1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block device elevator/IO-scheduler.
4 *
5 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 *
7 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 *
9 * Split the elevator a bit so that it is possible to choose a different
10 * one or even write a new "plug in". There are three pieces:
11 * - elevator_fn, inserts a new request in the queue list
12 * - elevator_merge_fn, decides whether a new buffer can be merged with
13 * an existing request
14 * - elevator_dequeue_fn, called when a request is taken off the active list
15 *
16 * 20082000 Dave Jones <davej@suse.de> :
17 * Removed tests for max-bomb-segments, which was breaking elvtune
18 * when run without -bN
19 *
20 * Jens:
21 * - Rework again to work with bio instead of buffer_heads
22 * - loose bi_dev comparisons, partition handling is right now
23 * - completely modularize elevator setup and teardown
24 *
25 */
26 #include <linux/kernel.h>
27 #include <linux/fs.h>
28 #include <linux/blkdev.h>
29 #include <linux/elevator.h>
30 #include <linux/bio.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/compiler.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/blk-cgroup.h>
40
41 #include <trace/events/block.h>
42
43 #include "blk.h"
44 #include "blk-mq-sched.h"
45 #include "blk-pm.h"
46 #include "blk-wbt.h"
47
48 static DEFINE_SPINLOCK(elv_list_lock);
49 static LIST_HEAD(elv_list);
50
51 /*
52 * Merge hash stuff.
53 */
54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
55
56 /*
57 * Query io scheduler to see if the current process issuing bio may be
58 * merged with rq.
59 */
elv_iosched_allow_bio_merge(struct request * rq,struct bio * bio)60 static int elv_iosched_allow_bio_merge(struct request *rq, struct bio *bio)
61 {
62 struct request_queue *q = rq->q;
63 struct elevator_queue *e = q->elevator;
64
65 if (e->type->ops.allow_merge)
66 return e->type->ops.allow_merge(q, rq, bio);
67
68 return 1;
69 }
70
71 /*
72 * can we safely merge with this request?
73 */
elv_bio_merge_ok(struct request * rq,struct bio * bio)74 bool elv_bio_merge_ok(struct request *rq, struct bio *bio)
75 {
76 if (!blk_rq_merge_ok(rq, bio))
77 return false;
78
79 if (!elv_iosched_allow_bio_merge(rq, bio))
80 return false;
81
82 return true;
83 }
84 EXPORT_SYMBOL(elv_bio_merge_ok);
85
elv_support_features(unsigned int elv_features,unsigned int required_features)86 static inline bool elv_support_features(unsigned int elv_features,
87 unsigned int required_features)
88 {
89 return (required_features & elv_features) == required_features;
90 }
91
92 /**
93 * elevator_match - Test an elevator name and features
94 * @e: Scheduler to test
95 * @name: Elevator name to test
96 * @required_features: Features that the elevator must provide
97 *
98 * Return true if the elevator @e name matches @name and if @e provides all
99 * the features specified by @required_features.
100 */
elevator_match(const struct elevator_type * e,const char * name,unsigned int required_features)101 static bool elevator_match(const struct elevator_type *e, const char *name,
102 unsigned int required_features)
103 {
104 if (!elv_support_features(e->elevator_features, required_features))
105 return false;
106 if (!strcmp(e->elevator_name, name))
107 return true;
108 if (e->elevator_alias && !strcmp(e->elevator_alias, name))
109 return true;
110
111 return false;
112 }
113
114 /**
115 * elevator_find - Find an elevator
116 * @name: Name of the elevator to find
117 * @required_features: Features that the elevator must provide
118 *
119 * Return the first registered scheduler with name @name and supporting the
120 * features @required_features and NULL otherwise.
