• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 
32 #define DM_MSG_PREFIX "core"
33 
34 /*
35  * Cookies are numeric values sent with CHANGE and REMOVE
36  * uevents while resuming, removing or renaming the device.
37  */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40 
41 static const char *_name = DM_NAME;
42 
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45 
46 static DEFINE_IDR(_minor_idr);
47 
48 static DEFINE_SPINLOCK(_minor_lock);
49 
50 static void do_deferred_remove(struct work_struct *w);
51 
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53 
54 static struct workqueue_struct *deferred_remove_workqueue;
55 
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58 
dm_issue_global_event(void)59 void dm_issue_global_event(void)
60 {
61 	atomic_inc(&dm_global_event_nr);
62 	wake_up(&dm_global_eventq);
63 }
64 
65 /*
66  * One of these is allocated (on-stack) per original bio.
67  */
68 struct clone_info {
69 	struct dm_table *map;
70 	struct bio *bio;
71 	struct dm_io *io;
72 	sector_t sector;
73 	unsigned sector_count;
74 };
75 
76 /*
77  * One of these is allocated per clone bio.
78  */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 	unsigned magic;
82 	struct dm_io *io;
83 	struct dm_target *ti;
84 	unsigned target_bio_nr;
85 	unsigned *len_ptr;
86 	bool inside_dm_io;
87 	struct bio clone;
88 };
89 
90 /*
91  * One of these is allocated per original bio.
92  * It contains the first clone used for that original.
93  */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 	unsigned magic;
97 	struct mapped_device *md;
98 	blk_status_t status;
99 	atomic_t io_count;
100 	struct bio *orig_bio;
101 	unsigned long start_time;
102 	spinlock_t endio_lock;
103 	struct dm_stats_aux stats_aux;
104 	/* last member of dm_target_io is 'struct bio' */
105 	struct dm_target_io tio;
106 };
107 
dm_per_bio_data(struct bio * bio,size_t data_size)108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 	if (!tio->inside_dm_io)
112 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116 
dm_bio_from_per_bio_data(void * data,size_t data_size)117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 	if (io->magic == DM_IO_MAGIC)
121 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 	BUG_ON(io->magic != DM_TIO_MAGIC);
123 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126 
dm_bio_get_target_bio_nr(const struct bio * bio)127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132 
133 #define MINOR_ALLOCED ((void *)-1)
134 
135 /*
136  * Bits for the md->flags field.
137  */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147 
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150 
151 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
152 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)153 static int get_swap_bios(void)
154 {
155 	int latch = READ_ONCE(swap_bios);
156 	if (unlikely(latch <= 0))
157 		latch = DEFAULT_SWAP_BIOS;
158 	return latch;
159 }
160 
161 /*
162  * For mempools pre-allocation at the table loading time.
163  */
164 struct dm_md_mempools {
165 	struct bio_set bs;
166 	struct bio_set io_bs;
167 };
168 
169 struct table_device {
170 	struct list_head list;
171 	refcount_t count;
172 	struct dm_dev dm_dev;
173 };
174 
175 /*
176  * Bio-based DM's mempools' reserved IOs set by the user.
177  */
178 #define RESERVED_BIO_BASED_IOS		16
179 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
180 
__dm_get_module_param_int(int * module_param,int min,int max)181 static int __dm_get_module_param_int(int *module_param, int min, int max)
182 {
183 	int param = READ_ONCE(*module_param);
184 	int modified_param = 0;
185 	bool modified = true;
186 
187 	if (param < min)
188 		modified_param = min;
189 	else if (param > max)
190 		modified_param = max;
191 	else
192 		modified = false;
193 
194 	if (modified) {
195 		(void)cmpxchg(module_param, param, modified_param);
196 		param = modified_param;
197 	}
198 
199 	return param;
200 }
201 
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)202 unsigned __dm_get_module_param(unsigned *module_param,
203 			       unsigned def, unsigned max)
204 {
205 	unsigned param = READ_ONCE(*module_param);
206 	unsigned modified_param = 0;
207 
208 	if (!param)
209 		modified_param = def;
210 	else if (param > max)
211 		modified_param = max;
212 
213 	if (modified_param) {
214 		(void)cmpxchg(module_param, param, modified_param);
215 		param = modified_param;
216 	}
217 
218 	return param;
219 }
220 
dm_get_reserved_bio_based_ios(void)221 unsigned dm_get_reserved_bio_based_ios(void)
222 {
223 	return __dm_get_module_param(&reserved_bio_based_ios,
224 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
225 }
226 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
227 
dm_get_numa_node(void)228 static unsigned dm_get_numa_node(void)
229 {
230 	return __dm_get_module_param_int(&dm_numa_node,
231 					 DM_NUMA_NODE, num_online_nodes() - 1);
232 }
233 
local_init(void)234 static int __init local_init(void)
235 {
236 	int r;
237 
238 	r = dm_uevent_init();
239 	if (r)
240 		return r;
241 
242 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
243 	if (!deferred_remove_workqueue) {
244 		r = -ENOMEM;
245 		goto out_uevent_exit;
246 	}
247 
248 	_major = major;
249 	r = register_blkdev(_major, _name);
250 	if (r < 0)
251 		goto out_free_workqueue;
252 
253 	if (!_major)
254 		_major = r;
255 
256 	return 0;
257 
258 out_free_workqueue:
259 	destroy_workqueue(deferred_remove_workqueue);
260 out_uevent_exit:
261 	dm_uevent_exit();
262 
263 	return r;
264 }
265 
local_exit(void)266 static void local_exit(void)
267 {
268 	flush_scheduled_work();
269 	destroy_workqueue(deferred_remove_workqueue);
270 
271 	unregister_blkdev(_major, _name);
272 	dm_uevent_exit();
273 
274 	_major = 0;
275 
276 	DMINFO("cleaned up");
277 }
278 
279 static int (*_inits[])(void) __initdata = {
280 	local_init,
281 	dm_target_init,
282 	dm_linear_init,
283 	dm_stripe_init,
284 	dm_io_init,
285 	dm_kcopyd_init,
286 	dm_interface_init,
287 	dm_statistics_init,
288 };
289 
290 static void (*_exits[])(void) = {
291 	local_exit,
292 	dm_target_exit,
293 	dm_linear_exit,
294 	dm_stripe_exit,
295 	dm_io_exit,
296 	dm_kcopyd_exit,
297 	dm_interface_exit,
298 	dm_statistics_exit,
299 };
300 
dm_init(void)301 static int __init dm_init(void)
302 {
303 	const int count = ARRAY_SIZE(_inits);
304 
305 	int r, i;
306 
307 	for (i = 0; i < count; i++) {
308 		r = _inits[i]();
309 		if (r)
310 			goto bad;
311 	}
312 
313 	return 0;
314 
315       bad:
316 	while (i--)
317 		_exits[i]();
318 
319 	return r;
320 }
321 
dm_exit(void)322 static void __exit dm_exit(void)
323 {
324 	int i = ARRAY_SIZE(_exits);
325 
326 	while (i--)
327 		_exits[i]();
328 
329 	/*
330 	 * Should be empty by this point.
331 	 */
332 	idr_destroy(&_minor_idr);
333 }
334 
335 /*
336  * Block device functions
337  */
dm_deleting_md(struct mapped_device * md)338 int dm_deleting_md(struct mapped_device *md)
339 {
340 	return test_bit(DMF_DELETING, &md->flags);
341 }
342 
dm_blk_open(struct block_device * bdev,fmode_t mode)343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = bdev->bd_disk->private_data;
350 	if (!md)
351 		goto out;
352 
353 	if (test_bit(DMF_FREEING, &md->flags) ||
354 	    dm_deleting_md(md)) {
355 		md = NULL;
356 		goto out;
357 	}
358 
359 	dm_get(md);
360 	atomic_inc(&md->open_count);
361 out:
362 	spin_unlock(&_minor_lock);
363 
364 	return md ? 0 : -ENXIO;
365 }
366 
dm_blk_close(struct gendisk * disk,fmode_t mode)367 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
368 {
369 	struct mapped_device *md;
370 
371 	spin_lock(&_minor_lock);
372 
373 	md = disk->private_data;
374 	if (WARN_ON(!md))
375 		goto out;
376 
377 	if (atomic_dec_and_test(&md->open_count) &&
378 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
379 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
380 
381 	dm_put(md);
382 out:
383 	spin_unlock(&_minor_lock);
384 }
385 
dm_open_count(struct mapped_device * md)386 int dm_open_count(struct mapped_device *md)
387 {
388 	return atomic_read(&md->open_count);
389 }
390 
391 /*
392  * Guarantees nothing is using the device before it's deleted.
393  */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)394 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
395 {
396 	int r = 0;
397 
398 	spin_lock(&_minor_lock);
399 
400 	if (dm_open_count(md)) {
401 		r = -EBUSY;
402 		if (mark_deferred)
403 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
404 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
405 		r = -EEXIST;
406 	else
407 		set_bit(DMF_DELETING, &md->flags);
408 
409 	spin_unlock(&_minor_lock);
410 
411 	return r;
412 }
413 
dm_cancel_deferred_remove(struct mapped_device * md)414 int dm_cancel_deferred_remove(struct mapped_device *md)
415 {
416 	int r = 0;
417 
418 	spin_lock(&_minor_lock);
419 
420 	if (test_bit(DMF_DELETING, &md->flags))
421 		r = -EBUSY;
422 	else
423 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
424 
425 	spin_unlock(&_minor_lock);
426 
427 	return r;
428 }
429 
do_deferred_remove(struct work_struct * w)430 static void do_deferred_remove(struct work_struct *w)
431 {
432 	dm_deferred_remove();
433 }
434 
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)435 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
436 {
437 	struct mapped_device *md = bdev->bd_disk->private_data;
438 
439 	return dm_get_geometry(md, geo);
440 }
441 
442 #ifdef CONFIG_BLK_DEV_ZONED
dm_report_zones_cb(struct blk_zone * zone,unsigned int idx,void * data)443 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
444 {
445 	struct dm_report_zones_args *args = data;
446 	sector_t sector_diff = args->tgt->begin - args->start;
447 
448 	/*
449 	 * Ignore zones beyond the target range.
450 	 */
451 	if (zone->start >= args->start + args->tgt->len)
452 		return 0;
453 
454 	/*
455 	 * Remap the start sector and write pointer position of the zone
456 	 * to match its position in the target range.
