1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Designware SPI core controller driver (refer pxa2xx_spi.c)
4 *
5 * Copyright (c) 2009, Intel Corporation.
6 */
7
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/preempt.h>
12 #include <linux/highmem.h>
13 #include <linux/delay.h>
14 #include <linux/slab.h>
15 #include <linux/spi/spi.h>
16 #include <linux/spi/spi-mem.h>
17 #include <linux/string.h>
18 #include <linux/of.h>
19
20 #include "spi-dw.h"
21
22 #ifdef CONFIG_DEBUG_FS
23 #include <linux/debugfs.h>
24 #endif
25
26 /* Slave spi_device related */
27 struct chip_data {
28 u32 cr0;
29 u32 rx_sample_dly; /* RX sample delay */
30 };
31
32 #ifdef CONFIG_DEBUG_FS
33
34 #define DW_SPI_DBGFS_REG(_name, _off) \
35 { \
36 .name = _name, \
37 .offset = _off, \
38 }
39
40 static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
41 DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
42 DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
43 DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
44 DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
45 DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
46 DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
47 DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
48 DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
49 DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
50 DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
51 DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
52 DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
53 DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
54 DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
55 DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
56 DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
57 };
58
dw_spi_debugfs_init(struct dw_spi * dws)59 static int dw_spi_debugfs_init(struct dw_spi *dws)
60 {
61 char name[32];
62
63 snprintf(name, 32, "dw_spi%d", dws->master->bus_num);
64 dws->debugfs = debugfs_create_dir(name, NULL);
65 if (!dws->debugfs)
66 return -ENOMEM;
67
68 dws->regset.regs = dw_spi_dbgfs_regs;
69 dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
70 dws->regset.base = dws->regs;
71 debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
72
73 return 0;
74 }
75
dw_spi_debugfs_remove(struct dw_spi * dws)76 static void dw_spi_debugfs_remove(struct dw_spi *dws)
77 {
78 debugfs_remove_recursive(dws->debugfs);
79 }
80
81 #else
dw_spi_debugfs_init(struct dw_spi * dws)82 static inline int dw_spi_debugfs_init(struct dw_spi *dws)
83 {
84 return 0;
85 }
86
dw_spi_debugfs_remove(struct dw_spi * dws)87 static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
88 {
89 }
90 #endif /* CONFIG_DEBUG_FS */
91
dw_spi_set_cs(struct spi_device * spi,bool enable)92 void dw_spi_set_cs(struct spi_device *spi, bool enable)
93 {
94 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
95 bool cs_high = !!(spi->mode & SPI_CS_HIGH);
96
97 /*
98 * DW SPI controller demands any native CS being set in order to
99 * proceed with data transfer. So in order to activate the SPI
100 * communications we must set a corresponding bit in the Slave
101 * Enable register no matter whether the SPI core is configured to
102 * support active-high or active-low CS level.
103 */
104 if (cs_high == enable)
105 dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select));
106 else
107 dw_writel(dws, DW_SPI_SER, 0);
108 }
109 EXPORT_SYMBOL_GPL(dw_spi_set_cs);
110
111 /* Return the max entries we can fill into tx fifo */
tx_max(struct dw_spi * dws)112 static inline u32 tx_max(struct dw_spi *dws)
113 {
114 u32 tx_room, rxtx_gap;
115
116 tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
117
118 /*
119 * Another concern is about the tx/rx mismatch, we
120 * though to use (dws->fifo_len - rxflr - txflr) as
121 * one maximum value for tx, but it doesn't cover the
122 * data which is out of tx/rx fifo and inside the
123 * shift registers. So a control from sw point of
124 * view is taken.