121 */
elevator_find(const char * name,unsigned int required_features)122 static struct elevator_type *elevator_find(const char *name,
123 unsigned int required_features)
124 {
125 struct elevator_type *e;
126
127 list_for_each_entry(e, &elv_list, list) {
128 if (elevator_match(e, name, required_features))
129 return e;
130 }
131
132 return NULL;
133 }
134
elevator_put(struct elevator_type * e)135 static void elevator_put(struct elevator_type *e)
136 {
137 module_put(e->elevator_owner);
138 }
139
elevator_get(struct request_queue * q,const char * name,bool try_loading)140 static struct elevator_type *elevator_get(struct request_queue *q,
141 const char *name, bool try_loading)
142 {
143 struct elevator_type *e;
144
145 spin_lock(&elv_list_lock);
146
147 e = elevator_find(name, q->required_elevator_features);
148 if (!e && try_loading) {
149 spin_unlock(&elv_list_lock);
150 request_module("%s-iosched", name);
151 spin_lock(&elv_list_lock);
152 e = elevator_find(name, q->required_elevator_features);
153 }
154
155 if (e && !try_module_get(e->elevator_owner))
156 e = NULL;
157
158 spin_unlock(&elv_list_lock);
159 return e;
160 }
161
162 static struct kobj_type elv_ktype;
163
elevator_alloc(struct request_queue * q,struct elevator_type * e)164 struct elevator_queue *elevator_alloc(struct request_queue *q,
165 struct elevator_type *e)
166 {
167 struct elevator_queue *eq;
168
169 eq = kzalloc_node(sizeof(*eq), GFP_KERNEL, q->node);
170 if (unlikely(!eq))
171 return NULL;
172
173 eq->type = e;
174 kobject_init(&eq->kobj, &elv_ktype);
175 mutex_init(&eq->sysfs_lock);
176 hash_init(eq->hash);
177
178 return eq;
179 }
180 EXPORT_SYMBOL(elevator_alloc);
181
elevator_release(struct kobject * kobj)182 static void elevator_release(struct kobject *kobj)
183 {
184 struct elevator_queue *e;
185
186 e = container_of(kobj, struct elevator_queue, kobj);
187 elevator_put(e->type);
188 kfree(e);
189 }
190
__elevator_exit(struct request_queue * q,struct elevator_queue * e)191 void __elevator_exit(struct request_queue *q, struct elevator_queue *e)
192 {
193 mutex_lock(&e->sysfs_lock);
194 blk_mq_exit_sched(q, e);
195 mutex_unlock(&e->sysfs_lock);
196
197 kobject_put(&e->kobj);
198 }
199
__elv_rqhash_del(struct request * rq)200 static inline void __elv_rqhash_del(struct request *rq)
201 {
202 hash_del(&rq->hash);
203 rq->rq_flags &= ~RQF_HASHED;
204 }
205
elv_rqhash_del(struct request_queue * q,struct request * rq)206 void elv_rqhash_del(struct request_queue *q, struct request *rq)
207 {
208 if (ELV_ON_HASH(rq))
209 __elv_rqhash_del(rq);
210 }
211 EXPORT_SYMBOL_GPL(elv_rqhash_del);
212
elv_rqhash_add(struct request_queue * q,struct request * rq)213 void elv_rqhash_add(struct request_queue *q, struct request *rq)
214 {
215 struct elevator_queue *e = q->elevator;
216
217 BUG_ON(ELV_ON_HASH(rq));
218 hash_add(e->hash, &rq->hash, rq_hash_key(rq));
219 rq->rq_flags |= RQF_HASHED;
220 }
221 EXPORT_SYMBOL_GPL(elv_rqhash_add);
222
elv_rqhash_reposition(struct request_queue * q,struct request * rq)223 void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
224 {
225 __elv_rqhash_del(rq);
226 elv_rqhash_add(q, rq);
227 }
228
elv_rqhash_find(struct request_queue * q,sector_t offset)229 struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
230 {
231 struct elevator_queue *e = q->elevator;
232 struct hlist_node *next;
233 struct request *rq;
234
235 hash_for_each_possible_safe(e->hash, rq, next, hash, offset) {
236 BUG_ON(!ELV_ON_HASH(rq));
237
238 if (unlikely(!rq_mergeable(rq))) {
239 __elv_rqhash_del(rq);
240 continue;
241 }
242
243 if (rq_hash_key(rq) == offset)
244 return rq;
245 }
246
247 return NULL;
248 }
249
250 /*
251 * RB-tree support functions for inserting/lookup/removal of requests
252 * in a sorted RB tree.
