1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions for working with the Flattened Device Tree data format
4 *
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6 * benh@kernel.crashing.org
7 */
8
9 #define pr_fmt(fmt) "OF: fdt: " fmt
10
11 #include <linux/crc32.h>
12 #include <linux/kernel.h>
13 #include <linux/initrd.h>
14 #include <linux/memblock.h>
15 #include <linux/mutex.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_reserved_mem.h>
19 #include <linux/sizes.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/libfdt.h>
24 #include <linux/debugfs.h>
25 #include <linux/serial_core.h>
26 #include <linux/sysfs.h>
27 #include <linux/random.h>
28
29 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
30 #include <asm/page.h>
31
32 #include "of_private.h"
33
34 /*
35 * of_fdt_limit_memory - limit the number of regions in the /memory node
36 * @limit: maximum entries
37 *
38 * Adjust the flattened device tree to have at most 'limit' number of
39 * memory entries in the /memory node. This function may be called
40 * any time after initial_boot_param is set.
41 */
of_fdt_limit_memory(int limit)42 void __init of_fdt_limit_memory(int limit)
43 {
44 int memory;
45 int len;
46 const void *val;
47 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
48 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
49 const __be32 *addr_prop;
50 const __be32 *size_prop;
51 int root_offset;
52 int cell_size;
53
54 root_offset = fdt_path_offset(initial_boot_params, "/");
55 if (root_offset < 0)
56 return;
57
58 addr_prop = fdt_getprop(initial_boot_params, root_offset,
59 "#address-cells", NULL);
60 if (addr_prop)
61 nr_address_cells = fdt32_to_cpu(*addr_prop);
62
63 size_prop = fdt_getprop(initial_boot_params, root_offset,
64 "#size-cells", NULL);
65 if (size_prop)
66 nr_size_cells = fdt32_to_cpu(*size_prop);
67
68 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
69
70 memory = fdt_path_offset(initial_boot_params, "/memory");
71 if (memory > 0) {
72 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
73 if (len > limit*cell_size) {
74 len = limit*cell_size;
75 pr_debug("Limiting number of entries to %d\n", limit);
76 fdt_setprop(initial_boot_params, memory, "reg", val,
77 len);
78 }
79 }
80 }
81
of_fdt_device_is_available(const void * blob,unsigned long node)82 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
83 {
84 const char *status = fdt_getprop(blob, node, "status", NULL);
85
86 if (!status)
87 return true;
88
89 if (!strcmp(status, "ok") || !strcmp(status, "okay"))
90 return true;
91
92 return false;
93 }
94
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)95 static void *unflatten_dt_alloc(void **mem, unsigned long size,
96 unsigned long align)
97 {
98 void *res;
99
100 *mem = PTR_ALIGN(*mem, align);
101 res = *mem;
102 *mem += size;
103
104 return res;
105 }
106
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)107 static void populate_properties(const void *blob,
108 int offset,
109 void **mem,
110 struct device_node *np,
111 const char *nodename,
112 bool dryrun)
113 {
114 struct property *pp, **pprev = NULL;
115 int cur;
116 bool has_name = false;
117
118 pprev = &np->properties;
119 for (cur = fdt_first_property_offset(blob, offset);
120 cur >= 0;
121 cur = fdt_next_property_offset(blob, cur)) {
122 const __be32 *val;
123 const char *pname;
124 u32 sz;
125
126 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
127 if (!val) {
128 pr_warn("Cannot locate property at 0x%x\n", cur);
129 continue;
130 }
131
132 if (!pname) {
133 pr_warn("Cannot find property name at 0x%x\n", cur);
134 continue;
135 }
136
137 if (!strcmp(pname, "name"))
138 has_name = true;
139
140 pp = unflatten_dt_alloc(mem, sizeof(struct property),
141 __alignof__(struct property));
142 if (dryrun)
143 continue;
144
145 /* We accept flattened tree phandles either in
146 * ePAPR-style "phandle" properties, or the
147 * legacy "linux,phandle" properties. If both
148 * appear and have different values, things
149 * will get weird. Don't do that.
