• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
ext4_dio_supported(struct inode * inode)39 static bool ext4_dio_supported(struct inode *inode)
40 {
41 	if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
42 		return false;
43 	if (fsverity_active(inode))
44 		return false;
45 	if (ext4_should_journal_data(inode))
46 		return false;
47 	if (ext4_has_inline_data(inode))
48 		return false;
49 	return true;
50 }
51 
ext4_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
53 {
54 	ssize_t ret;
55 	struct inode *inode = file_inode(iocb->ki_filp);
56 
57 	if (iocb->ki_flags & IOCB_NOWAIT) {
58 		if (!inode_trylock_shared(inode))
59 			return -EAGAIN;
60 	} else {
61 		inode_lock_shared(inode);
62 	}
63 
64 	if (!ext4_dio_supported(inode)) {
65 		inode_unlock_shared(inode);
66 		/*
67 		 * Fallback to buffered I/O if the operation being performed on
68 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
69 		 * flag needs to be cleared here in order to ensure that the
70 		 * direct I/O path within generic_file_read_iter() is not
71 		 * taken.
72 		 */
73 		iocb->ki_flags &= ~IOCB_DIRECT;
74 		return generic_file_read_iter(iocb, to);
75 	}
76 
77 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL,
78 			   is_sync_kiocb(iocb));
79 	inode_unlock_shared(inode);
80 
81 	file_accessed(iocb->ki_filp);
82 	return ret;
83 }
84 
85 #ifdef CONFIG_FS_DAX
ext4_dax_read_iter(struct kiocb * iocb,struct iov_iter * to)86 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
87 {
88 	struct inode *inode = file_inode(iocb->ki_filp);
89 	ssize_t ret;
90 
91 	if (iocb->ki_flags & IOCB_NOWAIT) {
92 		if (!inode_trylock_shared(inode))
93 			return -EAGAIN;
94 	} else {
95 		inode_lock_shared(inode);
96 	}
97 	/*
98 	 * Recheck under inode lock - at this point we are sure it cannot
99 	 * change anymore
100 	 */
101 	if (!IS_DAX(inode)) {
102 		inode_unlock_shared(inode);
103 		/* Fallback to buffered IO in case we cannot support DAX */
104 		return generic_file_read_iter(iocb, to);
105 	}
106 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
107 	inode_unlock_shared(inode);
108 
109 	file_accessed(iocb->ki_filp);
110 	return ret;
111 }
112 #endif
113 
ext4_file_read_iter(struct kiocb * iocb,struct iov_iter * to)114 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
115 {
116 	struct inode *inode = file_inode(iocb->ki_filp);
117 
118 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
119 		return -EIO;
120 
121 	if (!iov_iter_count(to))
122 		return 0; /* skip atime */
123 
124 #ifdef CONFIG_FS_DAX
125 	if (IS_DAX(inode))
126 		return ext4_dax_read_iter(iocb, to);
127 #endif
128 	if (iocb->ki_flags & IOCB_DIRECT)
129 		return ext4_dio_read_iter(iocb, to);
130 
131 	return generic_file_read_iter(iocb, to);
132 }
133 
134 /*
135  * Called when an inode is released. Note that this is different
136  * from ext4_file_open: open gets called at every open, but release
137  * gets called only when /all/ the files are closed.
138  */
ext4_release_file(struct inode * inode,struct file * filp)139 static int ext4_release_file(struct inode *inode, struct file *filp)
140 {
141 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
142 		ext4_alloc_da_blocks(inode);
143 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
144 	}
145 	/* if we are the last writer on the inode, drop the block reservation */
146 	if ((filp->f_mode & FMODE_WRITE) &&
147 			(atomic_read(&inode->i_writecount) == 1) &&
148 			!EXT4_I(inode)->i_reserved_data_blocks) {
149 		down_write(&EXT4_I(inode)->i_data_sem);
150 		ext4_discard_preallocations(inode, 0);
151 		up_write(&EXT4_I(inode)->i_data_sem);
152 	}
153 	if (is_dx(inode) && filp->private_data)
154 		ext4_htree_free_dir_info(filp->private_data);
155 
156 	return 0;
157 }
158 
159 /*
160  * This tests whether the IO in question is block-aligned or not.