253 */
elv_rb_add(struct rb_root * root,struct request * rq)254 void elv_rb_add(struct rb_root *root, struct request *rq)
255 {
256 struct rb_node **p = &root->rb_node;
257 struct rb_node *parent = NULL;
258 struct request *__rq;
259
260 while (*p) {
261 parent = *p;
262 __rq = rb_entry(parent, struct request, rb_node);
263
264 if (blk_rq_pos(rq) < blk_rq_pos(__rq))
265 p = &(*p)->rb_left;
266 else if (blk_rq_pos(rq) >= blk_rq_pos(__rq))
267 p = &(*p)->rb_right;
268 }
269
270 rb_link_node(&rq->rb_node, parent, p);
271 rb_insert_color(&rq->rb_node, root);
272 }
273 EXPORT_SYMBOL(elv_rb_add);
274
elv_rb_del(struct rb_root * root,struct request * rq)275 void elv_rb_del(struct rb_root *root, struct request *rq)
276 {
277 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
278 rb_erase(&rq->rb_node, root);
279 RB_CLEAR_NODE(&rq->rb_node);
280 }
281 EXPORT_SYMBOL(elv_rb_del);
282
elv_rb_find(struct rb_root * root,sector_t sector)283 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
284 {
285 struct rb_node *n = root->rb_node;
286 struct request *rq;
287
288 while (n) {
289 rq = rb_entry(n, struct request, rb_node);
290
291 if (sector < blk_rq_pos(rq))
292 n = n->rb_left;
293 else if (sector > blk_rq_pos(rq))
294 n = n->rb_right;
295 else
296 return rq;
297 }
298
299 return NULL;
300 }
301 EXPORT_SYMBOL(elv_rb_find);
302
elv_merge(struct request_queue * q,struct request ** req,struct bio * bio)303 enum elv_merge elv_merge(struct request_queue *q, struct request **req,
304 struct bio *bio)
305 {
306 struct elevator_queue *e = q->elevator;
307 struct request *__rq;
308
309 /*
310 * Levels of merges:
311 * nomerges: No merges at all attempted
312 * noxmerges: Only simple one-hit cache try
313 * merges: All merge tries attempted
314 */
315 if (blk_queue_nomerges(q) || !bio_mergeable(bio))
316 return ELEVATOR_NO_MERGE;
317
318 /*
319 * First try one-hit cache.
320 */
321 if (q->last_merge && elv_bio_merge_ok(q->last_merge, bio)) {
322 enum elv_merge ret = blk_try_merge(q->last_merge, bio);
323
324 if (ret != ELEVATOR_NO_MERGE) {
325 *req = q->last_merge;
326 return ret;
327 }
328 }
329
330 if (blk_queue_noxmerges(q))
331 return ELEVATOR_NO_MERGE;
332
333 /*
334 * See if our hash lookup can find a potential backmerge.
335 */
336 __rq = elv_rqhash_find(q, bio->bi_iter.bi_sector);
337 if (__rq && elv_bio_merge_ok(__rq, bio)) {
338 *req = __rq;
339
340 if (blk_discard_mergable(__rq))
341 return ELEVATOR_DISCARD_MERGE;
342 return ELEVATOR_BACK_MERGE;
343 }
344
345 if (e->type->ops.request_merge)
346 return e->type->ops.request_merge(q, req, bio);
347
348 return ELEVATOR_NO_MERGE;
349 }
350
351 /*
352 * Attempt to do an insertion back merge. Only check for the case where
353 * we can append 'rq' to an existing request, so we can throw 'rq' away
354 * afterwards.
