• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-map-ops.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 #include <linux/hugetlb.h>
32 #include <linux/acpi_iort.h>
33 
34 #include <asm/boot.h>
35 #include <asm/fixmap.h>
36 #include <asm/kasan.h>
37 #include <asm/kernel-pgtable.h>
38 #include <asm/memory.h>
39 #include <asm/numa.h>
40 #include <asm/sections.h>
41 #include <asm/setup.h>
42 #include <linux/sizes.h>
43 #include <asm/tlb.h>
44 #include <asm/alternative.h>
45 
46 /*
47  * We need to be able to catch inadvertent references to memstart_addr
48  * that occur (potentially in generic code) before arm64_memblock_init()
49  * executes, which assigns it its actual value. So use a default value
50  * that cannot be mistaken for a real physical address.
51  */
52 s64 memstart_addr __ro_after_init = -1;
53 EXPORT_SYMBOL(memstart_addr);
54 
55 /*
56  * If the corresponding config options are enabled, we create both ZONE_DMA
57  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
58  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
59  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
60  * otherwise it is empty.
61  *
62  * Memory reservation for crash kernel either done early or deferred
63  * depending on DMA memory zones configs (ZONE_DMA) --
64  *
65  * In absence of ZONE_DMA configs arm64_dma_phys_limit initialized
66  * here instead of max_zone_phys().  This lets early reservation of
67  * crash kernel memory which has a dependency on arm64_dma_phys_limit.
68  * Reserving memory early for crash kernel allows linear creation of block
69  * mappings (greater than page-granularity) for all the memory bank rangs.
70  * In this scheme a comparatively quicker boot is observed.
71  *
72  * If ZONE_DMA configs are defined, crash kernel memory reservation
73  * is delayed until DMA zone memory range size initilazation performed in
74  * zone_sizes_init().  The defer is necessary to steer clear of DMA zone
75  * memory range to avoid overlap allocation.  So crash kernel memory boundaries
76  * are not known when mapping all bank memory ranges, which otherwise means
77  * not possible to exclude crash kernel range from creating block mappings
78  * so page-granularity mappings are created for the entire memory range.
79  * Hence a slightly slower boot is observed.
80  *
81  * Note: Page-granularity mapppings are necessary for crash kernel memory
82  * range for shrinking its size via /sys/kernel/kexec_crash_size interface.
83  */
84 #if IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32)
85 phys_addr_t __ro_after_init arm64_dma_phys_limit;
86 #else
87 phys_addr_t __ro_after_init arm64_dma_phys_limit = PHYS_MASK + 1;
88 #endif
89 
90 #ifdef CONFIG_KEXEC_CORE
91 /*
92  * reserve_crashkernel() - reserves memory for crash kernel
93  *
94  * This function reserves memory area given in "crashkernel=" kernel command
95  * line parameter. The memory reserved is used by dump capture kernel when
96  * primary kernel is crashing.
97  */
reserve_crashkernel(void)98 static void __init reserve_crashkernel(void)
99 {
100 	unsigned long long crash_base, crash_size;
101 	int ret;
102 
103 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
104 				&crash_size, &crash_base);
105 	/* no crashkernel= or invalid value specified */
106 	if (ret || !crash_size)
107 		return;
108 
109 	crash_size = PAGE_ALIGN(crash_size);
110 
111 	if (crash_base == 0) {
112 		/* Current arm64 boot protocol requires 2MB alignment */
113 		crash_base = memblock_find_in_range(0, arm64_dma_phys_limit,
114 				crash_size, SZ_2M);
115 		if (crash_base == 0) {
116 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
117 				crash_size);
118 			return;
119 		}
120 	} else {
121 		/* User specifies base address explicitly. */
122 		if (!memblock_is_region_memory(crash_base, crash_size)) {
123 			pr_warn("cannot reserve crashkernel: region is not memory\n");
124 			return;
125 		}
126 
127 		if (memblock_is_region_reserved(crash_base, crash_size)) {
128 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
129 			return;
130 		}
131 
132 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
133 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
134 			return;
135 		}
136 	}
137 	memblock_reserve(crash_base, crash_size);
138 
139 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
140 		crash_base, crash_base + crash_size, crash_size >> 20);
141 
142 	crashk_res.start = crash_base;
143 	crashk_res.end = crash_base + crash_size - 1;
144 }
145 #else
reserve_crashkernel(void)146 static void __init reserve_crashkernel(void)
147 {
148 }
149 #endif /* CONFIG_KEXEC_CORE */
150 
151 #ifdef CONFIG_CRASH_DUMP
early_init_dt_scan_elfcorehdr(unsigned long node,const char * uname,int depth,void * data)152 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
153 		const char *uname, int depth, void *data)
154 {
155 	const __be32 *reg;
156 	int len;
157 
158 	if (depth != 1 || strcmp(uname, "chosen") != 0)
159 		return 0;
160 
161 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
162 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
163 		return 1;
164 
165 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
166 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
167 
168 	return 1;
169 }
170 
171 /*
172  * reserve_elfcorehdr() - reserves memory for elf core header
173  *
174  * This function reserves the memory occupied by an elf core header
175  * described in the device tree. This region contains all the
176  * information about primary kernel's core image and is used by a dump
177  * capture kernel to access the system memory on primary kernel.
