• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 /*
32  * Similar to ceiling(log_size(n))
33  */
int_log(unsigned int n,unsigned int base)34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 	int result = 0;
37 
38 	while (n > 1) {
39 		n = dm_div_up(n, base);
40 		result++;
41 	}
42 
43 	return result;
44 }
45 
46 /*
47  * Calculate the index of the child node of the n'th node k'th key.
48  */
get_child(unsigned int n,unsigned int k)49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 	return (n * CHILDREN_PER_NODE) + k;
52 }
53 
54 /*
55  * Return the n'th node of level l from table t.
56  */
get_node(struct dm_table * t,unsigned int l,unsigned int n)57 static inline sector_t *get_node(struct dm_table *t,
58 				 unsigned int l, unsigned int n)
59 {
60 	return t->index[l] + (n * KEYS_PER_NODE);
61 }
62 
63 /*
64  * Return the highest key that you could lookup from the n'th
65  * node on level l of the btree.
66  */
high(struct dm_table * t,unsigned int l,unsigned int n)67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 	for (; l < t->depth - 1; l++)
70 		n = get_child(n, CHILDREN_PER_NODE - 1);
71 
72 	if (n >= t->counts[l])
73 		return (sector_t) - 1;
74 
75 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77 
78 /*
79  * Fills in a level of the btree based on the highs of the level
80  * below it.
81  */
setup_btree_index(unsigned int l,struct dm_table * t)82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 	unsigned int n, k;
85 	sector_t *node;
86 
87 	for (n = 0U; n < t->counts[l]; n++) {
88 		node = get_node(t, l, n);
89 
90 		for (k = 0U; k < KEYS_PER_NODE; k++)
91 			node[k] = high(t, l + 1, get_child(n, k));
92 	}
93 
94 	return 0;
95 }
96 
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99 	unsigned long size;
100 	void *addr;
101 
102 	/*
103 	 * Check that we're not going to overflow.
104 	 */
105 	if (nmemb > (ULONG_MAX / elem_size))
106 		return NULL;
107 
108 	size = nmemb * elem_size;
109 	addr = vzalloc(size);
110 
111 	return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114 
115 /*
116  * highs, and targets are managed as dynamic arrays during a
117  * table load.
118  */
alloc_targets(struct dm_table * t,unsigned int num)119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121 	sector_t *n_highs;
122 	struct dm_target *n_targets;
123 
124 	/*
125 	 * Allocate both the target array and offset array at once.
126 	 */
127 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128 					  sizeof(sector_t));
129 	if (!n_highs)
130 		return -ENOMEM;
131 
132 	n_targets = (struct dm_target *) (n_highs + num);
133 
134 	memset(n_highs, -1, sizeof(*n_highs) * num);
135 	vfree(t->highs);
136 
137 	t->num_allocated = num;
138 	t->highs = n_highs;
139 	t->targets = n_targets;
140 
141 	return 0;
142 }
143 
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)144 int dm_table_create(struct dm_table **result, fmode_t mode,
145 		    unsigned num_targets, struct mapped_device *md)
146 {
147 	struct dm_table *t;
148 
149 	if (num_targets > DM_MAX_TARGETS)
150 		return -EOVERFLOW;
151 
152 	t = kzalloc(sizeof(*t), GFP_KERNEL);
153 
154 	if (!t)
155 		return -ENOMEM;
156 
157 	INIT_LIST_HEAD(&t->devices);
158 
159 	if (!num_targets)
160 		num_targets = KEYS_PER_NODE;
161 
162 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
163 
164 	if (!num_targets) {
165 		kfree(t);
166 		return -EOVERFLOW;
167 	}
168 
169 	if (alloc_targets(t, num_targets)) {
170 		kfree(t);
171 		return -ENOMEM;
172 	}
173 
174 	t->type = DM_TYPE_NONE;
175 	t->mode = mode;
176 	t->md = md;
177 	*result = t;
178 	return 0;
179 }
180 
free_devices(struct list_head * devices,struct mapped_device * md)181 static void free_devices(struct list_head *devices, struct mapped_device *md)
182 {
183 	struct list_head *tmp, *next;
184 
185 	list_for_each_safe(tmp, next, devices) {
186 		struct dm_dev_internal *dd =
187 		    list_entry(tmp, struct dm_dev_internal, list);
188 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
189 		       dm_device_name(md), dd->dm_dev->name);
190 		dm_put_table_device(md, dd->dm_dev);
191 		kfree(dd);
192 	}
193 }
194 
dm_table_destroy(struct dm_table * t)195 void dm_table_destroy(struct dm_table *t)
196 {
197 	unsigned int i;
198 
199 	if (!t)
200 		return;
201 
202 	/* free the indexes */
203 	if (t->depth >= 2)
204 		vfree(t->index[t->depth - 2]);
205 
206 	/* free the targets */
207 	for (i = 0; i < t->num_targets; i++) {
208 		struct dm_target *tgt = t->targets + i;
209 
210 		if (tgt->type->dtr)
211 			tgt->type->dtr(tgt);
212 
213 		dm_put_target_type(tgt->type);
214 	}
215 
216 	vfree(t->highs);
217 
218 	/* free the device list */
219 	free_devices(&t->devices, t->md);
220 
221 	dm_free_md_mempools(t->mempools);
222 
223 	kfree(t);
224 }
225 
226 /*
227  * See if we've already got a device in the list.
228  */
find_device(struct list_head * l,dev_t dev)229 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
230 {
231 	struct dm_dev_internal *dd;
232 
233 	list_for_each_entry (dd, l, list)
234 		if (dd->dm_dev->bdev->bd_dev == dev)
235 			return dd;
236 
237 	return NULL;
238 }
239 
240 /*
241  * If possible, this checks an area of a destination device is invalid.
242  */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)243 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
244 				  sector_t start, sector_t len, void *data)
245 {
246 	struct queue_limits *limits = data;
247 	struct block_device *bdev = dev->bdev;
248 	sector_t dev_size =
249 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
250 	unsigned short logical_block_size_sectors =
251 		limits->logical_block_size >> SECTOR_SHIFT;
252 	char b[BDEVNAME_SIZE];
253 
254 	if (!dev_size)
255 		return 0;
256 
257 	if ((start >= dev_size) || (start + len > dev_size)) {
258 		DMWARN("%s: %s too small for target: "
259 		       "start=%llu, len=%llu, dev_size=%llu",
260 		       dm_device_name(ti->table->md), bdevname(bdev, b),
261 		       (unsigned long long)start,
262 		       (unsigned long long)len,
263 		       (unsigned long long)dev_size);
264 		return 1;
265 	}
266 
267 	/*
268 	 * If the target is mapped to zoned block device(s), check
269 	 * that the zones are not partially mapped.
270 	 */
271 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
272 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
273 
274 		if (start & (zone_sectors - 1)) {
275 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
276 			       dm_device_name(ti->table->md),
277 			       (unsigned long long)start,
278 			       zone_sectors, bdevname(bdev, b));
279 			return 1;
280 		}
281 
282 		/*
283 		 * Note: The last zone of a zoned block device may be smaller
284 		 * than other zones. So for a target mapping the end of a
285 		 * zoned block device with such a zone, len would not be zone
286 		 * aligned. We do not allow such last smaller zone to be part
287 		 * of the mapping here to ensure that mappings with multiple
288 		 * devices do not end up with a smaller zone in the middle of
289 		 * the sector range.