125 */
126 rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
127
128 return min3((u32)dws->tx_len, tx_room, rxtx_gap);
129 }
130
131 /* Return the max entries we should read out of rx fifo */
rx_max(struct dw_spi * dws)132 static inline u32 rx_max(struct dw_spi *dws)
133 {
134 return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
135 }
136
dw_writer(struct dw_spi * dws)137 static void dw_writer(struct dw_spi *dws)
138 {
139 u32 max = tx_max(dws);
140 u16 txw = 0;
141
142 while (max--) {
143 if (dws->tx) {
144 if (dws->n_bytes == 1)
145 txw = *(u8 *)(dws->tx);
146 else
147 txw = *(u16 *)(dws->tx);
148
149 dws->tx += dws->n_bytes;
150 }
151 dw_write_io_reg(dws, DW_SPI_DR, txw);
152 --dws->tx_len;
153 }
154 }
155
dw_reader(struct dw_spi * dws)156 static void dw_reader(struct dw_spi *dws)
157 {
158 u32 max = rx_max(dws);
159 u16 rxw;
160
161 while (max--) {
162 rxw = dw_read_io_reg(dws, DW_SPI_DR);
163 if (dws->rx) {
164 if (dws->n_bytes == 1)
165 *(u8 *)(dws->rx) = rxw;
166 else
167 *(u16 *)(dws->rx) = rxw;
168
169 dws->rx += dws->n_bytes;
170 }
171 --dws->rx_len;
172 }
173 }
174
dw_spi_check_status(struct dw_spi * dws,bool raw)175 int dw_spi_check_status(struct dw_spi *dws, bool raw)
176 {
177 u32 irq_status;
178 int ret = 0;
179
180 if (raw)
181 irq_status = dw_readl(dws, DW_SPI_RISR);
182 else
183 irq_status = dw_readl(dws, DW_SPI_ISR);
184
185 if (irq_status & SPI_INT_RXOI) {
186 dev_err(&dws->master->dev, "RX FIFO overflow detected\n");
187 ret = -EIO;
188 }
189
190 if (irq_status & SPI_INT_RXUI) {
191 dev_err(&dws->master->dev, "RX FIFO underflow detected\n");
192 ret = -EIO;
193 }
194
195 if (irq_status & SPI_INT_TXOI) {
196 dev_err(&dws->master->dev, "TX FIFO overflow detected\n");
197 ret = -EIO;
198 }
199
200 /* Generically handle the erroneous situation */
201 if (ret) {
202 spi_reset_chip(dws);
203 if (dws->master->cur_msg)
204 dws->master->cur_msg->status = ret;
205 }
206
207 return ret;
208 }
209 EXPORT_SYMBOL_GPL(dw_spi_check_status);
210
dw_spi_transfer_handler(struct dw_spi * dws)211 static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
212 {
213 u16 irq_status = dw_readl(dws, DW_SPI_ISR);
214
215 if (dw_spi_check_status(dws, false)) {
216 spi_finalize_current_transfer(dws->master);
217 return IRQ_HANDLED;
218 }
219
220 /*
221 * Read data from the Rx FIFO every time we've got a chance executing
222 * this method. If there is nothing left to receive, terminate the
223 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
224 * final stage of the transfer. By doing so we'll get the next IRQ
225 * right when the leftover incoming data is received.
226 */
227 dw_reader(dws);
228 if (!dws->rx_len) {
229 spi_mask_intr(dws, 0xff);
230 spi_finalize_current_transfer(dws->master);
231 } else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
232 dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
233 }
234
235 /*
236 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
237 * disabled after the data transmission is finished so not to
238 * have the TXE IRQ flood at the final stage of the transfer.