355 *
356 * Returns true if we merged, false otherwise. 'free' will contain all
357 * requests that need to be freed.
358 */
elv_attempt_insert_merge(struct request_queue * q,struct request * rq,struct list_head * free)359 bool elv_attempt_insert_merge(struct request_queue *q, struct request *rq,
360 struct list_head *free)
361 {
362 struct request *__rq;
363 bool ret;
364
365 if (blk_queue_nomerges(q))
366 return false;
367
368 /*
369 * First try one-hit cache.
370 */
371 if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq)) {
372 list_add(&rq->queuelist, free);
373 return true;
374 }
375
376 if (blk_queue_noxmerges(q))
377 return false;
378
379 ret = false;
380 /*
381 * See if our hash lookup can find a potential backmerge.
382 */
383 while (1) {
384 __rq = elv_rqhash_find(q, blk_rq_pos(rq));
385 if (!__rq || !blk_attempt_req_merge(q, __rq, rq))
386 break;
387
388 list_add(&rq->queuelist, free);
389 /* The merged request could be merged with others, try again */
390 ret = true;
391 rq = __rq;
392 }
393
394 return ret;
395 }
396
elv_merged_request(struct request_queue * q,struct request * rq,enum elv_merge type)397 void elv_merged_request(struct request_queue *q, struct request *rq,
398 enum elv_merge type)
399 {
400 struct elevator_queue *e = q->elevator;
401
402 if (e->type->ops.request_merged)
403 e->type->ops.request_merged(q, rq, type);
404
405 if (type == ELEVATOR_BACK_MERGE)
406 elv_rqhash_reposition(q, rq);
407
408 q->last_merge = rq;
409 }
410
elv_merge_requests(struct request_queue * q,struct request * rq,struct request * next)411 void elv_merge_requests(struct request_queue *q, struct request *rq,
412 struct request *next)
413 {
414 struct elevator_queue *e = q->elevator;
415
416 if (e->type->ops.requests_merged)
417 e->type->ops.requests_merged(q, rq, next);
418
419 elv_rqhash_reposition(q, rq);
420 q->last_merge = rq;
421 }
422
elv_latter_request(struct request_queue * q,struct request * rq)423 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
424 {
425 struct elevator_queue *e = q->elevator;
426
427 if (e->type->ops.next_request)
428 return e->type->ops.next_request(q, rq);
429
430 return NULL;
431 }
432
elv_former_request(struct request_queue * q,struct request * rq)433 struct request *elv_former_request(struct request_queue *q, struct request *rq)
434 {
435 struct elevator_queue *e = q->elevator;
436
437 if (e->type->ops.former_request)
438 return e->type->ops.former_request(q, rq);
439
440 return NULL;
441 }
442
443 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
444
445 static ssize_t
elv_attr_show(struct kobject * kobj,struct attribute * attr,char * page)446 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
447 {
448 struct elv_fs_entry *entry = to_elv(attr);
449 struct elevator_queue *e;
450 ssize_t error;
451
452 if (!entry->show)
453 return -EIO;
454
455 e = container_of(kobj, struct elevator_queue, kobj);
456 mutex_lock(&e->sysfs_lock);
457 error = e->type ? entry->show(e, page) : -ENOENT;
458 mutex_unlock(&e->sysfs_lock);
459 return error;
460 }
461
462 static ssize_t
elv_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)463 elv_attr_store(struct kobject *kobj, struct attribute *attr,
464 const char *page, size_t length)
465 {
466 struct elv_fs_entry *entry = to_elv(attr);
467 struct elevator_queue *e;
468 ssize_t error;
469
470 if (!entry->store)
471 return -EIO;
472
473 e = container_of(kobj, struct elevator_queue, kobj);
474 mutex_lock(&e->sysfs_lock);
475 error = e->type ? entry->store(e, page, length) : -ENOENT;
476 mutex_unlock(&e->sysfs_lock);
477 return error;
478 }
479
480 static const struct sysfs_ops elv_sysfs_ops = {
481 .show = elv_attr_show,
482 .store = elv_attr_store,
483 };
484
