1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 /*
32 * Similar to ceiling(log_size(n))
33 */
int_log(unsigned int n,unsigned int base)34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 int result = 0;
37
38 while (n > 1) {
39 n = dm_div_up(n, base);
40 result++;
41 }
42
43 return result;
44 }
45
46 /*
47 * Calculate the index of the child node of the n'th node k'th key.
48 */
get_child(unsigned int n,unsigned int k)49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 return (n * CHILDREN_PER_NODE) + k;
52 }
53
54 /*
55 * Return the n'th node of level l from table t.
56 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)57 static inline sector_t *get_node(struct dm_table *t,
58 unsigned int l, unsigned int n)
59 {
60 return t->index[l] + (n * KEYS_PER_NODE);
61 }
62
63 /*
64 * Return the highest key that you could lookup from the n'th
65 * node on level l of the btree.
66 */
high(struct dm_table * t,unsigned int l,unsigned int n)67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 for (; l < t->depth - 1; l++)
70 n = get_child(n, CHILDREN_PER_NODE - 1);
71
72 if (n >= t->counts[l])
73 return (sector_t) - 1;
74
75 return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77
78 /*
79 * Fills in a level of the btree based on the highs of the level
80 * below it.
81 */
setup_btree_index(unsigned int l,struct dm_table * t)82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 unsigned int n, k;
85 sector_t *node;
86
87 for (n = 0U; n < t->counts[l]; n++) {
88 node = get_node(t, l, n);
89
90 for (k = 0U; k < KEYS_PER_NODE; k++)
91 node[k] = high(t, l + 1, get_child(n, k));
92 }
93
94 return 0;
95 }
96
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99 unsigned long size;
100 void *addr;
101
102 /*
103 * Check that we're not going to overflow.
104 */
105 if (nmemb > (ULONG_MAX / elem_size))
106 return NULL;
107
108 size = nmemb * elem_size;
109 addr = vzalloc(size);
110
111 return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114
115 /*
116 * highs, and targets are managed as dynamic arrays during a
117 * table load.
118 */
alloc_targets(struct dm_table * t,unsigned int num)119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121 sector_t *n_highs;
122 struct dm_target *n_targets;
123
124 /*
125 * Allocate both the target array and offset array at once.
126 */
127 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128 sizeof(sector_t));
129 if (!n_highs)
130 return -ENOMEM;
131
132 n_targets = (struct dm_target *) (n_highs + num);
133
134 memset(n_highs, -1, sizeof(*n_highs) * num);
135 vfree(t->highs);
136
137 t->num_allocated = num;
138 t->highs = n_highs;
139 t->targets = n_targets;
140
141 return 0;
142 }
143
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)144 int dm_table_create(struct dm_table **result, fmode_t mode,
145 unsigned num_targets, struct mapped_device *md)
146 {
147 struct dm_table *t;
148
149 if (num_targets > DM_MAX_TARGETS)
150 return -EOVERFLOW;
151
152 t = kzalloc(sizeof(*t), GFP_KERNEL);
153
154 if (!t)
155 return -ENOMEM;
156
157 INIT_LIST_HEAD(&t->devices);
158
159 if (!num_targets)
160 num_targets = KEYS_PER_NODE;
161
162 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
163
164 if (!num_targets) {
165 kfree(t);
166 return -EOVERFLOW;
167 }
168
169 if (alloc_targets(t, num_targets)) {
170 kfree(t);
171 return -ENOMEM;
172 }
173
174 t->type = DM_TYPE_NONE;
175 t->mode = mode;
176 t->md = md;
177 *result = t;
178 return 0;
179 }
180
free_devices(struct list_head * devices,struct mapped_device * md)181 static void free_devices(struct list_head *devices, struct mapped_device *md)
182 {
183 struct list_head *tmp, *next;
184
185 list_for_each_safe(tmp, next, devices) {
186 struct dm_dev_internal *dd =
187 list_entry(tmp, struct dm_dev_internal, list);
188 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
189 dm_device_name(md), dd->dm_dev->name);
190 dm_put_table_device(md, dd->dm_dev);
191 kfree(dd);
192 }
193 }
194
dm_table_destroy(struct dm_table * t)195 void dm_table_destroy(struct dm_table *t)
196 {
197 unsigned int i;
198
199 if (!t)
200 return;
201
202 /* free the indexes */
203 if (t->depth >= 2)
204 vfree(t->index[t->depth - 2]);
205
206 /* free the targets */
207 for (i = 0; i < t->num_targets; i++) {
208 struct dm_target *tgt = t->targets + i;
209
210 if (tgt->type->dtr)
211 tgt->type->dtr(tgt);
212
213 dm_put_target_type(tgt->type);
214 }
215
216 vfree(t->highs);
217
218 /* free the device list */
219 free_devices(&t->devices, t->md);
220
221 dm_free_md_mempools(t->mempools);
222
223 kfree(t);
224 }
225
226 /*
227 * See if we've already got a device in the list.
228 */
find_device(struct list_head * l,dev_t dev)229 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
230 {
231 struct dm_dev_internal *dd;
232
233 list_for_each_entry (dd, l, list)
234 if (dd->dm_dev->bdev->bd_dev == dev)
235 return dd;
236
237 return NULL;
238 }
239
240 /*
241 * If possible, this checks an area of a destination device is invalid.
242 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)243 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
244 sector_t start, sector_t len, void *data)
245 {
246 struct queue_limits *limits = data;
247 struct block_device *bdev = dev->bdev;
248 sector_t dev_size =
249 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
250 unsigned short logical_block_size_sectors =
251 limits->logical_block_size >> SECTOR_SHIFT;
252 char b[BDEVNAME_SIZE];
253
254 if (!dev_size)
255 return 0;
256
257 if ((start >= dev_size) || (start + len > dev_size)) {
258 DMWARN("%s: %s too small for target: "
259 "start=%llu, len=%llu, dev_size=%llu",
260 dm_device_name(ti->table->md), bdevname(bdev, b),
261 (unsigned long long)start,
262 (unsigned long long)len,
263 (unsigned long long)dev_size);
264 return 1;
265 }
266
267 /*
268 * If the target is mapped to zoned block device(s), check
269 * that the zones are not partially mapped.
270 */
271 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
272 unsigned int zone_sectors = bdev_zone_sectors(bdev);
273
274 if (start & (zone_sectors - 1)) {
275 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
276 dm_device_name(ti->table->md),
277 (unsigned long long)start,
278 zone_sectors, bdevname(bdev, b));
279 return 1;
280 }
281
282 /*
283 * Note: The last zone of a zoned block device may be smaller
284 * than other zones. So for a target mapping the end of a
285 * zoned block device with such a zone, len would not be zone
286 * aligned. We do not allow such last smaller zone to be part
287 * of the mapping here to ensure that mappings with multiple
288 * devices do not end up with a smaller zone in the middle of
289 * the sector range.
