1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27
28 #include "dm_services.h"
29
30 #include "dc.h"
31
32 #include "core_status.h"
33 #include "core_types.h"
34 #include "hw_sequencer.h"
35 #include "dce/dce_hwseq.h"
36
37 #include "resource.h"
38
39 #include "clk_mgr.h"
40 #include "clock_source.h"
41 #include "dc_bios_types.h"
42
43 #include "bios_parser_interface.h"
44 #include "include/irq_service_interface.h"
45 #include "transform.h"
46 #include "dmcu.h"
47 #include "dpp.h"
48 #include "timing_generator.h"
49 #include "abm.h"
50 #include "virtual/virtual_link_encoder.h"
51
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54
55 #include "dc_link_ddc.h"
56 #include "dm_helpers.h"
57 #include "mem_input.h"
58 #include "hubp.h"
59
60 #include "dc_link_dp.h"
61 #include "dc_dmub_srv.h"
62
63 #include "dsc.h"
64
65 #include "vm_helper.h"
66
67 #include "dce/dce_i2c.h"
68
69 #include "dmub/dmub_srv.h"
70
71 #include "dce/dmub_hw_lock_mgr.h"
72
73 #define CTX \
74 dc->ctx
75
76 #define DC_LOGGER \
77 dc->ctx->logger
78
79 static const char DC_BUILD_ID[] = "production-build";
80
81 /**
82 * DOC: Overview
83 *
84 * DC is the OS-agnostic component of the amdgpu DC driver.
85 *
86 * DC maintains and validates a set of structs representing the state of the
87 * driver and writes that state to AMD hardware
88 *
89 * Main DC HW structs:
90 *
91 * struct dc - The central struct. One per driver. Created on driver load,
92 * destroyed on driver unload.
93 *
94 * struct dc_context - One per driver.
95 * Used as a backpointer by most other structs in dc.
96 *
97 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
98 * plugpoints). Created on driver load, destroyed on driver unload.
99 *
100 * struct dc_sink - One per display. Created on boot or hotplug.
101 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
102 * (the display directly attached). It may also have one or more remote
103 * sinks (in the Multi-Stream Transport case)
104 *
105 * struct resource_pool - One per driver. Represents the hw blocks not in the
106 * main pipeline. Not directly accessible by dm.
107 *
108 * Main dc state structs:
109 *
110 * These structs can be created and destroyed as needed. There is a full set of
111 * these structs in dc->current_state representing the currently programmed state.
112 *
113 * struct dc_state - The global DC state to track global state information,
114 * such as bandwidth values.
115 *
116 * struct dc_stream_state - Represents the hw configuration for the pipeline from
117 * a framebuffer to a display. Maps one-to-one with dc_sink.
118 *
119 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
120 * and may have more in the Multi-Plane Overlay case.
121 *
122 * struct resource_context - Represents the programmable state of everything in
123 * the resource_pool. Not directly accessible by dm.
124 *
125 * struct pipe_ctx - A member of struct resource_context. Represents the
126 * internal hardware pipeline components. Each dc_plane_state has either
127 * one or two (in the pipe-split case).
128 */
129
130 /*******************************************************************************
131 * Private functions
132 ******************************************************************************/
133
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)134 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
135 {
136 if (new > *original)
137 *original = new;
138 }
139
destroy_links(struct dc * dc)140 static void destroy_links(struct dc *dc)
141 {
142 uint32_t i;
143
144 for (i = 0; i < dc->link_count; i++) {
145 if (NULL != dc->links[i])
146 link_destroy(&dc->links[i]);
147 }
148 }
149
create_links(struct dc * dc,uint32_t num_virtual_links)150 static bool create_links(
151 struct dc *dc,
152 uint32_t num_virtual_links)
153 {
154 int i;
155 int connectors_num;
156 struct dc_bios *bios = dc->ctx->dc_bios;
157
158 dc->link_count = 0;
159
160 connectors_num = bios->funcs->get_connectors_number(bios);
161
162 if (connectors_num > ENUM_ID_COUNT) {
163 dm_error(
164 "DC: Number of connectors %d exceeds maximum of %d!\n",
165 connectors_num,
166 ENUM_ID_COUNT);
167 return false;
168 }
169
170 dm_output_to_console(
171 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
172 __func__,
173 connectors_num,
174 num_virtual_links);
175
176 for (i = 0; i < connectors_num; i++) {
177 struct link_init_data link_init_params = {0};
178 struct dc_link *link;
179
180 link_init_params.ctx = dc->ctx;
181 /* next BIOS object table connector */
182 link_init_params.connector_index = i;
183 link_init_params.link_index = dc->link_count;
184 link_init_params.dc = dc;
185 link = link_create(&link_init_params);
186
187 if (link) {
188 bool should_destory_link = false;
189
190 if (link->connector_signal == SIGNAL_TYPE_EDP) {
191 if (dc->config.edp_not_connected) {
192 if (!IS_DIAG_DC(dc->ctx->dce_environment))
193 should_destory_link = true;
194 } else {
195 enum dc_connection_type type;
196 dc_link_detect_sink(link, &type);
197 if (type == dc_connection_none)
198 should_destory_link = true;
199 }
200 }
201
202 if (dc->config.force_enum_edp || !should_destory_link) {
203 dc->links[dc->link_count] = link;
204 link->dc = dc;
205 ++dc->link_count;
206 } else {
207 link_destroy(&link);
208 }
209 }
210 }
211
212 for (i = 0; i < num_virtual_links; i++) {
213 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
214 struct encoder_init_data enc_init = {0};
215
216 if (link == NULL) {
217 BREAK_TO_DEBUGGER();
218 goto failed_alloc;
219 }
220
221 link->link_index = dc->link_count;
222 dc->links[dc->link_count] = link;
223 dc->link_count++;
224
225 link->ctx = dc->ctx;
226 link->dc = dc;
227 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
228 link->link_id.type = OBJECT_TYPE_CONNECTOR;
229 link->link_id.id = CONNECTOR_ID_VIRTUAL;
230 link->link_id.enum_id = ENUM_ID_1;
231 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
232
233 if (!link->link_enc) {
234 BREAK_TO_DEBUGGER();
235 goto failed_alloc;
236 }
237
238 link->link_status.dpcd_caps = &link->dpcd_caps;
239
240 enc_init.ctx = dc->ctx;
241 enc_init.channel = CHANNEL_ID_UNKNOWN;
242 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
243 enc_init.transmitter = TRANSMITTER_UNKNOWN;
244 enc_init.connector = link->link_id;
245 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
246 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
247 enc_init.encoder.enum_id = ENUM_ID_1;
248 virtual_link_encoder_construct(link->link_enc, &enc_init);
249 }
250
251 return true;
252
253 failed_alloc:
254 return false;
255 }
256
dc_perf_trace_create(void)257 static struct dc_perf_trace *dc_perf_trace_create(void)
258 {
259 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
260 }
261
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)262 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
263 {
264 kfree(*perf_trace);
265 *perf_trace = NULL;
266 }
267
268 /**
269 *****************************************************************************
270 * Function: dc_stream_adjust_vmin_vmax
271 *
272 * @brief
273 * Looks up the pipe context of dc_stream_state and updates the
274 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
275 * Rate, which is a power-saving feature that targets reducing panel
276 * refresh rate while the screen is static
277 *
278 * @param [in] dc: dc reference
279 * @param [in] stream: Initial dc stream state
280 * @param [in] adjust: Updated parameters for vertical_total_min and
281 * vertical_total_max
282 *****************************************************************************
283 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)284 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
285 struct dc_stream_state *stream,
286 struct dc_crtc_timing_adjust *adjust)
287 {
288 int i = 0;
289 bool ret = false;
290
291 stream->adjust = *adjust;
292
293 for (i = 0; i < MAX_PIPES; i++) {
294 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
295
296 if (pipe->stream == stream && pipe->stream_res.tg) {
297 dc->hwss.set_drr(&pipe,
298 1,
299 adjust->v_total_min,
300 adjust->v_total_max,
301 adjust->v_total_mid,
302 adjust->v_total_mid_frame_num);
303
304 ret = true;
305 }
306 }
307 return ret;
308 }
309
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)310 bool dc_stream_get_crtc_position(struct dc *dc,
311 struct dc_stream_state **streams, int num_streams,
312 unsigned int *v_pos, unsigned int *nom_v_pos)
313 {
314 /* TODO: Support multiple streams */
315 const struct dc_stream_state *stream = streams[0];
316 int i = 0;
317 bool ret = false;
318 struct crtc_position position;
319
320 for (i = 0; i < MAX_PIPES; i++) {
321 struct pipe_ctx *pipe =
322 &dc->current_state->res_ctx.pipe_ctx[i];
323
324 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
325 dc->hwss.get_position(&pipe, 1, &position);
326
327 *v_pos = position.vertical_count;
328 *nom_v_pos = position.nominal_vcount;
329 ret = true;
330 }
331 }
332 return ret;
333 }
334
335 /**
336 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
337 * @dc: DC Object
338 * @stream: The stream to configure CRC on.
339 * @enable: Enable CRC if true, disable otherwise.
340 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
341 * once.
342 *
343 * By default, only CRC0 is configured, and the entire frame is used to
344 * calculate the crc.
345 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,bool enable,bool continuous)346 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
347 bool enable, bool continuous)
348 {
349 int i;
350 struct pipe_ctx *pipe;
351 struct crc_params param;
352 struct timing_generator *tg;
353
354 for (i = 0; i < MAX_PIPES; i++) {
355 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
356 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
357 break;
358 }
359 /* Stream not found */
360 if (i == MAX_PIPES)
361 return false;
362
363 /* Always capture the full frame */
364 param.windowa_x_start = 0;
365 param.windowa_y_start = 0;
366 param.windowa_x_end = pipe->stream->timing.h_addressable;
367 param.windowa_y_end = pipe->stream->timing.v_addressable;
368 param.windowb_x_start = 0;
369 param.windowb_y_start = 0;
370 param.windowb_x_end = pipe->stream->timing.h_addressable;
371 param.windowb_y_end = pipe->stream->timing.v_addressable;
372
373 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
374 param.odm_mode = pipe->next_odm_pipe ? 1:0;
375
376 /* Default to the union of both windows */
377 param.selection = UNION_WINDOW_A_B;
378 param.continuous_mode = continuous;
379 param.enable = enable;
380
381 tg = pipe->stream_res.tg;
382
383 /* Only call if supported */
384 if (tg->funcs->configure_crc)
385 return tg->funcs->configure_crc(tg, ¶m);
386 DC_LOG_WARNING("CRC capture not supported.");
387 return false;
388 }
389
390 /**
391 * dc_stream_get_crc() - Get CRC values for the given stream.
392 * @dc: DC object
393 * @stream: The DC stream state of the stream to get CRCs from.
394 * @r_cr, g_y, b_cb: CRC values for the three channels are stored here.
395 *
396 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
397 * Return false if stream is not found, or if CRCs are not enabled.
