• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file lower_mat_op_to_vec.cpp
26  *
27  * Breaks matrix operation expressions down to a series of vector operations.
28  *
29  * Generally this is how we have to codegen matrix operations for a
30  * GPU, so this gives us the chance to constant fold operations on a
31  * column or row.
32  */
33 
34 #include "ir.h"
35 #include "ir_expression_flattening.h"
36 #include "compiler/glsl_types.h"
37 
38 namespace {
39 
40 class ir_mat_op_to_vec_visitor : public ir_hierarchical_visitor {
41 public:
ir_mat_op_to_vec_visitor()42    ir_mat_op_to_vec_visitor()
43    {
44       this->made_progress = false;
45       this->mem_ctx = NULL;
46    }
47 
48    ir_visitor_status visit_leave(ir_assignment *);
49 
50    ir_dereference *get_column(ir_dereference *val, int col);
51    ir_rvalue *get_element(ir_dereference *val, int col, int row);
52 
53    void do_mul_mat_mat(ir_dereference *result,
54                        ir_dereference *a, ir_dereference *b);
55    void do_mul_mat_vec(ir_dereference *result,
56                        ir_dereference *a, ir_dereference *b);
57    void do_mul_vec_mat(ir_dereference *result,
58                        ir_dereference *a, ir_dereference *b);
59    void do_mul_mat_scalar(ir_dereference *result,
60                           ir_dereference *a, ir_dereference *b);
61    void do_equal_mat_mat(ir_dereference *result, ir_dereference *a,
62                          ir_dereference *b, bool test_equal);
63 
64    void *mem_ctx;
65    bool made_progress;
66 };
67 
68 } /* anonymous namespace */
69 
70 static bool
mat_op_to_vec_predicate(ir_instruction * ir)71 mat_op_to_vec_predicate(ir_instruction *ir)
72 {
73    ir_expression *expr = ir->as_expression();
74    unsigned int i;
75 
76    if (!expr)
77       return false;
78 
79    for (i = 0; i < expr->num_operands; i++) {
80       if (expr->operands[i]->type->is_matrix())
81          return true;
82    }
83 
84    return false;
85 }
86 
87 bool
do_mat_op_to_vec(exec_list * instructions)88 do_mat_op_to_vec(exec_list *instructions)
89 {
90    ir_mat_op_to_vec_visitor v;
91 
92    /* Pull out any matrix expression to a separate assignment to a
93     * temp.  This will make our handling of the breakdown to
94     * operations on the matrix's vector components much easier.
95     */
96    do_expression_flattening(instructions, mat_op_to_vec_predicate);
97 
98    visit_list_elements(&v, instructions);
99 
100    return v.made_progress;
101 }
102 
103 ir_rvalue *
get_element(ir_dereference * val,int col,int row)104 ir_mat_op_to_vec_visitor::get_element(ir_dereference *val, int col, int row)
105 {
106    val = get_column(val, col);
107 
108    return new(mem_ctx) ir_swizzle(val, row, 0, 0, 0, 1);
109 }
110 
111 ir_dereference *
get_column(ir_dereference * val,int row)112 ir_mat_op_to_vec_visitor::get_column(ir_dereference *val, int row)
113 {
114    val = val->clone(mem_ctx, NULL);
115 
116    if (val->type->is_matrix()) {
117       val = new(mem_ctx) ir_dereference_array(val,
118                                               new(mem_ctx) ir_constant(row));
119    }
120 
121    return val;
122 }
123 
124 void
do_mul_mat_mat(ir_dereference * result,ir_dereference * a,ir_dereference * b)125 ir_mat_op_to_vec_visitor::do_mul_mat_mat(ir_dereference *result,
126                                          ir_dereference *a,
127                                          ir_dereference *b)
128 {
129    unsigned b_col, i;
130    ir_assignment *assign;
131    ir_expression *expr;
132 
133    for (b_col = 0; b_col < b->type->matrix_columns; b_col++) {
134       /* first column */
135       expr = new(mem_ctx) ir_expression(ir_binop_mul,
136                                         get_column(a, 0),
