• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 
28 #include "dm_services.h"
29 
30 #include "dc.h"
31 
32 #include "core_status.h"
33 #include "core_types.h"
34 #include "hw_sequencer.h"
35 #include "dce/dce_hwseq.h"
36 
37 #include "resource.h"
38 
39 #include "clk_mgr.h"
40 #include "clock_source.h"
41 #include "dc_bios_types.h"
42 
43 #include "bios_parser_interface.h"
44 #include "include/irq_service_interface.h"
45 #include "transform.h"
46 #include "dmcu.h"
47 #include "dpp.h"
48 #include "timing_generator.h"
49 #include "abm.h"
50 #include "virtual/virtual_link_encoder.h"
51 
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54 
55 #include "dc_link_ddc.h"
56 #include "dm_helpers.h"
57 #include "mem_input.h"
58 #include "hubp.h"
59 
60 #include "dc_link_dp.h"
61 #include "dc_dmub_srv.h"
62 
63 #include "dsc.h"
64 
65 #include "vm_helper.h"
66 
67 #include "dce/dce_i2c.h"
68 
69 #include "dmub/dmub_srv.h"
70 
71 #include "dce/dmub_hw_lock_mgr.h"
72 
73 #define CTX \
74 	dc->ctx
75 
76 #define DC_LOGGER \
77 	dc->ctx->logger
78 
79 static const char DC_BUILD_ID[] = "production-build";
80 
81 /**
82  * DOC: Overview
83  *
84  * DC is the OS-agnostic component of the amdgpu DC driver.
85  *
86  * DC maintains and validates a set of structs representing the state of the
87  * driver and writes that state to AMD hardware
88  *
89  * Main DC HW structs:
90  *
91  * struct dc - The central struct.  One per driver.  Created on driver load,
92  * destroyed on driver unload.
93  *
94  * struct dc_context - One per driver.
95  * Used as a backpointer by most other structs in dc.
96  *
97  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
98  * plugpoints).  Created on driver load, destroyed on driver unload.
99  *
100  * struct dc_sink - One per display.  Created on boot or hotplug.
101  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
102  * (the display directly attached).  It may also have one or more remote
103  * sinks (in the Multi-Stream Transport case)
104  *
105  * struct resource_pool - One per driver.  Represents the hw blocks not in the
106  * main pipeline.  Not directly accessible by dm.
107  *
108  * Main dc state structs:
109  *
110  * These structs can be created and destroyed as needed.  There is a full set of
111  * these structs in dc->current_state representing the currently programmed state.
112  *
113  * struct dc_state - The global DC state to track global state information,
114  * such as bandwidth values.
115  *
116  * struct dc_stream_state - Represents the hw configuration for the pipeline from
117  * a framebuffer to a display.  Maps one-to-one with dc_sink.
118  *
119  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
120  * and may have more in the Multi-Plane Overlay case.
121  *
122  * struct resource_context - Represents the programmable state of everything in
123  * the resource_pool.  Not directly accessible by dm.
124  *
125  * struct pipe_ctx - A member of struct resource_context.  Represents the
126  * internal hardware pipeline components.  Each dc_plane_state has either
127  * one or two (in the pipe-split case).
128  */
129 
130 /*******************************************************************************
131  * Private functions
132  ******************************************************************************/
133 
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)134 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
135 {
136 	if (new > *original)
137 		*original = new;
138 }
139 
destroy_links(struct dc * dc)140 static void destroy_links(struct dc *dc)
141 {
142 	uint32_t i;
143 
144 	for (i = 0; i < dc->link_count; i++) {
145 		if (NULL != dc->links[i])
146 			link_destroy(&dc->links[i]);
147 	}
148 }
149 
create_links(struct dc * dc,uint32_t num_virtual_links)150 static bool create_links(
151 		struct dc *dc,
152 		uint32_t num_virtual_links)
153 {
154 	int i;
155 	int connectors_num;
156 	struct dc_bios *bios = dc->ctx->dc_bios;
157 
158 	dc->link_count = 0;
159 
160 	connectors_num = bios->funcs->get_connectors_number(bios);
161 
162 	if (connectors_num > ENUM_ID_COUNT) {
163 		dm_error(
164 			"DC: Number of connectors %d exceeds maximum of %d!\n",
165 			connectors_num,
166 			ENUM_ID_COUNT);
167 		return false;
168 	}
169 
170 	dm_output_to_console(
171 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
172 		__func__,
173 		connectors_num,
174 		num_virtual_links);
175 
176 	for (i = 0; i < connectors_num; i++) {
177 		struct link_init_data link_init_params = {0};
178 		struct dc_link *link;
179 
180 		link_init_params.ctx = dc->ctx;
181 		/* next BIOS object table connector */
182 		link_init_params.connector_index = i;
183 		link_init_params.link_index = dc->link_count;
184 		link_init_params.dc = dc;
185 		link = link_create(&link_init_params);
186 
187 		if (link) {
188 			bool should_destory_link = false;
189 
190 			if (link->connector_signal == SIGNAL_TYPE_EDP) {
191 				if (dc->config.edp_not_connected) {
192 					if (!IS_DIAG_DC(dc->ctx->dce_environment))
193 						should_destory_link = true;
194 				} else {
195 					enum dc_connection_type type;
196 					dc_link_detect_sink(link, &type);
197 					if (type == dc_connection_none)
198 						should_destory_link = true;
199 				}
200 			}
201 
202 			if (dc->config.force_enum_edp || !should_destory_link) {
203 				dc->links[dc->link_count] = link;
204 				link->dc = dc;
205 				++dc->link_count;
206 			} else {
207 				link_destroy(&link);
208 			}
209 		}
210 	}
211 
212 	for (i = 0; i < num_virtual_links; i++) {
213 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
214 		struct encoder_init_data enc_init = {0};
215 
216 		if (link == NULL) {
217 			BREAK_TO_DEBUGGER();
218 			goto failed_alloc;
219 		}
220 
221 		link->link_index = dc->link_count;
222 		dc->links[dc->link_count] = link;
223 		dc->link_count++;
224 
225 		link->ctx = dc->ctx;
226 		link->dc = dc;
227 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
228 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
229 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
230 		link->link_id.enum_id = ENUM_ID_1;
231 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
232 
233 		if (!link->link_enc) {
234 			BREAK_TO_DEBUGGER();
235 			goto failed_alloc;
236 		}
237 
238 		link->link_status.dpcd_caps = &link->dpcd_caps;
239 
240 		enc_init.ctx = dc->ctx;
241 		enc_init.channel = CHANNEL_ID_UNKNOWN;
242 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
243 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
244 		enc_init.connector = link->link_id;
245 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
246 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
247 		enc_init.encoder.enum_id = ENUM_ID_1;
248 		virtual_link_encoder_construct(link->link_enc, &enc_init);
249 	}
250 
251 	return true;
252 
253 failed_alloc:
254 	return false;
255 }
256 
dc_perf_trace_create(void)257 static struct dc_perf_trace *dc_perf_trace_create(void)
258 {
259 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
260 }
261 
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)262 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
263 {
264 	kfree(*perf_trace);
265 	*perf_trace = NULL;
266 }
267 
268 /**
269  *****************************************************************************
270  *  Function: dc_stream_adjust_vmin_vmax
271  *
272  *  @brief
273  *     Looks up the pipe context of dc_stream_state and updates the
274  *     vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
275  *     Rate, which is a power-saving feature that targets reducing panel
276  *     refresh rate while the screen is static
277  *
278  *  @param [in] dc: dc reference
279  *  @param [in] stream: Initial dc stream state
280  *  @param [in] adjust: Updated parameters for vertical_total_min and
281  *  vertical_total_max
282  *****************************************************************************
283  */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)284 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
285 		struct dc_stream_state *stream,
286 		struct dc_crtc_timing_adjust *adjust)
287 {
288 	int i = 0;
289 	bool ret = false;
290 
291 	stream->adjust = *adjust;
292 
293 	for (i = 0; i < MAX_PIPES; i++) {
294 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
295 
296 		if (pipe->stream == stream && pipe->stream_res.tg) {
297 			dc->hwss.set_drr(&pipe,
298 					1,
299 					adjust->v_total_min,
300 					adjust->v_total_max,
301 					adjust->v_total_mid,
302 					adjust->v_total_mid_frame_num);
303 
304 			ret = true;
305 		}
306 	}
307 	return ret;
308 }
309 
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)310 bool dc_stream_get_crtc_position(struct dc *dc,
311 		struct dc_stream_state **streams, int num_streams,
312 		unsigned int *v_pos, unsigned int *nom_v_pos)
313 {
314 	/* TODO: Support multiple streams */
315 	const struct dc_stream_state *stream = streams[0];
316 	int i = 0;
317 	bool ret = false;
318 	struct crtc_position position;
319 
320 	for (i = 0; i < MAX_PIPES; i++) {
321 		struct pipe_ctx *pipe =
322 				&dc->current_state->res_ctx.pipe_ctx[i];
323 
324 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
325 			dc->hwss.get_position(&pipe, 1, &position);
326 
327 			*v_pos = position.vertical_count;
328 			*nom_v_pos = position.nominal_vcount;
329 			ret = true;
330 		}
331 	}
332 	return ret;
333 }
334 
335 /**
336  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
337  * @dc: DC Object
338  * @stream: The stream to configure CRC on.
339  * @enable: Enable CRC if true, disable otherwise.
340  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
341  *              once.
342  *
343  * By default, only CRC0 is configured, and the entire frame is used to
344  * calculate the crc.
345  */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,bool enable,bool continuous)346 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
347 			     bool enable, bool continuous)
348 {
349 	int i;
350 	struct pipe_ctx *pipe;
351 	struct crc_params param;
352 	struct timing_generator *tg;
353 
354 	for (i = 0; i < MAX_PIPES; i++) {
355 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
356 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
357 			break;
358 	}
359 	/* Stream not found */
360 	if (i == MAX_PIPES)
361 		return false;
362 
363 	/* Always capture the full frame */
364 	param.windowa_x_start = 0;
365 	param.windowa_y_start = 0;
366 	param.windowa_x_end = pipe->stream->timing.h_addressable;
367 	param.windowa_y_end = pipe->stream->timing.v_addressable;
368 	param.windowb_x_start = 0;
369 	param.windowb_y_start = 0;
370 	param.windowb_x_end = pipe->stream->timing.h_addressable;
371 	param.windowb_y_end = pipe->stream->timing.v_addressable;
372 
373 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
374 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
375 
376 	/* Default to the union of both windows */
377 	param.selection = UNION_WINDOW_A_B;
378 	param.continuous_mode = continuous;
379 	param.enable = enable;
380 
381 	tg = pipe->stream_res.tg;
382 
383 	/* Only call if supported */
384 	if (tg->funcs->configure_crc)
385 		return tg->funcs->configure_crc(tg, &param);
386 	DC_LOG_WARNING("CRC capture not supported.");
387 	return false;
388 }
389 
390 /**
391  * dc_stream_get_crc() - Get CRC values for the given stream.
392  * @dc: DC object
393  * @stream: The DC stream state of the stream to get CRCs from.
394  * @r_cr, g_y, b_cb: CRC values for the three channels are stored here.
395  *
396  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
397  * Return false if stream is not found, or if CRCs are not enabled.
