• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/delay.h>
27 
28 #include "dm_services.h"
29 #include "dc.h"
30 #include "dc_bios_types.h"
31 #include "core_types.h"
32 #include "core_status.h"
33 #include "resource.h"
34 #include "dm_helpers.h"
35 #include "dce110_hw_sequencer.h"
36 #include "dce110_timing_generator.h"
37 #include "dce/dce_hwseq.h"
38 #include "gpio_service_interface.h"
39 
40 #include "dce110_compressor.h"
41 
42 #include "bios/bios_parser_helper.h"
43 #include "timing_generator.h"
44 #include "mem_input.h"
45 #include "opp.h"
46 #include "ipp.h"
47 #include "transform.h"
48 #include "stream_encoder.h"
49 #include "link_encoder.h"
50 #include "link_hwss.h"
51 #include "clock_source.h"
52 #include "clk_mgr.h"
53 #include "abm.h"
54 #include "audio.h"
55 #include "reg_helper.h"
56 #include "panel_cntl.h"
57 
58 /* include DCE11 register header files */
59 #include "dce/dce_11_0_d.h"
60 #include "dce/dce_11_0_sh_mask.h"
61 #include "custom_float.h"
62 
63 #include "atomfirmware.h"
64 
65 #define GAMMA_HW_POINTS_NUM 256
66 
67 /*
68  * All values are in milliseconds;
69  * For eDP, after power-up/power/down,
70  * 300/500 msec max. delay from LCDVCC to black video generation
71  */
72 #define PANEL_POWER_UP_TIMEOUT 300
73 #define PANEL_POWER_DOWN_TIMEOUT 500
74 #define HPD_CHECK_INTERVAL 10
75 #define OLED_POST_T7_DELAY 100
76 #define OLED_PRE_T11_DELAY 150
77 
78 #define CTX \
79 	hws->ctx
80 
81 #define DC_LOGGER_INIT()
82 
83 #define REG(reg)\
84 	hws->regs->reg
85 
86 #undef FN
87 #define FN(reg_name, field_name) \
88 	hws->shifts->field_name, hws->masks->field_name
89 
90 struct dce110_hw_seq_reg_offsets {
91 	uint32_t crtc;
92 };
93 
94 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
95 {
96 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
97 },
98 {
99 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
100 },
101 {
102 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
103 },
104 {
105 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
106 }
107 };
108 
109 #define HW_REG_BLND(reg, id)\
110 	(reg + reg_offsets[id].blnd)
111 
112 #define HW_REG_CRTC(reg, id)\
113 	(reg + reg_offsets[id].crtc)
114 
115 #define MAX_WATERMARK 0xFFFF
116 #define SAFE_NBP_MARK 0x7FFF
117 
118 /*******************************************************************************
119  * Private definitions
120  ******************************************************************************/
121 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)122 static void dce110_init_pte(struct dc_context *ctx)
123 {
124 	uint32_t addr;
125 	uint32_t value = 0;
126 	uint32_t chunk_int = 0;
127 	uint32_t chunk_mul = 0;
128 
129 	addr = mmUNP_DVMM_PTE_CONTROL;
130 	value = dm_read_reg(ctx, addr);
131 
132 	set_reg_field_value(
133 		value,
134 		0,
135 		DVMM_PTE_CONTROL,
136 		DVMM_USE_SINGLE_PTE);
137 
138 	set_reg_field_value(
139 		value,
140 		1,
141 		DVMM_PTE_CONTROL,
142 		DVMM_PTE_BUFFER_MODE0);
143 
144 	set_reg_field_value(
145 		value,
146 		1,
147 		DVMM_PTE_CONTROL,
148 		DVMM_PTE_BUFFER_MODE1);
149 
150 	dm_write_reg(ctx, addr, value);
151 
152 	addr = mmDVMM_PTE_REQ;
153 	value = dm_read_reg(ctx, addr);
154 
155 	chunk_int = get_reg_field_value(
156 		value,
157 		DVMM_PTE_REQ,
158 		HFLIP_PTEREQ_PER_CHUNK_INT);
159 
160 	chunk_mul = get_reg_field_value(
161 		value,
162 		DVMM_PTE_REQ,
163 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
164 
165 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
166 
167 		set_reg_field_value(
168 			value,
169 			255,
170 			DVMM_PTE_REQ,
171 			MAX_PTEREQ_TO_ISSUE);
172 
173 		set_reg_field_value(
174 			value,
175 			4,
176 			DVMM_PTE_REQ,
177 			HFLIP_PTEREQ_PER_CHUNK_INT);
178 
179 		set_reg_field_value(
180 			value,
181 			4,
182 			DVMM_PTE_REQ,
183 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
184 
185 		dm_write_reg(ctx, addr, value);
186 	}
187 }
188 /**************************************************************************/
189 
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)190 static void enable_display_pipe_clock_gating(
191 	struct dc_context *ctx,
192 	bool clock_gating)
193 {
194 	/*TODO*/
195 }
196 
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)197 static bool dce110_enable_display_power_gating(
198 	struct dc *dc,
199 	uint8_t controller_id,
200 	struct dc_bios *dcb,
201 	enum pipe_gating_control power_gating)
202 {
203 	enum bp_result bp_result = BP_RESULT_OK;
204 	enum bp_pipe_control_action cntl;
205 	struct dc_context *ctx = dc->ctx;
206 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
207 
208 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
209 		return true;
210 
211 	if (power_gating == PIPE_GATING_CONTROL_INIT)
212 		cntl = ASIC_PIPE_INIT;
213 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
214 		cntl = ASIC_PIPE_ENABLE;
215 	else
216 		cntl = ASIC_PIPE_DISABLE;
217 
218 	if (controller_id == underlay_idx)
219 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
220 
221 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
222 
223 		bp_result = dcb->funcs->enable_disp_power_gating(
224 						dcb, controller_id + 1, cntl);
225 
226 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
227 		 * by default when command table is called
228 		 *
229 		 * Bios parser accepts controller_id = 6 as indicative of
230 		 * underlay pipe in dce110. But we do not support more
231 		 * than 3.
232 		 */
233 		if (controller_id < CONTROLLER_ID_MAX - 1)
234 			dm_write_reg(ctx,
235 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
236 				0);
237 	}
238 
239 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
240 		dce110_init_pte(ctx);
241 
242 	if (bp_result == BP_RESULT_OK)
243 		return true;
244 	else
245 		return false;
246 }
247 
build_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)248 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
249 		const struct dc_plane_state *plane_state)
250 {
251 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
252 
253 	switch (plane_state->format) {
254 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
255 		prescale_params->scale = 0x2082;
256 		break;
257 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
258 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
259 		prescale_params->scale = 0x2020;
260 		break;
261 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
262 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
263 		prescale_params->scale = 0x2008;
264 		break;
265 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
266 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
267 		prescale_params->scale = 0x2000;
268 		break;
269 	default:
270 		ASSERT(false);
271 		break;
272 	}
273 }
274 
275 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)276 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
277 			       const struct dc_plane_state *plane_state)
278 {
279 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
280 	const struct dc_transfer_func *tf = NULL;
281 	struct ipp_prescale_params prescale_params = { 0 };
282 	bool result = true;
283 
284 	if (ipp == NULL)
285 		return false;
286 
287 	if (plane_state->in_transfer_func)
288 		tf = plane_state->in_transfer_func;
289 
290 	build_prescale_params(&prescale_params, plane_state);
291 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
292 
293 	if (plane_state->gamma_correction &&
294 			!plane_state->gamma_correction->is_identity &&
295 			dce_use_lut(plane_state->format))
296 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
297 
298 	if (tf == NULL) {
299 		/* Default case if no input transfer function specified */
300 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
301 	} else if (tf->type == TF_TYPE_PREDEFINED) {
302 		switch (tf->tf) {
303 		case TRANSFER_FUNCTION_SRGB:
304 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
305 			break;
306 		case TRANSFER_FUNCTION_BT709:
307 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
308 			break;
309 		case TRANSFER_FUNCTION_LINEAR:
310 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
311 			break;
312 		case TRANSFER_FUNCTION_PQ:
313 		default:
314 			result = false;
315 			break;
316 		}
317 	} else if (tf->type == TF_TYPE_BYPASS) {
318 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
319 	} else {
320 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
321 		result = false;
322 	}
323 
324 	return result;
325 }
326 
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)327 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
328 				    struct curve_points *arr_points,
329 				    uint32_t hw_points_num)
330 {
331 	struct custom_float_format fmt;
332 
333 	struct pwl_result_data *rgb = rgb_resulted;
334 
335 	uint32_t i = 0;
336 
337 	fmt.exponenta_bits = 6;
338 	fmt.mantissa_bits = 12;
339 	fmt.sign = true;
340 
341 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
342 					    &arr_points[0].custom_float_x)) {
343 		BREAK_TO_DEBUGGER();
344 		return false;
345 	}
346 
347 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
348 					    &arr_points[0].custom_float_offset)) {
349 		BREAK_TO_DEBUGGER();
350 		return false;
351 	}
352 
353 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
354 					    &arr_points[0].custom_float_slope)) {
355 		BREAK_TO_DEBUGGER();
356 		return false;
357 	}
358 
359 	fmt.mantissa_bits = 10;
360 	fmt.sign = false;
361 
362 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
363 					    &arr_points[1].custom_float_x)) {
364 		BREAK_TO_DEBUGGER();
365 		return false;
366 	}
367 
368 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
369 					    &arr_points[1].custom_float_y)) {
370 		BREAK_TO_DEBUGGER();
371 		return false;
372 	}
373 
374 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
375 					    &arr_points[1].custom_float_slope)) {
376 		BREAK_TO_DEBUGGER();
377 		return false;
378 	}
379 
380 	fmt.mantissa_bits = 12;
381 	fmt.sign = true;
382 
383 	while (i != hw_points_num) {
384 		if (!convert_to_custom_float_format(rgb->red, &fmt,
385 						    &rgb->red_reg)) {
386 			BREAK_TO_DEBUGGER();
387 			return false;
388 		}
389 
390 		if (!convert_to_custom_float_format(rgb->green, &fmt,
391 						    &rgb->green_reg)) {
392 			BREAK_TO_DEBUGGER();
393 			return false;
394 		}
395 
396 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
397 						    &rgb->blue_reg)) {
398 			BREAK_TO_DEBUGGER();
399 			return false;
400 		}
401 
402 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
403 						    &rgb->delta_red_reg)) {
404 			BREAK_TO_DEBUGGER();
405 			return false;
406 		}
407 
408 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
409 						    &rgb->delta_green_reg)) {
410 			BREAK_TO_DEBUGGER();
411 			return false;
412 		}
413 
414 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
415 						    &rgb->delta_blue_reg)) {
416 			BREAK_TO_DEBUGGER();
417 			return false;
418 		}
419 
420 		++rgb;
421 		++i;
422 	}
423 
424 	return true;
425 }
426 
427 #define MAX_LOW_POINT      25
428 #define NUMBER_REGIONS     16
429 #define NUMBER_SW_SEGMENTS 16
430 
431 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)432 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
433 				      struct pwl_params *regamma_params)
434 {
435 	struct curve_points *arr_points;
436 	struct pwl_result_data *rgb_resulted;
437 	struct pwl_result_data *rgb;
438 	struct pwl_result_data *rgb_plus_1;
439 	struct fixed31_32 y_r;
440 	struct fixed31_32 y_g;
441 	struct fixed31_32 y_b;
442 	struct fixed31_32 y1_min;
443 	struct fixed31_32 y3_max;
444 
445 	int32_t region_start, region_end;
446 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
447 
448 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
449 		return false;
450 
451 	arr_points = regamma_params->arr_points;
452 	rgb_resulted = regamma_params->rgb_resulted;
453 	hw_points = 0;
454 
455 	memset(regamma_params, 0, sizeof(struct pwl_params));
456 
457 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
458 		/* 16 segments
459 		 * segments are from 2^-11 to 2^5
460 		 */
461 		region_start = -11;
462 		region_end = region_start + NUMBER_REGIONS;
463 
464 		for (i = 0; i < NUMBER_REGIONS; i++)
465 			seg_distr[i] = 4;
466 
467 	} else {
468 		/* 10 segments
469 		 * segment is from 2^-10 to 2^1
470 		 * We include an extra segment for range [2^0, 2^1). This is to
471 		 * ensure that colors with normalized values of 1 don't miss the
472 		 * LUT.