457 	 */
458 	zone->start += sector_diff;
459 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
460 		if (zone->cond == BLK_ZONE_COND_FULL)
461 			zone->wp = zone->start + zone->len;
462 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
463 			zone->wp = zone->start;
464 		else
465 			zone->wp += sector_diff;
466 	}
467 
468 	args->next_sector = zone->start + zone->len;
469 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
470 }
471 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
472 
dm_blk_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)473 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
474 		unsigned int nr_zones, report_zones_cb cb, void *data)
475 {
476 	struct mapped_device *md = disk->private_data;
477 	struct dm_table *map;
478 	int srcu_idx, ret;
479 	struct dm_report_zones_args args = {
480 		.next_sector = sector,
481 		.orig_data = data,
482 		.orig_cb = cb,
483 	};
484 
485 	if (dm_suspended_md(md))
486 		return -EAGAIN;
487 
488 	map = dm_get_live_table(md, &srcu_idx);
489 	if (!map) {
490 		ret = -EIO;
491 		goto out;
492 	}
493 
494 	do {
495 		struct dm_target *tgt;
496 
497 		tgt = dm_table_find_target(map, args.next_sector);
498 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
499 			ret = -EIO;
500 			goto out;
501 		}
502 
503 		args.tgt = tgt;
504 		ret = tgt->type->report_zones(tgt, &args,
505 					      nr_zones - args.zone_idx);
506 		if (ret < 0)
507 			goto out;
508 	} while (args.zone_idx < nr_zones &&
509 		 args.next_sector < get_capacity(disk));
510 
511 	ret = args.zone_idx;
512 out:
513 	dm_put_live_table(md, srcu_idx);
514 	return ret;
515 }
516 #else
517 #define dm_blk_report_zones		NULL
518 #endif /* CONFIG_BLK_DEV_ZONED */
519 
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)520 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
521 			    struct block_device **bdev)
522 {
523 	struct dm_target *tgt;
524 	struct dm_table *map;
525 	int r;
526 
527 retry:
528 	r = -ENOTTY;
529 	map = dm_get_live_table(md, srcu_idx);
530 	if (!map || !dm_table_get_size(map))
531 		return r;
532 
533 	/* We only support devices that have a single target */
534 	if (dm_table_get_num_targets(map) != 1)
535 		return r;
536 
537 	tgt = dm_table_get_target(map, 0);
538 	if (!tgt->type->prepare_ioctl)
539 		return r;
540 
541 	if (dm_suspended_md(md))
542 		return -EAGAIN;
543 
544 	r = tgt->type->prepare_ioctl(tgt, bdev);
545 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
546 		dm_put_live_table(md, *srcu_idx);
547 		msleep(10);
548 		goto retry;
549 	}
550 
551 	return r;
552 }
553 
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)554 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
555 {
556 	dm_put_live_table(md, srcu_idx);
557 }
558 
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
560 			unsigned int cmd, unsigned long arg)
561 {
562 	struct mapped_device *md = bdev->bd_disk->private_data;
563 	int r, srcu_idx;
564 
565 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
566 	if (r < 0)
567 		goto out;
568 
569 	if (r > 0) {
570 		/*
571 		 * Target determined this ioctl is being issued against a
572 		 * subset of the parent bdev; require extra privileges.
573 		 */
574 		if (!capable(CAP_SYS_RAWIO)) {
575 			DMDEBUG_LIMIT(
576 	"%s: sending ioctl %x to DM device without required privilege.",
577 				current->comm, cmd);
578 			r = -ENOIOCTLCMD;
579 			goto out;
580 		}
581 	}
582 
583 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
584 out:
585 	dm_unprepare_ioctl(md, srcu_idx);
586 	return r;
587 }
588 
dm_start_time_ns_from_clone(struct bio * bio)589 u64 dm_start_time_ns_from_clone(struct bio *bio)
590 {
591 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
592 	struct dm_io *io = tio->io;
593 
594 	return jiffies_to_nsecs(io->start_time);
595 }
596 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
597 
start_io_acct(struct dm_io * io)598 static void start_io_acct(struct dm_io *io)
599 {
600 	struct mapped_device *md = io->md;
601 	struct bio *bio = io->orig_bio;
602 
603 	io->start_time = bio_start_io_acct(bio);
604 	if (unlikely(dm_stats_used(&md->stats)))
605 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
606 				    bio->bi_iter.bi_sector, bio_sectors(bio),
607 				    false, 0, &io->stats_aux);
608 }
609 
end_io_acct(struct mapped_device * md,struct bio * bio,unsigned long start_time,struct dm_stats_aux * stats_aux)610 static void end_io_acct(struct mapped_device *md, struct bio *bio,
611 			unsigned long start_time, struct dm_stats_aux *stats_aux)
612 {
613 	unsigned long duration = jiffies - start_time;
614 
615 	if (unlikely(dm_stats_used(&md->stats)))
616 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
617 				    bio->bi_iter.bi_sector, bio_sectors(bio),
618 				    true, duration, stats_aux);
619 
620 	smp_wmb();
621 
622 	bio_end_io_acct(bio, start_time);
623 
624 	/* nudge anyone waiting on suspend queue */
625 	if (unlikely(wq_has_sleeper(&md->wait)))
626 		wake_up(&md->wait);
627 }
628 
alloc_io(struct mapped_device * md,struct bio * bio)629 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
630 {
631 	struct dm_io *io;
632 	struct dm_target_io *tio;
633 	struct bio *clone;
634 
635 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
636 	if (!clone)
637 		return NULL;
638 
639 	tio = container_of(clone, struct dm_target_io, clone);
640 	tio->inside_dm_io = true;
641 	tio->io = NULL;
642 
643 	io = container_of(tio, struct dm_io, tio);
644 	io->magic = DM_IO_MAGIC;
645 	io->status = 0;
646 	atomic_set(&io->io_count, 1);
647 	io->orig_bio = bio;
648 	io->md = md;
649 	spin_lock_init(&io->endio_lock);
650 
651 	start_io_acct(io);
652 
653 	return io;
654 }
655 
free_io(struct mapped_device * md,struct dm_io * io)656 static void free_io(struct mapped_device *md, struct dm_io *io)
657 {
658 	bio_put(&io->tio.clone);
659 }
660 
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)661 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
662 				      unsigned target_bio_nr, gfp_t gfp_mask)
663 {
664 	struct dm_target_io *tio;
665 
666 	if (!ci->io->tio.io) {
667 		/* the dm_target_io embedded in ci->io is available */
668 		tio = &ci->io->tio;
669 	} else {
670 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
671 		if (!clone)
672 			return NULL;
673 
674 		tio = container_of(clone, struct dm_target_io, clone);
675 		tio->inside_dm_io = false;
676 	}
677 
678 	tio->magic = DM_TIO_MAGIC;
679 	tio->io = ci->io;
680 	tio->ti = ti;
681 	tio->target_bio_nr = target_bio_nr;
682 
683 	return tio;
684 }
685 
free_tio(struct dm_target_io * tio)686 static void free_tio(struct dm_target_io *tio)
687 {
688 	if (tio->inside_dm_io)
689 		return;
690 	bio_put(&tio->clone);
691 }
692 
693 /*
694  * Add the bio to the list of deferred io.
695  */
queue_io(struct mapped_device * md,struct bio * bio)696 static void queue_io(struct mapped_device *md, struct bio *bio)
697 {
698 	unsigned long flags;
699 
700 	spin_lock_irqsave(&md->deferred_lock, flags);
701 	bio_list_add(&md->deferred, bio);
702 	spin_unlock_irqrestore(&md->deferred_lock, flags);
703 	queue_work(md->wq, &md->work);
704 }
705 
706 /*
707  * Everyone (including functions in this file), should use this
708  * function to access the md->map field, and make sure they call
709  * dm_put_live_table() when finished.
710  */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)711 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
712 {
713 	*srcu_idx = srcu_read_lock(&md->io_barrier);
714 
715 	return srcu_dereference(md->map, &md->io_barrier);
716 }
717 
dm_put_live_table(struct mapped_device * md,int srcu_idx)718 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
719 {
720 	srcu_read_unlock(&md->io_barrier, srcu_idx);
721 }
722 
dm_sync_table(struct mapped_device * md)723 void dm_sync_table(struct mapped_device *md)
724 {
725 	synchronize_srcu(&md->io_barrier);
726 	synchronize_rcu_expedited();
727 }
728 
729 /*
730  * A fast alternative to dm_get_live_table/dm_put_live_table.
731  * The caller must not block between these two functions.
732  */
dm_get_live_table_fast(struct mapped_device * md)733 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
734 {
735 	rcu_read_lock();
736 	return rcu_dereference(md->map);
737 }
738 
dm_put_live_table_fast(struct mapped_device * md)739 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
740 {
741 	rcu_read_unlock();
742 }
743 
744 static char *_dm_claim_ptr = "I belong to device-mapper";
745 
746 /*
747  * Open a table device so we can use it as a map destination.
748  */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)749 static int open_table_device(struct table_device *td, dev_t dev,
750 			     struct mapped_device *md)
751 {
752 	struct block_device *bdev;
753 
754 	int r;
755 
756 	BUG_ON(td->dm_dev.bdev);
757 
758 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
759 	if (IS_ERR(bdev))
760 		return PTR_ERR(bdev);
761 
762 	r = bd_link_disk_holder(bdev, dm_disk(md));
763 	if (r) {
764 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
765 		return r;
766 	}
767 
768 	td->dm_dev.bdev = bdev;
769 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
770 	return 0;
771 }
772 
773 /*
774  * Close a table device that we've been using.
775  */
close_table_device(struct table_device * td,struct mapped_device * md)776 static void close_table_device(struct table_device *td, struct mapped_device *md)
777 {
778 	if (!td->dm_dev.bdev)
779 		return;
780 
781 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
782 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
783 	put_dax(td->dm_dev.dax_dev);
784 	td->dm_dev.bdev = NULL;
785 	td->dm_dev.dax_dev = NULL;
786 }
787 
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)788 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
789 					      fmode_t mode)
790 {
791 	struct table_device *td;
792 
793 	list_for_each_entry(td, l, list)
794 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
795 			return td;
796 
797 	return NULL;
798 }
799 
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)800 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
801 			struct dm_dev **result)
802 {
803 	int r;
804 	struct table_device *td;
805 
806 	mutex_lock(&md->table_devices_lock);
807 	td = find_table_device(&md->table_devices, dev, mode);
808 	if (!td) {
809 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
810 		if (!td) {
811 			mutex_unlock(&md->table_devices_lock);
812 			return -ENOMEM;
813 		}
814 
815 		td->dm_dev.mode = mode;
816 		td->dm_dev.bdev = NULL;
817 
818 		if ((r = open_table_device(td, dev, md))) {
819 			mutex_unlock(&md->table_devices_lock);
820 			kfree(td);
821 			return r;
822 		}
823 
824 		format_dev_t(td->dm_dev.name, dev);
825 
826 		refcount_set(&td->count, 1);
827 		list_add(&td->list, &md->table_devices);
828 	} else {
829 		refcount_inc(&td->count);
830 	}
831 	mutex_unlock(&md->table_devices_lock);
832 
833 	*result = &td->dm_dev;
834 	return 0;
835 }
836 EXPORT_SYMBOL_GPL(dm_get_table_device);
837 
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)838 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
839 {
840 	struct table_device *td = container_of(d, struct table_device, dm_dev);
841 
842 	mutex_lock(&md->table_devices_lock);
843 	if (refcount_dec_and_test(&td->count)) {
844 		close_table_device(td, md);
845 		list_del(&td->list);
846 		kfree(td);
847 	}
848 	mutex_unlock(&md->table_devices_lock);
849 }
850 EXPORT_SYMBOL(dm_put_table_device);
851 
free_table_devices(struct list_head * devices)852 static void free_table_devices(struct list_head *devices)
853 {
854 	struct list_head *tmp, *next;
855 
856 	list_for_each_safe(tmp, next, devices) {
857 		struct table_device *td = list_entry(tmp, struct table_device, list);
858 
859 		DMWARN("dm_destroy: %s still exists with %d references",
860 		       td->dm_dev.name, refcount_read(&td->count));
861 		kfree(td);
862 	}
863 }
864 
865 /*
866  * Get the geometry associated with a dm device
867  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)868 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
869 {
870 	*geo = md->geometry;
871 
872 	return 0;
873 }
874 
875 /*
876  * Set the geometry of a device.
877  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)878 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
879 {
880 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
881 
882 	if (geo->start > sz) {
883 		DMWARN("Start sector is beyond the geometry limits.");
884 		return -EINVAL;
885 	}
886 
887 	md->geometry = *geo;
888 
889 	return 0;
890 }
891 
__noflush_suspending(struct mapped_device * md)892 static int __noflush_suspending(struct mapped_device *md)
893 {
894 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
895 }
896 
897 /*
898  * Decrements the number of outstanding ios that a bio has been
899  * cloned into, completing the original io if necc.
900  */
dec_pending(struct dm_io * io,blk_status_t error)901 static void dec_pending(struct dm_io *io, blk_status_t error)
902 {
903 	unsigned long flags;
904 	blk_status_t io_error;
905 	struct bio *bio;
906 	struct mapped_device *md = io->md;
907 	unsigned long start_time = 0;
908 	struct dm_stats_aux stats_aux;
909 
910 	/* Push-back supersedes any I/O errors */
911 	if (unlikely(error)) {
912 		spin_lock_irqsave(&io->endio_lock, flags);
913 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
914 			io->status = error;
915 		spin_unlock_irqrestore(&io->endio_lock, flags);
916 	}
917 
918 	if (atomic_dec_and_test(&io->io_count)) {
919 		if (io->status == BLK_STS_DM_REQUEUE) {
920 			/*
921 			 * Target requested pushing back the I/O.
