1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
4 *
5 * Integrated Consumer Infrared Controller
6 *
7 * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net>
8 */
9
10 #include <linux/slab.h>
11 #include <linux/kfifo.h>
12 #include <linux/module.h>
13 #include <media/drv-intf/cx25840.h>
14 #include <media/rc-core.h>
15
16 #include "cx25840-core.h"
17
18 static unsigned int ir_debug;
19 module_param(ir_debug, int, 0644);
20 MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
21
22 #define CX25840_IR_REG_BASE 0x200
23
24 #define CX25840_IR_CNTRL_REG 0x200
25 #define CNTRL_WIN_3_3 0x00000000
26 #define CNTRL_WIN_4_3 0x00000001
27 #define CNTRL_WIN_3_4 0x00000002
28 #define CNTRL_WIN_4_4 0x00000003
29 #define CNTRL_WIN 0x00000003
30 #define CNTRL_EDG_NONE 0x00000000
31 #define CNTRL_EDG_FALL 0x00000004
32 #define CNTRL_EDG_RISE 0x00000008
33 #define CNTRL_EDG_BOTH 0x0000000C
34 #define CNTRL_EDG 0x0000000C
35 #define CNTRL_DMD 0x00000010
36 #define CNTRL_MOD 0x00000020
37 #define CNTRL_RFE 0x00000040
38 #define CNTRL_TFE 0x00000080
39 #define CNTRL_RXE 0x00000100
40 #define CNTRL_TXE 0x00000200
41 #define CNTRL_RIC 0x00000400
42 #define CNTRL_TIC 0x00000800
43 #define CNTRL_CPL 0x00001000
44 #define CNTRL_LBM 0x00002000
45 #define CNTRL_R 0x00004000
46
47 #define CX25840_IR_TXCLK_REG 0x204
48 #define TXCLK_TCD 0x0000FFFF
49
50 #define CX25840_IR_RXCLK_REG 0x208
51 #define RXCLK_RCD 0x0000FFFF
52
53 #define CX25840_IR_CDUTY_REG 0x20C
54 #define CDUTY_CDC 0x0000000F
55
56 #define CX25840_IR_STATS_REG 0x210
57 #define STATS_RTO 0x00000001
58 #define STATS_ROR 0x00000002
59 #define STATS_RBY 0x00000004
60 #define STATS_TBY 0x00000008
61 #define STATS_RSR 0x00000010
62 #define STATS_TSR 0x00000020
63
64 #define CX25840_IR_IRQEN_REG 0x214
65 #define IRQEN_RTE 0x00000001
66 #define IRQEN_ROE 0x00000002
67 #define IRQEN_RSE 0x00000010
68 #define IRQEN_TSE 0x00000020
69 #define IRQEN_MSK 0x00000033
70
71 #define CX25840_IR_FILTR_REG 0x218
72 #define FILTR_LPF 0x0000FFFF
73
74 #define CX25840_IR_FIFO_REG 0x23C
75 #define FIFO_RXTX 0x0000FFFF
76 #define FIFO_RXTX_LVL 0x00010000
77 #define FIFO_RXTX_RTO 0x0001FFFF
78 #define FIFO_RX_NDV 0x00020000
79 #define FIFO_RX_DEPTH 8
80 #define FIFO_TX_DEPTH 8
81
82 #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
83 #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2)
84
85 /*
86 * We use this union internally for convenience, but callers to tx_write
87 * and rx_read will be expecting records of type struct ir_raw_event.
88 * Always ensure the size of this union is dictated by struct ir_raw_event.
89 */
90 union cx25840_ir_fifo_rec {
91 u32 hw_fifo_data;
92 struct ir_raw_event ir_core_data;
93 };
94
95 #define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
96 #define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
97
98 struct cx25840_ir_state {
99 struct i2c_client *c;
100
101 struct v4l2_subdev_ir_parameters rx_params;
102 struct mutex rx_params_lock; /* protects Rx parameter settings cache */
103 atomic_t rxclk_divider;
104 atomic_t rx_invert;
105
106 struct kfifo rx_kfifo;
107 spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
108
109 struct v4l2_subdev_ir_parameters tx_params;
110 struct mutex tx_params_lock; /* protects Tx parameter settings cache */
111 atomic_t txclk_divider;
112 };
113
to_ir_state(struct v4l2_subdev * sd)114 static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
115 {
116 struct cx25840_state *state = to_state(sd);
117 return state ? state->ir_state : NULL;
118 }
119
120
121 /*
122 * Rx and Tx Clock Divider register computations
123 *
124 * Note the largest clock divider value of 0xffff corresponds to:
125 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
126 * which fits in 21 bits, so we'll use unsigned int for time arguments.