137                                         get_element(b, b_col, 0));
138 
139       /* following columns */
140       for (i = 1; i < a->type->matrix_columns; i++) {
141          ir_expression *mul_expr;
142 
143          mul_expr = new(mem_ctx) ir_expression(ir_binop_mul,
144                                                get_column(a, i),
145                                                get_element(b, b_col, i));
146          expr = new(mem_ctx) ir_expression(ir_binop_add,
147                                            expr,
148                                            mul_expr);
149       }
150 
151       assign = new(mem_ctx) ir_assignment(get_column(result, b_col), expr);
152       base_ir->insert_before(assign);
153    }
154 }
155 
156 void
do_mul_mat_vec(ir_dereference * result,ir_dereference * a,ir_dereference * b)157 ir_mat_op_to_vec_visitor::do_mul_mat_vec(ir_dereference *result,
158                                          ir_dereference *a,
159                                          ir_dereference *b)
160 {
161    unsigned i;
162    ir_assignment *assign;
163    ir_expression *expr;
164 
165    /* first column */
166    expr = new(mem_ctx) ir_expression(ir_binop_mul,
167                                      get_column(a, 0),
168                                      get_element(b, 0, 0));
169 
170    /* following columns */
171    for (i = 1; i < a->type->matrix_columns; i++) {
172       ir_expression *mul_expr;
173 
174       mul_expr = new(mem_ctx) ir_expression(ir_binop_mul,
175                                             get_column(a, i),
176                                             get_element(b, 0, i));
177       expr = new(mem_ctx) ir_expression(ir_binop_add, expr, mul_expr);
178    }
179 
180    result = result->clone(mem_ctx, NULL);
181    assign = new(mem_ctx) ir_assignment(result, expr);
182    base_ir->insert_before(assign);
183 }
184 
185 void
do_mul_vec_mat(ir_dereference * result,ir_dereference * a,ir_dereference * b)186 ir_mat_op_to_vec_visitor::do_mul_vec_mat(ir_dereference *result,
187                                          ir_dereference *a,
188                                          ir_dereference *b)
189 {
190    unsigned i;
191 
192    for (i = 0; i < b->type->matrix_columns; i++) {
193       ir_rvalue *column_result;
194       ir_expression *column_expr;
195       ir_assignment *column_assign;
196 
197       column_result = result->clone(mem_ctx, NULL);
198       column_result = new(mem_ctx) ir_swizzle(column_result, i, 0, 0, 0, 1);
199 
200       column_expr = new(mem_ctx) ir_expression(ir_binop_dot,
201                                                a->clone(mem_ctx, NULL),
202                                                get_column(b, i));
203 
204       column_assign = new(mem_ctx) ir_assignment(column_result,
205                                                  column_expr);
206       base_ir->insert_before(column_assign);
207    }
208 }
209 
210 void
do_mul_mat_scalar(ir_dereference * result,ir_dereference * a,ir_dereference * b)211 ir_mat_op_to_vec_visitor::do_mul_mat_scalar(ir_dereference *result,
212                                             ir_dereference *a,
213                                             ir_dereference *b)
214 {
215    unsigned i;
216 
217    for (i = 0; i < a->type->matrix_columns; i++) {
218       ir_expression *column_expr;
219       ir_assignment *column_assign;
220 
221       column_expr = new(mem_ctx) ir_expression(ir_binop_mul,
222                                                get_column(a, i),
223                                                b->clone(mem_ctx, NULL));
224 
225       column_assign = new(mem_ctx) ir_assignment(get_column(result, i),
226                                                  column_expr);
227       base_ir->insert_before(column_assign);
