• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 			 struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
ext4_inode_is_fast_symlink(struct inode * inode)149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
ext4_evict_inode(struct inode * inode)167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 	bool freeze_protected = false;
179 
180 	trace_ext4_evict_inode(inode);
181 
182 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
183 		ext4_evict_ea_inode(inode);
184 	if (inode->i_nlink) {
185 		/*
186 		 * When journalling data dirty buffers are tracked only in the
187 		 * journal. So although mm thinks everything is clean and
188 		 * ready for reaping the inode might still have some pages to
189 		 * write in the running transaction or waiting to be
190 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
191 		 * (via truncate_inode_pages()) to discard these buffers can
192 		 * cause data loss. Also even if we did not discard these
193 		 * buffers, we would have no way to find them after the inode
194 		 * is reaped and thus user could see stale data if he tries to
195 		 * read them before the transaction is checkpointed. So be
196 		 * careful and force everything to disk here... We use
197 		 * ei->i_datasync_tid to store the newest transaction
198 		 * containing inode's data.
199 		 *
200 		 * Note that directories do not have this problem because they
201 		 * don't use page cache.
202 		 */
203 		if (inode->i_ino != EXT4_JOURNAL_INO &&
204 		    ext4_should_journal_data(inode) &&
205 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
206 		    inode->i_data.nrpages) {
207 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
208 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
209 
210 			jbd2_complete_transaction(journal, commit_tid);
211 			filemap_write_and_wait(&inode->i_data);
212 		}
213 		truncate_inode_pages_final(&inode->i_data);
214 
215 		goto no_delete;
216 	}
217 
218 	if (is_bad_inode(inode))
219 		goto no_delete;
220 	dquot_initialize(inode);
221 
222 	if (ext4_should_order_data(inode))
223 		ext4_begin_ordered_truncate(inode, 0);
224 	truncate_inode_pages_final(&inode->i_data);
225 
226 	/*
227 	 * For inodes with journalled data, transaction commit could have
228 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
229 	 * extents converting worker could merge extents and also have dirtied
230 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
231 	 * we still need to remove the inode from the writeback lists.
232 	 */
233 	if (!list_empty_careful(&inode->i_io_list))
234 		inode_io_list_del(inode);
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it. When we are in a running transaction though,
239 	 * we are already protected against freezing and we cannot grab further
240 	 * protection due to lock ordering constraints.
241 	 */
242 	if (!ext4_journal_current_handle()) {
243 		sb_start_intwrite(inode->i_sb);
244 		freeze_protected = true;
245 	}
246 
247 	if (!IS_NOQUOTA(inode))
248 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
249 
250 	/*
251 	 * Block bitmap, group descriptor, and inode are accounted in both
252 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
253 	 */
254 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
255 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
256 	if (IS_ERR(handle)) {
257 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
258 		/*
259 		 * If we're going to skip the normal cleanup, we still need to
260 		 * make sure that the in-core orphan linked list is properly
261 		 * cleaned up.
262 		 */
263 		ext4_orphan_del(NULL, inode);
264 		if (freeze_protected)
265 			sb_end_intwrite(inode->i_sb);
266 		goto no_delete;
267 	}
268 
269 	if (IS_SYNC(inode))
270 		ext4_handle_sync(handle);
271 
272 	/*
273 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 	 * special handling of symlinks here because i_size is used to
275 	 * determine whether ext4_inode_info->i_data contains symlink data or
276 	 * block mappings. Setting i_size to 0 will remove its fast symlink
277 	 * status. Erase i_data so that it becomes a valid empty block map.
278 	 */
279 	if (ext4_inode_is_fast_symlink(inode))
280 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 	inode->i_size = 0;
282 	err = ext4_mark_inode_dirty(handle, inode);
283 	if (err) {
284 		ext4_warning(inode->i_sb,
285 			     "couldn't mark inode dirty (err %d)", err);
286 		goto stop_handle;
287 	}
288 	if (inode->i_blocks) {
289 		err = ext4_truncate(inode);
290 		if (err) {
291 			ext4_error_err(inode->i_sb, -err,
292 				       "couldn't truncate inode %lu (err %d)",
293 				       inode->i_ino, err);
294 			goto stop_handle;
295 		}
296 	}
297 
298 	/* Remove xattr references. */
299 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 				      extra_credits);
301 	if (err) {
302 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 		ext4_journal_stop(handle);
305 		ext4_orphan_del(NULL, inode);
306 		if (freeze_protected)
307 			sb_end_intwrite(inode->i_sb);
308 		ext4_xattr_inode_array_free(ea_inode_array);
309 		goto no_delete;
310 	}
311 
312 	/*
313 	 * Kill off the orphan record which ext4_truncate created.
314 	 * AKPM: I think this can be inside the above `if'.
315 	 * Note that ext4_orphan_del() has to be able to cope with the
316 	 * deletion of a non-existent orphan - this is because we don't
317 	 * know if ext4_truncate() actually created an orphan record.
318 	 * (Well, we could do this if we need to, but heck - it works)
319 	 */
320 	ext4_orphan_del(handle, inode);
321 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
322 
323 	/*
324 	 * One subtle ordering requirement: if anything has gone wrong
325 	 * (transaction abort, IO errors, whatever), then we can still
326 	 * do these next steps (the fs will already have been marked as
327 	 * having errors), but we can't free the inode if the mark_dirty
328 	 * fails.
329 	 */
330 	if (ext4_mark_inode_dirty(handle, inode))
331 		/* If that failed, just do the required in-core inode clear. */
332 		ext4_clear_inode(inode);
333 	else
334 		ext4_free_inode(handle, inode);
335 	ext4_journal_stop(handle);
336 	if (freeze_protected)
337 		sb_end_intwrite(inode->i_sb);
338 	ext4_xattr_inode_array_free(ea_inode_array);
339 	return;
340 no_delete:
341 	/*
342 	 * Check out some where else accidentally dirty the evicting inode,
343 	 * which may probably cause inode use-after-free issues later.
344 	 */
345 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
346 
347 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
348 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
349 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
350 }
351 
352 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)353 qsize_t *ext4_get_reserved_space(struct inode *inode)
354 {
355 	return &EXT4_I(inode)->i_reserved_quota;
356 }
357 #endif
358 
359 /*
360  * Called with i_data_sem down, which is important since we can call
361  * ext4_discard_preallocations() from here.
362  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)363 void ext4_da_update_reserve_space(struct inode *inode,
364 					int used, int quota_claim)
365 {
366 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
367 	struct ext4_inode_info *ei = EXT4_I(inode);
368 
369 	spin_lock(&ei->i_block_reservation_lock);
370 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
371 	if (unlikely(used > ei->i_reserved_data_blocks)) {
372 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
373 			 "with only %d reserved data blocks",
374 			 __func__, inode->i_ino, used,
375 			 ei->i_reserved_data_blocks);
376 		WARN_ON(1);
377 		used = ei->i_reserved_data_blocks;
378 	}
379 
380 	/* Update per-inode reservations */
381 	ei->i_reserved_data_blocks -= used;
382 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
383 
384 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385 
386 	/* Update quota subsystem for data blocks */
387 	if (quota_claim)
388 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 	else {
390 		/*
391 		 * We did fallocate with an offset that is already delayed
392 		 * allocated. So on delayed allocated writeback we should
393 		 * not re-claim the quota for fallocated blocks.
394 		 */
395 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 	}
397 
398 	/*
399 	 * If we have done all the pending block allocations and if
400 	 * there aren't any writers on the inode, we can discard the
401 	 * inode's preallocations.
402 	 */
403 	if ((ei->i_reserved_data_blocks == 0) &&
404 	    !inode_is_open_for_write(inode))
405 		ext4_discard_preallocations(inode, 0);
406 }
407 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)408 static int __check_block_validity(struct inode *inode, const char *func,
409 				unsigned int line,
410 				struct ext4_map_blocks *map)
411 {
412 	if (ext4_has_feature_journal(inode->i_sb) &&
413 	    (inode->i_ino ==
414 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
415 		return 0;
416 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
417 		ext4_error_inode(inode, func, line, map->m_pblk,
418 				 "lblock %lu mapped to illegal pblock %llu "
419 				 "(length %d)", (unsigned long) map->m_lblk,
420 				 map->m_pblk, map->m_len);
421 		return -EFSCORRUPTED;
422 	}
423 	return 0;
424 }
425 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)426 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
427 		       ext4_lblk_t len)
428 {
429 	int ret;
430 
431 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
432 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
433 
434 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
435 	if (ret > 0)
436 		ret = 0;
437 
438 	return ret;
439 }
440 
441 #define check_block_validity(inode, map)	\
442 	__check_block_validity((inode), __func__, __LINE__, (map))
443 
444 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)445 static void ext4_map_blocks_es_recheck(handle_t *handle,
446 				       struct inode *inode,
447 				       struct ext4_map_blocks *es_map,
448 				       struct ext4_map_blocks *map,
449 				       int flags)
450 {
451 	int retval;
452 
453 	map->m_flags = 0;
454 	/*
455 	 * There is a race window that the result is not the same.
456 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
457 	 * is that we lookup a block mapping in extent status tree with
458 	 * out taking i_data_sem.  So at the time the unwritten extent
459 	 * could be converted.
460 	 */
461 	down_read(&EXT4_I(inode)->i_data_sem);
462 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
463 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
464 	} else {
465 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
466 	}
467 	up_read((&EXT4_I(inode)->i_data_sem));
468 
469 	/*
470 	 * We don't check m_len because extent will be collpased in status
471 	 * tree.  So the m_len might not equal.
472 	 */
473 	if (es_map->m_lblk != map->m_lblk ||
474 	    es_map->m_flags != map->m_flags ||
475 	    es_map->m_pblk != map->m_pblk) {
476 		printk("ES cache assertion failed for inode: %lu "
477 		       "es_cached ex [%d/%d/%llu/%x] != "
478 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
479 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
480 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
481 		       map->m_len, map->m_pblk, map->m_flags,
482 		       retval, flags);
483 	}
484 }
485 #endif /* ES_AGGRESSIVE_TEST */
486 
487 /*
488  * The ext4_map_blocks() function tries to look up the requested blocks,
489  * and returns if the blocks are already mapped.
490  *
491  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
492  * and store the allocated blocks in the result buffer head and mark it
493  * mapped.
494  *
495  * If file type is extents based, it will call ext4_ext_map_blocks(),
496  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
497  * based files
498  *
499  * On success, it returns the number of blocks being mapped or allocated.  if
500  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
501  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
502  *
503  * It returns 0 if plain look up failed (blocks have not been allocated), in
504  * that case, @map is returned as unmapped but we still do fill map->m_len to
505  * indicate the length of a hole starting at map->m_lblk.
506  *
507  * It returns the error in case of allocation failure.
508  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)509 int ext4_map_blocks(handle_t *handle, struct inode *inode,
510 		    struct ext4_map_blocks *map, int flags)
511 {
512 	struct extent_status es;
513 	int retval;
514 	int ret = 0;
515 #ifdef ES_AGGRESSIVE_TEST
516 	struct ext4_map_blocks orig_map;
517 
518 	memcpy(&orig_map, map, sizeof(*map));
519 #endif
520 
521 	map->m_flags = 0;
522 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
523 		  flags, map->m_len, (unsigned long) map->m_lblk);
524 
525 	/*
526 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
527 	 */
528 	if (unlikely(map->m_len > INT_MAX))
529 		map->m_len = INT_MAX;
530 
531 	/* We can handle the block number less than EXT_MAX_BLOCKS */
532 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
533 		return -EFSCORRUPTED;
534 
535 	/* Lookup extent status tree firstly */
536 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
537 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
538 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
539 			map->m_pblk = ext4_es_pblock(&es) +
540 					map->m_lblk - es.es_lblk;
541 			map->m_flags |= ext4_es_is_written(&es) ?
542 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
543 			retval = es.es_len - (map->m_lblk - es.es_lblk);
544 			if (retval > map->m_len)
545 				retval = map->m_len;
546 			map->m_len = retval;
547 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
548 			map->m_pblk = 0;
549 			retval = es.es_len - (map->m_lblk - es.es_lblk);
550 			if (retval > map->m_len)
551 				retval = map->m_len;
552 			map->m_len = retval;
553 			retval = 0;
554 		} else {
555 			BUG();
556 		}
557 #ifdef ES_AGGRESSIVE_TEST
558 		ext4_map_blocks_es_recheck(handle, inode, map,
559 					   &orig_map, flags);
560 #endif
561 		goto found;
562 	}
563 
564 	/*
565 	 * Try to see if we can get the block without requesting a new
566 	 * file system block.
567 	 */
568 	down_read(&EXT4_I(inode)->i_data_sem);
569 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
570 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
571 	} else {
572 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
573 	}
574 	if (retval > 0) {
575 		unsigned int status;
576 
577 		if (unlikely(retval != map->m_len)) {
578 			ext4_warning(inode->i_sb,
579 				     "ES len assertion failed for inode "
580 				     "%lu: retval %d != map->m_len %d",
581 				     inode->i_ino, retval, map->m_len);
582 			WARN_ON(1);
583 		}
584 
585 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
586 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
587 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
588 		    !(status & EXTENT_STATUS_WRITTEN) &&
589 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
590 				       map->m_lblk + map->m_len - 1))
591 			status |= EXTENT_STATUS_DELAYED;
592 		ret = ext4_es_insert_extent(inode, map->m_lblk,
593 					    map->m_len, map->m_pblk, status);
594 		if (ret < 0)
595 			retval = ret;
596 	}
597 	up_read((&EXT4_I(inode)->i_data_sem));
598 
599 found:
600 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
601 		ret = check_block_validity(inode, map);
602 		if (ret != 0)
603 			return ret;
604 	}
605 
606 	/* If it is only a block(s) look up */
607 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
608 		return retval;
609 
610 	/*
611 	 * Returns if the blocks have already allocated
612 	 *
613 	 * Note that if blocks have been preallocated
614 	 * ext4_ext_get_block() returns the create = 0
615 	 * with buffer head unmapped.
616 	 */
617 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
618 		/*
619 		 * If we need to convert extent to unwritten
620 		 * we continue and do the actual work in
621 		 * ext4_ext_map_blocks()
622 		 */
623 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
624 			return retval;
625 
626 	/*
627 	 * Here we clear m_flags because after allocating an new extent,
628 	 * it will be set again.
629 	 */
630 	map->m_flags &= ~EXT4_MAP_FLAGS;
631 
632 	/*
633 	 * New blocks allocate and/or writing to unwritten extent
634 	 * will possibly result in updating i_data, so we take
635 	 * the write lock of i_data_sem, and call get_block()
636 	 * with create == 1 flag.
637 	 */
638 	down_write(&EXT4_I(inode)->i_data_sem);
639 
640 	/*
641 	 * We need to check for EXT4 here because migrate
642 	 * could have changed the inode type in between
643 	 */
644 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
646 	} else {
647 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
648 
649 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650 			/*
651 			 * We allocated new blocks which will result in
652 			 * i_data's format changing.  Force the migrate
653 			 * to fail by clearing migrate flags
654 			 */
655 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656 		}
657 
658 		/*
659 		 * Update reserved blocks/metadata blocks after successful
660 		 * block allocation which had been deferred till now. We don't
661 		 * support fallocate for non extent files. So we can update
662 		 * reserve space here.
663 		 */
664 		if ((retval > 0) &&
665 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
666 			ext4_da_update_reserve_space(inode, retval, 1);
667 	}
668 
669 	if (retval > 0) {
670 		unsigned int status;
671 
672 		if (unlikely(retval != map->m_len)) {
673 			ext4_warning(inode->i_sb,
674 				     "ES len assertion failed for inode "
675 				     "%lu: retval %d != map->m_len %d",
676 				     inode->i_ino, retval, map->m_len);
677 			WARN_ON(1);
678 		}
679 
680 		/*
681 		 * We have to zeroout blocks before inserting them into extent
682 		 * status tree. Otherwise someone could look them up there and
683 		 * use them before they are really zeroed. We also have to
684 		 * unmap metadata before zeroing as otherwise writeback can
685 		 * overwrite zeros with stale data from block device.
686 		 */
687 		if (flags & EXT4_GET_BLOCKS_ZERO &&
688 		    map->m_flags & EXT4_MAP_MAPPED &&
689 		    map->m_flags & EXT4_MAP_NEW) {
690 			ret = ext4_issue_zeroout(inode, map->m_lblk,
691 						 map->m_pblk, map->m_len);
692 			if (ret) {
693 				retval = ret;
694 				goto out_sem;
695 			}
696 		}
697 
698 		/*
699 		 * If the extent has been zeroed out, we don't need to update
700 		 * extent status tree.
701 		 */
702 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
703 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
704 			if (ext4_es_is_written(&es))
705 				goto out_sem;
706 		}
707 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
708 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
709 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
710 		    !(status & EXTENT_STATUS_WRITTEN) &&
711 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
712 				       map->m_lblk + map->m_len - 1))
713 			status |= EXTENT_STATUS_DELAYED;
714 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
715 					    map->m_pblk, status);
716 		if (ret < 0) {
717 			retval = ret;
718 			goto out_sem;
719 		}
720 	}
721 
722 out_sem:
723 	up_write((&EXT4_I(inode)->i_data_sem));
724 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
725 		ret = check_block_validity(inode, map);
726 		if (ret != 0)
727 			return ret;
728 
729 		/*
730 		 * Inodes with freshly allocated blocks where contents will be
731 		 * visible after transaction commit must be on transaction's
732 		 * ordered data list.
733 		 */
734 		if (map->m_flags & EXT4_MAP_NEW &&
735 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
736 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
737 		    !ext4_is_quota_file(inode) &&
738 		    ext4_should_order_data(inode)) {
739 			loff_t start_byte =
740 				(loff_t)map->m_lblk << inode->i_blkbits;
741 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
742 
743 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
744 				ret = ext4_jbd2_inode_add_wait(handle, inode,
745 						start_byte, length);
746 			else
747 				ret = ext4_jbd2_inode_add_write(handle, inode,
748 						start_byte, length);
749 			if (ret)
750 				return ret;
751 		}
752 	}
753 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
754 				map->m_flags & EXT4_MAP_MAPPED))
755 		ext4_fc_track_range(handle, inode, map->m_lblk,
756 					map->m_lblk + map->m_len - 1);
757 	if (retval < 0)
758 		ext_debug(inode, "failed with err %d\n", retval);
759 	return retval;
760 }
761 
762 /*
763  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
764  * we have to be careful as someone else may be manipulating b_state as well.
765  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)766 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
767 {
768 	unsigned long old_state;
769 	unsigned long new_state;
770 
771 	flags &= EXT4_MAP_FLAGS;
772 
773 	/* Dummy buffer_head? Set non-atomically. */
774 	if (!bh->b_page) {
775 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
776 		return;
777 	}
778 	/*
779 	 * Someone else may be modifying b_state. Be careful! This is ugly but
780 	 * once we get rid of using bh as a container for mapping information
781 	 * to pass to / from get_block functions, this can go away.
782 	 */
783 	do {
784 		old_state = READ_ONCE(bh->b_state);
785 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
786 	} while (unlikely(
787 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
788 }
789 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)790 static int _ext4_get_block(struct inode *inode, sector_t iblock,
791 			   struct buffer_head *bh, int flags)
792 {
793 	struct ext4_map_blocks map;
794 	int ret = 0;
795 
796 	if (ext4_has_inline_data(inode))
797 		return -ERANGE;
798 
799 	map.m_lblk = iblock;
800 	map.m_len = bh->b_size >> inode->i_blkbits;
801 
802 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
803 			      flags);
804 	if (ret > 0) {
805 		map_bh(bh, inode->i_sb, map.m_pblk);
806 		ext4_update_bh_state(bh, map.m_flags);
807 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
808 		ret = 0;
809 	} else if (ret == 0) {
810 		/* hole case, need to fill in bh->b_size */
811 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
812 	}
813 	return ret;
814 }
815 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)816 int ext4_get_block(struct inode *inode, sector_t iblock,
817 		   struct buffer_head *bh, int create)
818 {
819 	return _ext4_get_block(inode, iblock, bh,
820 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
821 }
822 
823 /*
824  * Get block function used when preparing for buffered write if we require
825  * creating an unwritten extent if blocks haven't been allocated.  The extent
826  * will be converted to written after the IO is complete.
827  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)828 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
829 			     struct buffer_head *bh_result, int create)
830 {
831 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
832 		   inode->i_ino, create);
833 	return _ext4_get_block(inode, iblock, bh_result,
834 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
835 }
836 
837 /* Maximum number of blocks we map for direct IO at once. */
838 #define DIO_MAX_BLOCKS 4096
839 
840 /*
841  * `handle' can be NULL if create is zero
842  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)843 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
844 				ext4_lblk_t block, int map_flags)
845 {
846 	struct ext4_map_blocks map;
847 	struct buffer_head *bh;
848 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
849 	int err;
850 
851 	J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
852 		 || handle != NULL || create == 0);
853 
854 	map.m_lblk = block;
855 	map.m_len = 1;
856 	err = ext4_map_blocks(handle, inode, &map, map_flags);
857 
858 	if (err == 0)
859 		return create ? ERR_PTR(-ENOSPC) : NULL;
860 	if (err < 0)
861 		return ERR_PTR(err);
862 
863 	bh = sb_getblk(inode->i_sb, map.m_pblk);
864 	if (unlikely(!bh))
865 		return ERR_PTR(-ENOMEM);
866 	if (map.m_flags & EXT4_MAP_NEW) {
867 		J_ASSERT(create != 0);
868 		J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
869 			 || (handle != NULL));
870 
871 		/*
872 		 * Now that we do not always journal data, we should
873 		 * keep in mind whether this should always journal the
874 		 * new buffer as metadata.  For now, regular file
875 		 * writes use ext4_get_block instead, so it's not a
876 		 * problem.
