• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24 
phys_to_dma_direct(struct device * dev,phys_addr_t phys)25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 		phys_addr_t phys)
27 {
28 	if (force_dma_unencrypted(dev))
29 		return phys_to_dma_unencrypted(dev, phys);
30 	return phys_to_dma(dev, phys);
31 }
32 
dma_direct_to_page(struct device * dev,dma_addr_t dma_addr)33 static inline struct page *dma_direct_to_page(struct device *dev,
34 		dma_addr_t dma_addr)
35 {
36 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38 
dma_direct_get_required_mask(struct device * dev)39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 	u64 max_dma = phys_to_dma_direct(dev, phys);
43 
44 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 
dma_direct_optimal_gfp_mask(struct device * dev,u64 dma_mask,u64 * phys_limit)47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 				  u64 *phys_limit)
49 {
50 	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51 
52 	/*
53 	 * Optimistically try the zone that the physical address mask falls
54 	 * into first.  If that returns memory that isn't actually addressable
55 	 * we will fallback to the next lower zone and try again.
56 	 *
57 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58 	 * zones.
59 	 */
60 	*phys_limit = dma_to_phys(dev, dma_limit);
61 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62 		return GFP_DMA;
63 	if (*phys_limit <= DMA_BIT_MASK(32))
64 		return GFP_DMA32;
65 	return 0;
66 }
67 
dma_coherent_ok(struct device * dev,phys_addr_t phys,size_t size)68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70 	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71 
72 	if (dma_addr == DMA_MAPPING_ERROR)
73 		return false;
74 	return dma_addr + size - 1 <=
75 		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77 
__dma_direct_alloc_pages(struct device * dev,size_t size,gfp_t gfp)78 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
79 		gfp_t gfp)
80 {
81 	int node = dev_to_node(dev);
82 	struct page *page = NULL;
83 	u64 phys_limit;
84 
85 	WARN_ON_ONCE(!PAGE_ALIGNED(size));
86 
87 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
88 					   &phys_limit);
89 	page = dma_alloc_contiguous(dev, size, gfp);
90 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
91 		dma_free_contiguous(dev, page, size);
92 		page = NULL;
93 	}
94 again:
95 	if (!page)
96 		page = alloc_pages_node(node, gfp, get_order(size));
97 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
98 		dma_free_contiguous(dev, page, size);
99 		page = NULL;
100 
101 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
102 		    phys_limit < DMA_BIT_MASK(64) &&
103 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
104 			gfp |= GFP_DMA32;
105 			goto again;
106 		}
107 
108 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
109 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
110 			goto again;
111 		}
112 	}
113 
114 	return page;
115 }
116 
dma_direct_alloc_from_pool(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)117 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
118 		dma_addr_t *dma_handle, gfp_t gfp)
119 {
120 	struct page *page;
121 	u64 phys_mask;
122 	void *ret;
123 
124 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
125 					   &phys_mask);
126 	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
127 	if (!page)
128 		return NULL;
129 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
130 	return ret;
131 }
132 
dma_direct_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)133 void *dma_direct_alloc(struct device *dev, size_t size,
134 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
135 {
136 	struct page *page;
137 	void *ret;
138 	int err;
139 
140 	size = PAGE_ALIGN(size);
141 	if (attrs & DMA_ATTR_NO_WARN)
142 		gfp |= __GFP_NOWARN;
143 
144 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
145 	    !force_dma_unencrypted(dev)) {
146 		page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
147 		if (!page)
148 			return NULL;
149 		/* remove any dirty cache lines on the kernel alias */
150 		if (!PageHighMem(page))
151 			arch_dma_prep_coherent(page, size);
152 		*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
153 		/* return the page pointer as the opaque cookie */
154 		return page;
155 	}
156 
157 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
158 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
159 	    !dev_is_dma_coherent(dev))
160 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
161 
162 	/*
163 	 * Remapping or decrypting memory may block. If either is required and
164 	 * we can't block, allocate the memory from the atomic pools.
165 	 */
166 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
167 	    !gfpflags_allow_blocking(gfp) &&
168 	    (force_dma_unencrypted(dev) ||
169 	     (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev))))
170 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
171 
172 	/* we always manually zero the memory once we are done */
173 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
174 	if (!page)
175 		return NULL;
176 
177 	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
178 	     !dev_is_dma_coherent(dev)) ||
179 	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
180 		/* remove any dirty cache lines on the kernel alias */
181 		arch_dma_prep_coherent(page, size);
182 
183 		/* create a coherent mapping */
184 		ret = dma_common_contiguous_remap(page, size,
185 				dma_pgprot(dev, PAGE_KERNEL, attrs),
186 				__builtin_return_address(0));
187 		if (!ret)
188 			goto out_free_pages;
189 		if (force_dma_unencrypted(dev)) {
190 			err = set_memory_decrypted((unsigned long)ret,
191 						   PFN_UP(size));
192 			if (err)
193 				goto out_free_pages;
194 		}
195 		memset(ret, 0, size);
196 		goto done;
197 	}
198 
199 	if (PageHighMem(page)) {
200 		/*
201 		 * Depending on the cma= arguments and per-arch setup
202 		 * dma_alloc_contiguous could return highmem pages.