485 static struct kobj_type elv_ktype = {
486 .sysfs_ops = &elv_sysfs_ops,
487 .release = elevator_release,
488 };
489
elv_register_queue(struct request_queue * q,bool uevent)490 int elv_register_queue(struct request_queue *q, bool uevent)
491 {
492 struct elevator_queue *e = q->elevator;
493 int error;
494
495 lockdep_assert_held(&q->sysfs_lock);
496
497 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
498 if (!error) {
499 struct elv_fs_entry *attr = e->type->elevator_attrs;
500 if (attr) {
501 while (attr->attr.name) {
502 if (sysfs_create_file(&e->kobj, &attr->attr))
503 break;
504 attr++;
505 }
506 }
507 if (uevent)
508 kobject_uevent(&e->kobj, KOBJ_ADD);
509
510 e->registered = 1;
511 }
512 return error;
513 }
514
elv_unregister_queue(struct request_queue * q)515 void elv_unregister_queue(struct request_queue *q)
516 {
517 lockdep_assert_held(&q->sysfs_lock);
518
519 if (q) {
520 struct elevator_queue *e = q->elevator;
521
522 kobject_uevent(&e->kobj, KOBJ_REMOVE);
523 kobject_del(&e->kobj);
524
525 e->registered = 0;
526 }
527 }
528
elv_register(struct elevator_type * e)529 int elv_register(struct elevator_type *e)
530 {
531 /* create icq_cache if requested */
532 if (e->icq_size) {
533 if (WARN_ON(e->icq_size < sizeof(struct io_cq)) ||
534 WARN_ON(e->icq_align < __alignof__(struct io_cq)))
535 return -EINVAL;
536
537 snprintf(e->icq_cache_name, sizeof(e->icq_cache_name),
538 "%s_io_cq", e->elevator_name);
539 e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size,
540 e->icq_align, 0, NULL);
541 if (!e->icq_cache)
542 return -ENOMEM;
543 }
544
545 /* register, don't allow duplicate names */
546 spin_lock(&elv_list_lock);
547 if (elevator_find(e->elevator_name, 0)) {
548 spin_unlock(&elv_list_lock);
549 kmem_cache_destroy(e->icq_cache);
550 return -EBUSY;
551 }
552 list_add_tail(&e->list, &elv_list);
553 spin_unlock(&elv_list_lock);
554
555 printk(KERN_INFO "io scheduler %s registered\n", e->elevator_name);
556
557 return 0;
558 }
559 EXPORT_SYMBOL_GPL(elv_register);
560
elv_unregister(struct elevator_type * e)561 void elv_unregister(struct elevator_type *e)
562 {
563 /* unregister */
564 spin_lock(&elv_list_lock);
565 list_del_init(&e->list);
566 spin_unlock(&elv_list_lock);
567
568 /*
569 * Destroy icq_cache if it exists. icq's are RCU managed. Make
570 * sure all RCU operations are complete before proceeding.
571 */
572 if (e->icq_cache) {
573 rcu_barrier();
574 kmem_cache_destroy(e->icq_cache);
575 e->icq_cache = NULL;
576 }
577 }
578 EXPORT_SYMBOL_GPL(elv_unregister);
579
elevator_switch_mq(struct request_queue * q,struct elevator_type * new_e)580 int elevator_switch_mq(struct request_queue *q,
581 struct elevator_type *new_e)
582 {
583 int ret;
584
585 lockdep_assert_held(&q->sysfs_lock);
586
587 if (q->elevator) {
588 if (q->elevator->registered)
589 elv_unregister_queue(q);
590
591 ioc_clear_queue(q);
592 elevator_exit(q, q->elevator);
593 }
594
595 ret = blk_mq_init_sched(q, new_e);
596 if (ret)
597 goto out;
598
599 if (new_e) {
600 ret = elv_register_queue(q, true);
601 if (ret) {
602 elevator_exit(q, q->elevator);
603 goto out;
604 }
605 }
606
607 if (new_e)
608 blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name);
609 else
610 blk_add_trace_msg(q, "elv switch: none");
611
612 out:
613 return ret;
614 }
615
elv_support_iosched(struct request_queue * q)616 static inline bool elv_support_iosched(struct request_queue *q)
617 {
618 if (!queue_is_mq(q) ||
619 (q->tag_set && (q->tag_set->flags & BLK_MQ_F_NO_SCHED)))
620 return false;
621 return true;
622 }
623
624 /*
625 * For single queue devices, default to using mq-deadline. If we have multiple
626 * queues or mq-deadline is not available, default to "none".