398  */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)399 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
400 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
401 {
402 	int i;
403 	struct pipe_ctx *pipe;
404 	struct timing_generator *tg;
405 
406 	for (i = 0; i < MAX_PIPES; i++) {
407 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
408 		if (pipe->stream == stream)
409 			break;
410 	}
411 	/* Stream not found */
412 	if (i == MAX_PIPES)
413 		return false;
414 
415 	tg = pipe->stream_res.tg;
416 
417 	if (tg->funcs->get_crc)
418 		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
419 	DC_LOG_WARNING("CRC capture not supported.");
420 	return false;
421 }
422 
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)423 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
424 		enum dc_dynamic_expansion option)
425 {
426 	/* OPP FMT dyn expansion updates*/
427 	int i = 0;
428 	struct pipe_ctx *pipe_ctx;
429 
430 	for (i = 0; i < MAX_PIPES; i++) {
431 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
432 				== stream) {
433 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
434 			pipe_ctx->stream_res.opp->dyn_expansion = option;
435 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
436 					pipe_ctx->stream_res.opp,
437 					COLOR_SPACE_YCBCR601,
438 					stream->timing.display_color_depth,
439 					stream->signal);
440 		}
441 	}
442 }
443 
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)444 void dc_stream_set_dither_option(struct dc_stream_state *stream,
445 		enum dc_dither_option option)
446 {
447 	struct bit_depth_reduction_params params;
448 	struct dc_link *link = stream->link;
449 	struct pipe_ctx *pipes = NULL;
450 	int i;
451 
452 	for (i = 0; i < MAX_PIPES; i++) {
453 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
454 				stream) {
455 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
456 			break;
457 		}
458 	}
459 
460 	if (!pipes)
461 		return;
462 	if (option > DITHER_OPTION_MAX)
463 		return;
464 
465 	stream->dither_option = option;
466 
467 	memset(&params, 0, sizeof(params));
468 	resource_build_bit_depth_reduction_params(stream, &params);
469 	stream->bit_depth_params = params;
470 
471 	if (pipes->plane_res.xfm &&
472 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
473 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
474 			pipes->plane_res.xfm,
475 			pipes->plane_res.scl_data.lb_params.depth,
476 			&stream->bit_depth_params);
477 	}
478 
479 	pipes->stream_res.opp->funcs->
480 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
481 }
482 
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)483 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
484 {
485 	int i = 0;
486 	bool ret = false;
487 	struct pipe_ctx *pipes;
488 
489 	for (i = 0; i < MAX_PIPES; i++) {
490 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
491 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
492 			dc->hwss.program_gamut_remap(pipes);
493 			ret = true;
494 		}
495 	}
496 
497 	return ret;
498 }
499 
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)500 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
501 {
502 	int i = 0;
503 	bool ret = false;
504 	struct pipe_ctx *pipes;
505 
506 	for (i = 0; i < MAX_PIPES; i++) {
507 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
508 				== stream) {
509 
510 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
511 			dc->hwss.program_output_csc(dc,
512 					pipes,
513 					stream->output_color_space,
514 					stream->csc_color_matrix.matrix,
515 					pipes->stream_res.opp->inst);
516 			ret = true;
517 		}
518 	}
519 
520 	return ret;
521 }
522 
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)523 void dc_stream_set_static_screen_params(struct dc *dc,
524 		struct dc_stream_state **streams,
525 		int num_streams,
526 		const struct dc_static_screen_params *params)
527 {
528 	int i = 0;
529 	int j = 0;
530 	struct pipe_ctx *pipes_affected[MAX_PIPES];
531 	int num_pipes_affected = 0;
532 
533 	for (i = 0; i < num_streams; i++) {
534 		struct dc_stream_state *stream = streams[i];
535 
536 		for (j = 0; j < MAX_PIPES; j++) {
537 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
538 					== stream) {
539 				pipes_affected[num_pipes_affected++] =
540 						&dc->current_state->res_ctx.pipe_ctx[j];
541 			}
542 		}
543 	}
544 
545 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
546 }
547 
dc_destruct(struct dc * dc)548 static void dc_destruct(struct dc *dc)
549 {
550 	if (dc->current_state) {
551 		dc_release_state(dc->current_state);
552 		dc->current_state = NULL;
553 	}
554 
555 	destroy_links(dc);
556 
557 	if (dc->clk_mgr) {
558 		dc_destroy_clk_mgr(dc->clk_mgr);
559 		dc->clk_mgr = NULL;
560 	}
561 
562 	dc_destroy_resource_pool(dc);
563 
564 	if (dc->ctx->gpio_service)
565 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
566 
567 	if (dc->ctx->created_bios)
568 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
569 
570 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
571 
572 	kfree(dc->ctx);
573 	dc->ctx = NULL;
574 
575 	kfree(dc->bw_vbios);
576 	dc->bw_vbios = NULL;
577 
578 	kfree(dc->bw_dceip);
579 	dc->bw_dceip = NULL;
580 
581 #ifdef CONFIG_DRM_AMD_DC_DCN
582 	kfree(dc->dcn_soc);
583 	dc->dcn_soc = NULL;
584 
585 	kfree(dc->dcn_ip);
586 	dc->dcn_ip = NULL;
587 
588 #endif
589 	kfree(dc->vm_helper);
590 	dc->vm_helper = NULL;
591 
592 }
593 
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)594 static bool dc_construct_ctx(struct dc *dc,
595 		const struct dc_init_data *init_params)
596 {
597 	struct dc_context *dc_ctx;
598 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
599 
600 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
601 	if (!dc_ctx)
602 		return false;
603 
604 	dc_ctx->cgs_device = init_params->cgs_device;
605 	dc_ctx->driver_context = init_params->driver;
606 	dc_ctx->dc = dc;
607 	dc_ctx->asic_id = init_params->asic_id;
608 	dc_ctx->dc_sink_id_count = 0;
609 	dc_ctx->dc_stream_id_count = 0;
610 	dc_ctx->dce_environment = init_params->dce_environment;
611 
612 	/* Create logger */
613 
614 	dc_version = resource_parse_asic_id(init_params->asic_id);
615 	dc_ctx->dce_version = dc_version;
616 
617 	dc_ctx->perf_trace = dc_perf_trace_create();
618 	if (!dc_ctx->perf_trace) {
619 		ASSERT_CRITICAL(false);
620 		return false;
621 	}
622 
623 	dc->ctx = dc_ctx;
624 
625 	return true;
626 }
627 
dc_construct(struct dc * dc,const struct dc_init_data * init_params)628 static bool dc_construct(struct dc *dc,
629 		const struct dc_init_data *init_params)
630 {
631 	struct dc_context *dc_ctx;
632 	struct bw_calcs_dceip *dc_dceip;
633 	struct bw_calcs_vbios *dc_vbios;
634 #ifdef CONFIG_DRM_AMD_DC_DCN
635 	struct dcn_soc_bounding_box *dcn_soc;
636 	struct dcn_ip_params *dcn_ip;
637 #endif
638 
639 	dc->config = init_params->flags;
640 
641 	// Allocate memory for the vm_helper
642 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
643 	if (!dc->vm_helper) {
644 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
645 		goto fail;
646 	}
647 
648 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
649 
650 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
651 	if (!dc_dceip) {
652 		dm_error("%s: failed to create dceip\n", __func__);
653 		goto fail;
654 	}
655 
656 	dc->bw_dceip = dc_dceip;
657 
658 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
659 	if (!dc_vbios) {
660 		dm_error("%s: failed to create vbios\n", __func__);
661 		goto fail;
662 	}
663 
664 	dc->bw_vbios = dc_vbios;
665 #ifdef CONFIG_DRM_AMD_DC_DCN
666 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
667 	if (!dcn_soc) {
668 		dm_error("%s: failed to create dcn_soc\n", __func__);
669 		goto fail;
670 	}
671 
672 	dc->dcn_soc = dcn_soc;
673 
674 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
675 	if (!dcn_ip) {
676 		dm_error("%s: failed to create dcn_ip\n", __func__);
677 		goto fail;
678 	}
679 
680 	dc->dcn_ip = dcn_ip;
681 	dc->soc_bounding_box = init_params->soc_bounding_box;
682 #endif
683 
684 	if (!dc_construct_ctx(dc, init_params)) {
685 		dm_error("%s: failed to create ctx\n", __func__);
686 		goto fail;
687 	}
688 
689         dc_ctx = dc->ctx;
690 
691 	/* Resource should construct all asic specific resources.
692 	 * This should be the only place where we need to parse the asic id
693 	 */
694 	if (init_params->vbios_override)
695 		dc_ctx->dc_bios = init_params->vbios_override;
696 	else {
697 		/* Create BIOS parser */
698 		struct bp_init_data bp_init_data;
699 
700 		bp_init_data.ctx = dc_ctx;
701 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
702 
703 		dc_ctx->dc_bios = dal_bios_parser_create(
704 				&bp_init_data, dc_ctx->dce_version);
705 
706 		if (!dc_ctx->dc_bios) {
707 			ASSERT_CRITICAL(false);
708 			goto fail;
709 		}
710 
711 		dc_ctx->created_bios = true;
712 	}
713 
714 	dc->vendor_signature = init_params->vendor_signature;
715 
716 	/* Create GPIO service */
717 	dc_ctx->gpio_service = dal_gpio_service_create(
718 			dc_ctx->dce_version,
719 			dc_ctx->dce_environment,
720 			dc_ctx);
721 
722 	if (!dc_ctx->gpio_service) {
723 		ASSERT_CRITICAL(false);
724 		goto fail;
725 	}
726 
727 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
728 	if (!dc->res_pool)
729 		goto fail;
730 
731 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
732 	if (!dc->clk_mgr)
733 		goto fail;
734 #ifdef CONFIG_DRM_AMD_DC_DCN3_0
735 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
736 #endif
737 
738 	dc->debug.force_ignore_link_settings = init_params->force_ignore_link_settings;
739 
740 	if (dc->res_pool->funcs->update_bw_bounding_box)
741 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
742 
743 	/* Creation of current_state must occur after dc->dml
744 	 * is initialized in dc_create_resource_pool because
745 	 * on creation it copies the contents of dc->dml
746 	 */
747 
748 	dc->current_state = dc_create_state(dc);
749 
750 	if (!dc->current_state) {
751 		dm_error("%s: failed to create validate ctx\n", __func__);
752 		goto fail;
753 	}
754 
755 	dc_resource_state_construct(dc, dc->current_state);
756 
757 	if (!create_links(dc, init_params->num_virtual_links))
758 		goto fail;
759 
760 	return true;
761 
762 fail:
763 	return false;
764 }
765 
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)766 static bool disable_all_writeback_pipes_for_stream(
767 		const struct dc *dc,
768 		struct dc_stream_state *stream,
769 		struct dc_state *context)
770 {
771 	int i;
772 
773 	for (i = 0; i < stream->num_wb_info; i++)
774 		stream->writeback_info[i].wb_enabled = false;
775 
776 	return true;
777 }
778 
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)779 void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context, struct dc_stream_state *stream, bool lock)
780 {
781 	int i = 0;
782 
783 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
784 	if (dc->hwss.interdependent_update_lock)
785 		dc->hwss.interdependent_update_lock(dc, context, lock);
786 	else {
787 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
788 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
789 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
790 
791 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
792 			if (stream == pipe_ctx->stream) {
793 				if (!pipe_ctx->top_pipe &&
794 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
795 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
796 			}
797 		}
798 	}
799 }
800 
disable_dangling_plane(struct dc * dc,struct dc_state * context)801 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
802 {
803 	int i, j;
804 	struct dc_state *dangling_context = dc_create_state(dc);
805 	struct dc_state *current_ctx;
806 
807 	if (dangling_context == NULL)
808 		return;
809 
810 	dc_resource_state_copy_construct(dc->current_state, dangling_context);
811 
812 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
813 		struct dc_stream_state *old_stream =
814 				dc->current_state->res_ctx.pipe_ctx[i].stream;
815 		bool should_disable = true;
816 
817 		for (j = 0; j < context->stream_count; j++) {
818 			if (old_stream == context->streams[j]) {
819 				should_disable = false;
820 				break;
821 			}
822 		}
823 		if (should_disable && old_stream) {
824 			dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
825 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
826 
827 			if (dc->hwss.apply_ctx_for_surface) {
828 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
829 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
830 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
831 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
832 			}
833 			if (dc->hwss.program_front_end_for_ctx) {
834 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
835 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
836 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
837 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
838 			}
839 		}
840 	}
841 
842 	current_ctx = dc->current_state;
843 	dc->current_state = dangling_context;
844 	dc_release_state(current_ctx);
845 }
846 
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)847 static void disable_vbios_mode_if_required(
848 		struct dc *dc,
849 		struct dc_state *context)
850 {
851 	unsigned int i, j;
852 
853 	/* check if timing_changed, disable stream*/
854 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
855 		struct dc_stream_state *stream = NULL;
856 		struct dc_link *link = NULL;