398 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)399 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
400 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
401 {
402 int i;
403 struct pipe_ctx *pipe;
404 struct timing_generator *tg;
405
406 for (i = 0; i < MAX_PIPES; i++) {
407 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
408 if (pipe->stream == stream)
409 break;
410 }
411 /* Stream not found */
412 if (i == MAX_PIPES)
413 return false;
414
415 tg = pipe->stream_res.tg;
416
417 if (tg->funcs->get_crc)
418 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
419 DC_LOG_WARNING("CRC capture not supported.");
420 return false;
421 }
422
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)423 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
424 enum dc_dynamic_expansion option)
425 {
426 /* OPP FMT dyn expansion updates*/
427 int i = 0;
428 struct pipe_ctx *pipe_ctx;
429
430 for (i = 0; i < MAX_PIPES; i++) {
431 if (dc->current_state->res_ctx.pipe_ctx[i].stream
432 == stream) {
433 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
434 pipe_ctx->stream_res.opp->dyn_expansion = option;
435 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
436 pipe_ctx->stream_res.opp,
437 COLOR_SPACE_YCBCR601,
438 stream->timing.display_color_depth,
439 stream->signal);
440 }
441 }
442 }
443
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)444 void dc_stream_set_dither_option(struct dc_stream_state *stream,
445 enum dc_dither_option option)
446 {
447 struct bit_depth_reduction_params params;
448 struct dc_link *link = stream->link;
449 struct pipe_ctx *pipes = NULL;
450 int i;
451
452 for (i = 0; i < MAX_PIPES; i++) {
453 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
454 stream) {
455 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
456 break;
457 }
458 }
459
460 if (!pipes)
461 return;
462 if (option > DITHER_OPTION_MAX)
463 return;
464
465 stream->dither_option = option;
466
467 memset(¶ms, 0, sizeof(params));
468 resource_build_bit_depth_reduction_params(stream, ¶ms);
469 stream->bit_depth_params = params;
470
471 if (pipes->plane_res.xfm &&
472 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
473 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
474 pipes->plane_res.xfm,
475 pipes->plane_res.scl_data.lb_params.depth,
476 &stream->bit_depth_params);
477 }
478
479 pipes->stream_res.opp->funcs->
480 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
481 }
482
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)483 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
484 {
485 int i = 0;
486 bool ret = false;
487 struct pipe_ctx *pipes;
488
489 for (i = 0; i < MAX_PIPES; i++) {
490 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
491 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
492 dc->hwss.program_gamut_remap(pipes);
493 ret = true;
494 }
495 }
496
497 return ret;
498 }
499
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)500 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
501 {
502 int i = 0;
503 bool ret = false;
504 struct pipe_ctx *pipes;
505
506 for (i = 0; i < MAX_PIPES; i++) {
507 if (dc->current_state->res_ctx.pipe_ctx[i].stream
508 == stream) {
509
510 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
511 dc->hwss.program_output_csc(dc,
512 pipes,
513 stream->output_color_space,
514 stream->csc_color_matrix.matrix,
515 pipes->stream_res.opp->inst);
516 ret = true;
517 }
518 }
519
520 return ret;
521 }
522
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)523 void dc_stream_set_static_screen_params(struct dc *dc,
524 struct dc_stream_state **streams,
525 int num_streams,
526 const struct dc_static_screen_params *params)
527 {
528 int i = 0;
529 int j = 0;
530 struct pipe_ctx *pipes_affected[MAX_PIPES];
531 int num_pipes_affected = 0;
532
533 for (i = 0; i < num_streams; i++) {
534 struct dc_stream_state *stream = streams[i];
535
536 for (j = 0; j < MAX_PIPES; j++) {
537 if (dc->current_state->res_ctx.pipe_ctx[j].stream
538 == stream) {
539 pipes_affected[num_pipes_affected++] =
540 &dc->current_state->res_ctx.pipe_ctx[j];
541 }
542 }
543 }
544
545 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
546 }
547
dc_destruct(struct dc * dc)548 static void dc_destruct(struct dc *dc)
549 {
550 if (dc->current_state) {
551 dc_release_state(dc->current_state);
552 dc->current_state = NULL;
553 }
554
555 destroy_links(dc);
556
557 if (dc->clk_mgr) {
558 dc_destroy_clk_mgr(dc->clk_mgr);
559 dc->clk_mgr = NULL;
560 }
561
562 dc_destroy_resource_pool(dc);
563
564 if (dc->ctx->gpio_service)
565 dal_gpio_service_destroy(&dc->ctx->gpio_service);
566
567 if (dc->ctx->created_bios)
568 dal_bios_parser_destroy(&dc->ctx->dc_bios);
569
570 dc_perf_trace_destroy(&dc->ctx->perf_trace);
571
572 kfree(dc->ctx);
573 dc->ctx = NULL;
574
575 kfree(dc->bw_vbios);
576 dc->bw_vbios = NULL;
577
578 kfree(dc->bw_dceip);
579 dc->bw_dceip = NULL;
580
581 #ifdef CONFIG_DRM_AMD_DC_DCN
582 kfree(dc->dcn_soc);
583 dc->dcn_soc = NULL;
584
585 kfree(dc->dcn_ip);
586 dc->dcn_ip = NULL;
587
588 #endif
589 kfree(dc->vm_helper);
590 dc->vm_helper = NULL;
591
592 }
593
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)594 static bool dc_construct_ctx(struct dc *dc,
595 const struct dc_init_data *init_params)
596 {
597 struct dc_context *dc_ctx;
598 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
599
600 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
601 if (!dc_ctx)
602 return false;
603
604 dc_ctx->cgs_device = init_params->cgs_device;
605 dc_ctx->driver_context = init_params->driver;
606 dc_ctx->dc = dc;
607 dc_ctx->asic_id = init_params->asic_id;
608 dc_ctx->dc_sink_id_count = 0;
609 dc_ctx->dc_stream_id_count = 0;
610 dc_ctx->dce_environment = init_params->dce_environment;
611
612 /* Create logger */
613
614 dc_version = resource_parse_asic_id(init_params->asic_id);
615 dc_ctx->dce_version = dc_version;
616
617 dc_ctx->perf_trace = dc_perf_trace_create();
618 if (!dc_ctx->perf_trace) {
619 ASSERT_CRITICAL(false);
620 return false;
621 }
622
623 dc->ctx = dc_ctx;
624
625 return true;
626 }
627
dc_construct(struct dc * dc,const struct dc_init_data * init_params)628 static bool dc_construct(struct dc *dc,
629 const struct dc_init_data *init_params)
630 {
631 struct dc_context *dc_ctx;
632 struct bw_calcs_dceip *dc_dceip;
633 struct bw_calcs_vbios *dc_vbios;
634 #ifdef CONFIG_DRM_AMD_DC_DCN
635 struct dcn_soc_bounding_box *dcn_soc;
636 struct dcn_ip_params *dcn_ip;
637 #endif
638
639 dc->config = init_params->flags;
640
641 // Allocate memory for the vm_helper
642 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
643 if (!dc->vm_helper) {
644 dm_error("%s: failed to create dc->vm_helper\n", __func__);
645 goto fail;
646 }
647
648 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
649
650 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
651 if (!dc_dceip) {
652 dm_error("%s: failed to create dceip\n", __func__);
653 goto fail;
654 }
655
656 dc->bw_dceip = dc_dceip;
657
658 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
659 if (!dc_vbios) {
660 dm_error("%s: failed to create vbios\n", __func__);
661 goto fail;
662 }
663
664 dc->bw_vbios = dc_vbios;
665 #ifdef CONFIG_DRM_AMD_DC_DCN
666 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
667 if (!dcn_soc) {
668 dm_error("%s: failed to create dcn_soc\n", __func__);
669 goto fail;
670 }
671
672 dc->dcn_soc = dcn_soc;
673
674 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
675 if (!dcn_ip) {
676 dm_error("%s: failed to create dcn_ip\n", __func__);
677 goto fail;
678 }
679
680 dc->dcn_ip = dcn_ip;
681 dc->soc_bounding_box = init_params->soc_bounding_box;
682 #endif
683
684 if (!dc_construct_ctx(dc, init_params)) {
685 dm_error("%s: failed to create ctx\n", __func__);
686 goto fail;
687 }
688
689 dc_ctx = dc->ctx;
690
691 /* Resource should construct all asic specific resources.
692 * This should be the only place where we need to parse the asic id
693 */
694 if (init_params->vbios_override)
695 dc_ctx->dc_bios = init_params->vbios_override;
696 else {
697 /* Create BIOS parser */
698 struct bp_init_data bp_init_data;
699
700 bp_init_data.ctx = dc_ctx;
701 bp_init_data.bios = init_params->asic_id.atombios_base_address;
702
703 dc_ctx->dc_bios = dal_bios_parser_create(
704 &bp_init_data, dc_ctx->dce_version);
705
706 if (!dc_ctx->dc_bios) {
707 ASSERT_CRITICAL(false);
708 goto fail;
709 }
710
711 dc_ctx->created_bios = true;
712 }
713
714 dc->vendor_signature = init_params->vendor_signature;
715
716 /* Create GPIO service */
717 dc_ctx->gpio_service = dal_gpio_service_create(
718 dc_ctx->dce_version,
719 dc_ctx->dce_environment,
720 dc_ctx);
721
722 if (!dc_ctx->gpio_service) {
723 ASSERT_CRITICAL(false);
724 goto fail;
725 }
726
727 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
728 if (!dc->res_pool)
729 goto fail;
730
731 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
732 if (!dc->clk_mgr)
733 goto fail;
734 #ifdef CONFIG_DRM_AMD_DC_DCN3_0
735 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
736 #endif
737
738 dc->debug.force_ignore_link_settings = init_params->force_ignore_link_settings;
739
740 if (dc->res_pool->funcs->update_bw_bounding_box)
741 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
742
743 /* Creation of current_state must occur after dc->dml
744 * is initialized in dc_create_resource_pool because
745 * on creation it copies the contents of dc->dml
746 */
747
748 dc->current_state = dc_create_state(dc);
749
750 if (!dc->current_state) {
751 dm_error("%s: failed to create validate ctx\n", __func__);
752 goto fail;
753 }
754
755 dc_resource_state_construct(dc, dc->current_state);
756
757 if (!create_links(dc, init_params->num_virtual_links))
758 goto fail;
759
760 return true;
761
762 fail:
763 return false;
764 }
765
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)766 static bool disable_all_writeback_pipes_for_stream(
767 const struct dc *dc,
768 struct dc_stream_state *stream,
769 struct dc_state *context)
770 {
771 int i;
772
773 for (i = 0; i < stream->num_wb_info; i++)
774 stream->writeback_info[i].wb_enabled = false;
775
776 return true;
777 }
778
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)779 void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context, struct dc_stream_state *stream, bool lock)
780 {
781 int i = 0;
782
783 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
784 if (dc->hwss.interdependent_update_lock)
785 dc->hwss.interdependent_update_lock(dc, context, lock);
786 else {
787 for (i = 0; i < dc->res_pool->pipe_count; i++) {
788 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
789 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
790
791 // Copied conditions that were previously in dce110_apply_ctx_for_surface
792 if (stream == pipe_ctx->stream) {
793 if (!pipe_ctx->top_pipe &&
794 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
795 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
796 }
797 }
798 }
799 }
800
disable_dangling_plane(struct dc * dc,struct dc_state * context)801 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
802 {
803 int i, j;
804 struct dc_state *dangling_context = dc_create_state(dc);
805 struct dc_state *current_ctx;
806
807 if (dangling_context == NULL)
808 return;
809
810 dc_resource_state_copy_construct(dc->current_state, dangling_context);
811
812 for (i = 0; i < dc->res_pool->pipe_count; i++) {
813 struct dc_stream_state *old_stream =
814 dc->current_state->res_ctx.pipe_ctx[i].stream;
815 bool should_disable = true;
816
817 for (j = 0; j < context->stream_count; j++) {
818 if (old_stream == context->streams[j]) {
819 should_disable = false;
820 break;
821 }
822 }
823 if (should_disable && old_stream) {
824 dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
825 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
826
827 if (dc->hwss.apply_ctx_for_surface) {
828 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
829 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
830 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
831 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
832 }
833 if (dc->hwss.program_front_end_for_ctx) {
834 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
835 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
836 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
837 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
838 }
839 }
840 }
841
842 current_ctx = dc->current_state;
843 dc->current_state = dangling_context;
844 dc_release_state(current_ctx);
845 }
846
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)847 static void disable_vbios_mode_if_required(
848 struct dc *dc,
849 struct dc_state *context)
850 {
851 unsigned int i, j;
852
853 /* check if timing_changed, disable stream*/
854 for (i = 0; i < dc->res_pool->pipe_count; i++) {
855 struct dc_stream_state *stream = NULL;