127 */
count_to_clock_divider(unsigned int d)128 static inline u16 count_to_clock_divider(unsigned int d)
129 {
130 if (d > RXCLK_RCD + 1)
131 d = RXCLK_RCD;
132 else if (d < 2)
133 d = 1;
134 else
135 d--;
136 return (u16) d;
137 }
138
ns_to_clock_divider(unsigned int ns)139 static inline u16 ns_to_clock_divider(unsigned int ns)
140 {
141 return count_to_clock_divider(
142 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
143 }
144
clock_divider_to_ns(unsigned int divider)145 static inline unsigned int clock_divider_to_ns(unsigned int divider)
146 {
147 /* Period of the Rx or Tx clock in ns */
148 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
149 CX25840_IR_REFCLK_FREQ / 1000000);
150 }
151
carrier_freq_to_clock_divider(unsigned int freq)152 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
153 {
154 return count_to_clock_divider(
155 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
156 }
157
clock_divider_to_carrier_freq(unsigned int divider)158 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
159 {
160 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
161 }
162
freq_to_clock_divider(unsigned int freq,unsigned int rollovers)163 static inline u16 freq_to_clock_divider(unsigned int freq,
164 unsigned int rollovers)
165 {
166 return count_to_clock_divider(
167 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
168 }
169
clock_divider_to_freq(unsigned int divider,unsigned int rollovers)170 static inline unsigned int clock_divider_to_freq(unsigned int divider,
171 unsigned int rollovers)
172 {
173 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
174 (divider + 1) * rollovers);
175 }
176
177 /*
178 * Low Pass Filter register calculations
179 *
180 * Note the largest count value of 0xffff corresponds to:
181 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
182 * which fits in 21 bits, so we'll use unsigned int for time arguments.
183 */
count_to_lpf_count(unsigned int d)184 static inline u16 count_to_lpf_count(unsigned int d)
185 {
186 if (d > FILTR_LPF)
187 d = FILTR_LPF;
188 else if (d < 4)
189 d = 0;
190 return (u16) d;
191 }
192
ns_to_lpf_count(unsigned int ns)193 static inline u16 ns_to_lpf_count(unsigned int ns)
194 {
195 return count_to_lpf_count(
196 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
197 }
198
lpf_count_to_ns(unsigned int count)199 static inline unsigned int lpf_count_to_ns(unsigned int count)
200 {
201 /* Duration of the Low Pass Filter rejection window in ns */
202 return DIV_ROUND_CLOSEST(count * 1000,
203 CX25840_IR_REFCLK_FREQ / 1000000);
204 }
205
lpf_count_to_us(unsigned int count)206 static inline unsigned int lpf_count_to_us(unsigned int count)
207 {
208 /* Duration of the Low Pass Filter rejection window in us */
209 return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
210 }
211
212 /*
213 * FIFO register pulse width count computations
214 */
clock_divider_to_resolution(u16 divider)215 static u32 clock_divider_to_resolution(u16 divider)
216 {
217 /*
218 * Resolution is the duration of 1 tick of the readable portion of
219 * of the pulse width counter as read from the FIFO. The two lsb's are
220 * not readable, hence the << 2. This function returns ns.
221 */
222 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
223 CX25840_IR_REFCLK_FREQ / 1000000);
224 }
225
pulse_width_count_to_ns(u16 count,u16 divider)226 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
227 {
228 u64 n;
229 u32 rem;
230
231 /*
232 * The 2 lsb's of the pulse width timer count are not readable, hence
233 * the (count << 2) | 0x3
234 */
235 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
236 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
237 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
238 n++;
239 return n;
240 }
241
242 #if 0
243 /* Keep as we will need this for Transmit functionality */
244 static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
245 {
246 u64 n;
247 u32 d;
248 u32 rem;
249
250 /*
251 * The 2 lsb's of the pulse width timer count are not accessible, hence
252 * the (1 << 2)
253 */
254 n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
255 d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
256 rem = do_div(n, d);
257 if (rem >= d / 2)
258 n++;
259
260 if (n > FIFO_RXTX)
261 n = FIFO_RXTX;
262 else if (n == 0)
263 n = 1;
264 return (u16) n;
265 }
266
267 #endif
pulse_width_count_to_us(u16 count,u16 divider)268 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
269 {
270 u64 n;
271 u32 rem;
272
273 /*
274 * The 2 lsb's of the pulse width timer count are not readable, hence
275 * the (count << 2) | 0x3
276 */
277 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
278 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
279 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
280 n++;
281 return (unsigned int) n;
282 }
283
284 /*
285 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
286 *
287 * The total pulse clock count is an 18 bit pulse width timer count as the most
288 * significant part and (up to) 16 bit clock divider count as a modulus.
289 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
290 * width timer count's least significant bit.
