += PAGE_SIZE, addr != end);
759 }
760 
__map_init_section(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,bool ng)761 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
762 			unsigned long end, phys_addr_t phys,
763 			const struct mem_type *type, bool ng)
764 {
765 	pmd_t *p = pmd;
766 
767 #ifndef CONFIG_ARM_LPAE
768 	/*
769 	 * In classic MMU format, puds and pmds are folded in to
770 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
771 	 * group of L1 entries making up one logical pointer to
772 	 * an L2 table (2MB), where as PMDs refer to the individual
773 	 * L1 entries (1MB). Hence increment to get the correct
774 	 * offset for odd 1MB sections.
775 	 * (See arch/arm/include/asm/pgtable-2level.h)
776 	 */
777 	if (addr & SECTION_SIZE)
778 		pmd++;
779 #endif
780 	do {
781 		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
782 		phys += SECTION_SIZE;
783 	} while (pmd++, addr += SECTION_SIZE, addr != end);
784 
785 	flush_pmd_entry(p);
786 }
787 
alloc_init_pmd(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)788 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
789 				      unsigned long end, phys_addr_t phys,
790 				      const struct mem_type *type,
791 				      void *(*alloc)(unsigned long sz), bool ng)
792 {
793 	pmd_t *pmd = pmd_offset(pud, addr);
794 	unsigned long next;
795 
796 	do {
797 		/*
798 		 * With LPAE, we must loop over to map
799 		 * all the pmds for the given range.
800 		 */
801 		next = pmd_addr_end(addr, end);
802 
803 		/*
804 		 * Try a section mapping - addr, next and phys must all be
805 		 * aligned to a section boundary.
806 		 */
807 		if (type->prot_sect &&
808 				((addr | next | phys) & ~SECTION_MASK) == 0) {
809 			__map_init_section(pmd, addr, next, phys, type, ng);
810 		} else {
811 			alloc_init_pte(pmd, addr, next,
812 				       __phys_to_pfn(phys), type, alloc, ng);
813 		}
814 
815 		phys += next - addr;
816 
817 	} while (pmd++, addr = next, addr != end);
818 }
819 
alloc_init_pud(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)820 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
821 				  unsigned long end, phys_addr_t phys,
822 				  const struct mem_type *type,
823 				  void *(*alloc)(unsigned long sz), bool ng)
824 {
825 	pud_t *pud = pud_offset(p4d, addr);
826 	unsigned long next;
827 
828 	do {
829 		next = pud_addr_end(addr, end);
830 		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
831 		phys += next - addr;
832 	} while (pud++, addr = next, addr != end);
833 }
834 
alloc_init_p4d(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)835 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
836 				  unsigned long end, phys_addr_t phys,
837 				  const struct mem_type *type,
838 				  void *(*alloc)(unsigned long sz), bool ng)
839 {
840 	p4d_t *p4d = p4d_offset(pgd, addr);
841 	unsigned long next;
842 
843 	do {
844 		next = p4d_addr_end(addr, end);
845 		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
846 		phys += next - addr;
847 	} while (p4d++, addr = next, addr != end);
848 }
849 
850 #ifndef CONFIG_ARM_LPAE
create_36bit_mapping(struct mm_struct * mm,struct map_desc * md,const struct mem_type * type,bool ng)851 static void __init create_36bit_mapping(struct mm_struct *mm,
852 					struct map_desc *md,
853 					const struct mem_type *type,
854 					bool ng)
855 {
856 	unsigned long addr, length, end;
857 	phys_addr_t phys;
858 	pgd_t *pgd;
859 
860 	addr = md->virtual;
861 	phys = __pfn_to_phys(md->pfn);
862 	length = PAGE_ALIGN(md->length);
863 
864 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
865 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
866 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
867 		return;
868 	}
869 
870 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
871 	 *	Since domain assignments can in fact be arbitrary, the
872 	 *	'domain == 0' check below is required to insure that ARMv6
873 	 *	supersections are only allocated for domain 0 regardless
874 	 *	of the actual domain assignments in use.