228    }
229 }
230 
231 void
do_equal_mat_mat(ir_dereference * result,ir_dereference * a,ir_dereference * b,bool test_equal)232 ir_mat_op_to_vec_visitor::do_equal_mat_mat(ir_dereference *result,
233                                            ir_dereference *a,
234                                            ir_dereference *b,
235                                            bool test_equal)
236 {
237    /* This essentially implements the following GLSL:
238     *
239     * bool equal(mat4 a, mat4 b)
240     * {
241     *   return !any(bvec4(a[0] != b[0],
242     *                     a[1] != b[1],
243     *                     a[2] != b[2],
244     *                     a[3] != b[3]);
245     * }
246     *
247     * bool nequal(mat4 a, mat4 b)
248     * {
249     *   return any(bvec4(a[0] != b[0],
250     *                    a[1] != b[1],
251     *                    a[2] != b[2],
252     *                    a[3] != b[3]);
253     * }
254     */
255    const unsigned columns = a->type->matrix_columns;
256    const glsl_type *const bvec_type =
257       glsl_type::get_instance(GLSL_TYPE_BOOL, columns, 1);
258 
259    ir_variable *const tmp_bvec =
260       new(this->mem_ctx) ir_variable(bvec_type, "mat_cmp_bvec",
261                                      ir_var_temporary);
262    this->base_ir->insert_before(tmp_bvec);
263 
264    for (unsigned i = 0; i < columns; i++) {
265       ir_expression *const cmp =
266          new(this->mem_ctx) ir_expression(ir_binop_any_nequal,
267                                           get_column(a, i),
268                                           get_column(b, i));
269 
270       ir_dereference *const lhs =
271          new(this->mem_ctx) ir_dereference_variable(tmp_bvec);
272 
273       ir_assignment *const assign =
274          new(this->mem_ctx) ir_assignment(lhs, cmp, 1U << i);
275 
276       this->base_ir->insert_before(assign);
277    }
278 
279    ir_rvalue *const val = new(this->mem_ctx) ir_dereference_variable(tmp_bvec);
280    uint8_t vec_elems = val->type->vector_elements;
281    ir_expression *any =
282       new(this->mem_ctx) ir_expression(ir_binop_any_nequal, val,
283                                        new(this->mem_ctx) ir_constant(false,
284                                                                       vec_elems));
285 
286    if (test_equal)
287       any = new(this->mem_ctx) ir_expression(ir_unop_logic_not, any);
288 
289    ir_assignment *const assign =
290       new(mem_ctx) ir_assignment(result->clone(mem_ctx, NULL), any);
291    base_ir->insert_before(assign);
292 }
293 
294 static bool
has_matrix_operand(const ir_expression * expr,unsigned & columns)295 has_matrix_operand(const ir_expression *expr, unsigned &columns)
296 {
297    for (unsigned i = 0; i < expr->num_operands; i++) {
298       if (expr->operands[i]->type->is_matrix()) {
299          columns = expr->operands[i]->type->matrix_columns;
300          return true;
301       }
302    }
303 
304    return false;
305 }
306 
307 
308 ir_visitor_status
visit_leave(ir_assignment * orig_assign)309 ir_mat_op_to_vec_visitor::visit_leave(ir_assignment *orig_assign)
310 {
311    ir_expression *orig_expr = orig_assign->rhs->as_expression();
312    unsigned int i, matrix_columns = 1;
313    ir_dereference *op[2];
314 
315    if (!orig_expr)
316       return visit_continue;
317 
318    if (!has_matrix_operand(orig_expr, matrix_columns))
319       return visit_continue;
320 
321    assert(orig_expr->num_operands <= 2);
322 
323    mem_ctx = ralloc_parent(orig_assign);
324 
325    ir_dereference_variable *result =
326       orig_assign->lhs->as_dereference_variable();
327    assert(result);
328 
329    /* Store the expression operands in temps so we can use them
330     * multiple times.