290 		 */
291 		if (len & (zone_sectors - 1)) {
292 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
293 			       dm_device_name(ti->table->md),
294 			       (unsigned long long)len,
295 			       zone_sectors, bdevname(bdev, b));
296 			return 1;
297 		}
298 	}
299 
300 	if (logical_block_size_sectors <= 1)
301 		return 0;
302 
303 	if (start & (logical_block_size_sectors - 1)) {
304 		DMWARN("%s: start=%llu not aligned to h/w "
305 		       "logical block size %u of %s",
306 		       dm_device_name(ti->table->md),
307 		       (unsigned long long)start,
308 		       limits->logical_block_size, bdevname(bdev, b));
309 		return 1;
310 	}
311 
312 	if (len & (logical_block_size_sectors - 1)) {
313 		DMWARN("%s: len=%llu not aligned to h/w "
314 		       "logical block size %u of %s",
315 		       dm_device_name(ti->table->md),
316 		       (unsigned long long)len,
317 		       limits->logical_block_size, bdevname(bdev, b));
318 		return 1;
319 	}
320 
321 	return 0;
322 }
323 
324 /*
325  * This upgrades the mode on an already open dm_dev, being
326  * careful to leave things as they were if we fail to reopen the
327  * device and not to touch the existing bdev field in case
328  * it is accessed concurrently.
329  */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)330 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
331 			struct mapped_device *md)
332 {
333 	int r;
334 	struct dm_dev *old_dev, *new_dev;
335 
336 	old_dev = dd->dm_dev;
337 
338 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
339 				dd->dm_dev->mode | new_mode, &new_dev);
340 	if (r)
341 		return r;
342 
343 	dd->dm_dev = new_dev;
344 	dm_put_table_device(md, old_dev);
345 
346 	return 0;
347 }
348 
349 /*
350  * Convert the path to a device
351  */
dm_get_dev_t(const char * path)352 dev_t dm_get_dev_t(const char *path)
353 {
354 	dev_t dev;
355 	struct block_device *bdev;
356 
357 	bdev = lookup_bdev(path);
358 	if (IS_ERR(bdev))
359 		dev = name_to_dev_t(path);
360 	else {
361 		dev = bdev->bd_dev;
362 		bdput(bdev);
363 	}
364 
365 	return dev;
366 }
367 EXPORT_SYMBOL_GPL(dm_get_dev_t);
368 
369 /*
370  * Add a device to the list, or just increment the usage count if
371  * it's already present.
372  */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)373 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
374 		  struct dm_dev **result)
375 {
376 	int r;
377 	dev_t dev;
378 	unsigned int major, minor;
379 	char dummy;
380 	struct dm_dev_internal *dd;
381 	struct dm_table *t = ti->table;
382 
383 	BUG_ON(!t);
384 
385 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
386 		/* Extract the major/minor numbers */
387 		dev = MKDEV(major, minor);
388 		if (MAJOR(dev) != major || MINOR(dev) != minor)
389 			return -EOVERFLOW;
390 	} else {
391 		dev = dm_get_dev_t(path);
392 		if (!dev)
393 			return -ENODEV;
394 	}
395 
396 	dd = find_device(&t->devices, dev);
397 	if (!dd) {
398 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
399 		if (!dd)
400 			return -ENOMEM;
401 
402 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
403 			kfree(dd);
404 			return r;
405 		}
406 
407 		refcount_set(&dd->count, 1);
408 		list_add(&dd->list, &t->devices);
409 		goto out;
410 
411 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
412 		r = upgrade_mode(dd, mode, t->md);
413 		if (r)
414 			return r;
415 	}
416 	refcount_inc(&dd->count);
417 out:
418 	*result = dd->dm_dev;
419 	return 0;
420 }
421 EXPORT_SYMBOL(dm_get_device);
422 
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)423 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
424 				sector_t start, sector_t len, void *data)
425 {
426 	struct queue_limits *limits = data;
427 	struct block_device *bdev = dev->bdev;
428 	struct request_queue *q = bdev_get_queue(bdev);
429 	char b[BDEVNAME_SIZE];
430 
431 	if (unlikely(!q)) {
432 		DMWARN("%s: Cannot set limits for nonexistent device %s",
433 		       dm_device_name(ti->table->md), bdevname(bdev, b));
434 		return 0;
435 	}
436 
437 	if (blk_stack_limits(limits, &q->limits,
438 			get_start_sect(bdev) + start) < 0)
439 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
440 		       "physical_block_size=%u, logical_block_size=%u, "
441 		       "alignment_offset=%u, start=%llu",
442 		       dm_device_name(ti->table->md), bdevname(bdev, b),
443 		       q->limits.physical_block_size,
444 		       q->limits.logical_block_size,
445 		       q->limits.alignment_offset,
446 		       (unsigned long long) start << SECTOR_SHIFT);
447 	return 0;
448 }
449 
450 /*
451  * Decrement a device's use count and remove it if necessary.
452  */
dm_put_device(struct dm_target * ti,struct dm_dev * d)453 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
454 {
455 	int found = 0;
456 	struct list_head *devices = &ti->table->devices;
457 	struct dm_dev_internal *dd;
458 
459 	list_for_each_entry(dd, devices, list) {
460 		if (dd->dm_dev == d) {
461 			found = 1;
462 			break;
463 		}
464 	}
465 	if (!found) {
466 		DMWARN("%s: device %s not in table devices list",
467 		       dm_device_name(ti->table->md), d->name);
468 		return;
469 	}
470 	if (refcount_dec_and_test(&dd->count)) {
471 		dm_put_table_device(ti->table->md, d);
472 		list_del(&dd->list);
473 		kfree(dd);
474 	}
475 }
476 EXPORT_SYMBOL(dm_put_device);
477 
478 /*
479  * Checks to see if the target joins onto the end of the table.
480  */
adjoin(struct dm_table * table,struct dm_target * ti)481 static int adjoin(struct dm_table *table, struct dm_target *ti)
482 {
483 	struct dm_target *prev;
484 
485 	if (!table->num_targets)
486 		return !ti->begin;
487 
488 	prev = &table->targets[table->num_targets - 1];
489 	return (ti->begin == (prev->begin + prev->len));
490 }
491 
492 /*
493  * Used to dynamically allocate the arg array.
494  *
495  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
496  * process messages even if some device is suspended. These messages have a
497  * small fixed number of arguments.
498  *
499  * On the other hand, dm-switch needs to process bulk data using messages and
500  * excessive use of GFP_NOIO could cause trouble.
501  */
realloc_argv(unsigned * size,char ** old_argv)502 static char **realloc_argv(unsigned *size, char **old_argv)
503 {
504 	char **argv;
505 	unsigned new_size;
506 	gfp_t gfp;
507 
508 	if (*size) {
509 		new_size = *size * 2;
510 		gfp = GFP_KERNEL;
511 	} else {
512 		new_size = 8;
513 		gfp = GFP_NOIO;
514 	}
515 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
516 	if (argv && old_argv) {
517 		memcpy(argv, old_argv, *size * sizeof(*argv));
518 		*size = new_size;
519 	}
520 
521 	kfree(old_argv);
522 	return argv;
523 }
524 
525 /*
526  * Destructively splits up the argument list to pass to ctr.