856 struct dc_link *link = NULL;
857 struct pipe_ctx *pipe = NULL;
858
859 pipe = &context->res_ctx.pipe_ctx[i];
860 stream = pipe->stream;
861 if (stream == NULL)
862 continue;
863
864 if (stream->link->local_sink &&
865 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
866 link = stream->link;
867 }
868
869 if (link != NULL) {
870 unsigned int enc_inst, tg_inst = 0;
871 unsigned int pix_clk_100hz;
872
873 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
874 if (enc_inst != ENGINE_ID_UNKNOWN) {
875 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
876 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
877 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
878 dc->res_pool->stream_enc[j]);
879 break;
880 }
881 }
882
883 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
884 dc->res_pool->dp_clock_source,
885 tg_inst, &pix_clk_100hz);
886
887 if (link->link_status.link_active) {
888 uint32_t requested_pix_clk_100hz =
889 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
890
891 if (pix_clk_100hz != requested_pix_clk_100hz) {
892 core_link_disable_stream(pipe);
893 pipe->stream->dpms_off = false;
894 }
895 }
896 }
897 }
898 }
899 }
900
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)901 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
902 {
903 int i;
904 PERF_TRACE();
905 for (i = 0; i < MAX_PIPES; i++) {
906 int count = 0;
907 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
908
909 if (!pipe->plane_state)
910 continue;
911
912 /* Timeout 100 ms */
913 while (count < 100000) {
914 /* Must set to false to start with, due to OR in update function */
915 pipe->plane_state->status.is_flip_pending = false;
916 dc->hwss.update_pending_status(pipe);
917 if (!pipe->plane_state->status.is_flip_pending)
918 break;
919 udelay(1);
920 count++;
921 }
922 ASSERT(!pipe->plane_state->status.is_flip_pending);
923 }
924 PERF_TRACE();
925 }
926
927 /*******************************************************************************
928 * Public functions
929 ******************************************************************************/
930
dc_create(const struct dc_init_data * init_params)931 struct dc *dc_create(const struct dc_init_data *init_params)
932 {
933 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
934 unsigned int full_pipe_count;
935
936 if (NULL == dc)
937 goto alloc_fail;
938
939 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
940 if (false == dc_construct_ctx(dc, init_params)) {
941 dc_destruct(dc);
942 goto construct_fail;
943 }
944 } else {
945 if (false == dc_construct(dc, init_params)) {
946 dc_destruct(dc);
947 goto construct_fail;
948 }
949
950 full_pipe_count = dc->res_pool->pipe_count;
951 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
952 full_pipe_count--;
953 dc->caps.max_streams = min(
954 full_pipe_count,
955 dc->res_pool->stream_enc_count);
956
957 dc->optimize_seamless_boot_streams = 0;
958 dc->caps.max_links = dc->link_count;
959 dc->caps.max_audios = dc->res_pool->audio_count;
960 dc->caps.linear_pitch_alignment = 64;
961
962 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
963
964 if (dc->res_pool->dmcu != NULL)
965 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
966 }
967
968 /* Populate versioning information */
969 dc->versions.dc_ver = DC_VER;
970
971 dc->build_id = DC_BUILD_ID;
972
973 DC_LOG_DC("Display Core initialized\n");
974
975
976
977 return dc;
978
979 construct_fail:
980 kfree(dc);
981
982 alloc_fail:
983 return NULL;
984 }
985
dc_hardware_init(struct dc * dc)986 void dc_hardware_init(struct dc *dc)
987 {
988 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
989 dc->hwss.init_hw(dc);
990 }
991
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)992 void dc_init_callbacks(struct dc *dc,
993 const struct dc_callback_init *init_params)
994 {
995 #ifdef CONFIG_DRM_AMD_DC_HDCP
996 dc->ctx->cp_psp = init_params->cp_psp;
997 #endif
998 }
999
dc_deinit_callbacks(struct dc * dc)1000 void dc_deinit_callbacks(struct dc *dc)
1001 {
1002 #ifdef CONFIG_DRM_AMD_DC_HDCP
1003 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1004 #endif
1005 }
1006
dc_destroy(struct dc ** dc)1007 void dc_destroy(struct dc **dc)
1008 {
1009 dc_destruct(*dc);
1010 kfree(*dc);
1011 *dc = NULL;
1012 }
1013
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1014 static void enable_timing_multisync(
1015 struct dc *dc,
1016 struct dc_state *ctx)
1017 {
1018 int i = 0, multisync_count = 0;
1019 int pipe_count = dc->res_pool->pipe_count;
1020 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1021
1022 for (i = 0; i < pipe_count; i++) {
1023 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1024 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1025 continue;
1026 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1027 continue;
1028 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1029 multisync_count++;
1030 }
1031
1032 if (multisync_count > 0) {
1033 dc->hwss.enable_per_frame_crtc_position_reset(
1034 dc, multisync_count, multisync_pipes);
1035 }
1036 }
1037
program_timing_sync(struct dc * dc,struct dc_state * ctx)1038 static void program_timing_sync(
1039 struct dc *dc,
1040 struct dc_state *ctx)
1041 {
1042 int i, j, k;
1043 int group_index = 0;
1044 int num_group = 0;
1045 int pipe_count = dc->res_pool->pipe_count;
1046 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1047
1048 for (i = 0; i < pipe_count; i++) {
1049 if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe)
1050 continue;
1051
1052 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1053 }
1054
1055 for (i = 0; i < pipe_count; i++) {
1056 int group_size = 1;
1057 struct pipe_ctx *pipe_set[MAX_PIPES];
1058
1059 if (!unsynced_pipes[i])
1060 continue;
1061
1062 pipe_set[0] = unsynced_pipes[i];
1063 unsynced_pipes[i] = NULL;
1064
1065 /* Add tg to the set, search rest of the tg's for ones with
1066 * same timing, add all tgs with same timing to the group
1067 */
1068 for (j = i + 1; j < pipe_count; j++) {
1069 if (!unsynced_pipes[j])
1070 continue;
1071
1072 if (resource_are_streams_timing_synchronizable(
1073 unsynced_pipes[j]->stream,
1074 pipe_set[0]->stream)) {
1075 pipe_set[group_size] = unsynced_pipes[j];
1076 unsynced_pipes[j] = NULL;
1077 group_size++;
1078 }
1079 }
1080
1081 /* set first unblanked pipe as master */
1082 for (j = 0; j < group_size; j++) {
1083 bool is_blanked;
1084
1085 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1086 is_blanked =
1087 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1088 else
1089 is_blanked =
1090 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1091 if (!is_blanked) {
1092 if (j == 0)
1093 break;
1094
1095 swap(pipe_set[0], pipe_set[j]);
1096 break;
1097 }
1098 }
1099
1100
1101 for (k = 0; k < group_size; k++) {
1102 struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1103
1104 status->timing_sync_info.group_id = num_group;
1105 status->timing_sync_info.group_size = group_size;
1106 if (k == 0)
1107 status->timing_sync_info.master = true;
1108 else
1109 status->timing_sync_info.master = false;
1110
1111 }
1112 /* remove any other unblanked pipes as they have already been synced */
1113 for (j = j + 1; j < group_size; j++) {
1114 bool is_blanked;
1115
1116 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1117 is_blanked =
1118 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1119 else
1120 is_blanked =
1121 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1122 if (!is_blanked) {
1123 group_size--;
1124 pipe_set[j] = pipe_set[group_size];
1125 j--;
1126 }
1127 }
1128
1129 if (group_size > 1) {
1130 dc->hwss.enable_timing_synchronization(
1131 dc, group_index, group_size, pipe_set);
1132 group_index++;
1133 }
1134 num_group++;
1135 }
1136 }
1137
context_changed(struct dc * dc,struct dc_state * context)1138 static bool context_changed(
1139 struct dc *dc,
1140 struct dc_state *context)
1141 {
1142 uint8_t i;
1143
1144 if (context->stream_count != dc->current_state->stream_count)
1145 return true;
1146
1147 for (i = 0; i < dc->current_state->stream_count; i++) {
1148 if (dc->current_state->streams[i] != context->streams[i])
1149 return true;
1150 }
1151
1152 return false;
1153 }
1154
dc_validate_seamless_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1155 bool dc_validate_seamless_boot_timing(const struct dc *dc,
1156 const struct dc_sink *sink,
1157 struct dc_crtc_timing *crtc_timing)
1158 {
1159 struct timing_generator *tg;
1160 struct stream_encoder *se = NULL;
1161
1162 struct dc_crtc_timing hw_crtc_timing = {0};
1163
1164 struct dc_link *link = sink->link;
1165 unsigned int i, enc_inst, tg_inst = 0;
1166
1167 // Seamless port only support single DP and EDP so far
1168 if (sink->sink_signal != SIGNAL_TYPE_DISPLAY_PORT &&
1169 sink->sink_signal != SIGNAL_TYPE_EDP)
1170 return false;
1171
1172 /* Check for enabled DIG to identify enabled display */
1173 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1174 return false;
1175
1176 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1177
1178 if (enc_inst == ENGINE_ID_UNKNOWN)
1179 return false;
1180
1181 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1182 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1183
1184 se = dc->res_pool->stream_enc[i];
1185
1186 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1187 dc->res_pool->stream_enc[i]);
1188 break;
1189 }
1190 }
1191
1192 // tg_inst not found
1193 if (i == dc->res_pool->stream_enc_count)
1194 return false;
1195
1196 if (tg_inst >= dc->res_pool->timing_generator_count)
1197 return false;
1198
1199 tg = dc->res_pool->timing_generators[tg_inst];
1200
1201 if (!tg->funcs->get_hw_timing)
1202 return false;
1203
1204 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1205 return false;
1206
1207 if (crtc_timing->h_total != hw_crtc_timing.h_total)
1208 return false;
1209
1210 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1211 return false;
1212
1213 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1214 return false;
1215
1216 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1217 return false;
1218
1219 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1220 return false;
1221
1222 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1223 return false;
1224
1225 if (crtc_timing->v_total != hw_crtc_timing.v_total)
1226 return false;
1227
1228 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1229 return false;
1230
1231 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1232 return false;
1233
1234 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1235 return false;
1236
1237 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1238 return false;
1239
1240 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1241 return false;
1242
1243 if (dc_is_dp_signal(link->connector_signal)) {
1244 unsigned int pix_clk_100hz;
1245
1246 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1247 dc->res_pool->dp_clock_source,
1248 tg_inst, &pix_clk_100hz);
1249
1250 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1251 return false;
1252
1253 if (!se->funcs->dp_get_pixel_format)
1254 return false;
1255
1256 if (!se->funcs->dp_get_pixel_format(
1257 se,
1258 &hw_crtc_timing.pixel_encoding,
1259 &hw_crtc_timing.display_color_depth))
1260 return false;
1261
1262 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1263 return false;
1264
1265 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1266 return false;
1267 }
1268
1269 return true;
1270 }
1271
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1272 bool dc_enable_stereo(
1273 struct dc *dc,
1274 struct dc_state *context,
1275 struct dc_stream_state *streams[],
1276 uint8_t stream_count)
1277 {
1278 bool ret = true;
1279 int i, j;
1280 struct pipe_ctx *pipe;
1281
1282 for (i = 0; i < MAX_PIPES; i++) {
1283 if (context != NULL)
1284 pipe = &context->res_ctx.pipe_ctx[i];
1285 else
1286 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1287 for (j = 0 ; pipe && j < stream_count; j++) {
1288 if (streams[j] && streams[j] == pipe->stream &&
1289 dc->hwss.setup_stereo)
1290 dc->hwss.setup_stereo(pipe, dc);
1291 }
1292 }
1293
1294 return ret;
1295 }
1296
dc_trigger_sync(struct dc * dc,struct dc_state * context)1297 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1298 {
1299 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1300 enable_timing_multisync(dc, context);
1301 program_timing_sync(dc, context);
1302 }
1303 }
1304
get_stream_mask(struct dc * dc,struct dc_state * context)1305 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1306 {
1307 int i;
1308 unsigned int stream_mask = 0;
1309
1310 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1311 if (context->res_ctx.pipe_ctx[i].stream)
1312 stream_mask |= 1 << i;
1313 }
1314
1315 return stream_mask;
1316 }
1317
1318 /*
1319 * Applies given context to HW and copy it into current context.