922 			 */
923 			spin_lock_irqsave(&md->deferred_lock, flags);
924 			if (__noflush_suspending(md))
925 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
926 				bio_list_add_head(&md->deferred, io->orig_bio);
927 			else
928 				/* noflush suspend was interrupted. */
929 				io->status = BLK_STS_IOERR;
930 			spin_unlock_irqrestore(&md->deferred_lock, flags);
931 		}
932 
933 		io_error = io->status;
934 		bio = io->orig_bio;
935 		start_time = io->start_time;
936 		stats_aux = io->stats_aux;
937 		free_io(md, io);
938 		end_io_acct(md, bio, start_time, &stats_aux);
939 
940 		if (io_error == BLK_STS_DM_REQUEUE)
941 			return;
942 
943 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
944 			/*
945 			 * Preflush done for flush with data, reissue
946 			 * without REQ_PREFLUSH.
947 			 */
948 			bio->bi_opf &= ~REQ_PREFLUSH;
949 			queue_io(md, bio);
950 		} else {
951 			/* done with normal IO or empty flush */
952 			if (io_error)
953 				bio->bi_status = io_error;
954 			bio_endio(bio);
955 		}
956 	}
957 }
958 
disable_discard(struct mapped_device * md)959 void disable_discard(struct mapped_device *md)
960 {
961 	struct queue_limits *limits = dm_get_queue_limits(md);
962 
963 	/* device doesn't really support DISCARD, disable it */
964 	limits->max_discard_sectors = 0;
965 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
966 }
967 
disable_write_same(struct mapped_device * md)968 void disable_write_same(struct mapped_device *md)
969 {
970 	struct queue_limits *limits = dm_get_queue_limits(md);
971 
972 	/* device doesn't really support WRITE SAME, disable it */
973 	limits->max_write_same_sectors = 0;
974 }
975 
disable_write_zeroes(struct mapped_device * md)976 void disable_write_zeroes(struct mapped_device *md)
977 {
978 	struct queue_limits *limits = dm_get_queue_limits(md);
979 
980 	/* device doesn't really support WRITE ZEROES, disable it */
981 	limits->max_write_zeroes_sectors = 0;
982 }
983 
swap_bios_limit(struct dm_target * ti,struct bio * bio)984 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
985 {
986 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
987 }
988 
clone_endio(struct bio * bio)989 static void clone_endio(struct bio *bio)
990 {
991 	blk_status_t error = bio->bi_status;
992 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
993 	struct dm_io *io = tio->io;
994 	struct mapped_device *md = tio->io->md;
995 	dm_endio_fn endio = tio->ti->type->end_io;
996 	struct bio *orig_bio = io->orig_bio;
997 
998 	if (unlikely(error == BLK_STS_TARGET)) {
999 		if (bio_op(bio) == REQ_OP_DISCARD &&
1000 		    !bio->bi_disk->queue->limits.max_discard_sectors)
1001 			disable_discard(md);
1002 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1003 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1004 			disable_write_same(md);
1005 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1006 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1007 			disable_write_zeroes(md);
1008 	}
1009 
1010 	/*
1011 	 * For zone-append bios get offset in zone of the written
1012 	 * sector and add that to the original bio sector pos.
1013 	 */
1014 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1015 		sector_t written_sector = bio->bi_iter.bi_sector;
1016 		struct request_queue *q = orig_bio->bi_disk->queue;
1017 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1018 
1019 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1020 	}
1021 
1022 	if (endio) {
1023 		int r = endio(tio->ti, bio, &error);
1024 		switch (r) {
1025 		case DM_ENDIO_REQUEUE:
1026 			error = BLK_STS_DM_REQUEUE;
1027 			fallthrough;
1028 		case DM_ENDIO_DONE:
1029 			break;
1030 		case DM_ENDIO_INCOMPLETE:
1031 			/* The target will handle the io */
1032 			return;
1033 		default:
1034 			DMWARN("unimplemented target endio return value: %d", r);
1035 			BUG();
1036 		}
1037 	}
1038 
1039 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
1040 		struct mapped_device *md = io->md;
1041 		up(&md->swap_bios_semaphore);
1042 	}
1043 
1044 	free_tio(tio);
1045 	dec_pending(io, error);
1046 }
1047 
1048 /*
1049  * Return maximum size of I/O possible at the supplied sector up to the current
1050  * target boundary.
1051  */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1052 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1053 						  sector_t target_offset)
1054 {
1055 	return ti->len - target_offset;
1056 }
1057 
max_io_len(struct dm_target * ti,sector_t sector)1058 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1059 {
1060 	sector_t target_offset = dm_target_offset(ti, sector);
1061 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1062 	sector_t max_len;
1063 
1064 	/*
1065 	 * Does the target need to split IO even further?
1066 	 * - varied (per target) IO splitting is a tenet of DM; this
1067 	 *   explains why stacked chunk_sectors based splitting via
1068 	 *   blk_max_size_offset() isn't possible here. So pass in
1069 	 *   ti->max_io_len to override stacked chunk_sectors.
1070 	 */
1071 	if (ti->max_io_len) {
1072 		max_len = blk_max_size_offset(ti->table->md->queue,
1073 					      target_offset, ti->max_io_len);
1074 		if (len > max_len)
1075 			len = max_len;
1076 	}
1077 
1078 	return len;
1079 }
1080 
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1081 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1082 {
1083 	if (len > UINT_MAX) {
1084 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1085 		      (unsigned long long)len, UINT_MAX);
1086 		ti->error = "Maximum size of target IO is too large";
1087 		return -EINVAL;
1088 	}
1089 
1090 	ti->max_io_len = (uint32_t) len;
1091 
1092 	return 0;
1093 }
1094 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1095 
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1096 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1097 						sector_t sector, int *srcu_idx)
1098 	__acquires(md->io_barrier)
1099 {
1100 	struct dm_table *map;
1101 	struct dm_target *ti;
1102 
1103 	map = dm_get_live_table(md, srcu_idx);
1104 	if (!map)
1105 		return NULL;
1106 
1107 	ti = dm_table_find_target(map, sector);
1108 	if (!ti)
1109 		return NULL;
1110 
1111 	return ti;
1112 }
1113 
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1114 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1115 				 long nr_pages, void **kaddr, pfn_t *pfn)
1116 {
1117 	struct mapped_device *md = dax_get_private(dax_dev);
1118 	sector_t sector = pgoff * PAGE_SECTORS;
1119 	struct dm_target *ti;
1120 	long len, ret = -EIO;
1121 	int srcu_idx;
1122 
1123 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1124 
1125 	if (!ti)
1126 		goto out;
1127 	if (!ti->type->direct_access)
1128 		goto out;
1129 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1130 	if (len < 1)
1131 		goto out;
1132 	nr_pages = min(len, nr_pages);
1133 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1134 
1135  out:
1136 	dm_put_live_table(md, srcu_idx);
1137 
1138 	return ret;
1139 }
1140 
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1141 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1142 		int blocksize, sector_t start, sector_t len)
1143 {
1144 	struct mapped_device *md = dax_get_private(dax_dev);
1145 	struct dm_table *map;
1146 	bool ret = false;
1147 	int srcu_idx;
1148 
1149 	map = dm_get_live_table(md, &srcu_idx);
1150 	if (!map)
1151 		goto out;
1152 
1153 	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1154 
1155 out:
1156 	dm_put_live_table(md, srcu_idx);
1157 
1158 	return ret;
1159 }
1160 
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1161 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1162 				    void *addr, size_t bytes, struct iov_iter *i)
1163 {
1164 	struct mapped_device *md = dax_get_private(dax_dev);
1165 	sector_t sector = pgoff * PAGE_SECTORS;
1166 	struct dm_target *ti;
1167 	long ret = 0;
1168 	int srcu_idx;
1169 
1170 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1171 
1172 	if (!ti)
1173 		goto out;
1174 	if (!ti->type->dax_copy_from_iter) {
1175 		ret = copy_from_iter(addr, bytes, i);
1176 		goto out;
1177 	}
1178 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1179  out:
1180 	dm_put_live_table(md, srcu_idx);
1181 
1182 	return ret;
1183 }
1184 
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1185 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1186 		void *addr, size_t bytes, struct iov_iter *i)
1187 {
1188 	struct mapped_device *md = dax_get_private(dax_dev);
1189 	sector_t sector = pgoff * PAGE_SECTORS;
1190 	struct dm_target *ti;
1191 	long ret = 0;
1192 	int srcu_idx;
1193 
1194 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1195 
1196 	if (!ti)
1197 		goto out;
1198 	if (!ti->type->dax_copy_to_iter) {
1199 		ret = copy_to_iter(addr, bytes, i);
1200 		goto out;
1201 	}
1202 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1203  out:
1204 	dm_put_live_table(md, srcu_idx);
1205 
1206 	return ret;
1207 }
1208 
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1209 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1210 				  size_t nr_pages)
1211 {
1212 	struct mapped_device *md = dax_get_private(dax_dev);
1213 	sector_t sector = pgoff * PAGE_SECTORS;
1214 	struct dm_target *ti;
1215 	int ret = -EIO;
1216 	int srcu_idx;
1217 
1218 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1219 
1220 	if (!ti)
1221 		goto out;
1222 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1223 		/*
1224 		 * ->zero_page_range() is mandatory dax operation. If we are
1225 		 *  here, something is wrong.
1226 		 */
1227 		goto out;
1228 	}
1229 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1230  out:
1231 	dm_put_live_table(md, srcu_idx);
1232 
1233 	return ret;
1234 }
1235 
1236 /*
1237  * A target may call dm_accept_partial_bio only from the map routine.  It is
1238  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1239  * operations and REQ_OP_ZONE_APPEND (zone append writes).
1240  *
1241  * dm_accept_partial_bio informs the dm that the target only wants to process
1242  * additional n_sectors sectors of the bio and the rest of the data should be
1243  * sent in a next bio.
1244  *
1245  * A diagram that explains the arithmetics:
1246  * +--------------------+---------------+-------+
1247  * |         1          |       2       |   3   |
1248  * +--------------------+---------------+-------+
1249  *
1250  * <-------------- *tio->len_ptr --------------->
1251  *                      <------- bi_size ------->
1252  *                      <-- n_sectors -->
1253  *
1254  * Region 1 was already iterated over with bio_advance or similar function.
1255  *	(it may be empty if the target doesn't use bio_advance)
1256  * Region 2 is the remaining bio size that the target wants to process.
1257  *	(it may be empty if region 1 is non-empty, although there is no reason
1258  *	 to make it empty)
1259  * The target requires that region 3 is to be sent in the next bio.
1260  *
1261  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1262  * the partially processed part (the sum of regions 1+2) must be the same for all
1263  * copies of the bio.
1264  */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1265 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1266 {
1267 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1268 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1269 
1270 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1271 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1272 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1273 	BUG_ON(bi_size > *tio->len_ptr);
1274 	BUG_ON(n_sectors > bi_size);
1275 
1276 	*tio->len_ptr -= bi_size - n_sectors;
1277 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1278 }
1279 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1280 
__set_swap_bios_limit(struct mapped_device * md,int latch)1281 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1282 {
1283 	mutex_lock(&md->swap_bios_lock);
1284 	while (latch < md->swap_bios) {
1285 		cond_resched();
1286 		down(&md->swap_bios_semaphore);
1287 		md->swap_bios--;
1288 	}
1289 	while (latch > md->swap_bios) {
1290 		cond_resched();
1291 		up(&md->swap_bios_semaphore);
1292 		md->swap_bios++;
1293 	}
1294 	mutex_unlock(&md->swap_bios_lock);
1295 }
1296 
__map_bio(struct dm_target_io * tio)1297 static blk_qc_t __map_bio(struct dm_target_io *tio)
1298 {
1299 	int r;
1300 	sector_t sector;
1301 	struct bio *clone = &tio->clone;
1302 	struct dm_io *io = tio->io;
1303 	struct dm_target *ti = tio->ti;
1304 	blk_qc_t ret = BLK_QC_T_NONE;
1305 
1306 	clone->bi_end_io = clone_endio;
1307 
1308 	/*
1309 	 * Map the clone.  If r == 0 we don't need to do
1310 	 * anything, the target has assumed ownership of
1311 	 * this io.