877 		 */
878 		lock_buffer(bh);
879 		BUFFER_TRACE(bh, "call get_create_access");
880 		err = ext4_journal_get_create_access(handle, bh);
881 		if (unlikely(err)) {
882 			unlock_buffer(bh);
883 			goto errout;
884 		}
885 		if (!buffer_uptodate(bh)) {
886 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
887 			set_buffer_uptodate(bh);
888 		}
889 		unlock_buffer(bh);
890 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
891 		err = ext4_handle_dirty_metadata(handle, inode, bh);
892 		if (unlikely(err))
893 			goto errout;
894 	} else
895 		BUFFER_TRACE(bh, "not a new buffer");
896 	return bh;
897 errout:
898 	brelse(bh);
899 	return ERR_PTR(err);
900 }
901 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)902 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
903 			       ext4_lblk_t block, int map_flags)
904 {
905 	struct buffer_head *bh;
906 	int ret;
907 
908 	bh = ext4_getblk(handle, inode, block, map_flags);
909 	if (IS_ERR(bh))
910 		return bh;
911 	if (!bh || ext4_buffer_uptodate(bh))
912 		return bh;
913 
914 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
915 	if (ret) {
916 		put_bh(bh);
917 		return ERR_PTR(ret);
918 	}
919 	return bh;
920 }
921 
922 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)923 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
924 		     bool wait, struct buffer_head **bhs)
925 {
926 	int i, err;
927 
928 	for (i = 0; i < bh_count; i++) {
929 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
930 		if (IS_ERR(bhs[i])) {
931 			err = PTR_ERR(bhs[i]);
932 			bh_count = i;
933 			goto out_brelse;
934 		}
935 	}
936 
937 	for (i = 0; i < bh_count; i++)
938 		/* Note that NULL bhs[i] is valid because of holes. */
939 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
940 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
941 
942 	if (!wait)
943 		return 0;
944 
945 	for (i = 0; i < bh_count; i++)
946 		if (bhs[i])
947 			wait_on_buffer(bhs[i]);
948 
949 	for (i = 0; i < bh_count; i++) {
950 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
951 			err = -EIO;
952 			goto out_brelse;
953 		}
954 	}
955 	return 0;
956 
957 out_brelse:
958 	for (i = 0; i < bh_count; i++) {
959 		brelse(bhs[i]);
960 		bhs[i] = NULL;
961 	}
962 	return err;
963 }
964 
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))965 int ext4_walk_page_buffers(handle_t *handle,
966 			   struct buffer_head *head,
967 			   unsigned from,
968 			   unsigned to,
969 			   int *partial,
970 			   int (*fn)(handle_t *handle,
971 				     struct buffer_head *bh))
972 {
973 	struct buffer_head *bh;
974 	unsigned block_start, block_end;
975 	unsigned blocksize = head->b_size;
976 	int err, ret = 0;
977 	struct buffer_head *next;
978 
979 	for (bh = head, block_start = 0;
980 	     ret == 0 && (bh != head || !block_start);
981 	     block_start = block_end, bh = next) {
982 		next = bh->b_this_page;
983 		block_end = block_start + blocksize;
984 		if (block_end <= from || block_start >= to) {
985 			if (partial && !buffer_uptodate(bh))
986 				*partial = 1;
987 			continue;
988 		}
989 		err = (*fn)(handle, bh);
990 		if (!ret)
991 			ret = err;
992 	}
993 	return ret;
994 }
995 
996 /*
997  * To preserve ordering, it is essential that the hole instantiation and
998  * the data write be encapsulated in a single transaction.  We cannot
999  * close off a transaction and start a new one between the ext4_get_block()
1000  * and the commit_write().  So doing the jbd2_journal_start at the start of
1001  * prepare_write() is the right place.
1002  *
1003  * Also, this function can nest inside ext4_writepage().  In that case, we
1004  * *know* that ext4_writepage() has generated enough buffer credits to do the
1005  * whole page.  So we won't block on the journal in that case, which is good,
1006  * because the caller may be PF_MEMALLOC.
1007  *
1008  * By accident, ext4 can be reentered when a transaction is open via
1009  * quota file writes.  If we were to commit the transaction while thus
1010  * reentered, there can be a deadlock - we would be holding a quota
1011  * lock, and the commit would never complete if another thread had a
1012  * transaction open and was blocking on the quota lock - a ranking
1013  * violation.
1014  *
1015  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1016  * will _not_ run commit under these circumstances because handle->h_ref
1017  * is elevated.  We'll still have enough credits for the tiny quotafile
1018  * write.
1019  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1020 int do_journal_get_write_access(handle_t *handle,
1021 				struct buffer_head *bh)
1022 {
1023 	int dirty = buffer_dirty(bh);
1024 	int ret;
1025 
1026 	if (!buffer_mapped(bh) || buffer_freed(bh))
1027 		return 0;
1028 	/*
1029 	 * __block_write_begin() could have dirtied some buffers. Clean
1030 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1031 	 * otherwise about fs integrity issues. Setting of the dirty bit
1032 	 * by __block_write_begin() isn't a real problem here as we clear
1033 	 * the bit before releasing a page lock and thus writeback cannot
1034 	 * ever write the buffer.
1035 	 */
1036 	if (dirty)
1037 		clear_buffer_dirty(bh);
1038 	BUFFER_TRACE(bh, "get write access");
1039 	ret = ext4_journal_get_write_access(handle, bh);
1040 	if (!ret && dirty)
1041 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1042 	return ret;
1043 }
1044 
1045 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1046 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1047 				  get_block_t *get_block)
1048 {
1049 	unsigned from = pos & (PAGE_SIZE - 1);
1050 	unsigned to = from + len;
1051 	struct inode *inode = page->mapping->host;
1052 	unsigned block_start, block_end;
1053 	sector_t block;
1054 	int err = 0;
1055 	unsigned blocksize = inode->i_sb->s_blocksize;
1056 	unsigned bbits;
1057 	struct buffer_head *bh, *head, *wait[2];
1058 	int nr_wait = 0;
1059 	int i;
1060 
1061 	BUG_ON(!PageLocked(page));
1062 	BUG_ON(from > PAGE_SIZE);
1063 	BUG_ON(to > PAGE_SIZE);
1064 	BUG_ON(from > to);
1065 
1066 	if (!page_has_buffers(page))
1067 		create_empty_buffers(page, blocksize, 0);
1068 	head = page_buffers(page);
1069 	bbits = ilog2(blocksize);
1070 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1071 
1072 	for (bh = head, block_start = 0; bh != head || !block_start;
1073 	    block++, block_start = block_end, bh = bh->b_this_page) {
1074 		block_end = block_start + blocksize;
1075 		if (block_end <= from || block_start >= to) {
1076 			if (PageUptodate(page)) {
1077 				if (!buffer_uptodate(bh))
1078 					set_buffer_uptodate(bh);
1079 			}
1080 			continue;
1081 		}
1082 		if (buffer_new(bh))
1083 			clear_buffer_new(bh);
1084 		if (!buffer_mapped(bh)) {
1085 			WARN_ON(bh->b_size != blocksize);
1086 			err = get_block(inode, block, bh, 1);
1087 			if (err)
1088 				break;
1089 			if (buffer_new(bh)) {
1090 				if (PageUptodate(page)) {
1091 					clear_buffer_new(bh);
1092 					set_buffer_uptodate(bh);
1093 					mark_buffer_dirty(bh);
1094 					continue;
1095 				}
1096 				if (block_end > to || block_start < from)
1097 					zero_user_segments(page, to, block_end,
1098 							   block_start, from);
1099 				continue;
1100 			}
1101 		}
1102 		if (PageUptodate(page)) {
1103 			if (!buffer_uptodate(bh))
1104 				set_buffer_uptodate(bh);
1105 			continue;
1106 		}
1107 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1108 		    !buffer_unwritten(bh) &&
1109 		    (block_start < from || block_end > to)) {
1110 			ext4_read_bh_lock(bh, 0, false);
1111 			wait[nr_wait++] = bh;
1112 		}
1113 	}
1114 	/*
1115 	 * If we issued read requests, let them complete.
1116 	 */
1117 	for (i = 0; i < nr_wait; i++) {
1118 		wait_on_buffer(wait[i]);
1119 		if (!buffer_uptodate(wait[i]))
1120 			err = -EIO;
1121 	}
1122 	if (unlikely(err)) {
1123 		page_zero_new_buffers(page, from, to);
1124 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1125 		for (i = 0; i < nr_wait; i++) {
1126 			int err2;
1127 
1128 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1129 								bh_offset(wait[i]));
1130 			if (err2) {
1131 				clear_buffer_uptodate(wait[i]);
1132 				err = err2;
1133 			}
1134 		}
1135 	}
1136 
1137 	return err;
1138 }
1139 #endif
1140 
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1141 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1142 			    loff_t pos, unsigned len, unsigned flags,
1143 			    struct page **pagep, void **fsdata)
1144 {
1145 	struct inode *inode = mapping->host;
1146 	int ret, needed_blocks;
1147 	handle_t *handle;
1148 	int retries = 0;
1149 	struct page *page;
1150 	pgoff_t index;
1151 	unsigned from, to;
1152 
1153 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1154 		return -EIO;
1155 
1156 	trace_ext4_write_begin(inode, pos, len, flags);
1157 	/*
1158 	 * Reserve one block more for addition to orphan list in case
1159 	 * we allocate blocks but write fails for some reason
1160 	 */
1161 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1162 	index = pos >> PAGE_SHIFT;
1163 	from = pos & (PAGE_SIZE - 1);
1164 	to = from + len;
1165 
1166 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1167 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1168 						    flags, pagep);
1169 		if (ret < 0)
1170 			return ret;
1171 		if (ret == 1)
1172 			return 0;
1173 	}
1174 
1175 	/*
1176 	 * grab_cache_page_write_begin() can take a long time if the
1177 	 * system is thrashing due to memory pressure, or if the page
1178 	 * is being written back.  So grab it first before we start
1179 	 * the transaction handle.  This also allows us to allocate
1180 	 * the page (if needed) without using GFP_NOFS.
1181 	 */
1182 retry_grab:
1183 	page = grab_cache_page_write_begin(mapping, index, flags);
1184 	if (!page)
1185 		return -ENOMEM;
1186 	/*
1187 	 * The same as page allocation, we prealloc buffer heads before
1188 	 * starting the handle.
1189 	 */
1190 	if (!page_has_buffers(page))
1191 		create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1192 
1193 	unlock_page(page);
1194 
1195 retry_journal:
1196 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1197 	if (IS_ERR(handle)) {
1198 		put_page(page);
1199 		return PTR_ERR(handle);
1200 	}
1201 
1202 	lock_page(page);
1203 	if (page->mapping != mapping) {
1204 		/* The page got truncated from under us */
1205 		unlock_page(page);
1206 		put_page(page);
1207 		ext4_journal_stop(handle);
1208 		goto retry_grab;
1209 	}
1210 	/* In case writeback began while the page was unlocked */
1211 	wait_for_stable_page(page);
1212 
1213 #ifdef CONFIG_FS_ENCRYPTION
1214 	if (ext4_should_dioread_nolock(inode))
1215 		ret = ext4_block_write_begin(page, pos, len,
1216 					     ext4_get_block_unwritten);
1217 	else
1218 		ret = ext4_block_write_begin(page, pos, len,
1219 					     ext4_get_block);
1220 #else
1221 	if (ext4_should_dioread_nolock(inode))
1222 		ret = __block_write_begin(page, pos, len,
1223 					  ext4_get_block_unwritten);
1224 	else
1225 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1226 #endif
1227 	if (!ret && ext4_should_journal_data(inode)) {
1228 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1229 					     from, to, NULL,
1230 					     do_journal_get_write_access);
1231 	}
1232 
1233 	if (ret) {
1234 		bool extended = (pos + len > inode->i_size) &&
1235 				!ext4_verity_in_progress(inode);
1236 
1237 		unlock_page(page);
1238 		/*
1239 		 * __block_write_begin may have instantiated a few blocks
1240 		 * outside i_size.  Trim these off again. Don't need
1241 		 * i_size_read because we hold i_mutex.
1242 		 *
1243 		 * Add inode to orphan list in case we crash before
1244 		 * truncate finishes
1245 		 */
1246 		if (extended && ext4_can_truncate(inode))
1247 			ext4_orphan_add(handle, inode);
1248 
1249 		ext4_journal_stop(handle);
1250 		if (extended) {
1251 			ext4_truncate_failed_write(inode);
1252 			/*
1253 			 * If truncate failed early the inode might
1254 			 * still be on the orphan list; we need to
1255 			 * make sure the inode is removed from the
1256 			 * orphan list in that case.
1257 			 */
1258 			if (inode->i_nlink)
1259 				ext4_orphan_del(NULL, inode);
1260 		}
1261 
1262 		if (ret == -ENOSPC &&
1263 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1264 			goto retry_journal;
1265 		put_page(page);
1266 		return ret;
1267 	}
1268 	*pagep = page;
1269 	return ret;
1270 }
1271 
1272 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1273 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1274 {
1275 	int ret;
1276 	if (!buffer_mapped(bh) || buffer_freed(bh))
1277 		return 0;
1278 	set_buffer_uptodate(bh);
1279 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1280 	clear_buffer_meta(bh);
1281 	clear_buffer_prio(bh);
1282 	return ret;
1283 }
1284 
1285 /*
1286  * We need to pick up the new inode size which generic_commit_write gave us
1287  * `file' can be NULL - eg, when called from page_symlink().
1288  *
1289  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1290  * buffers are managed internally.
1291  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1292 static int ext4_write_end(struct file *file,
1293 			  struct address_space *mapping,
1294 			  loff_t pos, unsigned len, unsigned copied,
1295 			  struct page *page, void *fsdata)
1296 {
1297 	handle_t *handle = ext4_journal_current_handle();
1298 	struct inode *inode = mapping->host;
1299 	loff_t old_size = inode->i_size;
1300 	int ret = 0, ret2;
1301 	int i_size_changed = 0;
1302 	bool verity = ext4_verity_in_progress(inode);
1303 
1304 	trace_ext4_write_end(inode, pos, len, copied);
1305 
1306 	if (ext4_has_inline_data(inode) &&
1307 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1308 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1309 
1310 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1311 	/*
1312 	 * it's important to update i_size while still holding page lock:
1313 	 * page writeout could otherwise come in and zero beyond i_size.
1314 	 *
1315 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1316 	 * blocks are being written past EOF, so skip the i_size update.
1317 	 */
1318 	if (!verity)
1319 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1320 	unlock_page(page);
1321 	put_page(page);
1322 
1323 	if (old_size < pos && !verity)
1324 		pagecache_isize_extended(inode, old_size, pos);
1325 	/*
1326 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1327 	 * makes the holding time of page lock longer. Second, it forces lock
1328 	 * ordering of page lock and transaction start for journaling
1329 	 * filesystems.
1330 	 */
1331 	if (i_size_changed)
1332 		ret = ext4_mark_inode_dirty(handle, inode);
1333 
1334 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1335 		/* if we have allocated more blocks and copied
1336 		 * less. We will have blocks allocated outside
1337 		 * inode->i_size. So truncate them
1338 		 */
1339 		ext4_orphan_add(handle, inode);
1340 
1341 	ret2 = ext4_journal_stop(handle);
1342 	if (!ret)
1343 		ret = ret2;
1344 
1345 	if (pos + len > inode->i_size && !verity) {
1346 		ext4_truncate_failed_write(inode);
1347 		/*
1348 		 * If truncate failed early the inode might still be
1349 		 * on the orphan list; we need to make sure the inode
1350 		 * is removed from the orphan list in that case.
1351 		 */
1352 		if (inode->i_nlink)
1353 			ext4_orphan_del(NULL, inode);
1354 	}
1355 
1356 	return ret ? ret : copied;
1357 }
1358 
1359 /*
1360  * This is a private version of page_zero_new_buffers() which doesn't
1361  * set the buffer to be dirty, since in data=journalled mode we need
1362  * to call ext4_handle_dirty_metadata() instead.
1363  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct page * page,unsigned from,unsigned to)1364 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1365 					    struct page *page,
1366 					    unsigned from, unsigned to)
1367 {
1368 	unsigned int block_start = 0, block_end;
1369 	struct buffer_head *head, *bh;
1370 
1371 	bh = head = page_buffers(page);
1372 	do {
1373 		block_end = block_start + bh->b_size;
1374 		if (buffer_new(bh)) {
1375 			if (block_end > from && block_start < to) {
1376 				if (!PageUptodate(page)) {
1377 					unsigned start, size;
1378 
1379 					start = max(from, block_start);
1380 					size = min(to, block_end) - start;
1381 
1382 					zero_user(page, start, size);
1383 					write_end_fn(handle, bh);
1384 				}
1385 				clear_buffer_new(bh);
1386 			}
1387 		}
1388 		block_start = block_end;
1389 		bh = bh->b_this_page;
1390 	} while (bh != head);
1391 }
1392 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1393 static int ext4_journalled_write_end(struct file *file,
1394 				     struct address_space *mapping,
1395 				     loff_t pos, unsigned len, unsigned copied,
1396 				     struct page *page, void *fsdata)
1397 {
1398 	handle_t *handle = ext4_journal_current_handle();
1399 	struct inode *inode = mapping->host;
1400 	loff_t old_size = inode->i_size;
1401 	int ret = 0, ret2;
1402 	int partial = 0;
1403 	unsigned from, to;
1404 	int size_changed = 0;
1405 	bool verity = ext4_verity_in_progress(inode);
1406 
1407 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1408 	from = pos & (PAGE_SIZE - 1);
1409 	to = from + len;
1410 
1411 	BUG_ON(!ext4_handle_valid(handle));
1412 
1413 	if (ext4_has_inline_data(inode))
1414 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1415 
1416 	if (unlikely(copied < len) && !PageUptodate(page)) {
1417 		copied = 0;
1418 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1419 	} else {
1420 		if (unlikely(copied < len))
1421 			ext4_journalled_zero_new_buffers(handle, page,
1422 							 from + copied, to);
1423 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1424 					     from + copied, &partial,
1425 					     write_end_fn);
1426 		if (!partial)
1427 			SetPageUptodate(page);
1428 	}
1429 	if (!verity)
1430 		size_changed = ext4_update_inode_size(inode, pos + copied);
1431 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1432 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1433 	unlock_page(page);
1434 	put_page(page);
1435 
1436 	if (old_size < pos && !verity)
1437 		pagecache_isize_extended(inode, old_size, pos);
1438 
1439 	if (size_changed) {
1440 		ret2 = ext4_mark_inode_dirty(handle, inode);
1441 		if (!ret)
1442 			ret = ret2;
1443 	}
1444 
1445 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1446 		/* if we have allocated more blocks and copied
1447 		 * less. We will have blocks allocated outside
1448 		 * inode->i_size. So truncate them
1449 		 */
1450 		ext4_orphan_add(handle, inode);
1451 
1452 	ret2 = ext4_journal_stop(handle);
1453 	if (!ret)
1454 		ret = ret2;
1455 	if (pos + len > inode->i_size && !verity) {
1456 		ext4_truncate_failed_write(inode);
1457 		/*
1458 		 * If truncate failed early the inode might still be
1459 		 * on the orphan list; we need to make sure the inode
1460 		 * is removed from the orphan list in that case.
1461 		 */
1462 		if (inode->i_nlink)
1463 			ext4_orphan_del(NULL, inode);
1464 	}
1465 
1466 	return ret ? ret : copied;
1467 }
1468 
1469 /*
1470  * Reserve space for a single cluster
1471  */
ext4_da_reserve_space(struct inode * inode)1472 static int ext4_da_reserve_space(struct inode *inode)
1473 {
1474 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1475 	struct ext4_inode_info *ei = EXT4_I(inode);
1476 	int ret;
1477 
1478 	/*
1479 	 * We will charge metadata quota at writeout time; this saves
1480 	 * us from metadata over-estimation, though we may go over by
1481 	 * a small amount in the end.  Here we just reserve for data.
1482 	 */
1483 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1484 	if (ret)
1485 		return ret;
1486 
1487 	spin_lock(&ei->i_block_reservation_lock);
1488 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1489 		spin_unlock(&ei->i_block_reservation_lock);
1490 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1491 		return -ENOSPC;
1492 	}
1493 	ei->i_reserved_data_blocks++;
1494 	trace_ext4_da_reserve_space(inode);
1495 	spin_unlock(&ei->i_block_reservation_lock);
1496 
1497 	return 0;       /* success */
1498 }
1499 
ext4_da_release_space(struct inode * inode,int to_free)1500 void ext4_da_release_space(struct inode *inode, int to_free)
1501 {
1502 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1503 	struct ext4_inode_info *ei = EXT4_I(inode);
1504 
1505 	if (!to_free)
1506 		return;		/* Nothing to release, exit */
1507 
1508 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1509 
1510 	trace_ext4_da_release_space(inode, to_free);
1511 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1512 		/*
1513 		 * if there aren't enough reserved blocks, then the
1514 		 * counter is messed up somewhere.  Since this
1515 		 * function is called from invalidate page, it's
1516 		 * harmless to return without any action.
1517 		 */
1518 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1519 			 "ino %lu, to_free %d with only %d reserved "
1520 			 "data blocks", inode->i_ino, to_free,
1521 			 ei->i_reserved_data_blocks);
1522 		WARN_ON(1);
1523 		to_free = ei->i_reserved_data_blocks;
1524 	}
1525 	ei->i_reserved_data_blocks -= to_free;
1526 
1527 	/* update fs dirty data blocks counter */
1528 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1529 
1530 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1531 
1532 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1533 }
1534 
1535 /*
1536  * Delayed allocation stuff
1537  */
1538 
1539 struct mpage_da_data {
1540 	struct inode *inode;
1541 	struct writeback_control *wbc;
1542 
1543 	pgoff_t first_page;	/* The first page to write */
1544 	pgoff_t next_page;	/* Current page to examine */
1545 	pgoff_t last_page;	/* Last page to examine */
1546 	/*
1547 	 * Extent to map - this can be after first_page because that can be
1548 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1549 	 * is delalloc or unwritten.
1550 	 */
1551 	struct ext4_map_blocks map;
1552 	struct ext4_io_submit io_submit;	/* IO submission data */
1553 	unsigned int do_map:1;
1554 	unsigned int scanned_until_end:1;
1555 };
1556 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1557 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1558 				       bool invalidate)
1559 {
1560 	int nr_pages, i;
1561 	pgoff_t index, end;
1562 	struct pagevec pvec;
1563 	struct inode *inode = mpd->inode;
1564 	struct address_space *mapping = inode->i_mapping;
1565 
1566 	/* This is necessary when next_page == 0. */
1567 	if (mpd->first_page >= mpd->next_page)
1568 		return;
1569 
1570 	mpd->scanned_until_end = 0;
1571 	index = mpd->first_page;
1572 	end   = mpd->next_page - 1;
1573 	if (invalidate) {
1574 		ext4_lblk_t start, last;
1575 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1576 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1577 
1578 		/*
1579 		 * avoid racing with extent status tree scans made by
1580 		 * ext4_insert_delayed_block()
1581 		 */
1582 		down_write(&EXT4_I(inode)->i_data_sem);
1583 		ext4_es_remove_extent(inode, start, last - start + 1);
1584 		up_write(&EXT4_I(inode)->i_data_sem);
1585 	}
1586 
1587 	pagevec_init(&pvec);
1588 	while (index <= end) {
1589 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1590 		if (nr_pages == 0)
1591 			break;
1592 		for (i = 0; i < nr_pages; i++) {
1593 			struct page *page = pvec.pages[i];
1594 
1595 			BUG_ON(!PageLocked(page));
1596 			BUG_ON(PageWriteback(page));
1597 			if (invalidate) {
1598 				if (page_mapped(page))
1599 					clear_page_dirty_for_io(page);
1600 				block_invalidatepage(page, 0, PAGE_SIZE);
1601 				ClearPageUptodate(page);
1602 			}
1603 			unlock_page(page);
1604 		}
1605 		pagevec_release(&pvec);
1606 	}
1607 }
1608 
ext4_print_free_blocks(struct inode * inode)1609 static void ext4_print_free_blocks(struct inode *inode)
1610 {
1611 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1612 	struct super_block *sb = inode->i_sb;
1613 	struct ext4_inode_info *ei = EXT4_I(inode);
1614 
1615 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1616 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1617 			ext4_count_free_clusters(sb)));
1618 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1619 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1620 	       (long long) EXT4_C2B(EXT4_SB(sb),
1621 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1622 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1623 	       (long long) EXT4_C2B(EXT4_SB(sb),
1624 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1625 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1626 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1627 		 ei->i_reserved_data_blocks);
1628 	return;
1629 }
1630 
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1631 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1632 {
1633 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1634 }
1635 
1636 /*
1637  * ext4_insert_delayed_block - adds a delayed block to the extents status
1638  *                             tree, incrementing the reserved cluster/block
1639  *                             count or making a pending reservation
1640  *                             where needed
1641  *
1642  * @inode - file containing the newly added block
1643  * @lblk - logical block to be added
1644  *
1645  * Returns 0 on success, negative error code on failure.
