• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 40
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81 
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91 
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94 
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99 	__le32 csum;	/* Checksum of superblock except for this field. */
100 	__le32 flags;
101 	__le64 blocknr;	/* This block number, dm_block_t. */
102 
103 	__u8 uuid[16];
104 	__le64 magic;
105 	__le32 version;
106 	__le32 time;
107 
108 	__le64 trans_id;
109 
110 	/*
111 	 * Root held by userspace transactions.
112 	 */
113 	__le64 held_root;
114 
115 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117 
118 	/*
119 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 	 */
121 	__le64 data_mapping_root;
122 
123 	/*
124 	 * Device detail root mapping dev_id -> device_details
125 	 */
126 	__le64 device_details_root;
127 
128 	__le32 data_block_size;		/* In 512-byte sectors. */
129 
130 	__le32 metadata_block_size;	/* In 512-byte sectors. */
131 	__le64 metadata_nr_blocks;
132 
133 	__le32 compat_flags;
134 	__le32 compat_ro_flags;
135 	__le32 incompat_flags;
136 } __packed;
137 
138 struct disk_device_details {
139 	__le64 mapped_blocks;
140 	__le64 transaction_id;		/* When created. */
141 	__le32 creation_time;
142 	__le32 snapshotted_time;
143 } __packed;
144 
145 struct dm_pool_metadata {
146 	struct hlist_node hash;
147 
148 	struct block_device *bdev;
149 	struct dm_block_manager *bm;
150 	struct dm_space_map *metadata_sm;
151 	struct dm_space_map *data_sm;
152 	struct dm_transaction_manager *tm;
153 	struct dm_transaction_manager *nb_tm;
154 
155 	/*
156 	 * Two-level btree.
157 	 * First level holds thin_dev_t.
158 	 * Second level holds mappings.
159 	 */
160 	struct dm_btree_info info;
161 
162 	/*
163 	 * Non-blocking version of the above.
164 	 */
165 	struct dm_btree_info nb_info;
166 
167 	/*
168 	 * Just the top level for deleting whole devices.
169 	 */
170 	struct dm_btree_info tl_info;
171 
172 	/*
173 	 * Just the bottom level for creating new devices.
174 	 */
175 	struct dm_btree_info bl_info;
176 
177 	/*
178 	 * Describes the device details btree.
179 	 */
180 	struct dm_btree_info details_info;
181 
182 	struct rw_semaphore root_lock;
183 	uint32_t time;
184 	dm_block_t root;
185 	dm_block_t details_root;
186 	struct list_head thin_devices;
187 	uint64_t trans_id;
188 	unsigned long flags;
189 	sector_t data_block_size;
190 
191 	/*
192 	 * Pre-commit callback.
193 	 *
194 	 * This allows the thin provisioning target to run a callback before
195 	 * the metadata are committed.
196 	 */
197 	dm_pool_pre_commit_fn pre_commit_fn;
198 	void *pre_commit_context;
199 
200 	/*
201 	 * We reserve a section of the metadata for commit overhead.
202 	 * All reported space does *not* include this.
203 	 */
204 	dm_block_t metadata_reserve;
205 
206 	/*
207 	 * Set if a transaction has to be aborted but the attempt to roll back
208 	 * to the previous (good) transaction failed.  The only pool metadata
209 	 * operation possible in this state is the closing of the device.
210 	 */
211 	bool fail_io:1;
212 
213 	/*
214 	 * Set once a thin-pool has been accessed through one of the interfaces
215 	 * that imply the pool is in-service (e.g. thin devices created/deleted,
216 	 * thin-pool message, metadata snapshots, etc).
217 	 */
218 	bool in_service:1;
219 
220 	/*
221 	 * Reading the space map roots can fail, so we read it into these
222 	 * buffers before the superblock is locked and updated.
223 	 */
224 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227 
228 struct dm_thin_device {
229 	struct list_head list;
230 	struct dm_pool_metadata *pmd;
231 	dm_thin_id id;
232 
233 	int open_count;
234 	bool changed:1;
235 	bool aborted_with_changes:1;
236 	uint64_t mapped_blocks;
237 	uint64_t transaction_id;
238 	uint32_t creation_time;
239 	uint32_t snapshotted_time;
240 };
241 
242 /*----------------------------------------------------------------
243  * superblock validator
244  *--------------------------------------------------------------*/
245 
246 #define SUPERBLOCK_CSUM_XOR 160774
247 
sb_prepare_for_write(struct dm_block_validator * v,struct dm_block * b,size_t block_size)248 static void sb_prepare_for_write(struct dm_block_validator *v,
249 				 struct dm_block *b,
250 				 size_t block_size)
251 {
252 	struct thin_disk_superblock *disk_super = dm_block_data(b);
253 
254 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256 						      block_size - sizeof(__le32),
257 						      SUPERBLOCK_CSUM_XOR));
258 }
259 
sb_check(struct dm_block_validator * v,struct dm_block * b,size_t block_size)260 static int sb_check(struct dm_block_validator *v,
261 		    struct dm_block *b,
262 		    size_t block_size)
263 {
264 	struct thin_disk_superblock *disk_super = dm_block_data(b);
265 	__le32 csum_le;
266 
267 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268 		DMERR("sb_check failed: blocknr %llu: "
269 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
270 		      (unsigned long long)dm_block_location(b));
271 		return -ENOTBLK;
272 	}
273 
274 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275 		DMERR("sb_check failed: magic %llu: "
276 		      "wanted %llu", le64_to_cpu(disk_super->magic),
277 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278 		return -EILSEQ;
279 	}
280 
281 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282 					     block_size - sizeof(__le32),
283 					     SUPERBLOCK_CSUM_XOR));
284 	if (csum_le != disk_super->csum) {
285 		DMERR("sb_check failed: csum %u: wanted %u",
286 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287 		return -EILSEQ;
288 	}
289 
290 	return 0;
291 }
292 
293 static struct dm_block_validator sb_validator = {
294 	.name = "superblock",
295 	.prepare_for_write = sb_prepare_for_write,
296 	.check = sb_check
297 };
298 
299 /*----------------------------------------------------------------
300  * Methods for the btree value types
301  *--------------------------------------------------------------*/
302 
pack_block_time(dm_block_t b,uint32_t t)303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305 	return (b << 24) | t;
306 }
307 
unpack_block_time(uint64_t v,dm_block_t * b,uint32_t * t)308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310 	*b = v >> 24;
311 	*t = v & ((1 << 24) - 1);
312 }
313 
data_block_inc(void * context,const void * value_le)314 static void data_block_inc(void *context, const void *value_le)
315 {
316 	struct dm_space_map *sm = context;
317 	__le64 v_le;
318 	uint64_t b;
319 	uint32_t t;
320 
321 	memcpy(&v_le, value_le, sizeof(v_le));
322 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
323 	dm_sm_inc_block(sm, b);
324 }
325 
data_block_dec(void * context,const void * value_le)326 static void data_block_dec(void *context, const void *value_le)
327 {
328 	struct dm_space_map *sm = context;
329 	__le64 v_le;
330 	uint64_t b;
331 	uint32_t t;
332 
333 	memcpy(&v_le, value_le, sizeof(v_le));
334 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
335 	dm_sm_dec_block(sm, b);
336 }
337 
data_block_equal(void * context,const void * value1_le,const void * value2_le)338 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
339 {
340 	__le64 v1_le, v2_le;
341 	uint64_t b1, b2;
342 	uint32_t t;
343 
344 	memcpy(&v1_le, value1_le, sizeof(v1_le));
345 	memcpy(&v2_le, value2_le, sizeof(v2_le));
346 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
347 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
348 
349 	return b1 == b2;
350 }
351 
subtree_inc(void * context,const void * value)352 static void subtree_inc(void *context, const void *value)
353 {
354 	struct dm_btree_info *info = context;
355 	__le64 root_le;
356 	uint64_t root;
357 
358 	memcpy(&root_le, value, sizeof(root_le));
359 	root = le64_to_cpu(root_le);
360 	dm_tm_inc(info->tm, root);
361 }
362 
subtree_dec(void * context,const void * value)363 static void subtree_dec(void *context, const void *value)
364 {
365 	struct dm_btree_info *info = context;
366 	__le64 root_le;
367 	uint64_t root;
368 
369 	memcpy(&root_le, value, sizeof(root_le));
370 	root = le64_to_cpu(root_le);
371 	if (dm_btree_del(info, root))
372 		DMERR("btree delete failed");
373 }
374 
subtree_equal(void * context,const void * value1_le,const void * value2_le)375 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
376 {
377 	__le64 v1_le, v2_le;
378 	memcpy(&v1_le, value1_le, sizeof(v1_le));
379 	memcpy(&v2_le, value2_le, sizeof(v2_le));
380 
381 	return v1_le == v2_le;
382 }
383 
384 /*----------------------------------------------------------------*/
385 
386 /*
387  * Variant that is used for in-core only changes or code that
388  * shouldn't put the pool in service on its own (e.g. commit).