1312 	 */
1313 	atomic_inc(&io->io_count);
1314 	sector = clone->bi_iter.bi_sector;
1315 
1316 	if (unlikely(swap_bios_limit(ti, clone))) {
1317 		struct mapped_device *md = io->md;
1318 		int latch = get_swap_bios();
1319 		if (unlikely(latch != md->swap_bios))
1320 			__set_swap_bios_limit(md, latch);
1321 		down(&md->swap_bios_semaphore);
1322 	}
1323 
1324 	r = ti->type->map(ti, clone);
1325 	switch (r) {
1326 	case DM_MAPIO_SUBMITTED:
1327 		break;
1328 	case DM_MAPIO_REMAPPED:
1329 		/* the bio has been remapped so dispatch it */
1330 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1331 				      bio_dev(io->orig_bio), sector);
1332 		ret = submit_bio_noacct(clone);
1333 		break;
1334 	case DM_MAPIO_KILL:
1335 		if (unlikely(swap_bios_limit(ti, clone))) {
1336 			struct mapped_device *md = io->md;
1337 			up(&md->swap_bios_semaphore);
1338 		}
1339 		free_tio(tio);
1340 		dec_pending(io, BLK_STS_IOERR);
1341 		break;
1342 	case DM_MAPIO_REQUEUE:
1343 		if (unlikely(swap_bios_limit(ti, clone))) {
1344 			struct mapped_device *md = io->md;
1345 			up(&md->swap_bios_semaphore);
1346 		}
1347 		free_tio(tio);
1348 		dec_pending(io, BLK_STS_DM_REQUEUE);
1349 		break;
1350 	default:
1351 		DMWARN("unimplemented target map return value: %d", r);
1352 		BUG();
1353 	}
1354 
1355 	return ret;
1356 }
1357 
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1358 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1359 {
1360 	bio->bi_iter.bi_sector = sector;
1361 	bio->bi_iter.bi_size = to_bytes(len);
1362 }
1363 
1364 /*
1365  * Creates a bio that consists of range of complete bvecs.
1366  */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1367 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1368 		     sector_t sector, unsigned len)
1369 {
1370 	struct bio *clone = &tio->clone;
1371 	int r;
1372 
1373 	__bio_clone_fast(clone, bio);
1374 
1375 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1376 	if (r < 0)
1377 		return r;
1378 
1379 	if (bio_integrity(bio)) {
1380 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1381 			     !dm_target_passes_integrity(tio->ti->type))) {
1382 			DMWARN("%s: the target %s doesn't support integrity data.",
1383 				dm_device_name(tio->io->md),
1384 				tio->ti->type->name);
1385 			return -EIO;
1386 		}
1387 
1388 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1389 		if (r < 0)
1390 			return r;
1391 	}
1392 
1393 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1394 	clone->bi_iter.bi_size = to_bytes(len);
1395 
1396 	if (bio_integrity(bio))
1397 		bio_integrity_trim(clone);
1398 
1399 	return 0;
1400 }
1401 
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1402 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1403 				struct dm_target *ti, unsigned num_bios)
1404 {
1405 	struct dm_target_io *tio;
1406 	int try;
1407 
1408 	if (!num_bios)
1409 		return;
1410 
1411 	if (num_bios == 1) {
1412 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1413 		bio_list_add(blist, &tio->clone);
1414 		return;
1415 	}
1416 
1417 	for (try = 0; try < 2; try++) {
1418 		int bio_nr;
1419 		struct bio *bio;
1420 
1421 		if (try)
1422 			mutex_lock(&ci->io->md->table_devices_lock);
1423 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1424 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1425 			if (!tio)
1426 				break;
1427 
1428 			bio_list_add(blist, &tio->clone);
1429 		}
1430 		if (try)
1431 			mutex_unlock(&ci->io->md->table_devices_lock);
1432 		if (bio_nr == num_bios)
1433 			return;
1434 
1435 		while ((bio = bio_list_pop(blist))) {
1436 			tio = container_of(bio, struct dm_target_io, clone);
1437 			free_tio(tio);
1438 		}
1439 	}
1440 }
1441 
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1442 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1443 					   struct dm_target_io *tio, unsigned *len)
1444 {
1445 	struct bio *clone = &tio->clone;
1446 
1447 	tio->len_ptr = len;
1448 
1449 	__bio_clone_fast(clone, ci->bio);
1450 	if (len)
1451 		bio_setup_sector(clone, ci->sector, *len);
1452 
1453 	return __map_bio(tio);
1454 }
1455 
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1456 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1457 				  unsigned num_bios, unsigned *len)
1458 {
1459 	struct bio_list blist = BIO_EMPTY_LIST;
1460 	struct bio *bio;
1461 	struct dm_target_io *tio;
1462 
1463 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1464 
1465 	while ((bio = bio_list_pop(&blist))) {
1466 		tio = container_of(bio, struct dm_target_io, clone);
1467 		(void) __clone_and_map_simple_bio(ci, tio, len);
1468 	}
1469 }
1470 
__send_empty_flush(struct clone_info * ci)1471 static int __send_empty_flush(struct clone_info *ci)
1472 {
1473 	unsigned target_nr = 0;
1474 	struct dm_target *ti;
1475 	struct bio flush_bio;
1476 
1477 	/*
1478 	 * Use an on-stack bio for this, it's safe since we don't
1479 	 * need to reference it after submit. It's just used as
1480 	 * the basis for the clone(s).
1481 	 */
1482 	bio_init(&flush_bio, NULL, 0);
1483 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1484 	ci->bio = &flush_bio;
1485 	ci->sector_count = 0;
1486 
1487 	/*
1488 	 * Empty flush uses a statically initialized bio, as the base for
1489 	 * cloning.  However, blkg association requires that a bdev is
1490 	 * associated with a gendisk, which doesn't happen until the bdev is
1491 	 * opened.  So, blkg association is done at issue time of the flush
1492 	 * rather than when the device is created in alloc_dev().
1493 	 */
1494 	bio_set_dev(ci->bio, ci->io->md->bdev);
1495 
1496 	BUG_ON(bio_has_data(ci->bio));
1497 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1498 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1499 
1500 	bio_uninit(ci->bio);
1501 	return 0;
1502 }
1503 
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1504 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1505 				    sector_t sector, unsigned *len)
1506 {
1507 	struct bio *bio = ci->bio;
1508 	struct dm_target_io *tio;
1509 	int r;
1510 
1511 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1512 	tio->len_ptr = len;
1513 	r = clone_bio(tio, bio, sector, *len);
1514 	if (r < 0) {
1515 		free_tio(tio);
1516 		return r;
1517 	}
1518 	(void) __map_bio(tio);
1519 
1520 	return 0;
1521 }
1522 
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1523 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1524 				       unsigned num_bios)
1525 {
1526 	unsigned len;
1527 
1528 	/*
1529 	 * Even though the device advertised support for this type of
1530 	 * request, that does not mean every target supports it, and
1531 	 * reconfiguration might also have changed that since the
1532 	 * check was performed.
1533 	 */
1534 	if (!num_bios)
1535 		return -EOPNOTSUPP;
1536 
1537 	len = min_t(sector_t, ci->sector_count,
1538 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1539 
1540 	__send_duplicate_bios(ci, ti, num_bios, &len);
1541 
1542 	ci->sector += len;
1543 	ci->sector_count -= len;
1544 
1545 	return 0;
1546 }
1547 
is_abnormal_io(struct bio * bio)1548 static bool is_abnormal_io(struct bio *bio)
1549 {
1550 	bool r = false;
1551 
1552 	switch (bio_op(bio)) {
1553 	case REQ_OP_DISCARD:
1554 	case REQ_OP_SECURE_ERASE:
1555 	case REQ_OP_WRITE_SAME:
1556 	case REQ_OP_WRITE_ZEROES:
1557 		r = true;
1558 		break;
1559 	}
1560 
1561 	return r;
1562 }
1563 
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1564 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1565 				  int *result)
1566 {
1567 	struct bio *bio = ci->bio;
1568 	unsigned num_bios = 0;
1569 
1570 	switch (bio_op(bio)) {
1571 	case REQ_OP_DISCARD:
1572 		num_bios = ti->num_discard_bios;
1573 		break;
1574 	case REQ_OP_SECURE_ERASE:
1575 		num_bios = ti->num_secure_erase_bios;
1576 		break;
1577 	case REQ_OP_WRITE_SAME:
1578 		num_bios = ti->num_write_same_bios;
1579 		break;
1580 	case REQ_OP_WRITE_ZEROES:
1581 		num_bios = ti->num_write_zeroes_bios;
1582 		break;
1583 	default:
1584 		return false;
1585 	}
1586 
1587 	*result = __send_changing_extent_only(ci, ti, num_bios);
1588 	return true;
1589 }
1590 
1591 /*
1592  * Select the correct strategy for processing a non-flush bio.
1593  */
__split_and_process_non_flush(struct clone_info * ci)1594 static int __split_and_process_non_flush(struct clone_info *ci)
1595 {
1596 	struct dm_target *ti;
1597 	unsigned len;
1598 	int r;
1599 
1600 	ti = dm_table_find_target(ci->map, ci->sector);
1601 	if (!ti)
1602 		return -EIO;
1603 
1604 	if (__process_abnormal_io(ci, ti, &r))
1605 		return r;
1606 
1607 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1608 
1609 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1610 	if (r < 0)
1611 		return r;
1612 
1613 	ci->sector += len;
1614 	ci->sector_count -= len;
1615 
1616 	return 0;
1617 }
1618 
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1619 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1620 			    struct dm_table *map, struct bio *bio)
1621 {
1622 	ci->map = map;
1623 	ci->io = alloc_io(md, bio);
1624 	ci->sector = bio->bi_iter.bi_sector;
1625 }
1626 
1627 #define __dm_part_stat_sub(part, field, subnd)	\
1628 	(part_stat_get(part, field) -= (subnd))
1629 
1630 /*
1631  * Entry point to split a bio into clones and submit them to the targets.
1632  */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1633 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1634 					struct dm_table *map, struct bio *bio)
1635 {
1636 	struct clone_info ci;
1637 	blk_qc_t ret = BLK_QC_T_NONE;
1638 	int error = 0;
1639 
1640 	init_clone_info(&ci, md, map, bio);
1641 
1642 	if (bio->bi_opf & REQ_PREFLUSH) {
1643 		error = __send_empty_flush(&ci);
1644 		/* dec_pending submits any data associated with flush */
1645 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1646 		ci.bio = bio;
1647 		ci.sector_count = 0;
1648 		error = __split_and_process_non_flush(&ci);
1649 	} else {
1650 		ci.bio = bio;
1651 		ci.sector_count = bio_sectors(bio);
1652 		while (ci.sector_count && !error) {
1653 			error = __split_and_process_non_flush(&ci);
1654 			if (current->bio_list && ci.sector_count && !error) {
1655 				/*
1656 				 * Remainder must be passed to submit_bio_noacct()
1657 				 * so that it gets handled *after* bios already submitted
1658 				 * have been completely processed.
1659 				 * We take a clone of the original to store in
1660 				 * ci.io->orig_bio to be used by end_io_acct() and
1661 				 * for dec_pending to use for completion handling.