1646  */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1647 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1648 {
1649 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650 	int ret;
1651 	bool allocated = false;
1652 	bool reserved = false;
1653 
1654 	/*
1655 	 * If the cluster containing lblk is shared with a delayed,
1656 	 * written, or unwritten extent in a bigalloc file system, it's
1657 	 * already been accounted for and does not need to be reserved.
1658 	 * A pending reservation must be made for the cluster if it's
1659 	 * shared with a written or unwritten extent and doesn't already
1660 	 * have one.  Written and unwritten extents can be purged from the
1661 	 * extents status tree if the system is under memory pressure, so
1662 	 * it's necessary to examine the extent tree if a search of the
1663 	 * extents status tree doesn't get a match.
1664 	 */
1665 	if (sbi->s_cluster_ratio == 1) {
1666 		ret = ext4_da_reserve_space(inode);
1667 		if (ret != 0)   /* ENOSPC */
1668 			goto errout;
1669 		reserved = true;
1670 	} else {   /* bigalloc */
1671 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1672 			if (!ext4_es_scan_clu(inode,
1673 					      &ext4_es_is_mapped, lblk)) {
1674 				ret = ext4_clu_mapped(inode,
1675 						      EXT4_B2C(sbi, lblk));
1676 				if (ret < 0)
1677 					goto errout;
1678 				if (ret == 0) {
1679 					ret = ext4_da_reserve_space(inode);
1680 					if (ret != 0)   /* ENOSPC */
1681 						goto errout;
1682 					reserved = true;
1683 				} else {
1684 					allocated = true;
1685 				}
1686 			} else {
1687 				allocated = true;
1688 			}
1689 		}
1690 	}
1691 
1692 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1693 	if (ret && reserved)
1694 		ext4_da_release_space(inode, 1);
1695 
1696 errout:
1697 	return ret;
1698 }
1699 
1700 /*
1701  * This function is grabs code from the very beginning of
1702  * ext4_map_blocks, but assumes that the caller is from delayed write
1703  * time. This function looks up the requested blocks and sets the
1704  * buffer delay bit under the protection of i_data_sem.
1705  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1706 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1707 			      struct ext4_map_blocks *map,
1708 			      struct buffer_head *bh)
1709 {
1710 	struct extent_status es;
1711 	int retval;
1712 	sector_t invalid_block = ~((sector_t) 0xffff);
1713 #ifdef ES_AGGRESSIVE_TEST
1714 	struct ext4_map_blocks orig_map;
1715 
1716 	memcpy(&orig_map, map, sizeof(*map));
1717 #endif
1718 
1719 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1720 		invalid_block = ~0;
1721 
1722 	map->m_flags = 0;
1723 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1724 		  (unsigned long) map->m_lblk);
1725 
1726 	/* Lookup extent status tree firstly */
1727 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1728 		if (ext4_es_is_hole(&es)) {
1729 			retval = 0;
1730 			down_read(&EXT4_I(inode)->i_data_sem);
1731 			goto add_delayed;
1732 		}
1733 
1734 		/*
1735 		 * Delayed extent could be allocated by fallocate.
1736 		 * So we need to check it.
1737 		 */
1738 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1739 			map_bh(bh, inode->i_sb, invalid_block);
1740 			set_buffer_new(bh);
1741 			set_buffer_delay(bh);
1742 			return 0;
1743 		}
1744 
1745 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1746 		retval = es.es_len - (iblock - es.es_lblk);
1747 		if (retval > map->m_len)
1748 			retval = map->m_len;
1749 		map->m_len = retval;
1750 		if (ext4_es_is_written(&es))
1751 			map->m_flags |= EXT4_MAP_MAPPED;
1752 		else if (ext4_es_is_unwritten(&es))
1753 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1754 		else
1755 			BUG();
1756 
1757 #ifdef ES_AGGRESSIVE_TEST
1758 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1759 #endif
1760 		return retval;
1761 	}
1762 
1763 	/*
1764 	 * Try to see if we can get the block without requesting a new
1765 	 * file system block.
1766 	 */
1767 	down_read(&EXT4_I(inode)->i_data_sem);
1768 	if (ext4_has_inline_data(inode))
1769 		retval = 0;
1770 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1771 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1772 	else
1773 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1774 
1775 add_delayed:
1776 	if (retval == 0) {
1777 		int ret;
1778 
1779 		/*
1780 		 * XXX: __block_prepare_write() unmaps passed block,
1781 		 * is it OK?
1782 		 */
1783 
1784 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1785 		if (ret != 0) {
1786 			retval = ret;
1787 			goto out_unlock;
1788 		}
1789 
1790 		map_bh(bh, inode->i_sb, invalid_block);
1791 		set_buffer_new(bh);
1792 		set_buffer_delay(bh);
1793 	} else if (retval > 0) {
1794 		int ret;
1795 		unsigned int status;
1796 
1797 		if (unlikely(retval != map->m_len)) {
1798 			ext4_warning(inode->i_sb,
1799 				     "ES len assertion failed for inode "
1800 				     "%lu: retval %d != map->m_len %d",
1801 				     inode->i_ino, retval, map->m_len);
1802 			WARN_ON(1);
1803 		}
1804 
1805 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1806 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1807 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1808 					    map->m_pblk, status);
1809 		if (ret != 0)
1810 			retval = ret;
1811 	}
1812 
1813 out_unlock:
1814 	up_read((&EXT4_I(inode)->i_data_sem));
1815 
1816 	return retval;
1817 }
1818 
1819 /*
1820  * This is a special get_block_t callback which is used by
1821  * ext4_da_write_begin().  It will either return mapped block or
1822  * reserve space for a single block.
1823  *
1824  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1825  * We also have b_blocknr = -1 and b_bdev initialized properly
1826  *
1827  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1828  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1829  * initialized properly.
1830  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1831 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1832 			   struct buffer_head *bh, int create)
1833 {
1834 	struct ext4_map_blocks map;
1835 	int ret = 0;
1836 
1837 	BUG_ON(create == 0);
1838 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1839 
1840 	map.m_lblk = iblock;
1841 	map.m_len = 1;
1842 
1843 	/*
1844 	 * first, we need to know whether the block is allocated already
1845 	 * preallocated blocks are unmapped but should treated
1846 	 * the same as allocated blocks.
1847 	 */
1848 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1849 	if (ret <= 0)
1850 		return ret;
1851 
1852 	map_bh(bh, inode->i_sb, map.m_pblk);
1853 	ext4_update_bh_state(bh, map.m_flags);
1854 
1855 	if (buffer_unwritten(bh)) {
1856 		/* A delayed write to unwritten bh should be marked
1857 		 * new and mapped.  Mapped ensures that we don't do
1858 		 * get_block multiple times when we write to the same
1859 		 * offset and new ensures that we do proper zero out
1860 		 * for partial write.
1861 		 */
1862 		set_buffer_new(bh);
1863 		set_buffer_mapped(bh);
1864 	}
1865 	return 0;
1866 }
1867 
bget_one(handle_t * handle,struct buffer_head * bh)1868 static int bget_one(handle_t *handle, struct buffer_head *bh)
1869 {
1870 	get_bh(bh);
1871 	return 0;
1872 }
1873 
bput_one(handle_t * handle,struct buffer_head * bh)1874 static int bput_one(handle_t *handle, struct buffer_head *bh)
1875 {
1876 	put_bh(bh);
1877 	return 0;
1878 }
1879 
__ext4_journalled_writepage(struct page * page,unsigned int len)1880 static int __ext4_journalled_writepage(struct page *page,
1881 				       unsigned int len)
1882 {
1883 	struct address_space *mapping = page->mapping;
1884 	struct inode *inode = mapping->host;
1885 	struct buffer_head *page_bufs = NULL;
1886 	handle_t *handle = NULL;
1887 	int ret = 0, err = 0;
1888 	int inline_data = ext4_has_inline_data(inode);
1889 	struct buffer_head *inode_bh = NULL;
1890 
1891 	ClearPageChecked(page);
1892 
1893 	if (inline_data) {
1894 		BUG_ON(page->index != 0);
1895 		BUG_ON(len > ext4_get_max_inline_size(inode));
1896 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1897 		if (inode_bh == NULL)
1898 			goto out;
1899 	} else {
1900 		page_bufs = page_buffers(page);
1901 		if (!page_bufs) {
1902 			BUG();
1903 			goto out;
1904 		}
1905 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1906 				       NULL, bget_one);
1907 	}
1908 	/*
1909 	 * We need to release the page lock before we start the
1910 	 * journal, so grab a reference so the page won't disappear
1911 	 * out from under us.
1912 	 */
1913 	get_page(page);
1914 	unlock_page(page);
1915 
1916 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1917 				    ext4_writepage_trans_blocks(inode));
1918 	if (IS_ERR(handle)) {
1919 		ret = PTR_ERR(handle);
1920 		put_page(page);
1921 		goto out_no_pagelock;
1922 	}
1923 	BUG_ON(!ext4_handle_valid(handle));
1924 
1925 	lock_page(page);
1926 	put_page(page);
1927 	if (page->mapping != mapping) {
1928 		/* The page got truncated from under us */
1929 		ext4_journal_stop(handle);
1930 		ret = 0;
1931 		goto out;
1932 	}
1933 
1934 	if (inline_data) {
1935 		ret = ext4_mark_inode_dirty(handle, inode);
1936 	} else {
1937 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1938 					     do_journal_get_write_access);
1939 
1940 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1941 					     write_end_fn);
1942 	}
1943 	if (ret == 0)
1944 		ret = err;
1945 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1946 	if (ret == 0)
1947 		ret = err;
1948 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1949 	err = ext4_journal_stop(handle);
1950 	if (!ret)
1951 		ret = err;
1952 
1953 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1954 out:
1955 	unlock_page(page);
1956 out_no_pagelock:
1957 	if (!inline_data && page_bufs)
1958 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1959 				       NULL, bput_one);
1960 	brelse(inode_bh);
1961 	return ret;
1962 }
1963 
cancel_page_dirty_status(struct page * page)1964 static void cancel_page_dirty_status(struct page *page)
1965 {
1966 	struct address_space *mapping = page_mapping(page);
1967 	unsigned long flags;
1968 
1969 	cancel_dirty_page(page);
1970 	xa_lock_irqsave(&mapping->i_pages, flags);
1971 	__xa_clear_mark(&mapping->i_pages, page_index(page),
1972 			PAGECACHE_TAG_DIRTY);
1973 	__xa_clear_mark(&mapping->i_pages, page_index(page),
1974 			PAGECACHE_TAG_TOWRITE);
1975 	xa_unlock_irqrestore(&mapping->i_pages, flags);
1976 }
1977 
1978 /*
1979  * Note that we don't need to start a transaction unless we're journaling data
1980  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1981  * need to file the inode to the transaction's list in ordered mode because if
1982  * we are writing back data added by write(), the inode is already there and if
1983  * we are writing back data modified via mmap(), no one guarantees in which
1984  * transaction the data will hit the disk. In case we are journaling data, we
1985  * cannot start transaction directly because transaction start ranks above page
1986  * lock so we have to do some magic.
1987  *
1988  * This function can get called via...
1989  *   - ext4_writepages after taking page lock (have journal handle)
1990  *   - journal_submit_inode_data_buffers (no journal handle)
1991  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1992  *   - grab_page_cache when doing write_begin (have journal handle)
1993  *
1994  * We don't do any block allocation in this function. If we have page with
1995  * multiple blocks we need to write those buffer_heads that are mapped. This
1996  * is important for mmaped based write. So if we do with blocksize 1K
1997  * truncate(f, 1024);
1998  * a = mmap(f, 0, 4096);
1999  * a[0] = 'a';
2000  * truncate(f, 4096);
2001  * we have in the page first buffer_head mapped via page_mkwrite call back
2002  * but other buffer_heads would be unmapped but dirty (dirty done via the
2003  * do_wp_page). So writepage should write the first block. If we modify
2004  * the mmap area beyond 1024 we will again get a page_fault and the
2005  * page_mkwrite callback will do the block allocation and mark the
2006  * buffer_heads mapped.
2007  *
2008  * We redirty the page if we have any buffer_heads that is either delay or
2009  * unwritten in the page.
2010  *
2011  * We can get recursively called as show below.
2012  *
2013  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2014  *		ext4_writepage()
2015  *
2016  * But since we don't do any block allocation we should not deadlock.
2017  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2018  */
ext4_writepage(struct page * page,struct writeback_control * wbc)2019 static int ext4_writepage(struct page *page,
2020 			  struct writeback_control *wbc)
2021 {
2022 	int ret = 0;
2023 	loff_t size;
2024 	unsigned int len;
2025 	struct buffer_head *page_bufs = NULL;
2026 	struct inode *inode = page->mapping->host;
2027 	struct ext4_io_submit io_submit;
2028 	bool keep_towrite = false;
2029 
2030 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2031 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2032 		unlock_page(page);
2033 		return -EIO;
2034 	}
2035 
2036 	if (WARN_ON(!page_has_buffers(page))) {
2037 		cancel_page_dirty_status(page);
2038 		unlock_page(page);
2039 		return 0;
2040 	}
2041 
2042 	trace_ext4_writepage(page);
2043 	size = i_size_read(inode);
2044 	if (page->index == size >> PAGE_SHIFT &&
2045 	    !ext4_verity_in_progress(inode))
2046 		len = size & ~PAGE_MASK;
2047 	else
2048 		len = PAGE_SIZE;
2049 
2050 	/* Should never happen but for bugs in other kernel subsystems */
2051 	if (!page_has_buffers(page)) {
2052 		ext4_warning_inode(inode,
2053 		   "page %lu does not have buffers attached", page->index);
2054 		ClearPageDirty(page);
2055 		unlock_page(page);
2056 		return 0;
2057 	}
2058 
2059 	page_bufs = page_buffers(page);
2060 	/*
2061 	 * We cannot do block allocation or other extent handling in this
2062 	 * function. If there are buffers needing that, we have to redirty
2063 	 * the page. But we may reach here when we do a journal commit via
2064 	 * journal_submit_inode_data_buffers() and in that case we must write
2065 	 * allocated buffers to achieve data=ordered mode guarantees.
2066 	 *
2067 	 * Also, if there is only one buffer per page (the fs block
2068 	 * size == the page size), if one buffer needs block
2069 	 * allocation or needs to modify the extent tree to clear the
2070 	 * unwritten flag, we know that the page can't be written at
2071 	 * all, so we might as well refuse the write immediately.
2072 	 * Unfortunately if the block size != page size, we can't as
2073 	 * easily detect this case using ext4_walk_page_buffers(), but
2074 	 * for the extremely common case, this is an optimization that
2075 	 * skips a useless round trip through ext4_bio_write_page().
2076 	 */
2077 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2078 				   ext4_bh_delay_or_unwritten)) {
2079 		redirty_page_for_writepage(wbc, page);
2080 		if ((current->flags & PF_MEMALLOC) ||
2081 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2082 			/*
2083 			 * For memory cleaning there's no point in writing only
2084 			 * some buffers. So just bail out. Warn if we came here
2085 			 * from direct reclaim.
2086 			 */
2087 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2088 							== PF_MEMALLOC);
2089 			unlock_page(page);
2090 			return 0;
2091 		}
2092 		keep_towrite = true;
2093 	}
2094 
2095 	if (PageChecked(page) && ext4_should_journal_data(inode))
2096 		/*
2097 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2098 		 * doesn't seem much point in redirtying the page here.
2099 		 */
2100 		return __ext4_journalled_writepage(page, len);
2101 
2102 	ext4_io_submit_init(&io_submit, wbc);
2103 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2104 	if (!io_submit.io_end) {
2105 		redirty_page_for_writepage(wbc, page);
2106 		unlock_page(page);
2107 		return -ENOMEM;
2108 	}
2109 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2110 	ext4_io_submit(&io_submit);
2111 	/* Drop io_end reference we got from init */
2112 	ext4_put_io_end_defer(io_submit.io_end);
2113 	return ret;
2114 }
2115 
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2116 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2117 {
2118 	int len;
2119 	loff_t size;
2120 	int err;
2121 
2122 	BUG_ON(page->index != mpd->first_page);
2123 	clear_page_dirty_for_io(page);
2124 	/*
2125 	 * We have to be very careful here!  Nothing protects writeback path
2126 	 * against i_size changes and the page can be writeably mapped into
2127 	 * page tables. So an application can be growing i_size and writing
2128 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2129 	 * write-protects our page in page tables and the page cannot get
2130 	 * written to again until we release page lock. So only after
2131 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2132 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2133 	 * on the barrier provided by TestClearPageDirty in
2134 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2135 	 * after page tables are updated.
2136 	 */
2137 	size = i_size_read(mpd->inode);
2138 	if (page->index == size >> PAGE_SHIFT &&
2139 	    !ext4_verity_in_progress(mpd->inode))
2140 		len = size & ~PAGE_MASK;
2141 	else
2142 		len = PAGE_SIZE;
2143 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2144 	if (!err)
2145 		mpd->wbc->nr_to_write--;
2146 	mpd->first_page++;
2147 
2148 	return err;
2149 }
2150 
2151 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2152 
2153 /*
2154  * mballoc gives us at most this number of blocks...
2155  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2156  * The rest of mballoc seems to handle chunks up to full group size.
2157  */
2158 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2159 
2160 /*
2161  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2162  *
2163  * @mpd - extent of blocks
2164  * @lblk - logical number of the block in the file
2165  * @bh - buffer head we want to add to the extent
2166  *
2167  * The function is used to collect contig. blocks in the same state. If the
2168  * buffer doesn't require mapping for writeback and we haven't started the
2169  * extent of buffers to map yet, the function returns 'true' immediately - the
2170  * caller can write the buffer right away. Otherwise the function returns true
2171  * if the block has been added to the extent, false if the block couldn't be
2172  * added.
2173  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2174 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2175 				   struct buffer_head *bh)
2176 {
2177 	struct ext4_map_blocks *map = &mpd->map;
2178 
2179 	/* Buffer that doesn't need mapping for writeback? */
2180 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2181 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2182 		/* So far no extent to map => we write the buffer right away */
2183 		if (map->m_len == 0)
2184 			return true;
2185 		return false;
2186 	}
2187 
2188 	/* First block in the extent? */
2189 	if (map->m_len == 0) {
2190 		/* We cannot map unless handle is started... */
2191 		if (!mpd->do_map)
2192 			return false;
2193 		map->m_lblk = lblk;
2194 		map->m_len = 1;
2195 		map->m_flags = bh->b_state & BH_FLAGS;
2196 		return true;
2197 	}
2198 
2199 	/* Don't go larger than mballoc is willing to allocate */
2200 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2201 		return false;
2202 
2203 	/* Can we merge the block to our big extent? */
2204 	if (lblk == map->m_lblk + map->m_len &&
2205 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2206 		map->m_len++;
2207 		return true;
2208 	}
2209 	return false;
2210 }
2211 
2212 /*
2213  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2214  *
2215  * @mpd - extent of blocks for mapping
2216  * @head - the first buffer in the page
2217  * @bh - buffer we should start processing from
2218  * @lblk - logical number of the block in the file corresponding to @bh
2219  *
2220  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2221  * the page for IO if all buffers in this page were mapped and there's no
2222  * accumulated extent of buffers to map or add buffers in the page to the
2223  * extent of buffers to map. The function returns 1 if the caller can continue
2224  * by processing the next page, 0 if it should stop adding buffers to the
2225  * extent to map because we cannot extend it anymore. It can also return value
2226  * < 0 in case of error during IO submission.
2227  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2228 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2229 				   struct buffer_head *head,
2230 				   struct buffer_head *bh,
2231 				   ext4_lblk_t lblk)
2232 {
2233 	struct inode *inode = mpd->inode;
2234 	int err;
2235 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2236 							>> inode->i_blkbits;
2237 
2238 	if (ext4_verity_in_progress(inode))
2239 		blocks = EXT_MAX_BLOCKS;
2240 
2241 	do {
2242 		BUG_ON(buffer_locked(bh));
2243 
2244 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2245 			/* Found extent to map? */
2246 			if (mpd->map.m_len)
2247 				return 0;
2248 			/* Buffer needs mapping and handle is not started? */
2249 			if (!mpd->do_map)
2250 				return 0;
2251 			/* Everything mapped so far and we hit EOF */
2252 			break;
2253 		}
2254 	} while (lblk++, (bh = bh->b_this_page) != head);
2255 	/* So far everything mapped? Submit the page for IO. */
2256 	if (mpd->map.m_len == 0) {
2257 		err = mpage_submit_page(mpd, head->b_page);
2258 		if (err < 0)
2259 			return err;
2260 	}
2261 	if (lblk >= blocks) {
2262 		mpd->scanned_until_end = 1;
2263 		return 0;
2264 	}
2265 	return 1;
2266 }
2267 
2268 /*
2269  * mpage_process_page - update page buffers corresponding to changed extent and
2270  *		       may submit fully mapped page for IO
2271  *
2272  * @mpd		- description of extent to map, on return next extent to map
2273  * @m_lblk	- logical block mapping.
2274  * @m_pblk	- corresponding physical mapping.
2275  * @map_bh	- determines on return whether this page requires any further
2276  *		  mapping or not.
2277  * Scan given page buffers corresponding to changed extent and update buffer
2278  * state according to new extent state.
2279  * We map delalloc buffers to their physical location, clear unwritten bits.
2280  * If the given page is not fully mapped, we update @map to the next extent in
2281  * the given page that needs mapping & return @map_bh as true.
2282  */
mpage_process_page(struct mpage_da_data * mpd,struct page * page,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2283 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2284 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2285 			      bool *map_bh)
2286 {
2287 	struct buffer_head *head, *bh;
2288 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2289 	ext4_lblk_t lblk = *m_lblk;
2290 	ext4_fsblk_t pblock = *m_pblk;
2291 	int err = 0;
2292 	int blkbits = mpd->inode->i_blkbits;
2293 	ssize_t io_end_size = 0;
2294 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2295 
2296 	bh = head = page_buffers(page);
2297 	do {
2298 		if (lblk < mpd->map.m_lblk)
2299 			continue;
2300 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2301 			/*
2302 			 * Buffer after end of mapped extent.
2303 			 * Find next buffer in the page to map.
2304 			 */
2305 			mpd->map.m_len = 0;
2306 			mpd->map.m_flags = 0;
2307 			io_end_vec->size += io_end_size;
2308 			io_end_size = 0;
2309 
2310 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2311 			if (err > 0)
2312 				err = 0;
2313 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2314 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2315 				if (IS_ERR(io_end_vec)) {
2316 					err = PTR_ERR(io_end_vec);
2317 					goto out;
2318 				}
2319 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2320 			}
2321 			*map_bh = true;
2322 			goto out;
2323 		}
2324 		if (buffer_delay(bh)) {
2325 			clear_buffer_delay(bh);
2326 			bh->b_blocknr = pblock++;
2327 		}
2328 		clear_buffer_unwritten(bh);
2329 		io_end_size += (1 << blkbits);
2330 	} while (lblk++, (bh = bh->b_this_page) != head);
2331 
2332 	io_end_vec->size += io_end_size;
2333 	io_end_size = 0;
2334 	*map_bh = false;
2335 out:
2336 	*m_lblk = lblk;
2337 	*m_pblk = pblock;
2338 	return err;
2339 }
2340 
2341 /*
2342  * mpage_map_buffers - update buffers corresponding to changed extent and
2343  *		       submit fully mapped pages for IO
2344  *
2345  * @mpd - description of extent to map, on return next extent to map
2346  *
2347  * Scan buffers corresponding to changed extent (we expect corresponding pages
2348  * to be already locked) and update buffer state according to new extent state.