291 */
ns_to_pulse_clocks(u32 ns)292 static u64 ns_to_pulse_clocks(u32 ns)
293 {
294 u64 clocks;
295 u32 rem;
296 clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
297 rem = do_div(clocks, 1000); /* /1000 = cycles */
298 if (rem >= 1000 / 2)
299 clocks++;
300 return clocks;
301 }
302
pulse_clocks_to_clock_divider(u64 count)303 static u16 pulse_clocks_to_clock_divider(u64 count)
304 {
305 do_div(count, (FIFO_RXTX << 2) | 0x3);
306
307 /* net result needs to be rounded down and decremented by 1 */
308 if (count > RXCLK_RCD + 1)
309 count = RXCLK_RCD;
310 else if (count < 2)
311 count = 1;
312 else
313 count--;
314 return (u16) count;
315 }
316
317 /*
318 * IR Control Register helpers
319 */
320 enum tx_fifo_watermark {
321 TX_FIFO_HALF_EMPTY = 0,
322 TX_FIFO_EMPTY = CNTRL_TIC,
323 };
324
325 enum rx_fifo_watermark {
326 RX_FIFO_HALF_FULL = 0,
327 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
328 };
329
control_tx_irq_watermark(struct i2c_client * c,enum tx_fifo_watermark level)330 static inline void control_tx_irq_watermark(struct i2c_client *c,
331 enum tx_fifo_watermark level)
332 {
333 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
334 }
335
control_rx_irq_watermark(struct i2c_client * c,enum rx_fifo_watermark level)336 static inline void control_rx_irq_watermark(struct i2c_client *c,
337 enum rx_fifo_watermark level)
338 {
339 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
340 }
341
control_tx_enable(struct i2c_client * c,bool enable)342 static inline void control_tx_enable(struct i2c_client *c, bool enable)
343 {
344 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
345 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
346 }
347
control_rx_enable(struct i2c_client * c,bool enable)348 static inline void control_rx_enable(struct i2c_client *c, bool enable)
349 {
350 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
351 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
352 }
353
control_tx_modulation_enable(struct i2c_client * c,bool enable)354 static inline void control_tx_modulation_enable(struct i2c_client *c,
355 bool enable)
356 {
357 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
358 enable ? CNTRL_MOD : 0);
359 }
360
control_rx_demodulation_enable(struct i2c_client * c,bool enable)361 static inline void control_rx_demodulation_enable(struct i2c_client *c,
362 bool enable)
363 {
364 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
365 enable ? CNTRL_DMD : 0);
366 }
367
control_rx_s_edge_detection(struct i2c_client * c,u32 edge_types)368 static inline void control_rx_s_edge_detection(struct i2c_client *c,
369 u32 edge_types)
370 {
371 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
372 edge_types & CNTRL_EDG_BOTH);
373 }
374
control_rx_s_carrier_window(struct i2c_client * c,unsigned int carrier,unsigned int * carrier_range_low,unsigned int * carrier_range_high)375 static void control_rx_s_carrier_window(struct i2c_client *c,
376 unsigned int carrier,
377 unsigned int *carrier_range_low,
378 unsigned int *carrier_range_high)
379 {
380 u32 v;
381 unsigned int c16 = carrier * 16;
382
383 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
384 v = CNTRL_WIN_3_4;
385 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
386 } else {
387 v = CNTRL_WIN_3_3;
388 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
389 }
390
391 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
392 v |= CNTRL_WIN_4_3;
393 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
394 } else {
395 v |= CNTRL_WIN_3_3;
396 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
397 }
398 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
399 }
400
control_tx_polarity_invert(struct i2c_client * c,bool invert)401 static inline void control_tx_polarity_invert(struct i2c_client *c,
402 bool invert)
403 {
404 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
405 invert ? CNTRL_CPL : 0);
406 }
407
408 /*
409 * IR Rx & Tx Clock Register helpers
410 */
txclk_tx_s_carrier(struct i2c_client * c,unsigned int freq,u16 * divider)411 static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
412 unsigned int freq,
413 u16 *divider)
414 {
415 *divider = carrier_freq_to_clock_divider(freq);
416 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
417 return clock_divider_to_carrier_freq(*divider);
418 }
419
rxclk_rx_s_carrier(struct i2c_client * c,unsigned int freq,u16 * divider)420 static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
421 unsigned int freq,
422 u16 *divider)
423 {
424 *divider = carrier_freq_to_clock_divider(freq);
425 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
426 return clock_divider_to_carrier_freq(*divider);
427 }
428
txclk_tx_s_max_pulse_width(struct i2c_client * c,u32 ns,u16 * divider)429 static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
430 u16 *divider)
431 {
432 u64 pulse_clocks;
433
434 if (ns > IR_MAX_DURATION)
435 ns = IR_MAX_DURATION;
436 pulse_clocks = ns_to_pulse_clocks(ns);
437 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
438 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