875 	 */
876 	if (type->domain) {
877 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
878 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
879 		return;
880 	}
881 
882 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
883 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
884 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
885 		return;
886 	}
887 
888 	/*
889 	 * Shift bits [35:32] of address into bits [23:20] of PMD
890 	 * (See ARMv6 spec).
891 	 */
892 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
893 
894 	pgd = pgd_offset(mm, addr);
895 	end = addr + length;
896 	do {
897 		p4d_t *p4d = p4d_offset(pgd, addr);
898 		pud_t *pud = pud_offset(p4d, addr);
899 		pmd_t *pmd = pmd_offset(pud, addr);
900 		int i;
901 
902 		for (i = 0; i < 16; i++)
903 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
904 				       (ng ? PMD_SECT_nG : 0));
905 
906 		addr += SUPERSECTION_SIZE;
907 		phys += SUPERSECTION_SIZE;
908 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
909 	} while (addr != end);
910 }
911 #endif	/* !CONFIG_ARM_LPAE */
912 
__create_mapping(struct mm_struct * mm,struct map_desc * md,void * (* alloc)(unsigned long sz),bool ng)913 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
914 				    void *(*alloc)(unsigned long sz),
915 				    bool ng)
916 {
917 	unsigned long addr, length, end;
918 	phys_addr_t phys;
919 	const struct mem_type *type;
920 	pgd_t *pgd;
921 
922 	type = &mem_types[md->type];
923 
924 #ifndef CONFIG_ARM_LPAE
925 	/*
926 	 * Catch 36-bit addresses
927 	 */
928 	if (md->pfn >= 0x100000) {
929 		create_36bit_mapping(mm, md, type, ng);
930 		return;
931 	}
932 #endif
933 
934 	addr = md->virtual & PAGE_MASK;
935 	phys = __pfn_to_phys(md->pfn);
936 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
937 
938 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
939 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
940 			(long long)__pfn_to_phys(md->pfn), addr);
941 		return;
942 	}
943 
944 	pgd = pgd_offset(mm, addr);
945 	end = addr + length;
946 	do {
947 		unsigned long next = pgd_addr_end(addr, end);
948 
949 		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
950 
951 		phys += next - addr;
952 		addr = next;
953 	} while (pgd++, addr != end);
954 }
955 
956 /*
957  * Create the page directory entries and any necessary
958  * page tables for the mapping specified by `md'.  We
959  * are able to cope here with varying sizes and address
960  * offsets, and we take full advantage of sections and
961  * supersections.
962  */
create_mapping(struct map_desc * md)963 static void __init create_mapping(struct map_desc *md)
964 {
965 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
966 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
967 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
968 		return;
969 	}
970 
971 	if (md->type == MT_DEVICE &&
972 	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
973 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
974 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
975 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
976 	}
977 
978 	__create_mapping(&init_mm, md, early_alloc, false);
979 }
980 
create_mapping_late(struct mm_struct * mm,struct map_desc * md,bool ng)981 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
982 				bool ng)
983 {
984 #ifdef CONFIG_ARM_LPAE
985 	p4d_t *p4d;
986 	pud_t *pud;
987 
988 	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
989 	if (WARN_ON(!p4d))
990 		return;
991 	pud = pud_alloc(mm, p4d, md->virtual);
992 	if (WARN_ON(!pud))
993 		return;
994 	pmd_alloc(mm, pud, 0);
995 #endif
996 	__create_mapping(mm, md, late_alloc, ng);
997 }
998 
999 /*
1000  * Create the architecture specific mappings
1001  */
iotable_init(struct map_desc * io_desc,int nr)1002 void __init iotable_init(struct map_desc *io_desc, int nr)
1003 {
1004 	struct map_desc *md;
1005 	struct vm_struct *vm;
1006 	struct static_vm *svm;
1007 
1008 	if (!nr)
1009 		return;
1010 
1011 	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1012 	if (!svm)
1013 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1014 		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
1015 
1016 	for (md = io_desc; nr; md++, nr--) {
1017 		create_mapping(md);
1018 
1019 		vm = &svm->vm;