473 		 */
474 		region_start = -10;
475 		region_end = 1;
476 
477 		seg_distr[0] = 4;
478 		seg_distr[1] = 4;
479 		seg_distr[2] = 4;
480 		seg_distr[3] = 4;
481 		seg_distr[4] = 4;
482 		seg_distr[5] = 4;
483 		seg_distr[6] = 4;
484 		seg_distr[7] = 4;
485 		seg_distr[8] = 4;
486 		seg_distr[9] = 4;
487 		seg_distr[10] = 0;
488 		seg_distr[11] = -1;
489 		seg_distr[12] = -1;
490 		seg_distr[13] = -1;
491 		seg_distr[14] = -1;
492 		seg_distr[15] = -1;
493 	}
494 
495 	for (k = 0; k < 16; k++) {
496 		if (seg_distr[k] != -1)
497 			hw_points += (1 << seg_distr[k]);
498 	}
499 
500 	j = 0;
501 	for (k = 0; k < (region_end - region_start); k++) {
502 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
503 		start_index = (region_start + k + MAX_LOW_POINT) *
504 				NUMBER_SW_SEGMENTS;
505 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
506 				i += increment) {
507 			if (j == hw_points - 1)
508 				break;
509 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
510 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
511 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
512 			j++;
513 		}
514 	}
515 
516 	/* last point */
517 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
518 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
519 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
520 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
521 
522 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
523 					     dc_fixpt_from_int(region_start));
524 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
525 					     dc_fixpt_from_int(region_end));
526 
527 	y_r = rgb_resulted[0].red;
528 	y_g = rgb_resulted[0].green;
529 	y_b = rgb_resulted[0].blue;
530 
531 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
532 
533 	arr_points[0].y = y1_min;
534 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
535 						 arr_points[0].x);
536 
537 	y_r = rgb_resulted[hw_points - 1].red;
538 	y_g = rgb_resulted[hw_points - 1].green;
539 	y_b = rgb_resulted[hw_points - 1].blue;
540 
541 	/* see comment above, m_arrPoints[1].y should be the Y value for the
542 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
543 	 */
544 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
545 
546 	arr_points[1].y = y3_max;
547 
548 	arr_points[1].slope = dc_fixpt_zero;
549 
550 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
551 		/* for PQ, we want to have a straight line from last HW X point,
552 		 * and the slope to be such that we hit 1.0 at 10000 nits.
553 		 */
554 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
555 
556 		arr_points[1].slope = dc_fixpt_div(
557 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
558 				dc_fixpt_sub(end_value, arr_points[1].x));
559 	}
560 
561 	regamma_params->hw_points_num = hw_points;
562 
563 	k = 0;
564 	for (i = 1; i < 16; i++) {
565 		if (seg_distr[k] != -1) {
566 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
567 			regamma_params->arr_curve_points[i].offset =
568 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
569 		}
570 		k++;
571 	}
572 
573 	if (seg_distr[k] != -1)
574 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
575 
576 	rgb = rgb_resulted;
577 	rgb_plus_1 = rgb_resulted + 1;
578 
579 	i = 1;
580 
581 	while (i != hw_points + 1) {
582 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
583 			rgb_plus_1->red = rgb->red;
584 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
585 			rgb_plus_1->green = rgb->green;
586 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
587 			rgb_plus_1->blue = rgb->blue;
588 
589 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
590 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
591 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
592 
593 		++rgb_plus_1;
594 		++rgb;
595 		++i;
596 	}
597 
598 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
599 
600 	return true;
601 }
602 
603 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)604 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
605 				const struct dc_stream_state *stream)
606 {
607 	struct transform *xfm = pipe_ctx->plane_res.xfm;
608 
609 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
610 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
611 
612 	if (stream->out_transfer_func &&
613 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
614 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
615 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
616 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
617 							 &xfm->regamma_params)) {
618 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
619 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
620 	} else {
621 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
622 	}
623 
624 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
625 
626 	return true;
627 }
628 
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)629 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
630 {
631 	bool is_hdmi_tmds;
632 	bool is_dp;
633 
634 	ASSERT(pipe_ctx->stream);
635 
636 	if (pipe_ctx->stream_res.stream_enc == NULL)
637 		return;  /* this is not root pipe */
638 
639 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
640 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
641 
642 	if (!is_hdmi_tmds && !is_dp)
643 		return;
644 
645 	if (is_hdmi_tmds)
646 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
647 			pipe_ctx->stream_res.stream_enc,
648 			&pipe_ctx->stream_res.encoder_info_frame);
649 	else
650 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
651 			pipe_ctx->stream_res.stream_enc,
652 			&pipe_ctx->stream_res.encoder_info_frame);
653 }
654 
dce110_enable_stream(struct pipe_ctx * pipe_ctx)655 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
656 {
657 	enum dc_lane_count lane_count =
658 		pipe_ctx->stream->link->cur_link_settings.lane_count;
659 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
660 	struct dc_link *link = pipe_ctx->stream->link;
661 	const struct dc *dc = link->dc;
662 
663 	uint32_t active_total_with_borders;
664 	uint32_t early_control = 0;
665 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
666 
667 	/* For MST, there are multiply stream go to only one link.
668 	 * connect DIG back_end to front_end while enable_stream and
669 	 * disconnect them during disable_stream
670 	 * BY this, it is logic clean to separate stream and link */
671 	link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
672 						    pipe_ctx->stream_res.stream_enc->id, true);
673 
674 	dc->hwss.update_info_frame(pipe_ctx);
675 
676 	/* enable early control to avoid corruption on DP monitor*/
677 	active_total_with_borders =
678 			timing->h_addressable
679 				+ timing->h_border_left
680 				+ timing->h_border_right;
681 
682 	if (lane_count != 0)
683 		early_control = active_total_with_borders % lane_count;
684 
685 	if (early_control == 0)
686 		early_control = lane_count;
687 
688 	tg->funcs->set_early_control(tg, early_control);
689 
690 	/* enable audio only within mode set */
691 	if (pipe_ctx->stream_res.audio != NULL) {
692 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
693 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
694 	}
695 
696 
697 
698 
699 }
700 
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)701 static enum bp_result link_transmitter_control(
702 		struct dc_bios *bios,
703 	struct bp_transmitter_control *cntl)
704 {
705 	enum bp_result result;
706 
707 	result = bios->funcs->transmitter_control(bios, cntl);
708 
709 	return result;
710 }
711 
712 /*
713  * @brief
714  * eDP only.
715  */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)716 void dce110_edp_wait_for_hpd_ready(
717 		struct dc_link *link,
718 		bool power_up)
719 {
720 	struct dc_context *ctx = link->ctx;
721 	struct graphics_object_id connector = link->link_enc->connector;
722 	struct gpio *hpd;
723 	struct dc_sink *sink = link->local_sink;
724 	bool edp_hpd_high = false;
725 	uint32_t time_elapsed = 0;
726 	uint32_t timeout = power_up ?
727 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
728 
729 	if (dal_graphics_object_id_get_connector_id(connector)
730 			!= CONNECTOR_ID_EDP) {
731 		BREAK_TO_DEBUGGER();
732 		return;
733 	}
734 
735 	if (!power_up)
736 		/*
737 		 * From KV, we will not HPD low after turning off VCC -
738 		 * instead, we will check the SW timer in power_up().
739 		 */
740 		return;
741 
742 	/*
743 	 * When we power on/off the eDP panel,
744 	 * we need to wait until SENSE bit is high/low.
745 	 */
746 
747 	/* obtain HPD */
748 	/* TODO what to do with this? */
749 	hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
750 
751 	if (!hpd) {
752 		BREAK_TO_DEBUGGER();
753 		return;
754 	}
755 
756 	if (sink != NULL) {
757 		if (sink->edid_caps.panel_patch.extra_t3_ms > 0) {
758 			int extra_t3_in_ms = sink->edid_caps.panel_patch.extra_t3_ms;
759 
760 			msleep(extra_t3_in_ms);
761 		}
762 	}
763 
764 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
765 
766 	/* wait until timeout or panel detected */
767 
768 	do {
769 		uint32_t detected = 0;
770 
771 		dal_gpio_get_value(hpd, &detected);
772 
773 		if (!(detected ^ power_up)) {
774 			edp_hpd_high = true;
775 			break;
776 		}
777 
778 		msleep(HPD_CHECK_INTERVAL);
779 
780 		time_elapsed += HPD_CHECK_INTERVAL;
781 	} while (time_elapsed < timeout);
782 
783 	dal_gpio_close(hpd);
784 
785 	dal_gpio_destroy_irq(&hpd);
786 
787 	if (false == edp_hpd_high) {
788 		DC_LOG_ERROR(
789 				"%s: wait timed out!\n", __func__);
790 	}
791 }
792 
dce110_edp_power_control(struct dc_link * link,bool power_up)793 void dce110_edp_power_control(
794 		struct dc_link *link,
795 		bool power_up)
796 {
797 	struct dc_context *ctx = link->ctx;
798 	struct bp_transmitter_control cntl = { 0 };
799 	enum bp_result bp_result;
800 
801 
802 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
803 			!= CONNECTOR_ID_EDP) {
804 		BREAK_TO_DEBUGGER();
805 		return;
806 	}
807 
808 	if (!link->panel_cntl)
809 		return;
810 
811 	if (power_up !=
812 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
813 
814 		unsigned long long current_ts = dm_get_timestamp(ctx);
815 		unsigned long long time_since_edp_poweroff_ms =
816 				div64_u64(dm_get_elapse_time_in_ns(
817 						ctx,
818 						current_ts,
819 						link->link_trace.time_stamp.edp_poweroff), 1000000);
820 		unsigned long long time_since_edp_poweron_ms =
821 				div64_u64(dm_get_elapse_time_in_ns(
822 						ctx,
823 						current_ts,
824 						link->link_trace.time_stamp.edp_poweron), 1000000);
825 		DC_LOG_HW_RESUME_S3(
826 				"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
827 				__func__,
828 				power_up,
829 				current_ts,
830 				link->link_trace.time_stamp.edp_poweroff,
831 				link->link_trace.time_stamp.edp_poweron,
832 				time_since_edp_poweroff_ms,
833 				time_since_edp_poweron_ms);
834 
835 		/* Send VBIOS command to prompt eDP panel power */
836 		if (power_up) {
837 			/* edp requires a min of 500ms from LCDVDD off to on */
838 			unsigned long long remaining_min_edp_poweroff_time_ms = 500;
839 
840 			/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
841 			if (link->local_sink != NULL)
842 				remaining_min_edp_poweroff_time_ms +=
843 					link->local_sink->edid_caps.panel_patch.extra_t12_ms;
844 
845 			/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
846 			if (link->link_trace.time_stamp.edp_poweroff != 0) {
847 				if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
848 					remaining_min_edp_poweroff_time_ms =
849 						remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
850 				else
851 					remaining_min_edp_poweroff_time_ms = 0;
852 			}
853 
854 			if (remaining_min_edp_poweroff_time_ms) {
855 				DC_LOG_HW_RESUME_S3(
856 						"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
857 						__func__, remaining_min_edp_poweroff_time_ms);
858 				msleep(remaining_min_edp_poweroff_time_ms);
859 				DC_LOG_HW_RESUME_S3(
860 						"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
861 						__func__, remaining_min_edp_poweroff_time_ms);
862 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
863 						__func__, remaining_min_edp_poweroff_time_ms);
864 			} else {
865 				DC_LOG_HW_RESUME_S3(
866 						"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
867 						__func__, remaining_min_edp_poweroff_time_ms);
868 			}
869 		}
870 
871 		DC_LOG_HW_RESUME_S3(
872 				"%s: BEGIN: Panel Power action: %s\n",
873 				__func__, (power_up ? "On":"Off"));
874 
875 		cntl.action = power_up ?