150 */
151 if (!strcmp(pname, "phandle") ||
152 !strcmp(pname, "linux,phandle")) {
153 if (!np->phandle)
154 np->phandle = be32_to_cpup(val);
155 }
156
157 /* And we process the "ibm,phandle" property
158 * used in pSeries dynamic device tree
159 * stuff
160 */
161 if (!strcmp(pname, "ibm,phandle"))
162 np->phandle = be32_to_cpup(val);
163
164 pp->name = (char *)pname;
165 pp->length = sz;
166 pp->value = (__be32 *)val;
167 *pprev = pp;
168 pprev = &pp->next;
169 }
170
171 /* With version 0x10 we may not have the name property,
172 * recreate it here from the unit name if absent
173 */
174 if (!has_name) {
175 const char *p = nodename, *ps = p, *pa = NULL;
176 int len;
177
178 while (*p) {
179 if ((*p) == '@')
180 pa = p;
181 else if ((*p) == '/')
182 ps = p + 1;
183 p++;
184 }
185
186 if (pa < ps)
187 pa = p;
188 len = (pa - ps) + 1;
189 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
190 __alignof__(struct property));
191 if (!dryrun) {
192 pp->name = "name";
193 pp->length = len;
194 pp->value = pp + 1;
195 *pprev = pp;
196 pprev = &pp->next;
197 memcpy(pp->value, ps, len - 1);
198 ((char *)pp->value)[len - 1] = 0;
199 pr_debug("fixed up name for %s -> %s\n",
200 nodename, (char *)pp->value);
201 }
202 }
203
204 if (!dryrun)
205 *pprev = NULL;
206 }
207
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)208 static bool populate_node(const void *blob,
209 int offset,
210 void **mem,
211 struct device_node *dad,
212 struct device_node **pnp,
213 bool dryrun)
214 {
215 struct device_node *np;
216 const char *pathp;
217 unsigned int l, allocl;
218
219 pathp = fdt_get_name(blob, offset, &l);
220 if (!pathp) {
221 *pnp = NULL;
222 return false;
223 }
224
225 allocl = ++l;
226
227 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
228 __alignof__(struct device_node));
229 if (!dryrun) {
230 char *fn;
231 of_node_init(np);
232 np->full_name = fn = ((char *)np) + sizeof(*np);
233
234 memcpy(fn, pathp, l);
235
236 if (dad != NULL) {
237 np->parent = dad;
238 np->sibling = dad->child;
239 dad->child = np;
240 }
241 }
242
243 populate_properties(blob, offset, mem, np, pathp, dryrun);
244 if (!dryrun) {
245 np->name = of_get_property(np, "name", NULL);
246 if (!np->name)
247 np->name = "<NULL>";
248 }
249
250 *pnp = np;
251 return true;
252 }
253
reverse_nodes(struct device_node * parent)254 static void reverse_nodes(struct device_node *parent)
255 {
256 struct device_node *child, *next;
257
258 /* In-depth first */
259 child = parent->child;
260 while (child) {
261 reverse_nodes(child);
262
263 child = child->sibling;
264 }
265
266 /* Reverse the nodes in the child list */
267 child = parent->child;
268 parent->child = NULL;
269 while (child) {
270 next = child->sibling;
271
272 child->sibling = parent->child;
273 parent->child = child;
274 child = next;
275 }
276 }
277
278 /**
279 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
280 * @blob: The parent device tree blob
281 * @mem: Memory chunk to use for allocating device nodes and properties
282 * @dad: Parent struct device_node
283 * @nodepp: The device_node tree created by the call
284 *
285 * It returns the size of unflattened device tree or error code
286 */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)287 static int unflatten_dt_nodes(const void *blob,
288 void *mem,
289 struct device_node *dad,
290 struct device_node **nodepp)
291 {
292 struct device_node *root;
293 int offset = 0, depth = 0, initial_depth = 0;
294 #define FDT_MAX_DEPTH 64
295 struct device_node *nps[FDT_MAX_DEPTH];
296 void *base = mem;
297 bool dryrun = !base;
298
299 if (nodepp)
300 *nodepp = NULL;
301
302 /*
303 * We're unflattening device sub-tree if @dad is valid. There are
304 * possibly multiple nodes in the first level of depth. We need
305 * set @depth to 1 to make fdt_next_node() happy as it bails
306 * immediately when negative @depth is found. Otherwise, the device
307 * nodes except the first one won't be unflattened successfully.