1662 				 */
1663 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1664 							  GFP_NOIO, &md->queue->bio_split);
1665 				ci.io->orig_bio = b;
1666 
1667 				/*
1668 				 * Adjust IO stats for each split, otherwise upon queue
1669 				 * reentry there will be redundant IO accounting.
1670 				 * NOTE: this is a stop-gap fix, a proper fix involves
1671 				 * significant refactoring of DM core's bio splitting
1672 				 * (by eliminating DM's splitting and just using bio_split)
1673 				 */
1674 				part_stat_lock();
1675 				__dm_part_stat_sub(&dm_disk(md)->part0,
1676 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1677 				part_stat_unlock();
1678 
1679 				bio_chain(b, bio);
1680 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1681 				ret = submit_bio_noacct(bio);
1682 				break;
1683 			}
1684 		}
1685 	}
1686 
1687 	/* drop the extra reference count */
1688 	dec_pending(ci.io, errno_to_blk_status(error));
1689 	return ret;
1690 }
1691 
dm_submit_bio(struct bio * bio)1692 static blk_qc_t dm_submit_bio(struct bio *bio)
1693 {
1694 	struct mapped_device *md = bio->bi_disk->private_data;
1695 	blk_qc_t ret = BLK_QC_T_NONE;
1696 	int srcu_idx;
1697 	struct dm_table *map;
1698 
1699 	map = dm_get_live_table(md, &srcu_idx);
1700 
1701 	/* If suspended, or map not yet available, queue this IO for later */
1702 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1703 	    unlikely(!map)) {
1704 		if (bio->bi_opf & REQ_NOWAIT)
1705 			bio_wouldblock_error(bio);
1706 		else if (bio->bi_opf & REQ_RAHEAD)
1707 			bio_io_error(bio);
1708 		else
1709 			queue_io(md, bio);
1710 		goto out;
1711 	}
1712 
1713 	/*
1714 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1715 	 * otherwise associated queue_limits won't be imposed.
1716 	 */
1717 	if (is_abnormal_io(bio))
1718 		blk_queue_split(&bio);
1719 
1720 	ret = __split_and_process_bio(md, map, bio);
1721 out:
1722 	dm_put_live_table(md, srcu_idx);
1723 	return ret;
1724 }
1725 
1726 /*-----------------------------------------------------------------
1727  * An IDR is used to keep track of allocated minor numbers.
1728  *---------------------------------------------------------------*/
free_minor(int minor)1729 static void free_minor(int minor)
1730 {
1731 	spin_lock(&_minor_lock);
1732 	idr_remove(&_minor_idr, minor);
1733 	spin_unlock(&_minor_lock);
1734 }
1735 
1736 /*
1737  * See if the device with a specific minor # is free.
1738  */
specific_minor(int minor)1739 static int specific_minor(int minor)
1740 {
1741 	int r;
1742 
1743 	if (minor >= (1 << MINORBITS))
1744 		return -EINVAL;
1745 
1746 	idr_preload(GFP_KERNEL);
1747 	spin_lock(&_minor_lock);
1748 
1749 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1750 
1751 	spin_unlock(&_minor_lock);
1752 	idr_preload_end();
1753 	if (r < 0)
1754 		return r == -ENOSPC ? -EBUSY : r;
1755 	return 0;
1756 }
1757 
next_free_minor(int * minor)1758 static int next_free_minor(int *minor)
1759 {
1760 	int r;
1761 
1762 	idr_preload(GFP_KERNEL);
1763 	spin_lock(&_minor_lock);
1764 
1765 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1766 
1767 	spin_unlock(&_minor_lock);
1768 	idr_preload_end();
1769 	if (r < 0)
1770 		return r;
1771 	*minor = r;
1772 	return 0;
1773 }
1774 
1775 static const struct block_device_operations dm_blk_dops;
1776 static const struct block_device_operations dm_rq_blk_dops;
1777 static const struct dax_operations dm_dax_ops;
1778 
1779 static void dm_wq_work(struct work_struct *work);
1780 
cleanup_mapped_device(struct mapped_device * md)1781 static void cleanup_mapped_device(struct mapped_device *md)
1782 {
1783 	if (md->wq)
1784 		destroy_workqueue(md->wq);
1785 	bioset_exit(&md->bs);
1786 	bioset_exit(&md->io_bs);
1787 
1788 	if (md->dax_dev) {
1789 		kill_dax(md->dax_dev);
1790 		put_dax(md->dax_dev);
1791 		md->dax_dev = NULL;
1792 	}
1793 
1794 	if (md->disk) {
1795 		spin_lock(&_minor_lock);
1796 		md->disk->private_data = NULL;
1797 		spin_unlock(&_minor_lock);
1798 		del_gendisk(md->disk);
1799 		put_disk(md->disk);
1800 	}
1801 
1802 	if (md->queue)
1803 		blk_cleanup_queue(md->queue);
1804 
1805 	cleanup_srcu_struct(&md->io_barrier);
1806 
1807 	if (md->bdev) {
1808 		bdput(md->bdev);
1809 		md->bdev = NULL;
1810 	}
1811 
1812 	mutex_destroy(&md->suspend_lock);
1813 	mutex_destroy(&md->type_lock);
1814 	mutex_destroy(&md->table_devices_lock);
1815 	mutex_destroy(&md->swap_bios_lock);
1816 
1817 	dm_mq_cleanup_mapped_device(md);
1818 }
1819 
1820 /*
1821  * Allocate and initialise a blank device with a given minor.
1822  */
alloc_dev(int minor)1823 static struct mapped_device *alloc_dev(int minor)
1824 {
1825 	int r, numa_node_id = dm_get_numa_node();
1826 	struct mapped_device *md;
1827 	void *old_md;
1828 
1829 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1830 	if (!md) {
1831 		DMWARN("unable to allocate device, out of memory.");
1832 		return NULL;
1833 	}
1834 
1835 	if (!try_module_get(THIS_MODULE))
1836 		goto bad_module_get;
1837 
1838 	/* get a minor number for the dev */
1839 	if (minor == DM_ANY_MINOR)
1840 		r = next_free_minor(&minor);
1841 	else
1842 		r = specific_minor(minor);
1843 	if (r < 0)
1844 		goto bad_minor;
1845 
1846 	r = init_srcu_struct(&md->io_barrier);
1847 	if (r < 0)
1848 		goto bad_io_barrier;
1849 
1850 	md->numa_node_id = numa_node_id;
1851 	md->init_tio_pdu = false;
1852 	md->type = DM_TYPE_NONE;
1853 	mutex_init(&md->suspend_lock);
1854 	mutex_init(&md->type_lock);
1855 	mutex_init(&md->table_devices_lock);
1856 	spin_lock_init(&md->deferred_lock);
1857 	atomic_set(&md->holders, 1);
1858 	atomic_set(&md->open_count, 0);
1859 	atomic_set(&md->event_nr, 0);
1860 	atomic_set(&md->uevent_seq, 0);
1861 	INIT_LIST_HEAD(&md->uevent_list);
1862 	INIT_LIST_HEAD(&md->table_devices);
1863 	spin_lock_init(&md->uevent_lock);
1864 
1865 	/*
1866 	 * default to bio-based until DM table is loaded and md->type
1867 	 * established. If request-based table is loaded: blk-mq will
1868 	 * override accordingly.
1869 	 */
1870 	md->queue = blk_alloc_queue(numa_node_id);
1871 	if (!md->queue)
1872 		goto bad;
1873 
1874 	md->disk = alloc_disk_node(1, md->numa_node_id);
1875 	if (!md->disk)
1876 		goto bad;
1877 
1878 	init_waitqueue_head(&md->wait);
1879 	INIT_WORK(&md->work, dm_wq_work);
1880 	init_waitqueue_head(&md->eventq);
1881 	init_completion(&md->kobj_holder.completion);
1882 
1883 	md->swap_bios = get_swap_bios();
1884 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1885 	mutex_init(&md->swap_bios_lock);
1886 
1887 	md->disk->major = _major;
1888 	md->disk->first_minor = minor;
1889 	md->disk->fops = &dm_blk_dops;
1890 	md->disk->queue = md->queue;
1891 	md->disk->private_data = md;
1892 	sprintf(md->disk->disk_name, "dm-%d", minor);
1893 
1894 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1895 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1896 					&dm_dax_ops, 0);
1897 		if (IS_ERR(md->dax_dev)) {
1898 			md->dax_dev = NULL;
1899 			goto bad;
1900 		}
1901 	}
1902 
1903 	add_disk_no_queue_reg(md->disk);
1904 	format_dev_t(md->name, MKDEV(_major, minor));
1905 
1906 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1907 	if (!md->wq)
1908 		goto bad;
1909 
1910 	md->bdev = bdget_disk(md->disk, 0);
1911 	if (!md->bdev)
1912 		goto bad;
1913 
1914 	dm_stats_init(&md->stats);
1915 
1916 	/* Populate the mapping, nobody knows we exist yet */
1917 	spin_lock(&_minor_lock);
1918 	old_md = idr_replace(&_minor_idr, md, minor);
1919 	spin_unlock(&_minor_lock);
1920 
1921 	BUG_ON(old_md != MINOR_ALLOCED);
1922 
1923 	return md;
1924 
1925 bad:
1926 	cleanup_mapped_device(md);
1927 bad_io_barrier:
1928 	free_minor(minor);
1929 bad_minor:
1930 	module_put(THIS_MODULE);
1931 bad_module_get:
1932 	kvfree(md);
1933 	return NULL;
1934 }
1935 
1936 static void unlock_fs(struct mapped_device *md);
1937 
free_dev(struct mapped_device * md)1938 static void free_dev(struct mapped_device *md)
1939 {
1940 	int minor = MINOR(disk_devt(md->disk));
1941 
1942 	unlock_fs(md);
1943 
1944 	cleanup_mapped_device(md);
1945 
1946 	free_table_devices(&md->table_devices);
1947 	dm_stats_cleanup(&md->stats);
1948 	free_minor(minor);
1949 
1950 	module_put(THIS_MODULE);
1951 	kvfree(md);
1952 }
1953 
__bind_mempools(struct mapped_device * md,struct dm_table * t)1954 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1955 {
1956 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1957 	int ret = 0;
1958 
1959 	if (dm_table_bio_based(t)) {
1960 		/*
1961 		 * The md may already have mempools that need changing.
1962 		 * If so, reload bioset because front_pad may have changed
1963 		 * because a different table was loaded.
1964 		 */
1965 		bioset_exit(&md->bs);
1966 		bioset_exit(&md->io_bs);
1967 
1968 	} else if (bioset_initialized(&md->bs)) {
1969 		/*
1970 		 * There's no need to reload with request-based dm
1971 		 * because the size of front_pad doesn't change.
1972 		 * Note for future: If you are to reload bioset,
1973 		 * prep-ed requests in the queue may refer
1974 		 * to bio from the old bioset, so you must walk
1975 		 * through the queue to unprep.
1976 		 */
1977 		goto out;
1978 	}
1979 
1980 	BUG_ON(!p ||
1981 	       bioset_initialized(&md->bs) ||
1982 	       bioset_initialized(&md->io_bs));
1983 
1984 	ret = bioset_init_from_src(&md->bs, &p->bs);
1985 	if (ret)
1986 		goto out;
1987 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1988 	if (ret)
1989 		bioset_exit(&md->bs);
1990 out:
1991 	/* mempool bind completed, no longer need any mempools in the table */
1992 	dm_table_free_md_mempools(t);
1993 	return ret;
1994 }
1995 
1996 /*
1997  * Bind a table to the device.
1998  */
event_callback(void * context)1999 static void event_callback(void *context)
2000 {
2001 	unsigned long flags;
2002 	LIST_HEAD(uevents);
2003 	struct mapped_device *md = (struct mapped_device *) context;
2004 
2005 	spin_lock_irqsave(&md->uevent_lock, flags);
2006 	list_splice_init(&md->uevent_list, &uevents);
2007 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2008 
2009 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2010 
2011 	atomic_inc(&md->event_nr);
2012 	wake_up(&md->eventq);
2013 	dm_issue_global_event();
2014 }
2015 
2016 /*
2017  * Returns old map, which caller must destroy.