876 			TRANSMITTER_CONTROL_POWER_ON :
877 			TRANSMITTER_CONTROL_POWER_OFF;
878 		cntl.transmitter = link->link_enc->transmitter;
879 		cntl.connector_obj_id = link->link_enc->connector;
880 		cntl.coherent = false;
881 		cntl.lanes_number = LANE_COUNT_FOUR;
882 		cntl.hpd_sel = link->link_enc->hpd_source;
883 
884 		if (ctx->dc->ctx->dmub_srv &&
885 				ctx->dc->debug.dmub_command_table) {
886 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON)
887 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
888 						LVTMA_CONTROL_POWER_ON);
889 			else
890 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
891 						LVTMA_CONTROL_POWER_OFF);
892 		}
893 
894 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
895 
896 		DC_LOG_HW_RESUME_S3(
897 				"%s: END: Panel Power action: %s bp_result=%u\n",
898 				__func__, (power_up ? "On":"Off"),
899 				bp_result);
900 
901 		if (!power_up)
902 			/*save driver power off time stamp*/
903 			link->link_trace.time_stamp.edp_poweroff = dm_get_timestamp(ctx);
904 		else
905 			link->link_trace.time_stamp.edp_poweron = dm_get_timestamp(ctx);
906 
907 		DC_LOG_HW_RESUME_S3(
908 				"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
909 				__func__,
910 				link->link_trace.time_stamp.edp_poweroff,
911 				link->link_trace.time_stamp.edp_poweron);
912 
913 		if (bp_result != BP_RESULT_OK)
914 			DC_LOG_ERROR(
915 					"%s: Panel Power bp_result: %d\n",
916 					__func__, bp_result);
917 	} else {
918 		DC_LOG_HW_RESUME_S3(
919 				"%s: Skipping Panel Power action: %s\n",
920 				__func__, (power_up ? "On":"Off"));
921 	}
922 }
923 
924 /*todo: cloned in stream enc, fix*/
925 /*
926  * @brief
927  * eDP only. Control the backlight of the eDP panel
928  */
dce110_edp_backlight_control(struct dc_link * link,bool enable)929 void dce110_edp_backlight_control(
930 		struct dc_link *link,
931 		bool enable)
932 {
933 	struct dc_context *ctx = link->ctx;
934 	struct bp_transmitter_control cntl = { 0 };
935 
936 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
937 		!= CONNECTOR_ID_EDP) {
938 		BREAK_TO_DEBUGGER();
939 		return;
940 	}
941 
942 	if (enable && link->panel_cntl &&
943 		link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl)) {
944 		DC_LOG_HW_RESUME_S3(
945 				"%s: panel already powered up. Do nothing.\n",
946 				__func__);
947 		return;
948 	}
949 
950 	/* Send VBIOS command to control eDP panel backlight */
951 
952 	DC_LOG_HW_RESUME_S3(
953 			"%s: backlight action: %s\n",
954 			__func__, (enable ? "On":"Off"));
955 
956 	cntl.action = enable ?
957 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
958 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
959 
960 	/*cntl.engine_id = ctx->engine;*/
961 	cntl.transmitter = link->link_enc->transmitter;
962 	cntl.connector_obj_id = link->link_enc->connector;
963 	/*todo: unhardcode*/
964 	cntl.lanes_number = LANE_COUNT_FOUR;
965 	cntl.hpd_sel = link->link_enc->hpd_source;
966 	cntl.signal = SIGNAL_TYPE_EDP;
967 
968 	/* For eDP, the following delays might need to be considered
969 	 * after link training completed:
970 	 * idle period - min. accounts for required BS-Idle pattern,
971 	 * max. allows for source frame synchronization);
972 	 * 50 msec max. delay from valid video data from source
973 	 * to video on dislpay or backlight enable.
974 	 *
975 	 * Disable the delay for now.
976 	 * Enable it in the future if necessary.
977 	 */
978 	/* dc_service_sleep_in_milliseconds(50); */
979 		/*edp 1.2*/
980 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
981 		edp_receiver_ready_T7(link);
982 
983 	if (ctx->dc->ctx->dmub_srv &&
984 			ctx->dc->debug.dmub_command_table) {
985 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
986 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
987 					LVTMA_CONTROL_LCD_BLON);
988 		else
989 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
990 					LVTMA_CONTROL_LCD_BLOFF);
991 	}
992 
993 	link_transmitter_control(ctx->dc_bios, &cntl);
994 
995 
996 
997 	if (enable && link->dpcd_sink_ext_caps.bits.oled)
998 		msleep(OLED_POST_T7_DELAY);
999 
1000 	if (link->dpcd_sink_ext_caps.bits.oled ||
1001 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1002 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1003 		dc_link_backlight_enable_aux(link, enable);
1004 
1005 	/*edp 1.2*/
1006 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF)
1007 		edp_receiver_ready_T9(link);
1008 
1009 	if (!enable && link->dpcd_sink_ext_caps.bits.oled)
1010 		msleep(OLED_PRE_T11_DELAY);
1011 }
1012 
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1013 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1014 {
1015 	/* notify audio driver for audio modes of monitor */
1016 	struct dc *dc;
1017 	struct clk_mgr *clk_mgr;
1018 	unsigned int i, num_audio = 1;
1019 
1020 	if (!pipe_ctx->stream)
1021 		return;
1022 
1023 	dc = pipe_ctx->stream->ctx->dc;
1024 	clk_mgr = dc->clk_mgr;
1025 
1026 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1027 		return;
1028 
1029 	if (pipe_ctx->stream_res.audio) {
1030 		for (i = 0; i < MAX_PIPES; i++) {
1031 			/*current_state not updated yet*/
1032 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1033 				num_audio++;
1034 		}
1035 
1036 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1037 
1038 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1039 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1040 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1041 		/* un-mute audio */
1042 		/* TODO: audio should be per stream rather than per link */
1043 		pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1044 					pipe_ctx->stream_res.stream_enc, false);
1045 		if (pipe_ctx->stream_res.audio)
1046 			pipe_ctx->stream_res.audio->enabled = true;
1047 	}
1048 }
1049 
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1050 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1051 {
1052 	struct dc *dc;
1053 	struct clk_mgr *clk_mgr;
1054 
1055 	if (!pipe_ctx || !pipe_ctx->stream)
1056 		return;
1057 
1058 	dc = pipe_ctx->stream->ctx->dc;
1059 	clk_mgr = dc->clk_mgr;
1060 
1061 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1062 		return;
1063 
1064 	pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1065 			pipe_ctx->stream_res.stream_enc, true);
1066 	if (pipe_ctx->stream_res.audio) {
1067 		pipe_ctx->stream_res.audio->enabled = false;
1068 
1069 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1070 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1071 					pipe_ctx->stream_res.stream_enc);
1072 		else
1073 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1074 					pipe_ctx->stream_res.stream_enc);
1075 
1076 		if (clk_mgr->funcs->enable_pme_wa)
1077 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1078 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1079 
1080 		/* TODO: notify audio driver for if audio modes list changed
1081 		 * add audio mode list change flag */
1082 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1083 		 * stream->stream_engine_id);
1084 		 */
1085 	}
1086 }
1087 
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1088 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1089 {
1090 	struct dc_stream_state *stream = pipe_ctx->stream;
1091 	struct dc_link *link = stream->link;
1092 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1093 
1094 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1095 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1096 			pipe_ctx->stream_res.stream_enc);
1097 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1098 			pipe_ctx->stream_res.stream_enc);
1099 	}
1100 
1101 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1102 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1103 			pipe_ctx->stream_res.stream_enc);
1104 
1105 	dc->hwss.disable_audio_stream(pipe_ctx);
1106 
1107 	link->link_enc->funcs->connect_dig_be_to_fe(
1108 			link->link_enc,
1109 			pipe_ctx->stream_res.stream_enc->id,
1110 			false);
1111 
1112 }
1113 
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1114 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1115 		struct dc_link_settings *link_settings)
1116 {
1117 	struct encoder_unblank_param params = { { 0 } };
1118 	struct dc_stream_state *stream = pipe_ctx->stream;
1119 	struct dc_link *link = stream->link;
1120 	struct dce_hwseq *hws = link->dc->hwseq;
1121 
1122 	/* only 3 items below are used by unblank */
1123 	params.timing = pipe_ctx->stream->timing;
1124 	params.link_settings.link_rate = link_settings->link_rate;
1125 
1126 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1127 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
1128 
1129 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1130 		hws->funcs.edp_backlight_control(link, true);
1131 	}
1132 }
1133 
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1134 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1135 {
1136 	struct dc_stream_state *stream = pipe_ctx->stream;
1137 	struct dc_link *link = stream->link;
1138 	struct dce_hwseq *hws = link->dc->hwseq;
1139 
1140 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1141 		hws->funcs.edp_backlight_control(link, false);
1142 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1143 	}
1144 
1145 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1146 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(pipe_ctx->stream_res.stream_enc);
1147 
1148 		/*
1149 		 * After output is idle pattern some sinks need time to recognize the stream
1150 		 * has changed or they enter protection state and hang.