389  */
pmd_write_lock_in_core(struct dm_pool_metadata * pmd)390 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
391 	__acquires(pmd->root_lock)
392 {
393 	down_write(&pmd->root_lock);
394 }
395 
pmd_write_lock(struct dm_pool_metadata * pmd)396 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
397 {
398 	pmd_write_lock_in_core(pmd);
399 	if (unlikely(!pmd->in_service))
400 		pmd->in_service = true;
401 }
402 
pmd_write_unlock(struct dm_pool_metadata * pmd)403 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
404 	__releases(pmd->root_lock)
405 {
406 	up_write(&pmd->root_lock);
407 }
408 
409 /*----------------------------------------------------------------*/
410 
superblock_lock_zero(struct dm_pool_metadata * pmd,struct dm_block ** sblock)411 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
412 				struct dm_block **sblock)
413 {
414 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
415 				     &sb_validator, sblock);
416 }
417 
superblock_lock(struct dm_pool_metadata * pmd,struct dm_block ** sblock)418 static int superblock_lock(struct dm_pool_metadata *pmd,
419 			   struct dm_block **sblock)
420 {
421 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
422 				&sb_validator, sblock);
423 }
424 
__superblock_all_zeroes(struct dm_block_manager * bm,int * result)425 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
426 {
427 	int r;
428 	unsigned i;
429 	struct dm_block *b;
430 	__le64 *data_le, zero = cpu_to_le64(0);
431 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
432 
433 	/*
434 	 * We can't use a validator here - it may be all zeroes.
435 	 */
436 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
437 	if (r)
438 		return r;
439 
440 	data_le = dm_block_data(b);
441 	*result = 1;
442 	for (i = 0; i < block_size; i++) {
443 		if (data_le[i] != zero) {
444 			*result = 0;
445 			break;
446 		}
447 	}
448 
449 	dm_bm_unlock(b);
450 
451 	return 0;
452 }
453 
__setup_btree_details(struct dm_pool_metadata * pmd)454 static void __setup_btree_details(struct dm_pool_metadata *pmd)
455 {
456 	pmd->info.tm = pmd->tm;
457 	pmd->info.levels = 2;
458 	pmd->info.value_type.context = pmd->data_sm;
459 	pmd->info.value_type.size = sizeof(__le64);
460 	pmd->info.value_type.inc = data_block_inc;
461 	pmd->info.value_type.dec = data_block_dec;
462 	pmd->info.value_type.equal = data_block_equal;
463 
464 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
465 	pmd->nb_info.tm = pmd->nb_tm;
466 
467 	pmd->tl_info.tm = pmd->tm;
468 	pmd->tl_info.levels = 1;
469 	pmd->tl_info.value_type.context = &pmd->bl_info;
470 	pmd->tl_info.value_type.size = sizeof(__le64);
471 	pmd->tl_info.value_type.inc = subtree_inc;
472 	pmd->tl_info.value_type.dec = subtree_dec;
473 	pmd->tl_info.value_type.equal = subtree_equal;
474 
475 	pmd->bl_info.tm = pmd->tm;
476 	pmd->bl_info.levels = 1;
477 	pmd->bl_info.value_type.context = pmd->data_sm;
478 	pmd->bl_info.value_type.size = sizeof(__le64);
479 	pmd->bl_info.value_type.inc = data_block_inc;
480 	pmd->bl_info.value_type.dec = data_block_dec;
481 	pmd->bl_info.value_type.equal = data_block_equal;
482 
483 	pmd->details_info.tm = pmd->tm;
484 	pmd->details_info.levels = 1;
485 	pmd->details_info.value_type.context = NULL;
486 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
487 	pmd->details_info.value_type.inc = NULL;
488 	pmd->details_info.value_type.dec = NULL;
489 	pmd->details_info.value_type.equal = NULL;
490 }
491 
save_sm_roots(struct dm_pool_metadata * pmd)492 static int save_sm_roots(struct dm_pool_metadata *pmd)
493 {
494 	int r;
495 	size_t len;
496 
497 	r = dm_sm_root_size(pmd->metadata_sm, &len);
498 	if (r < 0)
499 		return r;
500 
501 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
502 	if (r < 0)
503 		return r;
504 
505 	r = dm_sm_root_size(pmd->data_sm, &len);
506 	if (r < 0)
507 		return r;
508 
509 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
510 }
511 
copy_sm_roots(struct dm_pool_metadata * pmd,struct thin_disk_superblock * disk)512 static void copy_sm_roots(struct dm_pool_metadata *pmd,
513 			  struct thin_disk_superblock *disk)
514 {
515 	memcpy(&disk->metadata_space_map_root,
516 	       &pmd->metadata_space_map_root,
517 	       sizeof(pmd->metadata_space_map_root));
518 
519 	memcpy(&disk->data_space_map_root,
520 	       &pmd->data_space_map_root,
521 	       sizeof(pmd->data_space_map_root));
522 }
523 
__write_initial_superblock(struct dm_pool_metadata * pmd)524 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
525 {
526 	int r;
527 	struct dm_block *sblock;
528 	struct thin_disk_superblock *disk_super;
529 	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
530 
531 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
532 		bdev_size = THIN_METADATA_MAX_SECTORS;
533 
534 	r = dm_sm_commit(pmd->data_sm);
535 	if (r < 0)
536 		return r;
537 
538 	r = dm_tm_pre_commit(pmd->tm);
539 	if (r < 0)
540 		return r;
541 
542 	r = save_sm_roots(pmd);
543 	if (r < 0)
544 		return r;
545 
546 	r = superblock_lock_zero(pmd, &sblock);
547 	if (r)
548 		return r;
549 
550 	disk_super = dm_block_data(sblock);
551 	disk_super->flags = 0;
552 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
553 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
554 	disk_super->version = cpu_to_le32(THIN_VERSION);
555 	disk_super->time = 0;
556 	disk_super->trans_id = 0;
557 	disk_super->held_root = 0;
558 
559 	copy_sm_roots(pmd, disk_super);
560 
561 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
562 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
563 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
564 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
565 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
566 
567 	return dm_tm_commit(pmd->tm, sblock);
568 }
569 
__format_metadata(struct dm_pool_metadata * pmd)570 static int __format_metadata(struct dm_pool_metadata *pmd)
571 {
572 	int r;
573 
574 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
575 				 &pmd->tm, &pmd->metadata_sm);
576 	if (r < 0) {
577 		DMERR("tm_create_with_sm failed");
578 		return r;
579 	}
580 
581 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
582 	if (IS_ERR(pmd->data_sm)) {
583 		DMERR("sm_disk_create failed");
584 		r = PTR_ERR(pmd->data_sm);
585 		goto bad_cleanup_tm;
586 	}
587 
588 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
589 	if (!pmd->nb_tm) {
590 		DMERR("could not create non-blocking clone tm");
591 		r = -ENOMEM;
592 		goto bad_cleanup_data_sm;
593 	}
594 
595 	__setup_btree_details(pmd);
596 
597 	r = dm_btree_empty(&pmd->info, &pmd->root);
598 	if (r < 0)
599 		goto bad_cleanup_nb_tm;
600 
601 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
602 	if (r < 0) {
603 		DMERR("couldn't create devices root");
604 		goto bad_cleanup_nb_tm;
605 	}
606 
607 	r = __write_initial_superblock(pmd);
608 	if (r)
609 		goto bad_cleanup_nb_tm;
610 
611 	return 0;
612 
613 bad_cleanup_nb_tm:
614 	dm_tm_destroy(pmd->nb_tm);
615 bad_cleanup_data_sm:
616 	dm_sm_destroy(pmd->data_sm);
617 bad_cleanup_tm:
618 	dm_tm_destroy(pmd->tm);
619 	dm_sm_destroy(pmd->metadata_sm);
620 
621 	return r;
622 }
623 
__check_incompat_features(struct thin_disk_superblock * disk_super,struct dm_pool_metadata * pmd)624 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
625 				     struct dm_pool_metadata *pmd)
626 {
627 	uint32_t features;
628 
629 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
630 	if (features) {
631 		DMERR("could not access metadata due to unsupported optional features (%lx).",
632 		      (unsigned long)features);
633 		return -EINVAL;
634 	}
635 
636 	/*
637 	 * Check for read-only metadata to skip the following RDWR checks.