1020 		vm->addr = (void *)(md->virtual & PAGE_MASK);
1021 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1022 		vm->phys_addr = __pfn_to_phys(md->pfn);
1023 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1024 		vm->flags |= VM_ARM_MTYPE(md->type);
1025 		vm->caller = iotable_init;
1026 		add_static_vm_early(svm++);
1027 	}
1028 }
1029 
vm_reserve_area_early(unsigned long addr,unsigned long size,void * caller)1030 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1031 				  void *caller)
1032 {
1033 	struct vm_struct *vm;
1034 	struct static_vm *svm;
1035 
1036 	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1037 	if (!svm)
1038 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1039 		      __func__, sizeof(*svm), __alignof__(*svm));
1040 
1041 	vm = &svm->vm;
1042 	vm->addr = (void *)addr;
1043 	vm->size = size;
1044 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1045 	vm->caller = caller;
1046 	add_static_vm_early(svm);
1047 }
1048 
1049 #ifndef CONFIG_ARM_LPAE
1050 
1051 /*
1052  * The Linux PMD is made of two consecutive section entries covering 2MB
1053  * (see definition in include/asm/pgtable-2level.h).  However a call to
1054  * create_mapping() may optimize static mappings by using individual
1055  * 1MB section mappings.  This leaves the actual PMD potentially half
1056  * initialized if the top or bottom section entry isn't used, leaving it
1057  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1058  * the virtual space left free by that unused section entry.
1059  *
1060  * Let's avoid the issue by inserting dummy vm entries covering the unused
1061  * PMD halves once the static mappings are in place.
1062  */
1063 
pmd_empty_section_gap(unsigned long addr)1064 static void __init pmd_empty_section_gap(unsigned long addr)
1065 {
1066 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1067 }
1068 
fill_pmd_gaps(void)1069 static void __init fill_pmd_gaps(void)
1070 {
1071 	struct static_vm *svm;
1072 	struct vm_struct *vm;
1073 	unsigned long addr, next = 0;
1074 	pmd_t *pmd;
1075 
1076 	list_for_each_entry(svm, &static_vmlist, list) {
1077 		vm = &svm->vm;
1078 		addr = (unsigned long)vm->addr;
1079 		if (addr < next)
1080 			continue;
1081 
1082 		/*
1083 		 * Check if this vm starts on an odd section boundary.
1084 		 * If so and the first section entry for this PMD is free
1085 		 * then we block the corresponding virtual address.
1086 		 */
1087 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1088 			pmd = pmd_off_k(addr);
1089 			if (pmd_none(*pmd))
1090 				pmd_empty_section_gap(addr & PMD_MASK);
1091 		}
1092 
1093 		/*
1094 		 * Then check if this vm ends on an odd section boundary.
1095 		 * If so and the second section entry for this PMD is empty
1096 		 * then we block the corresponding virtual address.
1097 		 */
1098 		addr += vm->size;
1099 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1100 			pmd = pmd_off_k(addr) + 1;
1101 			if (pmd_none(*pmd))
1102 				pmd_empty_section_gap(addr);
1103 		}
1104 
1105 		/* no need to look at any vm entry until we hit the next PMD */
1106 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1107 	}
1108 }
1109 
1110 #else
1111 #define fill_pmd_gaps() do { } while (0)
1112 #endif
1113 
1114 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
pci_reserve_io(void)1115 static void __init pci_reserve_io(void)
1116 {
1117 	struct static_vm *svm;
1118 
1119 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1120 	if (svm)
1121 		return;
1122 
1123 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1124 }
1125 #else
1126 #define pci_reserve_io() do { } while (0)
1127 #endif
1128 
1129 #ifdef CONFIG_DEBUG_LL
debug_ll_io_init(void)1130 void __init debug_ll_io_init(void)
1131 {
1132 	struct map_desc map;
1133 
1134 	debug_ll_addr(&map.pfn, &map.virtual);
1135 	if (!map.pfn || !map.virtual)
1136 		return;
1137 	map.pfn = __phys_to_pfn(map.pfn);
1138 	map.virtual &= PAGE_MASK;
1139 	map.length = PAGE_SIZE;
1140 	map.type = MT_DEVICE;
1141 	iotable_init(&map, 1);
1142 }
1143 #endif
1144 
1145 static void * __initdata vmalloc_min = (void *)VMALLOC_DEFAULT_BASE;
1146 
1147 /*
1148  * vmalloc=size forces the vmalloc area to be exactly 'size'
1149  * bytes. This can be used to increase (or decrease) the vmalloc
1150  * area - the default is 240m.
