• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  fs/ext4/extents_status.c
4  *
5  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6  * Modified by
7  *	Allison Henderson <achender@linux.vnet.ibm.com>
8  *	Hugh Dickins <hughd@google.com>
9  *	Zheng Liu <wenqing.lz@taobao.com>
10  *
11  * Ext4 extents status tree core functions.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 
18 #include <trace/events/ext4.h>
19 
20 /*
21  * According to previous discussion in Ext4 Developer Workshop, we
22  * will introduce a new structure called io tree to track all extent
23  * status in order to solve some problems that we have met
24  * (e.g. Reservation space warning), and provide extent-level locking.
25  * Delay extent tree is the first step to achieve this goal.  It is
26  * original built by Yongqiang Yang.  At that time it is called delay
27  * extent tree, whose goal is only track delayed extents in memory to
28  * simplify the implementation of fiemap and bigalloc, and introduce
29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30  * delay extent tree at the first commit.  But for better understand
31  * what it does, it has been rename to extent status tree.
32  *
33  * Step1:
34  * Currently the first step has been done.  All delayed extents are
35  * tracked in the tree.  It maintains the delayed extent when a delayed
36  * allocation is issued, and the delayed extent is written out or
37  * invalidated.  Therefore the implementation of fiemap and bigalloc
38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39  *
40  * The following comment describes the implemenmtation of extent
41  * status tree and future works.
42  *
43  * Step2:
44  * In this step all extent status are tracked by extent status tree.
45  * Thus, we can first try to lookup a block mapping in this tree before
46  * finding it in extent tree.  Hence, single extent cache can be removed
47  * because extent status tree can do a better job.  Extents in status
48  * tree are loaded on-demand.  Therefore, the extent status tree may not
49  * contain all of the extents in a file.  Meanwhile we define a shrinker
50  * to reclaim memory from extent status tree because fragmented extent
51  * tree will make status tree cost too much memory.  written/unwritten/-
52  * hole extents in the tree will be reclaimed by this shrinker when we
53  * are under high memory pressure.  Delayed extents will not be
54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55  */
56 
57 /*
58  * Extent status tree implementation for ext4.
59  *
60  *
61  * ==========================================================================
62  * Extent status tree tracks all extent status.
63  *
64  * 1. Why we need to implement extent status tree?
65  *
66  * Without extent status tree, ext4 identifies a delayed extent by looking
67  * up page cache, this has several deficiencies - complicated, buggy,
68  * and inefficient code.
69  *
70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71  * block or a range of blocks are belonged to a delayed extent.
72  *
73  * Let us have a look at how they do without extent status tree.
74  *   --	FIEMAP
75  *	FIEMAP looks up page cache to identify delayed allocations from holes.
76  *
77  *   --	SEEK_HOLE/DATA
78  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79  *
80  *   --	bigalloc
81  *	bigalloc looks up page cache to figure out if a block is
82  *	already under delayed allocation or not to determine whether
83  *	quota reserving is needed for the cluster.
84  *
85  *   --	writeout
86  *	Writeout looks up whole page cache to see if a buffer is
87  *	mapped, If there are not very many delayed buffers, then it is
88  *	time consuming.
89  *
90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91  * bigalloc and writeout can figure out if a block or a range of
92  * blocks is under delayed allocation(belonged to a delayed extent) or
93  * not by searching the extent tree.
94  *
95  *
96  * ==========================================================================
97  * 2. Ext4 extent status tree impelmentation
98  *
99  *   --	extent
100  *	A extent is a range of blocks which are contiguous logically and
101  *	physically.  Unlike extent in extent tree, this extent in ext4 is
102  *	a in-memory struct, there is no corresponding on-disk data.  There
103  *	is no limit on length of extent, so an extent can contain as many
104  *	blocks as they are contiguous logically and physically.
105  *
106  *   --	extent status tree
107  *	Every inode has an extent status tree and all allocation blocks
108  *	are added to the tree with different status.  The extent in the
109  *	tree are ordered by logical block no.
110  *
111  *   --	operations on a extent status tree
112  *	There are three important operations on a delayed extent tree: find
113  *	next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   --	race on a extent status tree
116  *	Extent status tree is protected by inode->i_es_lock.
117  *
118  *   --	memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   --	overhead
128  *	1. There is a cache extent for write access, so if writes are
129  *	not very random, adding space operaions are in O(1) time.
130  *
131  *   --	gain
132  *	2. Code is much simpler, more readable, more maintainable and
133  *	more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
148 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
149 			      ext4_lblk_t end, int *reserved);
150 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
151 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
152 		       struct ext4_inode_info *locked_ei);
153 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
154 			     ext4_lblk_t len);
155 
ext4_init_es(void)156 int __init ext4_init_es(void)
157 {
158 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
159 					   sizeof(struct extent_status),
160 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
161 	if (ext4_es_cachep == NULL)
162 		return -ENOMEM;
163 	return 0;
164 }
165 
ext4_exit_es(void)166 void ext4_exit_es(void)
167 {
168 	kmem_cache_destroy(ext4_es_cachep);
169 }
170 
ext4_es_init_tree(struct ext4_es_tree * tree)171 void ext4_es_init_tree(struct ext4_es_tree *tree)
172 {
173 	tree->root = RB_ROOT;
174 	tree->cache_es = NULL;
175 }
176 
177 #ifdef ES_DEBUG__
ext4_es_print_tree(struct inode * inode)178 static void ext4_es_print_tree(struct inode *inode)
179 {
180 	struct ext4_es_tree *tree;
181 	struct rb_node *node;
182 
183 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
184 	tree = &EXT4_I(inode)->i_es_tree;
185 	node = rb_first(&tree->root);
186 	while (node) {
187 		struct extent_status *es;
188 		es = rb_entry(node, struct extent_status, rb_node);
189 		printk(KERN_DEBUG " [%u/%u) %llu %x",
190 		       es->es_lblk, es->es_len,
191 		       ext4_es_pblock(es), ext4_es_status(es));
192 		node = rb_next(node);
193 	}
194 	printk(KERN_DEBUG "\n");
195 }
196 #else
197 #define ext4_es_print_tree(inode)
198 #endif
199 
ext4_es_end(struct extent_status * es)200 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
201 {
202 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
203 	return es->es_lblk + es->es_len - 1;
204 }
205 
206 /*
207  * search through the tree for an delayed extent with a given offset.  If
208  * it can't be found, try to find next extent.
209  */
__es_tree_search(struct rb_root * root,ext4_lblk_t lblk)210 static struct extent_status *__es_tree_search(struct rb_root *root,
211 					      ext4_lblk_t lblk)
212 {
213 	struct rb_node *node = root->rb_node;
214 	struct extent_status *es = NULL;
215 
216 	while (node) {
217 		es = rb_entry(node, struct extent_status, rb_node);
218 		if (lblk < es->es_lblk)
219 			node = node->rb_left;
220 		else if (lblk > ext4_es_end(es))
221 			node = node->rb_right;
222 		else
223 			return es;
224 	}
225 
226 	if (es && lblk < es->es_lblk)
227 		return es;
228 
229 	if (es && lblk > ext4_es_end(es)) {
230 		node = rb_next(&es->rb_node);
231 		return node ? rb_entry(node, struct extent_status, rb_node) :
232 			      NULL;
233 	}
234 
235 	return NULL;
236 }
237 
238 /*
239  * ext4_es_find_extent_range - find extent with specified status within block
240  *                             range or next extent following block range in
241  *                             extents status tree
242  *
243  * @inode - file containing the range
244  * @matching_fn - pointer to function that matches extents with desired status
245  * @lblk - logical block defining start of range
246  * @end - logical block defining end of range
247  * @es - extent found, if any
248  *
249  * Find the first extent within the block range specified by @lblk and @end
250  * in the extents status tree that satisfies @matching_fn.  If a match
251  * is found, it's returned in @es.  If not, and a matching extent is found
252  * beyond the block range, it's returned in @es.  If no match is found, an
253  * extent is returned in @es whose es_lblk, es_len, and es_pblk components
254  * are 0.