290 */
291 if (len & (zone_sectors - 1)) {
292 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
293 dm_device_name(ti->table->md),
294 (unsigned long long)len,
295 zone_sectors, bdevname(bdev, b));
296 return 1;
297 }
298 }
299
300 if (logical_block_size_sectors <= 1)
301 return 0;
302
303 if (start & (logical_block_size_sectors - 1)) {
304 DMWARN("%s: start=%llu not aligned to h/w "
305 "logical block size %u of %s",
306 dm_device_name(ti->table->md),
307 (unsigned long long)start,
308 limits->logical_block_size, bdevname(bdev, b));
309 return 1;
310 }
311
312 if (len & (logical_block_size_sectors - 1)) {
313 DMWARN("%s: len=%llu not aligned to h/w "
314 "logical block size %u of %s",
315 dm_device_name(ti->table->md),
316 (unsigned long long)len,
317 limits->logical_block_size, bdevname(bdev, b));
318 return 1;
319 }
320
321 return 0;
322 }
323
324 /*
325 * This upgrades the mode on an already open dm_dev, being
326 * careful to leave things as they were if we fail to reopen the
327 * device and not to touch the existing bdev field in case
328 * it is accessed concurrently.
329 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)330 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
331 struct mapped_device *md)
332 {
333 int r;
334 struct dm_dev *old_dev, *new_dev;
335
336 old_dev = dd->dm_dev;
337
338 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
339 dd->dm_dev->mode | new_mode, &new_dev);
340 if (r)
341 return r;
342
343 dd->dm_dev = new_dev;
344 dm_put_table_device(md, old_dev);
345
346 return 0;
347 }
348
349 /*
350 * Convert the path to a device
351 */
dm_get_dev_t(const char * path)352 dev_t dm_get_dev_t(const char *path)
353 {
354 dev_t dev;
355 struct block_device *bdev;
356
357 bdev = lookup_bdev(path);
358 if (IS_ERR(bdev))
359 dev = name_to_dev_t(path);
360 else {
361 dev = bdev->bd_dev;
362 bdput(bdev);
363 }
364
365 return dev;
366 }
367 EXPORT_SYMBOL_GPL(dm_get_dev_t);
368
369 /*
370 * Add a device to the list, or just increment the usage count if
371 * it's already present.
372 */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)373 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
374 struct dm_dev **result)
375 {
376 int r;
377 dev_t dev;
378 unsigned int major, minor;
379 char dummy;
380 struct dm_dev_internal *dd;
381 struct dm_table *t = ti->table;
382
383 BUG_ON(!t);
384
385 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
386 /* Extract the major/minor numbers */
387 dev = MKDEV(major, minor);
388 if (MAJOR(dev) != major || MINOR(dev) != minor)
389 return -EOVERFLOW;
390 } else {
391 dev = dm_get_dev_t(path);
392 if (!dev)
393 return -ENODEV;
394 }
395
396 dd = find_device(&t->devices, dev);
397 if (!dd) {
398 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
399 if (!dd)
400 return -ENOMEM;
401
402 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
403 kfree(dd);
404 return r;
405 }
406
407 refcount_set(&dd->count, 1);
408 list_add(&dd->list, &t->devices);
409 goto out;
410
411 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
412 r = upgrade_mode(dd, mode, t->md);
413 if (r)
414 return r;
415 }
416 refcount_inc(&dd->count);
417 out:
418 *result = dd->dm_dev;
419 return 0;
420 }
421 EXPORT_SYMBOL(dm_get_device);
422
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)423 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
424 sector_t start, sector_t len, void *data)
425 {
426 struct queue_limits *limits = data;
427 struct block_device *bdev = dev->bdev;
428 struct request_queue *q = bdev_get_queue(bdev);
429 char b[BDEVNAME_SIZE];
430
431 if (unlikely(!q)) {
432 DMWARN("%s: Cannot set limits for nonexistent device %s",
433 dm_device_name(ti->table->md), bdevname(bdev, b));
434 return 0;
435 }
436
437 if (blk_stack_limits(limits, &q->limits,
438 get_start_sect(bdev) + start) < 0)
439 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
440 "physical_block_size=%u, logical_block_size=%u, "
441 "alignment_offset=%u, start=%llu",
442 dm_device_name(ti->table->md), bdevname(bdev, b),
443 q->limits.physical_block_size,
444 q->limits.logical_block_size,
445 q->limits.alignment_offset,
446 (unsigned long long) start << SECTOR_SHIFT);
447 return 0;
448 }
449
450 /*
451 * Decrement a device's use count and remove it if necessary.
452 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)453 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
454 {
455 int found = 0;
456 struct list_head *devices = &ti->table->devices;
457 struct dm_dev_internal *dd;
458
459 list_for_each_entry(dd, devices, list) {
460 if (dd->dm_dev == d) {
461 found = 1;
462 break;
463 }
464 }
465 if (!found) {
466 DMWARN("%s: device %s not in table devices list",
467 dm_device_name(ti->table->md), d->name);
468 return;
469 }
470 if (refcount_dec_and_test(&dd->count)) {
471 dm_put_table_device(ti->table->md, d);
472 list_del(&dd->list);
473 kfree(dd);
474 }
475 }
476 EXPORT_SYMBOL(dm_put_device);
477
478 /*
479 * Checks to see if the target joins onto the end of the table.
480 */
adjoin(struct dm_table * table,struct dm_target * ti)481 static int adjoin(struct dm_table *table, struct dm_target *ti)
482 {
483 struct dm_target *prev;
484
485 if (!table->num_targets)
486 return !ti->begin;
487
488 prev = &table->targets[table->num_targets - 1];
489 return (ti->begin == (prev->begin + prev->len));
490 }
491
492 /*
493 * Used to dynamically allocate the arg array.
494 *
495 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
496 * process messages even if some device is suspended. These messages have a
497 * small fixed number of arguments.
498 *
499 * On the other hand, dm-switch needs to process bulk data using messages and
500 * excessive use of GFP_NOIO could cause trouble.
501 */
realloc_argv(unsigned * size,char ** old_argv)502 static char **realloc_argv(unsigned *size, char **old_argv)
503 {
504 char **argv;
505 unsigned new_size;
506 gfp_t gfp;
507
508 if (*size) {
509 new_size = *size * 2;
510 gfp = GFP_KERNEL;
511 } else {
512 new_size = 8;
513 gfp = GFP_NOIO;
514 }
515 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
516 if (argv && old_argv) {
517 memcpy(argv, old_argv, *size * sizeof(*argv));
518 *size = new_size;
519 }
520
521 kfree(old_argv);
522 return argv;
523 }
524
525 /*
526 * Destructively splits up the argument list to pass to ctr.
527 */
dm_split_args(int * argc,char *** argvp,char * input)528 int dm_split_args(int *argc, char ***argvp, char *input)
529 {
530 char *start, *end = input, *out, **argv = NULL;
531 unsigned array_size = 0;
532
533 *argc = 0;
534
535 if (!input) {
536 *argvp = NULL;
537 return 0;
538 }
539
540 argv = realloc_argv(&array_size, argv);
541 if (!argv)
542 return -ENOMEM;
543
544 while (1) {
545 /* Skip whitespace */
546 start = skip_spaces(end);
547
548 if (!*start)
549 break; /* success, we hit the end */
550
551 /* 'out' is used to remove any back-quotes */
552 end = out = start;
553 while (*end) {
554 /* Everything apart from '\0' can be quoted */
555 if (*end == '\\' && *(end + 1)) {
556 *out++ = *(end + 1);
557 end += 2;
558 continue;
559 }
560
561 if (isspace(*end))
562 break; /* end of token */
563
564 *out++ = *end++;
565 }
566
567 /* have we already filled the array ? */
568 if ((*argc + 1) > array_size) {
569 argv = realloc_argv(&array_size, argv);
570 if (!argv)
571 return -ENOMEM;
572 }
573
574 /* we know this is whitespace */
575 if (*end)
576 end++;
577
578 /* terminate the string and put it in the array */
579 *out = '\0';
580 argv[*argc] = start;
581 (*argc)++;
582 }
583
584 *argvp = argv;
585 return 0;
586 }
587
588 /*
589 * Impose necessary and sufficient conditions on a devices's table such
590 * that any incoming bio which respects its logical_block_size can be
591 * processed successfully. If it falls across the boundary between
592 * two or more targets, the size of each piece it gets split into must
593 * be compatible with the logical_block_size of the target processing it.