1151 		 */
1152 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal))
1153 			msleep(60);
1154 	}
1155 
1156 }
1157 
1158 
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1159 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1160 {
1161 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1162 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1163 }
1164 
translate_to_dto_source(enum controller_id crtc_id)1165 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1166 {
1167 	switch (crtc_id) {
1168 	case CONTROLLER_ID_D0:
1169 		return DTO_SOURCE_ID0;
1170 	case CONTROLLER_ID_D1:
1171 		return DTO_SOURCE_ID1;
1172 	case CONTROLLER_ID_D2:
1173 		return DTO_SOURCE_ID2;
1174 	case CONTROLLER_ID_D3:
1175 		return DTO_SOURCE_ID3;
1176 	case CONTROLLER_ID_D4:
1177 		return DTO_SOURCE_ID4;
1178 	case CONTROLLER_ID_D5:
1179 		return DTO_SOURCE_ID5;
1180 	default:
1181 		return DTO_SOURCE_UNKNOWN;
1182 	}
1183 }
1184 
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1185 static void build_audio_output(
1186 	struct dc_state *state,
1187 	const struct pipe_ctx *pipe_ctx,
1188 	struct audio_output *audio_output)
1189 {
1190 	const struct dc_stream_state *stream = pipe_ctx->stream;
1191 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1192 
1193 	audio_output->signal = pipe_ctx->stream->signal;
1194 
1195 	/* audio_crtc_info  */
1196 
1197 	audio_output->crtc_info.h_total =
1198 		stream->timing.h_total;
1199 
1200 	/*
1201 	 * Audio packets are sent during actual CRTC blank physical signal, we
1202 	 * need to specify actual active signal portion
1203 	 */
1204 	audio_output->crtc_info.h_active =
1205 			stream->timing.h_addressable
1206 			+ stream->timing.h_border_left
1207 			+ stream->timing.h_border_right;
1208 
1209 	audio_output->crtc_info.v_active =
1210 			stream->timing.v_addressable
1211 			+ stream->timing.v_border_top
1212 			+ stream->timing.v_border_bottom;
1213 
1214 	audio_output->crtc_info.pixel_repetition = 1;
1215 
1216 	audio_output->crtc_info.interlaced =
1217 			stream->timing.flags.INTERLACE;
1218 
1219 	audio_output->crtc_info.refresh_rate =
1220 		(stream->timing.pix_clk_100hz*100)/
1221 		(stream->timing.h_total*stream->timing.v_total);
1222 
1223 	audio_output->crtc_info.color_depth =
1224 		stream->timing.display_color_depth;
1225 
1226 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1227 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1228 
1229 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1230 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1231 
1232 /*for HDMI, audio ACR is with deep color ratio factor*/
1233 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1234 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1235 				(stream->timing.pix_clk_100hz)) {
1236 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1237 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1238 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1239 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1240 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1241 
1242 		}
1243 	}
1244 
1245 	if (state->clk_mgr &&
1246 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1247 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1248 		audio_output->pll_info.dp_dto_source_clock_in_khz =
1249 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1250 						state->clk_mgr);
1251 	}
1252 
1253 	audio_output->pll_info.feed_back_divider =
1254 			pipe_ctx->pll_settings.feedback_divider;
1255 
1256 	audio_output->pll_info.dto_source =
1257 		translate_to_dto_source(
1258 			pipe_ctx->stream_res.tg->inst + 1);
1259 
1260 	/* TODO hard code to enable for now. Need get from stream */
1261 	audio_output->pll_info.ss_enabled = true;
1262 
1263 	audio_output->pll_info.ss_percentage =
1264 			pipe_ctx->pll_settings.ss_percentage;
1265 }
1266 
get_surface_visual_confirm_color(const struct pipe_ctx * pipe_ctx,struct tg_color * color)1267 static void get_surface_visual_confirm_color(const struct pipe_ctx *pipe_ctx,
1268 		struct tg_color *color)
1269 {
1270 	uint32_t color_value = MAX_TG_COLOR_VALUE * (4 - pipe_ctx->stream_res.tg->inst) / 4;
1271 
1272 	switch (pipe_ctx->plane_res.scl_data.format) {
1273 	case PIXEL_FORMAT_ARGB8888:
1274 		/* set boarder color to red */
1275 		color->color_r_cr = color_value;
1276 		break;
1277 
1278 	case PIXEL_FORMAT_ARGB2101010:
1279 		/* set boarder color to blue */
1280 		color->color_b_cb = color_value;
1281 		break;
1282 	case PIXEL_FORMAT_420BPP8:
1283 		/* set boarder color to green */
1284 		color->color_g_y = color_value;
1285 		break;
1286 	case PIXEL_FORMAT_420BPP10:
1287 		/* set boarder color to yellow */
1288 		color->color_g_y = color_value;
1289 		color->color_r_cr = color_value;
1290 		break;
1291 	case PIXEL_FORMAT_FP16:
1292 		/* set boarder color to white */
1293 		color->color_r_cr = color_value;
1294 		color->color_b_cb = color_value;
1295 		color->color_g_y = color_value;
1296 		break;
1297 	default:
1298 		break;
1299 	}
1300 }
1301 
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1302 static void program_scaler(const struct dc *dc,
1303 		const struct pipe_ctx *pipe_ctx)
1304 {
1305 	struct tg_color color = {0};
1306 
1307 #if defined(CONFIG_DRM_AMD_DC_DCN)
1308 	/* TOFPGA */
1309 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1310 		return;
1311 #endif
1312 
1313 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1314 		get_surface_visual_confirm_color(pipe_ctx, &color);
1315 	else
1316 		color_space_to_black_color(dc,
1317 				pipe_ctx->stream->output_color_space,
1318 				&color);
1319 
1320 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1321 		pipe_ctx->plane_res.xfm,
1322 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1323 		&pipe_ctx->stream->bit_depth_params);
1324 
1325 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1326 		/*
1327 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1328 		 * alternate between Cb and Cr, so both channels need the pixel
1329 		 * value for Y
1330 		 */
1331 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1332 			color.color_r_cr = color.color_g_y;
1333 
1334 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1335 				pipe_ctx->stream_res.tg,
1336 				&color);
1337 	}
1338 
1339 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1340 		&pipe_ctx->plane_res.scl_data);
1341 }
1342 
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1343 static enum dc_status dce110_enable_stream_timing(
1344 		struct pipe_ctx *pipe_ctx,
1345 		struct dc_state *context,
1346 		struct dc *dc)
1347 {
1348 	struct dc_stream_state *stream = pipe_ctx->stream;
1349 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1350 			pipe_ctx[pipe_ctx->pipe_idx];
1351 	struct tg_color black_color = {0};
1352 
1353 	if (!pipe_ctx_old->stream) {
1354 
1355 		/* program blank color */
1356 		color_space_to_black_color(dc,
1357 				stream->output_color_space, &black_color);
1358 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1359 				pipe_ctx->stream_res.tg,
1360 				&black_color);
1361 
1362 		/*
1363 		 * Must blank CRTC after disabling power gating and before any
1364 		 * programming, otherwise CRTC will be hung in bad state
1365 		 */
1366 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1367 
1368 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1369 				pipe_ctx->clock_source,
1370 				&pipe_ctx->stream_res.pix_clk_params,
1371 				&pipe_ctx->pll_settings)) {
1372 			BREAK_TO_DEBUGGER();
1373 			return DC_ERROR_UNEXPECTED;
1374 		}
1375 
1376 		pipe_ctx->stream_res.tg->funcs->program_timing(
1377 				pipe_ctx->stream_res.tg,
1378 				&stream->timing,
1379 				0,
1380 				0,
1381 				0,
1382 				0,
1383 				pipe_ctx->stream->signal,
1384 				true);
1385 	}
1386 
1387 	if (!pipe_ctx_old->stream) {
1388 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1389 				pipe_ctx->stream_res.tg)) {
1390 			BREAK_TO_DEBUGGER();
1391 			return DC_ERROR_UNEXPECTED;
1392 		}
1393 	}
1394 
1395 	return DC_OK;
1396 }
1397 
apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1398 static enum dc_status apply_single_controller_ctx_to_hw(
1399 		struct pipe_ctx *pipe_ctx,
1400 		struct dc_state *context,
1401 		struct dc *dc)
1402 {
1403 	struct dc_stream_state *stream = pipe_ctx->stream;
1404 	struct drr_params params = {0};
1405 	unsigned int event_triggers = 0;
1406 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1407 	struct dce_hwseq *hws = dc->hwseq;
1408 
1409 	if (hws->funcs.disable_stream_gating) {
1410 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1411 	}
1412 
1413 	if (pipe_ctx->stream_res.audio != NULL) {
1414 		struct audio_output audio_output;
1415 
1416 		build_audio_output(context, pipe_ctx, &audio_output);
1417 
1418 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1419 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1420 					pipe_ctx->stream_res.stream_enc,
1421 					pipe_ctx->stream_res.audio->inst,
1422 					&pipe_ctx->stream->audio_info);
1423 		else
1424 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1425 					pipe_ctx->stream_res.stream_enc,
1426 					pipe_ctx->stream_res.audio->inst,
1427 					&pipe_ctx->stream->audio_info,
1428 					&audio_output.crtc_info);
1429 
1430 		pipe_ctx->stream_res.audio->funcs->az_configure(
1431 				pipe_ctx->stream_res.audio,
1432 				pipe_ctx->stream->signal,
1433 				&audio_output.crtc_info,
1434 				&pipe_ctx->stream->audio_info);
1435 	}
1436 
1437 	/*  */
1438 	/* Do not touch stream timing on seamless boot optimization. */
1439 	if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1440 		hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1441 
1442 	if (hws->funcs.setup_vupdate_interrupt)
1443 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1444 
1445 	params.vertical_total_min = stream->adjust.v_total_min;
1446 	params.vertical_total_max = stream->adjust.v_total_max;
1447 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
1448 		pipe_ctx->stream_res.tg->funcs->set_drr(
1449 			pipe_ctx->stream_res.tg, &params);
1450 
1451 	// DRR should set trigger event to monitor surface update event
1452 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1453 		event_triggers = 0x80;
1454 	/* Event triggers and num frames initialized for DRR, but can be
1455 	 * later updated for PSR use. Note DRR trigger events are generated
1456 	 * regardless of whether num frames met.