255  */
__es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)256 static void __es_find_extent_range(struct inode *inode,
257 				   int (*matching_fn)(struct extent_status *es),
258 				   ext4_lblk_t lblk, ext4_lblk_t end,
259 				   struct extent_status *es)
260 {
261 	struct ext4_es_tree *tree = NULL;
262 	struct extent_status *es1 = NULL;
263 	struct rb_node *node;
264 
265 	WARN_ON(es == NULL);
266 	WARN_ON(end < lblk);
267 
268 	tree = &EXT4_I(inode)->i_es_tree;
269 
270 	/* see if the extent has been cached */
271 	es->es_lblk = es->es_len = es->es_pblk = 0;
272 	if (tree->cache_es) {
273 		es1 = tree->cache_es;
274 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
275 			es_debug("%u cached by [%u/%u) %llu %x\n",
276 				 lblk, es1->es_lblk, es1->es_len,
277 				 ext4_es_pblock(es1), ext4_es_status(es1));
278 			goto out;
279 		}
280 	}
281 
282 	es1 = __es_tree_search(&tree->root, lblk);
283 
284 out:
285 	if (es1 && !matching_fn(es1)) {
286 		while ((node = rb_next(&es1->rb_node)) != NULL) {
287 			es1 = rb_entry(node, struct extent_status, rb_node);
288 			if (es1->es_lblk > end) {
289 				es1 = NULL;
290 				break;
291 			}
292 			if (matching_fn(es1))
293 				break;
294 		}
295 	}
296 
297 	if (es1 && matching_fn(es1)) {
298 		tree->cache_es = es1;
299 		es->es_lblk = es1->es_lblk;
300 		es->es_len = es1->es_len;
301 		es->es_pblk = es1->es_pblk;
302 	}
303 
304 }
305 
306 /*
307  * Locking for __es_find_extent_range() for external use
308  */
ext4_es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)309 void ext4_es_find_extent_range(struct inode *inode,
310 			       int (*matching_fn)(struct extent_status *es),
311 			       ext4_lblk_t lblk, ext4_lblk_t end,
312 			       struct extent_status *es)
313 {
314 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
315 		return;
316 
317 	trace_ext4_es_find_extent_range_enter(inode, lblk);
318 
319 	read_lock(&EXT4_I(inode)->i_es_lock);
320 	__es_find_extent_range(inode, matching_fn, lblk, end, es);
321 	read_unlock(&EXT4_I(inode)->i_es_lock);
322 
323 	trace_ext4_es_find_extent_range_exit(inode, es);
324 }
325 
326 /*
327  * __es_scan_range - search block range for block with specified status
328  *                   in extents status tree
329  *
330  * @inode - file containing the range
331  * @matching_fn - pointer to function that matches extents with desired status
332  * @lblk - logical block defining start of range
333  * @end - logical block defining end of range
334  *
335  * Returns true if at least one block in the specified block range satisfies
336  * the criterion specified by @matching_fn, and false if not.  If at least
337  * one extent has the specified status, then there is at least one block
338  * in the cluster with that status.  Should only be called by code that has
339  * taken i_es_lock.
340  */
__es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t start,ext4_lblk_t end)341 static bool __es_scan_range(struct inode *inode,
342 			    int (*matching_fn)(struct extent_status *es),
343 			    ext4_lblk_t start, ext4_lblk_t end)
344 {
345 	struct extent_status es;
346 
347 	__es_find_extent_range(inode, matching_fn, start, end, &es);
348 	if (es.es_len == 0)
349 		return false;   /* no matching extent in the tree */
350 	else if (es.es_lblk <= start &&
351 		 start < es.es_lblk + es.es_len)
352 		return true;
353 	else if (start <= es.es_lblk && es.es_lblk <= end)
354 		return true;
355 	else
356 		return false;
357 }
358 /*
359  * Locking for __es_scan_range() for external use
360  */
ext4_es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end)361 bool ext4_es_scan_range(struct inode *inode,
362 			int (*matching_fn)(struct extent_status *es),
363 			ext4_lblk_t lblk, ext4_lblk_t end)
364 {
365 	bool ret;
366 
367 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
368 		return false;
369 
370 	read_lock(&EXT4_I(inode)->i_es_lock);
371 	ret = __es_scan_range(inode, matching_fn, lblk, end);
372 	read_unlock(&EXT4_I(inode)->i_es_lock);
373 
374 	return ret;
375 }
376 
377 /*
378  * __es_scan_clu - search cluster for block with specified status in
379  *                 extents status tree
380  *
381  * @inode - file containing the cluster
382  * @matching_fn - pointer to function that matches extents with desired status
383  * @lblk - logical block in cluster to be searched
384  *
385  * Returns true if at least one extent in the cluster containing @lblk
386  * satisfies the criterion specified by @matching_fn, and false if not.  If at
387  * least one extent has the specified status, then there is at least one block
388  * in the cluster with that status.  Should only be called by code that has
389  * taken i_es_lock.
390  */
__es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)391 static bool __es_scan_clu(struct inode *inode,
392 			  int (*matching_fn)(struct extent_status *es),
393 			  ext4_lblk_t lblk)
394 {
395 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
396 	ext4_lblk_t lblk_start, lblk_end;
397 
398 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
399 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
400 
401 	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
402 }
403 
404 /*
405  * Locking for __es_scan_clu() for external use
406  */
ext4_es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)407 bool ext4_es_scan_clu(struct inode *inode,
408 		      int (*matching_fn)(struct extent_status *es),
409 		      ext4_lblk_t lblk)
410 {
411 	bool ret;
412 
413 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
414 		return false;
415 
416 	read_lock(&EXT4_I(inode)->i_es_lock);
417 	ret = __es_scan_clu(inode, matching_fn, lblk);
418 	read_unlock(&EXT4_I(inode)->i_es_lock);
419 
420 	return ret;
421 }
422 
ext4_es_list_add(struct inode * inode)423 static void ext4_es_list_add(struct inode *inode)
424 {
425 	struct ext4_inode_info *ei = EXT4_I(inode);
426 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
427 
428 	if (!list_empty(&ei->i_es_list))
429 		return;
430 
431 	spin_lock(&sbi->s_es_lock);
432 	if (list_empty(&ei->i_es_list)) {
433 		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
434 		sbi->s_es_nr_inode++;
435 	}
436 	spin_unlock(&sbi->s_es_lock);
437 }
438 
ext4_es_list_del(struct inode * inode)439 static void ext4_es_list_del(struct inode *inode)
440 {
441 	struct ext4_inode_info *ei = EXT4_I(inode);
442 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
443 
444 	spin_lock(&sbi->s_es_lock);
445 	if (!list_empty(&ei->i_es_list)) {
446 		list_del_init(&ei->i_es_list);
447 		sbi->s_es_nr_inode--;
448 		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
449 	}
450 	spin_unlock(&sbi->s_es_lock);
451 }
452 
453 static struct extent_status *
ext4_es_alloc_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk)454 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
455 		     ext4_fsblk_t pblk)
456 {
457 	struct extent_status *es;
458 	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
459 	if (es == NULL)
460 		return NULL;
461 	es->es_lblk = lblk;
462 	es->es_len = len;
463 	es->es_pblk = pblk;
464 
465 	/*
466 	 * We don't count delayed extent because we never try to reclaim them
467 	 */
468 	if (!ext4_es_is_delayed(es)) {
469 		if (!EXT4_I(inode)->i_es_shk_nr++)
470 			ext4_es_list_add(inode);
471 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
472 					s_es_stats.es_stats_shk_cnt);
473 	}
474 
475 	EXT4_I(inode)->i_es_all_nr++;
476 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
477 
478 	return es;
479 }
480 
ext4_es_free_extent(struct inode * inode,struct extent_status * es)481 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
482 {
483 	EXT4_I(inode)->i_es_all_nr--;
484 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
485 
486 	/* Decrease the shrink counter when this es is not delayed */
487 	if (!ext4_es_is_delayed(es)) {
488 		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
489 		if (!--EXT4_I(inode)->i_es_shk_nr)
490 			ext4_es_list_del(inode);
491 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
492 					s_es_stats.es_stats_shk_cnt);
493 	}
494 
495 	kmem_cache_free(ext4_es_cachep, es);
496 }
497 
498 /*
499  * Check whether or not two extents can be merged
500  * Condition:
501  *  - logical block number is contiguous
502  *  - physical block number is contiguous
503  *  - status is equal
504  */
ext4_es_can_be_merged(struct extent_status * es1,struct extent_status * es2)505 static int ext4_es_can_be_merged(struct extent_status *es1,
506 				 struct extent_status *es2)
507 {
508 	if (ext4_es_type(es1) != ext4_es_type(es2))
509 		return 0;
510 
511 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
512 		pr_warn("ES assertion failed when merging extents. "
513 			"The sum of lengths of es1 (%d) and es2 (%d) "
514 			"is bigger than allowed file size (%d)\n",
515 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
516 		WARN_ON(1);
517 		return 0;
518 	}
519 
520 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
521 		return 0;
522 
523 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
524 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
525 		return 1;
526 
527 	if (ext4_es_is_hole(es1))
528 		return 1;
529 
530 	/* we need to check delayed extent is without unwritten status */
531 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
532 		return 1;
533 
534 	return 0;
535 }
536 
537 static struct extent_status *
ext4_es_try_to_merge_left(struct inode * inode,struct extent_status * es)538 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
539 {
540 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
541 	struct extent_status *es1;
542 	struct rb_node *node;
543 
544 	node = rb_prev(&es->rb_node);
545 	if (!node)
546 		return es;
547 
548 	es1 = rb_entry(node, struct extent_status, rb_node);
549 	if (ext4_es_can_be_merged(es1, es)) {
550 		es1->es_len += es->es_len;
551 		if (ext4_es_is_referenced(es))
552 			ext4_es_set_referenced(es1);
553 		rb_erase(&es->rb_node, &tree->root);
554 		ext4_es_free_extent(inode, es);
555 		es = es1;
556 	}
557 
558 	return es;
559 }
560 
561 static struct extent_status *
ext4_es_try_to_merge_right(struct inode * inode,struct extent_status * es)562 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
563 {
564 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
565 	struct extent_status *es1;
566 	struct rb_node *node;
567 
568 	node = rb_next(&es->rb_node);
569 	if (!node)
570 		return es;
571 
572 	es1 = rb_entry(node, struct extent_status, rb_node);
573 	if (ext4_es_can_be_merged(es, es1)) {
574 		es->es_len += es1->es_len;
575 		if (ext4_es_is_referenced(es1))
576 			ext4_es_set_referenced(es);
577 		rb_erase(node, &tree->root);
578 		ext4_es_free_extent(inode, es1);
579 	}
580 
581 	return es;
582 }
583 
584 #ifdef ES_AGGRESSIVE_TEST
585 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
586 
ext4_es_insert_extent_ext_check(struct inode * inode,struct extent_status * es)587 static void ext4_es_insert_extent_ext_check(struct inode *inode,
588 					    struct extent_status *es)
589 {
590 	struct ext4_ext_path *path = NULL;
591 	struct ext4_extent *ex;
592 	ext4_lblk_t ee_block;
593 	ext4_fsblk_t ee_start;
594 	unsigned short ee_len;
595 	int depth, ee_status, es_status;
596 
597 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
598 	if (IS_ERR(path))
599 		return;
600 
601 	depth = ext_depth(inode);
602 	ex = path[depth].p_ext;
603 
604 	if (ex) {
605 
606 		ee_block = le32_to_cpu(ex->ee_block);
607 		ee_start = ext4_ext_pblock(ex);
608 		ee_len = ext4_ext_get_actual_len(ex);
609 
610 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
611 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
612 
613 		/*
614 		 * Make sure ex and es are not overlap when we try to insert
615 		 * a delayed/hole extent.