161  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
162  * are converted to written only after the IO is complete.  Until they are
163  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
164  * it needs to zero out portions of the start and/or end block.  If 2 AIO
165  * threads are at work on the same unwritten block, they must be synchronized
166  * or one thread will zero the other's data, causing corruption.
167  */
168 static bool
ext4_unaligned_io(struct inode * inode,struct iov_iter * from,loff_t pos)169 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
170 {
171 	struct super_block *sb = inode->i_sb;
172 	unsigned long blockmask = sb->s_blocksize - 1;
173 
174 	if ((pos | iov_iter_alignment(from)) & blockmask)
175 		return true;
176 
177 	return false;
178 }
179 
180 static bool
ext4_extending_io(struct inode * inode,loff_t offset,size_t len)181 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
182 {
183 	if (offset + len > i_size_read(inode) ||
184 	    offset + len > EXT4_I(inode)->i_disksize)
185 		return true;
186 	return false;
187 }
188 
189 /* Is IO overwriting allocated and initialized blocks? */
ext4_overwrite_io(struct inode * inode,loff_t pos,loff_t len)190 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
191 {
192 	struct ext4_map_blocks map;
193 	unsigned int blkbits = inode->i_blkbits;
194 	int err, blklen;
195 
196 	if (pos + len > i_size_read(inode))
197 		return false;
198 
199 	map.m_lblk = pos >> blkbits;
200 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
201 	blklen = map.m_len;
202 
203 	err = ext4_map_blocks(NULL, inode, &map, 0);
204 	/*
205 	 * 'err==len' means that all of the blocks have been preallocated,
206 	 * regardless of whether they have been initialized or not. To exclude
207 	 * unwritten extents, we need to check m_flags.
208 	 */
209 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
210 }
211 
ext4_generic_write_checks(struct kiocb * iocb,struct iov_iter * from)212 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
213 					 struct iov_iter *from)
214 {
215 	struct inode *inode = file_inode(iocb->ki_filp);
216 	ssize_t ret;
217 
218 	if (unlikely(IS_IMMUTABLE(inode)))
219 		return -EPERM;
220 
221 	ret = generic_write_checks(iocb, from);
222 	if (ret <= 0)
223 		return ret;
224 
225 	/*
226 	 * If we have encountered a bitmap-format file, the size limit
227 	 * is smaller than s_maxbytes, which is for extent-mapped files.
228 	 */
229 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
230 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
231 
232 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
233 			return -EFBIG;
234 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
235 	}
236 
237 	return iov_iter_count(from);
238 }
239 
ext4_write_checks(struct kiocb * iocb,struct iov_iter * from)240 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
241 {
242 	ssize_t ret, count;
243 
244 	count = ext4_generic_write_checks(iocb, from);
245 	if (count <= 0)
246 		return count;
247 
248 	ret = file_modified(iocb->ki_filp);
249 	if (ret)
250 		return ret;
251 	return count;
252 }
253 
ext4_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)254 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
255 					struct iov_iter *from)
256 {
257 	ssize_t ret;
258 	struct inode *inode = file_inode(iocb->ki_filp);
259 
260 	if (iocb->ki_flags & IOCB_NOWAIT)
261 		return -EOPNOTSUPP;
262 
263 	ext4_fc_start_update(inode);
264 	inode_lock(inode);
265 	ret = ext4_write_checks(iocb, from);
266 	if (ret <= 0)
267 		goto out;
268 
269 	current->backing_dev_info = inode_to_bdi(inode);
270 	ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
271 	current->backing_dev_info = NULL;
272 
273 out:
274 	inode_unlock(inode);
275 	ext4_fc_stop_update(inode);
276 	if (likely(ret > 0)) {
277 		iocb->ki_pos += ret;
278 		ret = generic_write_sync(iocb, ret);
279 	}
280 
281 	return ret;
282 }
283 
ext4_handle_inode_extension(struct inode * inode,loff_t offset,ssize_t written,size_t count)284 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
285 					   ssize_t written, size_t count)
286 {
287 	handle_t *handle;
288 	bool truncate = false;
289 	u8 blkbits = inode->i_blkbits;
290 	ext4_lblk_t written_blk, end_blk;
291 	int ret;
292 
293 	/*
294 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
295 	 * inode->i_size while the I/O was running due to writeback of delalloc
296 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
297 	 * zeroed/unwritten extents if this is possible; thus we won't leave
298 	 * uninitialized blocks in a file even if we didn't succeed in writing
299 	 * as much as we intended.