857 		struct pipe_ctx *pipe = NULL;
858 
859 		pipe = &context->res_ctx.pipe_ctx[i];
860 		stream = pipe->stream;
861 		if (stream == NULL)
862 			continue;
863 
864 		if (stream->link->local_sink &&
865 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
866 			link = stream->link;
867 		}
868 
869 		if (link != NULL) {
870 			unsigned int enc_inst, tg_inst = 0;
871 			unsigned int pix_clk_100hz;
872 
873 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
874 			if (enc_inst != ENGINE_ID_UNKNOWN) {
875 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
876 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
877 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
878 							dc->res_pool->stream_enc[j]);
879 						break;
880 					}
881 				}
882 
883 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
884 					dc->res_pool->dp_clock_source,
885 					tg_inst, &pix_clk_100hz);
886 
887 				if (link->link_status.link_active) {
888 					uint32_t requested_pix_clk_100hz =
889 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
890 
891 					if (pix_clk_100hz != requested_pix_clk_100hz) {
892 						core_link_disable_stream(pipe);
893 						pipe->stream->dpms_off = false;
894 					}
895 				}
896 			}
897 		}
898 	}
899 }
900 
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)901 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
902 {
903 	int i;
904 	PERF_TRACE();
905 	for (i = 0; i < MAX_PIPES; i++) {
906 		int count = 0;
907 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
908 
909 		if (!pipe->plane_state)
910 			continue;
911 
912 		/* Timeout 100 ms */
913 		while (count < 100000) {
914 			/* Must set to false to start with, due to OR in update function */
915 			pipe->plane_state->status.is_flip_pending = false;
916 			dc->hwss.update_pending_status(pipe);
917 			if (!pipe->plane_state->status.is_flip_pending)
918 				break;
919 			udelay(1);
920 			count++;
921 		}
922 		ASSERT(!pipe->plane_state->status.is_flip_pending);
923 	}
924 	PERF_TRACE();
925 }
926 
927 /*******************************************************************************
928  * Public functions
929  ******************************************************************************/
930 
dc_create(const struct dc_init_data * init_params)931 struct dc *dc_create(const struct dc_init_data *init_params)
932 {
933 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
934 	unsigned int full_pipe_count;
935 
936 	if (NULL == dc)
937 		goto alloc_fail;
938 
939 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
940 		if (false == dc_construct_ctx(dc, init_params)) {
941 			dc_destruct(dc);
942 			goto construct_fail;
943 		}
944 	} else {
945 		if (false == dc_construct(dc, init_params)) {
946 			dc_destruct(dc);
947 			goto construct_fail;
948 		}
949 
950 		full_pipe_count = dc->res_pool->pipe_count;
951 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
952 			full_pipe_count--;
953 		dc->caps.max_streams = min(
954 				full_pipe_count,
955 				dc->res_pool->stream_enc_count);
956 
957 		dc->optimize_seamless_boot_streams = 0;
958 		dc->caps.max_links = dc->link_count;
959 		dc->caps.max_audios = dc->res_pool->audio_count;
960 		dc->caps.linear_pitch_alignment = 64;
961 
962 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
963 
964 		if (dc->res_pool->dmcu != NULL)
965 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
966 	}
967 
968 	/* Populate versioning information */
969 	dc->versions.dc_ver = DC_VER;
970 
971 	dc->build_id = DC_BUILD_ID;
972 
973 	DC_LOG_DC("Display Core initialized\n");
974 
975 
976 
977 	return dc;
978 
979 construct_fail:
980 	kfree(dc);
981 
982 alloc_fail:
983 	return NULL;
984 }
985 
dc_hardware_init(struct dc * dc)986 void dc_hardware_init(struct dc *dc)
987 {
988 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
989 		dc->hwss.init_hw(dc);
990 }
991 
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)992 void dc_init_callbacks(struct dc *dc,
993 		const struct dc_callback_init *init_params)
994 {
995 #ifdef CONFIG_DRM_AMD_DC_HDCP
996 	dc->ctx->cp_psp = init_params->cp_psp;
997 #endif
998 }
999 
dc_deinit_callbacks(struct dc * dc)1000 void dc_deinit_callbacks(struct dc *dc)
1001 {
1002 #ifdef CONFIG_DRM_AMD_DC_HDCP
1003 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1004 #endif
1005 }
1006 
dc_destroy(struct dc ** dc)1007 void dc_destroy(struct dc **dc)
1008 {
1009 	dc_destruct(*dc);
1010 	kfree(*dc);
1011 	*dc = NULL;
1012 }
1013 
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1014 static void enable_timing_multisync(
1015 		struct dc *dc,
1016 		struct dc_state *ctx)
1017 {
1018 	int i = 0, multisync_count = 0;
1019 	int pipe_count = dc->res_pool->pipe_count;
1020 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1021 
1022 	for (i = 0; i < pipe_count; i++) {
1023 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1024 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1025 			continue;
1026 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1027 			continue;
1028 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1029 		multisync_count++;
1030 	}
1031 
1032 	if (multisync_count > 0) {
1033 		dc->hwss.enable_per_frame_crtc_position_reset(
1034 			dc, multisync_count, multisync_pipes);
1035 	}
1036 }
1037 
program_timing_sync(struct dc * dc,struct dc_state * ctx)1038 static void program_timing_sync(
1039 		struct dc *dc,
1040 		struct dc_state *ctx)
1041 {
1042 	int i, j, k;
1043 	int group_index = 0;
1044 	int num_group = 0;
1045 	int pipe_count = dc->res_pool->pipe_count;
1046 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1047 
1048 	for (i = 0; i < pipe_count; i++) {
1049 		if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe)
1050 			continue;
1051 
1052 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1053 	}
1054 
1055 	for (i = 0; i < pipe_count; i++) {
1056 		int group_size = 1;
1057 		struct pipe_ctx *pipe_set[MAX_PIPES];
1058 
1059 		if (!unsynced_pipes[i])
1060 			continue;
1061 
1062 		pipe_set[0] = unsynced_pipes[i];
1063 		unsynced_pipes[i] = NULL;
1064 
1065 		/* Add tg to the set, search rest of the tg's for ones with
1066 		 * same timing, add all tgs with same timing to the group
1067 		 */
1068 		for (j = i + 1; j < pipe_count; j++) {
1069 			if (!unsynced_pipes[j])
1070 				continue;
1071 
1072 			if (resource_are_streams_timing_synchronizable(
1073 					unsynced_pipes[j]->stream,
1074 					pipe_set[0]->stream)) {
1075 				pipe_set[group_size] = unsynced_pipes[j];
1076 				unsynced_pipes[j] = NULL;
1077 				group_size++;
1078 			}
1079 		}
1080 
1081 		/* set first unblanked pipe as master */
1082 		for (j = 0; j < group_size; j++) {
1083 			bool is_blanked;
1084 
1085 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1086 				is_blanked =
1087 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1088 			else
1089 				is_blanked =
1090 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1091 			if (!is_blanked) {
1092 				if (j == 0)
1093 					break;
1094 
1095 				swap(pipe_set[0], pipe_set[j]);
1096 				break;
1097 			}
1098 		}
1099 
1100 
1101 		for (k = 0; k < group_size; k++) {
1102 			struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1103 
1104 			status->timing_sync_info.group_id = num_group;
1105 			status->timing_sync_info.group_size = group_size;
1106 			if (k == 0)
1107 				status->timing_sync_info.master = true;
1108 			else
1109 				status->timing_sync_info.master = false;
1110 
1111 		}
1112 		/* remove any other unblanked pipes as they have already been synced */
1113 		for (j = j + 1; j < group_size; j++) {
1114 			bool is_blanked;
1115 
1116 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1117 				is_blanked =
1118 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1119 			else
1120 				is_blanked =
1121 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1122 			if (!is_blanked) {
1123 				group_size--;
1124 				pipe_set[j] = pipe_set[group_size];
1125 				j--;
1126 			}
1127 		}
1128 
1129 		if (group_size > 1) {
1130 			dc->hwss.enable_timing_synchronization(
1131 				dc, group_index, group_size, pipe_set);
1132 			group_index++;
1133 		}
1134 		num_group++;
1135 	}
1136 }
1137 
context_changed(struct dc * dc,struct dc_state * context)1138 static bool context_changed(
1139 		struct dc *dc,
1140 		struct dc_state *context)
1141 {
1142 	uint8_t i;
1143 
1144 	if (context->stream_count != dc->current_state->stream_count)
1145 		return true;
1146 
1147 	for (i = 0; i < dc->current_state->stream_count; i++) {
1148 		if (dc->current_state->streams[i] != context->streams[i])
1149 			return true;
1150 	}
1151 
1152 	return false;
1153 }
1154 
dc_validate_seamless_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1155 bool dc_validate_seamless_boot_timing(const struct dc *dc,
1156 				const struct dc_sink *sink,
1157 				struct dc_crtc_timing *crtc_timing)
1158 {
1159 	struct timing_generator *tg;
1160 	struct stream_encoder *se = NULL;
1161 
1162 	struct dc_crtc_timing hw_crtc_timing = {0};
1163 
1164 	struct dc_link *link = sink->link;
1165 	unsigned int i, enc_inst, tg_inst = 0;
1166 
1167 	// Seamless port only support single DP and EDP so far
1168 	if (sink->sink_signal != SIGNAL_TYPE_DISPLAY_PORT &&
1169 		sink->sink_signal != SIGNAL_TYPE_EDP)
1170 		return false;
1171 
1172 	/* Check for enabled DIG to identify enabled display */
1173 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1174 		return false;
1175 
1176 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1177 
1178 	if (enc_inst == ENGINE_ID_UNKNOWN)
1179 		return false;
1180 
1181 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1182 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1183 
1184 			se = dc->res_pool->stream_enc[i];
1185 
1186 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1187 				dc->res_pool->stream_enc[i]);
1188 			break;
1189 		}
1190 	}
1191 
1192 	// tg_inst not found
1193 	if (i == dc->res_pool->stream_enc_count)
1194 		return false;
1195 
1196 	if (tg_inst >= dc->res_pool->timing_generator_count)
1197 		return false;
1198 
1199 	tg = dc->res_pool->timing_generators[tg_inst];
1200 
1201 	if (!tg->funcs->get_hw_timing)
1202 		return false;
1203 
1204 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1205 		return false;
1206 
1207 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1208 		return false;
1209 
1210 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1211 		return false;
1212 
1213 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1214 		return false;
1215 
1216 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1217 		return false;
1218 
1219 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1220 		return false;
1221 
1222 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1223 		return false;
1224 
1225 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1226 		return false;
1227 
1228 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1229 		return false;
1230 
1231 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1232 		return false;
1233 
1234 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1235 		return false;
1236 
1237 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1238 		return false;
1239 
1240 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1241 		return false;
1242 
1243 	if (dc_is_dp_signal(link->connector_signal)) {
1244 		unsigned int pix_clk_100hz;
1245 
1246 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1247 			dc->res_pool->dp_clock_source,
1248 			tg_inst, &pix_clk_100hz);
1249 
1250 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1251 			return false;
1252 
1253 		if (!se->funcs->dp_get_pixel_format)
1254 			return false;
1255 
1256 		if (!se->funcs->dp_get_pixel_format(
1257 			se,
1258 			&hw_crtc_timing.pixel_encoding,
1259 			&hw_crtc_timing.display_color_depth))
1260 			return false;
1261 
1262 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1263 			return false;
1264 
1265 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1266 			return false;
1267 	}
1268 
1269 	return true;
1270 }
1271 
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1272 bool dc_enable_stereo(
1273 	struct dc *dc,
1274 	struct dc_state *context,
1275 	struct dc_stream_state *streams[],
1276 	uint8_t stream_count)
1277 {
1278 	bool ret = true;
1279 	int i, j;
1280 	struct pipe_ctx *pipe;
1281 
1282 	for (i = 0; i < MAX_PIPES; i++) {
1283 		if (context != NULL)
1284 			pipe = &context->res_ctx.pipe_ctx[i];
1285 		else
1286 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1287 		for (j = 0 ; pipe && j < stream_count; j++)  {
1288 			if (streams[j] && streams[j] == pipe->stream &&
1289 				dc->hwss.setup_stereo)
1290 				dc->hwss.setup_stereo(pipe, dc);
1291 		}
1292 	}
1293 
1294 	return ret;
1295 }
1296 
dc_trigger_sync(struct dc * dc,struct dc_state * context)1297 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1298 {
1299 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1300 		enable_timing_multisync(dc, context);
1301 		program_timing_sync(dc, context);
1302 	}
1303 }
1304 
get_stream_mask(struct dc * dc,struct dc_state * context)1305 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1306 {
1307 	int i;
1308 	unsigned int stream_mask = 0;
1309 
1310 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1311 		if (context->res_ctx.pipe_ctx[i].stream)
1312 			stream_mask |= 1 << i;
1313 	}
1314 
1315 	return stream_mask;
1316 }
1317 
1318 /*
1319  * Applies given context to HW and copy it into current context.