616 		 */
617 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
618 			if (in_range(es->es_lblk, ee_block, ee_len)) {
619 				pr_warn("ES insert assertion failed for "
620 					"inode: %lu we can find an extent "
621 					"at block [%d/%d/%llu/%c], but we "
622 					"want to add a delayed/hole extent "
623 					"[%d/%d/%llu/%x]\n",
624 					inode->i_ino, ee_block, ee_len,
625 					ee_start, ee_status ? 'u' : 'w',
626 					es->es_lblk, es->es_len,
627 					ext4_es_pblock(es), ext4_es_status(es));
628 			}
629 			goto out;
630 		}
631 
632 		/*
633 		 * We don't check ee_block == es->es_lblk, etc. because es
634 		 * might be a part of whole extent, vice versa.
635 		 */
636 		if (es->es_lblk < ee_block ||
637 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
638 			pr_warn("ES insert assertion failed for inode: %lu "
639 				"ex_status [%d/%d/%llu/%c] != "
640 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
641 				ee_block, ee_len, ee_start,
642 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
643 				ext4_es_pblock(es), es_status ? 'u' : 'w');
644 			goto out;
645 		}
646 
647 		if (ee_status ^ es_status) {
648 			pr_warn("ES insert assertion failed for inode: %lu "
649 				"ex_status [%d/%d/%llu/%c] != "
650 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
651 				ee_block, ee_len, ee_start,
652 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
653 				ext4_es_pblock(es), es_status ? 'u' : 'w');
654 		}
655 	} else {
656 		/*
657 		 * We can't find an extent on disk.  So we need to make sure
658 		 * that we don't want to add an written/unwritten extent.
659 		 */
660 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
661 			pr_warn("ES insert assertion failed for inode: %lu "
662 				"can't find an extent at block %d but we want "
663 				"to add a written/unwritten extent "
664 				"[%d/%d/%llu/%x]\n", inode->i_ino,
665 				es->es_lblk, es->es_lblk, es->es_len,
666 				ext4_es_pblock(es), ext4_es_status(es));
667 		}
668 	}
669 out:
670 	ext4_ext_drop_refs(path);
671 	kfree(path);
672 }
673 
ext4_es_insert_extent_ind_check(struct inode * inode,struct extent_status * es)674 static void ext4_es_insert_extent_ind_check(struct inode *inode,
675 					    struct extent_status *es)
676 {
677 	struct ext4_map_blocks map;
678 	int retval;
679 
680 	/*
681 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
682 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
683 	 * access direct/indirect tree from outside.  It is too dirty to define
684 	 * this function in indirect.c file.
685 	 */
686 
687 	map.m_lblk = es->es_lblk;
688 	map.m_len = es->es_len;
689 
690 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
691 	if (retval > 0) {
692 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
693 			/*
694 			 * We want to add a delayed/hole extent but this
695 			 * block has been allocated.
696 			 */
697 			pr_warn("ES insert assertion failed for inode: %lu "
698 				"We can find blocks but we want to add a "
699 				"delayed/hole extent [%d/%d/%llu/%x]\n",
700 				inode->i_ino, es->es_lblk, es->es_len,
701 				ext4_es_pblock(es), ext4_es_status(es));
702 			return;
703 		} else if (ext4_es_is_written(es)) {
704 			if (retval != es->es_len) {
705 				pr_warn("ES insert assertion failed for "
706 					"inode: %lu retval %d != es_len %d\n",
707 					inode->i_ino, retval, es->es_len);
708 				return;
709 			}
710 			if (map.m_pblk != ext4_es_pblock(es)) {
711 				pr_warn("ES insert assertion failed for "
712 					"inode: %lu m_pblk %llu != "
713 					"es_pblk %llu\n",
714 					inode->i_ino, map.m_pblk,
715 					ext4_es_pblock(es));
716 				return;
717 			}
718 		} else {
719 			/*
720 			 * We don't need to check unwritten extent because
721 			 * indirect-based file doesn't have it.
722 			 */
723 			BUG();
724 		}
725 	} else if (retval == 0) {
726 		if (ext4_es_is_written(es)) {
727 			pr_warn("ES insert assertion failed for inode: %lu "
728 				"We can't find the block but we want to add "
729 				"a written extent [%d/%d/%llu/%x]\n",
730 				inode->i_ino, es->es_lblk, es->es_len,
731 				ext4_es_pblock(es), ext4_es_status(es));
732 			return;
733 		}
734 	}
735 }
736 
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)737 static inline void ext4_es_insert_extent_check(struct inode *inode,
738 					       struct extent_status *es)
739 {
740 	/*
741 	 * We don't need to worry about the race condition because
742 	 * caller takes i_data_sem locking.
743 	 */
744 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
745 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
746 		ext4_es_insert_extent_ext_check(inode, es);
747 	else
748 		ext4_es_insert_extent_ind_check(inode, es);
749 }
750 #else
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)751 static inline void ext4_es_insert_extent_check(struct inode *inode,
752 					       struct extent_status *es)
753 {
754 }
755 #endif
756 
__es_insert_extent(struct inode * inode,struct extent_status * newes)757 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
758 {
759 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
760 	struct rb_node **p = &tree->root.rb_node;
761 	struct rb_node *parent = NULL;
762 	struct extent_status *es;
763 
764 	while (*p) {
765 		parent = *p;
766 		es = rb_entry(parent, struct extent_status, rb_node);
767 
768 		if (newes->es_lblk < es->es_lblk) {
769 			if (ext4_es_can_be_merged(newes, es)) {
770 				/*
771 				 * Here we can modify es_lblk directly
772 				 * because it isn't overlapped.
773 				 */
774 				es->es_lblk = newes->es_lblk;
775 				es->es_len += newes->es_len;
776 				if (ext4_es_is_written(es) ||
777 				    ext4_es_is_unwritten(es))
778 					ext4_es_store_pblock(es,
779 							     newes->es_pblk);
780 				es = ext4_es_try_to_merge_left(inode, es);
781 				goto out;
782 			}
783 			p = &(*p)->rb_left;
784 		} else if (newes->es_lblk > ext4_es_end(es)) {
785 			if (ext4_es_can_be_merged(es, newes)) {
786 				es->es_len += newes->es_len;
787 				es = ext4_es_try_to_merge_right(inode, es);
788 				goto out;
789 			}
790 			p = &(*p)->rb_right;
791 		} else {
792 			BUG();
793 			return -EINVAL;
794 		}
795 	}
796 
797 	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
798 				  newes->es_pblk);
799 	if (!es)
800 		return -ENOMEM;
801 	rb_link_node(&es->rb_node, parent, p);
802 	rb_insert_color(&es->rb_node, &tree->root);
803 
804 out:
805 	tree->cache_es = es;
806 	return 0;
807 }
808 
809 /*
810  * ext4_es_insert_extent() adds information to an inode's extent
811  * status tree.
812  *
813  * Return 0 on success, error code on failure.