300 	 */
301 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
302 	if (offset + count <= EXT4_I(inode)->i_disksize) {
303 		/*
304 		 * We need to ensure that the inode is removed from the orphan
305 		 * list if it has been added prematurely, due to writeback of
306 		 * delalloc blocks.
307 		 */
308 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
309 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
310 
311 			if (IS_ERR(handle)) {
312 				ext4_orphan_del(NULL, inode);
313 				return PTR_ERR(handle);
314 			}
315 
316 			ext4_orphan_del(handle, inode);
317 			ext4_journal_stop(handle);
318 		}
319 
320 		return written;
321 	}
322 
323 	if (written < 0)
324 		goto truncate;
325 
326 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
327 	if (IS_ERR(handle)) {
328 		written = PTR_ERR(handle);
329 		goto truncate;
330 	}
331 
332 	if (ext4_update_inode_size(inode, offset + written)) {
333 		ret = ext4_mark_inode_dirty(handle, inode);
334 		if (unlikely(ret)) {
335 			written = ret;
336 			ext4_journal_stop(handle);
337 			goto truncate;
338 		}
339 	}
340 
341 	/*
342 	 * We may need to truncate allocated but not written blocks beyond EOF.
343 	 */
344 	written_blk = ALIGN(offset + written, 1 << blkbits);
345 	end_blk = ALIGN(offset + count, 1 << blkbits);
346 	if (written_blk < end_blk && ext4_can_truncate(inode))
347 		truncate = true;
348 
349 	/*
350 	 * Remove the inode from the orphan list if it has been extended and
351 	 * everything went OK.
352 	 */
353 	if (!truncate && inode->i_nlink)
354 		ext4_orphan_del(handle, inode);
355 	ext4_journal_stop(handle);
356 
357 	if (truncate) {
358 truncate:
359 		ext4_truncate_failed_write(inode);
360 		/*
361 		 * If the truncate operation failed early, then the inode may
362 		 * still be on the orphan list. In that case, we need to try
363 		 * remove the inode from the in-memory linked list.
364 		 */
365 		if (inode->i_nlink)
366 			ext4_orphan_del(NULL, inode);
367 	}
368 
369 	return written;
370 }
371 
ext4_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)372 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
373 				 int error, unsigned int flags)
374 {
375 	loff_t pos = iocb->ki_pos;
376 	struct inode *inode = file_inode(iocb->ki_filp);
377 
378 	if (error)
379 		return error;
380 
381 	if (size && flags & IOMAP_DIO_UNWRITTEN) {
382 		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
383 		if (error < 0)
384 			return error;
385 	}
386 	/*
387 	 * If we are extending the file, we have to update i_size here before
388 	 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
389 	 * buffered reads could zero out too much from page cache pages. Update
390 	 * of on-disk size will happen later in ext4_dio_write_iter() where
391 	 * we have enough information to also perform orphan list handling etc.
392 	 * Note that we perform all extending writes synchronously under
393 	 * i_rwsem held exclusively so i_size update is safe here in that case.
394 	 * If the write was not extending, we cannot see pos > i_size here
395 	 * because operations reducing i_size like truncate wait for all
396 	 * outstanding DIO before updating i_size.
397 	 */
398 	pos += size;
399 	if (pos > i_size_read(inode))
400 		i_size_write(inode, pos);
401 
402 	return 0;
403 }
404 
405 static const struct iomap_dio_ops ext4_dio_write_ops = {
406 	.end_io = ext4_dio_write_end_io,
407 };
408 
409 /*
410  * The intention here is to start with shared lock acquired then see if any
411  * condition requires an exclusive inode lock. If yes, then we restart the
412  * whole operation by releasing the shared lock and acquiring exclusive lock.
413  *
414  * - For unaligned_io we never take shared lock as it may cause data corruption
415  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
416  *
417  * - For extending writes case we don't take the shared lock, since it requires
418  *   updating inode i_disksize and/or orphan handling with exclusive lock.
419  *
420  * - shared locking will only be true mostly with overwrites. Otherwise we will
421  *   switch to exclusive i_rwsem lock.