1320 * It's up to the user to release the src context afterwards.
1321 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1322 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1323 {
1324 struct dc_bios *dcb = dc->ctx->dc_bios;
1325 enum dc_status result = DC_ERROR_UNEXPECTED;
1326 struct pipe_ctx *pipe;
1327 int i, k, l;
1328 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1329
1330 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1331 dc_allow_idle_optimizations(dc, false);
1332 #endif
1333
1334 for (i = 0; i < context->stream_count; i++)
1335 dc_streams[i] = context->streams[i];
1336
1337 if (!dcb->funcs->is_accelerated_mode(dcb)) {
1338 disable_vbios_mode_if_required(dc, context);
1339 dc->hwss.enable_accelerated_mode(dc, context);
1340 }
1341
1342 for (i = 0; i < context->stream_count; i++)
1343 if (context->streams[i]->apply_seamless_boot_optimization)
1344 dc->optimize_seamless_boot_streams++;
1345
1346 if (context->stream_count > dc->optimize_seamless_boot_streams ||
1347 context->stream_count == 0)
1348 dc->hwss.prepare_bandwidth(dc, context);
1349
1350 disable_dangling_plane(dc, context);
1351 /* re-program planes for existing stream, in case we need to
1352 * free up plane resource for later use
1353 */
1354 if (dc->hwss.apply_ctx_for_surface) {
1355 for (i = 0; i < context->stream_count; i++) {
1356 if (context->streams[i]->mode_changed)
1357 continue;
1358 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1359 dc->hwss.apply_ctx_for_surface(
1360 dc, context->streams[i],
1361 context->stream_status[i].plane_count,
1362 context); /* use new pipe config in new context */
1363 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1364 dc->hwss.post_unlock_program_front_end(dc, context);
1365 }
1366 }
1367
1368 /* Program hardware */
1369 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1370 pipe = &context->res_ctx.pipe_ctx[i];
1371 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1372 }
1373
1374 result = dc->hwss.apply_ctx_to_hw(dc, context);
1375
1376 if (result != DC_OK)
1377 return result;
1378
1379 dc_trigger_sync(dc, context);
1380
1381 /* Program all planes within new context*/
1382 if (dc->hwss.program_front_end_for_ctx) {
1383 dc->hwss.interdependent_update_lock(dc, context, true);
1384 dc->hwss.program_front_end_for_ctx(dc, context);
1385 dc->hwss.interdependent_update_lock(dc, context, false);
1386 dc->hwss.post_unlock_program_front_end(dc, context);
1387 }
1388 for (i = 0; i < context->stream_count; i++) {
1389 const struct dc_link *link = context->streams[i]->link;
1390
1391 if (!context->streams[i]->mode_changed)
1392 continue;
1393
1394 if (dc->hwss.apply_ctx_for_surface) {
1395 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1396 dc->hwss.apply_ctx_for_surface(
1397 dc, context->streams[i],
1398 context->stream_status[i].plane_count,
1399 context);
1400 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1401 dc->hwss.post_unlock_program_front_end(dc, context);
1402 }
1403
1404 /*
1405 * enable stereo
1406 * TODO rework dc_enable_stereo call to work with validation sets?
1407 */
1408 for (k = 0; k < MAX_PIPES; k++) {
1409 pipe = &context->res_ctx.pipe_ctx[k];
1410
1411 for (l = 0 ; pipe && l < context->stream_count; l++) {
1412 if (context->streams[l] &&
1413 context->streams[l] == pipe->stream &&
1414 dc->hwss.setup_stereo)
1415 dc->hwss.setup_stereo(pipe, dc);
1416 }
1417 }
1418
1419 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1420 context->streams[i]->timing.h_addressable,
1421 context->streams[i]->timing.v_addressable,
1422 context->streams[i]->timing.h_total,
1423 context->streams[i]->timing.v_total,
1424 context->streams[i]->timing.pix_clk_100hz / 10);
1425 }
1426
1427 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1428
1429 if (context->stream_count > dc->optimize_seamless_boot_streams ||
1430 context->stream_count == 0) {
1431 /* Must wait for no flips to be pending before doing optimize bw */
1432 wait_for_no_pipes_pending(dc, context);
1433 /* pplib is notified if disp_num changed */
1434 dc->hwss.optimize_bandwidth(dc, context);
1435 }
1436
1437 context->stream_mask = get_stream_mask(dc, context);
1438
1439 if (context->stream_mask != dc->current_state->stream_mask)
1440 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1441
1442 for (i = 0; i < context->stream_count; i++)
1443 context->streams[i]->mode_changed = false;
1444
1445 dc_release_state(dc->current_state);
1446
1447 dc->current_state = context;
1448
1449 dc_retain_state(dc->current_state);
1450
1451 return result;
1452 }
1453
dc_commit_state(struct dc * dc,struct dc_state * context)1454 bool dc_commit_state(struct dc *dc, struct dc_state *context)
1455 {
1456 enum dc_status result = DC_ERROR_UNEXPECTED;
1457 int i;
1458
1459 if (false == context_changed(dc, context))
1460 return DC_OK;
1461
1462 DC_LOG_DC("%s: %d streams\n",
1463 __func__, context->stream_count);
1464
1465 for (i = 0; i < context->stream_count; i++) {
1466 struct dc_stream_state *stream = context->streams[i];
1467
1468 dc_stream_log(dc, stream);
1469 }
1470
1471 result = dc_commit_state_no_check(dc, context);
1472
1473 return (result == DC_OK);
1474 }
1475
1476 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1477 bool dc_acquire_release_mpc_3dlut(
1478 struct dc *dc, bool acquire,
1479 struct dc_stream_state *stream,
1480 struct dc_3dlut **lut,
1481 struct dc_transfer_func **shaper)
1482 {
1483 int pipe_idx;
1484 bool ret = false;
1485 bool found_pipe_idx = false;
1486 const struct resource_pool *pool = dc->res_pool;
1487 struct resource_context *res_ctx = &dc->current_state->res_ctx;
1488 int mpcc_id = 0;
1489
1490 if (pool && res_ctx) {
1491 if (acquire) {
1492 /*find pipe idx for the given stream*/
1493 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
1494 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
1495 found_pipe_idx = true;
1496 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
1497 break;
1498 }
1499 }
1500 } else
1501 found_pipe_idx = true;/*for release pipe_idx is not required*/
1502
1503 if (found_pipe_idx) {
1504 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
1505 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
1506 else if (acquire == false && pool->funcs->release_post_bldn_3dlut)
1507 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
1508 }
1509 }
1510 return ret;
1511 }
1512 #endif
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)1513 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
1514 {
1515 int i;
1516 struct pipe_ctx *pipe;
1517
1518 for (i = 0; i < MAX_PIPES; i++) {
1519 pipe = &context->res_ctx.pipe_ctx[i];
1520
1521 if (!pipe->plane_state)
1522 continue;
1523
1524 /* Must set to false to start with, due to OR in update function */
1525 pipe->plane_state->status.is_flip_pending = false;
1526 dc->hwss.update_pending_status(pipe);
1527 if (pipe->plane_state->status.is_flip_pending)
1528 return true;
1529 }
1530 return false;
1531 }
1532
dc_post_update_surfaces_to_stream(struct dc * dc)1533 bool dc_post_update_surfaces_to_stream(struct dc *dc)
1534 {
1535 int i;
1536 struct dc_state *context = dc->current_state;
1537
1538 if ((!dc->optimized_required) || dc->optimize_seamless_boot_streams > 0)
1539 return true;
1540
1541 post_surface_trace(dc);
1542
1543 if (is_flip_pending_in_pipes(dc, context))
1544 return true;
1545
1546 for (i = 0; i < dc->res_pool->pipe_count; i++)
1547 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
1548 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
1549 context->res_ctx.pipe_ctx[i].pipe_idx = i;
1550 dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
1551 }
1552
1553 dc->hwss.optimize_bandwidth(dc, context);
1554
1555 dc->optimized_required = false;
1556 dc->wm_optimized_required = false;
1557
1558 return true;
1559 }
1560
init_state(struct dc * dc,struct dc_state * context)1561 static void init_state(struct dc *dc, struct dc_state *context)
1562 {
1563 /* Each context must have their own instance of VBA and in order to
1564 * initialize and obtain IP and SOC the base DML instance from DC is
1565 * initially copied into every context
1566 */
1567 #ifdef CONFIG_DRM_AMD_DC_DCN
1568 memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
1569 #endif
1570 }
1571
dc_create_state(struct dc * dc)1572 struct dc_state *dc_create_state(struct dc *dc)
1573 {
1574 struct dc_state *context = kvzalloc(sizeof(struct dc_state),
1575 GFP_KERNEL);
1576
1577 if (!context)
1578 return NULL;
1579
1580 init_state(dc, context);
1581
1582 kref_init(&context->refcount);
1583
1584 return context;
1585 }
1586
dc_copy_state(struct dc_state * src_ctx)1587 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
1588 {
1589 int i, j;
1590 struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
1591
1592 if (!new_ctx)
1593 return NULL;
1594 memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
1595
1596 for (i = 0; i < MAX_PIPES; i++) {
1597 struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1598
1599 if (cur_pipe->top_pipe)
1600 cur_pipe->top_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
1601
1602 if (cur_pipe->bottom_pipe)
1603 cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
1604
1605 if (cur_pipe->prev_odm_pipe)
1606 cur_pipe->prev_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
1607
1608 if (cur_pipe->next_odm_pipe)
1609 cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
1610
1611 }
1612
1613 for (i = 0; i < new_ctx->stream_count; i++) {
1614 dc_stream_retain(new_ctx->streams[i]);
1615 for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
1616 dc_plane_state_retain(
1617 new_ctx->stream_status[i].plane_states[j]);
1618 }
1619
1620 kref_init(&new_ctx->refcount);
1621
1622 return new_ctx;
1623 }
1624
dc_retain_state(struct dc_state * context)1625 void dc_retain_state(struct dc_state *context)
1626 {
1627 kref_get(&context->refcount);
1628 }
1629
dc_state_free(struct kref * kref)1630 static void dc_state_free(struct kref *kref)
1631 {
1632 struct dc_state *context = container_of(kref, struct dc_state, refcount);
1633 dc_resource_state_destruct(context);
1634 kvfree(context);
1635 }
1636
dc_release_state(struct dc_state * context)1637 void dc_release_state(struct dc_state *context)
1638 {
1639 kref_put(&context->refcount, dc_state_free);
1640 }
1641
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)1642 bool dc_set_generic_gpio_for_stereo(bool enable,
1643 struct gpio_service *gpio_service)
1644 {
1645 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
1646 struct gpio_pin_info pin_info;
1647 struct gpio *generic;
1648 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
1649 GFP_KERNEL);
1650
1651 if (!config)
1652 return false;
1653 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
1654
1655 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
1656 kfree(config);
1657 return false;
1658 } else {
1659 generic = dal_gpio_service_create_generic_mux(
1660 gpio_service,
1661 pin_info.offset,
1662 pin_info.mask);
1663 }
1664
1665 if (!generic) {
1666 kfree(config);
1667 return false;
1668 }
1669
1670 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
1671
1672 config->enable_output_from_mux = enable;
1673 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
1674
1675 if (gpio_result == GPIO_RESULT_OK)
1676 gpio_result = dal_mux_setup_config(generic, config);
1677
1678 if (gpio_result == GPIO_RESULT_OK) {
1679 dal_gpio_close(generic);
1680 dal_gpio_destroy_generic_mux(&generic);
1681 kfree(config);
