1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Cryptographic API for algorithms (i.e., low-level API).
4 *
5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7 #ifndef _CRYPTO_ALGAPI_H
8 #define _CRYPTO_ALGAPI_H
9
10 #include <linux/crypto.h>
11 #include <linux/list.h>
12 #include <linux/kernel.h>
13
14 /*
15 * Maximum values for blocksize and alignmask, used to allocate
16 * static buffers that are big enough for any combination of
17 * algs and architectures. Ciphers have a lower maximum size.
18 */
19 #define MAX_ALGAPI_BLOCKSIZE 160
20 #define MAX_ALGAPI_ALIGNMASK 63
21 #define MAX_CIPHER_BLOCKSIZE 16
22 #define MAX_CIPHER_ALIGNMASK 15
23
24 struct crypto_aead;
25 struct crypto_instance;
26 struct module;
27 struct rtattr;
28 struct seq_file;
29 struct sk_buff;
30
31 struct crypto_type {
32 unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
33 unsigned int (*extsize)(struct crypto_alg *alg);
34 int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
35 int (*init_tfm)(struct crypto_tfm *tfm);
36 void (*show)(struct seq_file *m, struct crypto_alg *alg);
37 int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
38 void (*free)(struct crypto_instance *inst);
39
40 unsigned int type;
41 unsigned int maskclear;
42 unsigned int maskset;
43 unsigned int tfmsize;
44 };
45
46 struct crypto_instance {
47 struct crypto_alg alg;
48
49 struct crypto_template *tmpl;
50
51 union {
52 /* Node in list of instances after registration. */
53 struct hlist_node list;
54 /* List of attached spawns before registration. */
55 struct crypto_spawn *spawns;
56 };
57
58 void *__ctx[] CRYPTO_MINALIGN_ATTR;
59 };
60
61 struct crypto_template {
62 struct list_head list;
63 struct hlist_head instances;
64 struct module *module;
65
66 int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
67
68 char name[CRYPTO_MAX_ALG_NAME];
69 };
70
71 struct crypto_spawn {
72 struct list_head list;
73 struct crypto_alg *alg;
74 union {
75 /* Back pointer to instance after registration.*/
76 struct crypto_instance *inst;
77 /* Spawn list pointer prior to registration. */
78 struct crypto_spawn *next;
79 };
80 const struct crypto_type *frontend;
81 u32 mask;
82 bool dead;
83 bool registered;
84 };
85
86 struct crypto_queue {
87 struct list_head list;
88 struct list_head *backlog;
89
90 unsigned int qlen;
91 unsigned int max_qlen;
92 };
93
94 struct scatter_walk {
95 struct scatterlist *sg;
96 unsigned int offset;
97 };
98
99 void crypto_mod_put(struct crypto_alg *alg);
100
101 int crypto_register_template(struct crypto_template *tmpl);
102 int crypto_register_templates(struct crypto_template *tmpls, int count);
103 void crypto_unregister_template(struct crypto_template *tmpl);
104 void crypto_unregister_templates(struct crypto_template *tmpls, int count);
105 struct crypto_template *crypto_lookup_template(const char *name);
106
107 int crypto_register_instance(struct crypto_template *tmpl,
108 struct crypto_instance *inst);
109 void crypto_unregister_instance(struct crypto_instance *inst);
110
111 int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst,
112 const char *name, u32 type, u32 mask);
113 void crypto_drop_spawn(struct crypto_spawn *spawn);
114 struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
115 u32 mask);
116 void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
117
118 struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
119 int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret);
120 const char *crypto_attr_alg_name(struct rtattr *rta);
121 int crypto_attr_u32(struct rtattr *rta, u32 *num);
122 int crypto_inst_setname(struct crypto_instance *inst, const char *name,
123 struct crypto_alg *alg);
124
125 void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
126 int crypto_enqueue_request(struct crypto_queue *queue,
127 struct crypto_async_request *request);
128 void crypto_enqueue_request_head(struct crypto_queue *queue,
129 struct crypto_async_request *request);
130 struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
crypto_queue_len(struct crypto_queue * queue)131 static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
132 {
133 return queue->qlen;
134 }
135
136 void crypto_inc(u8 *a, unsigned int size);
137 void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size);
138
crypto_xor(u8 * dst,const u8 * src,unsigned int size)139 static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size)
140 {
141 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
142 __builtin_constant_p(size) &&
143 (size % sizeof(unsigned long)) == 0) {
144 unsigned long *d = (unsigned long *)dst;
145 unsigned long *s = (unsigned long *)src;
146
147 while (size > 0) {
148 *d++ ^= *s++;
149 size -= sizeof(unsigned long);
150 }
151 } else {
152 __crypto_xor(dst, dst, src, size);
153 }
154 }
155