239 */
240 if (irq_status & SPI_INT_TXEI) {
241 dw_writer(dws);
242 if (!dws->tx_len)
243 spi_mask_intr(dws, SPI_INT_TXEI);
244 }
245
246 return IRQ_HANDLED;
247 }
248
dw_spi_irq(int irq,void * dev_id)249 static irqreturn_t dw_spi_irq(int irq, void *dev_id)
250 {
251 struct spi_controller *master = dev_id;
252 struct dw_spi *dws = spi_controller_get_devdata(master);
253 u16 irq_status = dw_readl(dws, DW_SPI_ISR) & 0x3f;
254
255 if (!irq_status)
256 return IRQ_NONE;
257
258 if (!master->cur_msg) {
259 spi_mask_intr(dws, 0xff);
260 return IRQ_HANDLED;
261 }
262
263 return dws->transfer_handler(dws);
264 }
265
dw_spi_prepare_cr0(struct dw_spi * dws,struct spi_device * spi)266 static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
267 {
268 u32 cr0 = 0;
269
270 if (!(dws->caps & DW_SPI_CAP_DWC_SSI)) {
271 /* CTRLR0[ 5: 4] Frame Format */
272 cr0 |= SSI_MOTO_SPI << SPI_FRF_OFFSET;
273
274 /*
275 * SPI mode (SCPOL|SCPH)
276 * CTRLR0[ 6] Serial Clock Phase
277 * CTRLR0[ 7] Serial Clock Polarity
278 */
279 cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << SPI_SCOL_OFFSET;
280 cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << SPI_SCPH_OFFSET;
281
282 /* CTRLR0[11] Shift Register Loop */
283 cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << SPI_SRL_OFFSET;
284 } else {
285 /* CTRLR0[ 7: 6] Frame Format */
286 cr0 |= SSI_MOTO_SPI << DWC_SSI_CTRLR0_FRF_OFFSET;
287
288 /*
289 * SPI mode (SCPOL|SCPH)
290 * CTRLR0[ 8] Serial Clock Phase
291 * CTRLR0[ 9] Serial Clock Polarity
292 */
293 cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << DWC_SSI_CTRLR0_SCPOL_OFFSET;
294 cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << DWC_SSI_CTRLR0_SCPH_OFFSET;
295
296 /* CTRLR0[13] Shift Register Loop */
297 cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << DWC_SSI_CTRLR0_SRL_OFFSET;
298
299 if (dws->caps & DW_SPI_CAP_KEEMBAY_MST)
300 cr0 |= DWC_SSI_CTRLR0_KEEMBAY_MST;
301 }
302
303 return cr0;
304 }
305
dw_spi_update_config(struct dw_spi * dws,struct spi_device * spi,struct dw_spi_cfg * cfg)306 void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
307 struct dw_spi_cfg *cfg)
308 {
309 struct chip_data *chip = spi_get_ctldata(spi);
310 u32 cr0 = chip->cr0;
311 u32 speed_hz;
312 u16 clk_div;
313
314 /* CTRLR0[ 4/3: 0] Data Frame Size */
315 cr0 |= (cfg->dfs - 1);
316
317 if (!(dws->caps & DW_SPI_CAP_DWC_SSI))
318 /* CTRLR0[ 9:8] Transfer Mode */
319 cr0 |= cfg->tmode << SPI_TMOD_OFFSET;
320 else
321 /* CTRLR0[11:10] Transfer Mode */
322 cr0 |= cfg->tmode << DWC_SSI_CTRLR0_TMOD_OFFSET;
323
324 dw_writel(dws, DW_SPI_CTRLR0, cr0);
325
326 if (cfg->tmode == SPI_TMOD_EPROMREAD || cfg->tmode == SPI_TMOD_RO)
327 dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
328
329 /* Note DW APB SSI clock divider doesn't support odd numbers */
330 clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
331 speed_hz = dws->max_freq / clk_div;
332
333 if (dws->current_freq != speed_hz) {
334 spi_set_clk(dws, clk_div);
335 dws->current_freq = speed_hz;
336 }
337
338 /* Update RX sample delay if required */
339 if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
340 dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
341 dws->cur_rx_sample_dly = chip->rx_sample_dly;
342 }
343 }
344 EXPORT_SYMBOL_GPL(dw_spi_update_config);
345
dw_spi_irq_setup(struct dw_spi * dws)346 static void dw_spi_irq_setup(struct dw_spi *dws)
347 {
348 u16 level;
349 u8 imask;
350
351 /*
352 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
353 * will be adjusted at the final stage of the IRQ-based SPI transfer
354 * execution so not to lose the leftover of the incoming data.
355 */
356 level = min_t(u16, dws->fifo_len / 2, dws->tx_len);
357 dw_writel(dws, DW_SPI_TXFTLR, level);
358 dw_writel(dws, DW_SPI_RXFTLR, level - 1);
359
360 dws->transfer_handler = dw_spi_transfer_handler;
361
362 imask = SPI_INT_TXEI | SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI |
363 SPI_INT_RXFI;
364 spi_umask_intr(dws, imask);
365 }
366
367 /*
368 * The iterative procedure of the poll-based transfer is simple: write as much
369 * as possible to the Tx FIFO, wait until the pending to receive data is ready
370 * to be read, read it from the Rx FIFO and check whether the performed
371 * procedure has been successful.