1151  */
early_vmalloc(char * arg)1152 static int __init early_vmalloc(char *arg)
1153 {
1154 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1155 
1156 	if (vmalloc_reserve < SZ_16M) {
1157 		vmalloc_reserve = SZ_16M;
1158 		pr_warn("vmalloc area too small, limiting to %luMB\n",
1159 			vmalloc_reserve >> 20);
1160 	}
1161 
1162 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1163 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1164 		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1165 			vmalloc_reserve >> 20);
1166 	}
1167 
1168 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1169 	return 0;
1170 }
1171 early_param("vmalloc", early_vmalloc);
1172 
1173 phys_addr_t arm_lowmem_limit __initdata = 0;
1174 
adjust_lowmem_bounds(void)1175 void __init adjust_lowmem_bounds(void)
1176 {
1177 	phys_addr_t block_start, block_end, memblock_limit = 0;
1178 	u64 vmalloc_limit, i;
1179 	phys_addr_t lowmem_limit = 0;
1180 
1181 	/*
1182 	 * Let's use our own (unoptimized) equivalent of __pa() that is
1183 	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1184 	 * The result is used as the upper bound on physical memory address
1185 	 * and may itself be outside the valid range for which phys_addr_t
1186 	 * and therefore __pa() is defined.
1187 	 */
1188 	vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1189 
1190 	/*
1191 	 * The first usable region must be PMD aligned. Mark its start
1192 	 * as MEMBLOCK_NOMAP if it isn't
1193 	 */
1194 	for_each_mem_range(i, &block_start, &block_end) {
1195 		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1196 			phys_addr_t len;
1197 
1198 			len = round_up(block_start, PMD_SIZE) - block_start;
1199 			memblock_mark_nomap(block_start, len);
1200 		}
1201 		break;
1202 	}
1203 
1204 	for_each_mem_range(i, &block_start, &block_end) {
1205 		if (block_start < vmalloc_limit) {
1206 			if (block_end > lowmem_limit)
1207 				/*
1208 				 * Compare as u64 to ensure vmalloc_limit does
1209 				 * not get truncated. block_end should always
1210 				 * fit in phys_addr_t so there should be no
1211 				 * issue with assignment.
1212 				 */
1213 				lowmem_limit = min_t(u64,
1214 							 vmalloc_limit,
1215 							 block_end);
1216 
1217 			/*
1218 			 * Find the first non-pmd-aligned page, and point
1219 			 * memblock_limit at it. This relies on rounding the
1220 			 * limit down to be pmd-aligned, which happens at the
1221 			 * end of this function.
1222 			 *
1223 			 * With this algorithm, the start or end of almost any
1224 			 * bank can be non-pmd-aligned. The only exception is
1225 			 * that the start of the bank 0 must be section-
1226 			 * aligned, since otherwise memory would need to be
1227 			 * allocated when mapping the start of bank 0, which
1228 			 * occurs before any free memory is mapped.