331     */
332    for (i = 0; i < orig_expr->num_operands; i++) {
333       ir_assignment *assign;
334       ir_dereference *deref = orig_expr->operands[i]->as_dereference();
335 
336       /* Avoid making a temporary if we don't need to to avoid aliasing. */
337       if (deref &&
338           deref->variable_referenced() != result->variable_referenced()) {
339          op[i] = deref;
340          continue;
341       }
342 
343       /* Otherwise, store the operand in a temporary generally if it's
344        * not a dereference.
345        */
346       ir_variable *var = new(mem_ctx) ir_variable(orig_expr->operands[i]->type,
347                                                   "mat_op_to_vec",
348                                                   ir_var_temporary);
349       base_ir->insert_before(var);
350 
351       /* Note that we use this dereference for the assignment.  That means
352        * that others that want to use op[i] have to clone the deref.
353        */
354       op[i] = new(mem_ctx) ir_dereference_variable(var);
355       assign = new(mem_ctx) ir_assignment(op[i], orig_expr->operands[i]);
356       base_ir->insert_before(assign);
357    }
358 
359    /* OK, time to break down this matrix operation. */
360    switch (orig_expr->operation) {
361    case ir_unop_d2f:
362    case ir_unop_f2d:
363    case ir_unop_f2f16:
364    case ir_unop_f2fmp:
365    case ir_unop_f162f:
366    case ir_unop_neg: {
367       /* Apply the operation to each column.*/
368       for (i = 0; i < matrix_columns; i++) {
369          ir_expression *column_expr;
370          ir_assignment *column_assign;
371 
372          column_expr = new(mem_ctx) ir_expression(orig_expr->operation,
373                                                   get_column(op[0], i));
374 
375          column_assign = new(mem_ctx) ir_assignment(get_column(result, i),
376                                                     column_expr);
377          assert(column_assign->write_mask != 0);
378          base_ir->insert_before(column_assign);
379       }
380       break;
381    }
382    case ir_binop_add:
383    case ir_binop_sub:
384    case ir_binop_div:
385    case ir_binop_mod: {
386       /* For most operations, the matrix version is just going
387        * column-wise through and applying the operation to each column
388        * if available.
389        */
390       for (i = 0; i < matrix_columns; i++) {
391          ir_expression *column_expr;
392          ir_assignment *column_assign;
393 
394          column_expr = new(mem_ctx) ir_expression(orig_expr->operation,
395                                                   get_column(op[0], i),
396                                                   get_column(op[1], i));
397 
398          column_assign = new(mem_ctx) ir_assignment(get_column(result, i),
399                                                     column_expr);
400          assert(column_assign->write_mask != 0);
401          base_ir->insert_before(column_assign);
402       }
403       break;
404    }
405    case ir_binop_mul:
406       if (op[0]->type->is_matrix()) {
407          if (op[1]->type->is_matrix()) {
408             do_mul_mat_mat(result, op[0], op[1]);
409          } else if (op[1]->type->is_vector()) {
410             do_mul_mat_vec(result, op[0], op[1]);
411          } else {
412             assert(op[1]->type->is_scalar());
413             do_mul_mat_scalar(result, op[0], op[1]);
414          }
415       } else {
416          assert(op[1]->type->is_matrix());
417          if (op[0]->type->is_vector()) {
418             do_mul_vec_mat(result, op[0], op[1]);
419          } else {
420             assert(op[0]->type->is_scalar());
421             do_mul_mat_scalar(result, op[1], op[0]);
422          }
423       }
424       break;
425 
426    case ir_binop_all_equal:
427    case ir_binop_any_nequal:
428       do_equal_mat_mat(result, op[1], op[0],
429                        (orig_expr->operation == ir_binop_all_equal));
430       break;
431 
432    default:
433       printf("FINISHME: Handle matrix operation for %s\n",
434              ir_expression_operation_strings[orig_expr->operation]);
435       abort();
436    }
437    orig_assign->remove();
438    this->made_progress = true;
439 
440    return visit_continue;
441 }
442