crypto_xor_cpy(u8 * dst,const u8 * src1,const u8 * src2,unsigned int size)156 static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2,
157 unsigned int size)
158 {
159 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
160 __builtin_constant_p(size) &&
161 (size % sizeof(unsigned long)) == 0) {
162 unsigned long *d = (unsigned long *)dst;
163 unsigned long *s1 = (unsigned long *)src1;
164 unsigned long *s2 = (unsigned long *)src2;
165
166 while (size > 0) {
167 *d++ = *s1++ ^ *s2++;
168 size -= sizeof(unsigned long);
169 }
170 } else {
171 __crypto_xor(dst, src1, src2, size);
172 }
173 }
174
crypto_tfm_ctx_aligned(struct crypto_tfm * tfm)175 static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
176 {
177 return PTR_ALIGN(crypto_tfm_ctx(tfm),
178 crypto_tfm_alg_alignmask(tfm) + 1);
179 }
180
crypto_tfm_alg_instance(struct crypto_tfm * tfm)181 static inline struct crypto_instance *crypto_tfm_alg_instance(
182 struct crypto_tfm *tfm)
183 {
184 return container_of(tfm->__crt_alg, struct crypto_instance, alg);
185 }
186
crypto_instance_ctx(struct crypto_instance * inst)187 static inline void *crypto_instance_ctx(struct crypto_instance *inst)
188 {
189 return inst->__ctx;
190 }
191
192 struct crypto_cipher_spawn {
193 struct crypto_spawn base;
194 };
195
crypto_grab_cipher(struct crypto_cipher_spawn * spawn,struct crypto_instance * inst,const char * name,u32 type,u32 mask)196 static inline int crypto_grab_cipher(struct crypto_cipher_spawn *spawn,
197 struct crypto_instance *inst,
198 const char *name, u32 type, u32 mask)
199 {
200 type &= ~CRYPTO_ALG_TYPE_MASK;
201 type |= CRYPTO_ALG_TYPE_CIPHER;
202 mask |= CRYPTO_ALG_TYPE_MASK;
203 return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
204 }
205
crypto_drop_cipher(struct crypto_cipher_spawn * spawn)206 static inline void crypto_drop_cipher(struct crypto_cipher_spawn *spawn)
207 {
208 crypto_drop_spawn(&spawn->base);
209 }
210
crypto_spawn_cipher_alg(struct crypto_cipher_spawn * spawn)211 static inline struct crypto_alg *crypto_spawn_cipher_alg(
212 struct crypto_cipher_spawn *spawn)
213 {
214 return spawn->base.alg;
215 }
216
crypto_spawn_cipher(struct crypto_cipher_spawn * spawn)217 static inline struct crypto_cipher *crypto_spawn_cipher(
218 struct crypto_cipher_spawn *spawn)
219 {
220 u32 type = CRYPTO_ALG_TYPE_CIPHER;
221 u32 mask = CRYPTO_ALG_TYPE_MASK;
222
223 return __crypto_cipher_cast(crypto_spawn_tfm(&spawn->base, type, mask));
224 }
225
crypto_cipher_alg(struct crypto_cipher * tfm)226 static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm)
227 {
228 return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher;
229 }
230
crypto_get_backlog(struct crypto_queue * queue)231 static inline struct crypto_async_request *crypto_get_backlog(
232 struct crypto_queue *queue)
233 {
234 return queue->backlog == &queue->list ? NULL :
235 container_of(queue->backlog, struct crypto_async_request, list);
236 }
237
crypto_requires_off(struct crypto_attr_type * algt,u32 off)238 static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off)
239 {
240 return (algt->type ^ off) & algt->mask & off;
241 }
242
243 /*
244 * When an algorithm uses another algorithm (e.g., if it's an instance of a
245 * template), these are the flags that should always be set on the "outer"
246 * algorithm if any "inner" algorithm has them set.
247 */
248 #define CRYPTO_ALG_INHERITED_FLAGS \
249 (CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | \
250 CRYPTO_ALG_ALLOCATES_MEMORY)
251
252 /*
253 * Given the type and mask that specify the flags restrictions on a template
254 * instance being created, return the mask that should be passed to
255 * crypto_grab_*() (along with type=0) to honor any request the user made to
256 * have any of the CRYPTO_ALG_INHERITED_FLAGS clear.
257 */
crypto_algt_inherited_mask(struct crypto_attr_type * algt)258 static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt)
259 {
260 return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS);
261 }
262
263 noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
264
265 /**
266 * crypto_memneq - Compare two areas of memory without leaking
267 * timing information.
268 *
269 * @a: One area of memory
270 * @b: Another area of memory
271 * @size: The size of the area.
272 *
273 * Returns 0 when data is equal, 1 otherwise.
274 */
crypto_memneq(const void * a,const void * b,size_t size)275 static inline int crypto_memneq(const void *a, const void *b, size_t size)
276 {
277 return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
278 }
279
280 int crypto_register_notifier(struct notifier_block *nb);
281 int crypto_unregister_notifier(struct notifier_block *nb);
282
283 /* Crypto notification events. */
284 enum {
285 CRYPTO_MSG_ALG_REQUEST,
286 CRYPTO_MSG_ALG_REGISTER,
287 CRYPTO_MSG_ALG_LOADED,
288 };
289
290 #endif /* _CRYPTO_ALGAPI_H */
291