203 		 * Without remapping there is no way to return them here,
204 		 * so log an error and fail.
205 		 */
206 		dev_info(dev, "Rejecting highmem page from CMA.\n");
207 		goto out_free_pages;
208 	}
209 
210 	ret = page_address(page);
211 	if (force_dma_unencrypted(dev)) {
212 		err = set_memory_decrypted((unsigned long)ret,
213 					   PFN_UP(size));
214 		if (err)
215 			goto out_free_pages;
216 	}
217 
218 	memset(ret, 0, size);
219 
220 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
221 	    !dev_is_dma_coherent(dev)) {
222 		arch_dma_prep_coherent(page, size);
223 		ret = arch_dma_set_uncached(ret, size);
224 		if (IS_ERR(ret))
225 			goto out_encrypt_pages;
226 	}
227 done:
228 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
229 	return ret;
230 
231 out_encrypt_pages:
232 	if (force_dma_unencrypted(dev)) {
233 		err = set_memory_encrypted((unsigned long)page_address(page),
234 					   PFN_UP(size));
235 		/* If memory cannot be re-encrypted, it must be leaked */
236 		if (err)
237 			return NULL;
238 	}
239 out_free_pages:
240 	dma_free_contiguous(dev, page, size);
241 	return NULL;
242 }
243 
dma_direct_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)244 void dma_direct_free(struct device *dev, size_t size,
245 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
246 {
247 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
248 	    !force_dma_unencrypted(dev)) {
249 		/* cpu_addr is a struct page cookie, not a kernel address */
250 		dma_free_contiguous(dev, cpu_addr, size);
251 		return;
252 	}
253 
254 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
255 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
256 	    !dev_is_dma_coherent(dev)) {
257 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
258 		return;
259 	}
260 
261 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
262 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
263 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
264 		return;
265 
266 	if (force_dma_unencrypted(dev))
267 		set_memory_encrypted((unsigned long)cpu_addr, PFN_UP(size));
268 
269 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
270 		vunmap(cpu_addr);
271 	else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
272 		arch_dma_clear_uncached(cpu_addr, size);
273 
274 	dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
275 }
276 
dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)277 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
278 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
279 {
280 	struct page *page;
281 	void *ret;
282 
283 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
284 	    force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp))
285 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
286 
287 	page = __dma_direct_alloc_pages(dev, size, gfp);
288 	if (!page)
289 		return NULL;
290 	if (PageHighMem(page)) {
291 		/*
292 		 * Depending on the cma= arguments and per-arch setup
293 		 * dma_alloc_contiguous could return highmem pages.
294 		 * Without remapping there is no way to return them here,
295 		 * so log an error and fail.
296 		 */
297 		dev_info(dev, "Rejecting highmem page from CMA.\n");
298 		goto out_free_pages;
299 	}
300 
301 	ret = page_address(page);
302 	if (force_dma_unencrypted(dev)) {
303 		if (set_memory_decrypted((unsigned long)ret, PFN_UP(size)))
304 			goto out_free_pages;
305 	}
306 	memset(ret, 0, size);
307 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
308 	return page;
309 out_free_pages:
310 	dma_free_contiguous(dev, page, size);
311 	return NULL;
312 }
313 
dma_direct_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_addr,enum dma_data_direction dir)314 void dma_direct_free_pages(struct device *dev, size_t size,
315 		struct page *page, dma_addr_t dma_addr,
316 		enum dma_data_direction dir)
317 {
318 	void *vaddr = page_address(page);
319 
320 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
321 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
322 	    dma_free_from_pool(dev, vaddr, size))
323 		return;
324 
325 	if (force_dma_unencrypted(dev))
326 		set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
327 
328 	dma_free_contiguous(dev, page, size);
329 }
330 
331 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
332     defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)333 void dma_direct_sync_sg_for_device(struct device *dev,
334 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
335 {
336 	struct scatterlist *sg;
337 	int i;
338 
339 	for_each_sg(sgl, sg, nents, i) {
340 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
341 
342 		if (unlikely(is_swiotlb_buffer(paddr)))
343 			swiotlb_tbl_sync_single(dev, paddr, sg->length,
344 					dir, SYNC_FOR_DEVICE);
345 
346 		if (!dev_is_dma_coherent(dev))
347 			arch_sync_dma_for_device(paddr, sg->length,
348 					dir);
349 	}
350 }
351 #endif
352 
353 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
354     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
355     defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)356 void dma_direct_sync_sg_for_cpu(struct device *dev,
357 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
358 {
359 	struct scatterlist *sg;
360 	int i;
361 
362 	for_each_sg(sgl, sg, nents, i) {
363 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
364 
365 		if (!dev_is_dma_coherent(dev))
366 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
367 
368 		if (unlikely(is_swiotlb_buffer(paddr)))
369 			swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
370 					SYNC_FOR_CPU);
371 
372 		if (dir == DMA_FROM_DEVICE)
373 			arch_dma_mark_clean(paddr, sg->length);
374 	}
375 
376 	if (!dev_is_dma_coherent(dev))
377 		arch_sync_dma_for_cpu_all();
378 }
379 