2349  * We map delalloc buffers to their physical location, clear unwritten bits,
2350  * and mark buffers as uninit when we perform writes to unwritten extents
2351  * and do extent conversion after IO is finished. If the last page is not fully
2352  * mapped, we update @map to the next extent in the last page that needs
2353  * mapping. Otherwise we submit the page for IO.
2354  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2355 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2356 {
2357 	struct pagevec pvec;
2358 	int nr_pages, i;
2359 	struct inode *inode = mpd->inode;
2360 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2361 	pgoff_t start, end;
2362 	ext4_lblk_t lblk;
2363 	ext4_fsblk_t pblock;
2364 	int err;
2365 	bool map_bh = false;
2366 
2367 	start = mpd->map.m_lblk >> bpp_bits;
2368 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2369 	lblk = start << bpp_bits;
2370 	pblock = mpd->map.m_pblk;
2371 
2372 	pagevec_init(&pvec);
2373 	while (start <= end) {
2374 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2375 						&start, end);
2376 		if (nr_pages == 0)
2377 			break;
2378 		for (i = 0; i < nr_pages; i++) {
2379 			struct page *page = pvec.pages[i];
2380 
2381 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2382 						 &map_bh);
2383 			/*
2384 			 * If map_bh is true, means page may require further bh
2385 			 * mapping, or maybe the page was submitted for IO.
2386 			 * So we return to call further extent mapping.
2387 			 */
2388 			if (err < 0 || map_bh)
2389 				goto out;
2390 			/* Page fully mapped - let IO run! */
2391 			err = mpage_submit_page(mpd, page);
2392 			if (err < 0)
2393 				goto out;
2394 		}
2395 		pagevec_release(&pvec);
2396 	}
2397 	/* Extent fully mapped and matches with page boundary. We are done. */
2398 	mpd->map.m_len = 0;
2399 	mpd->map.m_flags = 0;
2400 	return 0;
2401 out:
2402 	pagevec_release(&pvec);
2403 	return err;
2404 }
2405 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2406 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2407 {
2408 	struct inode *inode = mpd->inode;
2409 	struct ext4_map_blocks *map = &mpd->map;
2410 	int get_blocks_flags;
2411 	int err, dioread_nolock;
2412 
2413 	trace_ext4_da_write_pages_extent(inode, map);
2414 	/*
2415 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2416 	 * to convert an unwritten extent to be initialized (in the case
2417 	 * where we have written into one or more preallocated blocks).  It is
2418 	 * possible that we're going to need more metadata blocks than
2419 	 * previously reserved. However we must not fail because we're in
2420 	 * writeback and there is nothing we can do about it so it might result
2421 	 * in data loss.  So use reserved blocks to allocate metadata if
2422 	 * possible.
2423 	 *
2424 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2425 	 * the blocks in question are delalloc blocks.  This indicates
2426 	 * that the blocks and quotas has already been checked when
2427 	 * the data was copied into the page cache.
2428 	 */
2429 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2430 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2431 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2432 	dioread_nolock = ext4_should_dioread_nolock(inode);
2433 	if (dioread_nolock)
2434 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2435 	if (map->m_flags & BIT(BH_Delay))
2436 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2437 
2438 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2439 	if (err < 0)
2440 		return err;
2441 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2442 		if (!mpd->io_submit.io_end->handle &&
2443 		    ext4_handle_valid(handle)) {
2444 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2445 			handle->h_rsv_handle = NULL;
2446 		}
2447 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2448 	}
2449 
2450 	BUG_ON(map->m_len == 0);
2451 	return 0;
2452 }
2453 
2454 /*
2455  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2456  *				 mpd->len and submit pages underlying it for IO
2457  *
2458  * @handle - handle for journal operations
2459  * @mpd - extent to map
2460  * @give_up_on_write - we set this to true iff there is a fatal error and there
2461  *                     is no hope of writing the data. The caller should discard
2462  *                     dirty pages to avoid infinite loops.
2463  *
2464  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2465  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2466  * them to initialized or split the described range from larger unwritten
2467  * extent. Note that we need not map all the described range since allocation
2468  * can return less blocks or the range is covered by more unwritten extents. We
2469  * cannot map more because we are limited by reserved transaction credits. On
2470  * the other hand we always make sure that the last touched page is fully
2471  * mapped so that it can be written out (and thus forward progress is
2472  * guaranteed). After mapping we submit all mapped pages for IO.
2473  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2474 static int mpage_map_and_submit_extent(handle_t *handle,
2475 				       struct mpage_da_data *mpd,
2476 				       bool *give_up_on_write)
2477 {
2478 	struct inode *inode = mpd->inode;
2479 	struct ext4_map_blocks *map = &mpd->map;
2480 	int err;
2481 	loff_t disksize;
2482 	int progress = 0;
2483 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2484 	struct ext4_io_end_vec *io_end_vec;
2485 
2486 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2487 	if (IS_ERR(io_end_vec))
2488 		return PTR_ERR(io_end_vec);
2489 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2490 	do {
2491 		err = mpage_map_one_extent(handle, mpd);
2492 		if (err < 0) {
2493 			struct super_block *sb = inode->i_sb;
2494 
2495 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2496 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2497 				goto invalidate_dirty_pages;
2498 			/*
2499 			 * Let the uper layers retry transient errors.
2500 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2501 			 * is non-zero, a commit should free up blocks.
2502 			 */
2503 			if ((err == -ENOMEM) ||
2504 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2505 				if (progress)
2506 					goto update_disksize;
2507 				return err;
2508 			}
2509 			ext4_msg(sb, KERN_CRIT,
2510 				 "Delayed block allocation failed for "
2511 				 "inode %lu at logical offset %llu with"
2512 				 " max blocks %u with error %d",
2513 				 inode->i_ino,
2514 				 (unsigned long long)map->m_lblk,
2515 				 (unsigned)map->m_len, -err);
2516 			ext4_msg(sb, KERN_CRIT,
2517 				 "This should not happen!! Data will "
2518 				 "be lost\n");
2519 			if (err == -ENOSPC)
2520 				ext4_print_free_blocks(inode);
2521 		invalidate_dirty_pages:
2522 			*give_up_on_write = true;
2523 			return err;
2524 		}
2525 		progress = 1;
2526 		/*
2527 		 * Update buffer state, submit mapped pages, and get us new
2528 		 * extent to map
2529 		 */
2530 		err = mpage_map_and_submit_buffers(mpd);
2531 		if (err < 0)
2532 			goto update_disksize;
2533 	} while (map->m_len);
2534 
2535 update_disksize:
2536 	/*
2537 	 * Update on-disk size after IO is submitted.  Races with
2538 	 * truncate are avoided by checking i_size under i_data_sem.
2539 	 */
2540 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2541 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2542 		int err2;
2543 		loff_t i_size;
2544 
2545 		down_write(&EXT4_I(inode)->i_data_sem);
2546 		i_size = i_size_read(inode);
2547 		if (disksize > i_size)
2548 			disksize = i_size;
2549 		if (disksize > EXT4_I(inode)->i_disksize)
2550 			EXT4_I(inode)->i_disksize = disksize;
2551 		up_write(&EXT4_I(inode)->i_data_sem);
2552 		err2 = ext4_mark_inode_dirty(handle, inode);
2553 		if (err2) {
2554 			ext4_error_err(inode->i_sb, -err2,
2555 				       "Failed to mark inode %lu dirty",
2556 				       inode->i_ino);
2557 		}
2558 		if (!err)
2559 			err = err2;
2560 	}
2561 	return err;
2562 }
2563 
2564 /*
2565  * Calculate the total number of credits to reserve for one writepages
2566  * iteration. This is called from ext4_writepages(). We map an extent of
2567  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2568  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2569  * bpp - 1 blocks in bpp different extents.
2570  */
ext4_da_writepages_trans_blocks(struct inode * inode)2571 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2572 {
2573 	int bpp = ext4_journal_blocks_per_page(inode);
2574 
2575 	return ext4_meta_trans_blocks(inode,
2576 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2577 }
2578 
2579 /*
2580  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2581  * 				 and underlying extent to map
2582  *
2583  * @mpd - where to look for pages
2584  *
2585  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2586  * IO immediately. When we find a page which isn't mapped we start accumulating
2587  * extent of buffers underlying these pages that needs mapping (formed by
2588  * either delayed or unwritten buffers). We also lock the pages containing
2589  * these buffers. The extent found is returned in @mpd structure (starting at
2590  * mpd->lblk with length mpd->len blocks).
2591  *
2592  * Note that this function can attach bios to one io_end structure which are
2593  * neither logically nor physically contiguous. Although it may seem as an
2594  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2595  * case as we need to track IO to all buffers underlying a page in one io_end.
2596  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2597 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2598 {
2599 	struct address_space *mapping = mpd->inode->i_mapping;
2600 	struct pagevec pvec;
2601 	unsigned int nr_pages;
2602 	long left = mpd->wbc->nr_to_write;
2603 	pgoff_t index = mpd->first_page;
2604 	pgoff_t end = mpd->last_page;
2605 	xa_mark_t tag;
2606 	int i, err = 0;
2607 	int blkbits = mpd->inode->i_blkbits;
2608 	ext4_lblk_t lblk;
2609 	struct buffer_head *head;
2610 
2611 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2612 		tag = PAGECACHE_TAG_TOWRITE;
2613 	else
2614 		tag = PAGECACHE_TAG_DIRTY;
2615 
2616 	pagevec_init(&pvec);
2617 	mpd->map.m_len = 0;
2618 	mpd->next_page = index;
2619 	while (index <= end) {
2620 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2621 				tag);
2622 		if (nr_pages == 0)
2623 			break;
2624 
2625 		for (i = 0; i < nr_pages; i++) {
2626 			struct page *page = pvec.pages[i];
2627 
2628 			/*
2629 			 * Accumulated enough dirty pages? This doesn't apply
2630 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2631 			 * keep going because someone may be concurrently
2632 			 * dirtying pages, and we might have synced a lot of
2633 			 * newly appeared dirty pages, but have not synced all
2634 			 * of the old dirty pages.
2635 			 */
2636 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2637 				goto out;
2638 
2639 			/* If we can't merge this page, we are done. */
2640 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2641 				goto out;
2642 
2643 			lock_page(page);
2644 			/*
2645 			 * If the page is no longer dirty, or its mapping no
2646 			 * longer corresponds to inode we are writing (which
2647 			 * means it has been truncated or invalidated), or the
2648 			 * page is already under writeback and we are not doing
2649 			 * a data integrity writeback, skip the page
2650 			 */
2651 			if (!PageDirty(page) ||
2652 			    (PageWriteback(page) &&
2653 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2654 			    unlikely(page->mapping != mapping)) {
2655 				unlock_page(page);
2656 				continue;
2657 			}
2658 
2659 			if (WARN_ON(!page_has_buffers(page))) {
2660 				cancel_page_dirty_status(page);
2661 				unlock_page(page);
2662 				continue;
2663 			}
2664 
2665 			wait_on_page_writeback(page);
2666 			BUG_ON(PageWriteback(page));
2667 
2668 			/*
2669 			 * Should never happen but for buggy code in
2670 			 * other subsystems that call
2671 			 * set_page_dirty() without properly warning
2672 			 * the file system first.  See [1] for more
2673 			 * information.
2674 			 *
2675 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2676 			 */
2677 			if (!page_has_buffers(page)) {
2678 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2679 				ClearPageDirty(page);
2680 				unlock_page(page);
2681 				continue;
2682 			}
2683 
2684 			if (mpd->map.m_len == 0)
2685 				mpd->first_page = page->index;
2686 			mpd->next_page = page->index + 1;
2687 			/* Add all dirty buffers to mpd */
2688 			lblk = ((ext4_lblk_t)page->index) <<
2689 				(PAGE_SHIFT - blkbits);
2690 			head = page_buffers(page);
2691 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2692 			if (err <= 0)
2693 				goto out;
2694 			err = 0;
2695 			left--;
2696 		}
2697 		pagevec_release(&pvec);
2698 		cond_resched();
2699 	}
2700 	mpd->scanned_until_end = 1;
2701 	return 0;
2702 out:
2703 	pagevec_release(&pvec);
2704 	return err;
2705 }
2706 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2707 static int ext4_writepages(struct address_space *mapping,
2708 			   struct writeback_control *wbc)
2709 {
2710 	pgoff_t	writeback_index = 0;
2711 	long nr_to_write = wbc->nr_to_write;
2712 	int range_whole = 0;
2713 	int cycled = 1;
2714 	handle_t *handle = NULL;
2715 	struct mpage_da_data mpd;
2716 	struct inode *inode = mapping->host;
2717 	int needed_blocks, rsv_blocks = 0, ret = 0;
2718 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2719 	struct blk_plug plug;
2720 	bool give_up_on_write = false;
2721 
2722 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2723 		return -EIO;
2724 
2725 	percpu_down_read(&sbi->s_writepages_rwsem);
2726 	trace_ext4_writepages(inode, wbc);
2727 
2728 	/*
2729 	 * No pages to write? This is mainly a kludge to avoid starting
2730 	 * a transaction for special inodes like journal inode on last iput()
2731 	 * because that could violate lock ordering on umount
2732 	 */
2733 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2734 		goto out_writepages;
2735 
2736 	if (ext4_should_journal_data(inode)) {
2737 		ret = generic_writepages(mapping, wbc);
2738 		goto out_writepages;
2739 	}
2740 
2741 	/*
2742 	 * If the filesystem has aborted, it is read-only, so return
2743 	 * right away instead of dumping stack traces later on that
2744 	 * will obscure the real source of the problem.  We test
2745 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2746 	 * the latter could be true if the filesystem is mounted
2747 	 * read-only, and in that case, ext4_writepages should
2748 	 * *never* be called, so if that ever happens, we would want
2749 	 * the stack trace.
2750 	 */
2751 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2752 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2753 		ret = -EROFS;
2754 		goto out_writepages;
2755 	}
2756 
2757 	/*
2758 	 * If we have inline data and arrive here, it means that
2759 	 * we will soon create the block for the 1st page, so
2760 	 * we'd better clear the inline data here.
2761 	 */
2762 	if (ext4_has_inline_data(inode)) {
2763 		/* Just inode will be modified... */
2764 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2765 		if (IS_ERR(handle)) {
2766 			ret = PTR_ERR(handle);
2767 			goto out_writepages;
2768 		}
2769 		BUG_ON(ext4_test_inode_state(inode,
2770 				EXT4_STATE_MAY_INLINE_DATA));
2771 		ext4_destroy_inline_data(handle, inode);
2772 		ext4_journal_stop(handle);
2773 	}
2774 
2775 	if (ext4_should_dioread_nolock(inode)) {
2776 		/*
2777 		 * We may need to convert up to one extent per block in
2778 		 * the page and we may dirty the inode.
2779 		 */
2780 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2781 						PAGE_SIZE >> inode->i_blkbits);
2782 	}
2783 
2784 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2785 		range_whole = 1;
2786 
2787 	if (wbc->range_cyclic) {
2788 		writeback_index = mapping->writeback_index;
2789 		if (writeback_index)
2790 			cycled = 0;
2791 		mpd.first_page = writeback_index;
2792 		mpd.last_page = -1;
2793 	} else {
2794 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2795 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2796 	}
2797 
2798 	mpd.inode = inode;
2799 	mpd.wbc = wbc;
2800 	ext4_io_submit_init(&mpd.io_submit, wbc);
2801 retry:
2802 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2803 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2804 	blk_start_plug(&plug);
2805 
2806 	/*
2807 	 * First writeback pages that don't need mapping - we can avoid
2808 	 * starting a transaction unnecessarily and also avoid being blocked
2809 	 * in the block layer on device congestion while having transaction
2810 	 * started.
2811 	 */
2812 	mpd.do_map = 0;
2813 	mpd.scanned_until_end = 0;
2814 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2815 	if (!mpd.io_submit.io_end) {
2816 		ret = -ENOMEM;
2817 		goto unplug;
2818 	}
2819 	ret = mpage_prepare_extent_to_map(&mpd);
2820 	/* Unlock pages we didn't use */
2821 	mpage_release_unused_pages(&mpd, false);
2822 	/* Submit prepared bio */
2823 	ext4_io_submit(&mpd.io_submit);
2824 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2825 	mpd.io_submit.io_end = NULL;
2826 	if (ret < 0)
2827 		goto unplug;
2828 
2829 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2830 		/* For each extent of pages we use new io_end */
2831 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2832 		if (!mpd.io_submit.io_end) {
2833 			ret = -ENOMEM;
2834 			break;
2835 		}
2836 
2837 		/*
2838 		 * We have two constraints: We find one extent to map and we
2839 		 * must always write out whole page (makes a difference when
2840 		 * blocksize < pagesize) so that we don't block on IO when we
2841 		 * try to write out the rest of the page. Journalled mode is
2842 		 * not supported by delalloc.
2843 		 */
2844 		BUG_ON(ext4_should_journal_data(inode));
2845 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2846 
2847 		/* start a new transaction */
2848 		handle = ext4_journal_start_with_reserve(inode,
2849 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2850 		if (IS_ERR(handle)) {
2851 			ret = PTR_ERR(handle);
2852 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2853 			       "%ld pages, ino %lu; err %d", __func__,
2854 				wbc->nr_to_write, inode->i_ino, ret);
2855 			/* Release allocated io_end */
2856 			ext4_put_io_end(mpd.io_submit.io_end);
2857 			mpd.io_submit.io_end = NULL;
2858 			break;
2859 		}
2860 		mpd.do_map = 1;
2861 
2862 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2863 		ret = mpage_prepare_extent_to_map(&mpd);
2864 		if (!ret && mpd.map.m_len)
2865 			ret = mpage_map_and_submit_extent(handle, &mpd,
2866 					&give_up_on_write);
2867 		/*
2868 		 * Caution: If the handle is synchronous,
2869 		 * ext4_journal_stop() can wait for transaction commit
2870 		 * to finish which may depend on writeback of pages to
2871 		 * complete or on page lock to be released.  In that
2872 		 * case, we have to wait until after we have
2873 		 * submitted all the IO, released page locks we hold,
2874 		 * and dropped io_end reference (for extent conversion
2875 		 * to be able to complete) before stopping the handle.
2876 		 */
2877 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2878 			ext4_journal_stop(handle);
2879 			handle = NULL;
2880 			mpd.do_map = 0;
2881 		}
2882 		/* Unlock pages we didn't use */
2883 		mpage_release_unused_pages(&mpd, give_up_on_write);
2884 		/* Submit prepared bio */
2885 		ext4_io_submit(&mpd.io_submit);
2886 
2887 		/*
2888 		 * Drop our io_end reference we got from init. We have
2889 		 * to be careful and use deferred io_end finishing if
2890 		 * we are still holding the transaction as we can
2891 		 * release the last reference to io_end which may end
2892 		 * up doing unwritten extent conversion.
2893 		 */
2894 		if (handle) {
2895 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2896 			ext4_journal_stop(handle);
2897 		} else
2898 			ext4_put_io_end(mpd.io_submit.io_end);
2899 		mpd.io_submit.io_end = NULL;
2900 
2901 		if (ret == -ENOSPC && sbi->s_journal) {
2902 			/*
2903 			 * Commit the transaction which would
2904 			 * free blocks released in the transaction
2905 			 * and try again
2906 			 */
2907 			jbd2_journal_force_commit_nested(sbi->s_journal);
2908 			ret = 0;
2909 			continue;
2910 		}
2911 		/* Fatal error - ENOMEM, EIO... */
2912 		if (ret)
2913 			break;
2914 	}
2915 unplug:
2916 	blk_finish_plug(&plug);
2917 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2918 		cycled = 1;
2919 		mpd.last_page = writeback_index - 1;
2920 		mpd.first_page = 0;
2921 		goto retry;
2922 	}
2923 
2924 	/* Update index */
2925 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2926 		/*
2927 		 * Set the writeback_index so that range_cyclic
2928 		 * mode will write it back later
2929 		 */
2930 		mapping->writeback_index = mpd.first_page;
2931 
2932 out_writepages:
2933 	trace_ext4_writepages_result(inode, wbc, ret,
2934 				     nr_to_write - wbc->nr_to_write);
2935 	percpu_up_read(&sbi->s_writepages_rwsem);
2936 	return ret;
2937 }
2938 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2939 static int ext4_dax_writepages(struct address_space *mapping,
2940 			       struct writeback_control *wbc)
2941 {
2942 	int ret;
2943 	long nr_to_write = wbc->nr_to_write;
2944 	struct inode *inode = mapping->host;
2945 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2946 
2947 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2948 		return -EIO;
2949 
2950 	percpu_down_read(&sbi->s_writepages_rwsem);
2951 	trace_ext4_writepages(inode, wbc);
2952 
2953 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2954 	trace_ext4_writepages_result(inode, wbc, ret,
2955 				     nr_to_write - wbc->nr_to_write);
2956 	percpu_up_read(&sbi->s_writepages_rwsem);
2957 	return ret;
2958 }
2959 
ext4_nonda_switch(struct super_block * sb)2960 static int ext4_nonda_switch(struct super_block *sb)
2961 {
2962 	s64 free_clusters, dirty_clusters;
2963 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2964 
2965 	/*
2966 	 * switch to non delalloc mode if we are running low
2967 	 * on free block. The free block accounting via percpu
2968 	 * counters can get slightly wrong with percpu_counter_batch getting
2969 	 * accumulated on each CPU without updating global counters
2970 	 * Delalloc need an accurate free block accounting. So switch
2971 	 * to non delalloc when we are near to error range.
2972 	 */
2973 	free_clusters =
2974 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2975 	dirty_clusters =
2976 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2977 	/*
2978 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2979 	 */
2980 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2981 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2982 
2983 	if (2 * free_clusters < 3 * dirty_clusters ||
2984 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2985 		/*
2986 		 * free block count is less than 150% of dirty blocks
2987 		 * or free blocks is less than watermark
2988 		 */
2989 		return 1;
2990 	}
2991 	return 0;
2992 }
2993 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2994 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2995 			       loff_t pos, unsigned len, unsigned flags,
2996 			       struct page **pagep, void **fsdata)
2997 {
2998 	int ret, retries = 0;
2999 	struct page *page;
3000 	pgoff_t index;
3001 	struct inode *inode = mapping->host;
3002 
3003 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3004 		return -EIO;
3005 
3006 	index = pos >> PAGE_SHIFT;
3007 
3008 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3009 	    ext4_verity_in_progress(inode)) {
3010 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3011 		return ext4_write_begin(file, mapping, pos,
3012 					len, flags, pagep, fsdata);
3013 	}
3014 	*fsdata = (void *)0;
3015 	trace_ext4_da_write_begin(inode, pos, len, flags);
3016 
3017 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3018 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3019 						      pos, len, flags,
3020 						      pagep, fsdata);
3021 		if (ret < 0)
3022 			return ret;
3023 		if (ret == 1)
3024 			return 0;
3025 	}
3026 
3027 retry:
3028 	page = grab_cache_page_write_begin(mapping, index, flags);
3029 	if (!page)
3030 		return -ENOMEM;
3031 
3032 	/* In case writeback began while the page was unlocked */
3033 	wait_for_stable_page(page);
3034 
3035 #ifdef CONFIG_FS_ENCRYPTION
3036 	ret = ext4_block_write_begin(page, pos, len,
3037 				     ext4_da_get_block_prep);
3038 #else
3039 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3040 #endif
3041 	if (ret < 0) {
3042 		unlock_page(page);
3043 		put_page(page);
3044 		/*
3045 		 * block_write_begin may have instantiated a few blocks
3046 		 * outside i_size.  Trim these off again. Don't need
3047 		 * i_size_read because we hold inode lock.