638 	 */
639 	if (get_disk_ro(pmd->bdev->bd_disk))
640 		return 0;
641 
642 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
643 	if (features) {
644 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
645 		      (unsigned long)features);
646 		return -EINVAL;
647 	}
648 
649 	return 0;
650 }
651 
__open_metadata(struct dm_pool_metadata * pmd)652 static int __open_metadata(struct dm_pool_metadata *pmd)
653 {
654 	int r;
655 	struct dm_block *sblock;
656 	struct thin_disk_superblock *disk_super;
657 
658 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
659 			    &sb_validator, &sblock);
660 	if (r < 0) {
661 		DMERR("couldn't read superblock");
662 		return r;
663 	}
664 
665 	disk_super = dm_block_data(sblock);
666 
667 	/* Verify the data block size hasn't changed */
668 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
669 		DMERR("changing the data block size (from %u to %llu) is not supported",
670 		      le32_to_cpu(disk_super->data_block_size),
671 		      (unsigned long long)pmd->data_block_size);
672 		r = -EINVAL;
673 		goto bad_unlock_sblock;
674 	}
675 
676 	r = __check_incompat_features(disk_super, pmd);
677 	if (r < 0)
678 		goto bad_unlock_sblock;
679 
680 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
681 			       disk_super->metadata_space_map_root,
682 			       sizeof(disk_super->metadata_space_map_root),
683 			       &pmd->tm, &pmd->metadata_sm);
684 	if (r < 0) {
685 		DMERR("tm_open_with_sm failed");
686 		goto bad_unlock_sblock;
687 	}
688 
689 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
690 				       sizeof(disk_super->data_space_map_root));
691 	if (IS_ERR(pmd->data_sm)) {
692 		DMERR("sm_disk_open failed");
693 		r = PTR_ERR(pmd->data_sm);
694 		goto bad_cleanup_tm;
695 	}
696 
697 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
698 	if (!pmd->nb_tm) {
699 		DMERR("could not create non-blocking clone tm");
700 		r = -ENOMEM;
701 		goto bad_cleanup_data_sm;
702 	}
703 
704 	/*
705 	 * For pool metadata opening process, root setting is redundant
706 	 * because it will be set again in __begin_transaction(). But dm
707 	 * pool aborting process really needs to get last transaction's
708 	 * root to avoid accessing broken btree.
709 	 */
710 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
711 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
712 
713 	__setup_btree_details(pmd);
714 	dm_bm_unlock(sblock);
715 
716 	return 0;
717 
718 bad_cleanup_data_sm:
719 	dm_sm_destroy(pmd->data_sm);
720 bad_cleanup_tm:
721 	dm_tm_destroy(pmd->tm);
722 	dm_sm_destroy(pmd->metadata_sm);
723 bad_unlock_sblock:
724 	dm_bm_unlock(sblock);
725 
726 	return r;
727 }
728 
__open_or_format_metadata(struct dm_pool_metadata * pmd,bool format_device)729 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
730 {
731 	int r, unformatted;
732 
733 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
734 	if (r)
735 		return r;
736 
737 	if (unformatted)
738 		return format_device ? __format_metadata(pmd) : -EPERM;
739 
740 	return __open_metadata(pmd);
741 }
742 
__create_persistent_data_objects(struct dm_pool_metadata * pmd,bool format_device)743 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
744 {
745 	int r;
746 
747 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
748 					  THIN_MAX_CONCURRENT_LOCKS);
749 	if (IS_ERR(pmd->bm)) {
750 		DMERR("could not create block manager");
751 		r = PTR_ERR(pmd->bm);
752 		pmd->bm = NULL;
753 		return r;
754 	}
755 
756 	r = __open_or_format_metadata(pmd, format_device);
757 	if (r) {
758 		dm_block_manager_destroy(pmd->bm);
759 		pmd->bm = NULL;
760 	}
761 
762 	return r;
763 }
764 
__destroy_persistent_data_objects(struct dm_pool_metadata * pmd,bool destroy_bm)765 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd,
766 					      bool destroy_bm)
767 {
768 	dm_sm_destroy(pmd->data_sm);
769 	dm_sm_destroy(pmd->metadata_sm);
770 	dm_tm_destroy(pmd->nb_tm);
771 	dm_tm_destroy(pmd->tm);
772 	if (destroy_bm)
773 		dm_block_manager_destroy(pmd->bm);
774 }
775 
__begin_transaction(struct dm_pool_metadata * pmd)776 static int __begin_transaction(struct dm_pool_metadata *pmd)
777 {
778 	int r;
779 	struct thin_disk_superblock *disk_super;
780 	struct dm_block *sblock;
781 
782 	/*
783 	 * We re-read the superblock every time.  Shouldn't need to do this
784 	 * really.
785 	 */
786 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
787 			    &sb_validator, &sblock);
788 	if (r)
789 		return r;
790 
791 	disk_super = dm_block_data(sblock);
792 	pmd->time = le32_to_cpu(disk_super->time);
793 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
794 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
795 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
796 	pmd->flags = le32_to_cpu(disk_super->flags);
797 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
798 
799 	dm_bm_unlock(sblock);
800 	return 0;
801 }
802 
__write_changed_details(struct dm_pool_metadata * pmd)803 static int __write_changed_details(struct dm_pool_metadata *pmd)
804 {
805 	int r;
806 	struct dm_thin_device *td, *tmp;
807 	struct disk_device_details details;
808 	uint64_t key;
809 
810 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
811 		if (!td->changed)
812 			continue;
813 
814 		key = td->id;
815 
816 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
817 		details.transaction_id = cpu_to_le64(td->transaction_id);
818 		details.creation_time = cpu_to_le32(td->creation_time);
819 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
820 		__dm_bless_for_disk(&details);
821 
822 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
823 				    &key, &details, &pmd->details_root);
824 		if (r)
825 			return r;
826 
827 		if (td->open_count)
828 			td->changed = false;
829 		else {
830 			list_del(&td->list);
831 			kfree(td);
832 		}
833 	}
834 
835 	return 0;
836 }
837 
__commit_transaction(struct dm_pool_metadata * pmd)838 static int __commit_transaction(struct dm_pool_metadata *pmd)
839 {
840 	int r;
841 	struct thin_disk_superblock *disk_super;
842 	struct dm_block *sblock;
843 
844 	/*
845 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
846 	 */
847 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
848 	BUG_ON(!rwsem_is_locked(&pmd->root_lock));
849 
850 	if (unlikely(!pmd->in_service))
851 		return 0;
852 
853 	if (pmd->pre_commit_fn) {
854 		r = pmd->pre_commit_fn(pmd->pre_commit_context);
855 		if (r < 0) {
856 			DMERR("pre-commit callback failed");
857 			return r;
858 		}
859 	}
860 
861 	r = __write_changed_details(pmd);
862 	if (r < 0)
863 		return r;
864 
865 	r = dm_sm_commit(pmd->data_sm);
866 	if (r < 0)
867 		return r;
868 
869 	r = dm_tm_pre_commit(pmd->tm);
870 	if (r < 0)
871 		return r;
872 
873 	r = save_sm_roots(pmd);
874 	if (r < 0)
875 		return r;
876 
877 	r = superblock_lock(pmd, &sblock);
878 	if (r)
879 		return r;
880 
881 	disk_super = dm_block_data(sblock);
882 	disk_super->time = cpu_to_le32(pmd->time);
883 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
884 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
885 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
886 	disk_super->flags = cpu_to_le32(pmd->flags);
887 
888 	copy_sm_roots(pmd, disk_super);
889 
890 	return dm_tm_commit(pmd->tm, sblock);
891 }
892 
__set_metadata_reserve(struct dm_pool_metadata * pmd)893 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
894 {
895 	int r;
896 	dm_block_t total;
897 	dm_block_t max_blocks = 4096; /* 16M */
898 
899 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
900 	if (r) {
901 		DMERR("could not get size of metadata device");
902 		pmd->metadata_reserve = max_blocks;
903 	} else
904 		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
905 }
906 
dm_pool_metadata_open(struct block_device * bdev,sector_t data_block_size,bool format_device)907 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