527  */
dm_split_args(int * argc,char *** argvp,char * input)528 int dm_split_args(int *argc, char ***argvp, char *input)
529 {
530 	char *start, *end = input, *out, **argv = NULL;
531 	unsigned array_size = 0;
532 
533 	*argc = 0;
534 
535 	if (!input) {
536 		*argvp = NULL;
537 		return 0;
538 	}
539 
540 	argv = realloc_argv(&array_size, argv);
541 	if (!argv)
542 		return -ENOMEM;
543 
544 	while (1) {
545 		/* Skip whitespace */
546 		start = skip_spaces(end);
547 
548 		if (!*start)
549 			break;	/* success, we hit the end */
550 
551 		/* 'out' is used to remove any back-quotes */
552 		end = out = start;
553 		while (*end) {
554 			/* Everything apart from '\0' can be quoted */
555 			if (*end == '\\' && *(end + 1)) {
556 				*out++ = *(end + 1);
557 				end += 2;
558 				continue;
559 			}
560 
561 			if (isspace(*end))
562 				break;	/* end of token */
563 
564 			*out++ = *end++;
565 		}
566 
567 		/* have we already filled the array ? */
568 		if ((*argc + 1) > array_size) {
569 			argv = realloc_argv(&array_size, argv);
570 			if (!argv)
571 				return -ENOMEM;
572 		}
573 
574 		/* we know this is whitespace */
575 		if (*end)
576 			end++;
577 
578 		/* terminate the string and put it in the array */
579 		*out = '\0';
580 		argv[*argc] = start;
581 		(*argc)++;
582 	}
583 
584 	*argvp = argv;
585 	return 0;
586 }
587 
588 /*
589  * Impose necessary and sufficient conditions on a devices's table such
590  * that any incoming bio which respects its logical_block_size can be
591  * processed successfully.  If it falls across the boundary between
592  * two or more targets, the size of each piece it gets split into must
593  * be compatible with the logical_block_size of the target processing it.
594  */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)595 static int validate_hardware_logical_block_alignment(struct dm_table *table,
596 						 struct queue_limits *limits)
597 {
598 	/*
599 	 * This function uses arithmetic modulo the logical_block_size
600 	 * (in units of 512-byte sectors).
601 	 */
602 	unsigned short device_logical_block_size_sects =
603 		limits->logical_block_size >> SECTOR_SHIFT;
604 
605 	/*
606 	 * Offset of the start of the next table entry, mod logical_block_size.
607 	 */
608 	unsigned short next_target_start = 0;
609 
610 	/*
611 	 * Given an aligned bio that extends beyond the end of a
612 	 * target, how many sectors must the next target handle?
613 	 */
614 	unsigned short remaining = 0;
615 
616 	struct dm_target *ti;
617 	struct queue_limits ti_limits;
618 	unsigned i;
619 
620 	/*
621 	 * Check each entry in the table in turn.
622 	 */
623 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
624 		ti = dm_table_get_target(table, i);
625 
626 		blk_set_stacking_limits(&ti_limits);
627 
628 		/* combine all target devices' limits */
629 		if (ti->type->iterate_devices)
630 			ti->type->iterate_devices(ti, dm_set_device_limits,
631 						  &ti_limits);
632 
633 		/*
634 		 * If the remaining sectors fall entirely within this
635 		 * table entry are they compatible with its logical_block_size?
636 		 */
637 		if (remaining < ti->len &&
638 		    remaining & ((ti_limits.logical_block_size >>
639 				  SECTOR_SHIFT) - 1))
640 			break;	/* Error */
641 
642 		next_target_start =
643 		    (unsigned short) ((next_target_start + ti->len) &
644 				      (device_logical_block_size_sects - 1));
645 		remaining = next_target_start ?
646 		    device_logical_block_size_sects - next_target_start : 0;
647 	}
648 
649 	if (remaining) {
650 		DMWARN("%s: table line %u (start sect %llu len %llu) "
651 		       "not aligned to h/w logical block size %u",
652 		       dm_device_name(table->md), i,
653 		       (unsigned long long) ti->begin,
654 		       (unsigned long long) ti->len,
655 		       limits->logical_block_size);
656 		return -EINVAL;
657 	}
658 
659 	return 0;
660 }
661 
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)662 int dm_table_add_target(struct dm_table *t, const char *type,
663 			sector_t start, sector_t len, char *params)
664 {
665 	int r = -EINVAL, argc;
666 	char **argv;
667 	struct dm_target *tgt;
668 
669 	if (t->singleton) {
670 		DMERR("%s: target type %s must appear alone in table",
671 		      dm_device_name(t->md), t->targets->type->name);
672 		return -EINVAL;
673 	}
674 
675 	BUG_ON(t->num_targets >= t->num_allocated);
676 
677 	tgt = t->targets + t->num_targets;
678 	memset(tgt, 0, sizeof(*tgt));
679 
680 	if (!len) {
681 		DMERR("%s: zero-length target", dm_device_name(t->md));
682 		return -EINVAL;
683 	}
684 
685 	tgt->type = dm_get_target_type(type);
686 	if (!tgt->type) {
687 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
688 		return -EINVAL;
689 	}
690 
691 	if (dm_target_needs_singleton(tgt->type)) {
692 		if (t->num_targets) {
693 			tgt->error = "singleton target type must appear alone in table";
694 			goto bad;
695 		}
696 		t->singleton = true;
697 	}
698 
699 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
700 		tgt->error = "target type may not be included in a read-only table";
701 		goto bad;
702 	}
703 
704 	if (t->immutable_target_type) {
705 		if (t->immutable_target_type != tgt->type) {
706 			tgt->error = "immutable target type cannot be mixed with other target types";
707 			goto bad;
708 		}
709 	} else if (dm_target_is_immutable(tgt->type)) {
710 		if (t->num_targets) {
711 			tgt->error = "immutable target type cannot be mixed with other target types";
712 			goto bad;
713 		}
714 		t->immutable_target_type = tgt->type;
715 	}
716 
717 	if (dm_target_has_integrity(tgt->type))
718 		t->integrity_added = 1;
719 
720 	tgt->table = t;
721 	tgt->begin = start;
722 	tgt->len = len;
723 	tgt->error = "Unknown error";
724 
725 	/*
726 	 * Does this target adjoin the previous one ?
727 	 */
728 	if (!adjoin(t, tgt)) {
729 		tgt->error = "Gap in table";
730 		goto bad;
731 	}
732 
733 	r = dm_split_args(&argc, &argv, params);
734 	if (r) {
735 		tgt->error = "couldn't split parameters (insufficient memory)";
736 		goto bad;
737 	}
738 
739 	r = tgt->type->ctr(tgt, argc, argv);
740 	kfree(argv);
741 	if (r)
742 		goto bad;
743 
744 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
745 
746 	if (!tgt->num_discard_bios && tgt->discards_supported)
747 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
748 		       dm_device_name(t->md), type);
749 
750 	return 0;
751 
752  bad:
753 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
754 	dm_put_target_type(tgt->type);
755 	return r;
756 }
757 
758 /*
759  * Target argument parsing helpers.