814  */
ext4_es_insert_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)815 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
816 			  ext4_lblk_t len, ext4_fsblk_t pblk,
817 			  unsigned int status)
818 {
819 	struct extent_status newes;
820 	ext4_lblk_t end = lblk + len - 1;
821 	int err = 0;
822 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
823 
824 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
825 		return 0;
826 
827 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
828 		 lblk, len, pblk, status, inode->i_ino);
829 
830 	if (!len)
831 		return 0;
832 
833 	BUG_ON(end < lblk);
834 
835 	if ((status & EXTENT_STATUS_DELAYED) &&
836 	    (status & EXTENT_STATUS_WRITTEN)) {
837 		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
838 				" delayed and written which can potentially "
839 				" cause data loss.", lblk, len);
840 		WARN_ON(1);
841 	}
842 
843 	newes.es_lblk = lblk;
844 	newes.es_len = len;
845 	ext4_es_store_pblock_status(&newes, pblk, status);
846 	trace_ext4_es_insert_extent(inode, &newes);
847 
848 	ext4_es_insert_extent_check(inode, &newes);
849 
850 	write_lock(&EXT4_I(inode)->i_es_lock);
851 	err = __es_remove_extent(inode, lblk, end, NULL);
852 	if (err != 0)
853 		goto error;
854 retry:
855 	err = __es_insert_extent(inode, &newes);
856 	if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
857 					  128, EXT4_I(inode)))
858 		goto retry;
859 	if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
860 		err = 0;
861 
862 	if (sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) &&
863 	    (status & EXTENT_STATUS_WRITTEN ||
864 	     status & EXTENT_STATUS_UNWRITTEN))
865 		__revise_pending(inode, lblk, len);
866 
867 error:
868 	write_unlock(&EXT4_I(inode)->i_es_lock);
869 
870 	ext4_es_print_tree(inode);
871 
872 	return err;
873 }
874 
875 /*
876  * ext4_es_cache_extent() inserts information into the extent status
877  * tree if and only if there isn't information about the range in
878  * question already.
879  */
ext4_es_cache_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)880 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
881 			  ext4_lblk_t len, ext4_fsblk_t pblk,
882 			  unsigned int status)
883 {
884 	struct extent_status *es;
885 	struct extent_status newes;
886 	ext4_lblk_t end = lblk + len - 1;
887 
888 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
889 		return;
890 
891 	newes.es_lblk = lblk;
892 	newes.es_len = len;
893 	ext4_es_store_pblock_status(&newes, pblk, status);
894 	trace_ext4_es_cache_extent(inode, &newes);
895 
896 	if (!len)
897 		return;
898 
899 	BUG_ON(end < lblk);
900 
901 	write_lock(&EXT4_I(inode)->i_es_lock);
902 
903 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
904 	if (!es || es->es_lblk > end)
905 		__es_insert_extent(inode, &newes);
906 	write_unlock(&EXT4_I(inode)->i_es_lock);
907 }
908 
909 /*
910  * ext4_es_lookup_extent() looks up an extent in extent status tree.
911  *
912  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
913  *
914  * Return: 1 on found, 0 on not
915  */
ext4_es_lookup_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t * next_lblk,struct extent_status * es)916 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
917 			  ext4_lblk_t *next_lblk,
918 			  struct extent_status *es)
919 {
920 	struct ext4_es_tree *tree;
921 	struct ext4_es_stats *stats;
922 	struct extent_status *es1 = NULL;
923 	struct rb_node *node;
924 	int found = 0;
925 
926 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
927 		return 0;
928 
929 	trace_ext4_es_lookup_extent_enter(inode, lblk);
930 	es_debug("lookup extent in block %u\n", lblk);
931 
932 	tree = &EXT4_I(inode)->i_es_tree;
933 	read_lock(&EXT4_I(inode)->i_es_lock);
934 
935 	/* find extent in cache firstly */
936 	es->es_lblk = es->es_len = es->es_pblk = 0;
937 	if (tree->cache_es) {
938 		es1 = tree->cache_es;
939 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
940 			es_debug("%u cached by [%u/%u)\n",
941 				 lblk, es1->es_lblk, es1->es_len);
942 			found = 1;
943 			goto out;
944 		}
945 	}
946 
947 	node = tree->root.rb_node;
948 	while (node) {
949 		es1 = rb_entry(node, struct extent_status, rb_node);
950 		if (lblk < es1->es_lblk)
951 			node = node->rb_left;
952 		else if (lblk > ext4_es_end(es1))
953 			node = node->rb_right;
954 		else {
955 			found = 1;
956 			break;
957 		}
958 	}
959 
960 out:
961 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
962 	if (found) {
963 		BUG_ON(!es1);
964 		es->es_lblk = es1->es_lblk;
965 		es->es_len = es1->es_len;
966 		es->es_pblk = es1->es_pblk;
967 		if (!ext4_es_is_referenced(es1))
968 			ext4_es_set_referenced(es1);
969 		percpu_counter_inc(&stats->es_stats_cache_hits);
970 		if (next_lblk) {
971 			node = rb_next(&es1->rb_node);
972 			if (node) {
973 				es1 = rb_entry(node, struct extent_status,
974 					       rb_node);
975 				*next_lblk = es1->es_lblk;
976 			} else
977 				*next_lblk = 0;
978 		}
979 	} else {
980 		percpu_counter_inc(&stats->es_stats_cache_misses);
981 	}
982 
983 	read_unlock(&EXT4_I(inode)->i_es_lock);
984 
985 	trace_ext4_es_lookup_extent_exit(inode, es, found);
986 	return found;
987 }
988 
989 struct rsvd_count {
990 	int ndelonly;
991 	bool first_do_lblk_found;
992 	ext4_lblk_t first_do_lblk;
993 	ext4_lblk_t last_do_lblk;
994 	struct extent_status *left_es;
995 	bool partial;
996 	ext4_lblk_t lclu;
997 };
998 
999 /*
1000  * init_rsvd - initialize reserved count data before removing block range
1001  *	       in file from extent status tree
1002  *
1003  * @inode - file containing range
1004  * @lblk - first block in range
1005  * @es - pointer to first extent in range
1006  * @rc - pointer to reserved count data
1007  *
1008  * Assumes es is not NULL
1009  */
init_rsvd(struct inode * inode,ext4_lblk_t lblk,struct extent_status * es,struct rsvd_count * rc)1010 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1011 		      struct extent_status *es, struct rsvd_count *rc)
1012 {
1013 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1014 	struct rb_node *node;
1015 
1016 	rc->ndelonly = 0;
1017 
1018 	/*
1019 	 * for bigalloc, note the first delonly block in the range has not
1020 	 * been found, record the extent containing the block to the left of
1021 	 * the region to be removed, if any, and note that there's no partial
1022 	 * cluster to track
1023 	 */
1024 	if (sbi->s_cluster_ratio > 1) {
1025 		rc->first_do_lblk_found = false;
1026 		if (lblk > es->es_lblk) {
1027 			rc->left_es = es;
1028 		} else {
1029 			node = rb_prev(&es->rb_node);
1030 			rc->left_es = node ? rb_entry(node,
1031 						      struct extent_status,
1032 						      rb_node) : NULL;
1033 		}
1034 		rc->partial = false;
1035 	}
1036 }
1037 
1038 /*
1039  * count_rsvd - count the clusters containing delayed and not unwritten
1040  *		(delonly) blocks in a range within an extent and add to
1041  *	        the running tally in rsvd_count
1042  *
1043  * @inode - file containing extent
1044  * @lblk - first block in range
1045  * @len - length of range in blocks
1046  * @es - pointer to extent containing clusters to be counted
1047  * @rc - pointer to reserved count data
1048  *
1049  * Tracks partial clusters found at the beginning and end of extents so
1050  * they aren't overcounted when they span adjacent extents
1051  */
count_rsvd(struct inode * inode,ext4_lblk_t lblk,long len,struct extent_status * es,struct rsvd_count * rc)1052 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1053 		       struct extent_status *es, struct rsvd_count *rc)
1054 {
1055 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1056 	ext4_lblk_t i, end, nclu;
1057 
1058 	if (!ext4_es_is_delonly(es))
1059 		return;
1060 
1061 	WARN_ON(len <= 0);
1062 
1063 	if (sbi->s_cluster_ratio == 1) {
1064 		rc->ndelonly += (int) len;
1065 		return;
1066 	}
1067 
1068 	/* bigalloc */
1069 
1070 	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1071 	end = lblk + (ext4_lblk_t) len - 1;
1072 	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1073 
1074 	/* record the first block of the first delonly extent seen */
1075 	if (!rc->first_do_lblk_found) {
1076 		rc->first_do_lblk = i;
1077 		rc->first_do_lblk_found = true;
1078 	}
1079 
1080 	/* update the last lblk in the region seen so far */
1081 	rc->last_do_lblk = end;
1082 
1083 	/*
1084 	 * if we're tracking a partial cluster and the current extent
1085 	 * doesn't start with it, count it and stop tracking
1086 	 */
1087 	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1088 		rc->ndelonly++;
1089 		rc->partial = false;
1090 	}
1091 
1092 	/*
1093 	 * if the first cluster doesn't start on a cluster boundary but
1094 	 * ends on one, count it
1095 	 */
1096 	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1097 		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1098 			rc->ndelonly++;
1099 			rc->partial = false;
1100 			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1101 		}
1102 	}
1103 
1104 	/*
1105 	 * if the current cluster starts on a cluster boundary, count the
1106 	 * number of whole delonly clusters in the extent
1107 	 */
1108 	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1109 		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1110 		rc->ndelonly += nclu;
1111 		i += nclu << sbi->s_cluster_bits;
1112 	}
1113 
1114 	/*
1115 	 * start tracking a partial cluster if there's a partial at the end
1116 	 * of the current extent and we're not already tracking one
1117 	 */
1118 	if (!rc->partial && i <= end) {
1119 		rc->partial = true;
1120 		rc->lclu = EXT4_B2C(sbi, i);
1121 	}
1122 }
1123 
1124 /*
1125  * __pr_tree_search - search for a pending cluster reservation
1126  *
1127  * @root - root of pending reservation tree
1128  * @lclu - logical cluster to search for
1129  *
1130  * Returns the pending reservation for the cluster identified by @lclu
1131  * if found.  If not, returns a reservation for the next cluster if any,
1132  * and if not, returns NULL.