2018  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2019 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2020 			       struct queue_limits *limits)
2021 {
2022 	struct dm_table *old_map;
2023 	struct request_queue *q = md->queue;
2024 	bool request_based = dm_table_request_based(t);
2025 	sector_t size;
2026 	int ret;
2027 
2028 	lockdep_assert_held(&md->suspend_lock);
2029 
2030 	size = dm_table_get_size(t);
2031 
2032 	/*
2033 	 * Wipe any geometry if the size of the table changed.
2034 	 */
2035 	if (size != dm_get_size(md))
2036 		memset(&md->geometry, 0, sizeof(md->geometry));
2037 
2038 	set_capacity(md->disk, size);
2039 	bd_set_nr_sectors(md->bdev, size);
2040 
2041 	dm_table_event_callback(t, event_callback, md);
2042 
2043 	if (request_based) {
2044 		/*
2045 		 * Leverage the fact that request-based DM targets are
2046 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2047 		 */
2048 		md->immutable_target = dm_table_get_immutable_target(t);
2049 	}
2050 
2051 	ret = __bind_mempools(md, t);
2052 	if (ret) {
2053 		old_map = ERR_PTR(ret);
2054 		goto out;
2055 	}
2056 
2057 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2058 	rcu_assign_pointer(md->map, (void *)t);
2059 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2060 
2061 	dm_table_set_restrictions(t, q, limits);
2062 	if (old_map)
2063 		dm_sync_table(md);
2064 
2065 out:
2066 	return old_map;
2067 }
2068 
2069 /*
2070  * Returns unbound table for the caller to free.
2071  */
__unbind(struct mapped_device * md)2072 static struct dm_table *__unbind(struct mapped_device *md)
2073 {
2074 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2075 
2076 	if (!map)
2077 		return NULL;
2078 
2079 	dm_table_event_callback(map, NULL, NULL);
2080 	RCU_INIT_POINTER(md->map, NULL);
2081 	dm_sync_table(md);
2082 
2083 	return map;
2084 }
2085 
2086 /*
2087  * Constructor for a new device.
2088  */
dm_create(int minor,struct mapped_device ** result)2089 int dm_create(int minor, struct mapped_device **result)
2090 {
2091 	int r;
2092 	struct mapped_device *md;
2093 
2094 	md = alloc_dev(minor);
2095 	if (!md)
2096 		return -ENXIO;
2097 
2098 	r = dm_sysfs_init(md);
2099 	if (r) {
2100 		free_dev(md);
2101 		return r;
2102 	}
2103 
2104 	*result = md;
2105 	return 0;
2106 }
2107 
2108 /*
2109  * Functions to manage md->type.
2110  * All are required to hold md->type_lock.
2111  */
dm_lock_md_type(struct mapped_device * md)2112 void dm_lock_md_type(struct mapped_device *md)
2113 {
2114 	mutex_lock(&md->type_lock);
2115 }
2116 
dm_unlock_md_type(struct mapped_device * md)2117 void dm_unlock_md_type(struct mapped_device *md)
2118 {
2119 	mutex_unlock(&md->type_lock);
2120 }
2121 
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2122 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2123 {
2124 	BUG_ON(!mutex_is_locked(&md->type_lock));
2125 	md->type = type;
2126 }
2127 
dm_get_md_type(struct mapped_device * md)2128 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2129 {
2130 	return md->type;
2131 }
2132 
dm_get_immutable_target_type(struct mapped_device * md)2133 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2134 {
2135 	return md->immutable_target_type;
2136 }
2137 
2138 /*
2139  * The queue_limits are only valid as long as you have a reference
2140  * count on 'md'.
2141  */
dm_get_queue_limits(struct mapped_device * md)2142 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2143 {
2144 	BUG_ON(!atomic_read(&md->holders));
2145 	return &md->queue->limits;
2146 }
2147 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2148 
2149 /*
2150  * Setup the DM device's queue based on md's type
2151  */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2152 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2153 {
2154 	int r;
2155 	struct queue_limits limits;
2156 	enum dm_queue_mode type = dm_get_md_type(md);
2157 
2158 	switch (type) {
2159 	case DM_TYPE_REQUEST_BASED:
2160 		md->disk->fops = &dm_rq_blk_dops;
2161 		r = dm_mq_init_request_queue(md, t);
2162 		if (r) {
2163 			DMERR("Cannot initialize queue for request-based dm mapped device");
2164 			return r;
2165 		}
2166 		break;
2167 	case DM_TYPE_BIO_BASED:
2168 	case DM_TYPE_DAX_BIO_BASED:
2169 		break;
2170 	case DM_TYPE_NONE:
2171 		WARN_ON_ONCE(true);
2172 		break;
2173 	}
2174 
2175 	r = dm_calculate_queue_limits(t, &limits);
2176 	if (r) {
2177 		DMERR("Cannot calculate initial queue limits");
2178 		return r;
2179 	}
2180 	dm_table_set_restrictions(t, md->queue, &limits);
2181 	blk_register_queue(md->disk);
2182 
2183 	return 0;
2184 }
2185 
dm_get_md(dev_t dev)2186 struct mapped_device *dm_get_md(dev_t dev)
2187 {
2188 	struct mapped_device *md;
2189 	unsigned minor = MINOR(dev);
2190 
2191 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2192 		return NULL;
2193 
2194 	spin_lock(&_minor_lock);
2195 
2196 	md = idr_find(&_minor_idr, minor);
2197 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2198 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2199 		md = NULL;
2200 		goto out;
2201 	}
2202 	dm_get(md);
2203 out:
2204 	spin_unlock(&_minor_lock);
2205 
2206 	return md;
2207 }
2208 EXPORT_SYMBOL_GPL(dm_get_md);
2209 
dm_get_mdptr(struct mapped_device * md)2210 void *dm_get_mdptr(struct mapped_device *md)
2211 {
2212 	return md->interface_ptr;
2213 }
2214 
dm_set_mdptr(struct mapped_device * md,void * ptr)2215 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2216 {
2217 	md->interface_ptr = ptr;
2218 }
2219 
dm_get(struct mapped_device * md)2220 void dm_get(struct mapped_device *md)
2221 {
2222 	atomic_inc(&md->holders);
2223 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2224 }
2225 
dm_hold(struct mapped_device * md)2226 int dm_hold(struct mapped_device *md)
2227 {
2228 	spin_lock(&_minor_lock);
2229 	if (test_bit(DMF_FREEING, &md->flags)) {
2230 		spin_unlock(&_minor_lock);
2231 		return -EBUSY;
2232 	}
2233 	dm_get(md);
2234 	spin_unlock(&_minor_lock);
2235 	return 0;
2236 }
2237 EXPORT_SYMBOL_GPL(dm_hold);
2238 
dm_device_name(struct mapped_device * md)2239 const char *dm_device_name(struct mapped_device *md)
2240 {
2241 	return md->name;
2242 }
2243 EXPORT_SYMBOL_GPL(dm_device_name);
2244 
__dm_destroy(struct mapped_device * md,bool wait)2245 static void __dm_destroy(struct mapped_device *md, bool wait)
2246 {
2247 	struct dm_table *map;
2248 	int srcu_idx;
2249 
2250 	might_sleep();
2251 
2252 	spin_lock(&_minor_lock);
2253 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2254 	set_bit(DMF_FREEING, &md->flags);
2255 	spin_unlock(&_minor_lock);
2256 
2257 	blk_set_queue_dying(md->queue);
2258 
2259 	/*
2260 	 * Take suspend_lock so that presuspend and postsuspend methods
2261 	 * do not race with internal suspend.
2262 	 */
2263 	mutex_lock(&md->suspend_lock);
2264 	map = dm_get_live_table(md, &srcu_idx);
2265 	if (!dm_suspended_md(md)) {
2266 		dm_table_presuspend_targets(map);
2267 		set_bit(DMF_SUSPENDED, &md->flags);
2268 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2269 		dm_table_postsuspend_targets(map);
2270 	}
2271 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2272 	dm_put_live_table(md, srcu_idx);
2273 	mutex_unlock(&md->suspend_lock);
2274 
2275 	/*
2276 	 * Rare, but there may be I/O requests still going to complete,
2277 	 * for example.  Wait for all references to disappear.
2278 	 * No one should increment the reference count of the mapped_device,
2279 	 * after the mapped_device state becomes DMF_FREEING.
2280 	 */
2281 	if (wait)
2282 		while (atomic_read(&md->holders))
2283 			msleep(1);
2284 	else if (atomic_read(&md->holders))
2285 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2286 		       dm_device_name(md), atomic_read(&md->holders));
2287 
2288 	dm_sysfs_exit(md);
2289 	dm_table_destroy(__unbind(md));
2290 	free_dev(md);
2291 }
2292 
dm_destroy(struct mapped_device * md)2293 void dm_destroy(struct mapped_device *md)
2294 {
2295 	__dm_destroy(md, true);
2296 }
2297 
dm_destroy_immediate(struct mapped_device * md)2298 void dm_destroy_immediate(struct mapped_device *md)
2299 {
2300 	__dm_destroy(md, false);
2301 }
2302 
dm_put(struct mapped_device * md)2303 void dm_put(struct mapped_device *md)
2304 {
2305 	atomic_dec(&md->holders);
2306 }
2307 EXPORT_SYMBOL_GPL(dm_put);
2308 
md_in_flight_bios(struct mapped_device * md)2309 static bool md_in_flight_bios(struct mapped_device *md)
2310 {
2311 	int cpu;
2312 	struct hd_struct *part = &dm_disk(md)->part0;
2313 	long sum = 0;
2314 
2315 	for_each_possible_cpu(cpu) {
2316 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2317 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2318 	}
2319 
2320 	return sum != 0;
2321 }
2322 
dm_wait_for_bios_completion(struct mapped_device * md,long task_state)2323 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2324 {
2325 	int r = 0;
2326 	DEFINE_WAIT(wait);
2327 
2328 	while (true) {
2329 		prepare_to_wait(&md->wait, &wait, task_state);
2330 
2331 		if (!md_in_flight_bios(md))
2332 			break;
2333 
2334 		if (signal_pending_state(task_state, current)) {
2335 			r = -EINTR;
2336 			break;
2337 		}
2338 
2339 		io_schedule();
2340 	}
2341 	finish_wait(&md->wait, &wait);
2342 
2343 	smp_rmb();
2344 
2345 	return r;
2346 }
2347 
dm_wait_for_completion(struct mapped_device * md,long task_state)2348 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2349 {
2350 	int r = 0;
2351 
2352 	if (!queue_is_mq(md->queue))
2353 		return dm_wait_for_bios_completion(md, task_state);
2354 
2355 	while (true) {
2356 		if (!blk_mq_queue_inflight(md->queue))
2357 			break;
2358 
2359 		if (signal_pending_state(task_state, current)) {
2360 			r = -EINTR;
2361 			break;
2362 		}
2363 
2364 		msleep(5);
2365 	}
2366 
2367 	return r;
2368 }
2369 
2370 /*
2371  * Process the deferred bios
2372  */
dm_wq_work(struct work_struct * work)2373 static void dm_wq_work(struct work_struct *work)
2374 {
2375 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2376 	struct bio *bio;
2377 
2378 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2379 		spin_lock_irq(&md->deferred_lock);
2380 		bio = bio_list_pop(&md->deferred);
2381 		spin_unlock_irq(&md->deferred_lock);
2382 
2383 		if (!bio)
2384 			break;
2385 
2386 		submit_bio_noacct(bio);
2387 	}
2388 }
2389 
dm_queue_flush(struct mapped_device * md)2390 static void dm_queue_flush(struct mapped_device *md)
2391 {
2392 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2393 	smp_mb__after_atomic();
2394 	queue_work(md->wq, &md->work);
2395 }
2396 
2397 /*
2398  * Swap in a new table, returning the old one for the caller to destroy.