594 */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)595 static int validate_hardware_logical_block_alignment(struct dm_table *table,
596 struct queue_limits *limits)
597 {
598 /*
599 * This function uses arithmetic modulo the logical_block_size
600 * (in units of 512-byte sectors).
601 */
602 unsigned short device_logical_block_size_sects =
603 limits->logical_block_size >> SECTOR_SHIFT;
604
605 /*
606 * Offset of the start of the next table entry, mod logical_block_size.
607 */
608 unsigned short next_target_start = 0;
609
610 /*
611 * Given an aligned bio that extends beyond the end of a
612 * target, how many sectors must the next target handle?
613 */
614 unsigned short remaining = 0;
615
616 struct dm_target *ti;
617 struct queue_limits ti_limits;
618 unsigned i;
619
620 /*
621 * Check each entry in the table in turn.
622 */
623 for (i = 0; i < dm_table_get_num_targets(table); i++) {
624 ti = dm_table_get_target(table, i);
625
626 blk_set_stacking_limits(&ti_limits);
627
628 /* combine all target devices' limits */
629 if (ti->type->iterate_devices)
630 ti->type->iterate_devices(ti, dm_set_device_limits,
631 &ti_limits);
632
633 /*
634 * If the remaining sectors fall entirely within this
635 * table entry are they compatible with its logical_block_size?
636 */
637 if (remaining < ti->len &&
638 remaining & ((ti_limits.logical_block_size >>
639 SECTOR_SHIFT) - 1))
640 break; /* Error */
641
642 next_target_start =
643 (unsigned short) ((next_target_start + ti->len) &
644 (device_logical_block_size_sects - 1));
645 remaining = next_target_start ?
646 device_logical_block_size_sects - next_target_start : 0;
647 }
648
649 if (remaining) {
650 DMWARN("%s: table line %u (start sect %llu len %llu) "
651 "not aligned to h/w logical block size %u",
652 dm_device_name(table->md), i,
653 (unsigned long long) ti->begin,
654 (unsigned long long) ti->len,
655 limits->logical_block_size);
656 return -EINVAL;
657 }
658
659 return 0;
660 }
661
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)662 int dm_table_add_target(struct dm_table *t, const char *type,
663 sector_t start, sector_t len, char *params)
664 {
665 int r = -EINVAL, argc;
666 char **argv;
667 struct dm_target *tgt;
668
669 if (t->singleton) {
670 DMERR("%s: target type %s must appear alone in table",
671 dm_device_name(t->md), t->targets->type->name);
672 return -EINVAL;
673 }
674
675 BUG_ON(t->num_targets >= t->num_allocated);
676
677 tgt = t->targets + t->num_targets;
678 memset(tgt, 0, sizeof(*tgt));
679
680 if (!len) {
681 DMERR("%s: zero-length target", dm_device_name(t->md));
682 return -EINVAL;
683 }
684
685 tgt->type = dm_get_target_type(type);
686 if (!tgt->type) {
687 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
688 return -EINVAL;
689 }
690
691 if (dm_target_needs_singleton(tgt->type)) {
692 if (t->num_targets) {
693 tgt->error = "singleton target type must appear alone in table";
694 goto bad;
695 }
696 t->singleton = true;
697 }
698
699 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
700 tgt->error = "target type may not be included in a read-only table";
701 goto bad;
702 }
703
704 if (t->immutable_target_type) {
705 if (t->immutable_target_type != tgt->type) {
706 tgt->error = "immutable target type cannot be mixed with other target types";
707 goto bad;
708 }
709 } else if (dm_target_is_immutable(tgt->type)) {
710 if (t->num_targets) {
711 tgt->error = "immutable target type cannot be mixed with other target types";
712 goto bad;
713 }
714 t->immutable_target_type = tgt->type;
715 }
716
717 if (dm_target_has_integrity(tgt->type))
718 t->integrity_added = 1;
719
720 tgt->table = t;
721 tgt->begin = start;
722 tgt->len = len;
723 tgt->error = "Unknown error";
724
725 /*
726 * Does this target adjoin the previous one ?
727 */
728 if (!adjoin(t, tgt)) {
729 tgt->error = "Gap in table";
730 goto bad;
731 }
732
733 r = dm_split_args(&argc, &argv, params);
734 if (r) {
735 tgt->error = "couldn't split parameters (insufficient memory)";
736 goto bad;
737 }
738
739 r = tgt->type->ctr(tgt, argc, argv);
740 kfree(argv);
741 if (r)
742 goto bad;
743
744 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
745
746 if (!tgt->num_discard_bios && tgt->discards_supported)
747 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
748 dm_device_name(t->md), type);
749
750 return 0;
751
752 bad:
753 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
754 dm_put_target_type(tgt->type);
755 return r;
756 }
757
758 /*
759 * Target argument parsing helpers.