422  */
ext4_dio_write_checks(struct kiocb * iocb,struct iov_iter * from,bool * ilock_shared,bool * extend)423 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
424 				     bool *ilock_shared, bool *extend)
425 {
426 	struct file *file = iocb->ki_filp;
427 	struct inode *inode = file_inode(file);
428 	loff_t offset;
429 	size_t count;
430 	ssize_t ret;
431 
432 restart:
433 	ret = ext4_generic_write_checks(iocb, from);
434 	if (ret <= 0)
435 		goto out;
436 
437 	offset = iocb->ki_pos;
438 	count = ret;
439 	if (ext4_extending_io(inode, offset, count))
440 		*extend = true;
441 	/*
442 	 * Determine whether the IO operation will overwrite allocated
443 	 * and initialized blocks.
444 	 * We need exclusive i_rwsem for changing security info
445 	 * in file_modified().
446 	 */
447 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
448 	     !ext4_overwrite_io(inode, offset, count))) {
449 		if (iocb->ki_flags & IOCB_NOWAIT) {
450 			ret = -EAGAIN;
451 			goto out;
452 		}
453 		inode_unlock_shared(inode);
454 		*ilock_shared = false;
455 		inode_lock(inode);
456 		goto restart;
457 	}
458 
459 	ret = file_modified(file);
460 	if (ret < 0)
461 		goto out;
462 
463 	return count;
464 out:
465 	if (*ilock_shared)
466 		inode_unlock_shared(inode);
467 	else
468 		inode_unlock(inode);
469 	return ret;
470 }
471 
ext4_dio_write_iter(struct kiocb * iocb,struct iov_iter * from)472 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
473 {
474 	ssize_t ret;
475 	handle_t *handle;
476 	struct inode *inode = file_inode(iocb->ki_filp);
477 	loff_t offset = iocb->ki_pos;
478 	size_t count = iov_iter_count(from);
479 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
480 	bool extend = false, unaligned_io = false;
481 	bool ilock_shared = true;
482 
483 	/*
484 	 * We initially start with shared inode lock unless it is
485 	 * unaligned IO which needs exclusive lock anyways.
486 	 */
487 	if (ext4_unaligned_io(inode, from, offset)) {
488 		unaligned_io = true;
489 		ilock_shared = false;
490 	}
491 	/*
492 	 * Quick check here without any i_rwsem lock to see if it is extending
493 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
494 	 * proper locking in place.
495 	 */
496 	if (offset + count > i_size_read(inode))
497 		ilock_shared = false;
498 
499 	if (iocb->ki_flags & IOCB_NOWAIT) {
500 		if (ilock_shared) {
501 			if (!inode_trylock_shared(inode))
502 				return -EAGAIN;
503 		} else {
504 			if (!inode_trylock(inode))
505 				return -EAGAIN;
506 		}
507 	} else {
508 		if (ilock_shared)
509 			inode_lock_shared(inode);
510 		else
511 			inode_lock(inode);
512 	}
513 
514 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
515 	if (!ext4_dio_supported(inode)) {
516 		if (ilock_shared)
517 			inode_unlock_shared(inode);
518 		else
519 			inode_unlock(inode);
520 		return ext4_buffered_write_iter(iocb, from);
521 	}
522 
523 	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
524 	if (ret <= 0)
525 		return ret;
526 
527 	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
528 	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
529 		ret = -EAGAIN;
530 		goto out;
531 	}
532 	/*
533 	 * Make sure inline data cannot be created anymore since we are going
534 	 * to allocate blocks for DIO. We know the inode does not have any
535 	 * inline data now because ext4_dio_supported() checked for that.
536 	 */
537 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
538 
539 	offset = iocb->ki_pos;
540 	count = ret;
541 
542 	/*
543 	 * Unaligned direct IO must be serialized among each other as zeroing
544 	 * of partial blocks of two competing unaligned IOs can result in data
545 	 * corruption.
546 	 *
547 	 * So we make sure we don't allow any unaligned IO in flight.
548 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
549 	 * below inode_dio_wait() may anyway become a no-op, since we start
550 	 * with exclusive lock.