308 */
309 if (dad)
310 depth = initial_depth = 1;
311
312 root = dad;
313 nps[depth] = dad;
314
315 for (offset = 0;
316 offset >= 0 && depth >= initial_depth;
317 offset = fdt_next_node(blob, offset, &depth)) {
318 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
319 continue;
320
321 if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
322 !of_fdt_device_is_available(blob, offset))
323 continue;
324
325 if (!populate_node(blob, offset, &mem, nps[depth],
326 &nps[depth+1], dryrun))
327 return mem - base;
328
329 if (!dryrun && nodepp && !*nodepp)
330 *nodepp = nps[depth+1];
331 if (!dryrun && !root)
332 root = nps[depth+1];
333 }
334
335 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
336 pr_err("Error %d processing FDT\n", offset);
337 return -EINVAL;
338 }
339
340 /*
341 * Reverse the child list. Some drivers assumes node order matches .dts
342 * node order
343 */
344 if (!dryrun)
345 reverse_nodes(root);
346
347 return mem - base;
348 }
349
350 /**
351 * __unflatten_device_tree - create tree of device_nodes from flat blob
352 *
353 * unflattens a device-tree, creating the
354 * tree of struct device_node. It also fills the "name" and "type"
355 * pointers of the nodes so the normal device-tree walking functions
356 * can be used.
357 * @blob: The blob to expand
358 * @dad: Parent device node
359 * @mynodes: The device_node tree created by the call
360 * @dt_alloc: An allocator that provides a virtual address to memory
361 * for the resulting tree
362 * @detached: if true set OF_DETACHED on @mynodes
363 *
364 * Returns NULL on failure or the memory chunk containing the unflattened
365 * device tree on success.
366 */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)367 void *__unflatten_device_tree(const void *blob,
368 struct device_node *dad,
369 struct device_node **mynodes,
370 void *(*dt_alloc)(u64 size, u64 align),
371 bool detached)
372 {
373 int size;
374 void *mem;
375
376 pr_debug(" -> unflatten_device_tree()\n");
377
378 if (!blob) {
379 pr_debug("No device tree pointer\n");
380 return NULL;
381 }
382
383 pr_debug("Unflattening device tree:\n");
384 pr_debug("magic: %08x\n", fdt_magic(blob));
385 pr_debug("size: %08x\n", fdt_totalsize(blob));
386 pr_debug("version: %08x\n", fdt_version(blob));
387
388 if (fdt_check_header(blob)) {
389 pr_err("Invalid device tree blob header\n");
390 return NULL;
391 }
392
393 /* First pass, scan for size */
394 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
395 if (size < 0)
396 return NULL;
397
398 size = ALIGN(size, 4);
399 pr_debug(" size is %d, allocating...\n", size);
400
401 /* Allocate memory for the expanded device tree */
402 mem = dt_alloc(size + 4, __alignof__(struct device_node));
403 if (!mem)
404 return NULL;
405
406 memset(mem, 0, size);
407
408 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
409
410 pr_debug(" unflattening %p...\n", mem);
411
412 /* Second pass, do actual unflattening */
413 unflatten_dt_nodes(blob, mem, dad, mynodes);
414 if (be32_to_cpup(mem + size) != 0xdeadbeef)
415 pr_warn("End of tree marker overwritten: %08x\n",
416 be32_to_cpup(mem + size));
417
418 if (detached && mynodes) {
419 of_node_set_flag(*mynodes, OF_DETACHED);
420 pr_debug("unflattened tree is detached\n");
421 }
422
423 pr_debug(" <- unflatten_device_tree()\n");
424 return mem;
425 }
426
kernel_tree_alloc(u64 size,u64 align)427 static void *kernel_tree_alloc(u64 size, u64 align)
428 {
429 return kzalloc(size, GFP_KERNEL);
430 }
431
432 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
433
434 /**
435 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
436 * @blob: Flat device tree blob
437 * @dad: Parent device node
438 * @mynodes: The device tree created by the call
439 *
440 * unflattens the device-tree passed by the firmware, creating the
441 * tree of struct device_node. It also fills the "name" and "type"
442 * pointers of the nodes so the normal device-tree walking functions
443 * can be used.
444 *
445 * Returns NULL on failure or the memory chunk containing the unflattened
446 * device tree on success.