439 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
440 }
441
rxclk_rx_s_max_pulse_width(struct i2c_client * c,u32 ns,u16 * divider)442 static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
443 u16 *divider)
444 {
445 u64 pulse_clocks;
446
447 if (ns > IR_MAX_DURATION)
448 ns = IR_MAX_DURATION;
449 pulse_clocks = ns_to_pulse_clocks(ns);
450 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
451 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
452 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
453 }
454
455 /*
456 * IR Tx Carrier Duty Cycle register helpers
457 */
cduty_tx_s_duty_cycle(struct i2c_client * c,unsigned int duty_cycle)458 static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
459 unsigned int duty_cycle)
460 {
461 u32 n;
462 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
463 if (n != 0)
464 n--;
465 if (n > 15)
466 n = 15;
467 cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
468 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
469 }
470
471 /*
472 * IR Filter Register helpers
473 */
filter_rx_s_min_width(struct i2c_client * c,u32 min_width_ns)474 static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
475 {
476 u32 count = ns_to_lpf_count(min_width_ns);
477 cx25840_write4(c, CX25840_IR_FILTR_REG, count);
478 return lpf_count_to_ns(count);
479 }
480
481 /*
482 * IR IRQ Enable Register helpers
483 */
irqenable_rx(struct v4l2_subdev * sd,u32 mask)484 static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
485 {
486 struct cx25840_state *state = to_state(sd);
487
488 if (is_cx23885(state) || is_cx23887(state))
489 mask ^= IRQEN_MSK;
490 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
491 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
492 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
493 }
494
irqenable_tx(struct v4l2_subdev * sd,u32 mask)495 static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
496 {
497 struct cx25840_state *state = to_state(sd);
498
499 if (is_cx23885(state) || is_cx23887(state))
500 mask ^= IRQEN_MSK;
501 mask &= IRQEN_TSE;
502 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
503 }
504
505 /*
506 * V4L2 Subdevice IR Ops
507 */
cx25840_ir_irq_handler(struct v4l2_subdev * sd,u32 status,bool * handled)508 int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
509 {
510 struct cx25840_state *state = to_state(sd);
511 struct cx25840_ir_state *ir_state = to_ir_state(sd);
512 struct i2c_client *c = NULL;
513 unsigned long flags;
514
515 union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
516 unsigned int i, j, k;
517 u32 events, v;
518 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
519 u32 cntrl, irqen, stats;
520
521 *handled = false;
522 if (ir_state == NULL)
523 return -ENODEV;
524
525 c = ir_state->c;
526
527 /* Only support the IR controller for the CX2388[57] AV Core for now */
528 if (!(is_cx23885(state) || is_cx23887(state)))
529 return -ENODEV;
530
531 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
532 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
533 if (is_cx23885(state) || is_cx23887(state))
534 irqen ^= IRQEN_MSK;
535 stats = cx25840_read4(c, CX25840_IR_STATS_REG);
536
537 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
538 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
539 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
540 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
541
542 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
543 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Request IRQ Enable */
544 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
545 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
546
547 v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n",
548 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
549 rto ? "rto" : " ", ror ? "ror" : " ",
550 stats & STATS_TBY ? "tby" : " ",
551 stats & STATS_RBY ? "rby" : " ");
552
553 v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
554 tse ? "tse" : " ", rse ? "rse" : " ",
555 rte ? "rte" : " ", roe ? "roe" : " ");
556
557 /*
558 * Transmitter interrupt service
559 */
560 if (tse && tsr) {
561 /*
562 * TODO:
563 * Check the watermark threshold setting
564 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
565 * Push the data to the hardware FIFO.
566 * If there was nothing more to send in the tx_kfifo, disable
567 * the TSR IRQ and notify the v4l2_device.
568 * If there was something in the tx_kfifo, check the tx_kfifo
569 * level and notify the v4l2_device, if it is low.
570 */
571 /* For now, inhibit TSR interrupt until Tx is implemented */
572 irqenable_tx(sd, 0);
573 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
574 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
575 *handled = true;
576 }
577
578 /*
579 * Receiver interrupt service
580 */
581 kror = 0;
582 if ((rse && rsr) || (rte && rto)) {
583 /*
584 * Receive data on RSR to clear the STATS_RSR.
585 * Receive data on RTO, since we may not have yet hit the RSR
586 * watermark when we receive the RTO.