1682 return true;
1683 } else {
1684 dal_gpio_close(generic);
1685 dal_gpio_destroy_generic_mux(&generic);
1686 kfree(config);
1687 return false;
1688 }
1689 }
1690
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)1691 static bool is_surface_in_context(
1692 const struct dc_state *context,
1693 const struct dc_plane_state *plane_state)
1694 {
1695 int j;
1696
1697 for (j = 0; j < MAX_PIPES; j++) {
1698 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1699
1700 if (plane_state == pipe_ctx->plane_state) {
1701 return true;
1702 }
1703 }
1704
1705 return false;
1706 }
1707
get_plane_info_update_type(const struct dc_surface_update * u)1708 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
1709 {
1710 union surface_update_flags *update_flags = &u->surface->update_flags;
1711 enum surface_update_type update_type = UPDATE_TYPE_FAST;
1712
1713 if (!u->plane_info)
1714 return UPDATE_TYPE_FAST;
1715
1716 if (u->plane_info->color_space != u->surface->color_space) {
1717 update_flags->bits.color_space_change = 1;
1718 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1719 }
1720
1721 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
1722 update_flags->bits.horizontal_mirror_change = 1;
1723 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1724 }
1725
1726 if (u->plane_info->rotation != u->surface->rotation) {
1727 update_flags->bits.rotation_change = 1;
1728 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1729 }
1730
1731 if (u->plane_info->format != u->surface->format) {
1732 update_flags->bits.pixel_format_change = 1;
1733 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1734 }
1735
1736 if (u->plane_info->stereo_format != u->surface->stereo_format) {
1737 update_flags->bits.stereo_format_change = 1;
1738 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1739 }
1740
1741 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
1742 update_flags->bits.per_pixel_alpha_change = 1;
1743 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1744 }
1745
1746 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
1747 update_flags->bits.global_alpha_change = 1;
1748 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1749 }
1750
1751 if (u->plane_info->dcc.enable != u->surface->dcc.enable
1752 || u->plane_info->dcc.independent_64b_blks != u->surface->dcc.independent_64b_blks
1753 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
1754 update_flags->bits.dcc_change = 1;
1755 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1756 }
1757
1758 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
1759 resource_pixel_format_to_bpp(u->surface->format)) {
1760 /* different bytes per element will require full bandwidth
1761 * and DML calculation
1762 */
1763 update_flags->bits.bpp_change = 1;
1764 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1765 }
1766
1767 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
1768 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
1769 update_flags->bits.plane_size_change = 1;
1770 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1771 }
1772
1773
1774 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
1775 sizeof(union dc_tiling_info)) != 0) {
1776 update_flags->bits.swizzle_change = 1;
1777 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1778
1779 /* todo: below are HW dependent, we should add a hook to
1780 * DCE/N resource and validated there.
1781 */
1782 if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
1783 /* swizzled mode requires RQ to be setup properly,
1784 * thus need to run DML to calculate RQ settings
1785 */
1786 update_flags->bits.bandwidth_change = 1;
1787 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1788 }
1789 }
1790
1791 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
1792 return update_type;
1793 }
1794
get_scaling_info_update_type(const struct dc_surface_update * u)1795 static enum surface_update_type get_scaling_info_update_type(
1796 const struct dc_surface_update *u)
1797 {
1798 union surface_update_flags *update_flags = &u->surface->update_flags;
1799
1800 if (!u->scaling_info)
1801 return UPDATE_TYPE_FAST;
1802
1803 if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
1804 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
1805 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
1806 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
1807 || u->scaling_info->scaling_quality.integer_scaling !=
1808 u->surface->scaling_quality.integer_scaling
1809 ) {
1810 update_flags->bits.scaling_change = 1;
1811
1812 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
1813 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
1814 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
1815 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
1816 /* Making dst rect smaller requires a bandwidth change */
1817 update_flags->bits.bandwidth_change = 1;
1818 }
1819
1820 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
1821 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
1822
1823 update_flags->bits.scaling_change = 1;
1824 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
1825 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
1826 /* Making src rect bigger requires a bandwidth change */
1827 update_flags->bits.clock_change = 1;
1828 }
1829
1830 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
1831 || u->scaling_info->src_rect.y != u->surface->src_rect.y
1832 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
1833 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
1834 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
1835 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
1836 update_flags->bits.position_change = 1;
1837
1838 if (update_flags->bits.clock_change
1839 || update_flags->bits.bandwidth_change
1840 || update_flags->bits.scaling_change)
1841 return UPDATE_TYPE_FULL;
1842
1843 if (update_flags->bits.position_change)
1844 return UPDATE_TYPE_MED;
1845
1846 return UPDATE_TYPE_FAST;
1847 }
1848
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)1849 static enum surface_update_type det_surface_update(const struct dc *dc,
1850 const struct dc_surface_update *u)
1851 {
1852 const struct dc_state *context = dc->current_state;
1853 enum surface_update_type type;
1854 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1855 union surface_update_flags *update_flags = &u->surface->update_flags;
1856
1857 if (u->flip_addr)
1858 update_flags->bits.addr_update = 1;
1859
1860 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
1861 update_flags->raw = 0xFFFFFFFF;
1862 return UPDATE_TYPE_FULL;
1863 }
1864
1865 update_flags->raw = 0; // Reset all flags
1866
1867 type = get_plane_info_update_type(u);
1868 elevate_update_type(&overall_type, type);
1869
1870 type = get_scaling_info_update_type(u);
1871 elevate_update_type(&overall_type, type);
1872
1873 if (u->flip_addr)
1874 update_flags->bits.addr_update = 1;
1875
1876 if (u->in_transfer_func)
1877 update_flags->bits.in_transfer_func_change = 1;
1878
1879 if (u->input_csc_color_matrix)
1880 update_flags->bits.input_csc_change = 1;
1881
1882 if (u->coeff_reduction_factor)
1883 update_flags->bits.coeff_reduction_change = 1;
1884
1885 if (u->gamut_remap_matrix)
1886 update_flags->bits.gamut_remap_change = 1;
1887
1888 if (u->gamma) {
1889 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
1890
1891 if (u->plane_info)
1892 format = u->plane_info->format;
1893 else if (u->surface)
1894 format = u->surface->format;
1895
1896 if (dce_use_lut(format))
1897 update_flags->bits.gamma_change = 1;
1898 }
1899
1900 if (u->hdr_mult.value)
1901 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
1902 update_flags->bits.hdr_mult = 1;
1903 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
1904 }
1905
1906 if (update_flags->bits.in_transfer_func_change) {
1907 type = UPDATE_TYPE_MED;
1908 elevate_update_type(&overall_type, type);
1909 }
1910
1911 if (update_flags->bits.input_csc_change
1912 || update_flags->bits.coeff_reduction_change
1913 || update_flags->bits.gamma_change
1914 || update_flags->bits.gamut_remap_change) {
1915 type = UPDATE_TYPE_FULL;
1916 elevate_update_type(&overall_type, type);
1917 }
1918
1919 return overall_type;
1920 }
1921
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1922 static enum surface_update_type check_update_surfaces_for_stream(
1923 struct dc *dc,
1924 struct dc_surface_update *updates,
1925 int surface_count,
1926 struct dc_stream_update *stream_update,
1927 const struct dc_stream_status *stream_status)
1928 {
1929 int i;
1930 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1931
1932 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1933 if (dc->idle_optimizations_allowed)
1934 overall_type = UPDATE_TYPE_FULL;
1935
1936 #endif
1937 if (stream_status == NULL || stream_status->plane_count != surface_count)
1938 overall_type = UPDATE_TYPE_FULL;
1939
1940 /* some stream updates require passive update */
1941 if (stream_update) {
1942 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
1943
1944 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
1945 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
1946 stream_update->integer_scaling_update)
1947 su_flags->bits.scaling = 1;
1948
1949 if (stream_update->out_transfer_func)
1950 su_flags->bits.out_tf = 1;
1951
1952 if (stream_update->abm_level)
1953 su_flags->bits.abm_level = 1;
1954
1955 if (stream_update->dpms_off)
1956 su_flags->bits.dpms_off = 1;
1957
1958 if (stream_update->gamut_remap)
1959 su_flags->bits.gamut_remap = 1;
1960
1961 if (stream_update->wb_update)
1962 su_flags->bits.wb_update = 1;
1963
1964 if (stream_update->dsc_config)
1965 su_flags->bits.dsc_changed = 1;
1966
1967 if (su_flags->raw != 0)
1968 overall_type = UPDATE_TYPE_FULL;
1969
1970 if (stream_update->output_csc_transform || stream_update->output_color_space)
1971 su_flags->bits.out_csc = 1;
1972 }
1973
1974 for (i = 0 ; i < surface_count; i++) {
1975 enum surface_update_type type =
1976 det_surface_update(dc, &updates[i]);
1977
1978 elevate_update_type(&overall_type, type);
1979 }
1980
1981 return overall_type;
1982 }
1983
1984 /**
1985 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
1986 *
1987 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
1988 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1989 enum surface_update_type dc_check_update_surfaces_for_stream(
1990 struct dc *dc,
1991 struct dc_surface_update *updates,
1992 int surface_count,
1993 struct dc_stream_update *stream_update,
1994 const struct dc_stream_status *stream_status)
1995 {
1996 int i;
1997 enum surface_update_type type;
1998
1999 if (stream_update)
2000 stream_update->stream->update_flags.raw = 0;
2001 for (i = 0; i < surface_count; i++)
2002 updates[i].surface->update_flags.raw = 0;
2003
2004 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2005 if (type == UPDATE_TYPE_FULL) {
2006 if (stream_update) {
2007 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2008 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2009 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2010 }
2011 for (i = 0; i < surface_count; i++)
2012 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2013 }
2014
2015 if (type == UPDATE_TYPE_FAST) {
2016 // If there's an available clock comparator, we use that.
2017 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2018 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2019 dc->optimized_required = true;
2020 // Else we fallback to mem compare.