447 */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)448 void *of_fdt_unflatten_tree(const unsigned long *blob,
449 struct device_node *dad,
450 struct device_node **mynodes)
451 {
452 void *mem;
453
454 mutex_lock(&of_fdt_unflatten_mutex);
455 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
456 true);
457 mutex_unlock(&of_fdt_unflatten_mutex);
458
459 return mem;
460 }
461 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
462
463 /* Everything below here references initial_boot_params directly. */
464 int __initdata dt_root_addr_cells;
465 int __initdata dt_root_size_cells;
466
467 void *initial_boot_params __ro_after_init;
468
469 #ifdef CONFIG_OF_EARLY_FLATTREE
470
471 static u32 of_fdt_crc32;
472
473 /**
474 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
475 */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)476 static int __init __reserved_mem_reserve_reg(unsigned long node,
477 const char *uname)
478 {
479 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
480 phys_addr_t base, size;
481 int len;
482 const __be32 *prop;
483 int first = 1;
484 bool nomap;
485
486 prop = of_get_flat_dt_prop(node, "reg", &len);
487 if (!prop)
488 return -ENOENT;
489
490 if (len && len % t_len != 0) {
491 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
492 uname);
493 return -EINVAL;
494 }
495
496 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
497
498 while (len >= t_len) {
499 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
500 size = dt_mem_next_cell(dt_root_size_cells, &prop);
501
502 if (size &&
503 early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
504 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
505 uname, &base, (unsigned long)(size / SZ_1M));
506 else
507 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
508 uname, &base, (unsigned long)(size / SZ_1M));
509
510 len -= t_len;
511 if (first) {
512 fdt_reserved_mem_save_node(node, uname, base, size);
513 first = 0;
514 }
515 }
516 return 0;
517 }
518
519 /**
520 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
521 * in /reserved-memory matches the values supported by the current implementation,
522 * also check if ranges property has been provided
523 */
__reserved_mem_check_root(unsigned long node)524 static int __init __reserved_mem_check_root(unsigned long node)
525 {
526 const __be32 *prop;
527
528 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
529 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
530 return -EINVAL;
531
532 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
533 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
534 return -EINVAL;
535
536 prop = of_get_flat_dt_prop(node, "ranges", NULL);
537 if (!prop)
538 return -EINVAL;
539 return 0;
540 }
541
542 /**
543 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
544 */
__fdt_scan_reserved_mem(unsigned long node,const char * uname,int depth,void * data)545 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
546 int depth, void *data)
547 {
548 static int found;
549 int err;
550
551 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
552 if (__reserved_mem_check_root(node) != 0) {
553 pr_err("Reserved memory: unsupported node format, ignoring\n");
554 /* break scan */
555 return 1;
556 }
557 found = 1;
558 /* scan next node */
559 return 0;
560 } else if (!found) {
561 /* scan next node */
562 return 0;
563 } else if (found && depth < 2) {
564 /* scanning of /reserved-memory has been finished */
565 return 1;
566 }
567
568 if (!of_fdt_device_is_available(initial_boot_params, node))
569 return 0;
570
571 err = __reserved_mem_reserve_reg(node, uname);
572 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
573 fdt_reserved_mem_save_node(node, uname, 0, 0);
574
575 /* scan next node */
576 return 0;
577 }
578
579 /**
580 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
581 *
582 * This function grabs memory from early allocator for device exclusive use
583 * defined in device tree structures. It should be called by arch specific code
584 * once the early allocator (i.e. memblock) has been fully activated.
585 */
early_init_fdt_scan_reserved_mem(void)586 void __init early_init_fdt_scan_reserved_mem(void)
587 {
588 int n;
589 u64 base, size;
590
591 if (!initial_boot_params)
592 return;
593
594 /* Process header /memreserve/ fields */
595 for (n = 0; ; n++) {
596 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
597 if (!size)
598 break;
599 early_init_dt_reserve_memory_arch(base, size, false);
600 }
601
602 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
603 fdt_init_reserved_mem();
604 }
605
606 /**
607 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
608 */
early_init_fdt_reserve_self(void)609 void __init early_init_fdt_reserve_self(void)
610 {
611 if (!initial_boot_params)
612 return;
613
614 /* Reserve the dtb region */
615 early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
616 fdt_totalsize(initial_boot_params),
617 false);
618 }
619
620 /**
621 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
622 * @it: callback function
623 * @data: context data pointer
624 *
625 * This function is used to scan the flattened device-tree, it is
626 * used to extract the memory information at boot before we can
627 * unflatten the tree
628 */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)629 int __init of_scan_flat_dt(int (*it)(unsigned long node,
630 const char *uname, int depth,
631 void *data),
632 void *data)
633 {
634 const void *blob = initial_boot_params;
635 const char *pathp;
636 int offset, rc = 0, depth = -1;
637
638 if (!blob)
639 return 0;
640
641 for (offset = fdt_next_node(blob, -1, &depth);
642 offset >= 0 && depth >= 0 && !rc;
643 offset = fdt_next_node(blob, offset, &depth)) {
644
645 pathp = fdt_get_name(blob, offset, NULL);
646 rc = it(offset, pathp, depth, data);
647 }
648 return rc;
649 }
650
651 /**
652 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
653 * @it: callback function
654 * @data: context data pointer
655 *
656 * This function is used to scan sub-nodes of a node.