372 *
373 * Note this method the same way as the IRQ-based transfer won't work well for
374 * the SPI devices connected to the controller with native CS due to the
375 * automatic CS assertion/de-assertion.
376 */
dw_spi_poll_transfer(struct dw_spi * dws,struct spi_transfer * transfer)377 static int dw_spi_poll_transfer(struct dw_spi *dws,
378 struct spi_transfer *transfer)
379 {
380 struct spi_delay delay;
381 u16 nbits;
382 int ret;
383
384 delay.unit = SPI_DELAY_UNIT_SCK;
385 nbits = dws->n_bytes * BITS_PER_BYTE;
386
387 do {
388 dw_writer(dws);
389
390 delay.value = nbits * (dws->rx_len - dws->tx_len);
391 spi_delay_exec(&delay, transfer);
392
393 dw_reader(dws);
394
395 ret = dw_spi_check_status(dws, true);
396 if (ret)
397 return ret;
398 } while (dws->rx_len);
399
400 return 0;
401 }
402
dw_spi_transfer_one(struct spi_controller * master,struct spi_device * spi,struct spi_transfer * transfer)403 static int dw_spi_transfer_one(struct spi_controller *master,
404 struct spi_device *spi, struct spi_transfer *transfer)
405 {
406 struct dw_spi *dws = spi_controller_get_devdata(master);
407 struct dw_spi_cfg cfg = {
408 .tmode = SPI_TMOD_TR,
409 .dfs = transfer->bits_per_word,
410 .freq = transfer->speed_hz,
411 };
412 int ret;
413
414 dws->dma_mapped = 0;
415 dws->n_bytes = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE);
416 dws->tx = (void *)transfer->tx_buf;
417 dws->tx_len = transfer->len / dws->n_bytes;
418 dws->rx = transfer->rx_buf;
419 dws->rx_len = dws->tx_len;
420
421 /* Ensure the data above is visible for all CPUs */
422 smp_mb();
423
424 spi_enable_chip(dws, 0);
425
426 dw_spi_update_config(dws, spi, &cfg);
427
428 transfer->effective_speed_hz = dws->current_freq;
429
430 /* Check if current transfer is a DMA transaction */
431 if (master->can_dma && master->can_dma(master, spi, transfer))
432 dws->dma_mapped = master->cur_msg_mapped;
433
434 /* For poll mode just disable all interrupts */
435 spi_mask_intr(dws, 0xff);
436
437 if (dws->dma_mapped) {
438 ret = dws->dma_ops->dma_setup(dws, transfer);
439 if (ret)
440 return ret;
441 }
442
443 spi_enable_chip(dws, 1);
444
445 if (dws->dma_mapped)
446 return dws->dma_ops->dma_transfer(dws, transfer);
447 else if (dws->irq == IRQ_NOTCONNECTED)
448 return dw_spi_poll_transfer(dws, transfer);
449
450 dw_spi_irq_setup(dws);
451
452 return 1;
453 }
454
dw_spi_handle_err(struct spi_controller * master,struct spi_message * msg)455 static void dw_spi_handle_err(struct spi_controller *master,
456 struct spi_message *msg)
457 {
458 struct dw_spi *dws = spi_controller_get_devdata(master);
459
460 if (dws->dma_mapped)
461 dws->dma_ops->dma_stop(dws);
462
463 spi_reset_chip(dws);
464 }
465
dw_spi_adjust_mem_op_size(struct spi_mem * mem,struct spi_mem_op * op)466 static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
467 {
468 if (op->data.dir == SPI_MEM_DATA_IN)
469 op->data.nbytes = clamp_val(op->data.nbytes, 0, SPI_NDF_MASK + 1);
470
471 return 0;
472 }
473
dw_spi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)474 static bool dw_spi_supports_mem_op(struct spi_mem *mem,
475 const struct spi_mem_op *op)
476 {
477 if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
478 op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
479 return false;
480
481 return spi_mem_default_supports_op(mem, op);
482 }
483
dw_spi_init_mem_buf(struct dw_spi * dws,const struct spi_mem_op * op)484 static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
485 {
486 unsigned int i, j, len;
487 u8 *out;
488
489 /*
490 * Calculate the total length of the EEPROM command transfer and
491 * either use the pre-allocated buffer or create a temporary one.