587 */
588 for (i = 0, v = FIFO_RX_NDV;
589 (v & FIFO_RX_NDV) && !kror; i = 0) {
590 for (j = 0;
591 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
592 v = cx25840_read4(c, CX25840_IR_FIFO_REG);
593 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
594 i++;
595 }
596 if (i == 0)
597 break;
598 j = i * sizeof(union cx25840_ir_fifo_rec);
599 k = kfifo_in_locked(&ir_state->rx_kfifo,
600 (unsigned char *) rx_data, j,
601 &ir_state->rx_kfifo_lock);
602 if (k != j)
603 kror++; /* rx_kfifo over run */
604 }
605 *handled = true;
606 }
607
608 events = 0;
609 v = 0;
610 if (kror) {
611 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
612 v4l2_err(sd, "IR receiver software FIFO overrun\n");
613 }
614 if (roe && ror) {
615 /*
616 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
617 * the Rx FIFO Over Run status (STATS_ROR)
618 */
619 v |= CNTRL_RFE;
620 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
621 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
622 }
623 if (rte && rto) {
624 /*
625 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
626 * the Rx Pulse Width Timer Time Out (STATS_RTO)
627 */
628 v |= CNTRL_RXE;
629 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
630 }
631 if (v) {
632 /* Clear STATS_ROR & STATS_RTO as needed by resetting hardware */
633 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
634 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
635 *handled = true;
636 }
637 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
638 if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
639 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
640 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
641
642 if (events)
643 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
644 return 0;
645 }
646
647 /* Receiver */
cx25840_ir_rx_read(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)648 static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
649 ssize_t *num)
650 {
651 struct cx25840_ir_state *ir_state = to_ir_state(sd);
652 bool invert;
653 u16 divider;
654 unsigned int i, n;
655 union cx25840_ir_fifo_rec *p;
656 unsigned u, v, w;
657
658 if (ir_state == NULL)
659 return -ENODEV;
660
661 invert = (bool) atomic_read(&ir_state->rx_invert);
662 divider = (u16) atomic_read(&ir_state->rxclk_divider);
663
664 n = count / sizeof(union cx25840_ir_fifo_rec)
665 * sizeof(union cx25840_ir_fifo_rec);
666 if (n == 0) {
667 *num = 0;
668 return 0;
669 }
670
671 n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
672 &ir_state->rx_kfifo_lock);
673
674 n /= sizeof(union cx25840_ir_fifo_rec);
675 *num = n * sizeof(union cx25840_ir_fifo_rec);
676
677 for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
678
679 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
680 /* Assume RTO was because of no IR light input */
681 u = 0;
682 w = 1;
683 } else {
684 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
685 if (invert)
686 u = u ? 0 : 1;
687 w = 0;
688 }
689
690 v = (unsigned) pulse_width_count_to_ns(
691 (u16)(p->hw_fifo_data & FIFO_RXTX), divider) / 1000;
692 if (v > IR_MAX_DURATION)
693 v = IR_MAX_DURATION;
694
695 p->ir_core_data = (struct ir_raw_event)
696 { .pulse = u, .duration = v, .timeout = w };
697
698 v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s %s\n",
699 v, u ? "mark" : "space", w ? "(timed out)" : "");
700 if (w)
701 v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
702 }
703 return 0;
704 }
705
cx25840_ir_rx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)706 static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
707 struct v4l2_subdev_ir_parameters *p)
708 {
709 struct cx25840_ir_state *ir_state = to_ir_state(sd);
710
711 if (ir_state == NULL)
712 return -ENODEV;
713
714 mutex_lock(&ir_state->rx_params_lock);
715 memcpy(p, &ir_state->rx_params,
716 sizeof(struct v4l2_subdev_ir_parameters));
717 mutex_unlock(&ir_state->rx_params_lock);
718 return 0;
719 }
720
cx25840_ir_rx_shutdown(struct v4l2_subdev * sd)721 static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
722 {
723 struct cx25840_ir_state *ir_state = to_ir_state(sd);
724 struct i2c_client *c;
725
726 if (ir_state == NULL)
727 return -ENODEV;
728
729 c = ir_state->c;
730 mutex_lock(&ir_state->rx_params_lock);
731
732 /* Disable or slow down all IR Rx circuits and counters */
733 irqenable_rx(sd, 0);
734 control_rx_enable(c, false);
735 control_rx_demodulation_enable(c, false);
736 control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
737 filter_rx_s_min_width(c, 0);
738 cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
739
740 ir_state->rx_params.shutdown = true;
741
742 mutex_unlock(&ir_state->rx_params_lock);
743 return 0;
744 }
745
cx25840_ir_rx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)746 static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
747 struct v4l2_subdev_ir_parameters *p)
748 {
749 struct cx25840_ir_state *ir_state = to_ir_state(sd);
750 struct i2c_client *c;
751 struct v4l2_subdev_ir_parameters *o;
752 u16 rxclk_divider;
753
754 if (ir_state == NULL)
755 return -ENODEV;
756
757 if (p->shutdown)
758 return cx25840_ir_rx_shutdown(sd);
759
760 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
761 return -ENOSYS;
762
763 c = ir_state->c;
764 o = &ir_state->rx_params;
765
766 mutex_lock(&ir_state->rx_params_lock);
767
768 o->shutdown = p->shutdown;
769
770 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
771 o->mode = p->mode;
772
773 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
774 o->bytes_per_data_element = p->bytes_per_data_element;
775
776 /* Before we tweak the hardware, we have to disable the receiver */
777 irqenable_rx(sd, 0);
778 control_rx_enable(c, false);
779
780 control_rx_demodulation_enable(c, p->modulation);
781 o->modulation = p->modulation;
782
783 if (p->modulation) {
784 p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
785 &rxclk_divider);
786
787 o->carrier_freq = p->carrier_freq;
788
789 p->duty_cycle = 50;
790 o->duty_cycle = p->duty_cycle;
791
792 control_rx_s_carrier_window(c, p->carrier_freq,
793 &p->carrier_range_lower,
794 &p->carrier_range_upper);
795 o->carrier_range_lower = p->carrier_range_lower;
796 o->carrier_range_upper = p->carrier_range_upper;
797
798 p->max_pulse_width =
799 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
800 } else {