2021 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2022 dc->optimized_required = true;
2023 }
2024
2025 dc->optimized_required |= dc->wm_optimized_required;
2026 }
2027
2028 return type;
2029 }
2030
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2031 static struct dc_stream_status *stream_get_status(
2032 struct dc_state *ctx,
2033 struct dc_stream_state *stream)
2034 {
2035 uint8_t i;
2036
2037 for (i = 0; i < ctx->stream_count; i++) {
2038 if (stream == ctx->streams[i]) {
2039 return &ctx->stream_status[i];
2040 }
2041 }
2042
2043 return NULL;
2044 }
2045
2046 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2047
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2048 static void copy_surface_update_to_plane(
2049 struct dc_plane_state *surface,
2050 struct dc_surface_update *srf_update)
2051 {
2052 if (srf_update->flip_addr) {
2053 surface->address = srf_update->flip_addr->address;
2054 surface->flip_immediate =
2055 srf_update->flip_addr->flip_immediate;
2056 surface->time.time_elapsed_in_us[surface->time.index] =
2057 srf_update->flip_addr->flip_timestamp_in_us -
2058 surface->time.prev_update_time_in_us;
2059 surface->time.prev_update_time_in_us =
2060 srf_update->flip_addr->flip_timestamp_in_us;
2061 surface->time.index++;
2062 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2063 surface->time.index = 0;
2064
2065 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2066 }
2067
2068 if (srf_update->scaling_info) {
2069 surface->scaling_quality =
2070 srf_update->scaling_info->scaling_quality;
2071 surface->dst_rect =
2072 srf_update->scaling_info->dst_rect;
2073 surface->src_rect =
2074 srf_update->scaling_info->src_rect;
2075 surface->clip_rect =
2076 srf_update->scaling_info->clip_rect;
2077 }
2078
2079 if (srf_update->plane_info) {
2080 surface->color_space =
2081 srf_update->plane_info->color_space;
2082 surface->format =
2083 srf_update->plane_info->format;
2084 surface->plane_size =
2085 srf_update->plane_info->plane_size;
2086 surface->rotation =
2087 srf_update->plane_info->rotation;
2088 surface->horizontal_mirror =
2089 srf_update->plane_info->horizontal_mirror;
2090 surface->stereo_format =
2091 srf_update->plane_info->stereo_format;
2092 surface->tiling_info =
2093 srf_update->plane_info->tiling_info;
2094 surface->visible =
2095 srf_update->plane_info->visible;
2096 surface->per_pixel_alpha =
2097 srf_update->plane_info->per_pixel_alpha;
2098 surface->global_alpha =
2099 srf_update->plane_info->global_alpha;
2100 surface->global_alpha_value =
2101 srf_update->plane_info->global_alpha_value;
2102 surface->dcc =
2103 srf_update->plane_info->dcc;
2104 surface->layer_index =
2105 srf_update->plane_info->layer_index;
2106 }
2107
2108 if (srf_update->gamma &&
2109 (surface->gamma_correction !=
2110 srf_update->gamma)) {
2111 memcpy(&surface->gamma_correction->entries,
2112 &srf_update->gamma->entries,
2113 sizeof(struct dc_gamma_entries));
2114 surface->gamma_correction->is_identity =
2115 srf_update->gamma->is_identity;
2116 surface->gamma_correction->num_entries =
2117 srf_update->gamma->num_entries;
2118 surface->gamma_correction->type =
2119 srf_update->gamma->type;
2120 }
2121
2122 if (srf_update->in_transfer_func &&
2123 (surface->in_transfer_func !=
2124 srf_update->in_transfer_func)) {
2125 surface->in_transfer_func->sdr_ref_white_level =
2126 srf_update->in_transfer_func->sdr_ref_white_level;
2127 surface->in_transfer_func->tf =
2128 srf_update->in_transfer_func->tf;
2129 surface->in_transfer_func->type =
2130 srf_update->in_transfer_func->type;
2131 memcpy(&surface->in_transfer_func->tf_pts,
2132 &srf_update->in_transfer_func->tf_pts,
2133 sizeof(struct dc_transfer_func_distributed_points));
2134 }
2135
2136 if (srf_update->func_shaper &&
2137 (surface->in_shaper_func !=
2138 srf_update->func_shaper))
2139 memcpy(surface->in_shaper_func, srf_update->func_shaper,
2140 sizeof(*surface->in_shaper_func));
2141
2142 if (srf_update->lut3d_func &&
2143 (surface->lut3d_func !=
2144 srf_update->lut3d_func))
2145 memcpy(surface->lut3d_func, srf_update->lut3d_func,
2146 sizeof(*surface->lut3d_func));
2147
2148 if (srf_update->hdr_mult.value)
2149 surface->hdr_mult =
2150 srf_update->hdr_mult;
2151
2152 if (srf_update->blend_tf &&
2153 (surface->blend_tf !=
2154 srf_update->blend_tf))
2155 memcpy(surface->blend_tf, srf_update->blend_tf,
2156 sizeof(*surface->blend_tf));
2157
2158 if (srf_update->input_csc_color_matrix)
2159 surface->input_csc_color_matrix =
2160 *srf_update->input_csc_color_matrix;
2161
2162 if (srf_update->coeff_reduction_factor)
2163 surface->coeff_reduction_factor =
2164 *srf_update->coeff_reduction_factor;
2165
2166 if (srf_update->gamut_remap_matrix)
2167 surface->gamut_remap_matrix =
2168 *srf_update->gamut_remap_matrix;
2169 }
2170
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2171 static void copy_stream_update_to_stream(struct dc *dc,
2172 struct dc_state *context,
2173 struct dc_stream_state *stream,
2174 struct dc_stream_update *update)
2175 {
2176 struct dc_context *dc_ctx = dc->ctx;
2177
2178 if (update == NULL || stream == NULL)
2179 return;
2180
2181 if (update->src.height && update->src.width)
2182 stream->src = update->src;
2183
2184 if (update->dst.height && update->dst.width)
2185 stream->dst = update->dst;
2186
2187 if (update->out_transfer_func &&
2188 stream->out_transfer_func != update->out_transfer_func) {
2189 stream->out_transfer_func->sdr_ref_white_level =
2190 update->out_transfer_func->sdr_ref_white_level;
2191 stream->out_transfer_func->tf = update->out_transfer_func->tf;
2192 stream->out_transfer_func->type =
2193 update->out_transfer_func->type;
2194 memcpy(&stream->out_transfer_func->tf_pts,
2195 &update->out_transfer_func->tf_pts,
2196 sizeof(struct dc_transfer_func_distributed_points));
2197 }
2198
2199 if (update->hdr_static_metadata)
2200 stream->hdr_static_metadata = *update->hdr_static_metadata;
2201
2202 if (update->abm_level)
2203 stream->abm_level = *update->abm_level;
2204
2205 if (update->periodic_interrupt)
2206 stream->periodic_interrupt = *update->periodic_interrupt;
2207
2208 if (update->gamut_remap)
2209 stream->gamut_remap_matrix = *update->gamut_remap;
2210
2211 /* Note: this being updated after mode set is currently not a use case
2212 * however if it arises OCSC would need to be reprogrammed at the
2213 * minimum
2214 */
2215 if (update->output_color_space)
2216 stream->output_color_space = *update->output_color_space;
2217
2218 if (update->output_csc_transform)
2219 stream->csc_color_matrix = *update->output_csc_transform;
2220
2221 if (update->vrr_infopacket)
2222 stream->vrr_infopacket = *update->vrr_infopacket;
2223
2224 if (update->dpms_off)
2225 stream->dpms_off = *update->dpms_off;
2226
2227 if (update->vsc_infopacket)
2228 stream->vsc_infopacket = *update->vsc_infopacket;
2229
2230 if (update->vsp_infopacket)
2231 stream->vsp_infopacket = *update->vsp_infopacket;
2232
2233 if (update->dither_option)
2234 stream->dither_option = *update->dither_option;
2235 /* update current stream with writeback info */
2236 if (update->wb_update) {
2237 int i;
2238
2239 stream->num_wb_info = update->wb_update->num_wb_info;
2240 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2241 for (i = 0; i < stream->num_wb_info; i++)
2242 stream->writeback_info[i] =
2243 update->wb_update->writeback_info[i];
2244 }
2245 if (update->dsc_config) {
2246 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2247 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2248 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2249 update->dsc_config->num_slices_v != 0);
2250
2251 /* Use temporarry context for validating new DSC config */
2252 struct dc_state *dsc_validate_context = dc_create_state(dc);
2253
2254 if (dsc_validate_context) {
2255 dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2256
2257 stream->timing.dsc_cfg = *update->dsc_config;
2258 stream->timing.flags.DSC = enable_dsc;
2259 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2260 stream->timing.dsc_cfg = old_dsc_cfg;
2261 stream->timing.flags.DSC = old_dsc_enabled;
2262 update->dsc_config = NULL;
2263 }
2264
2265 dc_release_state(dsc_validate_context);
2266 } else {
2267 DC_ERROR("Failed to allocate new validate context for DSC change\n");
2268 update->dsc_config = NULL;
2269 }
2270 }
2271 }
2272
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2273 static void commit_planes_do_stream_update(struct dc *dc,
2274 struct dc_stream_state *stream,
2275 struct dc_stream_update *stream_update,
2276 enum surface_update_type update_type,
2277 struct dc_state *context)
2278 {
2279 int j;
2280 bool should_program_abm;
2281
2282 // Stream updates
2283 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2284 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2285
2286 if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
2287
2288 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
2289 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
2290
2291 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
2292 stream_update->vrr_infopacket ||
2293 stream_update->vsc_infopacket ||
2294 stream_update->vsp_infopacket) {
2295 resource_build_info_frame(pipe_ctx);
2296 dc->hwss.update_info_frame(pipe_ctx);
2297 }
2298
2299 if (stream_update->hdr_static_metadata &&
2300 stream->use_dynamic_meta &&
2301 dc->hwss.set_dmdata_attributes &&
2302 pipe_ctx->stream->dmdata_address.quad_part != 0)
2303 dc->hwss.set_dmdata_attributes(pipe_ctx);
2304
2305 if (stream_update->gamut_remap)
2306 dc_stream_set_gamut_remap(dc, stream);
2307
2308 if (stream_update->output_csc_transform)
2309 dc_stream_program_csc_matrix(dc, stream);
2310
2311 if (stream_update->dither_option) {
2312 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2313 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
2314 &pipe_ctx->stream->bit_depth_params);
2315 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
2316 &stream->bit_depth_params,
2317 &stream->clamping);
2318 while (odm_pipe) {
2319 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
2320 &stream->bit_depth_params,
2321 &stream->clamping);
2322 odm_pipe = odm_pipe->next_odm_pipe;
2323 }
2324 }
2325
2326 /* Full fe update*/
2327 if (update_type == UPDATE_TYPE_FAST)
2328 continue;
2329
2330 if (stream_update->dsc_config)
2331 dp_update_dsc_config(pipe_ctx);
2332
2333 if (stream_update->dpms_off) {
2334 if (*stream_update->dpms_off) {
2335 core_link_disable_stream(pipe_ctx);
2336 /* for dpms, keep acquired resources*/
2337 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
2338 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2339
2340 dc->optimized_required = true;
2341
2342 } else {
2343 if (dc->optimize_seamless_boot_streams == 0)
2344 dc->hwss.prepare_bandwidth(dc, dc->current_state);
2345
2346 core_link_enable_stream(dc->current_state, pipe_ctx);
2347 }
2348 }
2349
2350 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
2351 should_program_abm = true;
2352
2353 // if otg funcs defined check if blanked before programming
2354 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
2355 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
2356 should_program_abm = false;
2357
2358 if (should_program_abm) {
2359 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
2360 dc->hwss.set_abm_immediate_disable(pipe_ctx);
2361 } else {
2362 pipe_ctx->stream_res.abm->funcs->set_abm_level(
2363 pipe_ctx->stream_res.abm, stream->abm_level);
2364 }
2365 }
2366 }
2367 }
2368 }
2369 }
2370
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2371 static void commit_planes_for_stream(struct dc *dc,
2372 struct dc_surface_update *srf_updates,
2373 int surface_count,
2374 struct dc_stream_state *stream,
2375 struct dc_stream_update *stream_update,
2376 enum surface_update_type update_type,
2377 struct dc_state *context)
2378 {
2379 bool mpcc_disconnected = false;
2380 int i, j;
2381 struct pipe_ctx *top_pipe_to_program = NULL;
2382
2383 if (dc->optimize_seamless_boot_streams > 0 && surface_count > 0) {
2384 /* Optimize seamless boot flag keeps clocks and watermarks high until
2385 * first flip. After first flip, optimization is required to lower
2386 * bandwidth. Important to note that it is expected UEFI will
2387 * only light up a single display on POST, therefore we only expect
2388 * one stream with seamless boot flag set.