760  */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)761 static int validate_next_arg(const struct dm_arg *arg,
762 			     struct dm_arg_set *arg_set,
763 			     unsigned *value, char **error, unsigned grouped)
764 {
765 	const char *arg_str = dm_shift_arg(arg_set);
766 	char dummy;
767 
768 	if (!arg_str ||
769 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
770 	    (*value < arg->min) ||
771 	    (*value > arg->max) ||
772 	    (grouped && arg_set->argc < *value)) {
773 		*error = arg->error;
774 		return -EINVAL;
775 	}
776 
777 	return 0;
778 }
779 
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)780 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
781 		unsigned *value, char **error)
782 {
783 	return validate_next_arg(arg, arg_set, value, error, 0);
784 }
785 EXPORT_SYMBOL(dm_read_arg);
786 
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)787 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
788 		      unsigned *value, char **error)
789 {
790 	return validate_next_arg(arg, arg_set, value, error, 1);
791 }
792 EXPORT_SYMBOL(dm_read_arg_group);
793 
dm_shift_arg(struct dm_arg_set * as)794 const char *dm_shift_arg(struct dm_arg_set *as)
795 {
796 	char *r;
797 
798 	if (as->argc) {
799 		as->argc--;
800 		r = *as->argv;
801 		as->argv++;
802 		return r;
803 	}
804 
805 	return NULL;
806 }
807 EXPORT_SYMBOL(dm_shift_arg);
808 
dm_consume_args(struct dm_arg_set * as,unsigned num_args)809 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
810 {
811 	BUG_ON(as->argc < num_args);
812 	as->argc -= num_args;
813 	as->argv += num_args;
814 }
815 EXPORT_SYMBOL(dm_consume_args);
816 
__table_type_bio_based(enum dm_queue_mode table_type)817 static bool __table_type_bio_based(enum dm_queue_mode table_type)
818 {
819 	return (table_type == DM_TYPE_BIO_BASED ||
820 		table_type == DM_TYPE_DAX_BIO_BASED);
821 }
822 
__table_type_request_based(enum dm_queue_mode table_type)823 static bool __table_type_request_based(enum dm_queue_mode table_type)
824 {
825 	return table_type == DM_TYPE_REQUEST_BASED;
826 }
827 
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)828 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
829 {
830 	t->type = type;
831 }
832 EXPORT_SYMBOL_GPL(dm_table_set_type);
833 
834 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)835 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
836 			sector_t start, sector_t len, void *data)
837 {
838 	int blocksize = *(int *) data, id;
839 	bool rc;
840 
841 	id = dax_read_lock();
842 	rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
843 	dax_read_unlock(id);
844 
845 	return rc;
846 }
847 
848 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)849 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
850 					      sector_t start, sector_t len, void *data)
851 {
852 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
853 }
854 
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn,int * blocksize)855 bool dm_table_supports_dax(struct dm_table *t,
856 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
857 {
858 	struct dm_target *ti;
859 	unsigned i;
860 
861 	/* Ensure that all targets support DAX. */
862 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
863 		ti = dm_table_get_target(t, i);
864 
865 		if (!ti->type->direct_access)
866 			return false;
867 
868 		if (!ti->type->iterate_devices ||
869 		    ti->type->iterate_devices(ti, iterate_fn, blocksize))
870 			return false;
871 	}
872 
873 	return true;
874 }
875 
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)876 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
877 				  sector_t start, sector_t len, void *data)
878 {
879 	struct block_device *bdev = dev->bdev;
880 	struct request_queue *q = bdev_get_queue(bdev);
881 
882 	/* request-based cannot stack on partitions! */
883 	if (bdev_is_partition(bdev))
884 		return false;
885 
886 	return queue_is_mq(q);
887 }
888 
dm_table_determine_type(struct dm_table * t)889 static int dm_table_determine_type(struct dm_table *t)
890 {
891 	unsigned i;
892 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
893 	struct dm_target *tgt;
894 	struct list_head *devices = dm_table_get_devices(t);
895 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
896 	int page_size = PAGE_SIZE;
897 
898 	if (t->type != DM_TYPE_NONE) {
899 		/* target already set the table's type */
900 		if (t->type == DM_TYPE_BIO_BASED) {
901 			/* possibly upgrade to a variant of bio-based */
902 			goto verify_bio_based;
903 		}
904 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
905 		goto verify_rq_based;
906 	}
907 
908 	for (i = 0; i < t->num_targets; i++) {
909 		tgt = t->targets + i;
910 		if (dm_target_hybrid(tgt))
911 			hybrid = 1;
912 		else if (dm_target_request_based(tgt))
913 			request_based = 1;
914 		else
915 			bio_based = 1;
916 
917 		if (bio_based && request_based) {
918 			DMERR("Inconsistent table: different target types"
919 			      " can't be mixed up");
920 			return -EINVAL;
921 		}
922 	}
923 
924 	if (hybrid && !bio_based && !request_based) {
925 		/*
926 		 * The targets can work either way.
927 		 * Determine the type from the live device.
928 		 * Default to bio-based if device is new.
929 		 */
930 		if (__table_type_request_based(live_md_type))
931 			request_based = 1;
932 		else
933 			bio_based = 1;
934 	}
935 
936 	if (bio_based) {
937 verify_bio_based:
938 		/* We must use this table as bio-based */
939 		t->type = DM_TYPE_BIO_BASED;
940 		if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
941 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
942 			t->type = DM_TYPE_DAX_BIO_BASED;
943 		}
944 		return 0;
945 	}
946 
947 	BUG_ON(!request_based); /* No targets in this table */
948 
949 	t->type = DM_TYPE_REQUEST_BASED;
950 
951 verify_rq_based:
952 	/*
953 	 * Request-based dm supports only tables that have a single target now.
954 	 * To support multiple targets, request splitting support is needed,
955 	 * and that needs lots of changes in the block-layer.
956 	 * (e.g. request completion process for partial completion.)
957 	 */
958 	if (t->num_targets > 1) {
959 		DMERR("request-based DM doesn't support multiple targets");
960 		return -EINVAL;
961 	}
962 
963 	if (list_empty(devices)) {
964 		int srcu_idx;
965 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
966 
967 		/* inherit live table's type */
968 		if (live_table)
969 			t->type = live_table->type;
970 		dm_put_live_table(t->md, srcu_idx);
971 		return 0;
972 	}
973 
974 	tgt = dm_table_get_immutable_target(t);
975 	if (!tgt) {
976 		DMERR("table load rejected: immutable target is required");
977 		return -EINVAL;
978 	} else if (tgt->max_io_len) {
979 		DMERR("table load rejected: immutable target that splits IO is not supported");
980 		return -EINVAL;
981 	}
982 
983 	/* Non-request-stackable devices can't be used for request-based dm */
984 	if (!tgt->type->iterate_devices ||
985 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
986 		DMERR("table load rejected: including non-request-stackable devices");
987 		return -EINVAL;
988 	}
989 
990 	return 0;
991 }
992 
dm_table_get_type(struct dm_table * t)993 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
994 {
995 	return t->type;
996 }
997 
dm_table_get_immutable_target_type(struct dm_table * t)998 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
999 {
1000 	return t->immutable_target_type;
1001 }
1002 
dm_table_get_immutable_target(struct dm_table * t)1003 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1004 {
1005 	/* Immutable target is implicitly a singleton */
1006 	if (t->num_targets > 1 ||
1007 	    !dm_target_is_immutable(t->targets[0].type))
1008 		return NULL;
1009 
1010 	return t->targets;
1011 }
1012 
dm_table_get_wildcard_target(struct dm_table * t)1013 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1014 {
1015 	struct dm_target *ti;
1016 	unsigned i;
1017 
1018 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1019 		ti = dm_table_get_target(t, i);
1020 		if (dm_target_is_wildcard(ti->type))
1021 			return ti;
1022 	}
1023 
1024 	return NULL;
1025 }
1026 
dm_table_bio_based(struct dm_table * t)1027 bool dm_table_bio_based(struct dm_table *t)
1028 {
1029 	return __table_type_bio_based(dm_table_get_type(t));
1030 }
1031 
dm_table_request_based(struct dm_table * t)1032 bool dm_table_request_based(struct dm_table *t)
1033 {
1034 	return __table_type_request_based(dm_table_get_type(t));
1035 }
1036 
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1037 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1038 {
1039 	enum dm_queue_mode type = dm_table_get_type(t);
1040 	unsigned per_io_data_size = 0;
1041 	unsigned min_pool_size = 0;
1042 	struct dm_target *ti;
1043 	unsigned i;
1044 
1045 	if (unlikely(type == DM_TYPE_NONE)) {
1046 		DMWARN("no table type is set, can't allocate mempools");
1047 		return -EINVAL;
1048 	}
1049 
1050 	if (__table_type_bio_based(type))
1051 		for (i = 0; i < t->num_targets; i++) {
1052 			ti = t->targets + i;
1053 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1054 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1055 		}
1056 
1057 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1058 					   per_io_data_size, min_pool_size);
1059 	if (!t->mempools)
1060 		return -ENOMEM;
1061 
1062 	return 0;
1063 }
1064 
dm_table_free_md_mempools(struct dm_table * t)1065 void dm_table_free_md_mempools(struct dm_table *t)
1066 {
1067 	dm_free_md_mempools(t->mempools);
1068 	t->mempools = NULL;
1069 }
1070 
dm_table_get_md_mempools(struct dm_table * t)1071 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1072 {
1073 	return t->mempools;
1074 }
1075 
setup_indexes(struct dm_table * t)1076 static int setup_indexes(struct dm_table *t)
1077 {
1078 	int i;
1079 	unsigned int total = 0;
1080 	sector_t *indexes;
1081 
1082 	/* allocate the space for *all* the indexes */
1083 	for (i = t->depth - 2; i >= 0; i--) {
1084 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1085 		total += t->counts[i];
1086 	}
1087 
1088 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1089 	if (!indexes)
1090 		return -ENOMEM;
1091 
1092 	/* set up internal nodes, bottom-up */
1093 	for (i = t->depth - 2; i >= 0; i--) {
1094 		t->index[i] = indexes;
1095 		indexes += (KEYS_PER_NODE * t->counts[i]);
1096 		setup_btree_index(i, t);
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 /*
1103  * Builds the btree to index the map.