dma_direct_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)380 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
381 		int nents, enum dma_data_direction dir, unsigned long attrs)
382 {
383 	struct scatterlist *sg;
384 	int i;
385 
386 	for_each_sg(sgl, sg, nents, i)
387 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
388 			     attrs);
389 }
390 #endif
391 
dma_direct_map_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)392 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
393 		enum dma_data_direction dir, unsigned long attrs)
394 {
395 	int i;
396 	struct scatterlist *sg;
397 
398 	for_each_sg(sgl, sg, nents, i) {
399 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
400 				sg->offset, sg->length, dir, attrs);
401 		if (sg->dma_address == DMA_MAPPING_ERROR)
402 			goto out_unmap;
403 		sg_dma_len(sg) = sg->length;
404 	}
405 
406 	return nents;
407 
408 out_unmap:
409 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
410 	return 0;
411 }
412 
dma_direct_map_resource(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)413 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
414 		size_t size, enum dma_data_direction dir, unsigned long attrs)
415 {
416 	dma_addr_t dma_addr = paddr;
417 
418 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
419 		dev_err_once(dev,
420 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
421 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
422 		WARN_ON_ONCE(1);
423 		return DMA_MAPPING_ERROR;
424 	}
425 
426 	return dma_addr;
427 }
428 
dma_direct_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)429 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
430 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
431 		unsigned long attrs)
432 {
433 	struct page *page = dma_direct_to_page(dev, dma_addr);
434 	int ret;
435 
436 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
437 	if (!ret)
438 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
439 	return ret;
440 }
441 
dma_direct_can_mmap(struct device * dev)442 bool dma_direct_can_mmap(struct device *dev)
443 {
444 	return dev_is_dma_coherent(dev) ||
445 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
446 }
447 
dma_direct_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)448 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
449 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
450 		unsigned long attrs)
451 {
452 	unsigned long user_count = vma_pages(vma);
453 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
454 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
455 	int ret = -ENXIO;
456 
457 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
458 
459 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
460 		return ret;
461 
462 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
463 		return -ENXIO;
464 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
465 			user_count << PAGE_SHIFT, vma->vm_page_prot);
466 }
467 
dma_direct_supported(struct device * dev,u64 mask)468 int dma_direct_supported(struct device *dev, u64 mask)
469 {
470 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
471 
472 	/*
473 	 * Because 32-bit DMA masks are so common we expect every architecture
474 	 * to be able to satisfy them - either by not supporting more physical
475 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
476 	 * architecture needs to use an IOMMU instead of the direct mapping.
477 	 */
478 	if (mask >= DMA_BIT_MASK(32))
479 		return 1;
480 
481 	/*
482 	 * This check needs to be against the actual bit mask value, so use
483 	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
484 	 * part of the check.
485 	 */
486 	if (IS_ENABLED(CONFIG_ZONE_DMA))
487 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
488 	return mask >= phys_to_dma_unencrypted(dev, min_mask);
489 }
490 
dma_direct_max_mapping_size(struct device * dev)491 size_t dma_direct_max_mapping_size(struct device *dev)
492 {
493 	/* If SWIOTLB is active, use its maximum mapping size */
494 	if (is_swiotlb_active() &&
495 	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
496 		return swiotlb_max_mapping_size(dev);
497 	return SIZE_MAX;
498 }
499 
dma_direct_need_sync(struct device * dev,dma_addr_t dma_addr)500 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
501 {
502 	return !dev_is_dma_coherent(dev) ||
503 		is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
504 }
505 
506 /**
507  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
508  * @dev:	device pointer; needed to "own" the alloced memory.
509  * @cpu_start:  beginning of memory region covered by this offset.
510  * @dma_start:  beginning of DMA/PCI region covered by this offset.
511  * @size:	size of the region.
512  *
513  * This is for the simple case of a uniform offset which cannot
514  * be discovered by "dma-ranges".
515  *
516  * It returns -ENOMEM if out of memory, -EINVAL if a map
517  * already exists, 0 otherwise.
518  *
519  * Note: any call to this from a driver is a bug.  The mapping needs
520  * to be described by the device tree or other firmware interfaces.
521  */
dma_direct_set_offset(struct device * dev,phys_addr_t cpu_start,dma_addr_t dma_start,u64 size)522 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
523 			 dma_addr_t dma_start, u64 size)
524 {
525 	struct bus_dma_region *map;
526 	u64 offset = (u64)cpu_start - (u64)dma_start;
527 
528 	if (dev->dma_range_map) {
529 		dev_err(dev, "attempt to add DMA range to existing map\n");
530 		return -EINVAL;
531 	}
532 
533 	if (!offset)
534 		return 0;
535 
536 	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
537 	if (!map)
538 		return -ENOMEM;
539 	map[0].cpu_start = cpu_start;
540 	map[0].dma_start = dma_start;
541 	map[0].offset = offset;
542 	map[0].size = size;
543 	dev->dma_range_map = map;
544 	return 0;
545 }
546 EXPORT_SYMBOL_GPL(dma_direct_set_offset);
547