178  */
reserve_elfcorehdr(void)179 static void __init reserve_elfcorehdr(void)
180 {
181 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
182 
183 	if (!elfcorehdr_size)
184 		return;
185 
186 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
187 		pr_warn("elfcorehdr is overlapped\n");
188 		return;
189 	}
190 
191 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
192 
193 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
194 		elfcorehdr_size >> 10, elfcorehdr_addr);
195 }
196 #else
reserve_elfcorehdr(void)197 static void __init reserve_elfcorehdr(void)
198 {
199 }
200 #endif /* CONFIG_CRASH_DUMP */
201 
202 /*
203  * Return the maximum physical address for a zone accessible by the given bits
204  * limit. If DRAM starts above 32-bit, expand the zone to the maximum
205  * available memory, otherwise cap it at 32-bit.
206  */
max_zone_phys(unsigned int zone_bits)207 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
208 {
209 	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
210 	phys_addr_t phys_start = memblock_start_of_DRAM();
211 
212 	if (phys_start > U32_MAX)
213 		zone_mask = PHYS_ADDR_MAX;
214 	else if (phys_start > zone_mask)
215 		zone_mask = U32_MAX;
216 
217 	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
218 }
219 
zone_sizes_init(unsigned long min,unsigned long max)220 static void __init zone_sizes_init(unsigned long min, unsigned long max)
221 {
222 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
223 	unsigned int __maybe_unused acpi_zone_dma_bits;
224 	unsigned int __maybe_unused dt_zone_dma_bits;
225 	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
226 
227 #ifdef CONFIG_ZONE_DMA
228 	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
229 	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
230 	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
231 	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
232 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
233 #endif
234 #ifdef CONFIG_ZONE_DMA32
235 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
236 	if (!arm64_dma_phys_limit)
237 		arm64_dma_phys_limit = dma32_phys_limit;
238 #endif
239 	max_zone_pfns[ZONE_NORMAL] = max;
240 
241 	free_area_init(max_zone_pfns);
242 }
243 
pfn_valid(unsigned long pfn)244 int pfn_valid(unsigned long pfn)
245 {
246 	phys_addr_t addr = pfn << PAGE_SHIFT;
247 
248 	if ((addr >> PAGE_SHIFT) != pfn)
249 		return 0;
250 
251 #ifdef CONFIG_SPARSEMEM
252 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
253 		return 0;
254 
255 	if (!valid_section(__pfn_to_section(pfn)))
256 		return 0;
257 
258 	/*
259 	 * ZONE_DEVICE memory does not have the memblock entries.
260 	 * memblock_is_map_memory() check for ZONE_DEVICE based
261 	 * addresses will always fail. Even the normal hotplugged
262 	 * memory will never have MEMBLOCK_NOMAP flag set in their
263 	 * memblock entries. Skip memblock search for all non early
264 	 * memory sections covering all of hotplug memory including
265 	 * both normal and ZONE_DEVICE based.
266 	 */
267 	if (!early_section(__pfn_to_section(pfn)))
268 		return pfn_section_valid(__pfn_to_section(pfn), pfn);
269 #endif
270 	return memblock_is_map_memory(addr);
271 }
272 EXPORT_SYMBOL(pfn_valid);
273 
274 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
275 
276 /*
277  * Limit the memory size that was specified via FDT.
278  */
early_mem(char * p)279 static int __init early_mem(char *p)
280 {
281 	if (!p)
282 		return 1;
283 
284 	memory_limit = memparse(p, &p) & PAGE_MASK;
285 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
286 
287 	return 0;
288 }
289 early_param("mem", early_mem);
290 
early_init_dt_scan_usablemem(unsigned long node,const char * uname,int depth,void * data)291 static int __init early_init_dt_scan_usablemem(unsigned long node,
292 		const char *uname, int depth, void *data)
293 {
294 	struct memblock_region *usablemem = data;
295 	const __be32 *reg;
296 	int len;
297 
298 	if (depth != 1 || strcmp(uname, "chosen") != 0)
299 		return 0;
300 
301 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
302 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
303 		return 1;
304 
305 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
306 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
307 
308 	return 1;
309 }
310 
fdt_enforce_memory_region(void)311 static void __init fdt_enforce_memory_region(void)
312 {
313 	struct memblock_region reg = {
314 		.size = 0,
315 	};
316 
317 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
318 
319 	if (reg.size)
320 		memblock_cap_memory_range(reg.base, reg.size);
321 }
322 
arm64_memblock_init(void)323 void __init arm64_memblock_init(void)
324 {
325 	const s64 linear_region_size = BIT(vabits_actual - 1);
326 
327 	/* Handle linux,usable-memory-range property */
328 	fdt_enforce_memory_region();
329 
330 	/* Remove memory above our supported physical address size */
331 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
332 
333 	/*
334 	 * Select a suitable value for the base of physical memory.