760 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)761 static int validate_next_arg(const struct dm_arg *arg,
762 struct dm_arg_set *arg_set,
763 unsigned *value, char **error, unsigned grouped)
764 {
765 const char *arg_str = dm_shift_arg(arg_set);
766 char dummy;
767
768 if (!arg_str ||
769 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
770 (*value < arg->min) ||
771 (*value > arg->max) ||
772 (grouped && arg_set->argc < *value)) {
773 *error = arg->error;
774 return -EINVAL;
775 }
776
777 return 0;
778 }
779
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)780 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
781 unsigned *value, char **error)
782 {
783 return validate_next_arg(arg, arg_set, value, error, 0);
784 }
785 EXPORT_SYMBOL(dm_read_arg);
786
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)787 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
788 unsigned *value, char **error)
789 {
790 return validate_next_arg(arg, arg_set, value, error, 1);
791 }
792 EXPORT_SYMBOL(dm_read_arg_group);
793
dm_shift_arg(struct dm_arg_set * as)794 const char *dm_shift_arg(struct dm_arg_set *as)
795 {
796 char *r;
797
798 if (as->argc) {
799 as->argc--;
800 r = *as->argv;
801 as->argv++;
802 return r;
803 }
804
805 return NULL;
806 }
807 EXPORT_SYMBOL(dm_shift_arg);
808
dm_consume_args(struct dm_arg_set * as,unsigned num_args)809 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
810 {
811 BUG_ON(as->argc < num_args);
812 as->argc -= num_args;
813 as->argv += num_args;
814 }
815 EXPORT_SYMBOL(dm_consume_args);
816
__table_type_bio_based(enum dm_queue_mode table_type)817 static bool __table_type_bio_based(enum dm_queue_mode table_type)
818 {
819 return (table_type == DM_TYPE_BIO_BASED ||
820 table_type == DM_TYPE_DAX_BIO_BASED);
821 }
822
__table_type_request_based(enum dm_queue_mode table_type)823 static bool __table_type_request_based(enum dm_queue_mode table_type)
824 {
825 return table_type == DM_TYPE_REQUEST_BASED;
826 }
827
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)828 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
829 {
830 t->type = type;
831 }
832 EXPORT_SYMBOL_GPL(dm_table_set_type);
833
834 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)835 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
836 sector_t start, sector_t len, void *data)
837 {
838 int blocksize = *(int *) data, id;
839 bool rc;
840
841 id = dax_read_lock();
842 rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
843 dax_read_unlock(id);
844
845 return rc;
846 }
847
848 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)849 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
850 sector_t start, sector_t len, void *data)
851 {
852 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
853 }
854
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn,int * blocksize)855 bool dm_table_supports_dax(struct dm_table *t,
856 iterate_devices_callout_fn iterate_fn, int *blocksize)
857 {
858 struct dm_target *ti;
859 unsigned i;
860
861 /* Ensure that all targets support DAX. */
862 for (i = 0; i < dm_table_get_num_targets(t); i++) {
863 ti = dm_table_get_target(t, i);
864
865 if (!ti->type->direct_access)
866 return false;
867
868 if (!ti->type->iterate_devices ||
869 ti->type->iterate_devices(ti, iterate_fn, blocksize))
870 return false;
871 }
872
873 return true;
874 }
875
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)876 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
877 sector_t start, sector_t len, void *data)
878 {
879 struct block_device *bdev = dev->bdev;
880 struct request_queue *q = bdev_get_queue(bdev);
881
882 /* request-based cannot stack on partitions! */
883 if (bdev_is_partition(bdev))
884 return false;
885
886 return queue_is_mq(q);
887 }
888
dm_table_determine_type(struct dm_table * t)889 static int dm_table_determine_type(struct dm_table *t)
890 {
891 unsigned i;
892 unsigned bio_based = 0, request_based = 0, hybrid = 0;
893 struct dm_target *tgt;
894 struct list_head *devices = dm_table_get_devices(t);
895 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
896 int page_size = PAGE_SIZE;
897
898 if (t->type != DM_TYPE_NONE) {
899 /* target already set the table's type */
900 if (t->type == DM_TYPE_BIO_BASED) {
901 /* possibly upgrade to a variant of bio-based */
902 goto verify_bio_based;
903 }
904 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
905 goto verify_rq_based;
906 }
907
908 for (i = 0; i < t->num_targets; i++) {
909 tgt = t->targets + i;
910 if (dm_target_hybrid(tgt))
911 hybrid = 1;
912 else if (dm_target_request_based(tgt))
913 request_based = 1;
914 else
915 bio_based = 1;
916
917 if (bio_based && request_based) {
918 DMERR("Inconsistent table: different target types"
919 " can't be mixed up");
920 return -EINVAL;
921 }
922 }
923
924 if (hybrid && !bio_based && !request_based) {
925 /*
926 * The targets can work either way.
927 * Determine the type from the live device.
928 * Default to bio-based if device is new.
929 */
930 if (__table_type_request_based(live_md_type))
931 request_based = 1;
932 else
933 bio_based = 1;
934 }
935
936 if (bio_based) {
937 verify_bio_based:
938 /* We must use this table as bio-based */
939 t->type = DM_TYPE_BIO_BASED;
940 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
941 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
942 t->type = DM_TYPE_DAX_BIO_BASED;
943 }
944 return 0;
945 }
946
947 BUG_ON(!request_based); /* No targets in this table */
948
949 t->type = DM_TYPE_REQUEST_BASED;
950
951 verify_rq_based:
952 /*
953 * Request-based dm supports only tables that have a single target now.
954 * To support multiple targets, request splitting support is needed,
955 * and that needs lots of changes in the block-layer.
956 * (e.g. request completion process for partial completion.)
957 */
958 if (t->num_targets > 1) {
959 DMERR("request-based DM doesn't support multiple targets");
960 return -EINVAL;
961 }
962
963 if (list_empty(devices)) {
964 int srcu_idx;
965 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
966
967 /* inherit live table's type */
968 if (live_table)
969 t->type = live_table->type;
970 dm_put_live_table(t->md, srcu_idx);
971 return 0;
972 }
973
974 tgt = dm_table_get_immutable_target(t);
975 if (!tgt) {
976 DMERR("table load rejected: immutable target is required");
977 return -EINVAL;
978 } else if (tgt->max_io_len) {
979 DMERR("table load rejected: immutable target that splits IO is not supported");
980 return -EINVAL;
981 }
982
983 /* Non-request-stackable devices can't be used for request-based dm */
984 if (!tgt->type->iterate_devices ||
985 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
986 DMERR("table load rejected: including non-request-stackable devices");
987 return -EINVAL;
988 }
989
990 return 0;
991 }
992
dm_table_get_type(struct dm_table * t)993 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
994 {
995 return t->type;
996 }
997
dm_table_get_immutable_target_type(struct dm_table * t)998 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
999 {
1000 return t->immutable_target_type;
1001 }
1002
dm_table_get_immutable_target(struct dm_table * t)1003 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1004 {
1005 /* Immutable target is implicitly a singleton */
1006 if (t->num_targets > 1 ||
1007 !dm_target_is_immutable(t->targets[0].type))
1008 return NULL;
1009
1010 return t->targets;
1011 }
1012
dm_table_get_wildcard_target(struct dm_table * t)1013 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1014 {
1015 struct dm_target *ti;
1016 unsigned i;
1017
1018 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1019 ti = dm_table_get_target(t, i);
1020 if (dm_target_is_wildcard(ti->type))
1021 return ti;
1022 }
1023
1024 return NULL;
1025 }
1026
dm_table_bio_based(struct dm_table * t)1027 bool dm_table_bio_based(struct dm_table *t)
1028 {
1029 return __table_type_bio_based(dm_table_get_type(t));
1030 }
1031
dm_table_request_based(struct dm_table * t)1032 bool dm_table_request_based(struct dm_table *t)
1033 {
1034 return __table_type_request_based(dm_table_get_type(t));
1035 }
1036
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1037 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1038 {
1039 enum dm_queue_mode type = dm_table_get_type(t);
1040 unsigned per_io_data_size = 0;
1041 unsigned min_pool_size = 0;
1042 struct dm_target *ti;
1043 unsigned i;
1044
1045 if (unlikely(type == DM_TYPE_NONE)) {
1046 DMWARN("no table type is set, can't allocate mempools");
1047 return -EINVAL;
1048 }
1049
1050 if (__table_type_bio_based(type))
1051 for (i = 0; i < t->num_targets; i++) {
1052 ti = t->targets + i;
1053 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1054 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1055 }
1056
1057 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1058 per_io_data_size, min_pool_size);
1059 if (!t->mempools)
1060 return -ENOMEM;
1061
1062 return 0;
1063 }
1064
dm_table_free_md_mempools(struct dm_table * t)1065 void dm_table_free_md_mempools(struct dm_table *t)
1066 {
1067 dm_free_md_mempools(t->mempools);
1068 t->mempools = NULL;
1069 }
1070
dm_table_get_md_mempools(struct dm_table * t)1071 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1072 {
1073 return t->mempools;
1074 }
1075
setup_indexes(struct dm_table * t)1076 static int setup_indexes(struct dm_table *t)
1077 {
1078 int i;
1079 unsigned int total = 0;
1080 sector_t *indexes;
1081
1082 /* allocate the space for *all* the indexes */
1083 for (i = t->depth - 2; i >= 0; i--) {
1084 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1085 total += t->counts[i];
1086 }
1087
1088 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1089 if (!indexes)
1090 return -ENOMEM;
1091
1092 /* set up internal nodes, bottom-up */
1093 for (i = t->depth - 2; i >= 0; i--) {
1094 t->index[i] = indexes;
1095 indexes += (KEYS_PER_NODE * t->counts[i]);
1096 setup_btree_index(i, t);
1097 }
1098
1099 return 0;
1100 }
1101
1102 /*
1103 * Builds the btree to index the map.