551 	 */
552 	if (unaligned_io)
553 		inode_dio_wait(inode);
554 
555 	if (extend) {
556 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
557 		if (IS_ERR(handle)) {
558 			ret = PTR_ERR(handle);
559 			goto out;
560 		}
561 
562 		ext4_fc_start_update(inode);
563 		ret = ext4_orphan_add(handle, inode);
564 		ext4_fc_stop_update(inode);
565 		if (ret) {
566 			ext4_journal_stop(handle);
567 			goto out;
568 		}
569 
570 		ext4_journal_stop(handle);
571 	}
572 
573 	if (ilock_shared)
574 		iomap_ops = &ext4_iomap_overwrite_ops;
575 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
576 			   is_sync_kiocb(iocb) || unaligned_io || extend);
577 	if (ret == -ENOTBLK)
578 		ret = 0;
579 
580 	if (extend)
581 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
582 
583 out:
584 	if (ilock_shared)
585 		inode_unlock_shared(inode);
586 	else
587 		inode_unlock(inode);
588 
589 	if (ret >= 0 && iov_iter_count(from)) {
590 		ssize_t err;
591 		loff_t endbyte;
592 
593 		offset = iocb->ki_pos;
594 		err = ext4_buffered_write_iter(iocb, from);
595 		if (err < 0)
596 			return err;
597 
598 		/*
599 		 * We need to ensure that the pages within the page cache for
600 		 * the range covered by this I/O are written to disk and
601 		 * invalidated. This is in attempt to preserve the expected
602 		 * direct I/O semantics in the case we fallback to buffered I/O
603 		 * to complete off the I/O request.
604 		 */
605 		ret += err;
606 		endbyte = offset + err - 1;
607 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
608 						   offset, endbyte);
609 		if (!err)
610 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
611 						 offset >> PAGE_SHIFT,
612 						 endbyte >> PAGE_SHIFT);
613 	}
614 
615 	return ret;
616 }
617 
618 #ifdef CONFIG_FS_DAX
619 static ssize_t
ext4_dax_write_iter(struct kiocb * iocb,struct iov_iter * from)620 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
621 {
622 	ssize_t ret;
623 	size_t count;
624 	loff_t offset;
625 	handle_t *handle;
626 	bool extend = false;
627 	struct inode *inode = file_inode(iocb->ki_filp);
628 
629 	if (iocb->ki_flags & IOCB_NOWAIT) {
630 		if (!inode_trylock(inode))
631 			return -EAGAIN;
632 	} else {
633 		inode_lock(inode);
634 	}
635 
636 	ret = ext4_write_checks(iocb, from);
637 	if (ret <= 0)
638 		goto out;
639 
640 	offset = iocb->ki_pos;
641 	count = iov_iter_count(from);
642 
643 	if (offset + count > EXT4_I(inode)->i_disksize) {
644 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
645 		if (IS_ERR(handle)) {
646 			ret = PTR_ERR(handle);
647 			goto out;
648 		}
649 
650 		ret = ext4_orphan_add(handle, inode);
651 		if (ret) {
652 			ext4_journal_stop(handle);
653 			goto out;
654 		}
655 
656 		extend = true;
657 		ext4_journal_stop(handle);
658 	}
659 
660 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
661 
662 	if (extend)
663 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
664 out:
665 	inode_unlock(inode);
666 	if (ret > 0)
667 		ret = generic_write_sync(iocb, ret);
668 	return ret;
669 }
670 #endif
671 
672 static ssize_t
ext4_file_write_iter(struct kiocb * iocb,struct iov_iter * from)673 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
674 {
675 	struct inode *inode = file_inode(iocb->ki_filp);
676 
677 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
678 		return -EIO;
679 
680 #ifdef CONFIG_FS_DAX
681 	if (IS_DAX(inode))
682 		return ext4_dax_write_iter(iocb, from);
683 #endif
684 	if (iocb->ki_flags & IOCB_DIRECT)
685 		return ext4_dio_write_iter(iocb, from);
686 	else
687 		return ext4_buffered_write_iter(iocb, from);
688 }
689 
690 #ifdef CONFIG_FS_DAX
ext4_dax_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)691 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
692 		enum page_entry_size pe_size)
693 {
694 	int error = 0;
695 	vm_fault_t result;
696 	int retries = 0;
697 	handle_t *handle = NULL;
698 	struct inode *inode = file_inode(vmf->vma->vm_file);
699 	struct super_block *sb = inode->i_sb;
700 
701 	/*
702 	 * We have to distinguish real writes from writes which will result in a
703 	 * COW page; COW writes should *not* poke the journal (the file will not
704 	 * be changed). Doing so would cause unintended failures when mounted
705 	 * read-only.