908 					       sector_t data_block_size,
909 					       bool format_device)
910 {
911 	int r;
912 	struct dm_pool_metadata *pmd;
913 
914 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
915 	if (!pmd) {
916 		DMERR("could not allocate metadata struct");
917 		return ERR_PTR(-ENOMEM);
918 	}
919 
920 	init_rwsem(&pmd->root_lock);
921 	pmd->time = 0;
922 	INIT_LIST_HEAD(&pmd->thin_devices);
923 	pmd->fail_io = false;
924 	pmd->in_service = false;
925 	pmd->bdev = bdev;
926 	pmd->data_block_size = data_block_size;
927 	pmd->pre_commit_fn = NULL;
928 	pmd->pre_commit_context = NULL;
929 
930 	r = __create_persistent_data_objects(pmd, format_device);
931 	if (r) {
932 		kfree(pmd);
933 		return ERR_PTR(r);
934 	}
935 
936 	r = __begin_transaction(pmd);
937 	if (r < 0) {
938 		if (dm_pool_metadata_close(pmd) < 0)
939 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
940 		return ERR_PTR(r);
941 	}
942 
943 	__set_metadata_reserve(pmd);
944 
945 	return pmd;
946 }
947 
dm_pool_metadata_close(struct dm_pool_metadata * pmd)948 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
949 {
950 	int r;
951 	unsigned open_devices = 0;
952 	struct dm_thin_device *td, *tmp;
953 
954 	down_read(&pmd->root_lock);
955 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
956 		if (td->open_count)
957 			open_devices++;
958 		else {
959 			list_del(&td->list);
960 			kfree(td);
961 		}
962 	}
963 	up_read(&pmd->root_lock);
964 
965 	if (open_devices) {
966 		DMERR("attempt to close pmd when %u device(s) are still open",
967 		       open_devices);
968 		return -EBUSY;
969 	}
970 
971 	pmd_write_lock_in_core(pmd);
972 	if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
973 		r = __commit_transaction(pmd);
974 		if (r < 0)
975 			DMWARN("%s: __commit_transaction() failed, error = %d",
976 			       __func__, r);
977 	}
978 	pmd_write_unlock(pmd);
979 	if (!pmd->fail_io)
980 		__destroy_persistent_data_objects(pmd, true);
981 
982 	kfree(pmd);
983 	return 0;
984 }
985 
986 /*
987  * __open_device: Returns @td corresponding to device with id @dev,
988  * creating it if @create is set and incrementing @td->open_count.
989  * On failure, @td is undefined.
990  */
__open_device(struct dm_pool_metadata * pmd,dm_thin_id dev,int create,struct dm_thin_device ** td)991 static int __open_device(struct dm_pool_metadata *pmd,
992 			 dm_thin_id dev, int create,
993 			 struct dm_thin_device **td)
994 {
995 	int r, changed = 0;
996 	struct dm_thin_device *td2;
997 	uint64_t key = dev;
998 	struct disk_device_details details_le;
999 
1000 	/*
1001 	 * If the device is already open, return it.
1002 	 */
1003 	list_for_each_entry(td2, &pmd->thin_devices, list)
1004 		if (td2->id == dev) {
1005 			/*
1006 			 * May not create an already-open device.
1007 			 */
1008 			if (create)
1009 				return -EEXIST;
1010 
1011 			td2->open_count++;
1012 			*td = td2;
1013 			return 0;
1014 		}
1015 
1016 	/*
1017 	 * Check the device exists.
1018 	 */
1019 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1020 			    &key, &details_le);
1021 	if (r) {
1022 		if (r != -ENODATA || !create)
1023 			return r;
1024 
1025 		/*
1026 		 * Create new device.
1027 		 */
1028 		changed = 1;
1029 		details_le.mapped_blocks = 0;
1030 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1031 		details_le.creation_time = cpu_to_le32(pmd->time);
1032 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1033 	}
1034 
1035 	*td = kmalloc(sizeof(**td), GFP_NOIO);
1036 	if (!*td)
1037 		return -ENOMEM;
1038 
1039 	(*td)->pmd = pmd;
1040 	(*td)->id = dev;
1041 	(*td)->open_count = 1;
1042 	(*td)->changed = changed;
1043 	(*td)->aborted_with_changes = false;
1044 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1045 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1046 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1047 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1048 
1049 	list_add(&(*td)->list, &pmd->thin_devices);
1050 
1051 	return 0;
1052 }
1053 
__close_device(struct dm_thin_device * td)1054 static void __close_device(struct dm_thin_device *td)
1055 {
1056 	--td->open_count;
1057 }
1058 
__create_thin(struct dm_pool_metadata * pmd,dm_thin_id dev)1059 static int __create_thin(struct dm_pool_metadata *pmd,
1060 			 dm_thin_id dev)
1061 {
1062 	int r;
1063 	dm_block_t dev_root;
1064 	uint64_t key = dev;
1065 	struct dm_thin_device *td;
1066 	__le64 value;
1067 
1068 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1069 			    &key, NULL);
1070 	if (!r)
1071 		return -EEXIST;
1072 
1073 	/*
1074 	 * Create an empty btree for the mappings.
1075 	 */
1076 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1077 	if (r)
1078 		return r;
1079 
1080 	/*
1081 	 * Insert it into the main mapping tree.
1082 	 */
1083 	value = cpu_to_le64(dev_root);
1084 	__dm_bless_for_disk(&value);
1085 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1086 	if (r) {
1087 		dm_btree_del(&pmd->bl_info, dev_root);
1088 		return r;
1089 	}
1090 
1091 	r = __open_device(pmd, dev, 1, &td);
1092 	if (r) {
1093 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1094 		dm_btree_del(&pmd->bl_info, dev_root);
1095 		return r;
1096 	}
1097 	__close_device(td);
1098 
1099 	return r;
1100 }
1101 
dm_pool_create_thin(struct dm_pool_metadata * pmd,dm_thin_id dev)1102 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1103 {
1104 	int r = -EINVAL;
1105 
1106 	pmd_write_lock(pmd);
1107 	if (!pmd->fail_io)
1108 		r = __create_thin(pmd, dev);
1109 	pmd_write_unlock(pmd);
1110 
1111 	return r;
1112 }
1113 
__set_snapshot_details(struct dm_pool_metadata * pmd,struct dm_thin_device * snap,dm_thin_id origin,uint32_t time)1114 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1115 				  struct dm_thin_device *snap,
1116 				  dm_thin_id origin, uint32_t time)
1117 {
1118 	int r;
1119 	struct dm_thin_device *td;
1120 
1121 	r = __open_device(pmd, origin, 0, &td);
1122 	if (r)
1123 		return r;
1124 
1125 	td->changed = true;
1126 	td->snapshotted_time = time;
1127 
1128 	snap->mapped_blocks = td->mapped_blocks;
1129 	snap->snapshotted_time = time;
1130 	__close_device(td);
1131 
1132 	return 0;
1133 }
1134 
__create_snap(struct dm_pool_metadata * pmd,dm_thin_id dev,dm_thin_id origin)1135 static int __create_snap(struct dm_pool_metadata *pmd,
1136 			 dm_thin_id dev, dm_thin_id origin)
1137 {
1138 	int r;
1139 	dm_block_t origin_root;
1140 	uint64_t key = origin, dev_key = dev;
1141 	struct dm_thin_device *td;
1142 	__le64 value;
1143 
1144 	/* check this device is unused */
1145 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1146 			    &dev_key, NULL);
1147 	if (!r)
1148 		return -EEXIST;
1149 
1150 	/* find the mapping tree for the origin */
1151 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1152 	if (r)
1153 		return r;
1154 	origin_root = le64_to_cpu(value);
1155 
1156 	/* clone the origin, an inc will do */
1157 	dm_tm_inc(pmd->tm, origin_root);
1158 
1159 	/* insert into the main mapping tree */
1160 	value = cpu_to_le64(origin_root);
1161 	__dm_bless_for_disk(&value);
1162 	key = dev;
1163 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1164 	if (r) {
1165 		dm_tm_dec(pmd->tm, origin_root);
1166 		return r;
1167 	}
1168 
1169 	pmd->time++;
1170 
1171 	r = __open_device(pmd, dev, 1, &td);
1172 	if (r)
1173 		goto bad;
1174 
1175 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1176 	__close_device(td);
1177 
1178 	if (r)
1179 		goto bad;
1180 
1181 	return 0;
1182 
1183 bad:
1184 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1185 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1186 			&key, &pmd->details_root);
1187 	return r;
1188 }
1189 
dm_pool_create_snap(struct dm_pool_metadata * pmd,dm_thin_id dev,dm_thin_id origin)1190 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1191 				 dm_thin_id dev,