1104 */
dm_table_build_index(struct dm_table * t)1105 static int dm_table_build_index(struct dm_table *t)
1106 {
1107 int r = 0;
1108 unsigned int leaf_nodes;
1109
1110 /* how many indexes will the btree have ? */
1111 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1112 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1113
1114 /* leaf layer has already been set up */
1115 t->counts[t->depth - 1] = leaf_nodes;
1116 t->index[t->depth - 1] = t->highs;
1117
1118 if (t->depth >= 2)
1119 r = setup_indexes(t);
1120
1121 return r;
1122 }
1123
integrity_profile_exists(struct gendisk * disk)1124 static bool integrity_profile_exists(struct gendisk *disk)
1125 {
1126 return !!blk_get_integrity(disk);
1127 }
1128
1129 /*
1130 * Get a disk whose integrity profile reflects the table's profile.
1131 * Returns NULL if integrity support was inconsistent or unavailable.
1132 */
dm_table_get_integrity_disk(struct dm_table * t)1133 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1134 {
1135 struct list_head *devices = dm_table_get_devices(t);
1136 struct dm_dev_internal *dd = NULL;
1137 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1138 unsigned i;
1139
1140 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1141 struct dm_target *ti = dm_table_get_target(t, i);
1142 if (!dm_target_passes_integrity(ti->type))
1143 goto no_integrity;
1144 }
1145
1146 list_for_each_entry(dd, devices, list) {
1147 template_disk = dd->dm_dev->bdev->bd_disk;
1148 if (!integrity_profile_exists(template_disk))
1149 goto no_integrity;
1150 else if (prev_disk &&
1151 blk_integrity_compare(prev_disk, template_disk) < 0)
1152 goto no_integrity;
1153 prev_disk = template_disk;
1154 }
1155
1156 return template_disk;
1157
1158 no_integrity:
1159 if (prev_disk)
1160 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1161 dm_device_name(t->md),
1162 prev_disk->disk_name,
1163 template_disk->disk_name);
1164 return NULL;
1165 }
1166
1167 /*
1168 * Register the mapped device for blk_integrity support if the
1169 * underlying devices have an integrity profile. But all devices may
1170 * not have matching profiles (checking all devices isn't reliable
1171 * during table load because this table may use other DM device(s) which
1172 * must be resumed before they will have an initialized integity
1173 * profile). Consequently, stacked DM devices force a 2 stage integrity
1174 * profile validation: First pass during table load, final pass during
1175 * resume.
1176 */
dm_table_register_integrity(struct dm_table * t)1177 static int dm_table_register_integrity(struct dm_table *t)
1178 {
1179 struct mapped_device *md = t->md;
1180 struct gendisk *template_disk = NULL;
1181
1182 /* If target handles integrity itself do not register it here. */
1183 if (t->integrity_added)
1184 return 0;
1185
1186 template_disk = dm_table_get_integrity_disk(t);
1187 if (!template_disk)
1188 return 0;
1189
1190 if (!integrity_profile_exists(dm_disk(md))) {
1191 t->integrity_supported = true;
1192 /*
1193 * Register integrity profile during table load; we can do
1194 * this because the final profile must match during resume.
1195 */
1196 blk_integrity_register(dm_disk(md),
1197 blk_get_integrity(template_disk));
1198 return 0;
1199 }
1200
1201 /*
1202 * If DM device already has an initialized integrity
1203 * profile the new profile should not conflict.
1204 */
1205 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1206 DMWARN("%s: conflict with existing integrity profile: "
1207 "%s profile mismatch",
1208 dm_device_name(t->md),
1209 template_disk->disk_name);
1210 return 1;
1211 }
1212
1213 /* Preserve existing integrity profile */
1214 t->integrity_supported = true;
1215 return 0;
1216 }
1217
1218 /*
1219 * Prepares the table for use by building the indices,
1220 * setting the type, and allocating mempools.
1221 */
dm_table_complete(struct dm_table * t)1222 int dm_table_complete(struct dm_table *t)
1223 {
1224 int r;
1225
1226 r = dm_table_determine_type(t);
1227 if (r) {
1228 DMERR("unable to determine table type");
1229 return r;
1230 }
1231
1232 r = dm_table_build_index(t);
1233 if (r) {
1234 DMERR("unable to build btrees");
1235 return r;
1236 }
1237
1238 r = dm_table_register_integrity(t);
1239 if (r) {
1240 DMERR("could not register integrity profile.");
1241 return r;
1242 }
1243
1244 r = dm_table_alloc_md_mempools(t, t->md);
1245 if (r)
1246 DMERR("unable to allocate mempools");
1247
1248 return r;
1249 }
1250
1251 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1252 void dm_table_event_callback(struct dm_table *t,
1253 void (*fn)(void *), void *context)
1254 {
1255 mutex_lock(&_event_lock);
1256 t->event_fn = fn;
1257 t->event_context = context;
1258 mutex_unlock(&_event_lock);
1259 }
1260
dm_table_event(struct dm_table * t)1261 void dm_table_event(struct dm_table *t)
1262 {
1263 mutex_lock(&_event_lock);
1264 if (t->event_fn)
1265 t->event_fn(t->event_context);
1266 mutex_unlock(&_event_lock);
1267 }
1268 EXPORT_SYMBOL(dm_table_event);
1269
dm_table_get_size(struct dm_table * t)1270 inline sector_t dm_table_get_size(struct dm_table *t)
1271 {
1272 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1273 }
1274 EXPORT_SYMBOL(dm_table_get_size);
1275
dm_table_get_target(struct dm_table * t,unsigned int index)1276 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1277 {
1278 if (index >= t->num_targets)
1279 return NULL;
1280
1281 return t->targets + index;
1282 }
1283
1284 /*
1285 * Search the btree for the correct target.
1286 *
1287 * Caller should check returned pointer for NULL
1288 * to trap I/O beyond end of device.