492 */
493 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
494 if (op->data.dir == SPI_MEM_DATA_OUT)
495 len += op->data.nbytes;
496
497 if (len <= SPI_BUF_SIZE) {
498 out = dws->buf;
499 } else {
500 out = kzalloc(len, GFP_KERNEL);
501 if (!out)
502 return -ENOMEM;
503 }
504
505 /*
506 * Collect the operation code, address and dummy bytes into the single
507 * buffer. If it's a transfer with data to be sent, also copy it into the
508 * single buffer in order to speed the data transmission up.
509 */
510 for (i = 0; i < op->cmd.nbytes; ++i)
511 out[i] = SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
512 for (j = 0; j < op->addr.nbytes; ++i, ++j)
513 out[i] = SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
514 for (j = 0; j < op->dummy.nbytes; ++i, ++j)
515 out[i] = 0x0;
516
517 if (op->data.dir == SPI_MEM_DATA_OUT)
518 memcpy(&out[i], op->data.buf.out, op->data.nbytes);
519
520 dws->n_bytes = 1;
521 dws->tx = out;
522 dws->tx_len = len;
523 if (op->data.dir == SPI_MEM_DATA_IN) {
524 dws->rx = op->data.buf.in;
525 dws->rx_len = op->data.nbytes;
526 } else {
527 dws->rx = NULL;
528 dws->rx_len = 0;
529 }
530
531 return 0;
532 }
533
dw_spi_free_mem_buf(struct dw_spi * dws)534 static void dw_spi_free_mem_buf(struct dw_spi *dws)
535 {
536 if (dws->tx != dws->buf)
537 kfree(dws->tx);
538 }
539
dw_spi_write_then_read(struct dw_spi * dws,struct spi_device * spi)540 static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
541 {
542 u32 room, entries, sts;
543 unsigned int len;
544 u8 *buf;
545
546 /*
547 * At initial stage we just pre-fill the Tx FIFO in with no rush,
548 * since native CS hasn't been enabled yet and the automatic data
549 * transmission won't start til we do that.
550 */
551 len = min(dws->fifo_len, dws->tx_len);
552 buf = dws->tx;
553 while (len--)
554 dw_write_io_reg(dws, DW_SPI_DR, *buf++);
555
556 /*
557 * After setting any bit in the SER register the transmission will
558 * start automatically. We have to keep up with that procedure
559 * otherwise the CS de-assertion will happen whereupon the memory
560 * operation will be pre-terminated.
561 */
562 len = dws->tx_len - ((void *)buf - dws->tx);
563 dw_spi_set_cs(spi, false);
564 while (len) {
565 entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
566 if (!entries) {
567 dev_err(&dws->master->dev, "CS de-assertion on Tx\n");
568 return -EIO;
569 }
570 room = min(dws->fifo_len - entries, len);
571 for (; room; --room, --len)
572 dw_write_io_reg(dws, DW_SPI_DR, *buf++);
573 }
574
575 /*
576 * Data fetching will start automatically if the EEPROM-read mode is
577 * activated. We have to keep up with the incoming data pace to
578 * prevent the Rx FIFO overflow causing the inbound data loss.