1104  */
dm_table_build_index(struct dm_table * t)1105 static int dm_table_build_index(struct dm_table *t)
1106 {
1107 	int r = 0;
1108 	unsigned int leaf_nodes;
1109 
1110 	/* how many indexes will the btree have ? */
1111 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1112 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1113 
1114 	/* leaf layer has already been set up */
1115 	t->counts[t->depth - 1] = leaf_nodes;
1116 	t->index[t->depth - 1] = t->highs;
1117 
1118 	if (t->depth >= 2)
1119 		r = setup_indexes(t);
1120 
1121 	return r;
1122 }
1123 
integrity_profile_exists(struct gendisk * disk)1124 static bool integrity_profile_exists(struct gendisk *disk)
1125 {
1126 	return !!blk_get_integrity(disk);
1127 }
1128 
1129 /*
1130  * Get a disk whose integrity profile reflects the table's profile.
1131  * Returns NULL if integrity support was inconsistent or unavailable.
1132  */
dm_table_get_integrity_disk(struct dm_table * t)1133 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1134 {
1135 	struct list_head *devices = dm_table_get_devices(t);
1136 	struct dm_dev_internal *dd = NULL;
1137 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1138 	unsigned i;
1139 
1140 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1141 		struct dm_target *ti = dm_table_get_target(t, i);
1142 		if (!dm_target_passes_integrity(ti->type))
1143 			goto no_integrity;
1144 	}
1145 
1146 	list_for_each_entry(dd, devices, list) {
1147 		template_disk = dd->dm_dev->bdev->bd_disk;
1148 		if (!integrity_profile_exists(template_disk))
1149 			goto no_integrity;
1150 		else if (prev_disk &&
1151 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1152 			goto no_integrity;
1153 		prev_disk = template_disk;
1154 	}
1155 
1156 	return template_disk;
1157 
1158 no_integrity:
1159 	if (prev_disk)
1160 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1161 		       dm_device_name(t->md),
1162 		       prev_disk->disk_name,
1163 		       template_disk->disk_name);
1164 	return NULL;
1165 }
1166 
1167 /*
1168  * Register the mapped device for blk_integrity support if the
1169  * underlying devices have an integrity profile.  But all devices may
1170  * not have matching profiles (checking all devices isn't reliable
1171  * during table load because this table may use other DM device(s) which
1172  * must be resumed before they will have an initialized integity
1173  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1174  * profile validation: First pass during table load, final pass during
1175  * resume.
1176  */
dm_table_register_integrity(struct dm_table * t)1177 static int dm_table_register_integrity(struct dm_table *t)
1178 {
1179 	struct mapped_device *md = t->md;
1180 	struct gendisk *template_disk = NULL;
1181 
1182 	/* If target handles integrity itself do not register it here. */
1183 	if (t->integrity_added)
1184 		return 0;
1185 
1186 	template_disk = dm_table_get_integrity_disk(t);
1187 	if (!template_disk)
1188 		return 0;
1189 
1190 	if (!integrity_profile_exists(dm_disk(md))) {
1191 		t->integrity_supported = true;
1192 		/*
1193 		 * Register integrity profile during table load; we can do
1194 		 * this because the final profile must match during resume.
1195 		 */
1196 		blk_integrity_register(dm_disk(md),
1197 				       blk_get_integrity(template_disk));
1198 		return 0;
1199 	}
1200 
1201 	/*
1202 	 * If DM device already has an initialized integrity
1203 	 * profile the new profile should not conflict.
1204 	 */
1205 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1206 		DMWARN("%s: conflict with existing integrity profile: "
1207 		       "%s profile mismatch",
1208 		       dm_device_name(t->md),
1209 		       template_disk->disk_name);
1210 		return 1;
1211 	}
1212 
1213 	/* Preserve existing integrity profile */
1214 	t->integrity_supported = true;
1215 	return 0;
1216 }
1217 
1218 /*
1219  * Prepares the table for use by building the indices,
1220  * setting the type, and allocating mempools.
1221  */
dm_table_complete(struct dm_table * t)1222 int dm_table_complete(struct dm_table *t)
1223 {
1224 	int r;
1225 
1226 	r = dm_table_determine_type(t);
1227 	if (r) {
1228 		DMERR("unable to determine table type");
1229 		return r;
1230 	}
1231 
1232 	r = dm_table_build_index(t);
1233 	if (r) {
1234 		DMERR("unable to build btrees");
1235 		return r;
1236 	}
1237 
1238 	r = dm_table_register_integrity(t);
1239 	if (r) {
1240 		DMERR("could not register integrity profile.");
1241 		return r;
1242 	}
1243 
1244 	r = dm_table_alloc_md_mempools(t, t->md);
1245 	if (r)
1246 		DMERR("unable to allocate mempools");
1247 
1248 	return r;
1249 }
1250 
1251 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1252 void dm_table_event_callback(struct dm_table *t,
1253 			     void (*fn)(void *), void *context)
1254 {
1255 	mutex_lock(&_event_lock);
1256 	t->event_fn = fn;
1257 	t->event_context = context;
1258 	mutex_unlock(&_event_lock);
1259 }
1260 
dm_table_event(struct dm_table * t)1261 void dm_table_event(struct dm_table *t)
1262 {
1263 	mutex_lock(&_event_lock);
1264 	if (t->event_fn)
1265 		t->event_fn(t->event_context);
1266 	mutex_unlock(&_event_lock);
1267 }
1268 EXPORT_SYMBOL(dm_table_event);
1269 
dm_table_get_size(struct dm_table * t)1270 inline sector_t dm_table_get_size(struct dm_table *t)
1271 {
1272 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1273 }
1274 EXPORT_SYMBOL(dm_table_get_size);
1275 
dm_table_get_target(struct dm_table * t,unsigned int index)1276 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1277 {
1278 	if (index >= t->num_targets)
1279 		return NULL;
1280 
1281 	return t->targets + index;
1282 }
1283 
1284 /*
1285  * Search the btree for the correct target.
1286  *
1287  * Caller should check returned pointer for NULL
1288  * to trap I/O beyond end of device.