706 	 *
707 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
708 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
709 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
710 	 * we eventually come back with a COW page.
711 	 */
712 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
713 		(vmf->vma->vm_flags & VM_SHARED);
714 	pfn_t pfn;
715 
716 	if (write) {
717 		sb_start_pagefault(sb);
718 		file_update_time(vmf->vma->vm_file);
719 		down_read(&EXT4_I(inode)->i_mmap_sem);
720 retry:
721 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
722 					       EXT4_DATA_TRANS_BLOCKS(sb));
723 		if (IS_ERR(handle)) {
724 			up_read(&EXT4_I(inode)->i_mmap_sem);
725 			sb_end_pagefault(sb);
726 			return VM_FAULT_SIGBUS;
727 		}
728 	} else {
729 		down_read(&EXT4_I(inode)->i_mmap_sem);
730 	}
731 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
732 	if (write) {
733 		ext4_journal_stop(handle);
734 
735 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
736 		    ext4_should_retry_alloc(sb, &retries))
737 			goto retry;
738 		/* Handling synchronous page fault? */
739 		if (result & VM_FAULT_NEEDDSYNC)
740 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
741 		up_read(&EXT4_I(inode)->i_mmap_sem);
742 		sb_end_pagefault(sb);
743 	} else {
744 		up_read(&EXT4_I(inode)->i_mmap_sem);
745 	}
746 
747 	return result;
748 }
749 
ext4_dax_fault(struct vm_fault * vmf)750 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
751 {
752 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
753 }
754 
755 static const struct vm_operations_struct ext4_dax_vm_ops = {
756 	.fault		= ext4_dax_fault,
757 	.huge_fault	= ext4_dax_huge_fault,
758 	.page_mkwrite	= ext4_dax_fault,
759 	.pfn_mkwrite	= ext4_dax_fault,
760 };
761 #else
762 #define ext4_dax_vm_ops	ext4_file_vm_ops
763 #endif
764 
765 static const struct vm_operations_struct ext4_file_vm_ops = {
766 	.fault		= ext4_filemap_fault,
767 	.map_pages	= filemap_map_pages,
768 	.page_mkwrite   = ext4_page_mkwrite,
769 };
770 
ext4_file_mmap(struct file * file,struct vm_area_struct * vma)771 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
772 {
773 	struct inode *inode = file->f_mapping->host;
774 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
775 	struct dax_device *dax_dev = sbi->s_daxdev;
776 
777 	if (unlikely(ext4_forced_shutdown(sbi)))
778 		return -EIO;
779 
780 	/*
781 	 * We don't support synchronous mappings for non-DAX files and
782 	 * for DAX files if underneath dax_device is not synchronous.
783 	 */
784 	if (!daxdev_mapping_supported(vma, dax_dev))
785 		return -EOPNOTSUPP;
786 
787 	file_accessed(file);
788 	if (IS_DAX(file_inode(file))) {
789 		vma->vm_ops = &ext4_dax_vm_ops;
790 		vma->vm_flags |= VM_HUGEPAGE;
791 	} else {
792 		vma->vm_ops = &ext4_file_vm_ops;
793 	}
794 	return 0;
795 }
796 
ext4_sample_last_mounted(struct super_block * sb,struct vfsmount * mnt)797 static int ext4_sample_last_mounted(struct super_block *sb,
798 				    struct vfsmount *mnt)
799 {
800 	struct ext4_sb_info *sbi = EXT4_SB(sb);
801 	struct path path;
802 	char buf[64], *cp;
803 	handle_t *handle;
804 	int err;
805 
806 	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
807 		return 0;
808 
809 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
810 		return 0;
811 
812 	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
813 	/*
814 	 * Sample where the filesystem has been mounted and
815 	 * store it in the superblock for sysadmin convenience
816 	 * when trying to sort through large numbers of block
817 	 * devices or filesystem images.