2389 */
2390 if (stream->apply_seamless_boot_optimization) {
2391 stream->apply_seamless_boot_optimization = false;
2392 dc->optimize_seamless_boot_streams--;
2393
2394 if (dc->optimize_seamless_boot_streams == 0)
2395 dc->optimized_required = true;
2396 }
2397 }
2398
2399 if (update_type == UPDATE_TYPE_FULL) {
2400 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
2401 dc_allow_idle_optimizations(dc, false);
2402
2403 #endif
2404 if (dc->optimize_seamless_boot_streams == 0)
2405 dc->hwss.prepare_bandwidth(dc, context);
2406
2407 context_clock_trace(dc, context);
2408 }
2409
2410 if (update_type != UPDATE_TYPE_FAST && dc->hwss.interdependent_update_lock &&
2411 dc->hwss.disconnect_pipes && dc->hwss.wait_for_pending_cleared){
2412 dc->hwss.interdependent_update_lock(dc, context, true);
2413 mpcc_disconnected = dc->hwss.disconnect_pipes(dc, context);
2414 dc->hwss.interdependent_update_lock(dc, context, false);
2415 if (mpcc_disconnected)
2416 dc->hwss.wait_for_pending_cleared(dc, context);
2417 }
2418
2419 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2420 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2421
2422 if (!pipe_ctx->top_pipe &&
2423 !pipe_ctx->prev_odm_pipe &&
2424 pipe_ctx->stream &&
2425 pipe_ctx->stream == stream) {
2426 top_pipe_to_program = pipe_ctx;
2427 }
2428 }
2429
2430 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2431 if (top_pipe_to_program &&
2432 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2433 if (should_use_dmub_lock(stream->link)) {
2434 union dmub_hw_lock_flags hw_locks = { 0 };
2435 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2436
2437 hw_locks.bits.lock_dig = 1;
2438 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2439
2440 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2441 true,
2442 &hw_locks,
2443 &inst_flags);
2444 } else
2445 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
2446 top_pipe_to_program->stream_res.tg);
2447 }
2448
2449 if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2450 dc->hwss.interdependent_update_lock(dc, context, true);
2451 else
2452 /* Lock the top pipe while updating plane addrs, since freesync requires
2453 * plane addr update event triggers to be synchronized.
2454 * top_pipe_to_program is expected to never be NULL
2455 */
2456 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
2457
2458
2459 // Stream updates
2460 if (stream_update)
2461 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
2462
2463 if (surface_count == 0) {
2464 /*
2465 * In case of turning off screen, no need to program front end a second time.
2466 * just return after program blank.
2467 */
2468 if (dc->hwss.apply_ctx_for_surface)
2469 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
2470 if (dc->hwss.program_front_end_for_ctx)
2471 dc->hwss.program_front_end_for_ctx(dc, context);
2472
2473 if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2474 dc->hwss.interdependent_update_lock(dc, context, false);
2475 else
2476 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2477
2478 dc->hwss.post_unlock_program_front_end(dc, context);
2479 return;
2480 }
2481
2482 if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
2483 for (i = 0; i < surface_count; i++) {
2484 struct dc_plane_state *plane_state = srf_updates[i].surface;
2485 /*set logical flag for lock/unlock use*/
2486 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2487 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2488 if (!pipe_ctx->plane_state)
2489 continue;
2490 if (pipe_ctx->plane_state != plane_state)
2491 continue;
2492 plane_state->triplebuffer_flips = false;
2493 if (update_type == UPDATE_TYPE_FAST &&
2494 dc->hwss.program_triplebuffer != NULL &&
2495 !plane_state->flip_immediate && dc->debug.enable_tri_buf) {
2496 /*triple buffer for VUpdate only*/
2497 plane_state->triplebuffer_flips = true;
2498 }
2499 }
2500 if (update_type == UPDATE_TYPE_FULL) {
2501 /* force vsync flip when reconfiguring pipes to prevent underflow */
2502 plane_state->flip_immediate = false;
2503 }
2504 }
2505 }
2506
2507 // Update Type FULL, Surface updates
2508 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2509 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2510
2511 if (!pipe_ctx->top_pipe &&
2512 !pipe_ctx->prev_odm_pipe &&
2513 pipe_ctx->stream &&
2514 pipe_ctx->stream == stream) {
2515 struct dc_stream_status *stream_status = NULL;
2516
2517 if (!pipe_ctx->plane_state)
2518 continue;
2519
2520 /* Full fe update*/
2521 if (update_type == UPDATE_TYPE_FAST)
2522 continue;
2523
2524 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
2525
2526 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2527 /*turn off triple buffer for full update*/
2528 dc->hwss.program_triplebuffer(
2529 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
2530 }
2531 stream_status =
2532 stream_get_status(context, pipe_ctx->stream);
2533
2534 if (dc->hwss.apply_ctx_for_surface)
2535 dc->hwss.apply_ctx_for_surface(
2536 dc, pipe_ctx->stream, stream_status->plane_count, context);
2537 }
2538 }
2539 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
2540 dc->hwss.program_front_end_for_ctx(dc, context);
2541 #ifdef CONFIG_DRM_AMD_DC_DCN
2542 if (dc->debug.validate_dml_output) {
2543 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2544 struct pipe_ctx cur_pipe = context->res_ctx.pipe_ctx[i];
2545 if (cur_pipe.stream == NULL)
2546 continue;
2547
2548 cur_pipe.plane_res.hubp->funcs->validate_dml_output(
2549 cur_pipe.plane_res.hubp, dc->ctx,
2550 &context->res_ctx.pipe_ctx[i].rq_regs,
2551 &context->res_ctx.pipe_ctx[i].dlg_regs,
2552 &context->res_ctx.pipe_ctx[i].ttu_regs);
2553 }
2554 }
2555 #endif
2556 }
2557
2558 // Update Type FAST, Surface updates
2559 if (update_type == UPDATE_TYPE_FAST) {
2560 if (dc->hwss.set_flip_control_gsl)
2561 for (i = 0; i < surface_count; i++) {
2562 struct dc_plane_state *plane_state = srf_updates[i].surface;
2563
2564 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2565 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2566
2567 if (pipe_ctx->stream != stream)
2568 continue;
2569
2570 if (pipe_ctx->plane_state != plane_state)
2571 continue;
2572
2573 // GSL has to be used for flip immediate
2574 dc->hwss.set_flip_control_gsl(pipe_ctx,
2575 plane_state->flip_immediate);
2576 }
2577 }
2578 /* Perform requested Updates */
2579 for (i = 0; i < surface_count; i++) {
2580 struct dc_plane_state *plane_state = srf_updates[i].surface;
2581
2582 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2583 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2584
2585 if (pipe_ctx->stream != stream)
2586 continue;
2587
2588 if (pipe_ctx->plane_state != plane_state)
2589 continue;
2590 /*program triple buffer after lock based on flip type*/
2591 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2592 /*only enable triplebuffer for fast_update*/
2593 dc->hwss.program_triplebuffer(
2594 dc, pipe_ctx, plane_state->triplebuffer_flips);
2595 }
2596 if (srf_updates[i].flip_addr)
2597 dc->hwss.update_plane_addr(dc, pipe_ctx);
2598 }
2599 }
2600 }
2601
2602 if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2603 dc->hwss.interdependent_update_lock(dc, context, false);
2604 else
2605 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2606
2607 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2608 if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2609 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2610 top_pipe_to_program->stream_res.tg,
2611 CRTC_STATE_VACTIVE);
2612 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2613 top_pipe_to_program->stream_res.tg,
2614 CRTC_STATE_VBLANK);
2615 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2616 top_pipe_to_program->stream_res.tg,
2617 CRTC_STATE_VACTIVE);
2618
2619 if (stream && should_use_dmub_lock(stream->link)) {
2620 union dmub_hw_lock_flags hw_locks = { 0 };
2621 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2622
2623 hw_locks.bits.lock_dig = 1;
2624 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2625
2626 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2627 false,
2628 &hw_locks,
2629 &inst_flags);
2630 } else
2631 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
2632 top_pipe_to_program->stream_res.tg);
2633 }
2634
2635 if (update_type != UPDATE_TYPE_FAST)
2636 dc->hwss.post_unlock_program_front_end(dc, context);
2637
2638 // Fire manual trigger only when bottom plane is flipped
2639 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2640 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2641
2642 if (pipe_ctx->bottom_pipe ||
2643 !pipe_ctx->stream ||
2644 pipe_ctx->stream != stream ||
2645 !pipe_ctx->plane_state->update_flags.bits.addr_update)
2646 continue;
2647
2648 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
2649 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
2650 }
2651 }
2652
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)2653 void dc_commit_updates_for_stream(struct dc *dc,
2654 struct dc_surface_update *srf_updates,
2655 int surface_count,
2656 struct dc_stream_state *stream,
2657 struct dc_stream_update *stream_update,
2658 struct dc_state *state)
2659 {
2660 const struct dc_stream_status *stream_status;
2661 enum surface_update_type update_type;
2662 struct dc_state *context;
2663 struct dc_context *dc_ctx = dc->ctx;
2664 int i, j;
2665
2666 stream_status = dc_stream_get_status(stream);
2667 context = dc->current_state;
2668
2669 update_type = dc_check_update_surfaces_for_stream(
2670 dc, srf_updates, surface_count, stream_update, stream_status);
2671
2672 if (update_type >= update_surface_trace_level)
2673 update_surface_trace(dc, srf_updates, surface_count);
2674
2675
2676 if (update_type >= UPDATE_TYPE_FULL) {
2677
2678 /* initialize scratch memory for building context */
2679 context = dc_create_state(dc);
2680 if (context == NULL) {
2681 DC_ERROR("Failed to allocate new validate context!\n");
2682 return;
2683 }
2684
2685 dc_resource_state_copy_construct(state, context);
2686
2687 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2688 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
2689 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2690
2691 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
2692 new_pipe->plane_state->force_full_update = true;
2693 }
2694 }
2695
2696
2697 for (i = 0; i < surface_count; i++) {
2698 struct dc_plane_state *surface = srf_updates[i].surface;
2699
2700 copy_surface_update_to_plane(surface, &srf_updates[i]);
2701
2702 if (update_type >= UPDATE_TYPE_MED) {
2703 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2704 struct pipe_ctx *pipe_ctx =
2705 &context->res_ctx.pipe_ctx[j];
2706
2707 if (pipe_ctx->plane_state != surface)
2708 continue;
2709
2710 resource_build_scaling_params(pipe_ctx);
2711 }
2712 }
2713 }
2714
2715 copy_stream_update_to_stream(dc, context, stream, stream_update);
2716
2717 if (update_type >= UPDATE_TYPE_FULL) {
2718 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
2719 DC_ERROR("Mode validation failed for stream update!\n");
2720 dc_release_state(context);
2721 return;
2722 }
2723 }
2724
2725 commit_planes_for_stream(
2726 dc,
2727 srf_updates,
2728 surface_count,
2729 stream,
2730 stream_update,
2731 update_type,
2732 context);
2733 /*update current_State*/
2734 if (dc->current_state != context) {
2735
2736 struct dc_state *old = dc->current_state;
2737
2738 dc->current_state = context;
2739 dc_release_state(old);
2740
2741 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2742 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2743
2744 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
2745 pipe_ctx->plane_state->force_full_update = false;
2746 }
2747 }
2748 /*let's use current_state to update watermark etc*/
2749 if (update_type >= UPDATE_TYPE_FULL)
2750 dc_post_update_surfaces_to_stream(dc);
2751
2752 return;
2753
2754 }
2755
dc_get_current_stream_count(struct dc * dc)2756 uint8_t dc_get_current_stream_count(struct dc *dc)
2757 {
2758 return dc->current_state->stream_count;
2759 }
2760
dc_get_stream_at_index(struct dc * dc,uint8_t i)2761 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
2762 {
2763 if (i < dc->current_state->stream_count)
2764 return dc->current_state->streams[i];
2765 return NULL;
2766 }
2767
dc_stream_find_from_link(const struct dc_link * link)2768 struct dc_stream_state *dc_stream_find_from_link(const struct dc_link *link)
2769 {
2770 uint8_t i;
2771 struct dc_context *ctx = link->ctx;
2772
2773 for (i = 0; i < ctx->dc->current_state->stream_count; i++) {
2774 if (ctx->dc->current_state->streams[i]->link == link)
2775 return ctx->dc->current_state->streams[i];
2776 }
2777
2778 return NULL;
2779 }
2780
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)2781 enum dc_irq_source dc_interrupt_to_irq_source(
2782 struct dc *dc,
2783 uint32_t src_id,
2784 uint32_t ext_id)
2785 {
2786 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
2787 }
2788
2789 /**
2790 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
2791 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)2792 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
2793 {
2794
2795 if (dc == NULL)
2796 return false;
2797
2798 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
2799 }
2800
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)2801 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
2802 {
2803 dal_irq_service_ack(dc->res_pool->irqs, src);
2804 }
2805
dc_power_down_on_boot(struct dc * dc)2806 void dc_power_down_on_boot(struct dc *dc)
2807 {
2808 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
2809 dc->hwss.power_down_on_boot)
2810 dc->hwss.power_down_on_boot(dc);
2811 }
2812
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)2813 void dc_set_power_state(
2814 struct dc *dc,
2815 enum dc_acpi_cm_power_state power_state)
2816 {
2817 struct kref refcount;
2818 struct display_mode_lib *dml;
2819
2820 switch (power_state) {
2821 case DC_ACPI_CM_POWER_STATE_D0:
2822 dc_resource_state_construct(dc, dc->current_state);
2823
2824 if (dc->ctx->dmub_srv)
2825 dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
2826
2827 dc->hwss.init_hw(dc);
2828
2829 if (dc->hwss.init_sys_ctx != NULL &&
2830 dc->vm_pa_config.valid) {
2831 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
2832 }
2833
2834 break;
2835 default:
2836 ASSERT(dc->current_state->stream_count == 0);
2837 /* Zero out the current context so that on resume we start with
2838 * clean state, and dc hw programming optimizations will not
2839 * cause any trouble.