3048 		 */
3049 		if (pos + len > inode->i_size)
3050 			ext4_truncate_failed_write(inode);
3051 
3052 		if (ret == -ENOSPC &&
3053 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3054 			goto retry;
3055 		return ret;
3056 	}
3057 
3058 	*pagep = page;
3059 	return ret;
3060 }
3061 
3062 /*
3063  * Check if we should update i_disksize
3064  * when write to the end of file but not require block allocation
3065  */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3066 static int ext4_da_should_update_i_disksize(struct page *page,
3067 					    unsigned long offset)
3068 {
3069 	struct buffer_head *bh;
3070 	struct inode *inode = page->mapping->host;
3071 	unsigned int idx;
3072 	int i;
3073 
3074 	bh = page_buffers(page);
3075 	idx = offset >> inode->i_blkbits;
3076 
3077 	for (i = 0; i < idx; i++)
3078 		bh = bh->b_this_page;
3079 
3080 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3081 		return 0;
3082 	return 1;
3083 }
3084 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3085 static int ext4_da_write_end(struct file *file,
3086 			     struct address_space *mapping,
3087 			     loff_t pos, unsigned len, unsigned copied,
3088 			     struct page *page, void *fsdata)
3089 {
3090 	struct inode *inode = mapping->host;
3091 	loff_t new_i_size;
3092 	unsigned long start, end;
3093 	int write_mode = (int)(unsigned long)fsdata;
3094 
3095 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3096 		return ext4_write_end(file, mapping, pos,
3097 				      len, copied, page, fsdata);
3098 
3099 	trace_ext4_da_write_end(inode, pos, len, copied);
3100 
3101 	if (write_mode != CONVERT_INLINE_DATA &&
3102 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3103 	    ext4_has_inline_data(inode))
3104 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3105 
3106 	start = pos & (PAGE_SIZE - 1);
3107 	end = start + copied - 1;
3108 
3109 	/*
3110 	 * Since we are holding inode lock, we are sure i_disksize <=
3111 	 * i_size. We also know that if i_disksize < i_size, there are
3112 	 * delalloc writes pending in the range upto i_size. If the end of
3113 	 * the current write is <= i_size, there's no need to touch
3114 	 * i_disksize since writeback will push i_disksize upto i_size
3115 	 * eventually. If the end of the current write is > i_size and
3116 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3117 	 * check), we need to update i_disksize here as neither
3118 	 * ext4_writepage() nor certain ext4_writepages() paths not
3119 	 * allocating blocks update i_disksize.
3120 	 *
3121 	 * Note that we defer inode dirtying to generic_write_end() /
3122 	 * ext4_da_write_inline_data_end().
3123 	 */
3124 	new_i_size = pos + copied;
3125 	if (copied && new_i_size > inode->i_size &&
3126 	    ext4_da_should_update_i_disksize(page, end))
3127 		ext4_update_i_disksize(inode, new_i_size);
3128 
3129 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3130 }
3131 
3132 /*
3133  * Force all delayed allocation blocks to be allocated for a given inode.
3134  */
ext4_alloc_da_blocks(struct inode * inode)3135 int ext4_alloc_da_blocks(struct inode *inode)
3136 {
3137 	trace_ext4_alloc_da_blocks(inode);
3138 
3139 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3140 		return 0;
3141 
3142 	/*
3143 	 * We do something simple for now.  The filemap_flush() will
3144 	 * also start triggering a write of the data blocks, which is
3145 	 * not strictly speaking necessary (and for users of
3146 	 * laptop_mode, not even desirable).  However, to do otherwise
3147 	 * would require replicating code paths in:
3148 	 *
3149 	 * ext4_writepages() ->
3150 	 *    write_cache_pages() ---> (via passed in callback function)
3151 	 *        __mpage_da_writepage() -->
3152 	 *           mpage_add_bh_to_extent()
3153 	 *           mpage_da_map_blocks()
3154 	 *
3155 	 * The problem is that write_cache_pages(), located in
3156 	 * mm/page-writeback.c, marks pages clean in preparation for
3157 	 * doing I/O, which is not desirable if we're not planning on
3158 	 * doing I/O at all.
3159 	 *
3160 	 * We could call write_cache_pages(), and then redirty all of
3161 	 * the pages by calling redirty_page_for_writepage() but that
3162 	 * would be ugly in the extreme.  So instead we would need to
3163 	 * replicate parts of the code in the above functions,
3164 	 * simplifying them because we wouldn't actually intend to
3165 	 * write out the pages, but rather only collect contiguous
3166 	 * logical block extents, call the multi-block allocator, and
3167 	 * then update the buffer heads with the block allocations.
3168 	 *
3169 	 * For now, though, we'll cheat by calling filemap_flush(),
3170 	 * which will map the blocks, and start the I/O, but not
3171 	 * actually wait for the I/O to complete.
3172 	 */
3173 	return filemap_flush(inode->i_mapping);
3174 }
3175 
3176 /*
3177  * bmap() is special.  It gets used by applications such as lilo and by
3178  * the swapper to find the on-disk block of a specific piece of data.
3179  *
3180  * Naturally, this is dangerous if the block concerned is still in the
3181  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3182  * filesystem and enables swap, then they may get a nasty shock when the
3183  * data getting swapped to that swapfile suddenly gets overwritten by
3184  * the original zero's written out previously to the journal and
3185  * awaiting writeback in the kernel's buffer cache.
3186  *
3187  * So, if we see any bmap calls here on a modified, data-journaled file,
3188  * take extra steps to flush any blocks which might be in the cache.
3189  */
ext4_bmap(struct address_space * mapping,sector_t block)3190 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3191 {
3192 	struct inode *inode = mapping->host;
3193 	journal_t *journal;
3194 	sector_t ret = 0;
3195 	int err;
3196 
3197 	inode_lock_shared(inode);
3198 	/*
3199 	 * We can get here for an inline file via the FIBMAP ioctl
3200 	 */
3201 	if (ext4_has_inline_data(inode))
3202 		goto out;
3203 
3204 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3205 			test_opt(inode->i_sb, DELALLOC)) {
3206 		/*
3207 		 * With delalloc we want to sync the file
3208 		 * so that we can make sure we allocate
3209 		 * blocks for file
3210 		 */
3211 		filemap_write_and_wait(mapping);
3212 	}
3213 
3214 	if (EXT4_JOURNAL(inode) &&
3215 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3216 		/*
3217 		 * This is a REALLY heavyweight approach, but the use of
3218 		 * bmap on dirty files is expected to be extremely rare:
3219 		 * only if we run lilo or swapon on a freshly made file
3220 		 * do we expect this to happen.
3221 		 *
3222 		 * (bmap requires CAP_SYS_RAWIO so this does not
3223 		 * represent an unprivileged user DOS attack --- we'd be
3224 		 * in trouble if mortal users could trigger this path at
3225 		 * will.)
3226 		 *
3227 		 * NB. EXT4_STATE_JDATA is not set on files other than
3228 		 * regular files.  If somebody wants to bmap a directory
3229 		 * or symlink and gets confused because the buffer
3230 		 * hasn't yet been flushed to disk, they deserve
3231 		 * everything they get.
3232 		 */
3233 
3234 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3235 		journal = EXT4_JOURNAL(inode);
3236 		jbd2_journal_lock_updates(journal);
3237 		err = jbd2_journal_flush(journal);
3238 		jbd2_journal_unlock_updates(journal);
3239 
3240 		if (err)
3241 			goto out;
3242 	}
3243 
3244 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3245 
3246 out:
3247 	inode_unlock_shared(inode);
3248 	return ret;
3249 }
3250 
ext4_readpage(struct file * file,struct page * page)3251 static int ext4_readpage(struct file *file, struct page *page)
3252 {
3253 	int ret = -EAGAIN;
3254 	struct inode *inode = page->mapping->host;
3255 
3256 	trace_ext4_readpage(page);
3257 
3258 	if (ext4_has_inline_data(inode))
3259 		ret = ext4_readpage_inline(inode, page);
3260 
3261 	if (ret == -EAGAIN)
3262 		return ext4_mpage_readpages(inode, NULL, page);
3263 
3264 	return ret;
3265 }
3266 
ext4_readahead(struct readahead_control * rac)3267 static void ext4_readahead(struct readahead_control *rac)
3268 {
3269 	struct inode *inode = rac->mapping->host;
3270 
3271 	/* If the file has inline data, no need to do readahead. */
3272 	if (ext4_has_inline_data(inode))
3273 		return;
3274 
3275 	ext4_mpage_readpages(inode, rac, NULL);
3276 }
3277 
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3278 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3279 				unsigned int length)
3280 {
3281 	trace_ext4_invalidatepage(page, offset, length);
3282 
3283 	/* No journalling happens on data buffers when this function is used */
3284 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3285 
3286 	block_invalidatepage(page, offset, length);
3287 }
3288 
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3289 static int __ext4_journalled_invalidatepage(struct page *page,
3290 					    unsigned int offset,
3291 					    unsigned int length)
3292 {
3293 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3294 
3295 	trace_ext4_journalled_invalidatepage(page, offset, length);
3296 
3297 	/*
3298 	 * If it's a full truncate we just forget about the pending dirtying
3299 	 */
3300 	if (offset == 0 && length == PAGE_SIZE)
3301 		ClearPageChecked(page);
3302 
3303 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3304 }
3305 
3306 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3307 static void ext4_journalled_invalidatepage(struct page *page,
3308 					   unsigned int offset,
3309 					   unsigned int length)
3310 {
3311 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3312 }
3313 
ext4_releasepage(struct page * page,gfp_t wait)3314 static int ext4_releasepage(struct page *page, gfp_t wait)
3315 {
3316 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3317 
3318 	trace_ext4_releasepage(page);
3319 
3320 	/* Page has dirty journalled data -> cannot release */
3321 	if (PageChecked(page))
3322 		return 0;
3323 	if (journal)
3324 		return jbd2_journal_try_to_free_buffers(journal, page);
3325 	else
3326 		return try_to_free_buffers(page);
3327 }
3328 
ext4_inode_datasync_dirty(struct inode * inode)3329 static bool ext4_inode_datasync_dirty(struct inode *inode)
3330 {
3331 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3332 
3333 	if (journal) {
3334 		if (jbd2_transaction_committed(journal,
3335 			EXT4_I(inode)->i_datasync_tid))
3336 			return false;
3337 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3338 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3339 		return true;
3340 	}
3341 
3342 	/* Any metadata buffers to write? */
3343 	if (!list_empty(&inode->i_mapping->private_list))
3344 		return true;
3345 	return inode->i_state & I_DIRTY_DATASYNC;
3346 }
3347 
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length)3348 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3349 			   struct ext4_map_blocks *map, loff_t offset,
3350 			   loff_t length)
3351 {
3352 	u8 blkbits = inode->i_blkbits;
3353 
3354 	/*
3355 	 * Writes that span EOF might trigger an I/O size update on completion,
3356 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3357 	 * there is no other metadata changes being made or are pending.
3358 	 */
3359 	iomap->flags = 0;
3360 	if (ext4_inode_datasync_dirty(inode) ||
3361 	    offset + length > i_size_read(inode))
3362 		iomap->flags |= IOMAP_F_DIRTY;
3363 
3364 	if (map->m_flags & EXT4_MAP_NEW)
3365 		iomap->flags |= IOMAP_F_NEW;
3366 
3367 	iomap->bdev = inode->i_sb->s_bdev;
3368 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3369 	iomap->offset = (u64) map->m_lblk << blkbits;
3370 	iomap->length = (u64) map->m_len << blkbits;
3371 
3372 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3373 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3374 		iomap->flags |= IOMAP_F_MERGED;
3375 
3376 	/*
3377 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3378 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3379 	 * set. In order for any allocated unwritten extents to be converted
3380 	 * into written extents correctly within the ->end_io() handler, we
3381 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3382 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3383 	 * been set first.
3384 	 */
3385 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3386 		iomap->type = IOMAP_UNWRITTEN;
3387 		iomap->addr = (u64) map->m_pblk << blkbits;
3388 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3389 		iomap->type = IOMAP_MAPPED;
3390 		iomap->addr = (u64) map->m_pblk << blkbits;
3391 	} else {
3392 		iomap->type = IOMAP_HOLE;
3393 		iomap->addr = IOMAP_NULL_ADDR;
3394 	}
3395 }
3396 
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3397 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3398 			    unsigned int flags)
3399 {
3400 	handle_t *handle;
3401 	u8 blkbits = inode->i_blkbits;
3402 	int ret, dio_credits, m_flags = 0, retries = 0;
3403 
3404 	/*
3405 	 * Trim the mapping request to the maximum value that we can map at
3406 	 * once for direct I/O.
3407 	 */
3408 	if (map->m_len > DIO_MAX_BLOCKS)
3409 		map->m_len = DIO_MAX_BLOCKS;
3410 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3411 
3412 retry:
3413 	/*
3414 	 * Either we allocate blocks and then don't get an unwritten extent, so
3415 	 * in that case we have reserved enough credits. Or, the blocks are
3416 	 * already allocated and unwritten. In that case, the extent conversion
3417 	 * fits into the credits as well.
3418 	 */
3419 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3420 	if (IS_ERR(handle))
3421 		return PTR_ERR(handle);
3422 
3423 	/*
3424 	 * DAX and direct I/O are the only two operations that are currently
3425 	 * supported with IOMAP_WRITE.
3426 	 */
3427 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3428 	if (IS_DAX(inode))
3429 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3430 	/*
3431 	 * We use i_size instead of i_disksize here because delalloc writeback
3432 	 * can complete at any point during the I/O and subsequently push the
3433 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3434 	 * happening and thus expose allocated blocks to direct I/O reads.
3435 	 */
3436 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3437 		m_flags = EXT4_GET_BLOCKS_CREATE;
3438 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3439 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3440 
3441 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3442 
3443 	/*
3444 	 * We cannot fill holes in indirect tree based inodes as that could
3445 	 * expose stale data in the case of a crash. Use the magic error code
3446 	 * to fallback to buffered I/O.
3447 	 */
3448 	if (!m_flags && !ret)
3449 		ret = -ENOTBLK;
3450 
3451 	ext4_journal_stop(handle);
3452 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3453 		goto retry;
3454 
3455 	return ret;
3456 }
3457 
3458 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3459 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3460 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3461 {
3462 	int ret;
3463 	struct ext4_map_blocks map;
3464 	u8 blkbits = inode->i_blkbits;
3465 
3466 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3467 		return -EINVAL;
3468 
3469 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3470 		return -ERANGE;
3471 
3472 	/*
3473 	 * Calculate the first and last logical blocks respectively.
3474 	 */
3475 	map.m_lblk = offset >> blkbits;
3476 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3477 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3478 
3479 	if (flags & IOMAP_WRITE) {
3480 		/*
3481 		 * We check here if the blocks are already allocated, then we
3482 		 * don't need to start a journal txn and we can directly return
3483 		 * the mapping information. This could boost performance
3484 		 * especially in multi-threaded overwrite requests.
3485 		 */
3486 		if (offset + length <= i_size_read(inode)) {
3487 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3488 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3489 				goto out;
3490 		}
3491 		ret = ext4_iomap_alloc(inode, &map, flags);
3492 	} else {
3493 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3494 	}
3495 
3496 	if (ret < 0)
3497 		return ret;
3498 out:
3499 	ext4_set_iomap(inode, iomap, &map, offset, length);
3500 
3501 	return 0;
3502 }
3503 
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3504 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3505 		loff_t length, unsigned flags, struct iomap *iomap,
3506 		struct iomap *srcmap)
3507 {
3508 	int ret;
3509 
3510 	/*
3511 	 * Even for writes we don't need to allocate blocks, so just pretend
3512 	 * we are reading to save overhead of starting a transaction.
3513 	 */
3514 	flags &= ~IOMAP_WRITE;
3515 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3516 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3517 	return ret;
3518 }
3519 
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3520 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3521 			  ssize_t written, unsigned flags, struct iomap *iomap)
3522 {
3523 	/*
3524 	 * Check to see whether an error occurred while writing out the data to
3525 	 * the allocated blocks. If so, return the magic error code so that we
3526 	 * fallback to buffered I/O and attempt to complete the remainder of
3527 	 * the I/O. Any blocks that may have been allocated in preparation for
3528 	 * the direct I/O will be reused during buffered I/O.
3529 	 */
3530 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3531 		return -ENOTBLK;
3532 
3533 	return 0;
3534 }
3535 
3536 const struct iomap_ops ext4_iomap_ops = {
3537 	.iomap_begin		= ext4_iomap_begin,
3538 	.iomap_end		= ext4_iomap_end,
3539 };
3540 
3541 const struct iomap_ops ext4_iomap_overwrite_ops = {
3542 	.iomap_begin		= ext4_iomap_overwrite_begin,
3543 	.iomap_end		= ext4_iomap_end,
3544 };
3545 
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3546 static bool ext4_iomap_is_delalloc(struct inode *inode,
3547 				   struct ext4_map_blocks *map)
3548 {
3549 	struct extent_status es;
3550 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3551 
3552 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3553 				  map->m_lblk, end, &es);
3554 
3555 	if (!es.es_len || es.es_lblk > end)
3556 		return false;
3557 
3558 	if (es.es_lblk > map->m_lblk) {
3559 		map->m_len = es.es_lblk - map->m_lblk;
3560 		return false;
3561 	}
3562 
3563 	offset = map->m_lblk - es.es_lblk;
3564 	map->m_len = es.es_len - offset;
3565 
3566 	return true;
3567 }
3568 
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3569 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3570 				   loff_t length, unsigned int flags,
3571 				   struct iomap *iomap, struct iomap *srcmap)
3572 {
3573 	int ret;
3574 	bool delalloc = false;
3575 	struct ext4_map_blocks map;
3576 	u8 blkbits = inode->i_blkbits;
3577 
3578 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3579 		return -EINVAL;
3580 
3581 	if (ext4_has_inline_data(inode)) {
3582 		ret = ext4_inline_data_iomap(inode, iomap);
3583 		if (ret != -EAGAIN) {
3584 			if (ret == 0 && offset >= iomap->length)
3585 				ret = -ENOENT;
3586 			return ret;
3587 		}
3588 	}
3589 
3590 	/*
3591 	 * Calculate the first and last logical block respectively.
3592 	 */
3593 	map.m_lblk = offset >> blkbits;
3594 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3595 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3596 
3597 	/*
3598 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3599 	 * So handle it here itself instead of querying ext4_map_blocks().
3600 	 * Since ext4_map_blocks() will warn about it and will return
3601 	 * -EIO error.
3602 	 */
3603 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3604 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3605 
3606 		if (offset >= sbi->s_bitmap_maxbytes) {
3607 			map.m_flags = 0;
3608 			goto set_iomap;
3609 		}
3610 	}
3611 
3612 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3613 	if (ret < 0)
3614 		return ret;
3615 	if (ret == 0)
3616 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3617 
3618 set_iomap:
3619 	ext4_set_iomap(inode, iomap, &map, offset, length);
3620 	if (delalloc && iomap->type == IOMAP_HOLE)
3621 		iomap->type = IOMAP_DELALLOC;
3622 
3623 	return 0;
3624 }
3625 
3626 const struct iomap_ops ext4_iomap_report_ops = {
3627 	.iomap_begin = ext4_iomap_begin_report,
3628 };
3629 
3630 /*
3631  * Pages can be marked dirty completely asynchronously from ext4's journalling
3632  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3633  * much here because ->set_page_dirty is called under VFS locks.  The page is
3634  * not necessarily locked.
3635  *
3636  * We cannot just dirty the page and leave attached buffers clean, because the
3637  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3638  * or jbddirty because all the journalling code will explode.
3639  *
3640  * So what we do is to mark the page "pending dirty" and next time writepage
3641  * is called, propagate that into the buffers appropriately.