1457 	 */
1458 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1459 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1460 				pipe_ctx->stream_res.tg, event_triggers, 2);
1461 
1462 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1463 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1464 			pipe_ctx->stream_res.stream_enc,
1465 			pipe_ctx->stream_res.tg->inst);
1466 
1467 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1468 			pipe_ctx->stream_res.opp,
1469 			COLOR_SPACE_YCBCR601,
1470 			stream->timing.display_color_depth,
1471 			stream->signal);
1472 
1473 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1474 		pipe_ctx->stream_res.opp,
1475 		&stream->bit_depth_params,
1476 		&stream->clamping);
1477 	while (odm_pipe) {
1478 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1479 				odm_pipe->stream_res.opp,
1480 				COLOR_SPACE_YCBCR601,
1481 				stream->timing.display_color_depth,
1482 				stream->signal);
1483 
1484 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1485 				odm_pipe->stream_res.opp,
1486 				&stream->bit_depth_params,
1487 				&stream->clamping);
1488 		odm_pipe = odm_pipe->next_odm_pipe;
1489 	}
1490 
1491 	if (!stream->dpms_off)
1492 		core_link_enable_stream(context, pipe_ctx);
1493 
1494 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
1495 
1496 	pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1497 
1498 	return DC_OK;
1499 }
1500 
1501 /******************************************************************************/
1502 
power_down_encoders(struct dc * dc)1503 static void power_down_encoders(struct dc *dc)
1504 {
1505 	int i;
1506 
1507 	/* do not know BIOS back-front mapping, simply blank all. It will not
1508 	 * hurt for non-DP
1509 	 */
1510 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1511 		dc->res_pool->stream_enc[i]->funcs->dp_blank(
1512 					dc->res_pool->stream_enc[i]);
1513 	}
1514 
1515 	for (i = 0; i < dc->link_count; i++) {
1516 		enum signal_type signal = dc->links[i]->connector_signal;
1517 
1518 		if ((signal == SIGNAL_TYPE_EDP) ||
1519 			(signal == SIGNAL_TYPE_DISPLAY_PORT))
1520 			if (!dc->links[i]->wa_flags.dp_keep_receiver_powered)
1521 				dp_receiver_power_ctrl(dc->links[i], false);
1522 
1523 		if (signal != SIGNAL_TYPE_EDP)
1524 			signal = SIGNAL_TYPE_NONE;
1525 
1526 		dc->links[i]->link_enc->funcs->disable_output(
1527 				dc->links[i]->link_enc, signal);
1528 
1529 		dc->links[i]->link_status.link_active = false;
1530 	}
1531 }
1532 
power_down_controllers(struct dc * dc)1533 static void power_down_controllers(struct dc *dc)
1534 {
1535 	int i;
1536 
1537 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1538 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1539 				dc->res_pool->timing_generators[i]);
1540 	}
1541 }
1542 
power_down_clock_sources(struct dc * dc)1543 static void power_down_clock_sources(struct dc *dc)
1544 {
1545 	int i;
1546 
1547 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1548 		dc->res_pool->dp_clock_source) == false)
1549 		dm_error("Failed to power down pll! (dp clk src)\n");
1550 
1551 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1552 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1553 				dc->res_pool->clock_sources[i]) == false)
1554 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1555 	}
1556 }
1557 
power_down_all_hw_blocks(struct dc * dc)1558 static void power_down_all_hw_blocks(struct dc *dc)
1559 {
1560 	power_down_encoders(dc);
1561 
1562 	power_down_controllers(dc);
1563 
1564 	power_down_clock_sources(dc);
1565 
1566 	if (dc->fbc_compressor)
1567 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1568 }
1569 
disable_vga_and_power_gate_all_controllers(struct dc * dc)1570 static void disable_vga_and_power_gate_all_controllers(
1571 		struct dc *dc)
1572 {
1573 	int i;
1574 	struct timing_generator *tg;
1575 	struct dc_context *ctx = dc->ctx;
1576 
1577 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1578 		tg = dc->res_pool->timing_generators[i];
1579 
1580 		if (tg->funcs->disable_vga)
1581 			tg->funcs->disable_vga(tg);
1582 	}
1583 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1584 		/* Enable CLOCK gating for each pipe BEFORE controller
1585 		 * powergating. */
1586 		enable_display_pipe_clock_gating(ctx,
1587 				true);
1588 
1589 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1590 		dc->hwss.disable_plane(dc,
1591 			&dc->current_state->res_ctx.pipe_ctx[i]);
1592 	}
1593 }
1594 
1595 
get_edp_stream(struct dc_state * context)1596 static struct dc_stream_state *get_edp_stream(struct dc_state *context)
1597 {
1598 	int i;
1599 
1600 	for (i = 0; i < context->stream_count; i++) {
1601 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP)
1602 			return context->streams[i];
1603 	}
1604 	return NULL;
1605 }
1606 
get_edp_link_with_sink(struct dc * dc,struct dc_state * context)1607 static struct dc_link *get_edp_link_with_sink(
1608 		struct dc *dc,
1609 		struct dc_state *context)
1610 {
1611 	int i;
1612 	struct dc_link *link = NULL;
1613 
1614 	/* check if there is an eDP panel not in use */
1615 	for (i = 0; i < dc->link_count; i++) {
1616 		if (dc->links[i]->local_sink &&
1617 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1618 			link = dc->links[i];
1619 			break;
1620 		}
1621 	}
1622 
1623 	return link;
1624 }
1625 
1626 /**
1627  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1628  *  1. Power down all DC HW blocks
1629  *  2. Disable VGA engine on all controllers
1630  *  3. Enable power gating for controller
1631  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1632  */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1633 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1634 {
1635 	int i;
1636 	struct dc_link *edp_link_with_sink = get_edp_link_with_sink(dc, context);
1637 	struct dc_link *edp_link = get_edp_link(dc);
1638 	struct dc_stream_state *edp_stream = NULL;
1639 	bool can_apply_edp_fast_boot = false;
1640 	bool can_apply_seamless_boot = false;
1641 	bool keep_edp_vdd_on = false;
1642 	struct dce_hwseq *hws = dc->hwseq;
1643 
1644 	if (hws->funcs.init_pipes)
1645 		hws->funcs.init_pipes(dc, context);
1646 
1647 	edp_stream = get_edp_stream(context);
1648 
1649 	// Check fastboot support, disable on DCE8 because of blank screens
1650 	if (edp_link && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1651 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1652 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1653 
1654 		// enable fastboot if backend is enabled on eDP
1655 		if (edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc)) {
1656 			/* Set optimization flag on eDP stream*/
1657 			if (edp_stream && edp_link->link_status.link_active) {
1658 				edp_stream->apply_edp_fast_boot_optimization = true;
1659 				can_apply_edp_fast_boot = true;
1660 			}
1661 		}
1662 
1663 		// We are trying to enable eDP, don't power down VDD
1664 		if (edp_stream)
1665 			keep_edp_vdd_on = true;
1666 	}
1667 
1668 	// Check seamless boot support
1669 	for (i = 0; i < context->stream_count; i++) {
1670 		if (context->streams[i]->apply_seamless_boot_optimization) {
1671 			can_apply_seamless_boot = true;
1672 			break;
1673 		}
1674 	}
1675 
1676 	/* eDP should not have stream in resume from S4 and so even with VBios post
1677 	 * it should get turned off
1678 	 */
1679 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1680 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1681 			/*turn off backlight before DP_blank and encoder powered down*/
1682 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1683 		}
1684 		/*resume from S3, no vbios posting, no need to power down again*/
1685 		power_down_all_hw_blocks(dc);
1686 		disable_vga_and_power_gate_all_controllers(dc);
1687 		if (edp_link_with_sink && !keep_edp_vdd_on)
1688 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1689 	}
1690 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios);
1691 }
1692 
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1693 static uint32_t compute_pstate_blackout_duration(
1694 	struct bw_fixed blackout_duration,
1695 	const struct dc_stream_state *stream)
1696 {
1697 	uint32_t total_dest_line_time_ns;
1698 	uint32_t pstate_blackout_duration_ns;
1699 
1700 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1701 
1702 	total_dest_line_time_ns = 1000000UL *
1703 		(stream->timing.h_total * 10) /
1704 		stream->timing.pix_clk_100hz +
1705 		pstate_blackout_duration_ns;
1706 
1707 	return total_dest_line_time_ns;
1708 }
1709 
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)1710 static void dce110_set_displaymarks(
1711 	const struct dc *dc,
1712 	struct dc_state *context)
1713 {
1714 	uint8_t i, num_pipes;
1715 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1716 
1717 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1718 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1719 		uint32_t total_dest_line_time_ns;
1720 
1721 		if (pipe_ctx->stream == NULL)
1722 			continue;
1723 
1724 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1725 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1726 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1727 			pipe_ctx->plane_res.mi,
1728 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1729 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1730 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1731 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1732 			total_dest_line_time_ns);
1733 		if (i == underlay_idx) {
1734 			num_pipes++;
1735 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1736 				pipe_ctx->plane_res.mi,
1737 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1738 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1739 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1740 				total_dest_line_time_ns);
1741 		}
1742 		num_pipes++;
1743 	}
1744 }
1745 
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)1746 void dce110_set_safe_displaymarks(
1747 		struct resource_context *res_ctx,
1748 		const struct resource_pool *pool)
1749 {
1750 	int i;
1751 	int underlay_idx = pool->underlay_pipe_index;
1752 	struct dce_watermarks max_marks = {
1753 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1754 	struct dce_watermarks nbp_marks = {
1755 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1756 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1757 
1758 	for (i = 0; i < MAX_PIPES; i++) {
1759 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1760 			continue;
1761 
1762 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1763 				res_ctx->pipe_ctx[i].plane_res.mi,
1764 				nbp_marks,
1765 				max_marks,
1766 				min_marks,
1767 				max_marks,
1768 				MAX_WATERMARK);
1769 
1770 		if (i == underlay_idx)
1771 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1772 				res_ctx->pipe_ctx[i].plane_res.mi,
1773 				nbp_marks,
1774 				max_marks,
1775 				max_marks,
1776 				MAX_WATERMARK);
1777 
1778 	}
1779 }
1780 
1781 /*******************************************************************************
1782  * Public functions
1783  ******************************************************************************/
1784 
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,unsigned int vmin,unsigned int vmax,unsigned int vmid,unsigned int vmid_frame_number)1785 static void set_drr(struct pipe_ctx **pipe_ctx,
1786 		int num_pipes, unsigned int vmin, unsigned int vmax,
1787 		unsigned int vmid, unsigned int vmid_frame_number)
1788 {
1789 	int i = 0;
1790 	struct drr_params params = {0};
1791 	// DRR should set trigger event to monitor surface update event
1792 	unsigned int event_triggers = 0x80;
1793 	// Note DRR trigger events are generated regardless of whether num frames met.
1794 	unsigned int num_frames = 2;
1795 
1796 	params.vertical_total_max = vmax;
1797 	params.vertical_total_min = vmin;
1798 
1799 	/* TODO: If multiple pipes are to be supported, you need
1800 	 * some GSL stuff. Static screen triggers may be programmed differently
1801 	 * as well.