579 */
580 len = dws->rx_len;
581 buf = dws->rx;
582 while (len) {
583 entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
584 if (!entries) {
585 sts = readl_relaxed(dws->regs + DW_SPI_RISR);
586 if (sts & SPI_INT_RXOI) {
587 dev_err(&dws->master->dev, "FIFO overflow on Rx\n");
588 return -EIO;
589 }
590 continue;
591 }
592 entries = min(entries, len);
593 for (; entries; --entries, --len)
594 *buf++ = dw_read_io_reg(dws, DW_SPI_DR);
595 }
596
597 return 0;
598 }
599
dw_spi_ctlr_busy(struct dw_spi * dws)600 static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
601 {
602 return dw_readl(dws, DW_SPI_SR) & SR_BUSY;
603 }
604
dw_spi_wait_mem_op_done(struct dw_spi * dws)605 static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
606 {
607 int retry = SPI_WAIT_RETRIES;
608 struct spi_delay delay;
609 unsigned long ns, us;
610 u32 nents;
611
612 nents = dw_readl(dws, DW_SPI_TXFLR);
613 ns = NSEC_PER_SEC / dws->current_freq * nents;
614 ns *= dws->n_bytes * BITS_PER_BYTE;
615 if (ns <= NSEC_PER_USEC) {
616 delay.unit = SPI_DELAY_UNIT_NSECS;
617 delay.value = ns;
618 } else {
619 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
620 delay.unit = SPI_DELAY_UNIT_USECS;
621 delay.value = clamp_val(us, 0, USHRT_MAX);
622 }
623
624 while (dw_spi_ctlr_busy(dws) && retry--)
625 spi_delay_exec(&delay, NULL);
626
627 if (retry < 0) {
628 dev_err(&dws->master->dev, "Mem op hanged up\n");
629 return -EIO;
630 }
631
632 return 0;
633 }
634
dw_spi_stop_mem_op(struct dw_spi * dws,struct spi_device * spi)635 static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
636 {
637 spi_enable_chip(dws, 0);
638 dw_spi_set_cs(spi, true);
639 spi_enable_chip(dws, 1);
640 }
641
642 /*
643 * The SPI memory operation implementation below is the best choice for the
644 * devices, which are selected by the native chip-select lane. It's
645 * specifically developed to workaround the problem with automatic chip-select
646 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
647 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
648 * unavailable.
649 */
dw_spi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)650 static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
651 {
652 struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
653 struct dw_spi_cfg cfg;
654 unsigned long flags;
655 int ret;
656
657 /*
658 * Collect the outbound data into a single buffer to speed the
659 * transmission up at least on the initial stage.
660 */
661 ret = dw_spi_init_mem_buf(dws, op);
662 if (ret)
663 return ret;
664
665 /*
666 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
667 * operation. Transmit-only mode is suitable for the rest of them.
668 */
669 cfg.dfs = 8;
670 cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
671 if (op->data.dir == SPI_MEM_DATA_IN) {
672 cfg.tmode = SPI_TMOD_EPROMREAD;
673 cfg.ndf = op->data.nbytes;
674 } else {
675 cfg.tmode = SPI_TMOD_TO;
676 }
677
678 spi_enable_chip(dws, 0);
679
680 dw_spi_update_config(dws, mem->spi, &cfg);
681
682 spi_mask_intr(dws, 0xff);
683
684 spi_enable_chip(dws, 1);
685
686 /*
687 * DW APB SSI controller has very nasty peculiarities. First originally
688 * (without any vendor-specific modifications) it doesn't provide a
689 * direct way to set and clear the native chip-select signal. Instead
690 * the controller asserts the CS lane if Tx FIFO isn't empty and a
691 * transmission is going on, and automatically de-asserts it back to
692 * the high level if the Tx FIFO doesn't have anything to be pushed
693 * out. Due to that a multi-tasking or heavy IRQs activity might be
694 * fatal, since the transfer procedure preemption may cause the Tx FIFO
695 * getting empty and sudden CS de-assertion, which in the middle of the
696 * transfer will most likely cause the data loss. Secondly the
697 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
698 * data being automatically pulled in into the Rx FIFO. So if the
699 * driver software is late in fetching the data from the FIFO before
700 * it's overflown, new incoming data will be lost. In order to make
701 * sure the executed memory operations are CS-atomic and to prevent the
702 * Rx FIFO overflow we have to disable the local interrupts so to block
703 * any preemption during the subsequent IO operations.
704 *
705 * Note. At some circumstances disabling IRQs may not help to prevent
706 * the problems described above. The CS de-assertion and Rx FIFO
707 * overflow may still happen due to the relatively slow system bus or
708 * CPU not working fast enough, so the write-then-read algo implemented
709 * here just won't keep up with the SPI bus data transfer. Such
710 * situation is highly platform specific and is supposed to be fixed by
711 * manually restricting the SPI bus frequency using the
712 * dws->max_mem_freq parameter.