1133  */
__pr_tree_search(struct rb_root * root,ext4_lblk_t lclu)1134 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1135 						    ext4_lblk_t lclu)
1136 {
1137 	struct rb_node *node = root->rb_node;
1138 	struct pending_reservation *pr = NULL;
1139 
1140 	while (node) {
1141 		pr = rb_entry(node, struct pending_reservation, rb_node);
1142 		if (lclu < pr->lclu)
1143 			node = node->rb_left;
1144 		else if (lclu > pr->lclu)
1145 			node = node->rb_right;
1146 		else
1147 			return pr;
1148 	}
1149 	if (pr && lclu < pr->lclu)
1150 		return pr;
1151 	if (pr && lclu > pr->lclu) {
1152 		node = rb_next(&pr->rb_node);
1153 		return node ? rb_entry(node, struct pending_reservation,
1154 				       rb_node) : NULL;
1155 	}
1156 	return NULL;
1157 }
1158 
1159 /*
1160  * get_rsvd - calculates and returns the number of cluster reservations to be
1161  *	      released when removing a block range from the extent status tree
1162  *	      and releases any pending reservations within the range
1163  *
1164  * @inode - file containing block range
1165  * @end - last block in range
1166  * @right_es - pointer to extent containing next block beyond end or NULL
1167  * @rc - pointer to reserved count data
1168  *
1169  * The number of reservations to be released is equal to the number of
1170  * clusters containing delayed and not unwritten (delonly) blocks within
1171  * the range, minus the number of clusters still containing delonly blocks
1172  * at the ends of the range, and minus the number of pending reservations
1173  * within the range.
1174  */
get_rsvd(struct inode * inode,ext4_lblk_t end,struct extent_status * right_es,struct rsvd_count * rc)1175 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1176 			     struct extent_status *right_es,
1177 			     struct rsvd_count *rc)
1178 {
1179 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1180 	struct pending_reservation *pr;
1181 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1182 	struct rb_node *node;
1183 	ext4_lblk_t first_lclu, last_lclu;
1184 	bool left_delonly, right_delonly, count_pending;
1185 	struct extent_status *es;
1186 
1187 	if (sbi->s_cluster_ratio > 1) {
1188 		/* count any remaining partial cluster */
1189 		if (rc->partial)
1190 			rc->ndelonly++;
1191 
1192 		if (rc->ndelonly == 0)
1193 			return 0;
1194 
1195 		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1196 		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1197 
1198 		/*
1199 		 * decrease the delonly count by the number of clusters at the
1200 		 * ends of the range that still contain delonly blocks -
1201 		 * these clusters still need to be reserved
1202 		 */
1203 		left_delonly = right_delonly = false;
1204 
1205 		es = rc->left_es;
1206 		while (es && ext4_es_end(es) >=
1207 		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1208 			if (ext4_es_is_delonly(es)) {
1209 				rc->ndelonly--;
1210 				left_delonly = true;
1211 				break;
1212 			}
1213 			node = rb_prev(&es->rb_node);
1214 			if (!node)
1215 				break;
1216 			es = rb_entry(node, struct extent_status, rb_node);
1217 		}
1218 		if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1219 			if (end < ext4_es_end(right_es)) {
1220 				es = right_es;
1221 			} else {
1222 				node = rb_next(&right_es->rb_node);
1223 				es = node ? rb_entry(node, struct extent_status,
1224 						     rb_node) : NULL;
1225 			}
1226 			while (es && es->es_lblk <=
1227 			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1228 				if (ext4_es_is_delonly(es)) {
1229 					rc->ndelonly--;
1230 					right_delonly = true;
1231 					break;
1232 				}
1233 				node = rb_next(&es->rb_node);
1234 				if (!node)
1235 					break;
1236 				es = rb_entry(node, struct extent_status,
1237 					      rb_node);
1238 			}
1239 		}
1240 
1241 		/*
1242 		 * Determine the block range that should be searched for
1243 		 * pending reservations, if any.  Clusters on the ends of the
1244 		 * original removed range containing delonly blocks are
1245 		 * excluded.  They've already been accounted for and it's not
1246 		 * possible to determine if an associated pending reservation
1247 		 * should be released with the information available in the
1248 		 * extents status tree.
1249 		 */
1250 		if (first_lclu == last_lclu) {
1251 			if (left_delonly | right_delonly)
1252 				count_pending = false;
1253 			else
1254 				count_pending = true;
1255 		} else {
1256 			if (left_delonly)
1257 				first_lclu++;
1258 			if (right_delonly)
1259 				last_lclu--;
1260 			if (first_lclu <= last_lclu)
1261 				count_pending = true;
1262 			else
1263 				count_pending = false;
1264 		}
1265 
1266 		/*
1267 		 * a pending reservation found between first_lclu and last_lclu
1268 		 * represents an allocated cluster that contained at least one
1269 		 * delonly block, so the delonly total must be reduced by one
1270 		 * for each pending reservation found and released
1271 		 */
1272 		if (count_pending) {
1273 			pr = __pr_tree_search(&tree->root, first_lclu);
1274 			while (pr && pr->lclu <= last_lclu) {
1275 				rc->ndelonly--;
1276 				node = rb_next(&pr->rb_node);
1277 				rb_erase(&pr->rb_node, &tree->root);
1278 				kmem_cache_free(ext4_pending_cachep, pr);
1279 				if (!node)
1280 					break;
1281 				pr = rb_entry(node, struct pending_reservation,
1282 					      rb_node);
1283 			}
1284 		}
1285 	}
1286 	return rc->ndelonly;
1287 }
1288 
1289 
1290 /*
1291  * __es_remove_extent - removes block range from extent status tree
1292  *
1293  * @inode - file containing range
1294  * @lblk - first block in range
1295  * @end - last block in range
1296  * @reserved - number of cluster reservations released
1297  *
1298  * If @reserved is not NULL and delayed allocation is enabled, counts
1299  * block/cluster reservations freed by removing range and if bigalloc
1300  * enabled cancels pending reservations as needed. Returns 0 on success,
1301  * error code on failure.
1302  */
__es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end,int * reserved)1303 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1304 			      ext4_lblk_t end, int *reserved)
1305 {
1306 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1307 	struct rb_node *node;
1308 	struct extent_status *es;
1309 	struct extent_status orig_es;
1310 	ext4_lblk_t len1, len2;
1311 	ext4_fsblk_t block;
1312 	int err;
1313 	bool count_reserved = true;
1314 	struct rsvd_count rc;
1315 
1316 	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1317 		count_reserved = false;
1318 retry:
1319 	err = 0;
1320 
1321 	es = __es_tree_search(&tree->root, lblk);
1322 	if (!es)
1323 		goto out;
1324 	if (es->es_lblk > end)
1325 		goto out;
1326 
1327 	/* Simply invalidate cache_es. */
1328 	tree->cache_es = NULL;
1329 	if (count_reserved)
1330 		init_rsvd(inode, lblk, es, &rc);
1331 
1332 	orig_es.es_lblk = es->es_lblk;
1333 	orig_es.es_len = es->es_len;
1334 	orig_es.es_pblk = es->es_pblk;
1335 
1336 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1337 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1338 	if (len1 > 0)
1339 		es->es_len = len1;
1340 	if (len2 > 0) {
1341 		if (len1 > 0) {
1342 			struct extent_status newes;
1343 
1344 			newes.es_lblk = end + 1;
1345 			newes.es_len = len2;
1346 			block = 0x7FDEADBEEFULL;
1347 			if (ext4_es_is_written(&orig_es) ||
1348 			    ext4_es_is_unwritten(&orig_es))
1349 				block = ext4_es_pblock(&orig_es) +
1350 					orig_es.es_len - len2;
1351 			ext4_es_store_pblock_status(&newes, block,
1352 						    ext4_es_status(&orig_es));
1353 			err = __es_insert_extent(inode, &newes);
1354 			if (err) {
1355 				es->es_lblk = orig_es.es_lblk;
1356 				es->es_len = orig_es.es_len;
1357 				if ((err == -ENOMEM) &&
1358 				    __es_shrink(EXT4_SB(inode->i_sb),
1359 							128, EXT4_I(inode)))
1360 					goto retry;
1361 				goto out;
1362 			}
1363 		} else {
1364 			es->es_lblk = end + 1;
1365 			es->es_len = len2;
1366 			if (ext4_es_is_written(es) ||
1367 			    ext4_es_is_unwritten(es)) {
1368 				block = orig_es.es_pblk + orig_es.es_len - len2;
1369 				ext4_es_store_pblock(es, block);
1370 			}
1371 		}
1372 		if (count_reserved)
1373 			count_rsvd(inode, lblk, orig_es.es_len - len1 - len2,
1374 				   &orig_es, &rc);
1375 		goto out_get_reserved;
1376 	}
1377 
1378 	if (len1 > 0) {
1379 		if (count_reserved)
1380 			count_rsvd(inode, lblk, orig_es.es_len - len1,
1381 				   &orig_es, &rc);
1382 		node = rb_next(&es->rb_node);
1383 		if (node)
1384 			es = rb_entry(node, struct extent_status, rb_node);
1385 		else
1386 			es = NULL;
1387 	}
1388 
1389 	while (es && ext4_es_end(es) <= end) {
1390 		if (count_reserved)
1391 			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1392 		node = rb_next(&es->rb_node);
1393 		rb_erase(&es->rb_node, &tree->root);
1394 		ext4_es_free_extent(inode, es);
1395 		if (!node) {
1396 			es = NULL;
1397 			break;
1398 		}
1399 		es = rb_entry(node, struct extent_status, rb_node);
1400 	}
1401 
1402 	if (es && es->es_lblk < end + 1) {
1403 		ext4_lblk_t orig_len = es->es_len;
1404 
1405 		len1 = ext4_es_end(es) - end;
1406 		if (count_reserved)
1407 			count_rsvd(inode, es->es_lblk, orig_len - len1,
1408 				   es, &rc);
1409 		es->es_lblk = end + 1;
1410 		es->es_len = len1;
1411 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1412 			block = es->es_pblk + orig_len - len1;
1413 			ext4_es_store_pblock(es, block);
1414 		}
1415 	}
1416 
1417 out_get_reserved:
1418 	if (count_reserved)
1419 		*reserved = get_rsvd(inode, end, es, &rc);
1420 out:
1421 	return err;
1422 }
1423 
1424 /*
1425  * ext4_es_remove_extent - removes block range from extent status tree
1426  *
1427  * @inode - file containing range
1428  * @lblk - first block in range
1429  * @len - number of blocks to remove
1430  *
1431  * Reduces block/cluster reservation count and for bigalloc cancels pending
1432  * reservations as needed. Returns 0 on success, error code on failure.