2399  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2400 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2401 {
2402 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2403 	struct queue_limits limits;
2404 	int r;
2405 
2406 	mutex_lock(&md->suspend_lock);
2407 
2408 	/* device must be suspended */
2409 	if (!dm_suspended_md(md))
2410 		goto out;
2411 
2412 	/*
2413 	 * If the new table has no data devices, retain the existing limits.
2414 	 * This helps multipath with queue_if_no_path if all paths disappear,
2415 	 * then new I/O is queued based on these limits, and then some paths
2416 	 * reappear.
2417 	 */
2418 	if (dm_table_has_no_data_devices(table)) {
2419 		live_map = dm_get_live_table_fast(md);
2420 		if (live_map)
2421 			limits = md->queue->limits;
2422 		dm_put_live_table_fast(md);
2423 	}
2424 
2425 	if (!live_map) {
2426 		r = dm_calculate_queue_limits(table, &limits);
2427 		if (r) {
2428 			map = ERR_PTR(r);
2429 			goto out;
2430 		}
2431 	}
2432 
2433 	map = __bind(md, table, &limits);
2434 	dm_issue_global_event();
2435 
2436 out:
2437 	mutex_unlock(&md->suspend_lock);
2438 	return map;
2439 }
2440 
2441 /*
2442  * Functions to lock and unlock any filesystem running on the
2443  * device.
2444  */
lock_fs(struct mapped_device * md)2445 static int lock_fs(struct mapped_device *md)
2446 {
2447 	int r;
2448 
2449 	WARN_ON(md->frozen_sb);
2450 
2451 	md->frozen_sb = freeze_bdev(md->bdev);
2452 	if (IS_ERR(md->frozen_sb)) {
2453 		r = PTR_ERR(md->frozen_sb);
2454 		md->frozen_sb = NULL;
2455 		return r;
2456 	}
2457 
2458 	set_bit(DMF_FROZEN, &md->flags);
2459 
2460 	return 0;
2461 }
2462 
unlock_fs(struct mapped_device * md)2463 static void unlock_fs(struct mapped_device *md)
2464 {
2465 	if (!test_bit(DMF_FROZEN, &md->flags))
2466 		return;
2467 
2468 	thaw_bdev(md->bdev, md->frozen_sb);
2469 	md->frozen_sb = NULL;
2470 	clear_bit(DMF_FROZEN, &md->flags);
2471 }
2472 
2473 /*
2474  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2475  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2476  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2477  *
2478  * If __dm_suspend returns 0, the device is completely quiescent
2479  * now. There is no request-processing activity. All new requests
2480  * are being added to md->deferred list.
2481  */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2482 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2483 			unsigned suspend_flags, long task_state,
2484 			int dmf_suspended_flag)
2485 {
2486 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2487 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2488 	int r;
2489 
2490 	lockdep_assert_held(&md->suspend_lock);
2491 
2492 	/*
2493 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2494 	 * This flag is cleared before dm_suspend returns.
2495 	 */
2496 	if (noflush)
2497 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2498 	else
2499 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2500 
2501 	/*
2502 	 * This gets reverted if there's an error later and the targets
2503 	 * provide the .presuspend_undo hook.
2504 	 */
2505 	dm_table_presuspend_targets(map);
2506 
2507 	/*
2508 	 * Flush I/O to the device.
2509 	 * Any I/O submitted after lock_fs() may not be flushed.
2510 	 * noflush takes precedence over do_lockfs.
2511 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2512 	 */
2513 	if (!noflush && do_lockfs) {
2514 		r = lock_fs(md);
2515 		if (r) {
2516 			dm_table_presuspend_undo_targets(map);
2517 			return r;
2518 		}
2519 	}
2520 
2521 	/*
2522 	 * Here we must make sure that no processes are submitting requests
2523 	 * to target drivers i.e. no one may be executing
2524 	 * __split_and_process_bio from dm_submit_bio.
2525 	 *
2526 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2527 	 * we take the write lock. To prevent any process from reentering
2528 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2529 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2530 	 * flush_workqueue(md->wq).
2531 	 */
2532 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2533 	if (map)
2534 		synchronize_srcu(&md->io_barrier);
2535 
2536 	/*
2537 	 * Stop md->queue before flushing md->wq in case request-based
2538 	 * dm defers requests to md->wq from md->queue.
2539 	 */
2540 	if (dm_request_based(md))
2541 		dm_stop_queue(md->queue);
2542 
2543 	flush_workqueue(md->wq);
2544 
2545 	/*
2546 	 * At this point no more requests are entering target request routines.
2547 	 * We call dm_wait_for_completion to wait for all existing requests
2548 	 * to finish.
2549 	 */
2550 	r = dm_wait_for_completion(md, task_state);
2551 	if (!r)
2552 		set_bit(dmf_suspended_flag, &md->flags);
2553 
2554 	if (noflush)
2555 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2556 	if (map)
2557 		synchronize_srcu(&md->io_barrier);
2558 
2559 	/* were we interrupted ? */
2560 	if (r < 0) {
2561 		dm_queue_flush(md);
2562 
2563 		if (dm_request_based(md))
2564 			dm_start_queue(md->queue);
2565 
2566 		unlock_fs(md);
2567 		dm_table_presuspend_undo_targets(map);
2568 		/* pushback list is already flushed, so skip flush */
2569 	}
2570 
2571 	return r;
2572 }
2573 
2574 /*
2575  * We need to be able to change a mapping table under a mounted
2576  * filesystem.  For example we might want to move some data in
2577  * the background.  Before the table can be swapped with
2578  * dm_bind_table, dm_suspend must be called to flush any in
2579  * flight bios and ensure that any further io gets deferred.
2580  */
2581 /*
2582  * Suspend mechanism in request-based dm.
2583  *
2584  * 1. Flush all I/Os by lock_fs() if needed.
2585  * 2. Stop dispatching any I/O by stopping the request_queue.
2586  * 3. Wait for all in-flight I/Os to be completed or requeued.
2587  *
2588  * To abort suspend, start the request_queue.
2589  */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2590 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2591 {
2592 	struct dm_table *map = NULL;
2593 	int r = 0;
2594 
2595 retry:
2596 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2597 
2598 	if (dm_suspended_md(md)) {
2599 		r = -EINVAL;
2600 		goto out_unlock;
2601 	}
2602 
2603 	if (dm_suspended_internally_md(md)) {
2604 		/* already internally suspended, wait for internal resume */
2605 		mutex_unlock(&md->suspend_lock);
2606 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2607 		if (r)
2608 			return r;
2609 		goto retry;
2610 	}
2611 
2612 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2613 
2614 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2615 	if (r)
2616 		goto out_unlock;
2617 
2618 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2619 	dm_table_postsuspend_targets(map);
2620 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2621 
2622 out_unlock:
2623 	mutex_unlock(&md->suspend_lock);
2624 	return r;
2625 }
2626 
__dm_resume(struct mapped_device * md,struct dm_table * map)2627 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2628 {
2629 	if (map) {
2630 		int r = dm_table_resume_targets(map);
2631 		if (r)
2632 			return r;
2633 	}
2634 
2635 	dm_queue_flush(md);
2636 
2637 	/*
2638 	 * Flushing deferred I/Os must be done after targets are resumed
2639 	 * so that mapping of targets can work correctly.
2640 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2641 	 */
2642 	if (dm_request_based(md))
2643 		dm_start_queue(md->queue);
2644 
2645 	unlock_fs(md);
2646 
2647 	return 0;
2648 }
2649 
dm_resume(struct mapped_device * md)2650 int dm_resume(struct mapped_device *md)
2651 {
2652 	int r;
2653 	struct dm_table *map = NULL;
2654 
2655 retry:
2656 	r = -EINVAL;
2657 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2658 
2659 	if (!dm_suspended_md(md))
2660 		goto out;
2661 
2662 	if (dm_suspended_internally_md(md)) {
2663 		/* already internally suspended, wait for internal resume */
2664 		mutex_unlock(&md->suspend_lock);
2665 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2666 		if (r)
2667 			return r;
2668 		goto retry;
2669 	}
2670 
2671 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2672 	if (!map || !dm_table_get_size(map))
2673 		goto out;
2674 
2675 	r = __dm_resume(md, map);
2676 	if (r)
2677 		goto out;
2678 
2679 	clear_bit(DMF_SUSPENDED, &md->flags);
2680 out:
2681 	mutex_unlock(&md->suspend_lock);
2682 
2683 	return r;
2684 }
2685 
2686 /*
2687  * Internal suspend/resume works like userspace-driven suspend. It waits
2688  * until all bios finish and prevents issuing new bios to the target drivers.
2689  * It may be used only from the kernel.
2690  */
2691 
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2692 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2693 {
2694 	struct dm_table *map = NULL;
2695 
2696 	lockdep_assert_held(&md->suspend_lock);
2697 
2698 	if (md->internal_suspend_count++)
2699 		return; /* nested internal suspend */
2700 
2701 	if (dm_suspended_md(md)) {
2702 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2703 		return; /* nest suspend */
2704 	}
2705 
2706 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2707 
2708 	/*
2709 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2710 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2711 	 * would require changing .presuspend to return an error -- avoid this
2712 	 * until there is a need for more elaborate variants of internal suspend.
2713 	 */
2714 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2715 			    DMF_SUSPENDED_INTERNALLY);
2716 
2717 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2718 	dm_table_postsuspend_targets(map);
2719 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2720 }
2721 
__dm_internal_resume(struct mapped_device * md)2722 static void __dm_internal_resume(struct mapped_device *md)
2723 {
2724 	BUG_ON(!md->internal_suspend_count);
2725 
2726 	if (--md->internal_suspend_count)
2727 		return; /* resume from nested internal suspend */
2728 
2729 	if (dm_suspended_md(md))
2730 		goto done; /* resume from nested suspend */
2731 
2732 	/*
2733 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2734 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2735 	 */
2736 	(void) __dm_resume(md, NULL);
2737 
2738 done:
2739 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2740 	smp_mb__after_atomic();
2741 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2742 }
2743 
dm_internal_suspend_noflush(struct mapped_device * md)2744 void dm_internal_suspend_noflush(struct mapped_device *md)
2745 {
2746 	mutex_lock(&md->suspend_lock);
2747 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2748 	mutex_unlock(&md->suspend_lock);
2749 }
2750 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2751 
dm_internal_resume(struct mapped_device * md)2752 void dm_internal_resume(struct mapped_device *md)
2753 {
2754 	mutex_lock(&md->suspend_lock);
2755 	__dm_internal_resume(md);
2756 	mutex_unlock(&md->suspend_lock);
2757 }
2758 EXPORT_SYMBOL_GPL(dm_internal_resume);
2759 
2760 /*
2761  * Fast variants of internal suspend/resume hold md->suspend_lock,
2762  * which prevents interaction with userspace-driven suspend.
2763  */
2764 
dm_internal_suspend_fast(struct mapped_device * md)2765 void dm_internal_suspend_fast(struct mapped_device *md)
2766 {
2767 	mutex_lock(&md->suspend_lock);
2768 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2769 		return;
2770 
2771 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2772 	synchronize_srcu(&md->io_barrier);
2773 	flush_workqueue(md->wq);
2774 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2775 }
2776 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2777 
dm_internal_resume_fast(struct mapped_device * md)2778 void dm_internal_resume_fast(struct mapped_device *md)
2779 {
2780 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2781 		goto done;
2782 
2783 	dm_queue_flush(md);
2784 
2785 done:
2786 	mutex_unlock(&md->suspend_lock);
2787 }
2788 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2789 
2790 /*-----------------------------------------------------------------
2791  * Event notification.