1229 			 */
1230 			if (!memblock_limit) {
1231 				if (!IS_ALIGNED(block_start, PMD_SIZE))
1232 					memblock_limit = block_start;
1233 				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1234 					memblock_limit = lowmem_limit;
1235 			}
1236 
1237 		}
1238 	}
1239 
1240 	arm_lowmem_limit = lowmem_limit;
1241 
1242 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1243 
1244 	if (!memblock_limit)
1245 		memblock_limit = arm_lowmem_limit;
1246 
1247 	/*
1248 	 * Round the memblock limit down to a pmd size.  This
1249 	 * helps to ensure that we will allocate memory from the
1250 	 * last full pmd, which should be mapped.
1251 	 */
1252 	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1253 
1254 	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1255 		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1256 			phys_addr_t end = memblock_end_of_DRAM();
1257 
1258 			pr_notice("Ignoring RAM at %pa-%pa\n",
1259 				  &memblock_limit, &end);
1260 			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1261 
1262 			memblock_remove(memblock_limit, end - memblock_limit);
1263 		}
1264 	}
1265 
1266 	memblock_set_current_limit(memblock_limit);
1267 }
1268 
prepare_page_table(void)1269 static inline void prepare_page_table(void)
1270 {
1271 	unsigned long addr;
1272 	phys_addr_t end;
1273 
1274 	/*
1275 	 * Clear out all the mappings below the kernel image.
1276 	 */
1277 #ifdef CONFIG_KASAN
1278 	/*
1279 	 * KASan's shadow memory inserts itself between the TASK_SIZE
1280 	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1281 	 */
1282 	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1283 		pmd_clear(pmd_off_k(addr));
1284 	/*
1285 	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1286 	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1287 	 * are using a thumb-compiled kernel, there there will be 8MB more
1288 	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1289 	 */
1290 	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1291 		pmd_clear(pmd_off_k(addr));
1292 #else
1293 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1294 		pmd_clear(pmd_off_k(addr));
1295 #endif
1296 
1297 #ifdef CONFIG_XIP_KERNEL
1298 	/* The XIP kernel is mapped in the module area -- skip over it */
1299 	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1300 #endif
1301 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1302 		pmd_clear(pmd_off_k(addr));
1303 
1304 	/*
1305 	 * Find the end of the first block of lowmem.
1306 	 */
1307 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1308 	if (end >= arm_lowmem_limit)
1309 		end = arm_lowmem_limit;
1310 
1311 	/*
1312 	 * Clear out all the kernel space mappings, except for the first
1313 	 * memory bank, up to the vmalloc region.
1314 	 */
1315 	for (addr = __phys_to_virt(end);
1316 	     addr < VMALLOC_START; addr += PMD_SIZE)
1317 		pmd_clear(pmd_off_k(addr));
1318 }
1319 
1320 #ifdef CONFIG_ARM_LPAE
1321 /* the first page is reserved for pgd */
1322 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1323 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1324 #else
1325 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1326 #endif
1327 
1328 /*
1329  * Reserve the special regions of memory
1330  */
arm_mm_memblock_reserve(void)1331 void __init arm_mm_memblock_reserve(void)
1332 {
1333 	/*
1334 	 * Reserve the page tables.  These are already in use,
1335 	 * and can only be in node 0.
1336 	 */
1337 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1338 
1339 #ifdef CONFIG_SA1111
1340 	/*
1341 	 * Because of the SA1111 DMA bug, we want to preserve our
1342 	 * precious DMA-able memory...
1343 	 */
1344 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1345 #endif
1346 }
1347 
1348 /*
1349  * Set up the device mappings.  Since we clear out the page tables for all
1350  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1351  * device mappings.  This means earlycon can be used to debug this function
1352  * Any other function or debugging method which may touch any device _will_
1353  * crash the kernel.
1354  */
devicemaps_init(const struct machine_desc * mdesc)1355 static void __init devicemaps_init(const struct machine_desc *mdesc)
1356 {
1357 	struct map_desc map;
1358 	unsigned long addr;
1359 	void *vectors;
1360 
1361 	/*
1362 	 * Allocate the vector page early.