657 */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)658 int __init of_scan_flat_dt_subnodes(unsigned long parent,
659 int (*it)(unsigned long node,
660 const char *uname,
661 void *data),
662 void *data)
663 {
664 const void *blob = initial_boot_params;
665 int node;
666
667 fdt_for_each_subnode(node, blob, parent) {
668 const char *pathp;
669 int rc;
670
671 pathp = fdt_get_name(blob, node, NULL);
672 rc = it(node, pathp, data);
673 if (rc)
674 return rc;
675 }
676 return 0;
677 }
678
679 /**
680 * of_get_flat_dt_subnode_by_name - get the subnode by given name
681 *
682 * @node: the parent node
683 * @uname: the name of subnode
684 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
685 */
686
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)687 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
688 {
689 return fdt_subnode_offset(initial_boot_params, node, uname);
690 }
691
692 /**
693 * of_get_flat_dt_root - find the root node in the flat blob
694 */
of_get_flat_dt_root(void)695 unsigned long __init of_get_flat_dt_root(void)
696 {
697 return 0;
698 }
699
700 /**
701 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
702 *
703 * This function can be used within scan_flattened_dt callback to get
704 * access to properties
705 */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)706 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
707 int *size)
708 {
709 return fdt_getprop(initial_boot_params, node, name, size);
710 }
711
712 /**
713 * of_fdt_is_compatible - Return true if given node from the given blob has
714 * compat in its compatible list
715 * @blob: A device tree blob
716 * @node: node to test
717 * @compat: compatible string to compare with compatible list.
718 *
719 * On match, returns a non-zero value with smaller values returned for more
720 * specific compatible values.
721 */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)722 static int of_fdt_is_compatible(const void *blob,
723 unsigned long node, const char *compat)
724 {
725 const char *cp;
726 int cplen;
727 unsigned long l, score = 0;
728
729 cp = fdt_getprop(blob, node, "compatible", &cplen);
730 if (cp == NULL)
731 return 0;
732 while (cplen > 0) {
733 score++;
734 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
735 return score;
736 l = strlen(cp) + 1;
737 cp += l;
738 cplen -= l;
739 }
740
741 return 0;
742 }
743
744 /**
745 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
746 * @node: node to test
747 * @compat: compatible string to compare with compatible list.
748 */
of_flat_dt_is_compatible(unsigned long node,const char * compat)749 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
750 {
751 return of_fdt_is_compatible(initial_boot_params, node, compat);
752 }
753
754 /**
755 * of_flat_dt_match - Return true if node matches a list of compatible values
756 */
of_flat_dt_match(unsigned long node,const char * const * compat)757 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
758 {
759 unsigned int tmp, score = 0;
760
761 if (!compat)
762 return 0;
763
764 while (*compat) {
765 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
766 if (tmp && (score == 0 || (tmp < score)))
767 score = tmp;
768 compat++;
769 }
770
771 return score;
772 }
773
774 /**
775 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
776 */
of_get_flat_dt_phandle(unsigned long node)777 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
778 {
779 return fdt_get_phandle(initial_boot_params, node);
780 }
781
782 struct fdt_scan_status {
783 const char *name;
784 int namelen;
785 int depth;
786 int found;
787 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
788 void *data;
789 };
790
of_flat_dt_get_machine_name(void)791 const char * __init of_flat_dt_get_machine_name(void)
792 {
793 const char *name;
794 unsigned long dt_root = of_get_flat_dt_root();
795
796 name = of_get_flat_dt_prop(dt_root, "model", NULL);
797 if (!name)
798 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
799 return name;
800 }
801
802 /**
803 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
804 *
805 * @default_match: A machine specific ptr to return in case of no match.
806 * @get_next_compat: callback function to return next compatible match table.
807 *
808 * Iterate through machine match tables to find the best match for the machine
809 * compatible string in the FDT.