801 p->max_pulse_width =
802 rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
803 &rxclk_divider);
804 }
805 o->max_pulse_width = p->max_pulse_width;
806 atomic_set(&ir_state->rxclk_divider, rxclk_divider);
807
808 p->noise_filter_min_width =
809 filter_rx_s_min_width(c, p->noise_filter_min_width);
810 o->noise_filter_min_width = p->noise_filter_min_width;
811
812 p->resolution = clock_divider_to_resolution(rxclk_divider);
813 o->resolution = p->resolution;
814
815 /* FIXME - make this dependent on resolution for better performance */
816 control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
817
818 control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
819
820 o->invert_level = p->invert_level;
821 atomic_set(&ir_state->rx_invert, p->invert_level);
822
823 o->interrupt_enable = p->interrupt_enable;
824 o->enable = p->enable;
825 if (p->enable) {
826 unsigned long flags;
827
828 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
829 kfifo_reset(&ir_state->rx_kfifo);
830 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
831 if (p->interrupt_enable)
832 irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
833 control_rx_enable(c, p->enable);
834 }
835
836 mutex_unlock(&ir_state->rx_params_lock);
837 return 0;
838 }
839
840 /* Transmitter */
cx25840_ir_tx_write(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)841 static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
842 ssize_t *num)
843 {
844 struct cx25840_ir_state *ir_state = to_ir_state(sd);
845
846 if (ir_state == NULL)
847 return -ENODEV;
848
849 #if 0
850 /*
851 * FIXME - the code below is an incomplete and untested sketch of what
852 * may need to be done. The critical part is to get 4 (or 8) pulses
853 * from the tx_kfifo, or converted from ns to the proper units from the
854 * input, and push them off to the hardware Tx FIFO right away, if the
855 * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in
856 * a less critical timeframe. Also watch out for overruning the
857 * tx_kfifo - don't let it happen and let the caller know not all his
858 * pulses were written.
859 */
860 u32 *ns_pulse = (u32 *) buf;
861 unsigned int n;
862 u32 fifo_pulse[FIFO_TX_DEPTH];
863 u32 mark;
864
865 /* Compute how much we can fit in the tx kfifo */
866 n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
867 n = min(n, (unsigned int) count);
868 n /= sizeof(u32);
869
870 /* FIXME - turn on Tx Fifo service interrupt
871 * check hardware fifo level, and other stuff
872 */
873 for (i = 0; i < n; ) {
874 for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
875 mark = ns_pulse[i] & LEVEL_MASK;
876 fifo_pulse[j] = ns_to_pulse_width_count(
877 ns_pulse[i] &
878 ~LEVEL_MASK,
879 ir_state->txclk_divider);
880 if (mark)
881 fifo_pulse[j] &= FIFO_RXTX_LVL;
882 i++;
883 }
884 kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
885 j * sizeof(u32));
886 }
887 *num = n * sizeof(u32);
888 #else
889 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
890 irqenable_tx(sd, IRQEN_TSE);
891 *num = count;
892 #endif
893 return 0;
894 }
895
cx25840_ir_tx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)896 static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
897 struct v4l2_subdev_ir_parameters *p)
898 {
899 struct cx25840_ir_state *ir_state = to_ir_state(sd);
900
901 if (ir_state == NULL)
902 return -ENODEV;
903
904 mutex_lock(&ir_state->tx_params_lock);
905 memcpy(p, &ir_state->tx_params,
906 sizeof(struct v4l2_subdev_ir_parameters));
907 mutex_unlock(&ir_state->tx_params_lock);
908 return 0;
909 }
910
cx25840_ir_tx_shutdown(struct v4l2_subdev * sd)911 static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
912 {
913 struct cx25840_ir_state *ir_state = to_ir_state(sd);
914 struct i2c_client *c;
915
916 if (ir_state == NULL)
917 return -ENODEV;
918
919 c = ir_state->c;
920 mutex_lock(&ir_state->tx_params_lock);
921
922 /* Disable or slow down all IR Tx circuits and counters */
923 irqenable_tx(sd, 0);
924 control_tx_enable(c, false);
925 control_tx_modulation_enable(c, false);
926 cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
927
928 ir_state->tx_params.shutdown = true;
929
930 mutex_unlock(&ir_state->tx_params_lock);
931 return 0;
932 }
933
cx25840_ir_tx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)934 static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
935 struct v4l2_subdev_ir_parameters *p)
936 {
937 struct cx25840_ir_state *ir_state = to_ir_state(sd);
938 struct i2c_client *c;
939 struct v4l2_subdev_ir_parameters *o;
940 u16 txclk_divider;
941
942 if (ir_state == NULL)
943 return -ENODEV;
944
945 if (p->shutdown)
946 return cx25840_ir_tx_shutdown(sd);
947
948 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
949 return -ENOSYS;
950
951 c = ir_state->c;
952 o = &ir_state->tx_params;
953 mutex_lock(&ir_state->tx_params_lock);
954
955 o->shutdown = p->shutdown;
956
957 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
958 o->mode = p->mode;
959
960 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
961 o->bytes_per_data_element = p->bytes_per_data_element;
962
963 /* Before we tweak the hardware, we have to disable the transmitter */
964 irqenable_tx(sd, 0);
965 control_tx_enable(c, false);
966
967 control_tx_modulation_enable(c, p->modulation);
968 o->modulation = p->modulation;
969
970 if (p->modulation) {
971 p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
972 &txclk_divider);
973 o->carrier_freq = p->carrier_freq;
974
975 p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
976 o->duty_cycle = p->duty_cycle;
977
978 p->max_pulse_width =
979 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
980 } else {
981 p->max_pulse_width =
982 txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
983 &txclk_divider);
984 }
985 o->max_pulse_width = p->max_pulse_width;
986 atomic_set(&ir_state->txclk_divider, txclk_divider);
987
988 p->resolution = clock_divider_to_resolution(txclk_divider);
989 o->resolution = p->resolution;
990
991 /* FIXME - make this dependent on resolution for better performance */
992 control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
993
994 control_tx_polarity_invert(c, p->invert_carrier_sense);
995 o->invert_carrier_sense = p->invert_carrier_sense;
996
997 /*
998 * FIXME: we don't have hardware help for IO pin level inversion
999 * here like we have on the CX23888.