1363 	 */
1364 	vectors = early_alloc(PAGE_SIZE * 2);
1365 
1366 	early_trap_init(vectors);
1367 
1368 	/*
1369 	 * Clear page table except top pmd used by early fixmaps
1370 	 */
1371 	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1372 		pmd_clear(pmd_off_k(addr));
1373 
1374 	if (__atags_pointer) {
1375 		/* create a read-only mapping of the device tree */
1376 		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1377 		map.virtual = FDT_FIXED_BASE;
1378 		map.length = FDT_FIXED_SIZE;
1379 		map.type = MT_MEMORY_RO;
1380 		create_mapping(&map);
1381 	}
1382 
1383 	/*
1384 	 * Map the kernel if it is XIP.
1385 	 * It is always first in the modulearea.
1386 	 */
1387 #ifdef CONFIG_XIP_KERNEL
1388 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1389 	map.virtual = MODULES_VADDR;
1390 	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1391 	map.type = MT_ROM;
1392 	create_mapping(&map);
1393 #endif
1394 
1395 	/*
1396 	 * Map the cache flushing regions.
1397 	 */
1398 #ifdef FLUSH_BASE
1399 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1400 	map.virtual = FLUSH_BASE;
1401 	map.length = SZ_1M;
1402 	map.type = MT_CACHECLEAN;
1403 	create_mapping(&map);
1404 #endif
1405 #ifdef FLUSH_BASE_MINICACHE
1406 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1407 	map.virtual = FLUSH_BASE_MINICACHE;
1408 	map.length = SZ_1M;
1409 	map.type = MT_MINICLEAN;
1410 	create_mapping(&map);
1411 #endif
1412 
1413 	/*
1414 	 * Create a mapping for the machine vectors at the high-vectors
1415 	 * location (0xffff0000).  If we aren't using high-vectors, also
1416 	 * create a mapping at the low-vectors virtual address.
1417 	 */
1418 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1419 	map.virtual = 0xffff0000;
1420 	map.length = PAGE_SIZE;
1421 #ifdef CONFIG_KUSER_HELPERS
1422 	map.type = MT_HIGH_VECTORS;
1423 #else
1424 	map.type = MT_LOW_VECTORS;
1425 #endif
1426 	create_mapping(&map);
1427 
1428 	if (!vectors_high()) {
1429 		map.virtual = 0;
1430 		map.length = PAGE_SIZE * 2;
1431 		map.type = MT_LOW_VECTORS;
1432 		create_mapping(&map);
1433 	}
1434 
1435 	/* Now create a kernel read-only mapping */
1436 	map.pfn += 1;
1437 	map.virtual = 0xffff0000 + PAGE_SIZE;
1438 	map.length = PAGE_SIZE;
1439 	map.type = MT_LOW_VECTORS;
1440 	create_mapping(&map);
1441 
1442 	/*
1443 	 * Ask the machine support to map in the statically mapped devices.
1444 	 */
1445 	if (mdesc->map_io)
1446 		mdesc->map_io();
1447 	else
1448 		debug_ll_io_init();
1449 	fill_pmd_gaps();
1450 
1451 	/* Reserve fixed i/o space in VMALLOC region */
1452 	pci_reserve_io();
1453 
1454 	/*
1455 	 * Finally flush the caches and tlb to ensure that we're in a
1456 	 * consistent state wrt the writebuffer.  This also ensures that
1457 	 * any write-allocated cache lines in the vector page are written
1458 	 * back.  After this point, we can start to touch devices again.