2792  *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2793 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2794 		       unsigned cookie)
2795 {
2796 	int r;
2797 	unsigned noio_flag;
2798 	char udev_cookie[DM_COOKIE_LENGTH];
2799 	char *envp[] = { udev_cookie, NULL };
2800 
2801 	noio_flag = memalloc_noio_save();
2802 
2803 	if (!cookie)
2804 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2805 	else {
2806 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2807 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2808 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2809 				       action, envp);
2810 	}
2811 
2812 	memalloc_noio_restore(noio_flag);
2813 
2814 	return r;
2815 }
2816 
dm_next_uevent_seq(struct mapped_device * md)2817 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2818 {
2819 	return atomic_add_return(1, &md->uevent_seq);
2820 }
2821 
dm_get_event_nr(struct mapped_device * md)2822 uint32_t dm_get_event_nr(struct mapped_device *md)
2823 {
2824 	return atomic_read(&md->event_nr);
2825 }
2826 
dm_wait_event(struct mapped_device * md,int event_nr)2827 int dm_wait_event(struct mapped_device *md, int event_nr)
2828 {
2829 	return wait_event_interruptible(md->eventq,
2830 			(event_nr != atomic_read(&md->event_nr)));
2831 }
2832 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2833 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2834 {
2835 	unsigned long flags;
2836 
2837 	spin_lock_irqsave(&md->uevent_lock, flags);
2838 	list_add(elist, &md->uevent_list);
2839 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2840 }
2841 
2842 /*
2843  * The gendisk is only valid as long as you have a reference
2844  * count on 'md'.
2845  */
dm_disk(struct mapped_device * md)2846 struct gendisk *dm_disk(struct mapped_device *md)
2847 {
2848 	return md->disk;
2849 }
2850 EXPORT_SYMBOL_GPL(dm_disk);
2851 
dm_kobject(struct mapped_device * md)2852 struct kobject *dm_kobject(struct mapped_device *md)
2853 {
2854 	return &md->kobj_holder.kobj;
2855 }
2856 
dm_get_from_kobject(struct kobject * kobj)2857 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2858 {
2859 	struct mapped_device *md;
2860 
2861 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2862 
2863 	spin_lock(&_minor_lock);
2864 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2865 		md = NULL;
2866 		goto out;
2867 	}
2868 	dm_get(md);
2869 out:
2870 	spin_unlock(&_minor_lock);
2871 
2872 	return md;
2873 }
2874 
dm_suspended_md(struct mapped_device * md)2875 int dm_suspended_md(struct mapped_device *md)
2876 {
2877 	return test_bit(DMF_SUSPENDED, &md->flags);
2878 }
2879 
dm_post_suspending_md(struct mapped_device * md)2880 static int dm_post_suspending_md(struct mapped_device *md)
2881 {
2882 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2883 }
2884 
dm_suspended_internally_md(struct mapped_device * md)2885 int dm_suspended_internally_md(struct mapped_device *md)
2886 {
2887 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2888 }
2889 
dm_test_deferred_remove_flag(struct mapped_device * md)2890 int dm_test_deferred_remove_flag(struct mapped_device *md)
2891 {
2892 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2893 }
2894 
dm_suspended(struct dm_target * ti)2895 int dm_suspended(struct dm_target *ti)
2896 {
2897 	return dm_suspended_md(ti->table->md);
2898 }
2899 EXPORT_SYMBOL_GPL(dm_suspended);
2900 
dm_post_suspending(struct dm_target * ti)2901 int dm_post_suspending(struct dm_target *ti)
2902 {
2903 	return dm_post_suspending_md(ti->table->md);
2904 }
2905 EXPORT_SYMBOL_GPL(dm_post_suspending);
2906 
dm_noflush_suspending(struct dm_target * ti)2907 int dm_noflush_suspending(struct dm_target *ti)
2908 {
2909 	return __noflush_suspending(ti->table->md);
2910 }
2911 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2912 
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2913 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2914 					    unsigned integrity, unsigned per_io_data_size,
2915 					    unsigned min_pool_size)
2916 {
2917 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2918 	unsigned int pool_size = 0;
2919 	unsigned int front_pad, io_front_pad;
2920 	int ret;
2921 
2922 	if (!pools)
2923 		return NULL;
2924 
2925 	switch (type) {
2926 	case DM_TYPE_BIO_BASED:
2927 	case DM_TYPE_DAX_BIO_BASED:
2928 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2929 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2930 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2931 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2932 		if (ret)
2933 			goto out;
2934 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2935 			goto out;
2936 		break;
2937 	case DM_TYPE_REQUEST_BASED:
2938 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2939 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2940 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2941 		break;
2942 	default:
2943 		BUG();
2944 	}
2945 
2946 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2947 	if (ret)
2948 		goto out;
2949 
2950 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2951 		goto out;
2952 
2953 	return pools;
2954 
2955 out:
2956 	dm_free_md_mempools(pools);
2957 
2958 	return NULL;
2959 }
2960 
dm_free_md_mempools(struct dm_md_mempools * pools)2961 void dm_free_md_mempools(struct dm_md_mempools *pools)
2962 {
2963 	if (!pools)
2964 		return;
2965 
2966 	bioset_exit(&pools->bs);
2967 	bioset_exit(&pools->io_bs);
2968 
2969 	kfree(pools);
2970 }
2971 
2972 struct dm_pr {
2973 	u64	old_key;
2974 	u64	new_key;
2975 	u32	flags;
2976 	bool	fail_early;
2977 };
2978 
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2979 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2980 		      void *data)
2981 {
2982 	struct mapped_device *md = bdev->bd_disk->private_data;
2983 	struct dm_table *table;
2984 	struct dm_target *ti;
2985 	int ret = -ENOTTY, srcu_idx;
2986 
2987 	table = dm_get_live_table(md, &srcu_idx);
2988 	if (!table || !dm_table_get_size(table))
2989 		goto out;
2990 
2991 	/* We only support devices that have a single target */
2992 	if (dm_table_get_num_targets(table) != 1)
2993 		goto out;
2994 	ti = dm_table_get_target(table, 0);
2995 
2996 	if (dm_suspended_md(md)) {
2997 		ret = -EAGAIN;
2998 		goto out;
2999 	}
3000 
3001 	ret = -EINVAL;
3002 	if (!ti->type->iterate_devices)
3003 		goto out;
3004 
3005 	ret = ti->type->iterate_devices(ti, fn, data);
3006 out:
3007 	dm_put_live_table(md, srcu_idx);
3008 	return ret;
3009 }
3010 
3011 /*
3012  * For register / unregister we need to manually call out to every path.
3013  */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3014 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3015 			    sector_t start, sector_t len, void *data)
3016 {
3017 	struct dm_pr *pr = data;
3018 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3019 
3020 	if (!ops || !ops->pr_register)
3021 		return -EOPNOTSUPP;
3022 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3023 }
3024 
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3025 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3026 			  u32 flags)
3027 {
3028 	struct dm_pr pr = {
3029 		.old_key	= old_key,
3030 		.new_key	= new_key,
3031 		.flags		= flags,
3032 		.fail_early	= true,
3033 	};
3034 	int ret;
3035 
3036 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3037 	if (ret && new_key) {
3038 		/* unregister all paths if we failed to register any path */
3039 		pr.old_key = new_key;
3040 		pr.new_key = 0;
3041 		pr.flags = 0;
3042 		pr.fail_early = false;
3043 		dm_call_pr(bdev, __dm_pr_register, &pr);
3044 	}
3045 
3046 	return ret;
3047 }
3048 
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3049 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3050 			 u32 flags)
3051 {
3052 	struct mapped_device *md = bdev->bd_disk->private_data;
3053 	const struct pr_ops *ops;
3054 	int r, srcu_idx;
3055 
3056 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3057 	if (r < 0)
3058 		goto out;
3059 
3060 	ops = bdev->bd_disk->fops->pr_ops;
3061 	if (ops && ops->pr_reserve)
3062 		r = ops->pr_reserve(bdev, key, type, flags);
3063 	else
3064 		r = -EOPNOTSUPP;
3065 out:
3066 	dm_unprepare_ioctl(md, srcu_idx);
3067 	return r;
3068 }
3069 
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3070 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3071 {
3072 	struct mapped_device *md = bdev->bd_disk->private_data;
3073 	const struct pr_ops *ops;
3074 	int r, srcu_idx;
3075 
3076 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3077 	if (r < 0)
3078 		goto out;
3079 
3080 	ops = bdev->bd_disk->fops->pr_ops;
3081 	if (ops && ops->pr_release)
3082 		r = ops->pr_release(bdev, key, type);
3083 	else
3084 		r = -EOPNOTSUPP;
3085 out:
3086 	dm_unprepare_ioctl(md, srcu_idx);
3087 	return r;
3088 }
3089 
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3090 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3091 			 enum pr_type type, bool abort)
3092 {
3093 	struct mapped_device *md = bdev->bd_disk->private_data;
3094 	const struct pr_ops *ops;
3095 	int r, srcu_idx;
3096 
3097 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3098 	if (r < 0)
3099 		goto out;
3100 
3101 	ops = bdev->bd_disk->fops->pr_ops;
3102 	if (ops && ops->pr_preempt)
3103 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3104 	else
3105 		r = -EOPNOTSUPP;
3106 out:
3107 	dm_unprepare_ioctl(md, srcu_idx);
3108 	return r;
3109 }
3110 
dm_pr_clear(struct block_device * bdev,u64 key)3111 static int dm_pr_clear(struct block_device *bdev, u64 key)
3112 {
3113 	struct mapped_device *md = bdev->bd_disk->private_data;
3114 	const struct pr_ops *ops;
3115 	int r, srcu_idx;
3116 
3117 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3118 	if (r < 0)
3119 		goto out;
3120 
3121 	ops = bdev->bd_disk->fops->pr_ops;
3122 	if (ops && ops->pr_clear)
3123 		r = ops->pr_clear(bdev, key);
3124 	else
3125 		r = -EOPNOTSUPP;
3126 out:
3127 	dm_unprepare_ioctl(md, srcu_idx);
3128 	return r;
3129 }
3130 
3131 static const struct pr_ops dm_pr_ops = {
3132 	.pr_register	= dm_pr_register,
3133 	.pr_reserve	= dm_pr_reserve,
3134 	.pr_release	= dm_pr_release,
3135 	.pr_preempt	= dm_pr_preempt,
3136 	.pr_clear	= dm_pr_clear,
3137 };
3138 
3139 static const struct block_device_operations dm_blk_dops = {
3140 	.submit_bio = dm_submit_bio,
3141 	.open = dm_blk_open,
3142 	.release = dm_blk_close,
3143 	.ioctl = dm_blk_ioctl,
3144 	.getgeo = dm_blk_getgeo,
3145 	.report_zones = dm_blk_report_zones,
3146 	.pr_ops = &dm_pr_ops,
3147 	.owner = THIS_MODULE
3148 };
3149 
3150 static const struct block_device_operations dm_rq_blk_dops = {
3151 	.open = dm_blk_open,
3152 	.release = dm_blk_close,
3153 	.ioctl = dm_blk_ioctl,
3154 	.getgeo = dm_blk_getgeo,
3155 	.pr_ops = &dm_pr_ops,
3156 	.owner = THIS_MODULE
3157 };
3158 
3159 static const struct dax_operations dm_dax_ops = {
3160 	.direct_access = dm_dax_direct_access,
3161 	.dax_supported = dm_dax_supported,
3162 	.copy_from_iter = dm_dax_copy_from_iter,
3163 	.copy_to_iter = dm_dax_copy_to_iter,
3164 	.zero_page_range = dm_dax_zero_page_range,
3165 };
3166 
3167 /*
3168  * module hooks
3169  */
3170 module_init(dm_init);
3171 module_exit(dm_exit);
3172 
3173 module_param(major, uint, 0);
3174 MODULE_PARM_DESC(major, "The major number of the device mapper");
3175 
3176 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3177 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3178 
3179 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3180 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3181 
3182 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3183 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3184 
3185 MODULE_DESCRIPTION(DM_NAME " driver");
3186 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3187 MODULE_LICENSE("GPL");
3188