713 */
714 local_irq_save(flags);
715 preempt_disable();
716
717 ret = dw_spi_write_then_read(dws, mem->spi);
718
719 local_irq_restore(flags);
720 preempt_enable();
721
722 /*
723 * Wait for the operation being finished and check the controller
724 * status only if there hasn't been any run-time error detected. In the
725 * former case it's just pointless. In the later one to prevent an
726 * additional error message printing since any hw error flag being set
727 * would be due to an error detected on the data transfer.
728 */
729 if (!ret) {
730 ret = dw_spi_wait_mem_op_done(dws);
731 if (!ret)
732 ret = dw_spi_check_status(dws, true);
733 }
734
735 dw_spi_stop_mem_op(dws, mem->spi);
736
737 dw_spi_free_mem_buf(dws);
738
739 return ret;
740 }
741
742 /*
743 * Initialize the default memory operations if a glue layer hasn't specified
744 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
745 * controller doesn't have an embedded dirmap interface. Note the memory
746 * operations implemented in this driver is the best choice only for the DW APB
747 * SSI controller with standard native CS functionality. If a hardware vendor
748 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
749 * be safer to use the normal SPI-messages-based transfers implementation.
750 */
dw_spi_init_mem_ops(struct dw_spi * dws)751 static void dw_spi_init_mem_ops(struct dw_spi *dws)
752 {
753 if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
754 !dws->set_cs) {
755 dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
756 dws->mem_ops.supports_op = dw_spi_supports_mem_op;
757 dws->mem_ops.exec_op = dw_spi_exec_mem_op;
758 if (!dws->max_mem_freq)
759 dws->max_mem_freq = dws->max_freq;
760 }
761 }
762
763 /* This may be called twice for each spi dev */
dw_spi_setup(struct spi_device * spi)764 static int dw_spi_setup(struct spi_device *spi)
765 {
766 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
767 struct chip_data *chip;
768
769 /* Only alloc on first setup */
770 chip = spi_get_ctldata(spi);
771 if (!chip) {
772 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
773 u32 rx_sample_dly_ns;
774
775 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
776 if (!chip)
777 return -ENOMEM;
778 spi_set_ctldata(spi, chip);
779 /* Get specific / default rx-sample-delay */
780 if (device_property_read_u32(&spi->dev,
781 "rx-sample-delay-ns",
782 &rx_sample_dly_ns) != 0)
783 /* Use default controller value */
784 rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
785 chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
786 NSEC_PER_SEC /
787 dws->max_freq);
788 }
789
790 /*
791 * Update CR0 data each time the setup callback is invoked since
792 * the device parameters could have been changed, for instance, by
793 * the MMC SPI driver or something else.
794 */
795 chip->cr0 = dw_spi_prepare_cr0(dws, spi);
796
797 return 0;
798 }
799
dw_spi_cleanup(struct spi_device * spi)800 static void dw_spi_cleanup(struct spi_device *spi)
801 {
802 struct chip_data *chip = spi_get_ctldata(spi);
803
804 kfree(chip);
805 spi_set_ctldata(spi, NULL);
806 }
807
808 /* Restart the controller, disable all interrupts, clean rx fifo */
spi_hw_init(struct device * dev,struct dw_spi * dws)809 static void spi_hw_init(struct device *dev, struct dw_spi *dws)
810 {
811 spi_reset_chip(dws);
812
813 /*
814 * Try to detect the FIFO depth if not set by interface driver,
815 * the depth could be from 2 to 256 from HW spec
816 */
817 if (!dws->fifo_len) {
818 u32 fifo;
819
820 for (fifo = 1; fifo < 256; fifo++) {
821 dw_writel(dws, DW_SPI_TXFTLR, fifo);
822 if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
823 break;
824 }
825 dw_writel(dws, DW_SPI_TXFTLR, 0);
826