1000 * Act on this with some mix of logical inversion of data levels,
1001 * carrier polarity, and carrier duty cycle.
1002 */
1003 o->invert_level = p->invert_level;
1004
1005 o->interrupt_enable = p->interrupt_enable;
1006 o->enable = p->enable;
1007 if (p->enable) {
1008 /* reset tx_fifo here */
1009 if (p->interrupt_enable)
1010 irqenable_tx(sd, IRQEN_TSE);
1011 control_tx_enable(c, p->enable);
1012 }
1013
1014 mutex_unlock(&ir_state->tx_params_lock);
1015 return 0;
1016 }
1017
1018
1019 /*
1020 * V4L2 Subdevice Core Ops support
1021 */
cx25840_ir_log_status(struct v4l2_subdev * sd)1022 int cx25840_ir_log_status(struct v4l2_subdev *sd)
1023 {
1024 struct cx25840_state *state = to_state(sd);
1025 struct i2c_client *c = state->c;
1026 char *s;
1027 int i, j;
1028 u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
1029
1030 /* The CX23888 chip doesn't have an IR controller on the A/V core */
1031 if (is_cx23888(state))
1032 return 0;
1033
1034 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
1035 txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
1036 rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
1037 cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
1038 stats = cx25840_read4(c, CX25840_IR_STATS_REG);
1039 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
1040 if (is_cx23885(state) || is_cx23887(state))
1041 irqen ^= IRQEN_MSK;
1042 filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
1043
1044 v4l2_info(sd, "IR Receiver:\n");
1045 v4l2_info(sd, "\tEnabled: %s\n",
1046 cntrl & CNTRL_RXE ? "yes" : "no");
1047 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
1048 cntrl & CNTRL_DMD ? "enabled" : "disabled");
1049 v4l2_info(sd, "\tFIFO: %s\n",
1050 cntrl & CNTRL_RFE ? "enabled" : "disabled");
1051 switch (cntrl & CNTRL_EDG) {
1052 case CNTRL_EDG_NONE:
1053 s = "disabled";
1054 break;
1055 case CNTRL_EDG_FALL:
1056 s = "falling edge";
1057 break;
1058 case CNTRL_EDG_RISE:
1059 s = "rising edge";
1060 break;
1061 case CNTRL_EDG_BOTH:
1062 s = "rising & falling edges";
1063 break;
1064 default:
1065 s = "??? edge";
1066 break;
1067 }
1068 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
1069 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
1070 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
1071 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1072 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1073 v4l2_info(sd, "\tLoopback mode: %s\n",
1074 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1075 if (cntrl & CNTRL_DMD) {
1076 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
1077 clock_divider_to_carrier_freq(rxclk));
1078 switch (cntrl & CNTRL_WIN) {
1079 case CNTRL_WIN_3_3:
1080 i = 3;
1081 j = 3;
1082 break;
1083 case CNTRL_WIN_4_3:
1084 i = 4;
1085 j = 3;
1086 break;
1087 case CNTRL_WIN_3_4:
1088 i = 3;
1089 j = 4;
1090 break;
1091 case CNTRL_WIN_4_4:
1092 i = 4;
1093 j = 4;
1094 break;
1095 default:
1096 i = 0;
1097 j = 0;
1098 break;
1099 }
1100 v4l2_info(sd, "\tNext carrier edge window: 16 clocks -%1d/+%1d, %u to %u Hz\n",
1101 i, j,
1102 clock_divider_to_freq(rxclk, 16 + j),
1103 clock_divider_to_freq(rxclk, 16 - i));
1104 }
1105 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
1106 pulse_width_count_to_us(FIFO_RXTX, rxclk),
1107 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1108 v4l2_info(sd, "\tLow pass filter: %s\n",
1109 filtr ? "enabled" : "disabled");
1110 if (filtr)
1111 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, %u ns\n",
1112 lpf_count_to_us(filtr),
1113 lpf_count_to_ns(filtr));
1114 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1115 stats & STATS_RTO ? "yes" : "no");
1116 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1117 irqen & IRQEN_RTE ? "enabled" : "disabled");
1118 v4l2_info(sd, "\tFIFO overrun: %s\n",
1119 stats & STATS_ROR ? "yes" : "no");
1120 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1121 irqen & IRQEN_ROE ? "enabled" : "disabled");
1122 v4l2_info(sd, "\tBusy: %s\n",
1123 stats & STATS_RBY ? "yes" : "no");
1124 v4l2_info(sd, "\tFIFO service requested: %s\n",
1125 stats & STATS_RSR ? "yes" : "no");
1126 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1127 irqen & IRQEN_RSE ? "enabled" : "disabled");
1128
1129 v4l2_info(sd, "IR Transmitter:\n");
1130 v4l2_info(sd, "\tEnabled: %s\n",
1131 cntrl & CNTRL_TXE ? "yes" : "no");