1320  * It's up to the user to release the src context afterwards.
1321  */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1322 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1323 {
1324 	struct dc_bios *dcb = dc->ctx->dc_bios;
1325 	enum dc_status result = DC_ERROR_UNEXPECTED;
1326 	struct pipe_ctx *pipe;
1327 	int i, k, l;
1328 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1329 
1330 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1331 	dc_allow_idle_optimizations(dc, false);
1332 #endif
1333 
1334 	for (i = 0; i < context->stream_count; i++)
1335 		dc_streams[i] =  context->streams[i];
1336 
1337 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1338 		disable_vbios_mode_if_required(dc, context);
1339 		dc->hwss.enable_accelerated_mode(dc, context);
1340 	}
1341 
1342 	for (i = 0; i < context->stream_count; i++)
1343 		if (context->streams[i]->apply_seamless_boot_optimization)
1344 			dc->optimize_seamless_boot_streams++;
1345 
1346 	if (context->stream_count > dc->optimize_seamless_boot_streams ||
1347 		context->stream_count == 0)
1348 		dc->hwss.prepare_bandwidth(dc, context);
1349 
1350 	disable_dangling_plane(dc, context);
1351 	/* re-program planes for existing stream, in case we need to
1352 	 * free up plane resource for later use
1353 	 */
1354 	if (dc->hwss.apply_ctx_for_surface) {
1355 		for (i = 0; i < context->stream_count; i++) {
1356 			if (context->streams[i]->mode_changed)
1357 				continue;
1358 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1359 			dc->hwss.apply_ctx_for_surface(
1360 				dc, context->streams[i],
1361 				context->stream_status[i].plane_count,
1362 				context); /* use new pipe config in new context */
1363 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1364 			dc->hwss.post_unlock_program_front_end(dc, context);
1365 		}
1366 	}
1367 
1368 	/* Program hardware */
1369 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1370 		pipe = &context->res_ctx.pipe_ctx[i];
1371 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1372 	}
1373 
1374 	result = dc->hwss.apply_ctx_to_hw(dc, context);
1375 
1376 	if (result != DC_OK)
1377 		return result;
1378 
1379 	dc_trigger_sync(dc, context);
1380 
1381 	/* Program all planes within new context*/
1382 	if (dc->hwss.program_front_end_for_ctx) {
1383 		dc->hwss.interdependent_update_lock(dc, context, true);
1384 		dc->hwss.program_front_end_for_ctx(dc, context);
1385 		dc->hwss.interdependent_update_lock(dc, context, false);
1386 		dc->hwss.post_unlock_program_front_end(dc, context);
1387 	}
1388 	for (i = 0; i < context->stream_count; i++) {
1389 		const struct dc_link *link = context->streams[i]->link;
1390 
1391 		if (!context->streams[i]->mode_changed)
1392 			continue;
1393 
1394 		if (dc->hwss.apply_ctx_for_surface) {
1395 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1396 			dc->hwss.apply_ctx_for_surface(
1397 					dc, context->streams[i],
1398 					context->stream_status[i].plane_count,
1399 					context);
1400 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1401 			dc->hwss.post_unlock_program_front_end(dc, context);
1402 		}
1403 
1404 		/*
1405 		 * enable stereo
1406 		 * TODO rework dc_enable_stereo call to work with validation sets?
1407 		 */
1408 		for (k = 0; k < MAX_PIPES; k++) {
1409 			pipe = &context->res_ctx.pipe_ctx[k];
1410 
1411 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
1412 				if (context->streams[l] &&
1413 					context->streams[l] == pipe->stream &&
1414 					dc->hwss.setup_stereo)
1415 					dc->hwss.setup_stereo(pipe, dc);
1416 			}
1417 		}
1418 
1419 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1420 				context->streams[i]->timing.h_addressable,
1421 				context->streams[i]->timing.v_addressable,
1422 				context->streams[i]->timing.h_total,
1423 				context->streams[i]->timing.v_total,
1424 				context->streams[i]->timing.pix_clk_100hz / 10);
1425 	}
1426 
1427 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1428 
1429 	if (context->stream_count > dc->optimize_seamless_boot_streams ||
1430 		context->stream_count == 0) {
1431 		/* Must wait for no flips to be pending before doing optimize bw */
1432 		wait_for_no_pipes_pending(dc, context);
1433 		/* pplib is notified if disp_num changed */
1434 		dc->hwss.optimize_bandwidth(dc, context);
1435 	}
1436 
1437 	context->stream_mask = get_stream_mask(dc, context);
1438 
1439 	if (context->stream_mask != dc->current_state->stream_mask)
1440 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1441 
1442 	for (i = 0; i < context->stream_count; i++)
1443 		context->streams[i]->mode_changed = false;
1444 
1445 	dc_release_state(dc->current_state);
1446 
1447 	dc->current_state = context;
1448 
1449 	dc_retain_state(dc->current_state);
1450 
1451 	return result;
1452 }
1453 
dc_commit_state(struct dc * dc,struct dc_state * context)1454 bool dc_commit_state(struct dc *dc, struct dc_state *context)
1455 {
1456 	enum dc_status result = DC_ERROR_UNEXPECTED;
1457 	int i;
1458 
1459 	if (false == context_changed(dc, context))
1460 		return DC_OK;
1461 
1462 	DC_LOG_DC("%s: %d streams\n",
1463 				__func__, context->stream_count);
1464 
1465 	for (i = 0; i < context->stream_count; i++) {
1466 		struct dc_stream_state *stream = context->streams[i];
1467 
1468 		dc_stream_log(dc, stream);
1469 	}
1470 
1471 	result = dc_commit_state_no_check(dc, context);
1472 
1473 	return (result == DC_OK);
1474 }
1475 
1476 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1477 bool dc_acquire_release_mpc_3dlut(
1478 		struct dc *dc, bool acquire,
1479 		struct dc_stream_state *stream,
1480 		struct dc_3dlut **lut,
1481 		struct dc_transfer_func **shaper)
1482 {
1483 	int pipe_idx;
1484 	bool ret = false;
1485 	bool found_pipe_idx = false;
1486 	const struct resource_pool *pool = dc->res_pool;
1487 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
1488 	int mpcc_id = 0;
1489 
1490 	if (pool && res_ctx) {
1491 		if (acquire) {
1492 			/*find pipe idx for the given stream*/
1493 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
1494 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
1495 					found_pipe_idx = true;
1496 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
1497 					break;
1498 				}
1499 			}
1500 		} else
1501 			found_pipe_idx = true;/*for release pipe_idx is not required*/
1502 
1503 		if (found_pipe_idx) {
1504 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
1505 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
1506 			else if (acquire == false && pool->funcs->release_post_bldn_3dlut)
1507 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
1508 		}
1509 	}
1510 	return ret;
1511 }
1512 #endif
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)1513 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
1514 {
1515 	int i;
1516 	struct pipe_ctx *pipe;
1517 
1518 	for (i = 0; i < MAX_PIPES; i++) {
1519 		pipe = &context->res_ctx.pipe_ctx[i];
1520 
1521 		if (!pipe->plane_state)
1522 			continue;
1523 
1524 		/* Must set to false to start with, due to OR in update function */
1525 		pipe->plane_state->status.is_flip_pending = false;
1526 		dc->hwss.update_pending_status(pipe);
1527 		if (pipe->plane_state->status.is_flip_pending)
1528 			return true;
1529 	}
1530 	return false;
1531 }
1532 
dc_post_update_surfaces_to_stream(struct dc * dc)1533 bool dc_post_update_surfaces_to_stream(struct dc *dc)
1534 {
1535 	int i;
1536 	struct dc_state *context = dc->current_state;
1537 
1538 	if ((!dc->optimized_required) || dc->optimize_seamless_boot_streams > 0)
1539 		return true;
1540 
1541 	post_surface_trace(dc);
1542 
1543 	if (is_flip_pending_in_pipes(dc, context))
1544 		return true;
1545 
1546 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1547 		if (context->res_ctx.pipe_ctx[i].stream == NULL ||
1548 		    context->res_ctx.pipe_ctx[i].plane_state == NULL) {
1549 			context->res_ctx.pipe_ctx[i].pipe_idx = i;
1550 			dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
1551 		}
1552 
1553 	dc->hwss.optimize_bandwidth(dc, context);
1554 
1555 	dc->optimized_required = false;
1556 	dc->wm_optimized_required = false;
1557 
1558 	return true;
1559 }
1560 
init_state(struct dc * dc,struct dc_state * context)1561 static void init_state(struct dc *dc, struct dc_state *context)
1562 {
1563 	/* Each context must have their own instance of VBA and in order to
1564 	 * initialize and obtain IP and SOC the base DML instance from DC is
1565 	 * initially copied into every context
1566 	 */
1567 #ifdef CONFIG_DRM_AMD_DC_DCN
1568 	memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
1569 #endif
1570 }
1571 
dc_create_state(struct dc * dc)1572 struct dc_state *dc_create_state(struct dc *dc)
1573 {
1574 	struct dc_state *context = kvzalloc(sizeof(struct dc_state),
1575 					    GFP_KERNEL);
1576 
1577 	if (!context)
1578 		return NULL;
1579 
1580 	init_state(dc, context);
1581 
1582 	kref_init(&context->refcount);
1583 
1584 	return context;
1585 }
1586 
dc_copy_state(struct dc_state * src_ctx)1587 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
1588 {
1589 	int i, j;
1590 	struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
1591 
1592 	if (!new_ctx)
1593 		return NULL;
1594 	memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
1595 
1596 	for (i = 0; i < MAX_PIPES; i++) {
1597 			struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1598 
1599 			if (cur_pipe->top_pipe)
1600 				cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
1601 
1602 			if (cur_pipe->bottom_pipe)
1603 				cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
1604 
1605 			if (cur_pipe->prev_odm_pipe)
1606 				cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
1607 
1608 			if (cur_pipe->next_odm_pipe)
1609 				cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
1610 
1611 	}
1612 
1613 	for (i = 0; i < new_ctx->stream_count; i++) {
1614 			dc_stream_retain(new_ctx->streams[i]);
1615 			for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
1616 				dc_plane_state_retain(
1617 					new_ctx->stream_status[i].plane_states[j]);
1618 	}
1619 
1620 	kref_init(&new_ctx->refcount);
1621 
1622 	return new_ctx;
1623 }
1624 
dc_retain_state(struct dc_state * context)1625 void dc_retain_state(struct dc_state *context)
1626 {
1627 	kref_get(&context->refcount);
1628 }
1629 
dc_state_free(struct kref * kref)1630 static void dc_state_free(struct kref *kref)
1631 {
1632 	struct dc_state *context = container_of(kref, struct dc_state, refcount);
1633 	dc_resource_state_destruct(context);
1634 	kvfree(context);
1635 }
1636 
dc_release_state(struct dc_state * context)1637 void dc_release_state(struct dc_state *context)
1638 {
1639 	kref_put(&context->refcount, dc_state_free);
1640 }
1641 
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)1642 bool dc_set_generic_gpio_for_stereo(bool enable,
1643 		struct gpio_service *gpio_service)
1644 {
1645 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
1646 	struct gpio_pin_info pin_info;
1647 	struct gpio *generic;
1648 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
1649 			   GFP_KERNEL);
1650 
1651 	if (!config)
1652 		return false;
1653 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
1654 
1655 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
1656 		kfree(config);
1657 		return false;
1658 	} else {
1659 		generic = dal_gpio_service_create_generic_mux(
1660 			gpio_service,
1661 			pin_info.offset,
1662 			pin_info.mask);
1663 	}
1664 
1665 	if (!generic) {
1666 		kfree(config);
1667 		return false;
1668 	}
1669 
1670 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
1671 
1672 	config->enable_output_from_mux = enable;
1673 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
1674 
1675 	if (gpio_result == GPIO_RESULT_OK)
1676 		gpio_result = dal_mux_setup_config(generic, config);
1677 
1678 	if (gpio_result == GPIO_RESULT_OK) {
1679 		dal_gpio_close(generic);
1680 		dal_gpio_destroy_generic_mux(&generic);
1681 		kfree(config);
1682 		return true;
1683 	} else {
1684 		dal_gpio_close(generic);
1685 		dal_gpio_destroy_generic_mux(&generic);
1686 		kfree(config);
1687 		return false;
1688 	}
1689 }
1690 
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)1691 static bool is_surface_in_context(
1692 		const struct dc_state *context,
1693 		const struct dc_plane_state *plane_state)
1694 {
1695 	int j;
1696 
1697 	for (j = 0; j < MAX_PIPES; j++) {
1698 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1699 
1700 		if (plane_state == pipe_ctx->plane_state) {
1701 			return true;
1702 		}
1703 	}
1704 
1705 	return false;
1706 }
1707 
get_plane_info_update_type(const struct dc_surface_update * u)1708 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
1709 {
1710 	union surface_update_flags *update_flags = &u->surface->update_flags;
1711 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
1712 
1713 	if (!u->plane_info)
1714 		return UPDATE_TYPE_FAST;
1715 
1716 	if (u->plane_info->color_space != u->surface->color_space) {
1717 		update_flags->bits.color_space_change = 1;
1718 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1719 	}
1720 
1721 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
1722 		update_flags->bits.horizontal_mirror_change = 1;
1723 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1724 	}
1725 
1726 	if (u->plane_info->rotation != u->surface->rotation) {
1727 		update_flags->bits.rotation_change = 1;
1728 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1729 	}
1730 
1731 	if (u->plane_info->format != u->surface->format) {
1732 		update_flags->bits.pixel_format_change = 1;
1733 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1734 	}
1735 
1736 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
1737 		update_flags->bits.stereo_format_change = 1;
1738 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1739 	}
1740 
1741 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
1742 		update_flags->bits.per_pixel_alpha_change = 1;
1743 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1744 	}
1745 
1746 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
1747 		update_flags->bits.global_alpha_change = 1;
1748 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1749 	}
1750 
1751 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
1752 			|| u->plane_info->dcc.independent_64b_blks != u->surface->dcc.independent_64b_blks
1753 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
1754 		update_flags->bits.dcc_change = 1;
1755 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1756 	}
1757 
1758 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
1759 			resource_pixel_format_to_bpp(u->surface->format)) {
1760 		/* different bytes per element will require full bandwidth
1761 		 * and DML calculation
1762 		 */
1763 		update_flags->bits.bpp_change = 1;
1764 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1765 	}
1766 
1767 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
1768 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
1769 		update_flags->bits.plane_size_change = 1;
1770 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1771 	}
1772 
1773 
1774 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
1775 			sizeof(union dc_tiling_info)) != 0) {
1776 		update_flags->bits.swizzle_change = 1;
1777 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1778 
1779 		/* todo: below are HW dependent, we should add a hook to
1780 		 * DCE/N resource and validated there.