827 dws->fifo_len = (fifo == 1) ? 0 : fifo;
828 dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
829 }
830
831 /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
832 if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
833 dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
834 }
835
dw_spi_add_host(struct device * dev,struct dw_spi * dws)836 int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
837 {
838 struct spi_controller *master;
839 int ret;
840
841 if (!dws)
842 return -EINVAL;
843
844 master = spi_alloc_master(dev, 0);
845 if (!master)
846 return -ENOMEM;
847
848 dws->master = master;
849 dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
850
851 spi_controller_set_devdata(master, dws);
852
853 /* Basic HW init */
854 spi_hw_init(dev, dws);
855
856 ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
857 master);
858 if (ret < 0 && ret != -ENOTCONN) {
859 dev_err(dev, "can not get IRQ\n");
860 goto err_free_master;
861 }
862
863 dw_spi_init_mem_ops(dws);
864
865 master->use_gpio_descriptors = true;
866 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
867 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
868 master->bus_num = dws->bus_num;
869 master->num_chipselect = dws->num_cs;
870 master->setup = dw_spi_setup;
871 master->cleanup = dw_spi_cleanup;
872 if (dws->set_cs)
873 master->set_cs = dws->set_cs;
874 else
875 master->set_cs = dw_spi_set_cs;
876 master->transfer_one = dw_spi_transfer_one;
877 master->handle_err = dw_spi_handle_err;
878 if (dws->mem_ops.exec_op)
879 master->mem_ops = &dws->mem_ops;
880 master->max_speed_hz = dws->max_freq;
881 master->dev.of_node = dev->of_node;
882 master->dev.fwnode = dev->fwnode;
883 master->flags = SPI_MASTER_GPIO_SS;
884 master->auto_runtime_pm = true;
885
886 /* Get default rx sample delay */
887 device_property_read_u32(dev, "rx-sample-delay-ns",
888 &dws->def_rx_sample_dly_ns);
889
890 if (dws->dma_ops && dws->dma_ops->dma_init) {
891 ret = dws->dma_ops->dma_init(dev, dws);
892 if (ret) {
893 dev_warn(dev, "DMA init failed\n");
894 } else {
895 master->can_dma = dws->dma_ops->can_dma;
896 master->flags |= SPI_CONTROLLER_MUST_TX;
897 }
898 }
899
900 ret = spi_register_controller(master);
901 if (ret) {
902 dev_err(&master->dev, "problem registering spi master\n");
903 goto err_dma_exit;
904 }
905
906 dw_spi_debugfs_init(dws);
907 return 0;
908
909 err_dma_exit:
910 if (dws->dma_ops && dws->dma_ops->dma_exit)
911 dws->dma_ops->dma_exit(dws);
912 spi_enable_chip(dws, 0);
913 free_irq(dws->irq, master);
914 err_free_master:
915 spi_controller_put(master);
916 return ret;
917 }
918 EXPORT_SYMBOL_GPL(dw_spi_add_host);
919
dw_spi_remove_host(struct dw_spi * dws)920 void dw_spi_remove_host(struct dw_spi *dws)
921 {
922 dw_spi_debugfs_remove(dws);
923
924 spi_unregister_controller(dws->master);
925
926 if (dws->dma_ops && dws->dma_ops->dma_exit)
927 dws->dma_ops->dma_exit(dws);
928
929 spi_shutdown_chip(dws);
930
931 free_irq(dws->irq, dws->master);
932 }
933 EXPORT_SYMBOL_GPL(dw_spi_remove_host);
934
dw_spi_suspend_host(struct dw_spi * dws)935 int dw_spi_suspend_host(struct dw_spi *dws)
936 {
937 int ret;
938
939 ret = spi_controller_suspend(dws->master);
940 if (ret)
941 return ret;
942
943 spi_shutdown_chip(dws);
944 return 0;
945 }
946 EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
947
dw_spi_resume_host(struct dw_spi * dws)948 int dw_spi_resume_host(struct dw_spi *dws)
949 {
950 spi_hw_init(&dws->master->dev, dws);
951 return spi_controller_resume(dws->master);
952 }
953 EXPORT_SYMBOL_GPL(dw_spi_resume_host);
954
955 MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
956 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
957 MODULE_LICENSE("GPL v2");
958