1802 	 */
1803 	for (i = 0; i < num_pipes; i++) {
1804 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1805 			pipe_ctx[i]->stream_res.tg, &params);
1806 
1807 		if (vmax != 0 && vmin != 0)
1808 			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1809 					pipe_ctx[i]->stream_res.tg,
1810 					event_triggers, num_frames);
1811 	}
1812 }
1813 
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)1814 static void get_position(struct pipe_ctx **pipe_ctx,
1815 		int num_pipes,
1816 		struct crtc_position *position)
1817 {
1818 	int i = 0;
1819 
1820 	/* TODO: handle pipes > 1
1821 	 */
1822 	for (i = 0; i < num_pipes; i++)
1823 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1824 }
1825 
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)1826 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1827 		int num_pipes, const struct dc_static_screen_params *params)
1828 {
1829 	unsigned int i;
1830 	unsigned int triggers = 0;
1831 
1832 	if (params->triggers.overlay_update)
1833 		triggers |= 0x100;
1834 	if (params->triggers.surface_update)
1835 		triggers |= 0x80;
1836 	if (params->triggers.cursor_update)
1837 		triggers |= 0x2;
1838 	if (params->triggers.force_trigger)
1839 		triggers |= 0x1;
1840 
1841 	if (num_pipes) {
1842 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1843 
1844 		if (dc->fbc_compressor)
1845 			triggers |= 0x84;
1846 	}
1847 
1848 	for (i = 0; i < num_pipes; i++)
1849 		pipe_ctx[i]->stream_res.tg->funcs->
1850 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1851 					triggers, params->num_frames);
1852 }
1853 
1854 /*
1855  *  Check if FBC can be enabled
1856  */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)1857 static bool should_enable_fbc(struct dc *dc,
1858 		struct dc_state *context,
1859 		uint32_t *pipe_idx)
1860 {
1861 	uint32_t i;
1862 	struct pipe_ctx *pipe_ctx = NULL;
1863 	struct resource_context *res_ctx = &context->res_ctx;
1864 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1865 
1866 
1867 	ASSERT(dc->fbc_compressor);
1868 
1869 	/* FBC memory should be allocated */
1870 	if (!dc->ctx->fbc_gpu_addr)
1871 		return false;
1872 
1873 	/* Only supports single display */
1874 	if (context->stream_count != 1)
1875 		return false;
1876 
1877 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1878 		if (res_ctx->pipe_ctx[i].stream) {
1879 
1880 			pipe_ctx = &res_ctx->pipe_ctx[i];
1881 
1882 			if (!pipe_ctx)
1883 				continue;
1884 
1885 			/* fbc not applicable on underlay pipe */
1886 			if (pipe_ctx->pipe_idx != underlay_idx) {
1887 				*pipe_idx = i;
1888 				break;
1889 			}
1890 		}
1891 	}
1892 
1893 	if (i == dc->res_pool->pipe_count)
1894 		return false;
1895 
1896 	if (!pipe_ctx->stream->link)
1897 		return false;
1898 
1899 	/* Only supports eDP */
1900 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
1901 		return false;
1902 
1903 	/* PSR should not be enabled */
1904 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
1905 		return false;
1906 
1907 	/* Nothing to compress */
1908 	if (!pipe_ctx->plane_state)
1909 		return false;
1910 
1911 	/* Only for non-linear tiling */
1912 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
1913 		return false;
1914 
1915 	return true;
1916 }
1917 
1918 /*
1919  *  Enable FBC
1920  */
enable_fbc(struct dc * dc,struct dc_state * context)1921 static void enable_fbc(
1922 		struct dc *dc,
1923 		struct dc_state *context)
1924 {
1925 	uint32_t pipe_idx = 0;
1926 
1927 	if (should_enable_fbc(dc, context, &pipe_idx)) {
1928 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
1929 		struct compr_addr_and_pitch_params params = {0, 0, 0};
1930 		struct compressor *compr = dc->fbc_compressor;
1931 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
1932 
1933 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
1934 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
1935 		params.inst = pipe_ctx->stream_res.tg->inst;
1936 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
1937 
1938 		compr->funcs->surface_address_and_pitch(compr, &params);
1939 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
1940 
1941 		compr->funcs->enable_fbc(compr, &params);
1942 	}
1943 }
1944 
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)1945 static void dce110_reset_hw_ctx_wrap(
1946 		struct dc *dc,
1947 		struct dc_state *context)
1948 {
1949 	int i;
1950 
1951 	/* Reset old context */
1952 	/* look up the targets that have been removed since last commit */
1953 	for (i = 0; i < MAX_PIPES; i++) {
1954 		struct pipe_ctx *pipe_ctx_old =
1955 			&dc->current_state->res_ctx.pipe_ctx[i];
1956 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1957 
1958 		/* Note: We need to disable output if clock sources change,
1959 		 * since bios does optimization and doesn't apply if changing
1960 		 * PHY when not already disabled.
1961 		 */
1962 
1963 		/* Skip underlay pipe since it will be handled in commit surface*/
1964 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
1965 			continue;
1966 
1967 		if (!pipe_ctx->stream ||
1968 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
1969 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
1970 
1971 			/* Disable if new stream is null. O/w, if stream is
1972 			 * disabled already, no need to disable again.
1973 			 */
1974 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
1975 				core_link_disable_stream(pipe_ctx_old);
1976 
1977 				/* free acquired resources*/
1978 				if (pipe_ctx_old->stream_res.audio) {
1979 					/*disable az_endpoint*/
1980 					pipe_ctx_old->stream_res.audio->funcs->
1981 							az_disable(pipe_ctx_old->stream_res.audio);
1982 
1983 					/*free audio*/
1984 					if (dc->caps.dynamic_audio == true) {
1985 						/*we have to dynamic arbitrate the audio endpoints*/
1986 						/*we free the resource, need reset is_audio_acquired*/
1987 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
1988 								pipe_ctx_old->stream_res.audio, false);
1989 						pipe_ctx_old->stream_res.audio = NULL;
1990 					}
1991 				}
1992 			}
1993 
1994 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
1995 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
1996 				dm_error("DC: failed to blank crtc!\n");
1997 				BREAK_TO_DEBUGGER();
1998 			}
1999 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2000 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2001 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2002 
2003 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2004 										dc->res_pool,
2005 										old_clk))
2006 				old_clk->funcs->cs_power_down(old_clk);
2007 
2008 			dc->hwss.disable_plane(dc, pipe_ctx_old);
2009 
2010 			pipe_ctx_old->stream = NULL;
2011 		}
2012 	}
2013 }
2014 
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2015 static void dce110_setup_audio_dto(
2016 		struct dc *dc,
2017 		struct dc_state *context)
2018 {
2019 	int i;
2020 
2021 	/* program audio wall clock. use HDMI as clock source if HDMI
2022 	 * audio active. Otherwise, use DP as clock source
2023 	 * first, loop to find any HDMI audio, if not, loop find DP audio
2024 	 */
2025 	/* Setup audio rate clock source */
2026 	/* Issue:
2027 	* Audio lag happened on DP monitor when unplug a HDMI monitor
2028 	*
2029 	* Cause:
2030 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2031 	* is set to either dto0 or dto1, audio should work fine.
2032 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2033 	* set to dto0 will cause audio lag.
2034 	*
2035 	* Solution:
2036 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2037 	* find first available pipe with audio, setup audio wall DTO per topology
2038 	* instead of per pipe.
2039 	*/
2040 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2041 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2042 
2043 		if (pipe_ctx->stream == NULL)
2044 			continue;
2045 
2046 		if (pipe_ctx->top_pipe)
2047 			continue;
2048 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2049 			continue;
2050 		if (pipe_ctx->stream_res.audio != NULL &&
2051 			pipe_ctx->stream_res.audio->enabled == false) {
2052 			struct audio_output audio_output;
2053 
2054 			build_audio_output(context, pipe_ctx, &audio_output);
2055 
2056 			pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2057 				pipe_ctx->stream_res.audio,
2058 				pipe_ctx->stream->signal,
2059 				&audio_output.crtc_info,
2060 				&audio_output.pll_info);
2061 			break;
2062 		}
2063 	}
2064 
2065 	/* no HDMI audio is found, try DP audio */
2066 	if (i == dc->res_pool->pipe_count) {
2067 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2068 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2069 
2070 			if (pipe_ctx->stream == NULL)
2071 				continue;
2072 
2073 			if (pipe_ctx->top_pipe)
2074 				continue;
2075 
2076 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2077 				continue;
2078 
2079 			if (pipe_ctx->stream_res.audio != NULL &&
2080 				pipe_ctx->stream_res.audio->enabled == false) {
2081 				struct audio_output audio_output;
2082 
2083 				build_audio_output(context, pipe_ctx, &audio_output);
2084 
2085 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2086 					pipe_ctx->stream_res.audio,
2087 					pipe_ctx->stream->signal,
2088 					&audio_output.crtc_info,
2089 					&audio_output.pll_info);
2090 				break;
2091 			}
2092 		}
2093 	}
2094 }
2095 
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2096 enum dc_status dce110_apply_ctx_to_hw(
2097 		struct dc *dc,
2098 		struct dc_state *context)
2099 {
2100 	struct dce_hwseq *hws = dc->hwseq;
2101 	struct dc_bios *dcb = dc->ctx->dc_bios;
2102 	enum dc_status status;
2103 	int i;
2104 
2105 	/* Reset old context */
2106 	/* look up the targets that have been removed since last commit */
2107 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2108 
2109 	/* Skip applying if no targets */
2110 	if (context->stream_count <= 0)
2111 		return DC_OK;
2112 
2113 	/* Apply new context */
2114 	dcb->funcs->set_scratch_critical_state(dcb, true);
2115 
2116 	/* below is for real asic only */
2117 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2118 		struct pipe_ctx *pipe_ctx_old =
2119 					&dc->current_state->res_ctx.pipe_ctx[i];
2120 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2121 
2122 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2123 			continue;
2124 
2125 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2126 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2127 				dce_crtc_switch_to_clk_src(dc->hwseq,
2128 						pipe_ctx->clock_source, i);
2129 			continue;
2130 		}
2131 
2132 		hws->funcs.enable_display_power_gating(
2133 				dc, i, dc->ctx->dc_bios,
2134 				PIPE_GATING_CONTROL_DISABLE);
2135 	}
2136 
2137 	if (dc->fbc_compressor)
2138 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2139 
2140 	dce110_setup_audio_dto(dc, context);
2141 
2142 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2143 		struct pipe_ctx *pipe_ctx_old =
2144 					&dc->current_state->res_ctx.pipe_ctx[i];
2145 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2146 
2147 		if (pipe_ctx->stream == NULL)
2148 			continue;
2149 
2150 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2151 			pipe_ctx->stream->link->link_state_valid) {
2152 			continue;
2153 		}
2154 
2155 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2156 			continue;
2157 
2158 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2159 			continue;
2160 
2161 		status = apply_single_controller_ctx_to_hw(
2162 				pipe_ctx,
2163 				context,
2164 				dc);
2165 
2166 		if (DC_OK != status)
2167 			return status;
2168 	}
2169 
2170 	if (dc->fbc_compressor)
2171 		enable_fbc(dc, dc->current_state);
2172 
2173 	dcb->funcs->set_scratch_critical_state(dcb, false);
2174 
2175 	return DC_OK;
2176 }
2177 
2178 /*******************************************************************************
2179  * Front End programming
2180  ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2181 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2182 {
2183 	struct default_adjustment default_adjust = { 0 };
2184 
2185 	default_adjust.force_hw_default = false;
2186 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2187 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2188 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2189 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2190 
2191 	/* display color depth */
2192 	default_adjust.color_depth =
2193 		pipe_ctx->stream->timing.display_color_depth;
2194 
2195 	/* Lb color depth */
2196 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2197 
2198 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2199 					pipe_ctx->plane_res.xfm, &default_adjust);
2200 }
2201 
2202 
2203 /*******************************************************************************
2204  * In order to turn on/off specific surface we will program