2840 */
2841 dml = kzalloc(sizeof(struct display_mode_lib),
2842 GFP_KERNEL);
2843
2844 ASSERT(dml);
2845 if (!dml)
2846 return;
2847
2848 /* Preserve refcount */
2849 refcount = dc->current_state->refcount;
2850 /* Preserve display mode lib */
2851 memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
2852
2853 dc_resource_state_destruct(dc->current_state);
2854 memset(dc->current_state, 0,
2855 sizeof(*dc->current_state));
2856
2857 dc->current_state->refcount = refcount;
2858 dc->current_state->bw_ctx.dml = *dml;
2859
2860 kfree(dml);
2861
2862 break;
2863 }
2864 }
2865
dc_resume(struct dc * dc)2866 void dc_resume(struct dc *dc)
2867 {
2868 uint32_t i;
2869
2870 for (i = 0; i < dc->link_count; i++)
2871 core_link_resume(dc->links[i]);
2872 }
2873
dc_is_dmcu_initialized(struct dc * dc)2874 bool dc_is_dmcu_initialized(struct dc *dc)
2875 {
2876 struct dmcu *dmcu = dc->res_pool->dmcu;
2877
2878 if (dmcu)
2879 return dmcu->funcs->is_dmcu_initialized(dmcu);
2880 return false;
2881 }
2882
dc_submit_i2c(struct dc * dc,uint32_t link_index,struct i2c_command * cmd)2883 bool dc_submit_i2c(
2884 struct dc *dc,
2885 uint32_t link_index,
2886 struct i2c_command *cmd)
2887 {
2888
2889 struct dc_link *link = dc->links[link_index];
2890 struct ddc_service *ddc = link->ddc;
2891 return dce_i2c_submit_command(
2892 dc->res_pool,
2893 ddc->ddc_pin,
2894 cmd);
2895 }
2896
dc_submit_i2c_oem(struct dc * dc,struct i2c_command * cmd)2897 bool dc_submit_i2c_oem(
2898 struct dc *dc,
2899 struct i2c_command *cmd)
2900 {
2901 struct ddc_service *ddc = dc->res_pool->oem_device;
2902 return dce_i2c_submit_command(
2903 dc->res_pool,
2904 ddc->ddc_pin,
2905 cmd);
2906 }
2907
link_add_remote_sink_helper(struct dc_link * dc_link,struct dc_sink * sink)2908 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
2909 {
2910 if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
2911 BREAK_TO_DEBUGGER();
2912 return false;
2913 }
2914
2915 dc_sink_retain(sink);
2916
2917 dc_link->remote_sinks[dc_link->sink_count] = sink;
2918 dc_link->sink_count++;
2919
2920 return true;
2921 }
2922
2923 /**
2924 * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
2925 *
2926 * EDID length is in bytes
2927 */
dc_link_add_remote_sink(struct dc_link * link,const uint8_t * edid,int len,struct dc_sink_init_data * init_data)2928 struct dc_sink *dc_link_add_remote_sink(
2929 struct dc_link *link,
2930 const uint8_t *edid,
2931 int len,
2932 struct dc_sink_init_data *init_data)
2933 {
2934 struct dc_sink *dc_sink;
2935 enum dc_edid_status edid_status;
2936
2937 if (len > DC_MAX_EDID_BUFFER_SIZE) {
2938 dm_error("Max EDID buffer size breached!\n");
2939 return NULL;
2940 }
2941
2942 if (!init_data) {
2943 BREAK_TO_DEBUGGER();
2944 return NULL;
2945 }
2946
2947 if (!init_data->link) {
2948 BREAK_TO_DEBUGGER();
2949 return NULL;
2950 }
2951
2952 dc_sink = dc_sink_create(init_data);
2953
2954 if (!dc_sink)
2955 return NULL;
2956
2957 memmove(dc_sink->dc_edid.raw_edid, edid, len);
2958 dc_sink->dc_edid.length = len;
2959
2960 if (!link_add_remote_sink_helper(
2961 link,
2962 dc_sink))
2963 goto fail_add_sink;
2964
2965 edid_status = dm_helpers_parse_edid_caps(
2966 link->ctx,
2967 &dc_sink->dc_edid,
2968 &dc_sink->edid_caps);
2969
2970 /*
2971 * Treat device as no EDID device if EDID
2972 * parsing fails
2973 */
2974 if (edid_status != EDID_OK) {
2975 dc_sink->dc_edid.length = 0;
2976 dm_error("Bad EDID, status%d!\n", edid_status);
2977 }
2978
2979 return dc_sink;
2980
2981 fail_add_sink:
2982 dc_sink_release(dc_sink);
2983 return NULL;
2984 }
2985
2986 /**
2987 * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
2988 *
2989 * Note that this just removes the struct dc_sink - it doesn't
2990 * program hardware or alter other members of dc_link
2991 */
dc_link_remove_remote_sink(struct dc_link * link,struct dc_sink * sink)2992 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
2993 {
2994 int i;
2995
2996 if (!link->sink_count) {
2997 BREAK_TO_DEBUGGER();
2998 return;
2999 }
3000
3001 for (i = 0; i < link->sink_count; i++) {
3002 if (link->remote_sinks[i] == sink) {
3003 dc_sink_release(sink);
3004 link->remote_sinks[i] = NULL;
3005
3006 /* shrink array to remove empty place */
3007 while (i < link->sink_count - 1) {
3008 link->remote_sinks[i] = link->remote_sinks[i+1];
3009 i++;
3010 }
3011 link->remote_sinks[i] = NULL;
3012 link->sink_count--;
3013 return;
3014 }
3015 }
3016 }
3017
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)3018 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
3019 {
3020 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
3021 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
3022 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
3023 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
3024 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
3025 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
3026 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
3027 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
3028 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
3029 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)3030 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
3031 {
3032 if (dc->hwss.set_clock)
3033 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
3034 return DC_ERROR_UNEXPECTED;
3035 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)3036 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
3037 {
3038 if (dc->hwss.get_clock)
3039 dc->hwss.get_clock(dc, clock_type, clock_cfg);
3040 }
3041
3042 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)3043 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
3044 {
3045 int i;
3046
3047 for (i = 0; i < dc->current_state->stream_count ; i++) {
3048 struct dc_link *link;
3049 struct dc_stream_state *stream = dc->current_state->streams[i];
3050
3051 link = stream->link;
3052 if (!link)
3053 continue;
3054
3055 if (link->psr_settings.psr_feature_enabled) {
3056 if (enable && !link->psr_settings.psr_allow_active)
3057 return dc_link_set_psr_allow_active(link, true, false);
3058 else if (!enable && link->psr_settings.psr_allow_active)
3059 return dc_link_set_psr_allow_active(link, false, true);
3060 }
3061 }
3062
3063 return true;
3064 }
3065
3066 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
3067
dc_allow_idle_optimizations(struct dc * dc,bool allow)3068 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
3069 {
3070 if (dc->debug.disable_idle_power_optimizations)
3071 return;
3072
3073 if (allow == dc->idle_optimizations_allowed)
3074 return;
3075
3076 if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
3077 dc->idle_optimizations_allowed = allow;
3078 }
3079
3080 /*
3081 * blank all streams, and set min and max memory clock to
3082 * lowest and highest DPM level, respectively
3083 */
dc_unlock_memory_clock_frequency(struct dc * dc)3084 void dc_unlock_memory_clock_frequency(struct dc *dc)
3085 {
3086 unsigned int i;
3087
3088 for (i = 0; i < MAX_PIPES; i++)
3089 if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3090 core_link_disable_stream(&dc->current_state->res_ctx.pipe_ctx[i]);
3091
3092 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
3093 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3094 }
3095
3096 /*
3097 * set min memory clock to the min required for current mode,
3098 * max to maxDPM, and unblank streams
3099 */
dc_lock_memory_clock_frequency(struct dc * dc)3100 void dc_lock_memory_clock_frequency(struct dc *dc)
3101 {
3102 unsigned int i;
3103
3104 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
3105 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
3106 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3107
3108 for (i = 0; i < MAX_PIPES; i++)
3109 if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3110 core_link_enable_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i]);
3111 }
3112
dc_is_plane_eligible_for_idle_optimizaitons(struct dc * dc,struct dc_plane_state * plane)3113 bool dc_is_plane_eligible_for_idle_optimizaitons(struct dc *dc,
3114 struct dc_plane_state *plane)
3115 {
3116 return false;
3117 }
3118 #endif
3119