1192 				 dm_thin_id origin)
1193 {
1194 	int r = -EINVAL;
1195 
1196 	pmd_write_lock(pmd);
1197 	if (!pmd->fail_io)
1198 		r = __create_snap(pmd, dev, origin);
1199 	pmd_write_unlock(pmd);
1200 
1201 	return r;
1202 }
1203 
__delete_device(struct dm_pool_metadata * pmd,dm_thin_id dev)1204 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1205 {
1206 	int r;
1207 	uint64_t key = dev;
1208 	struct dm_thin_device *td;
1209 
1210 	/* TODO: failure should mark the transaction invalid */
1211 	r = __open_device(pmd, dev, 0, &td);
1212 	if (r)
1213 		return r;
1214 
1215 	if (td->open_count > 1) {
1216 		__close_device(td);
1217 		return -EBUSY;
1218 	}
1219 
1220 	list_del(&td->list);
1221 	kfree(td);
1222 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1223 			    &key, &pmd->details_root);
1224 	if (r)
1225 		return r;
1226 
1227 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1228 	if (r)
1229 		return r;
1230 
1231 	return 0;
1232 }
1233 
dm_pool_delete_thin_device(struct dm_pool_metadata * pmd,dm_thin_id dev)1234 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1235 			       dm_thin_id dev)
1236 {
1237 	int r = -EINVAL;
1238 
1239 	pmd_write_lock(pmd);
1240 	if (!pmd->fail_io)
1241 		r = __delete_device(pmd, dev);
1242 	pmd_write_unlock(pmd);
1243 
1244 	return r;
1245 }
1246 
dm_pool_set_metadata_transaction_id(struct dm_pool_metadata * pmd,uint64_t current_id,uint64_t new_id)1247 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1248 					uint64_t current_id,
1249 					uint64_t new_id)
1250 {
1251 	int r = -EINVAL;
1252 
1253 	pmd_write_lock(pmd);
1254 
1255 	if (pmd->fail_io)
1256 		goto out;
1257 
1258 	if (pmd->trans_id != current_id) {
1259 		DMERR("mismatched transaction id");
1260 		goto out;
1261 	}
1262 
1263 	pmd->trans_id = new_id;
1264 	r = 0;
1265 
1266 out:
1267 	pmd_write_unlock(pmd);
1268 
1269 	return r;
1270 }
1271 
dm_pool_get_metadata_transaction_id(struct dm_pool_metadata * pmd,uint64_t * result)1272 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1273 					uint64_t *result)
1274 {
1275 	int r = -EINVAL;
1276 
1277 	down_read(&pmd->root_lock);
1278 	if (!pmd->fail_io) {
1279 		*result = pmd->trans_id;
1280 		r = 0;
1281 	}
1282 	up_read(&pmd->root_lock);
1283 
1284 	return r;
1285 }
1286 
__reserve_metadata_snap(struct dm_pool_metadata * pmd)1287 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1288 {
1289 	int r, inc;
1290 	struct thin_disk_superblock *disk_super;
1291 	struct dm_block *copy, *sblock;
1292 	dm_block_t held_root;
1293 
1294 	/*
1295 	 * We commit to ensure the btree roots which we increment in a
1296 	 * moment are up to date.
1297 	 */
1298 	r = __commit_transaction(pmd);
1299 	if (r < 0) {
1300 		DMWARN("%s: __commit_transaction() failed, error = %d",
1301 		       __func__, r);
1302 		return r;
1303 	}
1304 
1305 	/*
1306 	 * Copy the superblock.
1307 	 */
1308 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1309 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1310 			       &sb_validator, &copy, &inc);
1311 	if (r)
1312 		return r;
1313 
1314 	BUG_ON(!inc);
1315 
1316 	held_root = dm_block_location(copy);
1317 	disk_super = dm_block_data(copy);
1318 
1319 	if (le64_to_cpu(disk_super->held_root)) {
1320 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1321 
1322 		dm_tm_dec(pmd->tm, held_root);
1323 		dm_tm_unlock(pmd->tm, copy);
1324 		return -EBUSY;
1325 	}
1326 
1327 	/*
1328 	 * Wipe the spacemap since we're not publishing this.
1329 	 */
1330 	memset(&disk_super->data_space_map_root, 0,
1331 	       sizeof(disk_super->data_space_map_root));
1332 	memset(&disk_super->metadata_space_map_root, 0,
1333 	       sizeof(disk_super->metadata_space_map_root));
1334 
1335 	/*
1336 	 * Increment the data structures that need to be preserved.
1337 	 */
1338 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1339 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1340 	dm_tm_unlock(pmd->tm, copy);
1341 
1342 	/*
1343 	 * Write the held root into the superblock.
1344 	 */
1345 	r = superblock_lock(pmd, &sblock);
1346 	if (r) {
1347 		dm_tm_dec(pmd->tm, held_root);
1348 		return r;
1349 	}
1350 
1351 	disk_super = dm_block_data(sblock);
1352 	disk_super->held_root = cpu_to_le64(held_root);
1353 	dm_bm_unlock(sblock);
1354 	return 0;
1355 }
1356 
dm_pool_reserve_metadata_snap(struct dm_pool_metadata * pmd)1357 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1358 {
1359 	int r = -EINVAL;
1360 
1361 	pmd_write_lock(pmd);
1362 	if (!pmd->fail_io)
1363 		r = __reserve_metadata_snap(pmd);
1364 	pmd_write_unlock(pmd);
1365 
1366 	return r;
1367 }
1368 
__release_metadata_snap(struct dm_pool_metadata * pmd)1369 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1370 {
1371 	int r;
1372 	struct thin_disk_superblock *disk_super;
1373 	struct dm_block *sblock, *copy;
1374 	dm_block_t held_root;
1375 
1376 	r = superblock_lock(pmd, &sblock);
1377 	if (r)
1378 		return r;
1379 
1380 	disk_super = dm_block_data(sblock);
1381 	held_root = le64_to_cpu(disk_super->held_root);
1382 	disk_super->held_root = cpu_to_le64(0);
1383 
1384 	dm_bm_unlock(sblock);
1385 
1386 	if (!held_root) {
1387 		DMWARN("No pool metadata snapshot found: nothing to release.");
1388 		return -EINVAL;
1389 	}
1390 
1391 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1392 	if (r)
1393 		return r;
1394 
1395 	disk_super = dm_block_data(copy);
1396 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1397 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1398 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1399 
1400 	dm_tm_unlock(pmd->tm, copy);
1401 
1402 	return 0;
1403 }
1404 
dm_pool_release_metadata_snap(struct dm_pool_metadata * pmd)1405 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1406 {
1407 	int r = -EINVAL;
1408 
1409 	pmd_write_lock(pmd);
1410 	if (!pmd->fail_io)
1411 		r = __release_metadata_snap(pmd);
1412 	pmd_write_unlock(pmd);
1413 
1414 	return r;
1415 }
1416 
__get_metadata_snap(struct dm_pool_metadata * pmd,dm_block_t * result)1417 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1418 			       dm_block_t *result)
1419 {
1420 	int r;
1421 	struct thin_disk_superblock *disk_super;
1422 	struct dm_block *sblock;
1423 
1424 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1425 			    &sb_validator, &sblock);
1426 	if (r)
1427 		return r;
1428 
1429 	disk_super = dm_block_data(sblock);
1430 	*result = le64_to_cpu(disk_super->held_root);
1431 
1432 	dm_bm_unlock(sblock);
1433 
1434 	return 0;
1435 }
1436 
dm_pool_get_metadata_snap(struct dm_pool_metadata * pmd,dm_block_t * result)1437 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1438 			      dm_block_t *result)
1439 {
1440 	int r = -EINVAL;
1441 
1442 	down_read(&pmd->root_lock);
1443 	if (!pmd->fail_io)
1444 		r = __get_metadata_snap(pmd, result);
1445 	up_read(&pmd->root_lock);
1446 
1447 	return r;
1448 }
1449 
dm_pool_open_thin_device(struct dm_pool_metadata * pmd,dm_thin_id dev,struct dm_thin_device ** td)1450 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1451 			     struct dm_thin_device **td)
1452 {
1453 	int r = -EINVAL;
1454 
1455 	pmd_write_lock_in_core(pmd);
1456 	if (!pmd->fail_io)
1457 		r = __open_device(pmd, dev, 0, td);
1458 	pmd_write_unlock(pmd);
1459 
1460 	return r;
1461 }
1462 
dm_pool_close_thin_device(struct dm_thin_device * td)1463 int dm_pool_close_thin_device(struct dm_thin_device *td)
1464 {
1465 	pmd_write_lock_in_core(td->pmd);
1466 	__close_device(td);
1467 	pmd_write_unlock(td->pmd);
1468 
1469 	return 0;
1470 }
1471 
dm_thin_dev_id(struct dm_thin_device * td)1472 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1473 {
1474 	return td->id;
1475 }
1476 
1477 /*
1478  * Check whether @time (of block creation) is older than @td's last snapshot.