335 	 */
336 	memstart_addr = round_down(memblock_start_of_DRAM(),
337 				   ARM64_MEMSTART_ALIGN);
338 
339 	/*
340 	 * Remove the memory that we will not be able to cover with the
341 	 * linear mapping. Take care not to clip the kernel which may be
342 	 * high in memory.
343 	 */
344 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
345 			__pa_symbol(_end)), ULLONG_MAX);
346 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
347 		/* ensure that memstart_addr remains sufficiently aligned */
348 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
349 					 ARM64_MEMSTART_ALIGN);
350 		memblock_remove(0, memstart_addr);
351 	}
352 
353 	/*
354 	 * If we are running with a 52-bit kernel VA config on a system that
355 	 * does not support it, we have to place the available physical
356 	 * memory in the 48-bit addressable part of the linear region, i.e.,
357 	 * we have to move it upward. Since memstart_addr represents the
358 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
359 	 */
360 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
361 		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
362 
363 	/*
364 	 * Apply the memory limit if it was set. Since the kernel may be loaded
365 	 * high up in memory, add back the kernel region that must be accessible
366 	 * via the linear mapping.
367 	 */
368 	if (memory_limit != PHYS_ADDR_MAX) {
369 		memblock_mem_limit_remove_map(memory_limit);
370 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
371 	}
372 
373 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
374 		/*
375 		 * Add back the memory we just removed if it results in the
376 		 * initrd to become inaccessible via the linear mapping.
377 		 * Otherwise, this is a no-op
378 		 */
379 		u64 base = phys_initrd_start & PAGE_MASK;
380 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
381 
382 		/*
383 		 * We can only add back the initrd memory if we don't end up
384 		 * with more memory than we can address via the linear mapping.
385 		 * It is up to the bootloader to position the kernel and the
386 		 * initrd reasonably close to each other (i.e., within 32 GB of
387 		 * each other) so that all granule/#levels combinations can
388 		 * always access both.
389 		 */
390 		if (WARN(base < memblock_start_of_DRAM() ||
391 			 base + size > memblock_start_of_DRAM() +
392 				       linear_region_size,
393 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
394 			phys_initrd_size = 0;
395 		} else {
396 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
397 			memblock_add(base, size);
398 			memblock_reserve(base, size);
399 		}
400 	}
401 
402 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
403 		extern u16 memstart_offset_seed;
404 		u64 range = linear_region_size -
405 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
406 
407 		/*
408 		 * If the size of the linear region exceeds, by a sufficient
409 		 * margin, the size of the region that the available physical
410 		 * memory spans, randomize the linear region as well.
411 		 */
412 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
413 			range /= ARM64_MEMSTART_ALIGN;
414 			memstart_addr -= ARM64_MEMSTART_ALIGN *
415 					 ((range * memstart_offset_seed) >> 16);
416 		}
417 	}
418 
419 	/*
420 	 * Register the kernel text, kernel data, initrd, and initial
421 	 * pagetables with memblock.
422 	 */
423 	memblock_reserve(__pa_symbol(_text), _end - _text);
424 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
425 		/* the generic initrd code expects virtual addresses */
426 		initrd_start = __phys_to_virt(phys_initrd_start);
427 		initrd_end = initrd_start + phys_initrd_size;
428 	}
429 
430 	early_init_fdt_scan_reserved_mem();
431 
432 	reserve_elfcorehdr();
433 
434 	if (!IS_ENABLED(CONFIG_ZONE_DMA) && !IS_ENABLED(CONFIG_ZONE_DMA32))
435 		reserve_crashkernel();
436 
437 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
438 }
439 
bootmem_init(void)440 void __init bootmem_init(void)
441 {
442 	unsigned long min, max;
443 
444 	min = PFN_UP(memblock_start_of_DRAM());
445 	max = PFN_DOWN(memblock_end_of_DRAM());
446 
447 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
448 
449 	max_pfn = max_low_pfn = max;
450 	min_low_pfn = min;
451 
452 	arm64_numa_init();
453 
454 	/*
455 	 * must be done after arm64_numa_init() which calls numa_init() to
456 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
457 	 * while allocating required CMA size across online nodes.