1132 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1133 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1134 v4l2_info(sd, "\tFIFO: %s\n",
1135 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1136 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1137 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1138 v4l2_info(sd, "\tCarrier polarity: %s\n",
1139 cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1140 : "space:noburst mark:burst");
1141 if (cntrl & CNTRL_MOD) {
1142 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1143 clock_divider_to_carrier_freq(txclk));
1144 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1145 cduty + 1);
1146 }
1147 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
1148 pulse_width_count_to_us(FIFO_RXTX, txclk),
1149 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1150 v4l2_info(sd, "\tBusy: %s\n",
1151 stats & STATS_TBY ? "yes" : "no");
1152 v4l2_info(sd, "\tFIFO service requested: %s\n",
1153 stats & STATS_TSR ? "yes" : "no");
1154 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1155 irqen & IRQEN_TSE ? "enabled" : "disabled");
1156
1157 return 0;
1158 }
1159
1160
1161 const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
1162 .rx_read = cx25840_ir_rx_read,
1163 .rx_g_parameters = cx25840_ir_rx_g_parameters,
1164 .rx_s_parameters = cx25840_ir_rx_s_parameters,
1165
1166 .tx_write = cx25840_ir_tx_write,
1167 .tx_g_parameters = cx25840_ir_tx_g_parameters,
1168 .tx_s_parameters = cx25840_ir_tx_s_parameters,
1169 };
1170
1171
1172 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1173 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1174 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1175
1176 .enable = false,
1177 .interrupt_enable = false,
1178 .shutdown = true,
1179
1180 .modulation = true,
1181 .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1182
1183 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1184 /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1185 .noise_filter_min_width = 333333, /* ns */
1186 .carrier_range_lower = 35000,
1187 .carrier_range_upper = 37000,
1188 .invert_level = false,
1189 };
1190
1191 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1192 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1193 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1194
1195 .enable = false,
1196 .interrupt_enable = false,
1197 .shutdown = true,
1198
1199 .modulation = true,
1200 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1201 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1202 .invert_level = false,
1203 .invert_carrier_sense = false,
1204 };
1205
cx25840_ir_probe(struct v4l2_subdev * sd)1206 int cx25840_ir_probe(struct v4l2_subdev *sd)
1207 {
1208 struct cx25840_state *state = to_state(sd);
1209 struct cx25840_ir_state *ir_state;
1210 struct v4l2_subdev_ir_parameters default_params;
1211
1212 /* Only init the IR controller for the CX2388[57] AV Core for now */
1213 if (!(is_cx23885(state) || is_cx23887(state)))
1214 return 0;
1215
1216 ir_state = devm_kzalloc(&state->c->dev, sizeof(*ir_state), GFP_KERNEL);
1217 if (ir_state == NULL)
1218 return -ENOMEM;
1219
1220 spin_lock_init(&ir_state->rx_kfifo_lock);
1221 if (kfifo_alloc(&ir_state->rx_kfifo,
1222 CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1223 return -ENOMEM;
1224
1225 ir_state->c = state->c;
1226 state->ir_state = ir_state;
1227
1228 /* Ensure no interrupts arrive yet */
1229 if (is_cx23885(state) || is_cx23887(state))
1230 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
1231 else
1232 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
1233
1234 mutex_init(&ir_state->rx_params_lock);
1235 default_params = default_rx_params;
1236 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1237
1238 mutex_init(&ir_state->tx_params_lock);
1239 default_params = default_tx_params;
1240 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1241
1242 return 0;
1243 }
1244
cx25840_ir_remove(struct v4l2_subdev * sd)1245 int cx25840_ir_remove(struct v4l2_subdev *sd)
1246 {
1247 struct cx25840_state *state = to_state(sd);
1248 struct cx25840_ir_state *ir_state = to_ir_state(sd);
1249
1250 if (ir_state == NULL)
1251 return -ENODEV;
1252
1253 cx25840_ir_rx_shutdown(sd);
1254 cx25840_ir_tx_shutdown(sd);
1255
1256 kfifo_free(&ir_state->rx_kfifo);
1257 state->ir_state = NULL;
1258 return 0;
1259 }
1260