3642  */
ext4_journalled_set_page_dirty(struct page * page)3643 static int ext4_journalled_set_page_dirty(struct page *page)
3644 {
3645 	SetPageChecked(page);
3646 	return __set_page_dirty_nobuffers(page);
3647 }
3648 
ext4_set_page_dirty(struct page * page)3649 static int ext4_set_page_dirty(struct page *page)
3650 {
3651 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3652 	WARN_ON_ONCE(!page_has_buffers(page));
3653 	return __set_page_dirty_buffers(page);
3654 }
3655 
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3656 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3657 				    struct file *file, sector_t *span)
3658 {
3659 	return iomap_swapfile_activate(sis, file, span,
3660 				       &ext4_iomap_report_ops);
3661 }
3662 
3663 static const struct address_space_operations ext4_aops = {
3664 	.readpage		= ext4_readpage,
3665 	.readahead		= ext4_readahead,
3666 	.writepage		= ext4_writepage,
3667 	.writepages		= ext4_writepages,
3668 	.write_begin		= ext4_write_begin,
3669 	.write_end		= ext4_write_end,
3670 	.set_page_dirty		= ext4_set_page_dirty,
3671 	.bmap			= ext4_bmap,
3672 	.invalidatepage		= ext4_invalidatepage,
3673 	.releasepage		= ext4_releasepage,
3674 	.direct_IO		= noop_direct_IO,
3675 	.migratepage		= buffer_migrate_page,
3676 	.is_partially_uptodate  = block_is_partially_uptodate,
3677 	.error_remove_page	= generic_error_remove_page,
3678 	.swap_activate		= ext4_iomap_swap_activate,
3679 };
3680 
3681 static const struct address_space_operations ext4_journalled_aops = {
3682 	.readpage		= ext4_readpage,
3683 	.readahead		= ext4_readahead,
3684 	.writepage		= ext4_writepage,
3685 	.writepages		= ext4_writepages,
3686 	.write_begin		= ext4_write_begin,
3687 	.write_end		= ext4_journalled_write_end,
3688 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3689 	.bmap			= ext4_bmap,
3690 	.invalidatepage		= ext4_journalled_invalidatepage,
3691 	.releasepage		= ext4_releasepage,
3692 	.direct_IO		= noop_direct_IO,
3693 	.is_partially_uptodate  = block_is_partially_uptodate,
3694 	.error_remove_page	= generic_error_remove_page,
3695 	.swap_activate		= ext4_iomap_swap_activate,
3696 };
3697 
3698 static const struct address_space_operations ext4_da_aops = {
3699 	.readpage		= ext4_readpage,
3700 	.readahead		= ext4_readahead,
3701 	.writepage		= ext4_writepage,
3702 	.writepages		= ext4_writepages,
3703 	.write_begin		= ext4_da_write_begin,
3704 	.write_end		= ext4_da_write_end,
3705 	.set_page_dirty		= ext4_set_page_dirty,
3706 	.bmap			= ext4_bmap,
3707 	.invalidatepage		= ext4_invalidatepage,
3708 	.releasepage		= ext4_releasepage,
3709 	.direct_IO		= noop_direct_IO,
3710 	.migratepage		= buffer_migrate_page,
3711 	.is_partially_uptodate  = block_is_partially_uptodate,
3712 	.error_remove_page	= generic_error_remove_page,
3713 	.swap_activate		= ext4_iomap_swap_activate,
3714 };
3715 
3716 static const struct address_space_operations ext4_dax_aops = {
3717 	.writepages		= ext4_dax_writepages,
3718 	.direct_IO		= noop_direct_IO,
3719 	.set_page_dirty		= noop_set_page_dirty,
3720 	.bmap			= ext4_bmap,
3721 	.invalidatepage		= noop_invalidatepage,
3722 	.swap_activate		= ext4_iomap_swap_activate,
3723 };
3724 
ext4_set_aops(struct inode * inode)3725 void ext4_set_aops(struct inode *inode)
3726 {
3727 	switch (ext4_inode_journal_mode(inode)) {
3728 	case EXT4_INODE_ORDERED_DATA_MODE:
3729 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3730 		break;
3731 	case EXT4_INODE_JOURNAL_DATA_MODE:
3732 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3733 		return;
3734 	default:
3735 		BUG();
3736 	}
3737 	if (IS_DAX(inode))
3738 		inode->i_mapping->a_ops = &ext4_dax_aops;
3739 	else if (test_opt(inode->i_sb, DELALLOC))
3740 		inode->i_mapping->a_ops = &ext4_da_aops;
3741 	else
3742 		inode->i_mapping->a_ops = &ext4_aops;
3743 }
3744 
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3745 static int __ext4_block_zero_page_range(handle_t *handle,
3746 		struct address_space *mapping, loff_t from, loff_t length)
3747 {
3748 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3749 	unsigned offset = from & (PAGE_SIZE-1);
3750 	unsigned blocksize, pos;
3751 	ext4_lblk_t iblock;
3752 	struct inode *inode = mapping->host;
3753 	struct buffer_head *bh;
3754 	struct page *page;
3755 	int err = 0;
3756 
3757 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3758 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3759 	if (!page)
3760 		return -ENOMEM;
3761 
3762 	blocksize = inode->i_sb->s_blocksize;
3763 
3764 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3765 
3766 	if (!page_has_buffers(page))
3767 		create_empty_buffers(page, blocksize, 0);
3768 
3769 	/* Find the buffer that contains "offset" */
3770 	bh = page_buffers(page);
3771 	pos = blocksize;
3772 	while (offset >= pos) {
3773 		bh = bh->b_this_page;
3774 		iblock++;
3775 		pos += blocksize;
3776 	}
3777 	if (buffer_freed(bh)) {
3778 		BUFFER_TRACE(bh, "freed: skip");
3779 		goto unlock;
3780 	}
3781 	if (!buffer_mapped(bh)) {
3782 		BUFFER_TRACE(bh, "unmapped");
3783 		ext4_get_block(inode, iblock, bh, 0);
3784 		/* unmapped? It's a hole - nothing to do */
3785 		if (!buffer_mapped(bh)) {
3786 			BUFFER_TRACE(bh, "still unmapped");
3787 			goto unlock;
3788 		}
3789 	}
3790 
3791 	/* Ok, it's mapped. Make sure it's up-to-date */
3792 	if (PageUptodate(page))
3793 		set_buffer_uptodate(bh);
3794 
3795 	if (!buffer_uptodate(bh)) {
3796 		err = ext4_read_bh_lock(bh, 0, true);
3797 		if (err)
3798 			goto unlock;
3799 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3800 			/* We expect the key to be set. */
3801 			BUG_ON(!fscrypt_has_encryption_key(inode));
3802 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3803 							       bh_offset(bh));
3804 			if (err) {
3805 				clear_buffer_uptodate(bh);
3806 				goto unlock;
3807 			}
3808 		}
3809 	}
3810 	if (ext4_should_journal_data(inode)) {
3811 		BUFFER_TRACE(bh, "get write access");
3812 		err = ext4_journal_get_write_access(handle, bh);
3813 		if (err)
3814 			goto unlock;
3815 	}
3816 	zero_user(page, offset, length);
3817 	BUFFER_TRACE(bh, "zeroed end of block");
3818 
3819 	if (ext4_should_journal_data(inode)) {
3820 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3821 	} else {
3822 		err = 0;
3823 		mark_buffer_dirty(bh);
3824 		if (ext4_should_order_data(inode))
3825 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3826 					length);
3827 	}
3828 
3829 unlock:
3830 	unlock_page(page);
3831 	put_page(page);
3832 	return err;
3833 }
3834 
3835 /*
3836  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3837  * starting from file offset 'from'.  The range to be zero'd must
3838  * be contained with in one block.  If the specified range exceeds
3839  * the end of the block it will be shortened to end of the block
3840  * that corresponds to 'from'
3841  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3842 static int ext4_block_zero_page_range(handle_t *handle,
3843 		struct address_space *mapping, loff_t from, loff_t length)
3844 {
3845 	struct inode *inode = mapping->host;
3846 	unsigned offset = from & (PAGE_SIZE-1);
3847 	unsigned blocksize = inode->i_sb->s_blocksize;
3848 	unsigned max = blocksize - (offset & (blocksize - 1));
3849 
3850 	/*
3851 	 * correct length if it does not fall between
3852 	 * 'from' and the end of the block
3853 	 */
3854 	if (length > max || length < 0)
3855 		length = max;
3856 
3857 	if (IS_DAX(inode)) {
3858 		return iomap_zero_range(inode, from, length, NULL,
3859 					&ext4_iomap_ops);
3860 	}
3861 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3862 }
3863 
3864 /*
3865  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3866  * up to the end of the block which corresponds to `from'.
3867  * This required during truncate. We need to physically zero the tail end
3868  * of that block so it doesn't yield old data if the file is later grown.
3869  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3870 static int ext4_block_truncate_page(handle_t *handle,
3871 		struct address_space *mapping, loff_t from)
3872 {
3873 	unsigned offset = from & (PAGE_SIZE-1);
3874 	unsigned length;
3875 	unsigned blocksize;
3876 	struct inode *inode = mapping->host;
3877 
3878 	/* If we are processing an encrypted inode during orphan list handling */
3879 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3880 		return 0;
3881 
3882 	blocksize = inode->i_sb->s_blocksize;
3883 	length = blocksize - (offset & (blocksize - 1));
3884 
3885 	return ext4_block_zero_page_range(handle, mapping, from, length);
3886 }
3887 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3888 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3889 			     loff_t lstart, loff_t length)
3890 {
3891 	struct super_block *sb = inode->i_sb;
3892 	struct address_space *mapping = inode->i_mapping;
3893 	unsigned partial_start, partial_end;
3894 	ext4_fsblk_t start, end;
3895 	loff_t byte_end = (lstart + length - 1);
3896 	int err = 0;
3897 
3898 	partial_start = lstart & (sb->s_blocksize - 1);
3899 	partial_end = byte_end & (sb->s_blocksize - 1);
3900 
3901 	start = lstart >> sb->s_blocksize_bits;
3902 	end = byte_end >> sb->s_blocksize_bits;
3903 
3904 	/* Handle partial zero within the single block */
3905 	if (start == end &&
3906 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3907 		err = ext4_block_zero_page_range(handle, mapping,
3908 						 lstart, length);
3909 		return err;
3910 	}
3911 	/* Handle partial zero out on the start of the range */
3912 	if (partial_start) {
3913 		err = ext4_block_zero_page_range(handle, mapping,
3914 						 lstart, sb->s_blocksize);
3915 		if (err)
3916 			return err;
3917 	}
3918 	/* Handle partial zero out on the end of the range */
3919 	if (partial_end != sb->s_blocksize - 1)
3920 		err = ext4_block_zero_page_range(handle, mapping,
3921 						 byte_end - partial_end,
3922 						 partial_end + 1);
3923 	return err;
3924 }
3925 
ext4_can_truncate(struct inode * inode)3926 int ext4_can_truncate(struct inode *inode)
3927 {
3928 	if (S_ISREG(inode->i_mode))
3929 		return 1;
3930 	if (S_ISDIR(inode->i_mode))
3931 		return 1;
3932 	if (S_ISLNK(inode->i_mode))
3933 		return !ext4_inode_is_fast_symlink(inode);
3934 	return 0;
3935 }
3936 
3937 /*
3938  * We have to make sure i_disksize gets properly updated before we truncate
3939  * page cache due to hole punching or zero range. Otherwise i_disksize update
3940  * can get lost as it may have been postponed to submission of writeback but
3941  * that will never happen after we truncate page cache.
3942  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3943 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3944 				      loff_t len)
3945 {
3946 	handle_t *handle;
3947 	int ret;
3948 
3949 	loff_t size = i_size_read(inode);
3950 
3951 	WARN_ON(!inode_is_locked(inode));
3952 	if (offset > size || offset + len < size)
3953 		return 0;
3954 
3955 	if (EXT4_I(inode)->i_disksize >= size)
3956 		return 0;
3957 
3958 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3959 	if (IS_ERR(handle))
3960 		return PTR_ERR(handle);
3961 	ext4_update_i_disksize(inode, size);
3962 	ret = ext4_mark_inode_dirty(handle, inode);
3963 	ext4_journal_stop(handle);
3964 
3965 	return ret;
3966 }
3967 
ext4_wait_dax_page(struct ext4_inode_info * ei)3968 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3969 {
3970 	up_write(&ei->i_mmap_sem);
3971 	schedule();
3972 	down_write(&ei->i_mmap_sem);
3973 }
3974 
ext4_break_layouts(struct inode * inode)3975 int ext4_break_layouts(struct inode *inode)
3976 {
3977 	struct ext4_inode_info *ei = EXT4_I(inode);
3978 	struct page *page;
3979 	int error;
3980 
3981 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3982 		return -EINVAL;
3983 
3984 	do {
3985 		page = dax_layout_busy_page(inode->i_mapping);
3986 		if (!page)
3987 			return 0;
3988 
3989 		error = ___wait_var_event(&page->_refcount,
3990 				atomic_read(&page->_refcount) == 1,
3991 				TASK_INTERRUPTIBLE, 0, 0,
3992 				ext4_wait_dax_page(ei));
3993 	} while (error == 0);
3994 
3995 	return error;
3996 }
3997 
3998 /*
3999  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4000  * associated with the given offset and length
4001  *
4002  * @inode:  File inode
4003  * @offset: The offset where the hole will begin
4004  * @len:    The length of the hole
4005  *
4006  * Returns: 0 on success or negative on failure
4007  */
4008 
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)4009 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4010 {
4011 	struct inode *inode = file_inode(file);
4012 	struct super_block *sb = inode->i_sb;
4013 	ext4_lblk_t first_block, stop_block;
4014 	struct address_space *mapping = inode->i_mapping;
4015 	loff_t first_block_offset, last_block_offset, max_length;
4016 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4017 	handle_t *handle;
4018 	unsigned int credits;
4019 	int ret = 0, ret2 = 0;
4020 
4021 	trace_ext4_punch_hole(inode, offset, length, 0);
4022 
4023 	/*
4024 	 * Write out all dirty pages to avoid race conditions
4025 	 * Then release them.
4026 	 */
4027 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4028 		ret = filemap_write_and_wait_range(mapping, offset,
4029 						   offset + length - 1);
4030 		if (ret)
4031 			return ret;
4032 	}
4033 
4034 	inode_lock(inode);
4035 
4036 	/* No need to punch hole beyond i_size */
4037 	if (offset >= inode->i_size)
4038 		goto out_mutex;
4039 
4040 	/*
4041 	 * If the hole extends beyond i_size, set the hole
4042 	 * to end after the page that contains i_size
4043 	 */
4044 	if (offset + length > inode->i_size) {
4045 		length = inode->i_size +
4046 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4047 		   offset;
4048 	}
4049 
4050 	/*
4051 	 * For punch hole the length + offset needs to be within one block
4052 	 * before last range. Adjust the length if it goes beyond that limit.
4053 	 */
4054 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4055 	if (offset + length > max_length)
4056 		length = max_length - offset;
4057 
4058 	if (offset & (sb->s_blocksize - 1) ||
4059 	    (offset + length) & (sb->s_blocksize - 1)) {
4060 		/*
4061 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4062 		 * partial block
4063 		 */
4064 		ret = ext4_inode_attach_jinode(inode);
4065 		if (ret < 0)
4066 			goto out_mutex;
4067 
4068 	}
4069 
4070 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4071 	inode_dio_wait(inode);
4072 
4073 	ret = file_modified(file);
4074 	if (ret)
4075 		goto out_mutex;
4076 
4077 	/*
4078 	 * Prevent page faults from reinstantiating pages we have released from
4079 	 * page cache.
4080 	 */
4081 	down_write(&EXT4_I(inode)->i_mmap_sem);
4082 
4083 	ret = ext4_break_layouts(inode);
4084 	if (ret)
4085 		goto out_dio;
4086 
4087 	first_block_offset = round_up(offset, sb->s_blocksize);
4088 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4089 
4090 	/* Now release the pages and zero block aligned part of pages*/
4091 	if (last_block_offset > first_block_offset) {
4092 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4093 		if (ret)
4094 			goto out_dio;
4095 		truncate_pagecache_range(inode, first_block_offset,
4096 					 last_block_offset);
4097 	}
4098 
4099 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4100 		credits = ext4_writepage_trans_blocks(inode);
4101 	else
4102 		credits = ext4_blocks_for_truncate(inode);
4103 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4104 	if (IS_ERR(handle)) {
4105 		ret = PTR_ERR(handle);
4106 		ext4_std_error(sb, ret);
4107 		goto out_dio;
4108 	}
4109 
4110 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4111 				       length);
4112 	if (ret)
4113 		goto out_stop;
4114 
4115 	first_block = (offset + sb->s_blocksize - 1) >>
4116 		EXT4_BLOCK_SIZE_BITS(sb);
4117 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4118 
4119 	/* If there are blocks to remove, do it */
4120 	if (stop_block > first_block) {
4121 
4122 		down_write(&EXT4_I(inode)->i_data_sem);
4123 		ext4_discard_preallocations(inode, 0);
4124 
4125 		ret = ext4_es_remove_extent(inode, first_block,
4126 					    stop_block - first_block);
4127 		if (ret) {
4128 			up_write(&EXT4_I(inode)->i_data_sem);
4129 			goto out_stop;
4130 		}
4131 
4132 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4133 			ret = ext4_ext_remove_space(inode, first_block,
4134 						    stop_block - 1);
4135 		else
4136 			ret = ext4_ind_remove_space(handle, inode, first_block,
4137 						    stop_block);
4138 
4139 		up_write(&EXT4_I(inode)->i_data_sem);
4140 	}
4141 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4142 	if (IS_SYNC(inode))
4143 		ext4_handle_sync(handle);
4144 
4145 	inode->i_mtime = inode->i_ctime = current_time(inode);
4146 	ret2 = ext4_mark_inode_dirty(handle, inode);
4147 	if (unlikely(ret2))
4148 		ret = ret2;
4149 	if (ret >= 0)
4150 		ext4_update_inode_fsync_trans(handle, inode, 1);
4151 out_stop:
4152 	ext4_journal_stop(handle);
4153 out_dio:
4154 	up_write(&EXT4_I(inode)->i_mmap_sem);
4155 out_mutex:
4156 	inode_unlock(inode);
4157 	return ret;
4158 }
4159 
ext4_inode_attach_jinode(struct inode * inode)4160 int ext4_inode_attach_jinode(struct inode *inode)
4161 {
4162 	struct ext4_inode_info *ei = EXT4_I(inode);
4163 	struct jbd2_inode *jinode;
4164 
4165 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4166 		return 0;
4167 
4168 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4169 	spin_lock(&inode->i_lock);
4170 	if (!ei->jinode) {
4171 		if (!jinode) {
4172 			spin_unlock(&inode->i_lock);
4173 			return -ENOMEM;
4174 		}
4175 		ei->jinode = jinode;
4176 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4177 		jinode = NULL;
4178 	}
4179 	spin_unlock(&inode->i_lock);
4180 	if (unlikely(jinode != NULL))
4181 		jbd2_free_inode(jinode);
4182 	return 0;
4183 }
4184 
4185 /*
4186  * ext4_truncate()
4187  *
4188  * We block out ext4_get_block() block instantiations across the entire
4189  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4190  * simultaneously on behalf of the same inode.
4191  *
4192  * As we work through the truncate and commit bits of it to the journal there
4193  * is one core, guiding principle: the file's tree must always be consistent on
4194  * disk.  We must be able to restart the truncate after a crash.
4195  *
4196  * The file's tree may be transiently inconsistent in memory (although it
4197  * probably isn't), but whenever we close off and commit a journal transaction,
4198  * the contents of (the filesystem + the journal) must be consistent and
4199  * restartable.  It's pretty simple, really: bottom up, right to left (although
4200  * left-to-right works OK too).
4201  *
4202  * Note that at recovery time, journal replay occurs *before* the restart of
4203  * truncate against the orphan inode list.
4204  *
4205  * The committed inode has the new, desired i_size (which is the same as
4206  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4207  * that this inode's truncate did not complete and it will again call
4208  * ext4_truncate() to have another go.  So there will be instantiated blocks
4209  * to the right of the truncation point in a crashed ext4 filesystem.  But
4210  * that's fine - as long as they are linked from the inode, the post-crash
4211  * ext4_truncate() run will find them and release them.
4212  */
ext4_truncate(struct inode * inode)4213 int ext4_truncate(struct inode *inode)
4214 {
4215 	struct ext4_inode_info *ei = EXT4_I(inode);
4216 	unsigned int credits;
4217 	int err = 0, err2;
4218 	handle_t *handle;
4219 	struct address_space *mapping = inode->i_mapping;
4220 
4221 	/*
4222 	 * There is a possibility that we're either freeing the inode
4223 	 * or it's a completely new inode. In those cases we might not
4224 	 * have i_mutex locked because it's not necessary.
4225 	 */
4226 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4227 		WARN_ON(!inode_is_locked(inode));
4228 	trace_ext4_truncate_enter(inode);
4229 
4230 	if (!ext4_can_truncate(inode))
4231 		goto out_trace;
4232 
4233 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4234 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4235 
4236 	if (ext4_has_inline_data(inode)) {
4237 		int has_inline = 1;
4238 
4239 		err = ext4_inline_data_truncate(inode, &has_inline);
4240 		if (err || has_inline)
4241 			goto out_trace;
4242 	}
4243 
4244 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4245 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4246 		err = ext4_inode_attach_jinode(inode);
4247 		if (err)
4248 			goto out_trace;
4249 	}
4250 
4251 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4252 		credits = ext4_writepage_trans_blocks(inode);
4253 	else
4254 		credits = ext4_blocks_for_truncate(inode);
4255 
4256 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4257 	if (IS_ERR(handle)) {
4258 		err = PTR_ERR(handle);
4259 		goto out_trace;
4260 	}
4261 
4262 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4263 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4264 
4265 	/*
4266 	 * We add the inode to the orphan list, so that if this
4267 	 * truncate spans multiple transactions, and we crash, we will
4268 	 * resume the truncate when the filesystem recovers.  It also
4269 	 * marks the inode dirty, to catch the new size.
4270 	 *
4271 	 * Implication: the file must always be in a sane, consistent
4272 	 * truncatable state while each transaction commits.
4273 	 */
4274 	err = ext4_orphan_add(handle, inode);
4275 	if (err)
4276 		goto out_stop;
4277 
4278 	down_write(&EXT4_I(inode)->i_data_sem);
4279 
4280 	ext4_discard_preallocations(inode, 0);
4281 
4282 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4283 		err = ext4_ext_truncate(handle, inode);
4284 	else
4285 		ext4_ind_truncate(handle, inode);
4286 
4287 	up_write(&ei->i_data_sem);
4288 	if (err)
4289 		goto out_stop;
4290 
4291 	if (IS_SYNC(inode))
4292 		ext4_handle_sync(handle);
4293 
4294 out_stop:
4295 	/*
4296 	 * If this was a simple ftruncate() and the file will remain alive,
4297 	 * then we need to clear up the orphan record which we created above.
4298 	 * However, if this was a real unlink then we were called by
4299 	 * ext4_evict_inode(), and we allow that function to clean up the
4300 	 * orphan info for us.
4301 	 */
4302 	if (inode->i_nlink)
4303 		ext4_orphan_del(handle, inode);
4304 
4305 	inode->i_mtime = inode->i_ctime = current_time(inode);
4306 	err2 = ext4_mark_inode_dirty(handle, inode);
4307 	if (unlikely(err2 && !err))
4308 		err = err2;
4309 	ext4_journal_stop(handle);
4310 
4311 out_trace:
4312 	trace_ext4_truncate_exit(inode);
4313 	return err;
4314 }
4315 
ext4_inode_peek_iversion(const struct inode * inode)4316 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4317 {
4318 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4319 		return inode_peek_iversion_raw(inode);
4320 	else
4321 		return inode_peek_iversion(inode);
4322 }
4323 
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4324 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4325 				 struct ext4_inode_info *ei)
4326 {
4327 	struct inode *inode = &(ei->vfs_inode);
4328 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4329 	struct super_block *sb = inode->i_sb;
4330 
4331 	if (i_blocks <= ~0U) {
4332 		/*
4333 		 * i_blocks can be represented in a 32 bit variable
4334 		 * as multiple of 512 bytes
4335 		 */
4336 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4337 		raw_inode->i_blocks_high = 0;
4338 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4339 		return 0;
4340 	}
4341 
4342 	/*
4343 	 * This should never happen since sb->s_maxbytes should not have
4344 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4345 	 * feature in ext4_fill_super().
4346 	 */
4347 	if (!ext4_has_feature_huge_file(sb))
4348 		return -EFSCORRUPTED;
4349 
4350 	if (i_blocks <= 0xffffffffffffULL) {
4351 		/*
4352 		 * i_blocks can be represented in a 48 bit variable
4353 		 * as multiple of 512 bytes
4354 		 */
4355 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4356 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4357 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4358 	} else {
4359 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4360 		/* i_block is stored in file system block size */
4361 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4362 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4363 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4364 	}
4365 	return 0;
4366 }
4367 
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4368 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4369 {
4370 	struct ext4_inode_info *ei = EXT4_I(inode);
4371 	uid_t i_uid;
4372 	gid_t i_gid;
4373 	projid_t i_projid;
4374 	int block;
4375 	int err;
4376 
4377 	err = ext4_inode_blocks_set(raw_inode, ei);
4378 
4379 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4380 	i_uid = i_uid_read(inode);
4381 	i_gid = i_gid_read(inode);
4382 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4383 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4384 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4385 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4386 		/*
4387 		 * Fix up interoperability with old kernels. Otherwise,
4388 		 * old inodes get re-used with the upper 16 bits of the
4389 		 * uid/gid intact.