2205  * Blender + CRTC
2206  *
2207  * In case that we have two surfaces and they have a different visibility
2208  * we can't turn off the CRTC since it will turn off the entire display
2209  *
2210  * |----------------------------------------------- |
2211  * |bottom pipe|curr pipe  |              |         |
2212  * |Surface    |Surface    | Blender      |  CRCT   |
2213  * |visibility |visibility | Configuration|         |
2214  * |------------------------------------------------|
2215  * |   off     |    off    | CURRENT_PIPE | blank   |
2216  * |   off     |    on     | CURRENT_PIPE | unblank |
2217  * |   on      |    off    | OTHER_PIPE   | unblank |
2218  * |   on      |    on     | BLENDING     | unblank |
2219  * -------------------------------------------------|
2220  *
2221  ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2222 static void program_surface_visibility(const struct dc *dc,
2223 		struct pipe_ctx *pipe_ctx)
2224 {
2225 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2226 	bool blank_target = false;
2227 
2228 	if (pipe_ctx->bottom_pipe) {
2229 
2230 		/* For now we are supporting only two pipes */
2231 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2232 
2233 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2234 			if (pipe_ctx->plane_state->visible)
2235 				blender_mode = BLND_MODE_BLENDING;
2236 			else
2237 				blender_mode = BLND_MODE_OTHER_PIPE;
2238 
2239 		} else if (!pipe_ctx->plane_state->visible)
2240 			blank_target = true;
2241 
2242 	} else if (!pipe_ctx->plane_state->visible)
2243 		blank_target = true;
2244 
2245 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2246 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2247 
2248 }
2249 
program_gamut_remap(struct pipe_ctx * pipe_ctx)2250 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2251 {
2252 	int i = 0;
2253 	struct xfm_grph_csc_adjustment adjust;
2254 	memset(&adjust, 0, sizeof(adjust));
2255 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2256 
2257 
2258 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2259 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2260 
2261 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2262 			adjust.temperature_matrix[i] =
2263 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2264 	}
2265 
2266 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2267 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2268 static void update_plane_addr(const struct dc *dc,
2269 		struct pipe_ctx *pipe_ctx)
2270 {
2271 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2272 
2273 	if (plane_state == NULL)
2274 		return;
2275 
2276 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2277 			pipe_ctx->plane_res.mi,
2278 			&plane_state->address,
2279 			plane_state->flip_immediate);
2280 
2281 	plane_state->status.requested_address = plane_state->address;
2282 }
2283 
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2284 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2285 {
2286 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2287 
2288 	if (plane_state == NULL)
2289 		return;
2290 
2291 	plane_state->status.is_flip_pending =
2292 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2293 					pipe_ctx->plane_res.mi);
2294 
2295 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2296 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2297 
2298 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2299 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2300 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2301 		plane_state->status.is_right_eye =\
2302 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2303 	}
2304 }
2305 
dce110_power_down(struct dc * dc)2306 void dce110_power_down(struct dc *dc)
2307 {
2308 	power_down_all_hw_blocks(dc);
2309 	disable_vga_and_power_gate_all_controllers(dc);
2310 }
2311 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2312 static bool wait_for_reset_trigger_to_occur(
2313 	struct dc_context *dc_ctx,
2314 	struct timing_generator *tg)
2315 {
2316 	bool rc = false;
2317 
2318 	/* To avoid endless loop we wait at most
2319 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2320 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2321 	uint32_t i;
2322 
2323 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2324 
2325 		if (!tg->funcs->is_counter_moving(tg)) {
2326 			DC_ERROR("TG counter is not moving!\n");
2327 			break;
2328 		}
2329 
2330 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2331 			rc = true;
2332 			/* usually occurs at i=1 */
2333 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2334 					i);
2335 			break;
2336 		}
2337 
2338 		/* Wait for one frame. */
2339 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2340 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2341 	}
2342 
2343 	if (false == rc)
2344 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2345 
2346 	return rc;
2347 }
2348 
2349 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2350 static void dce110_enable_timing_synchronization(
2351 		struct dc *dc,
2352 		int group_index,
2353 		int group_size,
2354 		struct pipe_ctx *grouped_pipes[])
2355 {
2356 	struct dc_context *dc_ctx = dc->ctx;
2357 	struct dcp_gsl_params gsl_params = { 0 };
2358 	int i;
2359 
2360 	DC_SYNC_INFO("GSL: Setting-up...\n");
2361 
2362 	/* Designate a single TG in the group as a master.
2363 	 * Since HW doesn't care which one, we always assign
2364 	 * the 1st one in the group. */
2365 	gsl_params.gsl_group = 0;
2366 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2367 
2368 	for (i = 0; i < group_size; i++)
2369 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2370 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2371 
2372 	/* Reset slave controllers on master VSync */
2373 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2374 
2375 	for (i = 1 /* skip the master */; i < group_size; i++)
2376 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2377 				grouped_pipes[i]->stream_res.tg,
2378 				gsl_params.gsl_group);
2379 
2380 	for (i = 1 /* skip the master */; i < group_size; i++) {
2381 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2382 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2383 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2384 				grouped_pipes[i]->stream_res.tg);
2385 	}
2386 
2387 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2388 	 * is that the sync'ed displays will not drift out of sync over time*/
2389 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2390 	for (i = 0; i < group_size; i++)
2391 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2392 
2393 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2394 }
2395 
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2396 static void dce110_enable_per_frame_crtc_position_reset(
2397 		struct dc *dc,
2398 		int group_size,
2399 		struct pipe_ctx *grouped_pipes[])
2400 {
2401 	struct dc_context *dc_ctx = dc->ctx;
2402 	struct dcp_gsl_params gsl_params = { 0 };
2403 	int i;
2404 
2405 	gsl_params.gsl_group = 0;
2406 	gsl_params.gsl_master = 0;
2407 
2408 	for (i = 0; i < group_size; i++)
2409 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2410 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2411 
2412 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2413 
2414 	for (i = 1; i < group_size; i++)
2415 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2416 				grouped_pipes[i]->stream_res.tg,
2417 				gsl_params.gsl_master,
2418 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2419 
2420 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2421 	for (i = 1; i < group_size; i++)
2422 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2423 
2424 	for (i = 0; i < group_size; i++)
2425 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2426 
2427 }
2428 
init_pipes(struct dc * dc,struct dc_state * context)2429 static void init_pipes(struct dc *dc, struct dc_state *context)
2430 {
2431 	// Do nothing
2432 }
2433 
init_hw(struct dc * dc)2434 static void init_hw(struct dc *dc)
2435 {
2436 	int i;
2437 	struct dc_bios *bp;
2438 	struct transform *xfm;
2439 	struct abm *abm;
2440 	struct dmcu *dmcu;
2441 	struct dce_hwseq *hws = dc->hwseq;
2442 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2443 
2444 	bp = dc->ctx->dc_bios;
2445 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2446 		xfm = dc->res_pool->transforms[i];
2447 		xfm->funcs->transform_reset(xfm);
2448 
2449 		hws->funcs.enable_display_power_gating(
2450 				dc, i, bp,
2451 				PIPE_GATING_CONTROL_INIT);
2452 		hws->funcs.enable_display_power_gating(
2453 				dc, i, bp,
2454 				PIPE_GATING_CONTROL_DISABLE);
2455 		hws->funcs.enable_display_pipe_clock_gating(
2456 			dc->ctx,
2457 			true);
2458 	}
2459 
2460 	dce_clock_gating_power_up(dc->hwseq, false);
2461 	/***************************************/
2462 
2463 	for (i = 0; i < dc->link_count; i++) {
2464 		/****************************************/
2465 		/* Power up AND update implementation according to the
2466 		 * required signal (which may be different from the
2467 		 * default signal on connector). */
2468 		struct dc_link *link = dc->links[i];
2469 
2470 		link->link_enc->funcs->hw_init(link->link_enc);
2471 	}
2472 
2473 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2474 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2475 
2476 		tg->funcs->disable_vga(tg);
2477 
2478 		/* Blank controller using driver code instead of
2479 		 * command table. */
2480 		tg->funcs->set_blank(tg, true);
2481 		hwss_wait_for_blank_complete(tg);
2482 	}
2483 
2484 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2485 		struct audio *audio = dc->res_pool->audios[i];
2486 		audio->funcs->hw_init(audio);
2487 	}
2488 
2489 	for (i = 0; i < dc->link_count; i++) {
2490 		struct dc_link *link = dc->links[i];
2491 
2492 		if (link->panel_cntl)
2493 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2494 	}
2495 
2496 	abm = dc->res_pool->abm;
2497 	if (abm != NULL)
2498 		abm->funcs->abm_init(abm, backlight);
2499 
2500 	dmcu = dc->res_pool->dmcu;
2501 	if (dmcu != NULL && abm != NULL)
2502 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2503 
2504 	if (dc->fbc_compressor)
2505 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2506 
2507 }
2508 
2509 
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2510 void dce110_prepare_bandwidth(
2511 		struct dc *dc,
2512 		struct dc_state *context)
2513 {
2514 	struct clk_mgr *dccg = dc->clk_mgr;
2515 
2516 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2517 
2518 	dccg->funcs->update_clocks(
2519 			dccg,
2520 			context,
2521 			false);
2522 }
2523 
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2524 void dce110_optimize_bandwidth(
2525 		struct dc *dc,
2526 		struct dc_state *context)
2527 {
2528 	struct clk_mgr *dccg = dc->clk_mgr;
2529 
2530 	dce110_set_displaymarks(dc, context);
2531 
2532 	dccg->funcs->update_clocks(
2533 			dccg,
2534 			context,
2535 			true);
2536 }
2537 
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2538 static void dce110_program_front_end_for_pipe(
2539 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2540 {
2541 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2542 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2543 	struct xfm_grph_csc_adjustment adjust;
2544 	struct out_csc_color_matrix tbl_entry;
2545 	unsigned int i;
2546 	struct dce_hwseq *hws = dc->hwseq;
2547 
2548 	DC_LOGGER_INIT();
2549 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2550 
2551 	memset(&adjust, 0, sizeof(adjust));
2552 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2553 
2554 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2555 
2556 	set_default_colors(pipe_ctx);
2557 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2558 			== true) {
2559 		tbl_entry.color_space =
2560 			pipe_ctx->stream->output_color_space;
2561 
2562 		for (i = 0; i < 12; i++)
2563 			tbl_entry.regval[i] =
2564 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2565 
2566 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2567 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2568 	}
2569 
2570 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2571 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2572 
2573 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2574 			adjust.temperature_matrix[i] =
2575 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2576 	}
2577 
2578 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2579 
2580 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
2581 
2582 	program_scaler(dc, pipe_ctx);
2583 
2584 	mi->funcs->mem_input_program_surface_config(
2585 			mi,
2586 			plane_state->format,
2587 			&plane_state->tiling_info,
2588 			&plane_state->plane_size,