1781 		 */
1782 		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
1783 			/* swizzled mode requires RQ to be setup properly,
1784 			 * thus need to run DML to calculate RQ settings
1785 			 */
1786 			update_flags->bits.bandwidth_change = 1;
1787 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1788 		}
1789 	}
1790 
1791 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
1792 	return update_type;
1793 }
1794 
get_scaling_info_update_type(const struct dc_surface_update * u)1795 static enum surface_update_type get_scaling_info_update_type(
1796 		const struct dc_surface_update *u)
1797 {
1798 	union surface_update_flags *update_flags = &u->surface->update_flags;
1799 
1800 	if (!u->scaling_info)
1801 		return UPDATE_TYPE_FAST;
1802 
1803 	if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
1804 			|| u->scaling_info->clip_rect.height != u->surface->clip_rect.height
1805 			|| u->scaling_info->dst_rect.width != u->surface->dst_rect.width
1806 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
1807 			|| u->scaling_info->scaling_quality.integer_scaling !=
1808 				u->surface->scaling_quality.integer_scaling
1809 			) {
1810 		update_flags->bits.scaling_change = 1;
1811 
1812 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
1813 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
1814 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
1815 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
1816 			/* Making dst rect smaller requires a bandwidth change */
1817 			update_flags->bits.bandwidth_change = 1;
1818 	}
1819 
1820 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
1821 		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
1822 
1823 		update_flags->bits.scaling_change = 1;
1824 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
1825 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
1826 			/* Making src rect bigger requires a bandwidth change */
1827 			update_flags->bits.clock_change = 1;
1828 	}
1829 
1830 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
1831 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
1832 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
1833 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
1834 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
1835 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
1836 		update_flags->bits.position_change = 1;
1837 
1838 	if (update_flags->bits.clock_change
1839 			|| update_flags->bits.bandwidth_change
1840 			|| update_flags->bits.scaling_change)
1841 		return UPDATE_TYPE_FULL;
1842 
1843 	if (update_flags->bits.position_change)
1844 		return UPDATE_TYPE_MED;
1845 
1846 	return UPDATE_TYPE_FAST;
1847 }
1848 
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)1849 static enum surface_update_type det_surface_update(const struct dc *dc,
1850 		const struct dc_surface_update *u)
1851 {
1852 	const struct dc_state *context = dc->current_state;
1853 	enum surface_update_type type;
1854 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1855 	union surface_update_flags *update_flags = &u->surface->update_flags;
1856 
1857 	if (u->flip_addr)
1858 		update_flags->bits.addr_update = 1;
1859 
1860 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
1861 		update_flags->raw = 0xFFFFFFFF;
1862 		return UPDATE_TYPE_FULL;
1863 	}
1864 
1865 	update_flags->raw = 0; // Reset all flags
1866 
1867 	type = get_plane_info_update_type(u);
1868 	elevate_update_type(&overall_type, type);
1869 
1870 	type = get_scaling_info_update_type(u);
1871 	elevate_update_type(&overall_type, type);
1872 
1873 	if (u->flip_addr)
1874 		update_flags->bits.addr_update = 1;
1875 
1876 	if (u->in_transfer_func)
1877 		update_flags->bits.in_transfer_func_change = 1;
1878 
1879 	if (u->input_csc_color_matrix)
1880 		update_flags->bits.input_csc_change = 1;
1881 
1882 	if (u->coeff_reduction_factor)
1883 		update_flags->bits.coeff_reduction_change = 1;
1884 
1885 	if (u->gamut_remap_matrix)
1886 		update_flags->bits.gamut_remap_change = 1;
1887 
1888 	if (u->gamma) {
1889 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
1890 
1891 		if (u->plane_info)
1892 			format = u->plane_info->format;
1893 		else if (u->surface)
1894 			format = u->surface->format;
1895 
1896 		if (dce_use_lut(format))
1897 			update_flags->bits.gamma_change = 1;
1898 	}
1899 
1900 	if (u->hdr_mult.value)
1901 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
1902 			update_flags->bits.hdr_mult = 1;
1903 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
1904 		}
1905 
1906 	if (update_flags->bits.in_transfer_func_change) {
1907 		type = UPDATE_TYPE_MED;
1908 		elevate_update_type(&overall_type, type);
1909 	}
1910 
1911 	if (update_flags->bits.input_csc_change
1912 			|| update_flags->bits.coeff_reduction_change
1913 			|| update_flags->bits.gamma_change
1914 			|| update_flags->bits.gamut_remap_change) {
1915 		type = UPDATE_TYPE_FULL;
1916 		elevate_update_type(&overall_type, type);
1917 	}
1918 
1919 	return overall_type;
1920 }
1921 
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1922 static enum surface_update_type check_update_surfaces_for_stream(
1923 		struct dc *dc,
1924 		struct dc_surface_update *updates,
1925 		int surface_count,
1926 		struct dc_stream_update *stream_update,
1927 		const struct dc_stream_status *stream_status)
1928 {
1929 	int i;
1930 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1931 
1932 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1933 	if (dc->idle_optimizations_allowed)
1934 		overall_type = UPDATE_TYPE_FULL;
1935 
1936 #endif
1937 	if (stream_status == NULL || stream_status->plane_count != surface_count)
1938 		overall_type = UPDATE_TYPE_FULL;
1939 
1940 	/* some stream updates require passive update */
1941 	if (stream_update) {
1942 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
1943 
1944 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
1945 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
1946 			stream_update->integer_scaling_update)
1947 			su_flags->bits.scaling = 1;
1948 
1949 		if (stream_update->out_transfer_func)
1950 			su_flags->bits.out_tf = 1;
1951 
1952 		if (stream_update->abm_level)
1953 			su_flags->bits.abm_level = 1;
1954 
1955 		if (stream_update->dpms_off)
1956 			su_flags->bits.dpms_off = 1;
1957 
1958 		if (stream_update->gamut_remap)
1959 			su_flags->bits.gamut_remap = 1;
1960 
1961 		if (stream_update->wb_update)
1962 			su_flags->bits.wb_update = 1;
1963 
1964 		if (stream_update->dsc_config)
1965 			su_flags->bits.dsc_changed = 1;
1966 
1967 		if (su_flags->raw != 0)
1968 			overall_type = UPDATE_TYPE_FULL;
1969 
1970 		if (stream_update->output_csc_transform || stream_update->output_color_space)
1971 			su_flags->bits.out_csc = 1;
1972 	}
1973 
1974 	for (i = 0 ; i < surface_count; i++) {
1975 		enum surface_update_type type =
1976 				det_surface_update(dc, &updates[i]);
1977 
1978 		elevate_update_type(&overall_type, type);
1979 	}
1980 
1981 	return overall_type;
1982 }
1983 
1984 /**
1985  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
1986  *
1987  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
1988  */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1989 enum surface_update_type dc_check_update_surfaces_for_stream(
1990 		struct dc *dc,
1991 		struct dc_surface_update *updates,
1992 		int surface_count,
1993 		struct dc_stream_update *stream_update,
1994 		const struct dc_stream_status *stream_status)
1995 {
1996 	int i;
1997 	enum surface_update_type type;
1998 
1999 	if (stream_update)
2000 		stream_update->stream->update_flags.raw = 0;
2001 	for (i = 0; i < surface_count; i++)
2002 		updates[i].surface->update_flags.raw = 0;
2003 
2004 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2005 	if (type == UPDATE_TYPE_FULL) {
2006 		if (stream_update) {
2007 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2008 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2009 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2010 		}
2011 		for (i = 0; i < surface_count; i++)
2012 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2013 	}
2014 
2015 	if (type == UPDATE_TYPE_FAST) {
2016 		// If there's an available clock comparator, we use that.
2017 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2018 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2019 				dc->optimized_required = true;
2020 		// Else we fallback to mem compare.