4390 		 */
4391 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4392 			raw_inode->i_uid_high = 0;
4393 			raw_inode->i_gid_high = 0;
4394 		} else {
4395 			raw_inode->i_uid_high =
4396 				cpu_to_le16(high_16_bits(i_uid));
4397 			raw_inode->i_gid_high =
4398 				cpu_to_le16(high_16_bits(i_gid));
4399 		}
4400 	} else {
4401 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4402 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4403 		raw_inode->i_uid_high = 0;
4404 		raw_inode->i_gid_high = 0;
4405 	}
4406 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4407 
4408 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4409 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4410 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4411 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4412 
4413 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4414 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4415 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4416 		raw_inode->i_file_acl_high =
4417 			cpu_to_le16(ei->i_file_acl >> 32);
4418 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4419 	ext4_isize_set(raw_inode, ei->i_disksize);
4420 
4421 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4422 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4423 		if (old_valid_dev(inode->i_rdev)) {
4424 			raw_inode->i_block[0] =
4425 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4426 			raw_inode->i_block[1] = 0;
4427 		} else {
4428 			raw_inode->i_block[0] = 0;
4429 			raw_inode->i_block[1] =
4430 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4431 			raw_inode->i_block[2] = 0;
4432 		}
4433 	} else if (!ext4_has_inline_data(inode)) {
4434 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4435 			raw_inode->i_block[block] = ei->i_data[block];
4436 	}
4437 
4438 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4439 		u64 ivers = ext4_inode_peek_iversion(inode);
4440 
4441 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4442 		if (ei->i_extra_isize) {
4443 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4444 				raw_inode->i_version_hi =
4445 					cpu_to_le32(ivers >> 32);
4446 			raw_inode->i_extra_isize =
4447 				cpu_to_le16(ei->i_extra_isize);
4448 		}
4449 	}
4450 
4451 	if (i_projid != EXT4_DEF_PROJID &&
4452 	    !ext4_has_feature_project(inode->i_sb))
4453 		err = err ?: -EFSCORRUPTED;
4454 
4455 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4456 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4457 		raw_inode->i_projid = cpu_to_le32(i_projid);
4458 
4459 	ext4_inode_csum_set(inode, raw_inode, ei);
4460 	return err;
4461 }
4462 
4463 /*
4464  * ext4_get_inode_loc returns with an extra refcount against the inode's
4465  * underlying buffer_head on success. If we pass 'inode' and it does not
4466  * have in-inode xattr, we have all inode data in memory that is needed
4467  * to recreate the on-disk version of this inode.
4468  */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4469 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4470 				struct inode *inode, struct ext4_iloc *iloc,
4471 				ext4_fsblk_t *ret_block)
4472 {
4473 	struct ext4_group_desc	*gdp;
4474 	struct buffer_head	*bh;
4475 	ext4_fsblk_t		block;
4476 	struct blk_plug		plug;
4477 	int			inodes_per_block, inode_offset;
4478 
4479 	iloc->bh = NULL;
4480 	if (ino < EXT4_ROOT_INO ||
4481 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4482 		return -EFSCORRUPTED;
4483 
4484 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4485 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4486 	if (!gdp)
4487 		return -EIO;
4488 
4489 	/*
4490 	 * Figure out the offset within the block group inode table
4491 	 */
4492 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4493 	inode_offset = ((ino - 1) %
4494 			EXT4_INODES_PER_GROUP(sb));
4495 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4496 
4497 	block = ext4_inode_table(sb, gdp);
4498 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4499 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4500 		ext4_error(sb, "Invalid inode table block %llu in "
4501 			   "block_group %u", block, iloc->block_group);
4502 		return -EFSCORRUPTED;
4503 	}
4504 	block += (inode_offset / inodes_per_block);
4505 
4506 	bh = sb_getblk(sb, block);
4507 	if (unlikely(!bh))
4508 		return -ENOMEM;
4509 	if (!buffer_uptodate(bh)) {
4510 		lock_buffer(bh);
4511 
4512 		if (ext4_buffer_uptodate(bh)) {
4513 			/* someone brought it uptodate while we waited */
4514 			unlock_buffer(bh);
4515 			goto has_buffer;
4516 		}
4517 
4518 		/*
4519 		 * If we have all information of the inode in memory and this
4520 		 * is the only valid inode in the block, we need not read the
4521 		 * block.
4522 		 */
4523 		if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4524 			struct buffer_head *bitmap_bh;
4525 			int i, start;
4526 
4527 			start = inode_offset & ~(inodes_per_block - 1);
4528 
4529 			/* Is the inode bitmap in cache? */
4530 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4531 			if (unlikely(!bitmap_bh))
4532 				goto make_io;
4533 
4534 			/*
4535 			 * If the inode bitmap isn't in cache then the
4536 			 * optimisation may end up performing two reads instead
4537 			 * of one, so skip it.
4538 			 */
4539 			if (!buffer_uptodate(bitmap_bh)) {
4540 				brelse(bitmap_bh);
4541 				goto make_io;
4542 			}
4543 			for (i = start; i < start + inodes_per_block; i++) {
4544 				if (i == inode_offset)
4545 					continue;
4546 				if (ext4_test_bit(i, bitmap_bh->b_data))
4547 					break;
4548 			}
4549 			brelse(bitmap_bh);
4550 			if (i == start + inodes_per_block) {
4551 				struct ext4_inode *raw_inode =
4552 					(struct ext4_inode *) (bh->b_data + iloc->offset);
4553 
4554 				/* all other inodes are free, so skip I/O */
4555 				memset(bh->b_data, 0, bh->b_size);
4556 				if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4557 					ext4_fill_raw_inode(inode, raw_inode);
4558 				set_buffer_uptodate(bh);
4559 				unlock_buffer(bh);
4560 				goto has_buffer;
4561 			}
4562 		}
4563 
4564 make_io:
4565 		/*
4566 		 * If we need to do any I/O, try to pre-readahead extra
4567 		 * blocks from the inode table.
4568 		 */
4569 		blk_start_plug(&plug);
4570 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4571 			ext4_fsblk_t b, end, table;
4572 			unsigned num;
4573 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4574 
4575 			table = ext4_inode_table(sb, gdp);
4576 			/* s_inode_readahead_blks is always a power of 2 */
4577 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4578 			if (table > b)
4579 				b = table;
4580 			end = b + ra_blks;
4581 			num = EXT4_INODES_PER_GROUP(sb);
4582 			if (ext4_has_group_desc_csum(sb))
4583 				num -= ext4_itable_unused_count(sb, gdp);
4584 			table += num / inodes_per_block;
4585 			if (end > table)
4586 				end = table;
4587 			while (b <= end)
4588 				ext4_sb_breadahead_unmovable(sb, b++);
4589 		}
4590 
4591 		/*
4592 		 * There are other valid inodes in the buffer, this inode
4593 		 * has in-inode xattrs, or we don't have this inode in memory.
4594 		 * Read the block from disk.
4595 		 */
4596 		trace_ext4_load_inode(sb, ino);
4597 		ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4598 		blk_finish_plug(&plug);
4599 		wait_on_buffer(bh);
4600 		ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4601 		if (!buffer_uptodate(bh)) {
4602 			if (ret_block)
4603 				*ret_block = block;
4604 			brelse(bh);
4605 			return -EIO;
4606 		}
4607 	}
4608 has_buffer:
4609 	iloc->bh = bh;
4610 	return 0;
4611 }
4612 
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4613 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4614 					struct ext4_iloc *iloc)
4615 {
4616 	ext4_fsblk_t err_blk = 0;
4617 	int ret;
4618 
4619 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4620 					&err_blk);
4621 
4622 	if (ret == -EIO)
4623 		ext4_error_inode_block(inode, err_blk, EIO,
4624 					"unable to read itable block");
4625 
4626 	return ret;
4627 }
4628 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4629 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4630 {
4631 	ext4_fsblk_t err_blk = 0;
4632 	int ret;
4633 
4634 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4635 					&err_blk);
4636 
4637 	if (ret == -EIO)
4638 		ext4_error_inode_block(inode, err_blk, EIO,
4639 					"unable to read itable block");
4640 
4641 	return ret;
4642 }
4643 
4644 
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4645 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4646 			  struct ext4_iloc *iloc)
4647 {
4648 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4649 }
4650 
ext4_should_enable_dax(struct inode * inode)4651 static bool ext4_should_enable_dax(struct inode *inode)
4652 {
4653 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4654 
4655 	if (test_opt2(inode->i_sb, DAX_NEVER))
4656 		return false;
4657 	if (!S_ISREG(inode->i_mode))
4658 		return false;
4659 	if (ext4_should_journal_data(inode))
4660 		return false;
4661 	if (ext4_has_inline_data(inode))
4662 		return false;
4663 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4664 		return false;
4665 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4666 		return false;
4667 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4668 		return false;
4669 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4670 		return true;
4671 
4672 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4673 }
4674 
ext4_set_inode_flags(struct inode * inode,bool init)4675 void ext4_set_inode_flags(struct inode *inode, bool init)
4676 {
4677 	unsigned int flags = EXT4_I(inode)->i_flags;
4678 	unsigned int new_fl = 0;
4679 
4680 	WARN_ON_ONCE(IS_DAX(inode) && init);
4681 
4682 	if (flags & EXT4_SYNC_FL)
4683 		new_fl |= S_SYNC;
4684 	if (flags & EXT4_APPEND_FL)
4685 		new_fl |= S_APPEND;
4686 	if (flags & EXT4_IMMUTABLE_FL)
4687 		new_fl |= S_IMMUTABLE;
4688 	if (flags & EXT4_NOATIME_FL)
4689 		new_fl |= S_NOATIME;
4690 	if (flags & EXT4_DIRSYNC_FL)
4691 		new_fl |= S_DIRSYNC;
4692 
4693 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4694 	 * here if already set. */
4695 	new_fl |= (inode->i_flags & S_DAX);
4696 	if (init && ext4_should_enable_dax(inode))
4697 		new_fl |= S_DAX;
4698 
4699 	if (flags & EXT4_ENCRYPT_FL)
4700 		new_fl |= S_ENCRYPTED;
4701 	if (flags & EXT4_CASEFOLD_FL)
4702 		new_fl |= S_CASEFOLD;
4703 	if (flags & EXT4_VERITY_FL)
4704 		new_fl |= S_VERITY;
4705 	inode_set_flags(inode, new_fl,
4706 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4707 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4708 }
4709 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4710 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4711 				  struct ext4_inode_info *ei)
4712 {
4713 	blkcnt_t i_blocks ;
4714 	struct inode *inode = &(ei->vfs_inode);
4715 	struct super_block *sb = inode->i_sb;
4716 
4717 	if (ext4_has_feature_huge_file(sb)) {
4718 		/* we are using combined 48 bit field */
4719 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4720 					le32_to_cpu(raw_inode->i_blocks_lo);
4721 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4722 			/* i_blocks represent file system block size */
4723 			return i_blocks  << (inode->i_blkbits - 9);
4724 		} else {
4725 			return i_blocks;
4726 		}
4727 	} else {
4728 		return le32_to_cpu(raw_inode->i_blocks_lo);
4729 	}
4730 }
4731 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4732 static inline int ext4_iget_extra_inode(struct inode *inode,
4733 					 struct ext4_inode *raw_inode,
4734 					 struct ext4_inode_info *ei)
4735 {
4736 	__le32 *magic = (void *)raw_inode +
4737 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4738 
4739 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4740 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4741 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4742 		return ext4_find_inline_data_nolock(inode);
4743 	} else
4744 		EXT4_I(inode)->i_inline_off = 0;
4745 	return 0;
4746 }
4747 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4748 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4749 {
4750 	if (!ext4_has_feature_project(inode->i_sb))
4751 		return -EOPNOTSUPP;
4752 	*projid = EXT4_I(inode)->i_projid;
4753 	return 0;
4754 }
4755 
4756 /*
4757  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4758  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4759  * set.
4760  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4761 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4762 {
4763 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4764 		inode_set_iversion_raw(inode, val);
4765 	else
4766 		inode_set_iversion_queried(inode, val);
4767 }
4768 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4769 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4770 			  ext4_iget_flags flags, const char *function,
4771 			  unsigned int line)
4772 {
4773 	struct ext4_iloc iloc;
4774 	struct ext4_inode *raw_inode;
4775 	struct ext4_inode_info *ei;
4776 	struct inode *inode;
4777 	journal_t *journal = EXT4_SB(sb)->s_journal;
4778 	long ret;
4779 	loff_t size;
4780 	int block;
4781 	uid_t i_uid;
4782 	gid_t i_gid;
4783 	projid_t i_projid;
4784 
4785 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4786 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4787 	    (ino < EXT4_ROOT_INO) ||
4788 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4789 		if (flags & EXT4_IGET_HANDLE)
4790 			return ERR_PTR(-ESTALE);
4791 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4792 			     "inode #%lu: comm %s: iget: illegal inode #",
4793 			     ino, current->comm);
4794 		return ERR_PTR(-EFSCORRUPTED);
4795 	}
4796 
4797 	inode = iget_locked(sb, ino);
4798 	if (!inode)
4799 		return ERR_PTR(-ENOMEM);
4800 	if (!(inode->i_state & I_NEW))
4801 		return inode;
4802 
4803 	ei = EXT4_I(inode);
4804 	iloc.bh = NULL;
4805 
4806 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4807 	if (ret < 0)
4808 		goto bad_inode;
4809 	raw_inode = ext4_raw_inode(&iloc);
4810 
4811 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4812 		ext4_error_inode(inode, function, line, 0,
4813 				 "iget: root inode unallocated");
4814 		ret = -EFSCORRUPTED;
4815 		goto bad_inode;
4816 	}
4817 
4818 	if ((flags & EXT4_IGET_HANDLE) &&
4819 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4820 		ret = -ESTALE;
4821 		goto bad_inode;
4822 	}
4823 
4824 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4825 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4826 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4827 			EXT4_INODE_SIZE(inode->i_sb) ||
4828 		    (ei->i_extra_isize & 3)) {
4829 			ext4_error_inode(inode, function, line, 0,
4830 					 "iget: bad extra_isize %u "
4831 					 "(inode size %u)",
4832 					 ei->i_extra_isize,
4833 					 EXT4_INODE_SIZE(inode->i_sb));
4834 			ret = -EFSCORRUPTED;
4835 			goto bad_inode;
4836 		}
4837 	} else
4838 		ei->i_extra_isize = 0;
4839 
4840 	/* Precompute checksum seed for inode metadata */
4841 	if (ext4_has_metadata_csum(sb)) {
4842 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4843 		__u32 csum;
4844 		__le32 inum = cpu_to_le32(inode->i_ino);
4845 		__le32 gen = raw_inode->i_generation;
4846 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4847 				   sizeof(inum));
4848 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4849 					      sizeof(gen));
4850 	}
4851 
4852 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4853 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4854 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4855 		ext4_error_inode_err(inode, function, line, 0,
4856 				EFSBADCRC, "iget: checksum invalid");
4857 		ret = -EFSBADCRC;
4858 		goto bad_inode;
4859 	}
4860 
4861 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4862 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4863 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4864 	if (ext4_has_feature_project(sb) &&
4865 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4866 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4867 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4868 	else
4869 		i_projid = EXT4_DEF_PROJID;
4870 
4871 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4872 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4873 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4874 	}
4875 	i_uid_write(inode, i_uid);
4876 	i_gid_write(inode, i_gid);
4877 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4878 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4879 
4880 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4881 	ei->i_inline_off = 0;
4882 	ei->i_dir_start_lookup = 0;
4883 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4884 	/* We now have enough fields to check if the inode was active or not.
4885 	 * This is needed because nfsd might try to access dead inodes
4886 	 * the test is that same one that e2fsck uses
4887 	 * NeilBrown 1999oct15
4888 	 */
4889 	if (inode->i_nlink == 0) {
4890 		if ((inode->i_mode == 0 ||
4891 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4892 		    ino != EXT4_BOOT_LOADER_INO) {
4893 			/* this inode is deleted */
4894 			ret = -ESTALE;
4895 			goto bad_inode;
4896 		}
4897 		/* The only unlinked inodes we let through here have
4898 		 * valid i_mode and are being read by the orphan
4899 		 * recovery code: that's fine, we're about to complete
4900 		 * the process of deleting those.
4901 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4902 		 * not initialized on a new filesystem. */
4903 	}
4904 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4905 	ext4_set_inode_flags(inode, true);
4906 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4907 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4908 	if (ext4_has_feature_64bit(sb))
4909 		ei->i_file_acl |=
4910 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4911 	inode->i_size = ext4_isize(sb, raw_inode);
4912 	if ((size = i_size_read(inode)) < 0) {
4913 		ext4_error_inode(inode, function, line, 0,
4914 				 "iget: bad i_size value: %lld", size);
4915 		ret = -EFSCORRUPTED;
4916 		goto bad_inode;
4917 	}
4918 	/*
4919 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4920 	 * we'd normally treat htree data as empty space. But with metadata
4921 	 * checksumming that corrupts checksums so forbid that.
4922 	 */
4923 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4924 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4925 		ext4_error_inode(inode, function, line, 0,
4926 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4927 		ret = -EFSCORRUPTED;
4928 		goto bad_inode;
4929 	}
4930 	ei->i_disksize = inode->i_size;
4931 #ifdef CONFIG_QUOTA
4932 	ei->i_reserved_quota = 0;
4933 #endif
4934 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4935 	ei->i_block_group = iloc.block_group;
4936 	ei->i_last_alloc_group = ~0;
4937 	/*
4938 	 * NOTE! The in-memory inode i_data array is in little-endian order
4939 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4940 	 */
4941 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4942 		ei->i_data[block] = raw_inode->i_block[block];
4943 	INIT_LIST_HEAD(&ei->i_orphan);
4944 	ext4_fc_init_inode(&ei->vfs_inode);
4945 
4946 	/*
4947 	 * Set transaction id's of transactions that have to be committed
4948 	 * to finish f[data]sync. We set them to currently running transaction
4949 	 * as we cannot be sure that the inode or some of its metadata isn't
4950 	 * part of the transaction - the inode could have been reclaimed and
4951 	 * now it is reread from disk.
4952 	 */
4953 	if (journal) {
4954 		transaction_t *transaction;
4955 		tid_t tid;
4956 
4957 		read_lock(&journal->j_state_lock);
4958 		if (journal->j_running_transaction)
4959 			transaction = journal->j_running_transaction;
4960 		else
4961 			transaction = journal->j_committing_transaction;
4962 		if (transaction)
4963 			tid = transaction->t_tid;
4964 		else
4965 			tid = journal->j_commit_sequence;
4966 		read_unlock(&journal->j_state_lock);
4967 		ei->i_sync_tid = tid;
4968 		ei->i_datasync_tid = tid;
4969 	}
4970 
4971 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4972 		if (ei->i_extra_isize == 0) {
4973 			/* The extra space is currently unused. Use it. */
4974 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4975 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4976 					    EXT4_GOOD_OLD_INODE_SIZE;
4977 		} else {
4978 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4979 			if (ret)
4980 				goto bad_inode;
4981 		}
4982 	}
4983 
4984 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4985 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4986 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4987 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4988 
4989 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4990 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4991 
4992 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4993 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4994 				ivers |=
4995 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4996 		}
4997 		ext4_inode_set_iversion_queried(inode, ivers);
4998 	}
4999 
5000 	ret = 0;
5001 	if (ei->i_file_acl &&
5002 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5003 		ext4_error_inode(inode, function, line, 0,
5004 				 "iget: bad extended attribute block %llu",
5005 				 ei->i_file_acl);
5006 		ret = -EFSCORRUPTED;
5007 		goto bad_inode;
5008 	} else if (!ext4_has_inline_data(inode)) {
5009 		/* validate the block references in the inode */
5010 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5011 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5012 			(S_ISLNK(inode->i_mode) &&
5013 			!ext4_inode_is_fast_symlink(inode)))) {
5014 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5015 				ret = ext4_ext_check_inode(inode);
5016 			else
5017 				ret = ext4_ind_check_inode(inode);
5018 		}
5019 	}
5020 	if (ret)
5021 		goto bad_inode;
5022 
5023 	if (S_ISREG(inode->i_mode)) {
5024 		inode->i_op = &ext4_file_inode_operations;
5025 		inode->i_fop = &ext4_file_operations;
5026 		ext4_set_aops(inode);
5027 	} else if (S_ISDIR(inode->i_mode)) {
5028 		inode->i_op = &ext4_dir_inode_operations;
5029 		inode->i_fop = &ext4_dir_operations;
5030 	} else if (S_ISLNK(inode->i_mode)) {
5031 		/* VFS does not allow setting these so must be corruption */
5032 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5033 			ext4_error_inode(inode, function, line, 0,
5034 					 "iget: immutable or append flags "
5035 					 "not allowed on symlinks");
5036 			ret = -EFSCORRUPTED;
5037 			goto bad_inode;
5038 		}
5039 		if (IS_ENCRYPTED(inode)) {
5040 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5041 			ext4_set_aops(inode);
5042 		} else if (ext4_inode_is_fast_symlink(inode)) {
5043 			inode->i_link = (char *)ei->i_data;
5044 			inode->i_op = &ext4_fast_symlink_inode_operations;
5045 			nd_terminate_link(ei->i_data, inode->i_size,
5046 				sizeof(ei->i_data) - 1);
5047 		} else {
5048 			inode->i_op = &ext4_symlink_inode_operations;
5049 			ext4_set_aops(inode);
5050 		}
5051 		inode_nohighmem(inode);
5052 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5053 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5054 		inode->i_op = &ext4_special_inode_operations;
5055 		if (raw_inode->i_block[0])
5056 			init_special_inode(inode, inode->i_mode,
5057 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5058 		else
5059 			init_special_inode(inode, inode->i_mode,
5060 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5061 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5062 		make_bad_inode(inode);
5063 	} else {
5064 		ret = -EFSCORRUPTED;
5065 		ext4_error_inode(inode, function, line, 0,
5066 				 "iget: bogus i_mode (%o)", inode->i_mode);
5067 		goto bad_inode;
5068 	}
5069 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5070 		ext4_error_inode(inode, function, line, 0,
5071 				 "casefold flag without casefold feature");
5072 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5073 		ext4_error_inode(inode, function, line, 0,
5074 				 "bad inode without EXT4_IGET_BAD flag");
5075 		ret = -EUCLEAN;
5076 		goto bad_inode;
5077 	}
5078 
5079 	brelse(iloc.bh);
5080 	unlock_new_inode(inode);
5081 	return inode;
5082 
5083 bad_inode:
5084 	brelse(iloc.bh);
5085 	iget_failed(inode);
5086 	return ERR_PTR(ret);
5087 }
5088 
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5089 static void __ext4_update_other_inode_time(struct super_block *sb,
5090 					   unsigned long orig_ino,
5091 					   unsigned long ino,
5092 					   struct ext4_inode *raw_inode)
5093 {
5094 	struct inode *inode;
5095 
5096 	inode = find_inode_by_ino_rcu(sb, ino);
5097 	if (!inode)
5098 		return;
5099 
5100 	if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5101 			       I_DIRTY_INODE)) ||
5102 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5103 		return;
5104 
5105 	spin_lock(&inode->i_lock);
5106 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5107 				I_DIRTY_INODE)) == 0) &&
5108 	    (inode->i_state & I_DIRTY_TIME)) {
5109 		struct ext4_inode_info	*ei = EXT4_I(inode);
5110 
5111 		inode->i_state &= ~I_DIRTY_TIME;
5112 		spin_unlock(&inode->i_lock);
5113 
5114 		spin_lock(&ei->i_raw_lock);
5115 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5116 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5117 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5118 		ext4_inode_csum_set(inode, raw_inode, ei);
5119 		spin_unlock(&ei->i_raw_lock);
5120 		trace_ext4_other_inode_update_time(inode, orig_ino);
5121 		return;
5122 	}
5123 	spin_unlock(&inode->i_lock);
5124 }
5125 
5126 /*
5127  * Opportunistically update the other time fields for other inodes in
5128  * the same inode table block.
5129  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5130 static void ext4_update_other_inodes_time(struct super_block *sb,
5131 					  unsigned long orig_ino, char *buf)
5132 {
5133 	unsigned long ino;
5134 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5135 	int inode_size = EXT4_INODE_SIZE(sb);
5136 
5137 	/*
5138 	 * Calculate the first inode in the inode table block.  Inode
5139 	 * numbers are one-based.  That is, the first inode in a block
5140 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5141 	 */
5142 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5143 	rcu_read_lock();
5144 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5145 		if (ino == orig_ino)
5146 			continue;
5147 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5148 					       (struct ext4_inode *)buf);
5149 	}
5150 	rcu_read_unlock();
5151 }
5152 
5153 /*
5154  * Post the struct inode info into an on-disk inode location in the
5155  * buffer-cache.  This gobbles the caller's reference to the
5156  * buffer_head in the inode location struct.