1433  */
ext4_es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1434 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1435 			  ext4_lblk_t len)
1436 {
1437 	ext4_lblk_t end;
1438 	int err = 0;
1439 	int reserved = 0;
1440 
1441 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1442 		return 0;
1443 
1444 	trace_ext4_es_remove_extent(inode, lblk, len);
1445 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1446 		 lblk, len, inode->i_ino);
1447 
1448 	if (!len)
1449 		return err;
1450 
1451 	end = lblk + len - 1;
1452 	BUG_ON(end < lblk);
1453 
1454 	/*
1455 	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1456 	 * so that we are sure __es_shrink() is done with the inode before it
1457 	 * is reclaimed.
1458 	 */
1459 	write_lock(&EXT4_I(inode)->i_es_lock);
1460 	err = __es_remove_extent(inode, lblk, end, &reserved);
1461 	write_unlock(&EXT4_I(inode)->i_es_lock);
1462 	ext4_es_print_tree(inode);
1463 	ext4_da_release_space(inode, reserved);
1464 	return err;
1465 }
1466 
__es_shrink(struct ext4_sb_info * sbi,int nr_to_scan,struct ext4_inode_info * locked_ei)1467 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1468 		       struct ext4_inode_info *locked_ei)
1469 {
1470 	struct ext4_inode_info *ei;
1471 	struct ext4_es_stats *es_stats;
1472 	ktime_t start_time;
1473 	u64 scan_time;
1474 	int nr_to_walk;
1475 	int nr_shrunk = 0;
1476 	int retried = 0, nr_skipped = 0;
1477 
1478 	es_stats = &sbi->s_es_stats;
1479 	start_time = ktime_get();
1480 
1481 retry:
1482 	spin_lock(&sbi->s_es_lock);
1483 	nr_to_walk = sbi->s_es_nr_inode;
1484 	while (nr_to_walk-- > 0) {
1485 		if (list_empty(&sbi->s_es_list)) {
1486 			spin_unlock(&sbi->s_es_lock);
1487 			goto out;
1488 		}
1489 		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1490 				      i_es_list);
1491 		/* Move the inode to the tail */
1492 		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1493 
1494 		/*
1495 		 * Normally we try hard to avoid shrinking precached inodes,
1496 		 * but we will as a last resort.
1497 		 */
1498 		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1499 						EXT4_STATE_EXT_PRECACHED)) {
1500 			nr_skipped++;
1501 			continue;
1502 		}
1503 
1504 		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1505 			nr_skipped++;
1506 			continue;
1507 		}
1508 		/*
1509 		 * Now we hold i_es_lock which protects us from inode reclaim
1510 		 * freeing inode under us
1511 		 */
1512 		spin_unlock(&sbi->s_es_lock);
1513 
1514 		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1515 		write_unlock(&ei->i_es_lock);
1516 
1517 		if (nr_to_scan <= 0)
1518 			goto out;
1519 		spin_lock(&sbi->s_es_lock);
1520 	}
1521 	spin_unlock(&sbi->s_es_lock);
1522 
1523 	/*
1524 	 * If we skipped any inodes, and we weren't able to make any
1525 	 * forward progress, try again to scan precached inodes.
1526 	 */
1527 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1528 		retried++;
1529 		goto retry;
1530 	}
1531 
1532 	if (locked_ei && nr_shrunk == 0)
1533 		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1534 
1535 out:
1536 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1537 	if (likely(es_stats->es_stats_scan_time))
1538 		es_stats->es_stats_scan_time = (scan_time +
1539 				es_stats->es_stats_scan_time*3) / 4;
1540 	else
1541 		es_stats->es_stats_scan_time = scan_time;
1542 	if (scan_time > es_stats->es_stats_max_scan_time)
1543 		es_stats->es_stats_max_scan_time = scan_time;
1544 	if (likely(es_stats->es_stats_shrunk))
1545 		es_stats->es_stats_shrunk = (nr_shrunk +
1546 				es_stats->es_stats_shrunk*3) / 4;
1547 	else
1548 		es_stats->es_stats_shrunk = nr_shrunk;
1549 
1550 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1551 			     nr_skipped, retried);
1552 	return nr_shrunk;
1553 }
1554 
ext4_es_count(struct shrinker * shrink,struct shrink_control * sc)1555 static unsigned long ext4_es_count(struct shrinker *shrink,
1556 				   struct shrink_control *sc)
1557 {
1558 	unsigned long nr;
1559 	struct ext4_sb_info *sbi;
1560 
1561 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1562 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1563 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1564 	return nr;
1565 }
1566 
ext4_es_scan(struct shrinker * shrink,struct shrink_control * sc)1567 static unsigned long ext4_es_scan(struct shrinker *shrink,
1568 				  struct shrink_control *sc)
1569 {
1570 	struct ext4_sb_info *sbi = container_of(shrink,
1571 					struct ext4_sb_info, s_es_shrinker);
1572 	int nr_to_scan = sc->nr_to_scan;
1573 	int ret, nr_shrunk;
1574 
1575 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1576 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1577 
1578 	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1579 
1580 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1581 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1582 	return nr_shrunk;
1583 }
1584 
ext4_seq_es_shrinker_info_show(struct seq_file * seq,void * v)1585 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1586 {
1587 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1588 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1589 	struct ext4_inode_info *ei, *max = NULL;
1590 	unsigned int inode_cnt = 0;
1591 
1592 	if (v != SEQ_START_TOKEN)
1593 		return 0;
1594 
1595 	/* here we just find an inode that has the max nr. of objects */
1596 	spin_lock(&sbi->s_es_lock);
1597 	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1598 		inode_cnt++;
1599 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1600 			max = ei;
1601 		else if (!max)
1602 			max = ei;
1603 	}
1604 	spin_unlock(&sbi->s_es_lock);
1605 
1606 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1607 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1608 		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1609 	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1610 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1611 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1612 	if (inode_cnt)
1613 		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1614 
1615 	seq_printf(seq, "average:\n  %llu us scan time\n",
1616 	    div_u64(es_stats->es_stats_scan_time, 1000));
1617 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1618 	if (inode_cnt)
1619 		seq_printf(seq,
1620 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1621 		    "  %llu us max scan time\n",
1622 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1623 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1624 
1625 	return 0;
1626 }
1627 
ext4_es_register_shrinker(struct ext4_sb_info * sbi)1628 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1629 {
1630 	int err;
1631 
1632 	/* Make sure we have enough bits for physical block number */
1633 	BUILD_BUG_ON(ES_SHIFT < 48);
1634 	INIT_LIST_HEAD(&sbi->s_es_list);
1635 	sbi->s_es_nr_inode = 0;
1636 	spin_lock_init(&sbi->s_es_lock);
1637 	sbi->s_es_stats.es_stats_shrunk = 0;
1638 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1639 				  GFP_KERNEL);
1640 	if (err)
1641 		return err;
1642 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1643 				  GFP_KERNEL);
1644 	if (err)
1645 		goto err1;
1646 	sbi->s_es_stats.es_stats_scan_time = 0;
1647 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1648 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1649 	if (err)
1650 		goto err2;
1651 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1652 	if (err)
1653 		goto err3;
1654 
1655 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1656 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1657 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1658 	err = register_shrinker(&sbi->s_es_shrinker);
1659 	if (err)
1660 		goto err4;
1661 
1662 	return 0;
1663 err4:
1664 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1665 err3:
1666 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1667 err2:
1668 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1669 err1:
1670 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1671 	return err;
1672 }
1673 
ext4_es_unregister_shrinker(struct ext4_sb_info * sbi)1674 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1675 {
1676 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1677 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1678 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1679 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1680 	unregister_shrinker(&sbi->s_es_shrinker);
1681 }
1682 
1683 /*
1684  * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1685  * most *nr_to_scan extents, update *nr_to_scan accordingly.