1289 */
dm_table_find_target(struct dm_table * t,sector_t sector)1290 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1291 {
1292 unsigned int l, n = 0, k = 0;
1293 sector_t *node;
1294
1295 if (unlikely(sector >= dm_table_get_size(t)))
1296 return NULL;
1297
1298 for (l = 0; l < t->depth; l++) {
1299 n = get_child(n, k);
1300 node = get_node(t, l, n);
1301
1302 for (k = 0; k < KEYS_PER_NODE; k++)
1303 if (node[k] >= sector)
1304 break;
1305 }
1306
1307 return &t->targets[(KEYS_PER_NODE * n) + k];
1308 }
1309
1310 /*
1311 * type->iterate_devices() should be called when the sanity check needs to
1312 * iterate and check all underlying data devices. iterate_devices() will
1313 * iterate all underlying data devices until it encounters a non-zero return
1314 * code, returned by whether the input iterate_devices_callout_fn, or
1315 * iterate_devices() itself internally.
1316 *
1317 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1318 * iterate multiple underlying devices internally, in which case a non-zero
1319 * return code returned by iterate_devices_callout_fn will stop the iteration
1320 * in advance.
1321 *
1322 * Cases requiring _any_ underlying device supporting some kind of attribute,
1323 * should use the iteration structure like dm_table_any_dev_attr(), or call
1324 * it directly. @func should handle semantics of positive examples, e.g.
1325 * capable of something.
1326 *
1327 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1328 * should use the iteration structure like dm_table_supports_nowait() or
1329 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1330 * uses an @anti_func that handle semantics of counter examples, e.g. not
1331 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1332 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1333 static bool dm_table_any_dev_attr(struct dm_table *t,
1334 iterate_devices_callout_fn func, void *data)
1335 {
1336 struct dm_target *ti;
1337 unsigned int i;
1338
1339 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1340 ti = dm_table_get_target(t, i);
1341
1342 if (ti->type->iterate_devices &&
1343 ti->type->iterate_devices(ti, func, data))
1344 return true;
1345 }
1346
1347 return false;
1348 }
1349
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1350 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1351 sector_t start, sector_t len, void *data)
1352 {
1353 unsigned *num_devices = data;
1354
1355 (*num_devices)++;
1356
1357 return 0;
1358 }
1359
1360 /*
1361 * Check whether a table has no data devices attached using each
1362 * target's iterate_devices method.
1363 * Returns false if the result is unknown because a target doesn't
1364 * support iterate_devices.
1365 */
dm_table_has_no_data_devices(struct dm_table * table)1366 bool dm_table_has_no_data_devices(struct dm_table *table)
1367 {
1368 struct dm_target *ti;
1369 unsigned i, num_devices;
1370
1371 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1372 ti = dm_table_get_target(table, i);
1373
1374 if (!ti->type->iterate_devices)
1375 return false;
1376
1377 num_devices = 0;
1378 ti->type->iterate_devices(ti, count_device, &num_devices);
1379 if (num_devices)
1380 return false;
1381 }
1382
1383 return true;
1384 }
1385
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1386 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1387 sector_t start, sector_t len, void *data)
1388 {
1389 struct request_queue *q = bdev_get_queue(dev->bdev);
1390 enum blk_zoned_model *zoned_model = data;
1391
1392 return !q || blk_queue_zoned_model(q) != *zoned_model;
1393 }
1394
1395 /*
1396 * Check the device zoned model based on the target feature flag. If the target
1397 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1398 * also accepted but all devices must have the same zoned model. If the target
1399 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1400 * zoned model with all zoned devices having the same zone size.
1401 */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1402 static bool dm_table_supports_zoned_model(struct dm_table *t,
1403 enum blk_zoned_model zoned_model)
1404 {
1405 struct dm_target *ti;
1406 unsigned i;
1407
1408 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1409 ti = dm_table_get_target(t, i);
1410
1411 if (dm_target_supports_zoned_hm(ti->type)) {
1412 if (!ti->type->iterate_devices ||
1413 ti->type->iterate_devices(ti, device_not_zoned_model,
1414 &zoned_model))
1415 return false;
1416 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1417 if (zoned_model == BLK_ZONED_HM)
1418 return false;
1419 }
1420 }
1421
1422 return true;
1423 }
1424
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1425 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1426 sector_t start, sector_t len, void *data)
1427 {
1428 struct request_queue *q = bdev_get_queue(dev->bdev);
1429 unsigned int *zone_sectors = data;
1430
1431 if (!blk_queue_is_zoned(q))
1432 return 0;
1433
1434 return !q || blk_queue_zone_sectors(q) != *zone_sectors;
1435 }
1436
1437 /*
1438 * Check consistency of zoned model and zone sectors across all targets. For
1439 * zone sectors, if the destination device is a zoned block device, it shall
1440 * have the specified zone_sectors.
1441 */
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1442 static int validate_hardware_zoned_model(struct dm_table *table,
1443 enum blk_zoned_model zoned_model,
1444 unsigned int zone_sectors)
1445 {
1446 if (zoned_model == BLK_ZONED_NONE)
1447 return 0;
1448
1449 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1450 DMERR("%s: zoned model is not consistent across all devices",
1451 dm_device_name(table->md));
1452 return -EINVAL;
1453 }
1454
1455 /* Check zone size validity and compatibility */
1456 if (!zone_sectors || !is_power_of_2(zone_sectors))
1457 return -EINVAL;
1458
1459 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1460 DMERR("%s: zone sectors is not consistent across all zoned devices",
1461 dm_device_name(table->md));
1462 return -EINVAL;
1463 }
1464
1465 return 0;
1466 }
1467
1468 /*
1469 * Establish the new table's queue_limits and validate them.
1470 */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1471 int dm_calculate_queue_limits(struct dm_table *table,
1472 struct queue_limits *limits)
1473 {
1474 struct dm_target *ti;
1475 struct queue_limits ti_limits;
1476 unsigned i;
1477 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1478 unsigned int zone_sectors = 0;
1479
1480 blk_set_stacking_limits(limits);
1481
1482 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1483 blk_set_stacking_limits(&ti_limits);
1484
1485 ti = dm_table_get_target(table, i);
1486
1487 if (!ti->type->iterate_devices)
1488 goto combine_limits;
1489
1490 /*
1491 * Combine queue limits of all the devices this target uses.
1492 */
1493 ti->type->iterate_devices(ti, dm_set_device_limits,
1494 &ti_limits);
1495
1496 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1497 /*
1498 * After stacking all limits, validate all devices
1499 * in table support this zoned model and zone sectors.
1500 */
1501 zoned_model = ti_limits.zoned;
1502 zone_sectors = ti_limits.chunk_sectors;
1503 }
1504
1505 /* Set I/O hints portion of queue limits */
1506 if (ti->type->io_hints)
1507 ti->type->io_hints(ti, &ti_limits);
1508
1509 /*
1510 * Check each device area is consistent with the target's
1511 * overall queue limits.
1512 */
1513 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1514 &ti_limits))
1515 return -EINVAL;
1516
1517 combine_limits:
1518 /*
1519 * Merge this target's queue limits into the overall limits
1520 * for the table.
1521 */
1522 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1523 DMWARN("%s: adding target device "
1524 "(start sect %llu len %llu) "
1525 "caused an alignment inconsistency",
1526 dm_device_name(table->md),
1527 (unsigned long long) ti->begin,
1528 (unsigned long long) ti->len);
1529 }
1530
1531 /*
1532 * Verify that the zoned model and zone sectors, as determined before
1533 * any .io_hints override, are the same across all devices in the table.