627 */
elevator_get_default(struct request_queue * q)628 static struct elevator_type *elevator_get_default(struct request_queue *q)
629 {
630 if (q->tag_set && q->tag_set->flags & BLK_MQ_F_NO_SCHED_BY_DEFAULT)
631 return NULL;
632
633 if (q->nr_hw_queues != 1)
634 return NULL;
635
636 return elevator_get(q, "mq-deadline", false);
637 }
638
639 /*
640 * Get the first elevator providing the features required by the request queue.
641 * Default to "none" if no matching elevator is found.
642 */
elevator_get_by_features(struct request_queue * q)643 static struct elevator_type *elevator_get_by_features(struct request_queue *q)
644 {
645 struct elevator_type *e, *found = NULL;
646
647 spin_lock(&elv_list_lock);
648
649 list_for_each_entry(e, &elv_list, list) {
650 if (elv_support_features(e->elevator_features,
651 q->required_elevator_features)) {
652 found = e;
653 break;
654 }
655 }
656
657 if (found && !try_module_get(found->elevator_owner))
658 found = NULL;
659
660 spin_unlock(&elv_list_lock);
661 return found;
662 }
663
664 /*
665 * For a device queue that has no required features, use the default elevator
666 * settings. Otherwise, use the first elevator available matching the required
667 * features. If no suitable elevator is find or if the chosen elevator
668 * initialization fails, fall back to the "none" elevator (no elevator).
669 */
elevator_init_mq(struct request_queue * q)670 void elevator_init_mq(struct request_queue *q)
671 {
672 struct elevator_type *e;
673 int err;
674
675 if (!elv_support_iosched(q))
676 return;
677
678 WARN_ON_ONCE(blk_queue_registered(q));
679
680 if (unlikely(q->elevator))
681 return;
682
683 if (!q->required_elevator_features)
684 e = elevator_get_default(q);
685 else
686 e = elevator_get_by_features(q);
687 if (!e)
688 return;
689
690 /*
691 * We are called before adding disk, when there isn't any FS I/O,
692 * so freezing queue plus canceling dispatch work is enough to
693 * drain any dispatch activities originated from passthrough
694 * requests, then no need to quiesce queue which may add long boot
695 * latency, especially when lots of disks are involved.
696 */
697 blk_mq_freeze_queue(q);
698 blk_mq_cancel_work_sync(q);
699
700 err = blk_mq_init_sched(q, e);
701
702 blk_mq_unfreeze_queue(q);
703
704 if (err) {
705 pr_warn("\"%s\" elevator initialization failed, "
706 "falling back to \"none\"\n", e->elevator_name);
707 elevator_put(e);
708 }
709 }
710
711
712 /*
713 * switch to new_e io scheduler. be careful not to introduce deadlocks -
714 * we don't free the old io scheduler, before we have allocated what we
715 * need for the new one. this way we have a chance of going back to the old
716 * one, if the new one fails init for some reason.
717 */
elevator_switch(struct request_queue * q,struct elevator_type * new_e)718 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
719 {
720 int err;
721
722 lockdep_assert_held(&q->sysfs_lock);
723
724 blk_mq_freeze_queue(q);
725 blk_mq_quiesce_queue(q);
726
727 err = elevator_switch_mq(q, new_e);
728
729 blk_mq_unquiesce_queue(q);
730 blk_mq_unfreeze_queue(q);
731
732 return err;
733 }
734
735 /*
736 * Switch this queue to the given IO scheduler.