1289  */
dm_table_find_target(struct dm_table * t,sector_t sector)1290 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1291 {
1292 	unsigned int l, n = 0, k = 0;
1293 	sector_t *node;
1294 
1295 	if (unlikely(sector >= dm_table_get_size(t)))
1296 		return NULL;
1297 
1298 	for (l = 0; l < t->depth; l++) {
1299 		n = get_child(n, k);
1300 		node = get_node(t, l, n);
1301 
1302 		for (k = 0; k < KEYS_PER_NODE; k++)
1303 			if (node[k] >= sector)
1304 				break;
1305 	}
1306 
1307 	return &t->targets[(KEYS_PER_NODE * n) + k];
1308 }
1309 
1310 /*
1311  * type->iterate_devices() should be called when the sanity check needs to
1312  * iterate and check all underlying data devices. iterate_devices() will
1313  * iterate all underlying data devices until it encounters a non-zero return
1314  * code, returned by whether the input iterate_devices_callout_fn, or
1315  * iterate_devices() itself internally.
1316  *
1317  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1318  * iterate multiple underlying devices internally, in which case a non-zero
1319  * return code returned by iterate_devices_callout_fn will stop the iteration
1320  * in advance.
1321  *
1322  * Cases requiring _any_ underlying device supporting some kind of attribute,
1323  * should use the iteration structure like dm_table_any_dev_attr(), or call
1324  * it directly. @func should handle semantics of positive examples, e.g.
1325  * capable of something.
1326  *
1327  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1328  * should use the iteration structure like dm_table_supports_nowait() or
1329  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1330  * uses an @anti_func that handle semantics of counter examples, e.g. not
1331  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1332  */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1333 static bool dm_table_any_dev_attr(struct dm_table *t,
1334 				  iterate_devices_callout_fn func, void *data)
1335 {
1336 	struct dm_target *ti;
1337 	unsigned int i;
1338 
1339 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1340 		ti = dm_table_get_target(t, i);
1341 
1342 		if (ti->type->iterate_devices &&
1343 		    ti->type->iterate_devices(ti, func, data))
1344 			return true;
1345         }
1346 
1347 	return false;
1348 }
1349 
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1350 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1351 			sector_t start, sector_t len, void *data)
1352 {
1353 	unsigned *num_devices = data;
1354 
1355 	(*num_devices)++;
1356 
1357 	return 0;
1358 }
1359 
1360 /*
1361  * Check whether a table has no data devices attached using each
1362  * target's iterate_devices method.
1363  * Returns false if the result is unknown because a target doesn't
1364  * support iterate_devices.
1365  */
dm_table_has_no_data_devices(struct dm_table * table)1366 bool dm_table_has_no_data_devices(struct dm_table *table)
1367 {
1368 	struct dm_target *ti;
1369 	unsigned i, num_devices;
1370 
1371 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1372 		ti = dm_table_get_target(table, i);
1373 
1374 		if (!ti->type->iterate_devices)
1375 			return false;
1376 
1377 		num_devices = 0;
1378 		ti->type->iterate_devices(ti, count_device, &num_devices);
1379 		if (num_devices)
1380 			return false;
1381 	}
1382 
1383 	return true;
1384 }
1385 
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1386 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1387 				  sector_t start, sector_t len, void *data)
1388 {
1389 	struct request_queue *q = bdev_get_queue(dev->bdev);
1390 	enum blk_zoned_model *zoned_model = data;
1391 
1392 	return !q || blk_queue_zoned_model(q) != *zoned_model;
1393 }
1394 
1395 /*
1396  * Check the device zoned model based on the target feature flag. If the target
1397  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1398  * also accepted but all devices must have the same zoned model. If the target
1399  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1400  * zoned model with all zoned devices having the same zone size.
1401  */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1402 static bool dm_table_supports_zoned_model(struct dm_table *t,
1403 					  enum blk_zoned_model zoned_model)
1404 {
1405 	struct dm_target *ti;
1406 	unsigned i;
1407 
1408 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1409 		ti = dm_table_get_target(t, i);
1410 
1411 		if (dm_target_supports_zoned_hm(ti->type)) {
1412 			if (!ti->type->iterate_devices ||
1413 			    ti->type->iterate_devices(ti, device_not_zoned_model,
1414 						      &zoned_model))
1415 				return false;
1416 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1417 			if (zoned_model == BLK_ZONED_HM)
1418 				return false;
1419 		}
1420 	}
1421 
1422 	return true;
1423 }
1424 
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1425 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1426 					   sector_t start, sector_t len, void *data)
1427 {
1428 	struct request_queue *q = bdev_get_queue(dev->bdev);
1429 	unsigned int *zone_sectors = data;
1430 
1431 	if (!blk_queue_is_zoned(q))
1432 		return 0;
1433 
1434 	return !q || blk_queue_zone_sectors(q) != *zone_sectors;
1435 }
1436 
1437 /*
1438  * Check consistency of zoned model and zone sectors across all targets. For
1439  * zone sectors, if the destination device is a zoned block device, it shall
1440  * have the specified zone_sectors.
1441  */
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1442 static int validate_hardware_zoned_model(struct dm_table *table,
1443 					 enum blk_zoned_model zoned_model,
1444 					 unsigned int zone_sectors)
1445 {
1446 	if (zoned_model == BLK_ZONED_NONE)
1447 		return 0;
1448 
1449 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1450 		DMERR("%s: zoned model is not consistent across all devices",
1451 		      dm_device_name(table->md));
1452 		return -EINVAL;
1453 	}
1454 
1455 	/* Check zone size validity and compatibility */
1456 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1457 		return -EINVAL;
1458 
1459 	if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1460 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1461 		      dm_device_name(table->md));
1462 		return -EINVAL;
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 /*
1469  * Establish the new table's queue_limits and validate them.
1470  */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1471 int dm_calculate_queue_limits(struct dm_table *table,
1472 			      struct queue_limits *limits)
1473 {
1474 	struct dm_target *ti;
1475 	struct queue_limits ti_limits;
1476 	unsigned i;
1477 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1478 	unsigned int zone_sectors = 0;
1479 
1480 	blk_set_stacking_limits(limits);
1481 
1482 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1483 		blk_set_stacking_limits(&ti_limits);
1484 
1485 		ti = dm_table_get_target(table, i);
1486 
1487 		if (!ti->type->iterate_devices)
1488 			goto combine_limits;
1489 
1490 		/*
1491 		 * Combine queue limits of all the devices this target uses.
1492 		 */
1493 		ti->type->iterate_devices(ti, dm_set_device_limits,
1494 					  &ti_limits);
1495 
1496 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1497 			/*
1498 			 * After stacking all limits, validate all devices
1499 			 * in table support this zoned model and zone sectors.
1500 			 */
1501 			zoned_model = ti_limits.zoned;
1502 			zone_sectors = ti_limits.chunk_sectors;
1503 		}
1504 
1505 		/* Set I/O hints portion of queue limits */
1506 		if (ti->type->io_hints)
1507 			ti->type->io_hints(ti, &ti_limits);
1508 
1509 		/*
1510 		 * Check each device area is consistent with the target's
1511 		 * overall queue limits.
1512 		 */
1513 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1514 					      &ti_limits))
1515 			return -EINVAL;
1516 
1517 combine_limits:
1518 		/*
1519 		 * Merge this target's queue limits into the overall limits
1520 		 * for the table.
1521 		 */
1522 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1523 			DMWARN("%s: adding target device "
1524 			       "(start sect %llu len %llu) "
1525 			       "caused an alignment inconsistency",
1526 			       dm_device_name(table->md),
1527 			       (unsigned long long) ti->begin,
1528 			       (unsigned long long) ti->len);
1529 	}
1530 
1531 	/*
1532 	 * Verify that the zoned model and zone sectors, as determined before
1533 	 * any .io_hints override, are the same across all devices in the table.