810 */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))811 const void * __init of_flat_dt_match_machine(const void *default_match,
812 const void * (*get_next_compat)(const char * const**))
813 {
814 const void *data = NULL;
815 const void *best_data = default_match;
816 const char *const *compat;
817 unsigned long dt_root;
818 unsigned int best_score = ~1, score = 0;
819
820 dt_root = of_get_flat_dt_root();
821 while ((data = get_next_compat(&compat))) {
822 score = of_flat_dt_match(dt_root, compat);
823 if (score > 0 && score < best_score) {
824 best_data = data;
825 best_score = score;
826 }
827 }
828 if (!best_data) {
829 const char *prop;
830 int size;
831
832 pr_err("\n unrecognized device tree list:\n[ ");
833
834 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
835 if (prop) {
836 while (size > 0) {
837 printk("'%s' ", prop);
838 size -= strlen(prop) + 1;
839 prop += strlen(prop) + 1;
840 }
841 }
842 printk("]\n\n");
843 return NULL;
844 }
845
846 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
847
848 return best_data;
849 }
850
851 #ifdef CONFIG_BLK_DEV_INITRD
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)852 static void __early_init_dt_declare_initrd(unsigned long start,
853 unsigned long end)
854 {
855 /* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
856 * enabled since __va() is called too early. ARM64 does make use
857 * of phys_initrd_start/phys_initrd_size so we can skip this
858 * conversion.
859 */
860 if (!IS_ENABLED(CONFIG_ARM64)) {
861 initrd_start = (unsigned long)__va(start);
862 initrd_end = (unsigned long)__va(end);
863 initrd_below_start_ok = 1;
864 }
865 }
866
867 /**
868 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
869 * @node: reference to node containing initrd location ('chosen')
870 */
early_init_dt_check_for_initrd(unsigned long node)871 static void __init early_init_dt_check_for_initrd(unsigned long node)
872 {
873 u64 start, end;
874 int len;
875 const __be32 *prop;
876
877 pr_debug("Looking for initrd properties... ");
878
879 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
880 if (!prop)
881 return;
882 start = of_read_number(prop, len/4);
883
884 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
885 if (!prop)
886 return;
887 end = of_read_number(prop, len/4);
888
889 __early_init_dt_declare_initrd(start, end);
890 phys_initrd_start = start;
891 phys_initrd_size = end - start;
892
893 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n",
894 (unsigned long long)start, (unsigned long long)end);
895 }
896 #else
early_init_dt_check_for_initrd(unsigned long node)897 static inline void early_init_dt_check_for_initrd(unsigned long node)
898 {
899 }
900 #endif /* CONFIG_BLK_DEV_INITRD */
901
902 #ifdef CONFIG_SERIAL_EARLYCON
903
early_init_dt_scan_chosen_stdout(void)904 int __init early_init_dt_scan_chosen_stdout(void)
905 {
906 int offset;
907 const char *p, *q, *options = NULL;
908 int l;
909 const struct earlycon_id **p_match;
910 const void *fdt = initial_boot_params;
911
912 offset = fdt_path_offset(fdt, "/chosen");
913 if (offset < 0)
914 offset = fdt_path_offset(fdt, "/chosen@0");
915 if (offset < 0)
916 return -ENOENT;
917
918 p = fdt_getprop(fdt, offset, "stdout-path", &l);
919 if (!p)
920 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
921 if (!p || !l)
922 return -ENOENT;
923
924 q = strchrnul(p, ':');
925 if (*q != '\0')
926 options = q + 1;
927 l = q - p;
928
929 /* Get the node specified by stdout-path */
930 offset = fdt_path_offset_namelen(fdt, p, l);
931 if (offset < 0) {
932 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
933 return 0;
934 }
935
936 for (p_match = __earlycon_table; p_match < __earlycon_table_end;
937 p_match++) {
938 const struct earlycon_id *match = *p_match;
939
940 if (!match->compatible[0])
941 continue;
942
943 if (fdt_node_check_compatible(fdt, offset, match->compatible))
944 continue;
945
946 if (of_setup_earlycon(match, offset, options) == 0)
947 return 0;
948 }
949 return -ENODEV;
950 }
951 #endif
952
953 /**
954 * early_init_dt_scan_root - fetch the top level address and size cells
955 */
early_init_dt_scan_root(unsigned long node,const char * uname,int depth,void * data)956 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
957 int depth, void *data)
958 {
959 const __be32 *prop;
960
961 if (depth != 0)
962 return 0;
963
964 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
965 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
966
967 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
968 if (prop)
969 dt_root_size_cells = be32_to_cpup(prop);
970 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
971
972 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
973 if (prop)
974 dt_root_addr_cells = be32_to_cpup(prop);
975 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
976
977 /* break now */
978 return 1;
979 }
980
dt_mem_next_cell(int s,const __be32 ** cellp)981 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
982 {
983 const __be32 *p = *cellp;
984
985 *cellp = p + s;
986 return of_read_number(p, s);
987 }
988
989 /**
990 * early_init_dt_scan_memory - Look for and parse memory nodes