1686  *
1687  * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1688  * Increment *nr_shrunk by the number of reclaimed extents. Also update
1689  * ei->i_es_shrink_lblk to where we should continue scanning.
1690  */
es_do_reclaim_extents(struct ext4_inode_info * ei,ext4_lblk_t end,int * nr_to_scan,int * nr_shrunk)1691 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1692 				 int *nr_to_scan, int *nr_shrunk)
1693 {
1694 	struct inode *inode = &ei->vfs_inode;
1695 	struct ext4_es_tree *tree = &ei->i_es_tree;
1696 	struct extent_status *es;
1697 	struct rb_node *node;
1698 
1699 	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1700 	if (!es)
1701 		goto out_wrap;
1702 
1703 	while (*nr_to_scan > 0) {
1704 		if (es->es_lblk > end) {
1705 			ei->i_es_shrink_lblk = end + 1;
1706 			return 0;
1707 		}
1708 
1709 		(*nr_to_scan)--;
1710 		node = rb_next(&es->rb_node);
1711 		/*
1712 		 * We can't reclaim delayed extent from status tree because
1713 		 * fiemap, bigallic, and seek_data/hole need to use it.
1714 		 */
1715 		if (ext4_es_is_delayed(es))
1716 			goto next;
1717 		if (ext4_es_is_referenced(es)) {
1718 			ext4_es_clear_referenced(es);
1719 			goto next;
1720 		}
1721 
1722 		rb_erase(&es->rb_node, &tree->root);
1723 		ext4_es_free_extent(inode, es);
1724 		(*nr_shrunk)++;
1725 next:
1726 		if (!node)
1727 			goto out_wrap;
1728 		es = rb_entry(node, struct extent_status, rb_node);
1729 	}
1730 	ei->i_es_shrink_lblk = es->es_lblk;
1731 	return 1;
1732 out_wrap:
1733 	ei->i_es_shrink_lblk = 0;
1734 	return 0;
1735 }
1736 
es_reclaim_extents(struct ext4_inode_info * ei,int * nr_to_scan)1737 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1738 {
1739 	struct inode *inode = &ei->vfs_inode;
1740 	int nr_shrunk = 0;
1741 	ext4_lblk_t start = ei->i_es_shrink_lblk;
1742 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1743 				      DEFAULT_RATELIMIT_BURST);
1744 
1745 	if (ei->i_es_shk_nr == 0)
1746 		return 0;
1747 
1748 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1749 	    __ratelimit(&_rs))
1750 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1751 
1752 	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1753 	    start != 0)
1754 		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1755 
1756 	ei->i_es_tree.cache_es = NULL;
1757 	return nr_shrunk;
1758 }
1759 
1760 /*
1761  * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1762  * discretionary entries from the extent status cache.  (Some entries
1763  * must be present for proper operations.)
1764  */
ext4_clear_inode_es(struct inode * inode)1765 void ext4_clear_inode_es(struct inode *inode)
1766 {
1767 	struct ext4_inode_info *ei = EXT4_I(inode);
1768 	struct extent_status *es;
1769 	struct ext4_es_tree *tree;
1770 	struct rb_node *node;
1771 
1772 	write_lock(&ei->i_es_lock);
1773 	tree = &EXT4_I(inode)->i_es_tree;
1774 	tree->cache_es = NULL;
1775 	node = rb_first(&tree->root);
1776 	while (node) {
1777 		es = rb_entry(node, struct extent_status, rb_node);
1778 		node = rb_next(node);
1779 		if (!ext4_es_is_delayed(es)) {
1780 			rb_erase(&es->rb_node, &tree->root);
1781 			ext4_es_free_extent(inode, es);
1782 		}
1783 	}
1784 	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1785 	write_unlock(&ei->i_es_lock);
1786 }
1787 
1788 #ifdef ES_DEBUG__
ext4_print_pending_tree(struct inode * inode)1789 static void ext4_print_pending_tree(struct inode *inode)
1790 {
1791 	struct ext4_pending_tree *tree;
1792 	struct rb_node *node;
1793 	struct pending_reservation *pr;
1794 
1795 	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1796 	tree = &EXT4_I(inode)->i_pending_tree;
1797 	node = rb_first(&tree->root);
1798 	while (node) {
1799 		pr = rb_entry(node, struct pending_reservation, rb_node);
1800 		printk(KERN_DEBUG " %u", pr->lclu);
1801 		node = rb_next(node);
1802 	}
1803 	printk(KERN_DEBUG "\n");
1804 }
1805 #else
1806 #define ext4_print_pending_tree(inode)
1807 #endif
1808 
ext4_init_pending(void)1809 int __init ext4_init_pending(void)
1810 {
1811 	ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation",
1812 					   sizeof(struct pending_reservation),
1813 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
1814 	if (ext4_pending_cachep == NULL)
1815 		return -ENOMEM;
1816 	return 0;
1817 }
1818 
ext4_exit_pending(void)1819 void ext4_exit_pending(void)
1820 {
1821 	kmem_cache_destroy(ext4_pending_cachep);
1822 }
1823 
ext4_init_pending_tree(struct ext4_pending_tree * tree)1824 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1825 {
1826 	tree->root = RB_ROOT;
1827 }
1828 
1829 /*
1830  * __get_pending - retrieve a pointer to a pending reservation
1831  *
1832  * @inode - file containing the pending cluster reservation
1833  * @lclu - logical cluster of interest
1834  *
1835  * Returns a pointer to a pending reservation if it's a member of
1836  * the set, and NULL if not.  Must be called holding i_es_lock.
1837  */
__get_pending(struct inode * inode,ext4_lblk_t lclu)1838 static struct pending_reservation *__get_pending(struct inode *inode,
1839 						 ext4_lblk_t lclu)
1840 {
1841 	struct ext4_pending_tree *tree;
1842 	struct rb_node *node;
1843 	struct pending_reservation *pr = NULL;
1844 
1845 	tree = &EXT4_I(inode)->i_pending_tree;
1846 	node = (&tree->root)->rb_node;
1847 
1848 	while (node) {
1849 		pr = rb_entry(node, struct pending_reservation, rb_node);
1850 		if (lclu < pr->lclu)
1851 			node = node->rb_left;
1852 		else if (lclu > pr->lclu)
1853 			node = node->rb_right;
1854 		else if (lclu == pr->lclu)
1855 			return pr;
1856 	}
1857 	return NULL;
1858 }
1859 
1860 /*
1861  * __insert_pending - adds a pending cluster reservation to the set of
1862  *                    pending reservations
1863  *
1864  * @inode - file containing the cluster
1865  * @lblk - logical block in the cluster to be added
1866  *
1867  * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1868  * pending reservation is already in the set, returns successfully.
1869  */
__insert_pending(struct inode * inode,ext4_lblk_t lblk)1870 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk)
1871 {
1872 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1873 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1874 	struct rb_node **p = &tree->root.rb_node;
1875 	struct rb_node *parent = NULL;
1876 	struct pending_reservation *pr;
1877 	ext4_lblk_t lclu;
1878 	int ret = 0;
1879 
1880 	lclu = EXT4_B2C(sbi, lblk);
1881 	/* search to find parent for insertion */
1882 	while (*p) {
1883 		parent = *p;
1884 		pr = rb_entry(parent, struct pending_reservation, rb_node);
1885 
1886 		if (lclu < pr->lclu) {
1887 			p = &(*p)->rb_left;
1888 		} else if (lclu > pr->lclu) {
1889 			p = &(*p)->rb_right;
1890 		} else {
1891 			/* pending reservation already inserted */
1892 			goto out;
1893 		}
1894 	}
1895 
1896 	pr = kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
1897 	if (pr == NULL) {
1898 		ret = -ENOMEM;
1899 		goto out;
1900 	}
1901 	pr->lclu = lclu;
1902 
1903 	rb_link_node(&pr->rb_node, parent, p);
1904 	rb_insert_color(&pr->rb_node, &tree->root);
1905 
1906 out:
1907 	return ret;
1908 }
1909 
1910 /*
1911  * __remove_pending - removes a pending cluster reservation from the set
1912  *                    of pending reservations
1913  *
1914  * @inode - file containing the cluster
1915  * @lblk - logical block in the pending cluster reservation to be removed
1916  *
1917  * Returns successfully if pending reservation is not a member of the set.