2021 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2022 			dc->optimized_required = true;
2023 		}
2024 
2025 		dc->optimized_required |= dc->wm_optimized_required;
2026 	}
2027 
2028 	return type;
2029 }
2030 
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2031 static struct dc_stream_status *stream_get_status(
2032 	struct dc_state *ctx,
2033 	struct dc_stream_state *stream)
2034 {
2035 	uint8_t i;
2036 
2037 	for (i = 0; i < ctx->stream_count; i++) {
2038 		if (stream == ctx->streams[i]) {
2039 			return &ctx->stream_status[i];
2040 		}
2041 	}
2042 
2043 	return NULL;
2044 }
2045 
2046 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2047 
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2048 static void copy_surface_update_to_plane(
2049 		struct dc_plane_state *surface,
2050 		struct dc_surface_update *srf_update)
2051 {
2052 	if (srf_update->flip_addr) {
2053 		surface->address = srf_update->flip_addr->address;
2054 		surface->flip_immediate =
2055 			srf_update->flip_addr->flip_immediate;
2056 		surface->time.time_elapsed_in_us[surface->time.index] =
2057 			srf_update->flip_addr->flip_timestamp_in_us -
2058 				surface->time.prev_update_time_in_us;
2059 		surface->time.prev_update_time_in_us =
2060 			srf_update->flip_addr->flip_timestamp_in_us;
2061 		surface->time.index++;
2062 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2063 			surface->time.index = 0;
2064 
2065 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2066 	}
2067 
2068 	if (srf_update->scaling_info) {
2069 		surface->scaling_quality =
2070 				srf_update->scaling_info->scaling_quality;
2071 		surface->dst_rect =
2072 				srf_update->scaling_info->dst_rect;
2073 		surface->src_rect =
2074 				srf_update->scaling_info->src_rect;
2075 		surface->clip_rect =
2076 				srf_update->scaling_info->clip_rect;
2077 	}
2078 
2079 	if (srf_update->plane_info) {
2080 		surface->color_space =
2081 				srf_update->plane_info->color_space;
2082 		surface->format =
2083 				srf_update->plane_info->format;
2084 		surface->plane_size =
2085 				srf_update->plane_info->plane_size;
2086 		surface->rotation =
2087 				srf_update->plane_info->rotation;
2088 		surface->horizontal_mirror =
2089 				srf_update->plane_info->horizontal_mirror;
2090 		surface->stereo_format =
2091 				srf_update->plane_info->stereo_format;
2092 		surface->tiling_info =
2093 				srf_update->plane_info->tiling_info;
2094 		surface->visible =
2095 				srf_update->plane_info->visible;
2096 		surface->per_pixel_alpha =
2097 				srf_update->plane_info->per_pixel_alpha;
2098 		surface->global_alpha =
2099 				srf_update->plane_info->global_alpha;
2100 		surface->global_alpha_value =
2101 				srf_update->plane_info->global_alpha_value;
2102 		surface->dcc =
2103 				srf_update->plane_info->dcc;
2104 		surface->layer_index =
2105 				srf_update->plane_info->layer_index;
2106 	}
2107 
2108 	if (srf_update->gamma &&
2109 			(surface->gamma_correction !=
2110 					srf_update->gamma)) {
2111 		memcpy(&surface->gamma_correction->entries,
2112 			&srf_update->gamma->entries,
2113 			sizeof(struct dc_gamma_entries));
2114 		surface->gamma_correction->is_identity =
2115 			srf_update->gamma->is_identity;
2116 		surface->gamma_correction->num_entries =
2117 			srf_update->gamma->num_entries;
2118 		surface->gamma_correction->type =
2119 			srf_update->gamma->type;
2120 	}
2121 
2122 	if (srf_update->in_transfer_func &&
2123 			(surface->in_transfer_func !=
2124 				srf_update->in_transfer_func)) {
2125 		surface->in_transfer_func->sdr_ref_white_level =
2126 			srf_update->in_transfer_func->sdr_ref_white_level;
2127 		surface->in_transfer_func->tf =
2128 			srf_update->in_transfer_func->tf;
2129 		surface->in_transfer_func->type =
2130 			srf_update->in_transfer_func->type;
2131 		memcpy(&surface->in_transfer_func->tf_pts,
2132 			&srf_update->in_transfer_func->tf_pts,
2133 			sizeof(struct dc_transfer_func_distributed_points));
2134 	}
2135 
2136 	if (srf_update->func_shaper &&
2137 			(surface->in_shaper_func !=
2138 			srf_update->func_shaper))
2139 		memcpy(surface->in_shaper_func, srf_update->func_shaper,
2140 		sizeof(*surface->in_shaper_func));
2141 
2142 	if (srf_update->lut3d_func &&
2143 			(surface->lut3d_func !=
2144 			srf_update->lut3d_func))
2145 		memcpy(surface->lut3d_func, srf_update->lut3d_func,
2146 		sizeof(*surface->lut3d_func));
2147 
2148 	if (srf_update->hdr_mult.value)
2149 		surface->hdr_mult =
2150 				srf_update->hdr_mult;
2151 
2152 	if (srf_update->blend_tf &&
2153 			(surface->blend_tf !=
2154 			srf_update->blend_tf))
2155 		memcpy(surface->blend_tf, srf_update->blend_tf,
2156 		sizeof(*surface->blend_tf));
2157 
2158 	if (srf_update->input_csc_color_matrix)
2159 		surface->input_csc_color_matrix =
2160 			*srf_update->input_csc_color_matrix;
2161 
2162 	if (srf_update->coeff_reduction_factor)
2163 		surface->coeff_reduction_factor =
2164 			*srf_update->coeff_reduction_factor;
2165 
2166 	if (srf_update->gamut_remap_matrix)
2167 		surface->gamut_remap_matrix =
2168 			*srf_update->gamut_remap_matrix;
2169 }
2170 
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2171 static void copy_stream_update_to_stream(struct dc *dc,
2172 					 struct dc_state *context,
2173 					 struct dc_stream_state *stream,
2174 					 struct dc_stream_update *update)
2175 {
2176 	struct dc_context *dc_ctx = dc->ctx;
2177 
2178 	if (update == NULL || stream == NULL)
2179 		return;
2180 
2181 	if (update->src.height && update->src.width)
2182 		stream->src = update->src;
2183 
2184 	if (update->dst.height && update->dst.width)
2185 		stream->dst = update->dst;
2186 
2187 	if (update->out_transfer_func &&
2188 	    stream->out_transfer_func != update->out_transfer_func) {
2189 		stream->out_transfer_func->sdr_ref_white_level =
2190 			update->out_transfer_func->sdr_ref_white_level;
2191 		stream->out_transfer_func->tf = update->out_transfer_func->tf;
2192 		stream->out_transfer_func->type =
2193 			update->out_transfer_func->type;
2194 		memcpy(&stream->out_transfer_func->tf_pts,
2195 		       &update->out_transfer_func->tf_pts,
2196 		       sizeof(struct dc_transfer_func_distributed_points));
2197 	}
2198 
2199 	if (update->hdr_static_metadata)
2200 		stream->hdr_static_metadata = *update->hdr_static_metadata;
2201 
2202 	if (update->abm_level)
2203 		stream->abm_level = *update->abm_level;
2204 
2205 	if (update->periodic_interrupt)
2206 		stream->periodic_interrupt = *update->periodic_interrupt;
2207 
2208 	if (update->gamut_remap)
2209 		stream->gamut_remap_matrix = *update->gamut_remap;
2210 
2211 	/* Note: this being updated after mode set is currently not a use case
2212 	 * however if it arises OCSC would need to be reprogrammed at the
2213 	 * minimum
2214 	 */
2215 	if (update->output_color_space)
2216 		stream->output_color_space = *update->output_color_space;
2217 
2218 	if (update->output_csc_transform)
2219 		stream->csc_color_matrix = *update->output_csc_transform;
2220 
2221 	if (update->vrr_infopacket)
2222 		stream->vrr_infopacket = *update->vrr_infopacket;
2223 
2224 	if (update->dpms_off)
2225 		stream->dpms_off = *update->dpms_off;
2226 
2227 	if (update->vsc_infopacket)
2228 		stream->vsc_infopacket = *update->vsc_infopacket;
2229 
2230 	if (update->vsp_infopacket)
2231 		stream->vsp_infopacket = *update->vsp_infopacket;
2232 
2233 	if (update->dither_option)
2234 		stream->dither_option = *update->dither_option;
2235 	/* update current stream with writeback info */
2236 	if (update->wb_update) {
2237 		int i;
2238 
2239 		stream->num_wb_info = update->wb_update->num_wb_info;
2240 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2241 		for (i = 0; i < stream->num_wb_info; i++)
2242 			stream->writeback_info[i] =
2243 				update->wb_update->writeback_info[i];
2244 	}
2245 	if (update->dsc_config) {
2246 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2247 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2248 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2249 				       update->dsc_config->num_slices_v != 0);
2250 
2251 		/* Use temporarry context for validating new DSC config */
2252 		struct dc_state *dsc_validate_context = dc_create_state(dc);
2253 
2254 		if (dsc_validate_context) {
2255 			dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2256 
2257 			stream->timing.dsc_cfg = *update->dsc_config;
2258 			stream->timing.flags.DSC = enable_dsc;
2259 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2260 				stream->timing.dsc_cfg = old_dsc_cfg;
2261 				stream->timing.flags.DSC = old_dsc_enabled;
2262 				update->dsc_config = NULL;
2263 			}
2264 
2265 			dc_release_state(dsc_validate_context);
2266 		} else {
2267 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
2268 			update->dsc_config = NULL;
2269 		}
2270 	}
2271 }
2272 
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2273 static void commit_planes_do_stream_update(struct dc *dc,
2274 		struct dc_stream_state *stream,
2275 		struct dc_stream_update *stream_update,
2276 		enum surface_update_type update_type,
2277 		struct dc_state *context)
2278 {
2279 	int j;
2280 	bool should_program_abm;
2281 
2282 	// Stream updates
2283 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2284 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2285 
2286 		if (!pipe_ctx->top_pipe &&  !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
2287 
2288 			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
2289 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
2290 
2291 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
2292 					stream_update->vrr_infopacket ||
2293 					stream_update->vsc_infopacket ||
2294 					stream_update->vsp_infopacket) {
2295 				resource_build_info_frame(pipe_ctx);
2296 				dc->hwss.update_info_frame(pipe_ctx);
2297 			}
2298 
2299 			if (stream_update->hdr_static_metadata &&
2300 					stream->use_dynamic_meta &&
2301 					dc->hwss.set_dmdata_attributes &&
2302 					pipe_ctx->stream->dmdata_address.quad_part != 0)
2303 				dc->hwss.set_dmdata_attributes(pipe_ctx);
2304 
2305 			if (stream_update->gamut_remap)
2306 				dc_stream_set_gamut_remap(dc, stream);
2307 
2308 			if (stream_update->output_csc_transform)
2309 				dc_stream_program_csc_matrix(dc, stream);
2310 
2311 			if (stream_update->dither_option) {
2312 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2313 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
2314 									&pipe_ctx->stream->bit_depth_params);
2315 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
2316 						&stream->bit_depth_params,
2317 						&stream->clamping);
2318 				while (odm_pipe) {
2319 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
2320 							&stream->bit_depth_params,
2321 							&stream->clamping);
2322 					odm_pipe = odm_pipe->next_odm_pipe;
2323 				}
2324 			}
2325 
2326 			/* Full fe update*/
2327 			if (update_type == UPDATE_TYPE_FAST)
2328 				continue;
2329 
2330 			if (stream_update->dsc_config)
2331 				dp_update_dsc_config(pipe_ctx);
2332 
2333 			if (stream_update->dpms_off) {
2334 				if (*stream_update->dpms_off) {
2335 					core_link_disable_stream(pipe_ctx);
2336 					/* for dpms, keep acquired resources*/
2337 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
2338 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2339 
2340 					dc->optimized_required = true;
2341 
2342 				} else {
2343 					if (dc->optimize_seamless_boot_streams == 0)
2344 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
2345 
2346 					core_link_enable_stream(dc->current_state, pipe_ctx);
2347 				}
2348 			}
2349 
2350 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
2351 				should_program_abm = true;
2352 
2353 				// if otg funcs defined check if blanked before programming
2354 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
2355 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
2356 						should_program_abm = false;
2357 
2358 				if (should_program_abm) {
2359 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
2360 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
2361 					} else {
2362 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
2363 							pipe_ctx->stream_res.abm, stream->abm_level);
2364 					}
2365 				}
2366 			}
2367 		}
2368 	}
2369 }
2370 
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2371 static void commit_planes_for_stream(struct dc *dc,
2372 		struct dc_surface_update *srf_updates,
2373 		int surface_count,
2374 		struct dc_stream_state *stream,
2375 		struct dc_stream_update *stream_update,
2376 		enum surface_update_type update_type,
2377 		struct dc_state *context)
2378 {
2379 	bool mpcc_disconnected = false;
2380 	int i, j;
2381 	struct pipe_ctx *top_pipe_to_program = NULL;
2382 
2383 	if (dc->optimize_seamless_boot_streams > 0 && surface_count > 0) {
2384 		/* Optimize seamless boot flag keeps clocks and watermarks high until
2385 		 * first flip. After first flip, optimization is required to lower
2386 		 * bandwidth. Important to note that it is expected UEFI will
2387 		 * only light up a single display on POST, therefore we only expect
2388 		 * one stream with seamless boot flag set.