991 */
early_init_dt_scan_memory(unsigned long node,const char * uname,int depth,void * data)992 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
993 int depth, void *data)
994 {
995 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
996 const __be32 *reg, *endp;
997 int l;
998 bool hotpluggable;
999
1000 /* We are scanning "memory" nodes only */
1001 if (type == NULL || strcmp(type, "memory") != 0)
1002 return 0;
1003
1004 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1005 if (reg == NULL)
1006 reg = of_get_flat_dt_prop(node, "reg", &l);
1007 if (reg == NULL)
1008 return 0;
1009
1010 endp = reg + (l / sizeof(__be32));
1011 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1012
1013 pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1014
1015 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1016 u64 base, size;
1017
1018 base = dt_mem_next_cell(dt_root_addr_cells, ®);
1019 size = dt_mem_next_cell(dt_root_size_cells, ®);
1020
1021 if (size == 0)
1022 continue;
1023 pr_debug(" - %llx , %llx\n", (unsigned long long)base,
1024 (unsigned long long)size);
1025
1026 early_init_dt_add_memory_arch(base, size);
1027
1028 if (!hotpluggable)
1029 continue;
1030
1031 if (early_init_dt_mark_hotplug_memory_arch(base, size))
1032 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1033 base, base + size);
1034 }
1035
1036 return 0;
1037 }
1038
early_init_dt_scan_chosen(unsigned long node,const char * uname,int depth,void * data)1039 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1040 int depth, void *data)
1041 {
1042 int l;
1043 const char *p;
1044 const void *rng_seed;
1045
1046 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1047
1048 if (depth != 1 || !data ||
1049 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1050 return 0;
1051
1052 early_init_dt_check_for_initrd(node);
1053
1054 /* Retrieve command line */
1055 p = of_get_flat_dt_prop(node, "bootargs", &l);
1056 if (p != NULL && l > 0)
1057 strlcpy(data, p, min(l, COMMAND_LINE_SIZE));
1058
1059 /*
1060 * CONFIG_CMDLINE is meant to be a default in case nothing else
1061 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1062 * is set in which case we override whatever was found earlier.
1063 */
1064 #ifdef CONFIG_CMDLINE
1065 #if defined(CONFIG_CMDLINE_EXTEND)
1066 strlcat(data, " ", COMMAND_LINE_SIZE);
1067 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1068 #elif defined(CONFIG_CMDLINE_FORCE)
1069 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1070 #else
1071 /* No arguments from boot loader, use kernel's cmdl*/
1072 if (!((char *)data)[0])
1073 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1074 #endif
1075 #endif /* CONFIG_CMDLINE */
1076
1077 pr_debug("Command line is: %s\n", (char *)data);
1078
1079 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1080 if (rng_seed && l > 0) {
1081 add_bootloader_randomness(rng_seed, l);
1082
1083 /* try to clear seed so it won't be found. */
1084 fdt_nop_property(initial_boot_params, node, "rng-seed");
1085
1086 /* update CRC check value */
1087 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1088 fdt_totalsize(initial_boot_params));
1089 }
1090
1091 /* break now */
1092 return 1;
1093 }
1094
1095 #ifndef MIN_MEMBLOCK_ADDR
1096 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1097 #endif
1098 #ifndef MAX_MEMBLOCK_ADDR
1099 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1100 #endif
1101
early_init_dt_add_memory_arch(u64 base,u64 size)1102 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1103 {
1104 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1105
1106 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1107 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1108 base, base + size);
1109 return;
1110 }
1111
1112 if (!PAGE_ALIGNED(base)) {
1113 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1114 base = PAGE_ALIGN(base);
1115 }
1116 size &= PAGE_MASK;
1117
1118 if (base > MAX_MEMBLOCK_ADDR) {
1119 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1120 base, base + size);
1121 return;
1122 }
1123
1124 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1125 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1126 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1127 size = MAX_MEMBLOCK_ADDR - base + 1;
1128 }
1129
1130 if (base + size < phys_offset) {
1131 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1132 base, base + size);
1133 return;
1134 }
1135 if (base < phys_offset) {
1136 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1137 base, phys_offset);
1138 size -= phys_offset - base;
1139 base = phys_offset;
1140 }
1141 memblock_add(base, size);
1142 }
1143
early_init_dt_mark_hotplug_memory_arch(u64 base,u64 size)1144 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1145 {
1146 return memblock_mark_hotplug(base, size);
1147 }
1148
early_init_dt_reserve_memory_arch(phys_addr_t base,phys_addr_t size,bool nomap)1149 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1150 phys_addr_t size, bool nomap)
1151 {
1152 if (nomap) {
1153 /*
1154 * If the memory is already reserved (by another region), we
1155 * should not allow it to be marked nomap.