1459 	 */
1460 	local_flush_tlb_all();
1461 	flush_cache_all();
1462 
1463 	/* Enable asynchronous aborts */
1464 	early_abt_enable();
1465 }
1466 
kmap_init(void)1467 static void __init kmap_init(void)
1468 {
1469 #ifdef CONFIG_HIGHMEM
1470 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1471 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1472 #endif
1473 
1474 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1475 			_PAGE_KERNEL_TABLE);
1476 }
1477 
map_lowmem(void)1478 static void __init map_lowmem(void)
1479 {
1480 	phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1481 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1482 	phys_addr_t start, end;
1483 	u64 i;
1484 
1485 	/* Map all the lowmem memory banks. */
1486 	for_each_mem_range(i, &start, &end) {
1487 		struct map_desc map;
1488 
1489 		if (end > arm_lowmem_limit)
1490 			end = arm_lowmem_limit;
1491 		if (start >= end)
1492 			break;
1493 
1494 		if (end < kernel_x_start) {
1495 			map.pfn = __phys_to_pfn(start);
1496 			map.virtual = __phys_to_virt(start);
1497 			map.length = end - start;
1498 			map.type = MT_MEMORY_RWX;
1499 
1500 			create_mapping(&map);
1501 		} else if (start >= kernel_x_end) {
1502 			map.pfn = __phys_to_pfn(start);
1503 			map.virtual = __phys_to_virt(start);
1504 			map.length = end - start;
1505 			map.type = MT_MEMORY_RW;
1506 
1507 			create_mapping(&map);
1508 		} else {
1509 			/* This better cover the entire kernel */
1510 			if (start < kernel_x_start) {
1511 				map.pfn = __phys_to_pfn(start);
1512 				map.virtual = __phys_to_virt(start);
1513 				map.length = kernel_x_start - start;
1514 				map.type = MT_MEMORY_RW;
1515 
1516 				create_mapping(&map);
1517 			}
1518 
1519 			map.pfn = __phys_to_pfn(kernel_x_start);
1520 			map.virtual = __phys_to_virt(kernel_x_start);
1521 			map.length = kernel_x_end - kernel_x_start;
1522 			map.type = MT_MEMORY_RWX;
1523 
1524 			create_mapping(&map);
1525 
1526 			if (kernel_x_end < end) {
1527 				map.pfn = __phys_to_pfn(kernel_x_end);
1528 				map.virtual = __phys_to_virt(kernel_x_end);
1529 				map.length = end - kernel_x_end;
1530 				map.type = MT_MEMORY_RW;
1531 
1532 				create_mapping(&map);
1533 			}
1534 		}
1535 	}
1536 }
1537 
1538 #ifdef CONFIG_ARM_PV_FIXUP
1539 typedef void pgtables_remap(long long offset, unsigned long pgd);
1540 pgtables_remap lpae_pgtables_remap_asm;
1541 
1542 /*
1543  * early_paging_init() recreates boot time page table setup, allowing machines
1544  * to switch over to a high (>4G) address space on LPAE systems
1545  */
early_paging_init(const struct machine_desc * mdesc)1546 static void __init early_paging_init(const struct machine_desc *mdesc)
1547 {
1548 	pgtables_remap *lpae_pgtables_remap;
1549 	unsigned long pa_pgd;
1550 	unsigned int cr, ttbcr;
1551 	long long offset;
1552 
1553 	if (!mdesc->pv_fixup)
1554 		return;
1555 
1556 	offset = mdesc->pv_fixup();
1557 	if (offset == 0)
1558 		return;
1559 
1560 	/*
1561 	 * Get the address of the remap function in the 1:1 identity
1562 	 * mapping setup by the early page table assembly code.  We
1563 	 * must get this prior to the pv update.  The following barrier
1564 	 * ensures that this is complete before we fixup any P:V offsets.
1565 	 */
1566 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1567 	pa_pgd = __pa(swapper_pg_dir);
1568 	barrier();
1569 
1570 	pr_info("Switching physical address space to 0x%08llx\n",
1571 		(u64)PHYS_OFFSET + offset);
1572 
1573 	/* Re-set the phys pfn offset, and the pv offset */
1574 	__pv_offset += offset;
1575 	__pv_phys_pfn_offset += PFN_DOWN(offset);
1576 
1577 	/* Run the patch stub to update the constants */
1578 	fixup_pv_table(&__pv_table_begin,
1579 		(&__pv_table_end - &__pv_table_begin) << 2);
1580 
1581 	/*
1582 	 * We changing not only the virtual to physical mapping, but also
1583 	 * the physical addresses used to access memory.  We need to flush
1584 	 * all levels of cache in the system with caching disabled to
1585 	 * ensure that all data is written back, and nothing is prefetched
1586 	 * into the caches.  We also need to prevent the TLB walkers
1587 	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1588 	 * specific.