1479  * If so then the associated block is shared with the last snapshot device.
1480  * Any block on a device created *after* the device last got snapshotted is
1481  * necessarily not shared.
1482  */
__snapshotted_since(struct dm_thin_device * td,uint32_t time)1483 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1484 {
1485 	return td->snapshotted_time > time;
1486 }
1487 
unpack_lookup_result(struct dm_thin_device * td,__le64 value,struct dm_thin_lookup_result * result)1488 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1489 				 struct dm_thin_lookup_result *result)
1490 {
1491 	uint64_t block_time = 0;
1492 	dm_block_t exception_block;
1493 	uint32_t exception_time;
1494 
1495 	block_time = le64_to_cpu(value);
1496 	unpack_block_time(block_time, &exception_block, &exception_time);
1497 	result->block = exception_block;
1498 	result->shared = __snapshotted_since(td, exception_time);
1499 }
1500 
__find_block(struct dm_thin_device * td,dm_block_t block,int can_issue_io,struct dm_thin_lookup_result * result)1501 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1502 			int can_issue_io, struct dm_thin_lookup_result *result)
1503 {
1504 	int r;
1505 	__le64 value;
1506 	struct dm_pool_metadata *pmd = td->pmd;
1507 	dm_block_t keys[2] = { td->id, block };
1508 	struct dm_btree_info *info;
1509 
1510 	if (can_issue_io) {
1511 		info = &pmd->info;
1512 	} else
1513 		info = &pmd->nb_info;
1514 
1515 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1516 	if (!r)
1517 		unpack_lookup_result(td, value, result);
1518 
1519 	return r;
1520 }
1521 
dm_thin_find_block(struct dm_thin_device * td,dm_block_t block,int can_issue_io,struct dm_thin_lookup_result * result)1522 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1523 		       int can_issue_io, struct dm_thin_lookup_result *result)
1524 {
1525 	int r;
1526 	struct dm_pool_metadata *pmd = td->pmd;
1527 
1528 	down_read(&pmd->root_lock);
1529 	if (pmd->fail_io) {
1530 		up_read(&pmd->root_lock);
1531 		return -EINVAL;
1532 	}
1533 
1534 	r = __find_block(td, block, can_issue_io, result);
1535 
1536 	up_read(&pmd->root_lock);
1537 	return r;
1538 }
1539 
__find_next_mapped_block(struct dm_thin_device * td,dm_block_t block,dm_block_t * vblock,struct dm_thin_lookup_result * result)1540 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1541 					  dm_block_t *vblock,
1542 					  struct dm_thin_lookup_result *result)
1543 {
1544 	int r;
1545 	__le64 value;
1546 	struct dm_pool_metadata *pmd = td->pmd;
1547 	dm_block_t keys[2] = { td->id, block };
1548 
1549 	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1550 	if (!r)
1551 		unpack_lookup_result(td, value, result);
1552 
1553 	return r;
1554 }
1555 
__find_mapped_range(struct dm_thin_device * td,dm_block_t begin,dm_block_t end,dm_block_t * thin_begin,dm_block_t * thin_end,dm_block_t * pool_begin,bool * maybe_shared)1556 static int __find_mapped_range(struct dm_thin_device *td,
1557 			       dm_block_t begin, dm_block_t end,
1558 			       dm_block_t *thin_begin, dm_block_t *thin_end,
1559 			       dm_block_t *pool_begin, bool *maybe_shared)
1560 {
1561 	int r;
1562 	dm_block_t pool_end;
1563 	struct dm_thin_lookup_result lookup;
1564 
1565 	if (end < begin)
1566 		return -ENODATA;
1567 
1568 	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1569 	if (r)
1570 		return r;
1571 
1572 	if (begin >= end)
1573 		return -ENODATA;
1574 
1575 	*thin_begin = begin;
1576 	*pool_begin = lookup.block;
1577 	*maybe_shared = lookup.shared;
1578 
1579 	begin++;
1580 	pool_end = *pool_begin + 1;
1581 	while (begin != end) {
1582 		r = __find_block(td, begin, true, &lookup);
1583 		if (r) {
1584 			if (r == -ENODATA)
1585 				break;
1586 			else
1587 				return r;
1588 		}
1589 
1590 		if ((lookup.block != pool_end) ||
1591 		    (lookup.shared != *maybe_shared))
1592 			break;
1593 
1594 		pool_end++;
1595 		begin++;
1596 	}
1597 
1598 	*thin_end = begin;
1599 	return 0;
1600 }
1601 
dm_thin_find_mapped_range(struct dm_thin_device * td,dm_block_t begin,dm_block_t end,dm_block_t * thin_begin,dm_block_t * thin_end,dm_block_t * pool_begin,bool * maybe_shared)1602 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1603 			      dm_block_t begin, dm_block_t end,
1604 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1605 			      dm_block_t *pool_begin, bool *maybe_shared)
1606 {
1607 	int r = -EINVAL;
1608 	struct dm_pool_metadata *pmd = td->pmd;
1609 
1610 	down_read(&pmd->root_lock);
1611 	if (!pmd->fail_io) {
1612 		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1613 					pool_begin, maybe_shared);
1614 	}
1615 	up_read(&pmd->root_lock);
1616 
1617 	return r;
1618 }
1619 
__insert(struct dm_thin_device * td,dm_block_t block,dm_block_t data_block)1620 static int __insert(struct dm_thin_device *td, dm_block_t block,
1621 		    dm_block_t data_block)
1622 {
1623 	int r, inserted;
1624 	__le64 value;
1625 	struct dm_pool_metadata *pmd = td->pmd;
1626 	dm_block_t keys[2] = { td->id, block };
1627 
1628 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1629 	__dm_bless_for_disk(&value);
1630 
1631 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1632 				   &pmd->root, &inserted);
1633 	if (r)
1634 		return r;
1635 
1636 	td->changed = true;
1637 	if (inserted)
1638 		td->mapped_blocks++;
1639 
1640 	return 0;
1641 }
1642 
dm_thin_insert_block(struct dm_thin_device * td,dm_block_t block,dm_block_t data_block)1643 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1644 			 dm_block_t data_block)
1645 {
1646 	int r = -EINVAL;
1647 
1648 	pmd_write_lock(td->pmd);
1649 	if (!td->pmd->fail_io)
1650 		r = __insert(td, block, data_block);
1651 	pmd_write_unlock(td->pmd);
1652 
1653 	return r;
1654 }
1655 
__remove(struct dm_thin_device * td,dm_block_t block)1656 static int __remove(struct dm_thin_device *td, dm_block_t block)
1657 {
1658 	int r;
1659 	struct dm_pool_metadata *pmd = td->pmd;
1660 	dm_block_t keys[2] = { td->id, block };
1661 
1662 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1663 	if (r)
1664 		return r;
1665 
1666 	td->mapped_blocks--;
1667 	td->changed = true;
1668 
1669 	return 0;
1670 }
1671 
__remove_range(struct dm_thin_device * td,dm_block_t begin,dm_block_t end)1672 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1673 {
1674 	int r;
1675 	unsigned count, total_count = 0;
1676 	struct dm_pool_metadata *pmd = td->pmd;
1677 	dm_block_t keys[1] = { td->id };
1678 	__le64 value;
1679 	dm_block_t mapping_root;
1680 
1681 	/*
1682 	 * Find the mapping tree
1683 	 */
1684 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1685 	if (r)
1686 		return r;
1687 
1688 	/*
1689 	 * Remove from the mapping tree, taking care to inc the
1690 	 * ref count so it doesn't get deleted.