818 	 */
819 	memset(buf, 0, sizeof(buf));
820 	path.mnt = mnt;
821 	path.dentry = mnt->mnt_root;
822 	cp = d_path(&path, buf, sizeof(buf));
823 	err = 0;
824 	if (IS_ERR(cp))
825 		goto out;
826 
827 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
828 	err = PTR_ERR(handle);
829 	if (IS_ERR(handle))
830 		goto out;
831 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
832 	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
833 	if (err)
834 		goto out_journal;
835 	lock_buffer(sbi->s_sbh);
836 	strncpy(sbi->s_es->s_last_mounted, cp,
837 		sizeof(sbi->s_es->s_last_mounted));
838 	ext4_superblock_csum_set(sb);
839 	unlock_buffer(sbi->s_sbh);
840 	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
841 out_journal:
842 	ext4_journal_stop(handle);
843 out:
844 	sb_end_intwrite(sb);
845 	return err;
846 }
847 
ext4_file_open(struct inode * inode,struct file * filp)848 static int ext4_file_open(struct inode *inode, struct file *filp)
849 {
850 	int ret;
851 
852 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
853 		return -EIO;
854 
855 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
856 	if (ret)
857 		return ret;
858 
859 	ret = fscrypt_file_open(inode, filp);
860 	if (ret)
861 		return ret;
862 
863 	ret = fsverity_file_open(inode, filp);
864 	if (ret)
865 		return ret;
866 
867 	/*
868 	 * Set up the jbd2_inode if we are opening the inode for
869 	 * writing and the journal is present
870 	 */
871 	if (filp->f_mode & FMODE_WRITE) {
872 		ret = ext4_inode_attach_jinode(inode);
873 		if (ret < 0)
874 			return ret;
875 	}
876 
877 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
878 	return dquot_file_open(inode, filp);
879 }
880 
881 /*
882  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
883  * by calling generic_file_llseek_size() with the appropriate maxbytes
884  * value for each.
885  */
ext4_llseek(struct file * file,loff_t offset,int whence)886 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
887 {
888 	struct inode *inode = file->f_mapping->host;
889 	loff_t maxbytes;
890 
891 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
892 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
893 	else
894 		maxbytes = inode->i_sb->s_maxbytes;
895 
896 	switch (whence) {
897 	default:
898 		return generic_file_llseek_size(file, offset, whence,
899 						maxbytes, i_size_read(inode));
900 	case SEEK_HOLE:
901 		inode_lock_shared(inode);
902 		offset = iomap_seek_hole(inode, offset,
903 					 &ext4_iomap_report_ops);
904 		inode_unlock_shared(inode);
905 		break;
906 	case SEEK_DATA:
907 		inode_lock_shared(inode);
908 		offset = iomap_seek_data(inode, offset,
909 					 &ext4_iomap_report_ops);
910 		inode_unlock_shared(inode);
911 		break;
912 	}
913 
914 	if (offset < 0)
915 		return offset;
916 	return vfs_setpos(file, offset, maxbytes);
917 }
918 
919 const struct file_operations ext4_file_operations = {
920 	.llseek		= ext4_llseek,
921 	.read_iter	= ext4_file_read_iter,
922 	.write_iter	= ext4_file_write_iter,
923 	.iopoll		= iomap_dio_iopoll,
924 	.unlocked_ioctl = ext4_ioctl,
925 #ifdef CONFIG_COMPAT
926 	.compat_ioctl	= ext4_compat_ioctl,
927 #endif
928 	.mmap		= ext4_file_mmap,
929 	.mmap_supported_flags = MAP_SYNC,
930 	.open		= ext4_file_open,
931 	.release	= ext4_release_file,
932 	.fsync		= ext4_sync_file,
933 	.get_unmapped_area = thp_get_unmapped_area,
934 	.splice_read	= generic_file_splice_read,
935 	.splice_write	= iter_file_splice_write,
936 	.fallocate	= ext4_fallocate,
937 };
938 
939 const struct inode_operations ext4_file_inode_operations = {
940 	.setattr	= ext4_setattr,
941 	.getattr	= ext4_file_getattr,
942 	.listxattr	= ext4_listxattr,
943 	.get_acl	= ext4_get_acl,
944 	.set_acl	= ext4_set_acl,
945 	.fiemap		= ext4_fiemap,
946 };
947 
948