1589 	 */
1590 	cr = get_cr();
1591 	set_cr(cr & ~(CR_I | CR_C));
1592 	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1593 	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1594 		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1595 	flush_cache_all();
1596 
1597 	/*
1598 	 * Fixup the page tables - this must be in the idmap region as
1599 	 * we need to disable the MMU to do this safely, and hence it
1600 	 * needs to be assembly.  It's fairly simple, as we're using the
1601 	 * temporary tables setup by the initial assembly code.
1602 	 */
1603 	lpae_pgtables_remap(offset, pa_pgd);
1604 
1605 	/* Re-enable the caches and cacheable TLB walks */
1606 	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1607 	set_cr(cr);
1608 }
1609 
1610 #else
1611 
early_paging_init(const struct machine_desc * mdesc)1612 static void __init early_paging_init(const struct machine_desc *mdesc)
1613 {
1614 	long long offset;
1615 
1616 	if (!mdesc->pv_fixup)
1617 		return;
1618 
1619 	offset = mdesc->pv_fixup();
1620 	if (offset == 0)
1621 		return;
1622 
1623 	pr_crit("Physical address space modification is only to support Keystone2.\n");
1624 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1625 	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1626 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1627 }
1628 
1629 #endif
1630 
early_fixmap_shutdown(void)1631 static void __init early_fixmap_shutdown(void)
1632 {
1633 	int i;
1634 	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1635 
1636 	pte_offset_fixmap = pte_offset_late_fixmap;
1637 	pmd_clear(fixmap_pmd(va));
1638 	local_flush_tlb_kernel_page(va);
1639 
1640 	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1641 		pte_t *pte;
1642 		struct map_desc map;
1643 
1644 		map.virtual = fix_to_virt(i);
1645 		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1646 
1647 		/* Only i/o device mappings are supported ATM */
1648 		if (pte_none(*pte) ||
1649 		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1650 			continue;
1651 
1652 		map.pfn = pte_pfn(*pte);
1653 		map.type = MT_DEVICE;
1654 		map.length = PAGE_SIZE;
1655 
1656 		create_mapping(&map);
1657 	}
1658 }
1659 
1660 /*
1661  * paging_init() sets up the page tables, initialises the zone memory
1662  * maps, and sets up the zero page, bad page and bad page tables.
1663  */
paging_init(const struct machine_desc * mdesc)1664 void __init paging_init(const struct machine_desc *mdesc)
1665 {
1666 	void *zero_page;
1667 
1668 	prepare_page_table();
1669 	map_lowmem();
1670 	memblock_set_current_limit(arm_lowmem_limit);
1671 	dma_contiguous_remap();
1672 	early_fixmap_shutdown();
1673 	devicemaps_init(mdesc);
1674 	kmap_init();
1675 	tcm_init();
1676 
1677 	top_pmd = pmd_off_k(0xffff0000);
1678 
1679 	/* allocate the zero page. */
1680 	zero_page = early_alloc(PAGE_SIZE);
1681 
1682 	bootmem_init();
1683 
1684 	empty_zero_page = virt_to_page(zero_page);
1685 	__flush_dcache_page(NULL, empty_zero_page);
1686 }
1687 
early_mm_init(const struct machine_desc * mdesc)1688 void __init early_mm_init(const struct machine_desc *mdesc)
1689 {
1690 	build_mem_type_table();
1691 	early_paging_init(mdesc);
1692 }
1693 
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)1694 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1695 			      pte_t *ptep, pte_t pteval)
1696 {
1697 	unsigned long ext = 0;
1698 
1699 	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1700 		if (!pte_special(pteval))
1701 			__sync_icache_dcache(pteval);
1702 		ext |= PTE_EXT_NG;
1703 	}
1704 
1705 	set_pte_ext(ptep, pteval, ext);
1706 }
1707