1918  */
__remove_pending(struct inode * inode,ext4_lblk_t lblk)1919 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
1920 {
1921 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1922 	struct pending_reservation *pr;
1923 	struct ext4_pending_tree *tree;
1924 
1925 	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
1926 	if (pr != NULL) {
1927 		tree = &EXT4_I(inode)->i_pending_tree;
1928 		rb_erase(&pr->rb_node, &tree->root);
1929 		kmem_cache_free(ext4_pending_cachep, pr);
1930 	}
1931 }
1932 
1933 /*
1934  * ext4_remove_pending - removes a pending cluster reservation from the set
1935  *                       of pending reservations
1936  *
1937  * @inode - file containing the cluster
1938  * @lblk - logical block in the pending cluster reservation to be removed
1939  *
1940  * Locking for external use of __remove_pending.
1941  */
ext4_remove_pending(struct inode * inode,ext4_lblk_t lblk)1942 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
1943 {
1944 	struct ext4_inode_info *ei = EXT4_I(inode);
1945 
1946 	write_lock(&ei->i_es_lock);
1947 	__remove_pending(inode, lblk);
1948 	write_unlock(&ei->i_es_lock);
1949 }
1950 
1951 /*
1952  * ext4_is_pending - determine whether a cluster has a pending reservation
1953  *                   on it
1954  *
1955  * @inode - file containing the cluster
1956  * @lblk - logical block in the cluster
1957  *
1958  * Returns true if there's a pending reservation for the cluster in the
1959  * set of pending reservations, and false if not.
1960  */
ext4_is_pending(struct inode * inode,ext4_lblk_t lblk)1961 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
1962 {
1963 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1964 	struct ext4_inode_info *ei = EXT4_I(inode);
1965 	bool ret;
1966 
1967 	read_lock(&ei->i_es_lock);
1968 	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
1969 	read_unlock(&ei->i_es_lock);
1970 
1971 	return ret;
1972 }
1973 
1974 /*
1975  * ext4_es_insert_delayed_block - adds a delayed block to the extents status
1976  *                                tree, adding a pending reservation where
1977  *                                needed
1978  *
1979  * @inode - file containing the newly added block
1980  * @lblk - logical block to be added
1981  * @allocated - indicates whether a physical cluster has been allocated for
1982  *              the logical cluster that contains the block
1983  *
1984  * Returns 0 on success, negative error code on failure.
1985  */
ext4_es_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk,bool allocated)1986 int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
1987 				 bool allocated)
1988 {
1989 	struct extent_status newes;
1990 	int err = 0;
1991 
1992 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1993 		return 0;
1994 
1995 	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
1996 		 lblk, inode->i_ino);
1997 
1998 	newes.es_lblk = lblk;
1999 	newes.es_len = 1;
2000 	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2001 	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2002 
2003 	ext4_es_insert_extent_check(inode, &newes);
2004 
2005 	write_lock(&EXT4_I(inode)->i_es_lock);
2006 
2007 	err = __es_remove_extent(inode, lblk, lblk, NULL);
2008 	if (err != 0)
2009 		goto error;
2010 retry:
2011 	err = __es_insert_extent(inode, &newes);
2012 	if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
2013 					  128, EXT4_I(inode)))
2014 		goto retry;
2015 	if (err != 0)
2016 		goto error;
2017 
2018 	if (allocated)
2019 		__insert_pending(inode, lblk);
2020 
2021 error:
2022 	write_unlock(&EXT4_I(inode)->i_es_lock);
2023 
2024 	ext4_es_print_tree(inode);
2025 	ext4_print_pending_tree(inode);
2026 
2027 	return err;
2028 }
2029 
2030 /*
2031  * __es_delayed_clu - count number of clusters containing blocks that
2032  *                    are delayed only
2033  *
2034  * @inode - file containing block range
2035  * @start - logical block defining start of range
2036  * @end - logical block defining end of range
2037  *
2038  * Returns the number of clusters containing only delayed (not delayed
2039  * and unwritten) blocks in the range specified by @start and @end.  Any
2040  * cluster or part of a cluster within the range and containing a delayed
2041  * and not unwritten block within the range is counted as a whole cluster.
2042  */
__es_delayed_clu(struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)2043 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2044 				     ext4_lblk_t end)
2045 {
2046 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2047 	struct extent_status *es;
2048 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2049 	struct rb_node *node;
2050 	ext4_lblk_t first_lclu, last_lclu;
2051 	unsigned long long last_counted_lclu;
2052 	unsigned int n = 0;
2053 
2054 	/* guaranteed to be unequal to any ext4_lblk_t value */
2055 	last_counted_lclu = ~0ULL;
2056 
2057 	es = __es_tree_search(&tree->root, start);
2058 
2059 	while (es && (es->es_lblk <= end)) {
2060 		if (ext4_es_is_delonly(es)) {
2061 			if (es->es_lblk <= start)
2062 				first_lclu = EXT4_B2C(sbi, start);
2063 			else
2064 				first_lclu = EXT4_B2C(sbi, es->es_lblk);
2065 
2066 			if (ext4_es_end(es) >= end)
2067 				last_lclu = EXT4_B2C(sbi, end);
2068 			else
2069 				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2070 
2071 			if (first_lclu == last_counted_lclu)
2072 				n += last_lclu - first_lclu;
2073 			else
2074 				n += last_lclu - first_lclu + 1;
2075 			last_counted_lclu = last_lclu;
2076 		}
2077 		node = rb_next(&es->rb_node);
2078 		if (!node)
2079 			break;
2080 		es = rb_entry(node, struct extent_status, rb_node);
2081 	}
2082 
2083 	return n;
2084 }
2085 
2086 /*
2087  * ext4_es_delayed_clu - count number of clusters containing blocks that
2088  *                       are both delayed and unwritten
2089  *
2090  * @inode - file containing block range
2091  * @lblk - logical block defining start of range
2092  * @len - number of blocks in range
2093  *
2094  * Locking for external use of __es_delayed_clu().
2095  */
ext4_es_delayed_clu(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)2096 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2097 				 ext4_lblk_t len)
2098 {
2099 	struct ext4_inode_info *ei = EXT4_I(inode);
2100 	ext4_lblk_t end;
2101 	unsigned int n;
2102 
2103 	if (len == 0)
2104 		return 0;
2105 
2106 	end = lblk + len - 1;
2107 	WARN_ON(end < lblk);
2108 
2109 	read_lock(&ei->i_es_lock);
2110 
2111 	n = __es_delayed_clu(inode, lblk, end);
2112 
2113 	read_unlock(&ei->i_es_lock);
2114 
2115 	return n;
2116 }
2117 
2118 /*
2119  * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2120  *                    reservations for a specified block range depending
2121  *                    upon the presence or absence of delayed blocks
2122  *                    outside the range within clusters at the ends of the
2123  *                    range
2124  *
2125  * @inode - file containing the range
2126  * @lblk - logical block defining the start of range
2127  * @len  - length of range in blocks
2128  *
2129  * Used after a newly allocated extent is added to the extents status tree.
2130  * Requires that the extents in the range have either written or unwritten
2131  * status.  Must be called while holding i_es_lock.
2132  */
__revise_pending(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)2133 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2134 			     ext4_lblk_t len)
2135 {
2136 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2137 	ext4_lblk_t end = lblk + len - 1;
2138 	ext4_lblk_t first, last;
2139 	bool f_del = false, l_del = false;
2140 
2141 	if (len == 0)
2142 		return;
2143 
2144 	/*
2145 	 * Two cases - block range within single cluster and block range
2146 	 * spanning two or more clusters.  Note that a cluster belonging
2147 	 * to a range starting and/or ending on a cluster boundary is treated
2148 	 * as if it does not contain a delayed extent.  The new range may
2149 	 * have allocated space for previously delayed blocks out to the
2150 	 * cluster boundary, requiring that any pre-existing pending
2151 	 * reservation be canceled.  Because this code only looks at blocks
2152 	 * outside the range, it should revise pending reservations
2153 	 * correctly even if the extent represented by the range can't be
2154 	 * inserted in the extents status tree due to ENOSPC.
2155 	 */
2156 
2157 	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2158 		first = EXT4_LBLK_CMASK(sbi, lblk);
2159 		if (first != lblk)
2160 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2161 						first, lblk - 1);
2162 		if (f_del) {
2163 			__insert_pending(inode, first);
2164 		} else {
2165 			last = EXT4_LBLK_CMASK(sbi, end) +
2166 			       sbi->s_cluster_ratio - 1;
2167 			if (last != end)
2168 				l_del = __es_scan_range(inode,
2169 							&ext4_es_is_delonly,
2170 							end + 1, last);
2171 			if (l_del)
2172 				__insert_pending(inode, last);
2173 			else
2174 				__remove_pending(inode, last);
2175 		}
2176 	} else {
2177 		first = EXT4_LBLK_CMASK(sbi, lblk);
2178 		if (first != lblk)
2179 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2180 						first, lblk - 1);
2181 		if (f_del)
2182 			__insert_pending(inode, first);
2183 		else
2184 			__remove_pending(inode, first);
2185 
2186 		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2187 		if (last != end)
2188 			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2189 						end + 1, last);
2190 		if (l_del)
2191 			__insert_pending(inode, last);
2192 		else
2193 			__remove_pending(inode, last);
2194 	}
2195 }
2196