1534 * - this is especially relevant if .io_hints is emulating a disk-managed
1535 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1536 * BUT...
1537 */
1538 if (limits->zoned != BLK_ZONED_NONE) {
1539 /*
1540 * ...IF the above limits stacking determined a zoned model
1541 * validate that all of the table's devices conform to it.
1542 */
1543 zoned_model = limits->zoned;
1544 zone_sectors = limits->chunk_sectors;
1545 }
1546 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1547 return -EINVAL;
1548
1549 return validate_hardware_logical_block_alignment(table, limits);
1550 }
1551
1552 /*
1553 * Verify that all devices have an integrity profile that matches the
1554 * DM device's registered integrity profile. If the profiles don't
1555 * match then unregister the DM device's integrity profile.
1556 */
dm_table_verify_integrity(struct dm_table * t)1557 static void dm_table_verify_integrity(struct dm_table *t)
1558 {
1559 struct gendisk *template_disk = NULL;
1560
1561 if (t->integrity_added)
1562 return;
1563
1564 if (t->integrity_supported) {
1565 /*
1566 * Verify that the original integrity profile
1567 * matches all the devices in this table.
1568 */
1569 template_disk = dm_table_get_integrity_disk(t);
1570 if (template_disk &&
1571 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1572 return;
1573 }
1574
1575 if (integrity_profile_exists(dm_disk(t->md))) {
1576 DMWARN("%s: unable to establish an integrity profile",
1577 dm_device_name(t->md));
1578 blk_integrity_unregister(dm_disk(t->md));
1579 }
1580 }
1581
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1582 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1583 sector_t start, sector_t len, void *data)
1584 {
1585 unsigned long flush = (unsigned long) data;
1586 struct request_queue *q = bdev_get_queue(dev->bdev);
1587
1588 return q && (q->queue_flags & flush);
1589 }
1590
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1591 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1592 {
1593 struct dm_target *ti;
1594 unsigned i;
1595
1596 /*
1597 * Require at least one underlying device to support flushes.
1598 * t->devices includes internal dm devices such as mirror logs
1599 * so we need to use iterate_devices here, which targets
1600 * supporting flushes must provide.
1601 */
1602 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1603 ti = dm_table_get_target(t, i);
1604
1605 if (!ti->num_flush_bios)
1606 continue;
1607
1608 if (ti->flush_supported)
1609 return true;
1610
1611 if (ti->type->iterate_devices &&
1612 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1613 return true;
1614 }
1615
1616 return false;
1617 }
1618
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1619 static int device_dax_write_cache_enabled(struct dm_target *ti,
1620 struct dm_dev *dev, sector_t start,
1621 sector_t len, void *data)
1622 {
1623 struct dax_device *dax_dev = dev->dax_dev;
1624
1625 if (!dax_dev)
1626 return false;
1627
1628 if (dax_write_cache_enabled(dax_dev))
1629 return true;
1630 return false;
1631 }
1632
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1633 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1634 sector_t start, sector_t len, void *data)
1635 {
1636 struct request_queue *q = bdev_get_queue(dev->bdev);
1637
1638 return q && !blk_queue_nonrot(q);
1639 }
1640
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1641 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1642 sector_t start, sector_t len, void *data)
1643 {
1644 struct request_queue *q = bdev_get_queue(dev->bdev);
1645
1646 return q && !blk_queue_add_random(q);
1647 }
1648
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1649 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1650 sector_t start, sector_t len, void *data)
1651 {
1652 struct request_queue *q = bdev_get_queue(dev->bdev);
1653
1654 return q && !q->limits.max_write_same_sectors;
1655 }
1656
dm_table_supports_write_same(struct dm_table * t)1657 static bool dm_table_supports_write_same(struct dm_table *t)
1658 {
1659 struct dm_target *ti;
1660 unsigned i;
1661
1662 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1663 ti = dm_table_get_target(t, i);
1664
1665 if (!ti->num_write_same_bios)
1666 return false;
1667
1668 if (!ti->type->iterate_devices ||
1669 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1670 return false;
1671 }
1672
1673 return true;
1674 }
1675
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1676 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1677 sector_t start, sector_t len, void *data)
1678 {
1679 struct request_queue *q = bdev_get_queue(dev->bdev);
1680
1681 return q && !q->limits.max_write_zeroes_sectors;
1682 }
1683
dm_table_supports_write_zeroes(struct dm_table * t)1684 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1685 {
1686 struct dm_target *ti;
1687 unsigned i = 0;
1688
1689 while (i < dm_table_get_num_targets(t)) {
1690 ti = dm_table_get_target(t, i++);
1691
1692 if (!ti->num_write_zeroes_bios)
1693 return false;
1694
1695 if (!ti->type->iterate_devices ||
1696 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1697 return false;
1698 }
1699
1700 return true;
1701 }
1702
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1703 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1704 sector_t start, sector_t len, void *data)
1705 {
1706 struct request_queue *q = bdev_get_queue(dev->bdev);
1707
1708 return q && !blk_queue_nowait(q);
1709 }
1710
dm_table_supports_nowait(struct dm_table * t)1711 static bool dm_table_supports_nowait(struct dm_table *t)
1712 {
1713 struct dm_target *ti;
1714 unsigned i = 0;
1715
1716 while (i < dm_table_get_num_targets(t)) {
1717 ti = dm_table_get_target(t, i++);
1718
1719 if (!dm_target_supports_nowait(ti->type))
1720 return false;
1721
1722 if (!ti->type->iterate_devices ||
1723 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1724 return false;
1725 }
1726
1727 return true;
1728 }
1729
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1730 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1731 sector_t start, sector_t len, void *data)
1732 {
1733 struct request_queue *q = bdev_get_queue(dev->bdev);
1734
1735 return q && !blk_queue_discard(q);
1736 }
1737
dm_table_supports_discards(struct dm_table * t)1738 static bool dm_table_supports_discards(struct dm_table *t)
1739 {
1740 struct dm_target *ti;
1741 unsigned i;
1742
1743 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1744 ti = dm_table_get_target(t, i);
1745
1746 if (!ti->num_discard_bios)
1747 return false;
1748
1749 /*
1750 * Either the target provides discard support (as implied by setting
1751 * 'discards_supported') or it relies on _all_ data devices having
1752 * discard support.