737 */
__elevator_change(struct request_queue * q,const char * name)738 static int __elevator_change(struct request_queue *q, const char *name)
739 {
740 char elevator_name[ELV_NAME_MAX];
741 struct elevator_type *e;
742
743 /* Make sure queue is not in the middle of being removed */
744 if (!blk_queue_registered(q))
745 return -ENOENT;
746
747 /*
748 * Special case for mq, turn off scheduling
749 */
750 if (!strncmp(name, "none", 4)) {
751 if (!q->elevator)
752 return 0;
753 return elevator_switch(q, NULL);
754 }
755
756 strlcpy(elevator_name, name, sizeof(elevator_name));
757 e = elevator_get(q, strstrip(elevator_name), true);
758 if (!e)
759 return -EINVAL;
760
761 if (q->elevator &&
762 elevator_match(q->elevator->type, elevator_name, 0)) {
763 elevator_put(e);
764 return 0;
765 }
766
767 return elevator_switch(q, e);
768 }
769
elv_iosched_store(struct request_queue * q,const char * name,size_t count)770 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
771 size_t count)
772 {
773 int ret;
774
775 if (!elv_support_iosched(q))
776 return count;
777
778 ret = __elevator_change(q, name);
779 if (!ret)
780 return count;
781
782 return ret;
783 }
784
elv_iosched_show(struct request_queue * q,char * name)785 ssize_t elv_iosched_show(struct request_queue *q, char *name)
786 {
787 struct elevator_queue *e = q->elevator;
788 struct elevator_type *elv = NULL;
789 struct elevator_type *__e;
790 int len = 0;
791
792 if (!queue_is_mq(q))
793 return sprintf(name, "none\n");
794
795 if (!q->elevator)
796 len += sprintf(name+len, "[none] ");
797 else
798 elv = e->type;
799
800 spin_lock(&elv_list_lock);
801 list_for_each_entry(__e, &elv_list, list) {
802 if (elv && elevator_match(elv, __e->elevator_name, 0)) {
803 len += sprintf(name+len, "[%s] ", elv->elevator_name);
804 continue;
805 }
806 if (elv_support_iosched(q) &&
807 elevator_match(__e, __e->elevator_name,
808 q->required_elevator_features))
809 len += sprintf(name+len, "%s ", __e->elevator_name);
810 }
811 spin_unlock(&elv_list_lock);
812
813 if (q->elevator)
814 len += sprintf(name+len, "none");
815
816 len += sprintf(len+name, "\n");
817 return len;
818 }
819
elv_rb_former_request(struct request_queue * q,struct request * rq)820 struct request *elv_rb_former_request(struct request_queue *q,
821 struct request *rq)
822 {
823 struct rb_node *rbprev = rb_prev(&rq->rb_node);
824
825 if (rbprev)
826 return rb_entry_rq(rbprev);
827
828 return NULL;
829 }
830 EXPORT_SYMBOL(elv_rb_former_request);
831
elv_rb_latter_request(struct request_queue * q,struct request * rq)832 struct request *elv_rb_latter_request(struct request_queue *q,
833 struct request *rq)
834 {
835 struct rb_node *rbnext = rb_next(&rq->rb_node);
836
837 if (rbnext)
838 return rb_entry_rq(rbnext);
839
840 return NULL;
841 }
842 EXPORT_SYMBOL(elv_rb_latter_request);
843
elevator_setup(char * str)844 static int __init elevator_setup(char *str)
845 {
846 pr_warn("Kernel parameter elevator= does not have any effect anymore.\n"
847 "Please use sysfs to set IO scheduler for individual devices.\n");
848 return 1;
849 }
850
851 __setup("elevator=", elevator_setup);
852