2389 		 */
2390 		if (stream->apply_seamless_boot_optimization) {
2391 			stream->apply_seamless_boot_optimization = false;
2392 			dc->optimize_seamless_boot_streams--;
2393 
2394 			if (dc->optimize_seamless_boot_streams == 0)
2395 				dc->optimized_required = true;
2396 		}
2397 	}
2398 
2399 	if (update_type == UPDATE_TYPE_FULL) {
2400 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
2401 		dc_allow_idle_optimizations(dc, false);
2402 
2403 #endif
2404 		if (dc->optimize_seamless_boot_streams == 0)
2405 			dc->hwss.prepare_bandwidth(dc, context);
2406 
2407 		context_clock_trace(dc, context);
2408 	}
2409 
2410 	if (update_type != UPDATE_TYPE_FAST && dc->hwss.interdependent_update_lock &&
2411 		dc->hwss.disconnect_pipes && dc->hwss.wait_for_pending_cleared){
2412 		dc->hwss.interdependent_update_lock(dc, context, true);
2413 		mpcc_disconnected = dc->hwss.disconnect_pipes(dc, context);
2414 		dc->hwss.interdependent_update_lock(dc, context, false);
2415 		if (mpcc_disconnected)
2416 			dc->hwss.wait_for_pending_cleared(dc, context);
2417 	}
2418 
2419 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2420 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2421 
2422 		if (!pipe_ctx->top_pipe &&
2423 			!pipe_ctx->prev_odm_pipe &&
2424 			pipe_ctx->stream &&
2425 			pipe_ctx->stream == stream) {
2426 			top_pipe_to_program = pipe_ctx;
2427 		}
2428 	}
2429 
2430 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2431 		if (top_pipe_to_program &&
2432 			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2433 			if (should_use_dmub_lock(stream->link)) {
2434 				union dmub_hw_lock_flags hw_locks = { 0 };
2435 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2436 
2437 				hw_locks.bits.lock_dig = 1;
2438 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2439 
2440 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2441 							true,
2442 							&hw_locks,
2443 							&inst_flags);
2444 			} else
2445 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
2446 						top_pipe_to_program->stream_res.tg);
2447 		}
2448 
2449 	if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2450 		dc->hwss.interdependent_update_lock(dc, context, true);
2451 	else
2452 		/* Lock the top pipe while updating plane addrs, since freesync requires
2453 		 *  plane addr update event triggers to be synchronized.
2454 		 *  top_pipe_to_program is expected to never be NULL
2455 		 */
2456 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
2457 
2458 
2459 	// Stream updates
2460 	if (stream_update)
2461 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
2462 
2463 	if (surface_count == 0) {
2464 		/*
2465 		 * In case of turning off screen, no need to program front end a second time.
2466 		 * just return after program blank.
2467 		 */
2468 		if (dc->hwss.apply_ctx_for_surface)
2469 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
2470 		if (dc->hwss.program_front_end_for_ctx)
2471 			dc->hwss.program_front_end_for_ctx(dc, context);
2472 
2473 		if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2474 			dc->hwss.interdependent_update_lock(dc, context, false);
2475 		else
2476 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2477 
2478 		dc->hwss.post_unlock_program_front_end(dc, context);
2479 		return;
2480 	}
2481 
2482 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
2483 		for (i = 0; i < surface_count; i++) {
2484 			struct dc_plane_state *plane_state = srf_updates[i].surface;
2485 			/*set logical flag for lock/unlock use*/
2486 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2487 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2488 				if (!pipe_ctx->plane_state)
2489 					continue;
2490 				if (pipe_ctx->plane_state != plane_state)
2491 					continue;
2492 				plane_state->triplebuffer_flips = false;
2493 				if (update_type == UPDATE_TYPE_FAST &&
2494 					dc->hwss.program_triplebuffer != NULL &&
2495 					!plane_state->flip_immediate && dc->debug.enable_tri_buf) {
2496 						/*triple buffer for VUpdate  only*/
2497 						plane_state->triplebuffer_flips = true;
2498 				}
2499 			}
2500 			if (update_type == UPDATE_TYPE_FULL) {
2501 				/* force vsync flip when reconfiguring pipes to prevent underflow */
2502 				plane_state->flip_immediate = false;
2503 			}
2504 		}
2505 	}
2506 
2507 	// Update Type FULL, Surface updates
2508 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2509 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2510 
2511 		if (!pipe_ctx->top_pipe &&
2512 			!pipe_ctx->prev_odm_pipe &&
2513 			pipe_ctx->stream &&
2514 			pipe_ctx->stream == stream) {
2515 			struct dc_stream_status *stream_status = NULL;
2516 
2517 			if (!pipe_ctx->plane_state)
2518 				continue;
2519 
2520 			/* Full fe update*/
2521 			if (update_type == UPDATE_TYPE_FAST)
2522 				continue;
2523 
2524 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
2525 
2526 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2527 				/*turn off triple buffer for full update*/
2528 				dc->hwss.program_triplebuffer(
2529 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
2530 			}
2531 			stream_status =
2532 				stream_get_status(context, pipe_ctx->stream);
2533 
2534 			if (dc->hwss.apply_ctx_for_surface)
2535 				dc->hwss.apply_ctx_for_surface(
2536 					dc, pipe_ctx->stream, stream_status->plane_count, context);
2537 		}
2538 	}
2539 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
2540 		dc->hwss.program_front_end_for_ctx(dc, context);
2541 #ifdef CONFIG_DRM_AMD_DC_DCN
2542 		if (dc->debug.validate_dml_output) {
2543 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
2544 				struct pipe_ctx cur_pipe = context->res_ctx.pipe_ctx[i];
2545 				if (cur_pipe.stream == NULL)
2546 					continue;
2547 
2548 				cur_pipe.plane_res.hubp->funcs->validate_dml_output(
2549 						cur_pipe.plane_res.hubp, dc->ctx,
2550 						&context->res_ctx.pipe_ctx[i].rq_regs,
2551 						&context->res_ctx.pipe_ctx[i].dlg_regs,
2552 						&context->res_ctx.pipe_ctx[i].ttu_regs);
2553 			}
2554 		}
2555 #endif
2556 	}
2557 
2558 	// Update Type FAST, Surface updates
2559 	if (update_type == UPDATE_TYPE_FAST) {
2560 		if (dc->hwss.set_flip_control_gsl)
2561 			for (i = 0; i < surface_count; i++) {
2562 				struct dc_plane_state *plane_state = srf_updates[i].surface;
2563 
2564 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
2565 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2566 
2567 					if (pipe_ctx->stream != stream)
2568 						continue;
2569 
2570 					if (pipe_ctx->plane_state != plane_state)
2571 						continue;
2572 
2573 					// GSL has to be used for flip immediate
2574 					dc->hwss.set_flip_control_gsl(pipe_ctx,
2575 							plane_state->flip_immediate);
2576 				}
2577 			}
2578 		/* Perform requested Updates */
2579 		for (i = 0; i < surface_count; i++) {
2580 			struct dc_plane_state *plane_state = srf_updates[i].surface;
2581 
2582 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2583 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2584 
2585 				if (pipe_ctx->stream != stream)
2586 					continue;
2587 
2588 				if (pipe_ctx->plane_state != plane_state)
2589 					continue;
2590 				/*program triple buffer after lock based on flip type*/
2591 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2592 					/*only enable triplebuffer for  fast_update*/
2593 					dc->hwss.program_triplebuffer(
2594 						dc, pipe_ctx, plane_state->triplebuffer_flips);
2595 				}
2596 				if (srf_updates[i].flip_addr)
2597 					dc->hwss.update_plane_addr(dc, pipe_ctx);
2598 			}
2599 		}
2600 	}
2601 
2602 	if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2603 		dc->hwss.interdependent_update_lock(dc, context, false);
2604 	else
2605 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2606 
2607 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2608 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2609 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2610 					top_pipe_to_program->stream_res.tg,
2611 					CRTC_STATE_VACTIVE);
2612 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2613 					top_pipe_to_program->stream_res.tg,
2614 					CRTC_STATE_VBLANK);
2615 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2616 					top_pipe_to_program->stream_res.tg,
2617 					CRTC_STATE_VACTIVE);
2618 
2619 			if (stream && should_use_dmub_lock(stream->link)) {
2620 				union dmub_hw_lock_flags hw_locks = { 0 };
2621 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2622 
2623 				hw_locks.bits.lock_dig = 1;
2624 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2625 
2626 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2627 							false,
2628 							&hw_locks,
2629 							&inst_flags);
2630 			} else
2631 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
2632 					top_pipe_to_program->stream_res.tg);
2633 		}
2634 
2635 	if (update_type != UPDATE_TYPE_FAST)
2636 		dc->hwss.post_unlock_program_front_end(dc, context);
2637 
2638 	// Fire manual trigger only when bottom plane is flipped
2639 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2640 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2641 
2642 		if (pipe_ctx->bottom_pipe ||
2643 				!pipe_ctx->stream ||
2644 				pipe_ctx->stream != stream ||
2645 				!pipe_ctx->plane_state->update_flags.bits.addr_update)
2646 			continue;
2647 
2648 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
2649 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
2650 	}
2651 }
2652 
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)2653 void dc_commit_updates_for_stream(struct dc *dc,
2654 		struct dc_surface_update *srf_updates,
2655 		int surface_count,
2656 		struct dc_stream_state *stream,
2657 		struct dc_stream_update *stream_update,
2658 		struct dc_state *state)
2659 {
2660 	const struct dc_stream_status *stream_status;
2661 	enum surface_update_type update_type;
2662 	struct dc_state *context;
2663 	struct dc_context *dc_ctx = dc->ctx;
2664 	int i, j;
2665 
2666 	stream_status = dc_stream_get_status(stream);
2667 	context = dc->current_state;
2668 
2669 	update_type = dc_check_update_surfaces_for_stream(
2670 				dc, srf_updates, surface_count, stream_update, stream_status);
2671 
2672 	if (update_type >= update_surface_trace_level)
2673 		update_surface_trace(dc, srf_updates, surface_count);
2674 
2675 
2676 	if (update_type >= UPDATE_TYPE_FULL) {
2677 
2678 		/* initialize scratch memory for building context */
2679 		context = dc_create_state(dc);
2680 		if (context == NULL) {
2681 			DC_ERROR("Failed to allocate new validate context!\n");
2682 			return;
2683 		}
2684 
2685 		dc_resource_state_copy_construct(state, context);
2686 
2687 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2688 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
2689 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2690 
2691 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
2692 				new_pipe->plane_state->force_full_update = true;
2693 		}
2694 	}
2695 
2696 
2697 	for (i = 0; i < surface_count; i++) {
2698 		struct dc_plane_state *surface = srf_updates[i].surface;
2699 
2700 		copy_surface_update_to_plane(surface, &srf_updates[i]);
2701 
2702 		if (update_type >= UPDATE_TYPE_MED) {
2703 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2704 				struct pipe_ctx *pipe_ctx =
2705 					&context->res_ctx.pipe_ctx[j];
2706 
2707 				if (pipe_ctx->plane_state != surface)
2708 					continue;
2709 
2710 				resource_build_scaling_params(pipe_ctx);
2711 			}
2712 		}
2713 	}
2714 
2715 	copy_stream_update_to_stream(dc, context, stream, stream_update);
2716 
2717 	if (update_type >= UPDATE_TYPE_FULL) {
2718 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
2719 			DC_ERROR("Mode validation failed for stream update!\n");
2720 			dc_release_state(context);
2721 			return;
2722 		}
2723 	}
2724 
2725 	commit_planes_for_stream(
2726 				dc,
2727 				srf_updates,
2728 				surface_count,
2729 				stream,
2730 				stream_update,
2731 				update_type,
2732 				context);
2733 	/*update current_State*/
2734 	if (dc->current_state != context) {
2735 
2736 		struct dc_state *old = dc->current_state;
2737 
2738 		dc->current_state = context;
2739 		dc_release_state(old);
2740 
2741 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2742 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2743 
2744 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
2745 				pipe_ctx->plane_state->force_full_update = false;
2746 		}
2747 	}
2748 	/*let's use current_state to update watermark etc*/
2749 	if (update_type >= UPDATE_TYPE_FULL)
2750 		dc_post_update_surfaces_to_stream(dc);
2751 
2752 	return;
2753 
2754 }
2755 
dc_get_current_stream_count(struct dc * dc)2756 uint8_t dc_get_current_stream_count(struct dc *dc)
2757 {
2758 	return dc->current_state->stream_count;
2759 }
2760 
dc_get_stream_at_index(struct dc * dc,uint8_t i)2761 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
2762 {
2763 	if (i < dc->current_state->stream_count)
2764 		return dc->current_state->streams[i];
2765 	return NULL;
2766 }
2767 
dc_stream_find_from_link(const struct dc_link * link)2768 struct dc_stream_state *dc_stream_find_from_link(const struct dc_link *link)
2769 {
2770 	uint8_t i;
2771 	struct dc_context *ctx = link->ctx;
2772 
2773 	for (i = 0; i < ctx->dc->current_state->stream_count; i++) {
2774 		if (ctx->dc->current_state->streams[i]->link == link)
2775 			return ctx->dc->current_state->streams[i];
2776 	}
2777 
2778 	return NULL;
2779 }
2780 
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)2781 enum dc_irq_source dc_interrupt_to_irq_source(
2782 		struct dc *dc,
2783 		uint32_t src_id,
2784 		uint32_t ext_id)
2785 {
2786 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
2787 }
2788 
2789 /**
2790  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
2791  */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)2792 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
2793 {
2794 
2795 	if (dc == NULL)
2796 		return false;
2797 
2798 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
2799 }
2800 
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)2801 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
2802 {
2803 	dal_irq_service_ack(dc->res_pool->irqs, src);
2804 }
2805 
dc_power_down_on_boot(struct dc * dc)2806 void dc_power_down_on_boot(struct dc *dc)
2807 {
2808 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
2809 			dc->hwss.power_down_on_boot)
2810 		dc->hwss.power_down_on_boot(dc);
2811 }
2812 
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)2813 void dc_set_power_state(
2814 	struct dc *dc,
2815 	enum dc_acpi_cm_power_state power_state)
2816 {
2817 	struct kref refcount;
2818 	struct display_mode_lib *dml;
2819 
2820 	switch (power_state) {
2821 	case DC_ACPI_CM_POWER_STATE_D0:
2822 		dc_resource_state_construct(dc, dc->current_state);
2823 
2824 		if (dc->ctx->dmub_srv)
2825 			dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
2826 
2827 		dc->hwss.init_hw(dc);
2828 
2829 		if (dc->hwss.init_sys_ctx != NULL &&
2830 			dc->vm_pa_config.valid) {
2831 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
2832 		}
2833 
2834 		break;
2835 	default:
2836 		ASSERT(dc->current_state->stream_count == 0);
2837 		/* Zero out the current context so that on resume we start with
2838 		 * clean state, and dc hw programming optimizations will not
2839 		 * cause any trouble.