1753 */
1754 if (!ti->discards_supported &&
1755 (!ti->type->iterate_devices ||
1756 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1757 return false;
1758 }
1759
1760 return true;
1761 }
1762
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1763 static int device_not_secure_erase_capable(struct dm_target *ti,
1764 struct dm_dev *dev, sector_t start,
1765 sector_t len, void *data)
1766 {
1767 struct request_queue *q = bdev_get_queue(dev->bdev);
1768
1769 return q && !blk_queue_secure_erase(q);
1770 }
1771
dm_table_supports_secure_erase(struct dm_table * t)1772 static bool dm_table_supports_secure_erase(struct dm_table *t)
1773 {
1774 struct dm_target *ti;
1775 unsigned int i;
1776
1777 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1778 ti = dm_table_get_target(t, i);
1779
1780 if (!ti->num_secure_erase_bios)
1781 return false;
1782
1783 if (!ti->type->iterate_devices ||
1784 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1785 return false;
1786 }
1787
1788 return true;
1789 }
1790
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1791 static int device_requires_stable_pages(struct dm_target *ti,
1792 struct dm_dev *dev, sector_t start,
1793 sector_t len, void *data)
1794 {
1795 struct request_queue *q = bdev_get_queue(dev->bdev);
1796
1797 return q && blk_queue_stable_writes(q);
1798 }
1799
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1800 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1801 struct queue_limits *limits)
1802 {
1803 bool wc = false, fua = false;
1804 int page_size = PAGE_SIZE;
1805
1806 /*
1807 * Copy table's limits to the DM device's request_queue
1808 */
1809 q->limits = *limits;
1810
1811 if (dm_table_supports_nowait(t))
1812 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1813 else
1814 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1815
1816 if (!dm_table_supports_discards(t)) {
1817 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1818 /* Must also clear discard limits... */
1819 q->limits.max_discard_sectors = 0;
1820 q->limits.max_hw_discard_sectors = 0;
1821 q->limits.discard_granularity = 0;
1822 q->limits.discard_alignment = 0;
1823 q->limits.discard_misaligned = 0;
1824 } else
1825 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1826
1827 if (dm_table_supports_secure_erase(t))
1828 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1829
1830 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1831 wc = true;
1832 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1833 fua = true;
1834 }
1835 blk_queue_write_cache(q, wc, fua);
1836
1837 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
1838 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1839 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
1840 set_dax_synchronous(t->md->dax_dev);
1841 }
1842 else
1843 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1844
1845 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1846 dax_write_cache(t->md->dax_dev, true);
1847
1848 /* Ensure that all underlying devices are non-rotational. */
1849 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1850 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1851 else
1852 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1853
1854 if (!dm_table_supports_write_same(t))
1855 q->limits.max_write_same_sectors = 0;
1856 if (!dm_table_supports_write_zeroes(t))
1857 q->limits.max_write_zeroes_sectors = 0;
1858
1859 dm_table_verify_integrity(t);
1860
1861 /*
1862 * Some devices don't use blk_integrity but still want stable pages
1863 * because they do their own checksumming.
1864 * If any underlying device requires stable pages, a table must require
1865 * them as well. Only targets that support iterate_devices are considered:
1866 * don't want error, zero, etc to require stable pages.
1867 */
1868 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
1869 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1870 else
1871 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1872
1873 /*
1874 * Determine whether or not this queue's I/O timings contribute
1875 * to the entropy pool, Only request-based targets use this.
1876 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1877 * have it set.
1878 */
1879 if (blk_queue_add_random(q) &&
1880 dm_table_any_dev_attr(t, device_is_not_random, NULL))
1881 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1882
1883 /*
1884 * For a zoned target, the number of zones should be updated for the
1885 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1886 * target, this is all that is needed.
1887 */
1888 #ifdef CONFIG_BLK_DEV_ZONED
1889 if (blk_queue_is_zoned(q)) {
1890 WARN_ON_ONCE(queue_is_mq(q));
1891 q->nr_zones = blkdev_nr_zones(t->md->disk);
1892 }
1893 #endif
1894
1895 blk_queue_update_readahead(q);
1896 }
1897
dm_table_get_num_targets(struct dm_table * t)1898 unsigned int dm_table_get_num_targets(struct dm_table *t)
1899 {
1900 return t->num_targets;
1901 }
1902
dm_table_get_devices(struct dm_table * t)1903 struct list_head *dm_table_get_devices(struct dm_table *t)
1904 {
1905 return &t->devices;
1906 }
1907
dm_table_get_mode(struct dm_table * t)1908 fmode_t dm_table_get_mode(struct dm_table *t)
1909 {
1910 return t->mode;
1911 }
1912 EXPORT_SYMBOL(dm_table_get_mode);
1913
1914 enum suspend_mode {
1915 PRESUSPEND,
1916 PRESUSPEND_UNDO,
1917 POSTSUSPEND,
1918 };
1919
suspend_targets(struct dm_table * t,enum suspend_mode mode)1920 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1921 {
1922 int i = t->num_targets;
1923 struct dm_target *ti = t->targets;
1924
1925 lockdep_assert_held(&t->md->suspend_lock);
1926
1927 while (i--) {
1928 switch (mode) {
1929 case PRESUSPEND:
1930 if (ti->type->presuspend)
1931 ti->type->presuspend(ti);
1932 break;
1933 case PRESUSPEND_UNDO:
1934 if (ti->type->presuspend_undo)
1935 ti->type->presuspend_undo(ti);
1936 break;
1937 case POSTSUSPEND:
1938 if (ti->type->postsuspend)
1939 ti->type->postsuspend(ti);
1940 break;
1941 }
1942 ti++;
1943 }
1944 }
1945
dm_table_presuspend_targets(struct dm_table * t)1946 void dm_table_presuspend_targets(struct dm_table *t)
1947 {
1948 if (!t)
1949 return;
1950
1951 suspend_targets(t, PRESUSPEND);
1952 }
1953
dm_table_presuspend_undo_targets(struct dm_table * t)1954 void dm_table_presuspend_undo_targets(struct dm_table *t)
1955 {
1956 if (!t)
1957 return;
1958
1959 suspend_targets(t, PRESUSPEND_UNDO);
1960 }
1961
dm_table_postsuspend_targets(struct dm_table * t)1962 void dm_table_postsuspend_targets(struct dm_table *t)
1963 {
1964 if (!t)
1965 return;
1966
1967 suspend_targets(t, POSTSUSPEND);
1968 }
1969
dm_table_resume_targets(struct dm_table * t)1970 int dm_table_resume_targets(struct dm_table *t)
1971 {
1972 int i, r = 0;
1973
1974 lockdep_assert_held(&t->md->suspend_lock);
1975
1976 for (i = 0; i < t->num_targets; i++) {
1977 struct dm_target *ti = t->targets + i;
1978
1979 if (!ti->type->preresume)
1980 continue;
1981
1982 r = ti->type->preresume(ti);
1983 if (r) {
1984 DMERR("%s: %s: preresume failed, error = %d",
1985 dm_device_name(t->md), ti->type->name, r);
1986 return r;
1987 }
1988 }
1989
1990 for (i = 0; i < t->num_targets; i++) {
1991 struct dm_target *ti = t->targets + i;
1992
1993 if (ti->type->resume)
1994 ti->type->resume(ti);
1995 }
1996
1997 return 0;
1998 }
1999
dm_table_get_md(struct dm_table * t)2000 struct mapped_device *dm_table_get_md(struct dm_table *t)
2001 {
2002 return t->md;
2003 }
2004 EXPORT_SYMBOL(dm_table_get_md);
2005
dm_table_device_name(struct dm_table * t)2006 const char *dm_table_device_name(struct dm_table *t)
2007 {
2008 return dm_device_name(t->md);
2009 }
2010 EXPORT_SYMBOL_GPL(dm_table_device_name);
2011
dm_table_run_md_queue_async(struct dm_table * t)2012 void dm_table_run_md_queue_async(struct dm_table *t)
2013 {
2014 if (!dm_table_request_based(t))
2015 return;
2016
2017 if (t->md->queue)
2018 blk_mq_run_hw_queues(t->md->queue, true);
2019 }
2020 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2021
2022