1691 	 */
1692 	mapping_root = le64_to_cpu(value);
1693 	dm_tm_inc(pmd->tm, mapping_root);
1694 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1695 	if (r)
1696 		return r;
1697 
1698 	/*
1699 	 * Remove leaves stops at the first unmapped entry, so we have to
1700 	 * loop round finding mapped ranges.
1701 	 */
1702 	while (begin < end) {
1703 		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1704 		if (r == -ENODATA)
1705 			break;
1706 
1707 		if (r)
1708 			return r;
1709 
1710 		if (begin >= end)
1711 			break;
1712 
1713 		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1714 		if (r)
1715 			return r;
1716 
1717 		total_count += count;
1718 	}
1719 
1720 	td->mapped_blocks -= total_count;
1721 	td->changed = true;
1722 
1723 	/*
1724 	 * Reinsert the mapping tree.
1725 	 */
1726 	value = cpu_to_le64(mapping_root);
1727 	__dm_bless_for_disk(&value);
1728 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1729 }
1730 
dm_thin_remove_block(struct dm_thin_device * td,dm_block_t block)1731 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1732 {
1733 	int r = -EINVAL;
1734 
1735 	pmd_write_lock(td->pmd);
1736 	if (!td->pmd->fail_io)
1737 		r = __remove(td, block);
1738 	pmd_write_unlock(td->pmd);
1739 
1740 	return r;
1741 }
1742 
dm_thin_remove_range(struct dm_thin_device * td,dm_block_t begin,dm_block_t end)1743 int dm_thin_remove_range(struct dm_thin_device *td,
1744 			 dm_block_t begin, dm_block_t end)
1745 {
1746 	int r = -EINVAL;
1747 
1748 	pmd_write_lock(td->pmd);
1749 	if (!td->pmd->fail_io)
1750 		r = __remove_range(td, begin, end);
1751 	pmd_write_unlock(td->pmd);
1752 
1753 	return r;
1754 }
1755 
dm_pool_block_is_shared(struct dm_pool_metadata * pmd,dm_block_t b,bool * result)1756 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1757 {
1758 	int r;
1759 	uint32_t ref_count;
1760 
1761 	down_read(&pmd->root_lock);
1762 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1763 	if (!r)
1764 		*result = (ref_count > 1);
1765 	up_read(&pmd->root_lock);
1766 
1767 	return r;
1768 }
1769 
dm_pool_inc_data_range(struct dm_pool_metadata * pmd,dm_block_t b,dm_block_t e)1770 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1771 {
1772 	int r = 0;
1773 
1774 	pmd_write_lock(pmd);
1775 	for (; b != e; b++) {
1776 		r = dm_sm_inc_block(pmd->data_sm, b);
1777 		if (r)
1778 			break;
1779 	}
1780 	pmd_write_unlock(pmd);
1781 
1782 	return r;
1783 }
1784 
dm_pool_dec_data_range(struct dm_pool_metadata * pmd,dm_block_t b,dm_block_t e)1785 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1786 {
1787 	int r = 0;
1788 
1789 	pmd_write_lock(pmd);
1790 	for (; b != e; b++) {
1791 		r = dm_sm_dec_block(pmd->data_sm, b);
1792 		if (r)
1793 			break;
1794 	}
1795 	pmd_write_unlock(pmd);
1796 
1797 	return r;
1798 }
1799 
dm_thin_changed_this_transaction(struct dm_thin_device * td)1800 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1801 {
1802 	int r;
1803 
1804 	down_read(&td->pmd->root_lock);
1805 	r = td->changed;
1806 	up_read(&td->pmd->root_lock);
1807 
1808 	return r;
1809 }
1810 
dm_pool_changed_this_transaction(struct dm_pool_metadata * pmd)1811 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1812 {
1813 	bool r = false;
1814 	struct dm_thin_device *td, *tmp;
1815 
1816 	down_read(&pmd->root_lock);
1817 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1818 		if (td->changed) {
1819 			r = td->changed;
1820 			break;
1821 		}
1822 	}
1823 	up_read(&pmd->root_lock);
1824 
1825 	return r;
1826 }
1827 
dm_thin_aborted_changes(struct dm_thin_device * td)1828 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1829 {
1830 	bool r;
1831 
1832 	down_read(&td->pmd->root_lock);
1833 	r = td->aborted_with_changes;
1834 	up_read(&td->pmd->root_lock);
1835 
1836 	return r;
1837 }
1838 
dm_pool_alloc_data_block(struct dm_pool_metadata * pmd,dm_block_t * result)1839 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1840 {
1841 	int r = -EINVAL;
1842 
1843 	pmd_write_lock(pmd);
1844 	if (!pmd->fail_io)
1845 		r = dm_sm_new_block(pmd->data_sm, result);
1846 	pmd_write_unlock(pmd);
1847 
1848 	return r;
1849 }
1850 
dm_pool_commit_metadata(struct dm_pool_metadata * pmd)1851 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1852 {
1853 	int r = -EINVAL;
1854 
1855 	/*
1856 	 * Care is taken to not have commit be what
1857 	 * triggers putting the thin-pool in-service.
1858 	 */
1859 	pmd_write_lock_in_core(pmd);
1860 	if (pmd->fail_io)
1861 		goto out;
1862 
1863 	r = __commit_transaction(pmd);
1864 	if (r < 0)
1865 		goto out;
1866 
1867 	/*
1868 	 * Open the next transaction.
1869 	 */
1870 	r = __begin_transaction(pmd);
1871 out:
1872 	pmd_write_unlock(pmd);
1873 	return r;
1874 }
1875 
__set_abort_with_changes_flags(struct dm_pool_metadata * pmd)1876 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1877 {
1878 	struct dm_thin_device *td;
1879 
1880 	list_for_each_entry(td, &pmd->thin_devices, list)
1881 		td->aborted_with_changes = td->changed;
1882 }
1883 
dm_pool_abort_metadata(struct dm_pool_metadata * pmd)1884 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1885 {
1886 	int r = -EINVAL;
1887 	struct dm_block_manager *old_bm = NULL, *new_bm = NULL;
1888 
1889 	/* fail_io is double-checked with pmd->root_lock held below */
1890 	if (unlikely(pmd->fail_io))
1891 		return r;
1892 
1893 	/*
1894 	 * Replacement block manager (new_bm) is created and old_bm destroyed outside of
1895 	 * pmd root_lock to avoid ABBA deadlock that would result (due to life-cycle of
1896 	 * shrinker associated with the block manager's bufio client vs pmd root_lock).