458 	 */
459 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
460 	arm64_hugetlb_cma_reserve();
461 #endif
462 
463 	dma_pernuma_cma_reserve();
464 
465 	/*
466 	 * sparse_init() tries to allocate memory from memblock, so must be
467 	 * done after the fixed reservations
468 	 */
469 	sparse_init();
470 	zone_sizes_init(min, max);
471 
472 	/*
473 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
474 	 */
475 	dma_contiguous_reserve(arm64_dma_phys_limit);
476 
477 	/*
478 	 * request_standard_resources() depends on crashkernel's memory being
479 	 * reserved, so do it here.
480 	 */
481 	if (IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32))
482 		reserve_crashkernel();
483 
484 	memblock_dump_all();
485 }
486 
487 #ifndef CONFIG_SPARSEMEM_VMEMMAP
free_memmap(unsigned long start_pfn,unsigned long end_pfn)488 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
489 {
490 	struct page *start_pg, *end_pg;
491 	unsigned long pg, pgend;
492 
493 	/*
494 	 * Convert start_pfn/end_pfn to a struct page pointer.
495 	 */
496 	start_pg = pfn_to_page(start_pfn - 1) + 1;
497 	end_pg = pfn_to_page(end_pfn - 1) + 1;
498 
499 	/*
500 	 * Convert to physical addresses, and round start upwards and end
501 	 * downwards.
502 	 */
503 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
504 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
505 
506 	/*
507 	 * If there are free pages between these, free the section of the
508 	 * memmap array.
509 	 */
510 	if (pg < pgend)
511 		memblock_free(pg, pgend - pg);
512 }
513 
514 /*
515  * The mem_map array can get very big. Free the unused area of the memory map.
516  */
free_unused_memmap(void)517 static void __init free_unused_memmap(void)
518 {
519 	unsigned long start, end, prev_end = 0;
520 	int i;
521 
522 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
523 #ifdef CONFIG_SPARSEMEM
524 		/*
525 		 * Take care not to free memmap entries that don't exist due
526 		 * to SPARSEMEM sections which aren't present.
527 		 */
528 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
529 #endif
530 		/*
531 		 * If we had a previous bank, and there is a space between the
532 		 * current bank and the previous, free it.
533 		 */
534 		if (prev_end && prev_end < start)
535 			free_memmap(prev_end, start);
536 
537 		/*
538 		 * Align up here since the VM subsystem insists that the
539 		 * memmap entries are valid from the bank end aligned to
540 		 * MAX_ORDER_NR_PAGES.
541 		 */
542 		prev_end = ALIGN(end, MAX_ORDER_NR_PAGES);
543 	}
544 
545 #ifdef CONFIG_SPARSEMEM
546 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
547 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
548 #endif
549 }
550 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
551 
552 /*
553  * mem_init() marks the free areas in the mem_map and tells us how much memory
554  * is free.  This is done after various parts of the system have claimed their
555  * memory after the kernel image.
556  */
mem_init(void)557 void __init mem_init(void)
558 {
559 	if (swiotlb_force == SWIOTLB_FORCE ||
560 	    max_pfn > PFN_DOWN(arm64_dma_phys_limit))
561 		swiotlb_init(1);
562 	else
563 		swiotlb_force = SWIOTLB_NO_FORCE;
564 
565 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
566 
567 #ifndef CONFIG_SPARSEMEM_VMEMMAP
568 	free_unused_memmap();
569 #endif
570 	/* this will put all unused low memory onto the freelists */
571 	memblock_free_all();
572 
573 	mem_init_print_info(NULL);
574 
575 	/*
576 	 * Check boundaries twice: Some fundamental inconsistencies can be
577 	 * detected at build time already.
578 	 */
579 #ifdef CONFIG_COMPAT
580 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
581 #endif
582 
583 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
584 		extern int sysctl_overcommit_memory;
585 		/*
586 		 * On a machine this small we won't get anywhere without
587 		 * overcommit, so turn it on by default.
588 		 */
589 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
590 	}
591 }
592 
free_initmem(void)593 void free_initmem(void)
594 {
595 	free_reserved_area(lm_alias(__init_begin),
596 			   lm_alias(__init_end),
597 			   POISON_FREE_INITMEM, "unused kernel");
598 	/*
599 	 * Unmap the __init region but leave the VM area in place. This
600 	 * prevents the region from being reused for kernel modules, which
601 	 * is not supported by kallsyms.
602 	 */
603 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
604 }
605 
dump_mem_limit(void)606 void dump_mem_limit(void)
607 {
608 	if (memory_limit != PHYS_ADDR_MAX) {
609 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
610 	} else {
611 		pr_emerg("Memory Limit: none\n");
612 	}
613 }
614