1534 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1535 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1536 	 * BUT...
1537 	 */
1538 	if (limits->zoned != BLK_ZONED_NONE) {
1539 		/*
1540 		 * ...IF the above limits stacking determined a zoned model
1541 		 * validate that all of the table's devices conform to it.
1542 		 */
1543 		zoned_model = limits->zoned;
1544 		zone_sectors = limits->chunk_sectors;
1545 	}
1546 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1547 		return -EINVAL;
1548 
1549 	return validate_hardware_logical_block_alignment(table, limits);
1550 }
1551 
1552 /*
1553  * Verify that all devices have an integrity profile that matches the
1554  * DM device's registered integrity profile.  If the profiles don't
1555  * match then unregister the DM device's integrity profile.
1556  */
dm_table_verify_integrity(struct dm_table * t)1557 static void dm_table_verify_integrity(struct dm_table *t)
1558 {
1559 	struct gendisk *template_disk = NULL;
1560 
1561 	if (t->integrity_added)
1562 		return;
1563 
1564 	if (t->integrity_supported) {
1565 		/*
1566 		 * Verify that the original integrity profile
1567 		 * matches all the devices in this table.
1568 		 */
1569 		template_disk = dm_table_get_integrity_disk(t);
1570 		if (template_disk &&
1571 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1572 			return;
1573 	}
1574 
1575 	if (integrity_profile_exists(dm_disk(t->md))) {
1576 		DMWARN("%s: unable to establish an integrity profile",
1577 		       dm_device_name(t->md));
1578 		blk_integrity_unregister(dm_disk(t->md));
1579 	}
1580 }
1581 
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1582 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1583 				sector_t start, sector_t len, void *data)
1584 {
1585 	unsigned long flush = (unsigned long) data;
1586 	struct request_queue *q = bdev_get_queue(dev->bdev);
1587 
1588 	return q && (q->queue_flags & flush);
1589 }
1590 
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1591 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1592 {
1593 	struct dm_target *ti;
1594 	unsigned i;
1595 
1596 	/*
1597 	 * Require at least one underlying device to support flushes.
1598 	 * t->devices includes internal dm devices such as mirror logs
1599 	 * so we need to use iterate_devices here, which targets
1600 	 * supporting flushes must provide.
1601 	 */
1602 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1603 		ti = dm_table_get_target(t, i);
1604 
1605 		if (!ti->num_flush_bios)
1606 			continue;
1607 
1608 		if (ti->flush_supported)
1609 			return true;
1610 
1611 		if (ti->type->iterate_devices &&
1612 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1613 			return true;
1614 	}
1615 
1616 	return false;
1617 }
1618 
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1619 static int device_dax_write_cache_enabled(struct dm_target *ti,
1620 					  struct dm_dev *dev, sector_t start,
1621 					  sector_t len, void *data)
1622 {
1623 	struct dax_device *dax_dev = dev->dax_dev;
1624 
1625 	if (!dax_dev)
1626 		return false;
1627 
1628 	if (dax_write_cache_enabled(dax_dev))
1629 		return true;
1630 	return false;
1631 }
1632 
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1633 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1634 				sector_t start, sector_t len, void *data)
1635 {
1636 	struct request_queue *q = bdev_get_queue(dev->bdev);
1637 
1638 	return q && !blk_queue_nonrot(q);
1639 }
1640 
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1641 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1642 			     sector_t start, sector_t len, void *data)
1643 {
1644 	struct request_queue *q = bdev_get_queue(dev->bdev);
1645 
1646 	return q && !blk_queue_add_random(q);
1647 }
1648 
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1649 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1650 					 sector_t start, sector_t len, void *data)
1651 {
1652 	struct request_queue *q = bdev_get_queue(dev->bdev);
1653 
1654 	return q && !q->limits.max_write_same_sectors;
1655 }
1656 
dm_table_supports_write_same(struct dm_table * t)1657 static bool dm_table_supports_write_same(struct dm_table *t)
1658 {
1659 	struct dm_target *ti;
1660 	unsigned i;
1661 
1662 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1663 		ti = dm_table_get_target(t, i);
1664 
1665 		if (!ti->num_write_same_bios)
1666 			return false;
1667 
1668 		if (!ti->type->iterate_devices ||
1669 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1670 			return false;
1671 	}
1672 
1673 	return true;
1674 }
1675 
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1676 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1677 					   sector_t start, sector_t len, void *data)
1678 {
1679 	struct request_queue *q = bdev_get_queue(dev->bdev);
1680 
1681 	return q && !q->limits.max_write_zeroes_sectors;
1682 }
1683 
dm_table_supports_write_zeroes(struct dm_table * t)1684 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1685 {
1686 	struct dm_target *ti;
1687 	unsigned i = 0;
1688 
1689 	while (i < dm_table_get_num_targets(t)) {
1690 		ti = dm_table_get_target(t, i++);
1691 
1692 		if (!ti->num_write_zeroes_bios)
1693 			return false;
1694 
1695 		if (!ti->type->iterate_devices ||
1696 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1697 			return false;
1698 	}
1699 
1700 	return true;
1701 }
1702 
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1703 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1704 				     sector_t start, sector_t len, void *data)
1705 {
1706 	struct request_queue *q = bdev_get_queue(dev->bdev);
1707 
1708 	return q && !blk_queue_nowait(q);
1709 }
1710 
dm_table_supports_nowait(struct dm_table * t)1711 static bool dm_table_supports_nowait(struct dm_table *t)
1712 {
1713 	struct dm_target *ti;
1714 	unsigned i = 0;
1715 
1716 	while (i < dm_table_get_num_targets(t)) {
1717 		ti = dm_table_get_target(t, i++);
1718 
1719 		if (!dm_target_supports_nowait(ti->type))
1720 			return false;
1721 
1722 		if (!ti->type->iterate_devices ||
1723 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1724 			return false;
1725 	}
1726 
1727 	return true;
1728 }
1729 
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1730 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1731 				      sector_t start, sector_t len, void *data)
1732 {
1733 	struct request_queue *q = bdev_get_queue(dev->bdev);
1734 
1735 	return q && !blk_queue_discard(q);
1736 }
1737 
dm_table_supports_discards(struct dm_table * t)1738 static bool dm_table_supports_discards(struct dm_table *t)
1739 {
1740 	struct dm_target *ti;
1741 	unsigned i;
1742 
1743 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1744 		ti = dm_table_get_target(t, i);
1745 
1746 		if (!ti->num_discard_bios)
1747 			return false;
1748 
1749 		/*
1750 		 * Either the target provides discard support (as implied by setting
1751 		 * 'discards_supported') or it relies on _all_ data devices having
1752 		 * discard support.