1897 	 * - must take shrinker_rwsem without holding pmd->root_lock
1898 	 */
1899 	new_bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
1900 					 THIN_MAX_CONCURRENT_LOCKS);
1901 
1902 	pmd_write_lock(pmd);
1903 	if (pmd->fail_io) {
1904 		pmd_write_unlock(pmd);
1905 		goto out;
1906 	}
1907 
1908 	__set_abort_with_changes_flags(pmd);
1909 	__destroy_persistent_data_objects(pmd, false);
1910 	old_bm = pmd->bm;
1911 	if (IS_ERR(new_bm)) {
1912 		DMERR("could not create block manager during abort");
1913 		pmd->bm = NULL;
1914 		r = PTR_ERR(new_bm);
1915 		goto out_unlock;
1916 	}
1917 
1918 	pmd->bm = new_bm;
1919 	r = __open_or_format_metadata(pmd, false);
1920 	if (r) {
1921 		pmd->bm = NULL;
1922 		goto out_unlock;
1923 	}
1924 	new_bm = NULL;
1925 out_unlock:
1926 	if (r)
1927 		pmd->fail_io = true;
1928 	pmd_write_unlock(pmd);
1929 	dm_block_manager_destroy(old_bm);
1930 out:
1931 	if (new_bm && !IS_ERR(new_bm))
1932 		dm_block_manager_destroy(new_bm);
1933 
1934 	return r;
1935 }
1936 
dm_pool_get_free_block_count(struct dm_pool_metadata * pmd,dm_block_t * result)1937 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1938 {
1939 	int r = -EINVAL;
1940 
1941 	down_read(&pmd->root_lock);
1942 	if (!pmd->fail_io)
1943 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1944 	up_read(&pmd->root_lock);
1945 
1946 	return r;
1947 }
1948 
dm_pool_get_free_metadata_block_count(struct dm_pool_metadata * pmd,dm_block_t * result)1949 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1950 					  dm_block_t *result)
1951 {
1952 	int r = -EINVAL;
1953 
1954 	down_read(&pmd->root_lock);
1955 	if (!pmd->fail_io)
1956 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1957 
1958 	if (!r) {
1959 		if (*result < pmd->metadata_reserve)
1960 			*result = 0;
1961 		else
1962 			*result -= pmd->metadata_reserve;
1963 	}
1964 	up_read(&pmd->root_lock);
1965 
1966 	return r;
1967 }
1968 
dm_pool_get_metadata_dev_size(struct dm_pool_metadata * pmd,dm_block_t * result)1969 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1970 				  dm_block_t *result)
1971 {
1972 	int r = -EINVAL;
1973 
1974 	down_read(&pmd->root_lock);
1975 	if (!pmd->fail_io)
1976 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1977 	up_read(&pmd->root_lock);
1978 
1979 	return r;
1980 }
1981 
dm_pool_get_data_dev_size(struct dm_pool_metadata * pmd,dm_block_t * result)1982 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1983 {
1984 	int r = -EINVAL;
1985 
1986 	down_read(&pmd->root_lock);
1987 	if (!pmd->fail_io)
1988 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1989 	up_read(&pmd->root_lock);
1990 
1991 	return r;
1992 }
1993 
dm_thin_get_mapped_count(struct dm_thin_device * td,dm_block_t * result)1994 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1995 {
1996 	int r = -EINVAL;
1997 	struct dm_pool_metadata *pmd = td->pmd;
1998 
1999 	down_read(&pmd->root_lock);
2000 	if (!pmd->fail_io) {
2001 		*result = td->mapped_blocks;
2002 		r = 0;
2003 	}
2004 	up_read(&pmd->root_lock);
2005 
2006 	return r;
2007 }
2008 
__highest_block(struct dm_thin_device * td,dm_block_t * result)2009 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
2010 {
2011 	int r;
2012 	__le64 value_le;
2013 	dm_block_t thin_root;
2014 	struct dm_pool_metadata *pmd = td->pmd;
2015 
2016 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
2017 	if (r)
2018 		return r;
2019 
2020 	thin_root = le64_to_cpu(value_le);
2021 
2022 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
2023 }
2024 
dm_thin_get_highest_mapped_block(struct dm_thin_device * td,dm_block_t * result)2025 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
2026 				     dm_block_t *result)
2027 {
2028 	int r = -EINVAL;
2029 	struct dm_pool_metadata *pmd = td->pmd;
2030 
2031 	down_read(&pmd->root_lock);
2032 	if (!pmd->fail_io)
2033 		r = __highest_block(td, result);
2034 	up_read(&pmd->root_lock);
2035 
2036 	return r;
2037 }
2038 
__resize_space_map(struct dm_space_map * sm,dm_block_t new_count)2039 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2040 {
2041 	int r;
2042 	dm_block_t old_count;
2043 
2044 	r = dm_sm_get_nr_blocks(sm, &old_count);
2045 	if (r)
2046 		return r;
2047 
2048 	if (new_count == old_count)
2049 		return 0;
2050 
2051 	if (new_count < old_count) {
2052 		DMERR("cannot reduce size of space map");
2053 		return -EINVAL;
2054 	}
2055 
2056 	return dm_sm_extend(sm, new_count - old_count);
2057 }
2058 
dm_pool_resize_data_dev(struct dm_pool_metadata * pmd,dm_block_t new_count)2059 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2060 {
2061 	int r = -EINVAL;
2062 
2063 	pmd_write_lock(pmd);
2064 	if (!pmd->fail_io)
2065 		r = __resize_space_map(pmd->data_sm, new_count);
2066 	pmd_write_unlock(pmd);
2067 
2068 	return r;
2069 }
2070 
dm_pool_resize_metadata_dev(struct dm_pool_metadata * pmd,dm_block_t new_count)2071 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2072 {
2073 	int r = -EINVAL;
2074 
2075 	pmd_write_lock(pmd);
2076 	if (!pmd->fail_io) {
2077 		r = __resize_space_map(pmd->metadata_sm, new_count);
2078 		if (!r)
2079 			__set_metadata_reserve(pmd);
2080 	}
2081 	pmd_write_unlock(pmd);
2082 
2083 	return r;
2084 }
2085 
dm_pool_metadata_read_only(struct dm_pool_metadata * pmd)2086 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2087 {
2088 	pmd_write_lock_in_core(pmd);
2089 	dm_bm_set_read_only(pmd->bm);
2090 	pmd_write_unlock(pmd);
2091 }
2092 
dm_pool_metadata_read_write(struct dm_pool_metadata * pmd)2093 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2094 {
2095 	pmd_write_lock_in_core(pmd);
2096 	dm_bm_set_read_write(pmd->bm);
2097 	pmd_write_unlock(pmd);
2098 }
2099 
dm_pool_register_metadata_threshold(struct dm_pool_metadata * pmd,dm_block_t threshold,dm_sm_threshold_fn fn,void * context)2100 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2101 					dm_block_t threshold,
2102 					dm_sm_threshold_fn fn,
2103 					void *context)
2104 {
2105 	int r = -EINVAL;
2106 
2107 	pmd_write_lock_in_core(pmd);
2108 	if (!pmd->fail_io) {
2109 		r = dm_sm_register_threshold_callback(pmd->metadata_sm,
2110 						      threshold, fn, context);
2111 	}
2112 	pmd_write_unlock(pmd);
2113 
2114 	return r;
2115 }
2116 
dm_pool_register_pre_commit_callback(struct dm_pool_metadata * pmd,dm_pool_pre_commit_fn fn,void * context)2117 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2118 					  dm_pool_pre_commit_fn fn,
2119 					  void *context)
2120 {
2121 	pmd_write_lock_in_core(pmd);
2122 	pmd->pre_commit_fn = fn;
2123 	pmd->pre_commit_context = context;
2124 	pmd_write_unlock(pmd);
2125 }
2126 
dm_pool_metadata_set_needs_check(struct dm_pool_metadata * pmd)2127 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2128 {
2129 	int r = -EINVAL;
2130 	struct dm_block *sblock;
2131 	struct thin_disk_superblock *disk_super;
2132 
2133 	pmd_write_lock(pmd);
2134 	if (pmd->fail_io)
2135 		goto out;
2136 
2137 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2138 
2139 	r = superblock_lock(pmd, &sblock);
2140 	if (r) {
2141 		DMERR("couldn't lock superblock");
2142 		goto out;
2143 	}
2144 
2145 	disk_super = dm_block_data(sblock);
2146 	disk_super->flags = cpu_to_le32(pmd->flags);
2147 
2148 	dm_bm_unlock(sblock);
2149 out:
2150 	pmd_write_unlock(pmd);
2151 	return r;
2152 }
2153 
dm_pool_metadata_needs_check(struct dm_pool_metadata * pmd)2154 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2155 {
2156 	bool needs_check;
2157 
2158 	down_read(&pmd->root_lock);
2159 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2160 	up_read(&pmd->root_lock);
2161 
2162 	return needs_check;
2163 }
2164 
dm_pool_issue_prefetches(struct dm_pool_metadata * pmd)2165 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2166 {
2167 	down_read(&pmd->root_lock);
2168 	if (!pmd->fail_io)
2169 		dm_tm_issue_prefetches(pmd->tm);
2170 	up_read(&pmd->root_lock);
2171 }
2172