2840 		 */
2841 		dml = kzalloc(sizeof(struct display_mode_lib),
2842 				GFP_KERNEL);
2843 
2844 		ASSERT(dml);
2845 		if (!dml)
2846 			return;
2847 
2848 		/* Preserve refcount */
2849 		refcount = dc->current_state->refcount;
2850 		/* Preserve display mode lib */
2851 		memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
2852 
2853 		dc_resource_state_destruct(dc->current_state);
2854 		memset(dc->current_state, 0,
2855 				sizeof(*dc->current_state));
2856 
2857 		dc->current_state->refcount = refcount;
2858 		dc->current_state->bw_ctx.dml = *dml;
2859 
2860 		kfree(dml);
2861 
2862 		break;
2863 	}
2864 }
2865 
dc_resume(struct dc * dc)2866 void dc_resume(struct dc *dc)
2867 {
2868 	uint32_t i;
2869 
2870 	for (i = 0; i < dc->link_count; i++)
2871 		core_link_resume(dc->links[i]);
2872 }
2873 
dc_is_dmcu_initialized(struct dc * dc)2874 bool dc_is_dmcu_initialized(struct dc *dc)
2875 {
2876 	struct dmcu *dmcu = dc->res_pool->dmcu;
2877 
2878 	if (dmcu)
2879 		return dmcu->funcs->is_dmcu_initialized(dmcu);
2880 	return false;
2881 }
2882 
dc_submit_i2c(struct dc * dc,uint32_t link_index,struct i2c_command * cmd)2883 bool dc_submit_i2c(
2884 		struct dc *dc,
2885 		uint32_t link_index,
2886 		struct i2c_command *cmd)
2887 {
2888 
2889 	struct dc_link *link = dc->links[link_index];
2890 	struct ddc_service *ddc = link->ddc;
2891 	return dce_i2c_submit_command(
2892 		dc->res_pool,
2893 		ddc->ddc_pin,
2894 		cmd);
2895 }
2896 
dc_submit_i2c_oem(struct dc * dc,struct i2c_command * cmd)2897 bool dc_submit_i2c_oem(
2898 		struct dc *dc,
2899 		struct i2c_command *cmd)
2900 {
2901 	struct ddc_service *ddc = dc->res_pool->oem_device;
2902 	return dce_i2c_submit_command(
2903 		dc->res_pool,
2904 		ddc->ddc_pin,
2905 		cmd);
2906 }
2907 
link_add_remote_sink_helper(struct dc_link * dc_link,struct dc_sink * sink)2908 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
2909 {
2910 	if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
2911 		BREAK_TO_DEBUGGER();
2912 		return false;
2913 	}
2914 
2915 	dc_sink_retain(sink);
2916 
2917 	dc_link->remote_sinks[dc_link->sink_count] = sink;
2918 	dc_link->sink_count++;
2919 
2920 	return true;
2921 }
2922 
2923 /**
2924  * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
2925  *
2926  * EDID length is in bytes
2927  */
dc_link_add_remote_sink(struct dc_link * link,const uint8_t * edid,int len,struct dc_sink_init_data * init_data)2928 struct dc_sink *dc_link_add_remote_sink(
2929 		struct dc_link *link,
2930 		const uint8_t *edid,
2931 		int len,
2932 		struct dc_sink_init_data *init_data)
2933 {
2934 	struct dc_sink *dc_sink;
2935 	enum dc_edid_status edid_status;
2936 
2937 	if (len > DC_MAX_EDID_BUFFER_SIZE) {
2938 		dm_error("Max EDID buffer size breached!\n");
2939 		return NULL;
2940 	}
2941 
2942 	if (!init_data) {
2943 		BREAK_TO_DEBUGGER();
2944 		return NULL;
2945 	}
2946 
2947 	if (!init_data->link) {
2948 		BREAK_TO_DEBUGGER();
2949 		return NULL;
2950 	}
2951 
2952 	dc_sink = dc_sink_create(init_data);
2953 
2954 	if (!dc_sink)
2955 		return NULL;
2956 
2957 	memmove(dc_sink->dc_edid.raw_edid, edid, len);
2958 	dc_sink->dc_edid.length = len;
2959 
2960 	if (!link_add_remote_sink_helper(
2961 			link,
2962 			dc_sink))
2963 		goto fail_add_sink;
2964 
2965 	edid_status = dm_helpers_parse_edid_caps(
2966 			link->ctx,
2967 			&dc_sink->dc_edid,
2968 			&dc_sink->edid_caps);
2969 
2970 	/*
2971 	 * Treat device as no EDID device if EDID
2972 	 * parsing fails
2973 	 */
2974 	if (edid_status != EDID_OK) {
2975 		dc_sink->dc_edid.length = 0;
2976 		dm_error("Bad EDID, status%d!\n", edid_status);
2977 	}
2978 
2979 	return dc_sink;
2980 
2981 fail_add_sink:
2982 	dc_sink_release(dc_sink);
2983 	return NULL;
2984 }
2985 
2986 /**
2987  * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
2988  *
2989  * Note that this just removes the struct dc_sink - it doesn't
2990  * program hardware or alter other members of dc_link
2991  */
dc_link_remove_remote_sink(struct dc_link * link,struct dc_sink * sink)2992 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
2993 {
2994 	int i;
2995 
2996 	if (!link->sink_count) {
2997 		BREAK_TO_DEBUGGER();
2998 		return;
2999 	}
3000 
3001 	for (i = 0; i < link->sink_count; i++) {
3002 		if (link->remote_sinks[i] == sink) {
3003 			dc_sink_release(sink);
3004 			link->remote_sinks[i] = NULL;
3005 
3006 			/* shrink array to remove empty place */
3007 			while (i < link->sink_count - 1) {
3008 				link->remote_sinks[i] = link->remote_sinks[i+1];
3009 				i++;
3010 			}
3011 			link->remote_sinks[i] = NULL;
3012 			link->sink_count--;
3013 			return;
3014 		}
3015 	}
3016 }
3017 
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)3018 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
3019 {
3020 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
3021 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
3022 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
3023 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
3024 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
3025 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
3026 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
3027 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
3028 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
3029 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)3030 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
3031 {
3032 	if (dc->hwss.set_clock)
3033 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
3034 	return DC_ERROR_UNEXPECTED;
3035 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)3036 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
3037 {
3038 	if (dc->hwss.get_clock)
3039 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
3040 }
3041 
3042 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)3043 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
3044 {
3045 	int i;
3046 
3047 	for (i = 0; i < dc->current_state->stream_count ; i++) {
3048 		struct dc_link *link;
3049 		struct dc_stream_state *stream = dc->current_state->streams[i];
3050 
3051 		link = stream->link;
3052 		if (!link)
3053 			continue;
3054 
3055 		if (link->psr_settings.psr_feature_enabled) {
3056 			if (enable && !link->psr_settings.psr_allow_active)
3057 				return dc_link_set_psr_allow_active(link, true, false);
3058 			else if (!enable && link->psr_settings.psr_allow_active)
3059 				return dc_link_set_psr_allow_active(link, false, true);
3060 		}
3061 	}
3062 
3063 	return true;
3064 }
3065 
3066 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
3067 
dc_allow_idle_optimizations(struct dc * dc,bool allow)3068 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
3069 {
3070 	if (dc->debug.disable_idle_power_optimizations)
3071 		return;
3072 
3073 	if (allow == dc->idle_optimizations_allowed)
3074 		return;
3075 
3076 	if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
3077 		dc->idle_optimizations_allowed = allow;
3078 }
3079 
3080 /*
3081  * blank all streams, and set min and max memory clock to
3082  * lowest and highest DPM level, respectively
3083  */
dc_unlock_memory_clock_frequency(struct dc * dc)3084 void dc_unlock_memory_clock_frequency(struct dc *dc)
3085 {
3086 	unsigned int i;
3087 
3088 	for (i = 0; i < MAX_PIPES; i++)
3089 		if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3090 			core_link_disable_stream(&dc->current_state->res_ctx.pipe_ctx[i]);
3091 
3092 	dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
3093 	dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3094 }
3095 
3096 /*
3097  * set min memory clock to the min required for current mode,
3098  * max to maxDPM, and unblank streams
3099  */
dc_lock_memory_clock_frequency(struct dc * dc)3100 void dc_lock_memory_clock_frequency(struct dc *dc)
3101 {
3102 	unsigned int i;
3103 
3104 	dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
3105 	dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
3106 	dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3107 
3108 	for (i = 0; i < MAX_PIPES; i++)
3109 		if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3110 			core_link_enable_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i]);
3111 }
3112 
dc_is_plane_eligible_for_idle_optimizaitons(struct dc * dc,struct dc_plane_state * plane)3113 bool dc_is_plane_eligible_for_idle_optimizaitons(struct dc *dc,
3114 						 struct dc_plane_state *plane)
3115 {
3116 	return false;
3117 }
3118 #endif
3119