1753 		 */
1754 		if (!ti->discards_supported &&
1755 		    (!ti->type->iterate_devices ||
1756 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1757 			return false;
1758 	}
1759 
1760 	return true;
1761 }
1762 
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1763 static int device_not_secure_erase_capable(struct dm_target *ti,
1764 					   struct dm_dev *dev, sector_t start,
1765 					   sector_t len, void *data)
1766 {
1767 	struct request_queue *q = bdev_get_queue(dev->bdev);
1768 
1769 	return q && !blk_queue_secure_erase(q);
1770 }
1771 
dm_table_supports_secure_erase(struct dm_table * t)1772 static bool dm_table_supports_secure_erase(struct dm_table *t)
1773 {
1774 	struct dm_target *ti;
1775 	unsigned int i;
1776 
1777 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1778 		ti = dm_table_get_target(t, i);
1779 
1780 		if (!ti->num_secure_erase_bios)
1781 			return false;
1782 
1783 		if (!ti->type->iterate_devices ||
1784 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1785 			return false;
1786 	}
1787 
1788 	return true;
1789 }
1790 
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1791 static int device_requires_stable_pages(struct dm_target *ti,
1792 					struct dm_dev *dev, sector_t start,
1793 					sector_t len, void *data)
1794 {
1795 	struct request_queue *q = bdev_get_queue(dev->bdev);
1796 
1797 	return q && blk_queue_stable_writes(q);
1798 }
1799 
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1800 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1801 			       struct queue_limits *limits)
1802 {
1803 	bool wc = false, fua = false;
1804 	int page_size = PAGE_SIZE;
1805 
1806 	/*
1807 	 * Copy table's limits to the DM device's request_queue
1808 	 */
1809 	q->limits = *limits;
1810 
1811 	if (dm_table_supports_nowait(t))
1812 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1813 	else
1814 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1815 
1816 	if (!dm_table_supports_discards(t)) {
1817 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1818 		/* Must also clear discard limits... */
1819 		q->limits.max_discard_sectors = 0;
1820 		q->limits.max_hw_discard_sectors = 0;
1821 		q->limits.discard_granularity = 0;
1822 		q->limits.discard_alignment = 0;
1823 		q->limits.discard_misaligned = 0;
1824 	} else
1825 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1826 
1827 	if (dm_table_supports_secure_erase(t))
1828 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1829 
1830 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1831 		wc = true;
1832 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1833 			fua = true;
1834 	}
1835 	blk_queue_write_cache(q, wc, fua);
1836 
1837 	if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
1838 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1839 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
1840 			set_dax_synchronous(t->md->dax_dev);
1841 	}
1842 	else
1843 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1844 
1845 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1846 		dax_write_cache(t->md->dax_dev, true);
1847 
1848 	/* Ensure that all underlying devices are non-rotational. */
1849 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1850 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1851 	else
1852 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1853 
1854 	if (!dm_table_supports_write_same(t))
1855 		q->limits.max_write_same_sectors = 0;
1856 	if (!dm_table_supports_write_zeroes(t))
1857 		q->limits.max_write_zeroes_sectors = 0;
1858 
1859 	dm_table_verify_integrity(t);
1860 
1861 	/*
1862 	 * Some devices don't use blk_integrity but still want stable pages
1863 	 * because they do their own checksumming.
1864 	 * If any underlying device requires stable pages, a table must require
1865 	 * them as well.  Only targets that support iterate_devices are considered:
1866 	 * don't want error, zero, etc to require stable pages.
1867 	 */
1868 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
1869 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1870 	else
1871 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1872 
1873 	/*
1874 	 * Determine whether or not this queue's I/O timings contribute
1875 	 * to the entropy pool, Only request-based targets use this.
1876 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1877 	 * have it set.
1878 	 */
1879 	if (blk_queue_add_random(q) &&
1880 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
1881 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1882 
1883 	/*
1884 	 * For a zoned target, the number of zones should be updated for the
1885 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1886 	 * target, this is all that is needed.
1887 	 */
1888 #ifdef CONFIG_BLK_DEV_ZONED
1889 	if (blk_queue_is_zoned(q)) {
1890 		WARN_ON_ONCE(queue_is_mq(q));
1891 		q->nr_zones = blkdev_nr_zones(t->md->disk);
1892 	}
1893 #endif
1894 
1895 	blk_queue_update_readahead(q);
1896 }
1897 
dm_table_get_num_targets(struct dm_table * t)1898 unsigned int dm_table_get_num_targets(struct dm_table *t)
1899 {
1900 	return t->num_targets;
1901 }
1902 
dm_table_get_devices(struct dm_table * t)1903 struct list_head *dm_table_get_devices(struct dm_table *t)
1904 {
1905 	return &t->devices;
1906 }
1907 
dm_table_get_mode(struct dm_table * t)1908 fmode_t dm_table_get_mode(struct dm_table *t)
1909 {
1910 	return t->mode;
1911 }
1912 EXPORT_SYMBOL(dm_table_get_mode);
1913 
1914 enum suspend_mode {
1915 	PRESUSPEND,
1916 	PRESUSPEND_UNDO,
1917 	POSTSUSPEND,
1918 };
1919 
suspend_targets(struct dm_table * t,enum suspend_mode mode)1920 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1921 {
1922 	int i = t->num_targets;
1923 	struct dm_target *ti = t->targets;
1924 
1925 	lockdep_assert_held(&t->md->suspend_lock);
1926 
1927 	while (i--) {
1928 		switch (mode) {
1929 		case PRESUSPEND:
1930 			if (ti->type->presuspend)
1931 				ti->type->presuspend(ti);
1932 			break;
1933 		case PRESUSPEND_UNDO:
1934 			if (ti->type->presuspend_undo)
1935 				ti->type->presuspend_undo(ti);
1936 			break;
1937 		case POSTSUSPEND:
1938 			if (ti->type->postsuspend)
1939 				ti->type->postsuspend(ti);
1940 			break;
1941 		}
1942 		ti++;
1943 	}
1944 }
1945 
dm_table_presuspend_targets(struct dm_table * t)1946 void dm_table_presuspend_targets(struct dm_table *t)
1947 {
1948 	if (!t)
1949 		return;
1950 
1951 	suspend_targets(t, PRESUSPEND);
1952 }
1953 
dm_table_presuspend_undo_targets(struct dm_table * t)1954 void dm_table_presuspend_undo_targets(struct dm_table *t)
1955 {
1956 	if (!t)
1957 		return;
1958 
1959 	suspend_targets(t, PRESUSPEND_UNDO);
1960 }
1961 
dm_table_postsuspend_targets(struct dm_table * t)1962 void dm_table_postsuspend_targets(struct dm_table *t)
1963 {
1964 	if (!t)
1965 		return;
1966 
1967 	suspend_targets(t, POSTSUSPEND);
1968 }
1969 
dm_table_resume_targets(struct dm_table * t)1970 int dm_table_resume_targets(struct dm_table *t)
1971 {
1972 	int i, r = 0;
1973 
1974 	lockdep_assert_held(&t->md->suspend_lock);
1975 
1976 	for (i = 0; i < t->num_targets; i++) {
1977 		struct dm_target *ti = t->targets + i;
1978 
1979 		if (!ti->type->preresume)
1980 			continue;
1981 
1982 		r = ti->type->preresume(ti);
1983 		if (r) {
1984 			DMERR("%s: %s: preresume failed, error = %d",
1985 			      dm_device_name(t->md), ti->type->name, r);
1986 			return r;
1987 		}
1988 	}
1989 
1990 	for (i = 0; i < t->num_targets; i++) {
1991 		struct dm_target *ti = t->targets + i;
1992 
1993 		if (ti->type->resume)
1994 			ti->type->resume(ti);
1995 	}
1996 
1997 	return 0;
1998 }
1999 
dm_table_get_md(struct dm_table * t)2000 struct mapped_device *dm_table_get_md(struct dm_table *t)
2001 {
2002 	return t->md;
2003 }
2004 EXPORT_SYMBOL(dm_table_get_md);
2005 
dm_table_device_name(struct dm_table * t)2006 const char *dm_table_device_name(struct dm_table *t)
2007 {
2008 	return dm_device_name(t->md);
2009 }
2010 EXPORT_SYMBOL_GPL(dm_table_device_name);
2011 
dm_table_run_md_queue_async(struct dm_table * t)2012 void dm_table_run_md_queue_async(struct dm_table *t)
2013 {
2014 	if (!dm_table_request_based(t))
2015 		return;
2016 
2017 	if (t->md->queue)
2018 		blk_mq_run_hw_queues(t->md->queue, true);
2019 }
2020 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2021 
2022