2589 			plane_state->rotation,
2590 			NULL,
2591 			false);
2592 	if (mi->funcs->set_blank)
2593 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2594 
2595 	if (dc->config.gpu_vm_support)
2596 		mi->funcs->mem_input_program_pte_vm(
2597 				pipe_ctx->plane_res.mi,
2598 				plane_state->format,
2599 				&plane_state->tiling_info,
2600 				plane_state->rotation);
2601 
2602 	/* Moved programming gamma from dc to hwss */
2603 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2604 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2605 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2606 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2607 
2608 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2609 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2610 
2611 	DC_LOG_SURFACE(
2612 			"Pipe:%d %p: addr hi:0x%x, "
2613 			"addr low:0x%x, "
2614 			"src: %d, %d, %d,"
2615 			" %d; dst: %d, %d, %d, %d;"
2616 			"clip: %d, %d, %d, %d\n",
2617 			pipe_ctx->pipe_idx,
2618 			(void *) pipe_ctx->plane_state,
2619 			pipe_ctx->plane_state->address.grph.addr.high_part,
2620 			pipe_ctx->plane_state->address.grph.addr.low_part,
2621 			pipe_ctx->plane_state->src_rect.x,
2622 			pipe_ctx->plane_state->src_rect.y,
2623 			pipe_ctx->plane_state->src_rect.width,
2624 			pipe_ctx->plane_state->src_rect.height,
2625 			pipe_ctx->plane_state->dst_rect.x,
2626 			pipe_ctx->plane_state->dst_rect.y,
2627 			pipe_ctx->plane_state->dst_rect.width,
2628 			pipe_ctx->plane_state->dst_rect.height,
2629 			pipe_ctx->plane_state->clip_rect.x,
2630 			pipe_ctx->plane_state->clip_rect.y,
2631 			pipe_ctx->plane_state->clip_rect.width,
2632 			pipe_ctx->plane_state->clip_rect.height);
2633 
2634 	DC_LOG_SURFACE(
2635 			"Pipe %d: width, height, x, y\n"
2636 			"viewport:%d, %d, %d, %d\n"
2637 			"recout:  %d, %d, %d, %d\n",
2638 			pipe_ctx->pipe_idx,
2639 			pipe_ctx->plane_res.scl_data.viewport.width,
2640 			pipe_ctx->plane_res.scl_data.viewport.height,
2641 			pipe_ctx->plane_res.scl_data.viewport.x,
2642 			pipe_ctx->plane_res.scl_data.viewport.y,
2643 			pipe_ctx->plane_res.scl_data.recout.width,
2644 			pipe_ctx->plane_res.scl_data.recout.height,
2645 			pipe_ctx->plane_res.scl_data.recout.x,
2646 			pipe_ctx->plane_res.scl_data.recout.y);
2647 }
2648 
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2649 static void dce110_apply_ctx_for_surface(
2650 		struct dc *dc,
2651 		const struct dc_stream_state *stream,
2652 		int num_planes,
2653 		struct dc_state *context)
2654 {
2655 	int i;
2656 
2657 	if (num_planes == 0)
2658 		return;
2659 
2660 	if (dc->fbc_compressor)
2661 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2662 
2663 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2664 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2665 
2666 		if (pipe_ctx->stream != stream)
2667 			continue;
2668 
2669 		/* Need to allocate mem before program front end for Fiji */
2670 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2671 				pipe_ctx->plane_res.mi,
2672 				pipe_ctx->stream->timing.h_total,
2673 				pipe_ctx->stream->timing.v_total,
2674 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
2675 				context->stream_count);
2676 
2677 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2678 
2679 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2680 
2681 		program_surface_visibility(dc, pipe_ctx);
2682 
2683 	}
2684 
2685 	if (dc->fbc_compressor)
2686 		enable_fbc(dc, context);
2687 }
2688 
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)2689 static void dce110_post_unlock_program_front_end(
2690 		struct dc *dc,
2691 		struct dc_state *context)
2692 {
2693 }
2694 
dce110_power_down_fe(struct dc * dc,struct pipe_ctx * pipe_ctx)2695 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2696 {
2697 	struct dce_hwseq *hws = dc->hwseq;
2698 	int fe_idx = pipe_ctx->plane_res.mi ?
2699 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2700 
2701 	/* Do not power down fe when stream is active on dce*/
2702 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2703 		return;
2704 
2705 	hws->funcs.enable_display_power_gating(
2706 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2707 
2708 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2709 				dc->res_pool->transforms[fe_idx]);
2710 }
2711 
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)2712 static void dce110_wait_for_mpcc_disconnect(
2713 		struct dc *dc,
2714 		struct resource_pool *res_pool,
2715 		struct pipe_ctx *pipe_ctx)
2716 {
2717 	/* do nothing*/
2718 }
2719 
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2720 static void program_output_csc(struct dc *dc,
2721 		struct pipe_ctx *pipe_ctx,
2722 		enum dc_color_space colorspace,
2723 		uint16_t *matrix,
2724 		int opp_id)
2725 {
2726 	int i;
2727 	struct out_csc_color_matrix tbl_entry;
2728 
2729 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2730 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2731 
2732 		for (i = 0; i < 12; i++)
2733 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2734 
2735 		tbl_entry.color_space = color_space;
2736 
2737 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2738 				pipe_ctx->plane_res.xfm, &tbl_entry);
2739 	}
2740 }
2741 
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)2742 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2743 {
2744 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2745 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2746 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2747 	struct dc_cursor_mi_param param = {
2748 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2749 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2750 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2751 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2752 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2753 		.rotation = pipe_ctx->plane_state->rotation,
2754 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2755 	};
2756 
2757 	/**
2758 	 * If the cursor's source viewport is clipped then we need to
2759 	 * translate the cursor to appear in the correct position on
2760 	 * the screen.
2761 	 *
2762 	 * This translation isn't affected by scaling so it needs to be
2763 	 * done *after* we adjust the position for the scale factor.
2764 	 *
2765 	 * This is only done by opt-in for now since there are still
2766 	 * some usecases like tiled display that might enable the
2767 	 * cursor on both streams while expecting dc to clip it.
2768 	 */
2769 	if (pos_cpy.translate_by_source) {
2770 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2771 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2772 	}
2773 
2774 	if (pipe_ctx->plane_state->address.type
2775 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2776 		pos_cpy.enable = false;
2777 
2778 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2779 		pos_cpy.enable = false;
2780 
2781 	if (ipp->funcs->ipp_cursor_set_position)
2782 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2783 	if (mi->funcs->set_cursor_position)
2784 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2785 }
2786 
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)2787 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2788 {
2789 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2790 
2791 	if (pipe_ctx->plane_res.ipp &&
2792 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2793 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2794 				pipe_ctx->plane_res.ipp, attributes);
2795 
2796 	if (pipe_ctx->plane_res.mi &&
2797 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2798 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2799 				pipe_ctx->plane_res.mi, attributes);
2800 
2801 	if (pipe_ctx->plane_res.xfm &&
2802 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2803 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2804 				pipe_ctx->plane_res.xfm, attributes);
2805 }
2806 
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,uint32_t backlight_pwm_u16_16,uint32_t frame_ramp)2807 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2808 		uint32_t backlight_pwm_u16_16,
2809 		uint32_t frame_ramp)
2810 {
2811 	struct dc_link *link = pipe_ctx->stream->link;
2812 	struct dc  *dc = link->ctx->dc;
2813 	struct abm *abm = pipe_ctx->stream_res.abm;
2814 	struct panel_cntl *panel_cntl = link->panel_cntl;
2815 	struct dmcu *dmcu = dc->res_pool->dmcu;
2816 	bool fw_set_brightness = true;
2817 	/* DMCU -1 for all controller id values,
2818 	 * therefore +1 here
2819 	 */
2820 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2821 
2822 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2823 		return false;
2824 
2825 	if (dmcu)
2826 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2827 
2828 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2829 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2830 	else
2831 		abm->funcs->set_backlight_level_pwm(
2832 				abm,
2833 				backlight_pwm_u16_16,
2834 				frame_ramp,
2835 				controller_id,
2836 				link->panel_cntl->inst);
2837 
2838 	return true;
2839 }
2840 
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)2841 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2842 {
2843 	struct abm *abm = pipe_ctx->stream_res.abm;
2844 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2845 
2846 	if (abm)
2847 		abm->funcs->set_abm_immediate_disable(abm,
2848 				pipe_ctx->stream->link->panel_cntl->inst);
2849 
2850 	if (panel_cntl)
2851 		panel_cntl->funcs->store_backlight_level(panel_cntl);
2852 }
2853 
dce110_set_pipe(struct pipe_ctx * pipe_ctx)2854 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
2855 {
2856 	struct abm *abm = pipe_ctx->stream_res.abm;
2857 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2858 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
2859 
2860 	if (abm && panel_cntl)
2861 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
2862 }
2863 
2864 static const struct hw_sequencer_funcs dce110_funcs = {
2865 	.program_gamut_remap = program_gamut_remap,
2866 	.program_output_csc = program_output_csc,
2867 	.init_hw = init_hw,
2868 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
2869 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
2870 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
2871 	.update_plane_addr = update_plane_addr,
2872 	.update_pending_status = dce110_update_pending_status,
2873 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
2874 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
2875 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
2876 	.update_info_frame = dce110_update_info_frame,
2877 	.enable_stream = dce110_enable_stream,
2878 	.disable_stream = dce110_disable_stream,
2879 	.unblank_stream = dce110_unblank_stream,
2880 	.blank_stream = dce110_blank_stream,
2881 	.enable_audio_stream = dce110_enable_audio_stream,
2882 	.disable_audio_stream = dce110_disable_audio_stream,
2883 	.disable_plane = dce110_power_down_fe,
2884 	.pipe_control_lock = dce_pipe_control_lock,
2885 	.interdependent_update_lock = NULL,
2886 	.cursor_lock = dce_pipe_control_lock,
2887 	.prepare_bandwidth = dce110_prepare_bandwidth,
2888 	.optimize_bandwidth = dce110_optimize_bandwidth,
2889 	.set_drr = set_drr,
2890 	.get_position = get_position,
2891 	.set_static_screen_control = set_static_screen_control,
2892 	.setup_stereo = NULL,
2893 	.set_avmute = dce110_set_avmute,
2894 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
2895 	.edp_backlight_control = dce110_edp_backlight_control,
2896 	.edp_power_control = dce110_edp_power_control,
2897 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
2898 	.set_cursor_position = dce110_set_cursor_position,
2899 	.set_cursor_attribute = dce110_set_cursor_attribute,
2900 	.set_backlight_level = dce110_set_backlight_level,
2901 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
2902 	.set_pipe = dce110_set_pipe,
2903 };
2904 
2905 static const struct hwseq_private_funcs dce110_private_funcs = {
2906 	.init_pipes = init_pipes,
2907 	.update_plane_addr = update_plane_addr,
2908 	.set_input_transfer_func = dce110_set_input_transfer_func,
2909 	.set_output_transfer_func = dce110_set_output_transfer_func,
2910 	.power_down = dce110_power_down,
2911 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
2912 	.enable_display_power_gating = dce110_enable_display_power_gating,
2913 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
2914 	.enable_stream_timing = dce110_enable_stream_timing,
2915 	.disable_stream_gating = NULL,
2916 	.enable_stream_gating = NULL,
2917 	.edp_backlight_control = dce110_edp_backlight_control,
2918 };
2919 
dce110_hw_sequencer_construct(struct dc * dc)2920 void dce110_hw_sequencer_construct(struct dc *dc)
2921 {
2922 	dc->hwss = dce110_funcs;
2923 	dc->hwseq->funcs = dce110_private_funcs;
2924 }
2925 
2926