1156 */
1157 if (memblock_is_region_reserved(base, size))
1158 return -EBUSY;
1159
1160 return memblock_mark_nomap(base, size);
1161 }
1162 return memblock_reserve(base, size);
1163 }
1164
early_init_dt_alloc_memory_arch(u64 size,u64 align)1165 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1166 {
1167 void *ptr = memblock_alloc(size, align);
1168
1169 if (!ptr)
1170 panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1171 __func__, size, align);
1172
1173 return ptr;
1174 }
1175
early_init_dt_verify(void * params)1176 bool __init early_init_dt_verify(void *params)
1177 {
1178 if (!params)
1179 return false;
1180
1181 /* check device tree validity */
1182 if (fdt_check_header(params))
1183 return false;
1184
1185 /* Setup flat device-tree pointer */
1186 initial_boot_params = params;
1187 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1188 fdt_totalsize(initial_boot_params));
1189 return true;
1190 }
1191
1192
early_init_dt_scan_nodes(void)1193 void __init early_init_dt_scan_nodes(void)
1194 {
1195 int rc = 0;
1196
1197 /* Retrieve various information from the /chosen node */
1198 rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1199 if (!rc)
1200 pr_warn("No chosen node found, continuing without\n");
1201
1202 /* Initialize {size,address}-cells info */
1203 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1204
1205 /* Setup memory, calling early_init_dt_add_memory_arch */
1206 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1207 }
1208
early_init_dt_scan(void * params)1209 bool __init early_init_dt_scan(void *params)
1210 {
1211 bool status;
1212
1213 status = early_init_dt_verify(params);
1214 if (!status)
1215 return false;
1216
1217 early_init_dt_scan_nodes();
1218 return true;
1219 }
1220
1221 /**
1222 * unflatten_device_tree - create tree of device_nodes from flat blob
1223 *
1224 * unflattens the device-tree passed by the firmware, creating the
1225 * tree of struct device_node. It also fills the "name" and "type"
1226 * pointers of the nodes so the normal device-tree walking functions
1227 * can be used.
1228 */
unflatten_device_tree(void)1229 void __init unflatten_device_tree(void)
1230 {
1231 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1232 early_init_dt_alloc_memory_arch, false);
1233
1234 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1235 of_alias_scan(early_init_dt_alloc_memory_arch);
1236
1237 unittest_unflatten_overlay_base();
1238 }
1239
1240 /**
1241 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1242 *
1243 * Copies and unflattens the device-tree passed by the firmware, creating the
1244 * tree of struct device_node. It also fills the "name" and "type"
1245 * pointers of the nodes so the normal device-tree walking functions
1246 * can be used. This should only be used when the FDT memory has not been
1247 * reserved such is the case when the FDT is built-in to the kernel init
1248 * section. If the FDT memory is reserved already then unflatten_device_tree
1249 * should be used instead.
1250 */
unflatten_and_copy_device_tree(void)1251 void __init unflatten_and_copy_device_tree(void)
1252 {
1253 int size;
1254 void *dt;
1255
1256 if (!initial_boot_params) {
1257 pr_warn("No valid device tree found, continuing without\n");
1258 return;
1259 }
1260
1261 size = fdt_totalsize(initial_boot_params);
1262 dt = early_init_dt_alloc_memory_arch(size,
1263 roundup_pow_of_two(FDT_V17_SIZE));
1264
1265 if (dt) {
1266 memcpy(dt, initial_boot_params, size);
1267 initial_boot_params = dt;
1268 }
1269 unflatten_device_tree();
1270 }
1271
1272 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1273 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1274 struct bin_attribute *bin_attr,
1275 char *buf, loff_t off, size_t count)
1276 {
1277 memcpy(buf, initial_boot_params + off, count);
1278 return count;
1279 }
1280
of_fdt_raw_init(void)1281 static int __init of_fdt_raw_init(void)
1282 {
1283 static struct bin_attribute of_fdt_raw_attr =
1284 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1285
1286 if (!initial_boot_params)
1287 return 0;
1288
1289 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1290 fdt_totalsize(initial_boot_params))) {
1291 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1292 return 0;
1293 }
1294 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1295 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1296 }
1297 late_initcall(of_fdt_raw_init);
1298 #endif
1299
1300 #endif /* CONFIG_OF_EARLY_FLATTREE */
1301