5157  *
5158  * The caller must have write access to iloc->bh.
5159  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5160 static int ext4_do_update_inode(handle_t *handle,
5161 				struct inode *inode,
5162 				struct ext4_iloc *iloc)
5163 {
5164 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5165 	struct ext4_inode_info *ei = EXT4_I(inode);
5166 	struct buffer_head *bh = iloc->bh;
5167 	struct super_block *sb = inode->i_sb;
5168 	int err;
5169 	int need_datasync = 0, set_large_file = 0;
5170 
5171 	spin_lock(&ei->i_raw_lock);
5172 
5173 	/*
5174 	 * For fields not tracked in the in-memory inode, initialise them
5175 	 * to zero for new inodes.
5176 	 */
5177 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5178 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5179 
5180 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5181 		need_datasync = 1;
5182 	if (ei->i_disksize > 0x7fffffffULL) {
5183 		if (!ext4_has_feature_large_file(sb) ||
5184 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5185 			set_large_file = 1;
5186 	}
5187 
5188 	err = ext4_fill_raw_inode(inode, raw_inode);
5189 	spin_unlock(&ei->i_raw_lock);
5190 	if (err) {
5191 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5192 		goto out_brelse;
5193 	}
5194 
5195 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5196 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5197 					      bh->b_data);
5198 
5199 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5200 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5201 	if (err)
5202 		goto out_error;
5203 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5204 	if (set_large_file) {
5205 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5206 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5207 		if (err)
5208 			goto out_error;
5209 		lock_buffer(EXT4_SB(sb)->s_sbh);
5210 		ext4_set_feature_large_file(sb);
5211 		ext4_superblock_csum_set(sb);
5212 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5213 		ext4_handle_sync(handle);
5214 		err = ext4_handle_dirty_metadata(handle, NULL,
5215 						 EXT4_SB(sb)->s_sbh);
5216 	}
5217 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5218 out_error:
5219 	ext4_std_error(inode->i_sb, err);
5220 out_brelse:
5221 	brelse(bh);
5222 	return err;
5223 }
5224 
5225 /*
5226  * ext4_write_inode()
5227  *
5228  * We are called from a few places:
5229  *
5230  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5231  *   Here, there will be no transaction running. We wait for any running
5232  *   transaction to commit.
5233  *
5234  * - Within flush work (sys_sync(), kupdate and such).
5235  *   We wait on commit, if told to.
5236  *
5237  * - Within iput_final() -> write_inode_now()
5238  *   We wait on commit, if told to.
5239  *
5240  * In all cases it is actually safe for us to return without doing anything,
5241  * because the inode has been copied into a raw inode buffer in
5242  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5243  * writeback.
5244  *
5245  * Note that we are absolutely dependent upon all inode dirtiers doing the
5246  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5247  * which we are interested.
5248  *
5249  * It would be a bug for them to not do this.  The code:
5250  *
5251  *	mark_inode_dirty(inode)
5252  *	stuff();
5253  *	inode->i_size = expr;
5254  *
5255  * is in error because write_inode() could occur while `stuff()' is running,
5256  * and the new i_size will be lost.  Plus the inode will no longer be on the
5257  * superblock's dirty inode list.
5258  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5259 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5260 {
5261 	int err;
5262 
5263 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5264 	    sb_rdonly(inode->i_sb))
5265 		return 0;
5266 
5267 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5268 		return -EIO;
5269 
5270 	if (EXT4_SB(inode->i_sb)->s_journal) {
5271 		if (ext4_journal_current_handle()) {
5272 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5273 			dump_stack();
5274 			return -EIO;
5275 		}
5276 
5277 		/*
5278 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5279 		 * ext4_sync_fs() will force the commit after everything is
5280 		 * written.
5281 		 */
5282 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5283 			return 0;
5284 
5285 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5286 						EXT4_I(inode)->i_sync_tid);
5287 	} else {
5288 		struct ext4_iloc iloc;
5289 
5290 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5291 		if (err)
5292 			return err;
5293 		/*
5294 		 * sync(2) will flush the whole buffer cache. No need to do
5295 		 * it here separately for each inode.
5296 		 */
5297 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5298 			sync_dirty_buffer(iloc.bh);
5299 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5300 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5301 					       "IO error syncing inode");
5302 			err = -EIO;
5303 		}
5304 		brelse(iloc.bh);
5305 	}
5306 	return err;
5307 }
5308 
5309 /*
5310  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5311  * buffers that are attached to a page stradding i_size and are undergoing
5312  * commit. In that case we have to wait for commit to finish and try again.
5313  */
ext4_wait_for_tail_page_commit(struct inode * inode)5314 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5315 {
5316 	struct page *page;
5317 	unsigned offset;
5318 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5319 	tid_t commit_tid = 0;
5320 	int ret;
5321 
5322 	offset = inode->i_size & (PAGE_SIZE - 1);
5323 	/*
5324 	 * If the page is fully truncated, we don't need to wait for any commit
5325 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5326 	 * strip all buffers from the page but keep the page dirty which can then
5327 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5328 	 * buffers). Also we don't need to wait for any commit if all buffers in
5329 	 * the page remain valid. This is most beneficial for the common case of
5330 	 * blocksize == PAGESIZE.
5331 	 */
5332 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5333 		return;
5334 	while (1) {
5335 		page = find_lock_page(inode->i_mapping,
5336 				      inode->i_size >> PAGE_SHIFT);
5337 		if (!page)
5338 			return;
5339 		ret = __ext4_journalled_invalidatepage(page, offset,
5340 						PAGE_SIZE - offset);
5341 		unlock_page(page);
5342 		put_page(page);
5343 		if (ret != -EBUSY)
5344 			return;
5345 		commit_tid = 0;
5346 		read_lock(&journal->j_state_lock);
5347 		if (journal->j_committing_transaction)
5348 			commit_tid = journal->j_committing_transaction->t_tid;
5349 		read_unlock(&journal->j_state_lock);
5350 		if (commit_tid)
5351 			jbd2_log_wait_commit(journal, commit_tid);
5352 	}
5353 }
5354 
5355 /*
5356  * ext4_setattr()
5357  *
5358  * Called from notify_change.
5359  *
5360  * We want to trap VFS attempts to truncate the file as soon as
5361  * possible.  In particular, we want to make sure that when the VFS
5362  * shrinks i_size, we put the inode on the orphan list and modify
5363  * i_disksize immediately, so that during the subsequent flushing of
5364  * dirty pages and freeing of disk blocks, we can guarantee that any
5365  * commit will leave the blocks being flushed in an unused state on
5366  * disk.  (On recovery, the inode will get truncated and the blocks will
5367  * be freed, so we have a strong guarantee that no future commit will
5368  * leave these blocks visible to the user.)
5369  *
5370  * Another thing we have to assure is that if we are in ordered mode
5371  * and inode is still attached to the committing transaction, we must
5372  * we start writeout of all the dirty pages which are being truncated.
5373  * This way we are sure that all the data written in the previous
5374  * transaction are already on disk (truncate waits for pages under
5375  * writeback).
5376  *
5377  * Called with inode->i_mutex down.
5378  */
ext4_setattr(struct dentry * dentry,struct iattr * attr)5379 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5380 {
5381 	struct inode *inode = d_inode(dentry);
5382 	int error, rc = 0;
5383 	int orphan = 0;
5384 	const unsigned int ia_valid = attr->ia_valid;
5385 
5386 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5387 		return -EIO;
5388 
5389 	if (unlikely(IS_IMMUTABLE(inode)))
5390 		return -EPERM;
5391 
5392 	if (unlikely(IS_APPEND(inode) &&
5393 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5394 				  ATTR_GID | ATTR_TIMES_SET))))
5395 		return -EPERM;
5396 
5397 	error = setattr_prepare(dentry, attr);
5398 	if (error)
5399 		return error;
5400 
5401 	error = fscrypt_prepare_setattr(dentry, attr);
5402 	if (error)
5403 		return error;
5404 
5405 	error = fsverity_prepare_setattr(dentry, attr);
5406 	if (error)
5407 		return error;
5408 
5409 	if (is_quota_modification(inode, attr)) {
5410 		error = dquot_initialize(inode);
5411 		if (error)
5412 			return error;
5413 	}
5414 	ext4_fc_start_update(inode);
5415 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5416 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5417 		handle_t *handle;
5418 
5419 		/* (user+group)*(old+new) structure, inode write (sb,
5420 		 * inode block, ? - but truncate inode update has it) */
5421 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5422 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5423 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5424 		if (IS_ERR(handle)) {
5425 			error = PTR_ERR(handle);
5426 			goto err_out;
5427 		}
5428 
5429 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5430 		 * counts xattr inode references.
5431 		 */
5432 		down_read(&EXT4_I(inode)->xattr_sem);
5433 		error = dquot_transfer(inode, attr);
5434 		up_read(&EXT4_I(inode)->xattr_sem);
5435 
5436 		if (error) {
5437 			ext4_journal_stop(handle);
5438 			ext4_fc_stop_update(inode);
5439 			return error;
5440 		}
5441 		/* Update corresponding info in inode so that everything is in
5442 		 * one transaction */
5443 		if (attr->ia_valid & ATTR_UID)
5444 			inode->i_uid = attr->ia_uid;
5445 		if (attr->ia_valid & ATTR_GID)
5446 			inode->i_gid = attr->ia_gid;
5447 		error = ext4_mark_inode_dirty(handle, inode);
5448 		ext4_journal_stop(handle);
5449 		if (unlikely(error)) {
5450 			ext4_fc_stop_update(inode);
5451 			return error;
5452 		}
5453 	}
5454 
5455 	if (attr->ia_valid & ATTR_SIZE) {
5456 		handle_t *handle;
5457 		loff_t oldsize = inode->i_size;
5458 		loff_t old_disksize;
5459 		int shrink = (attr->ia_size < inode->i_size);
5460 
5461 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5462 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5463 
5464 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5465 				ext4_fc_stop_update(inode);
5466 				return -EFBIG;
5467 			}
5468 		}
5469 		if (!S_ISREG(inode->i_mode)) {
5470 			ext4_fc_stop_update(inode);
5471 			return -EINVAL;
5472 		}
5473 
5474 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5475 			inode_inc_iversion(inode);
5476 
5477 		if (shrink) {
5478 			if (ext4_should_order_data(inode)) {
5479 				error = ext4_begin_ordered_truncate(inode,
5480 							    attr->ia_size);
5481 				if (error)
5482 					goto err_out;
5483 			}
5484 			/*
5485 			 * Blocks are going to be removed from the inode. Wait
5486 			 * for dio in flight.
5487 			 */
5488 			inode_dio_wait(inode);
5489 		}
5490 
5491 		down_write(&EXT4_I(inode)->i_mmap_sem);
5492 
5493 		rc = ext4_break_layouts(inode);
5494 		if (rc) {
5495 			up_write(&EXT4_I(inode)->i_mmap_sem);
5496 			goto err_out;
5497 		}
5498 
5499 		if (attr->ia_size != inode->i_size) {
5500 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5501 			if (IS_ERR(handle)) {
5502 				error = PTR_ERR(handle);
5503 				goto out_mmap_sem;
5504 			}
5505 			if (ext4_handle_valid(handle) && shrink) {
5506 				error = ext4_orphan_add(handle, inode);
5507 				orphan = 1;
5508 			}
5509 			/*
5510 			 * Update c/mtime on truncate up, ext4_truncate() will
5511 			 * update c/mtime in shrink case below
5512 			 */
5513 			if (!shrink) {
5514 				inode->i_mtime = current_time(inode);
5515 				inode->i_ctime = inode->i_mtime;
5516 			}
5517 
5518 			if (shrink)
5519 				ext4_fc_track_range(handle, inode,
5520 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5521 					inode->i_sb->s_blocksize_bits,
5522 					EXT_MAX_BLOCKS - 1);
5523 			else
5524 				ext4_fc_track_range(
5525 					handle, inode,
5526 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5527 					inode->i_sb->s_blocksize_bits,
5528 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5529 					inode->i_sb->s_blocksize_bits);
5530 
5531 			down_write(&EXT4_I(inode)->i_data_sem);
5532 			old_disksize = EXT4_I(inode)->i_disksize;
5533 			EXT4_I(inode)->i_disksize = attr->ia_size;
5534 			rc = ext4_mark_inode_dirty(handle, inode);
5535 			if (!error)
5536 				error = rc;
5537 			/*
5538 			 * We have to update i_size under i_data_sem together
5539 			 * with i_disksize to avoid races with writeback code
5540 			 * running ext4_wb_update_i_disksize().
5541 			 */
5542 			if (!error)
5543 				i_size_write(inode, attr->ia_size);
5544 			else
5545 				EXT4_I(inode)->i_disksize = old_disksize;
5546 			up_write(&EXT4_I(inode)->i_data_sem);
5547 			ext4_journal_stop(handle);
5548 			if (error)
5549 				goto out_mmap_sem;
5550 			if (!shrink) {
5551 				pagecache_isize_extended(inode, oldsize,
5552 							 inode->i_size);
5553 			} else if (ext4_should_journal_data(inode)) {
5554 				ext4_wait_for_tail_page_commit(inode);
5555 			}
5556 		}
5557 
5558 		/*
5559 		 * Truncate pagecache after we've waited for commit
5560 		 * in data=journal mode to make pages freeable.
5561 		 */
5562 		truncate_pagecache(inode, inode->i_size);
5563 		/*
5564 		 * Call ext4_truncate() even if i_size didn't change to
5565 		 * truncate possible preallocated blocks.
5566 		 */
5567 		if (attr->ia_size <= oldsize) {
5568 			rc = ext4_truncate(inode);
5569 			if (rc)
5570 				error = rc;
5571 		}
5572 out_mmap_sem:
5573 		up_write(&EXT4_I(inode)->i_mmap_sem);
5574 	}
5575 
5576 	if (!error) {
5577 		setattr_copy(inode, attr);
5578 		mark_inode_dirty(inode);
5579 	}
5580 
5581 	/*
5582 	 * If the call to ext4_truncate failed to get a transaction handle at
5583 	 * all, we need to clean up the in-core orphan list manually.
5584 	 */
5585 	if (orphan && inode->i_nlink)
5586 		ext4_orphan_del(NULL, inode);
5587 
5588 	if (!error && (ia_valid & ATTR_MODE))
5589 		rc = posix_acl_chmod(inode, inode->i_mode);
5590 
5591 err_out:
5592 	if  (error)
5593 		ext4_std_error(inode->i_sb, error);
5594 	if (!error)
5595 		error = rc;
5596 	ext4_fc_stop_update(inode);
5597 	return error;
5598 }
5599 
ext4_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5600 int ext4_getattr(const struct path *path, struct kstat *stat,
5601 		 u32 request_mask, unsigned int query_flags)
5602 {
5603 	struct inode *inode = d_inode(path->dentry);
5604 	struct ext4_inode *raw_inode;
5605 	struct ext4_inode_info *ei = EXT4_I(inode);
5606 	unsigned int flags;
5607 
5608 	if ((request_mask & STATX_BTIME) &&
5609 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5610 		stat->result_mask |= STATX_BTIME;
5611 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5612 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5613 	}
5614 
5615 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5616 	if (flags & EXT4_APPEND_FL)
5617 		stat->attributes |= STATX_ATTR_APPEND;
5618 	if (flags & EXT4_COMPR_FL)
5619 		stat->attributes |= STATX_ATTR_COMPRESSED;
5620 	if (flags & EXT4_ENCRYPT_FL)
5621 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5622 	if (flags & EXT4_IMMUTABLE_FL)
5623 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5624 	if (flags & EXT4_NODUMP_FL)
5625 		stat->attributes |= STATX_ATTR_NODUMP;
5626 	if (flags & EXT4_VERITY_FL)
5627 		stat->attributes |= STATX_ATTR_VERITY;
5628 
5629 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5630 				  STATX_ATTR_COMPRESSED |
5631 				  STATX_ATTR_ENCRYPTED |
5632 				  STATX_ATTR_IMMUTABLE |
5633 				  STATX_ATTR_NODUMP |
5634 				  STATX_ATTR_VERITY);
5635 
5636 	generic_fillattr(inode, stat);
5637 	return 0;
5638 }
5639 
ext4_file_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5640 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5641 		      u32 request_mask, unsigned int query_flags)
5642 {
5643 	struct inode *inode = d_inode(path->dentry);
5644 	u64 delalloc_blocks;
5645 
5646 	ext4_getattr(path, stat, request_mask, query_flags);
5647 
5648 	/*
5649 	 * If there is inline data in the inode, the inode will normally not
5650 	 * have data blocks allocated (it may have an external xattr block).
5651 	 * Report at least one sector for such files, so tools like tar, rsync,
5652 	 * others don't incorrectly think the file is completely sparse.
5653 	 */
5654 	if (unlikely(ext4_has_inline_data(inode)))
5655 		stat->blocks += (stat->size + 511) >> 9;
5656 
5657 	/*
5658 	 * We can't update i_blocks if the block allocation is delayed
5659 	 * otherwise in the case of system crash before the real block
5660 	 * allocation is done, we will have i_blocks inconsistent with
5661 	 * on-disk file blocks.
5662 	 * We always keep i_blocks updated together with real
5663 	 * allocation. But to not confuse with user, stat
5664 	 * will return the blocks that include the delayed allocation
5665 	 * blocks for this file.
5666 	 */
5667 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5668 				   EXT4_I(inode)->i_reserved_data_blocks);
5669 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5670 	return 0;
5671 }
5672 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5673 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5674 				   int pextents)
5675 {
5676 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5677 		return ext4_ind_trans_blocks(inode, lblocks);
5678 	return ext4_ext_index_trans_blocks(inode, pextents);
5679 }
5680 
5681 /*
5682  * Account for index blocks, block groups bitmaps and block group
5683  * descriptor blocks if modify datablocks and index blocks
5684  * worse case, the indexs blocks spread over different block groups
5685  *
5686  * If datablocks are discontiguous, they are possible to spread over
5687  * different block groups too. If they are contiguous, with flexbg,
5688  * they could still across block group boundary.
5689  *
5690  * Also account for superblock, inode, quota and xattr blocks
5691  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5692 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5693 				  int pextents)
5694 {
5695 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5696 	int gdpblocks;
5697 	int idxblocks;
5698 	int ret = 0;
5699 
5700 	/*
5701 	 * How many index blocks need to touch to map @lblocks logical blocks
5702 	 * to @pextents physical extents?
5703 	 */
5704 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5705 
5706 	ret = idxblocks;
5707 
5708 	/*
5709 	 * Now let's see how many group bitmaps and group descriptors need
5710 	 * to account
5711 	 */
5712 	groups = idxblocks + pextents;
5713 	gdpblocks = groups;
5714 	if (groups > ngroups)
5715 		groups = ngroups;
5716 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5717 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5718 
5719 	/* bitmaps and block group descriptor blocks */
5720 	ret += groups + gdpblocks;
5721 
5722 	/* Blocks for super block, inode, quota and xattr blocks */
5723 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5724 
5725 	return ret;
5726 }
5727 
5728 /*
5729  * Calculate the total number of credits to reserve to fit
5730  * the modification of a single pages into a single transaction,
5731  * which may include multiple chunks of block allocations.
5732  *
5733  * This could be called via ext4_write_begin()
5734  *
5735  * We need to consider the worse case, when
5736  * one new block per extent.
5737  */
ext4_writepage_trans_blocks(struct inode * inode)5738 int ext4_writepage_trans_blocks(struct inode *inode)
5739 {
5740 	int bpp = ext4_journal_blocks_per_page(inode);
5741 	int ret;
5742 
5743 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5744 
5745 	/* Account for data blocks for journalled mode */
5746 	if (ext4_should_journal_data(inode))
5747 		ret += bpp;
5748 	return ret;
5749 }
5750 
5751 /*
5752  * Calculate the journal credits for a chunk of data modification.
5753  *
5754  * This is called from DIO, fallocate or whoever calling
5755  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5756  *
5757  * journal buffers for data blocks are not included here, as DIO
5758  * and fallocate do no need to journal data buffers.
5759  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5760 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5761 {
5762 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5763 }
5764 
5765 /*
5766  * The caller must have previously called ext4_reserve_inode_write().
5767  * Give this, we know that the caller already has write access to iloc->bh.
5768  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5769 int ext4_mark_iloc_dirty(handle_t *handle,
5770 			 struct inode *inode, struct ext4_iloc *iloc)
5771 {
5772 	int err = 0;
5773 
5774 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5775 		put_bh(iloc->bh);
5776 		return -EIO;
5777 	}
5778 	ext4_fc_track_inode(handle, inode);
5779 
5780 	/*
5781 	 * ea_inodes are using i_version for storing reference count, don't
5782 	 * mess with it
5783 	 */
5784 	if (IS_I_VERSION(inode) &&
5785 	    !(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
5786 		inode_inc_iversion(inode);
5787 
5788 	/* the do_update_inode consumes one bh->b_count */
5789 	get_bh(iloc->bh);
5790 
5791 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5792 	err = ext4_do_update_inode(handle, inode, iloc);
5793 	put_bh(iloc->bh);
5794 	return err;
5795 }
5796 
5797 /*
5798  * On success, We end up with an outstanding reference count against
5799  * iloc->bh.  This _must_ be cleaned up later.
5800  */
5801 
5802 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5803 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5804 			 struct ext4_iloc *iloc)
5805 {
5806 	int err;
5807 
5808 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5809 		return -EIO;
5810 
5811 	err = ext4_get_inode_loc(inode, iloc);
5812 	if (!err) {
5813 		BUFFER_TRACE(iloc->bh, "get_write_access");
5814 		err = ext4_journal_get_write_access(handle, iloc->bh);
5815 		if (err) {
5816 			brelse(iloc->bh);
5817 			iloc->bh = NULL;
5818 		}
5819 	}
5820 	ext4_std_error(inode->i_sb, err);
5821 	return err;
5822 }
5823 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5824 static int __ext4_expand_extra_isize(struct inode *inode,
5825 				     unsigned int new_extra_isize,
5826 				     struct ext4_iloc *iloc,
5827 				     handle_t *handle, int *no_expand)
5828 {
5829 	struct ext4_inode *raw_inode;
5830 	struct ext4_xattr_ibody_header *header;
5831 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5832 	struct ext4_inode_info *ei = EXT4_I(inode);
5833 	int error;
5834 
5835 	/* this was checked at iget time, but double check for good measure */
5836 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5837 	    (ei->i_extra_isize & 3)) {
5838 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5839 				 ei->i_extra_isize,
5840 				 EXT4_INODE_SIZE(inode->i_sb));
5841 		return -EFSCORRUPTED;
5842 	}
5843 	if ((new_extra_isize < ei->i_extra_isize) ||
5844 	    (new_extra_isize < 4) ||
5845 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5846 		return -EINVAL;	/* Should never happen */
5847 
5848 	raw_inode = ext4_raw_inode(iloc);
5849 
5850 	header = IHDR(inode, raw_inode);
5851 
5852 	/* No extended attributes present */
5853 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5854 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5855 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5856 		       EXT4_I(inode)->i_extra_isize, 0,
5857 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5858 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5859 		return 0;
5860 	}
5861 
5862 	/*
5863 	 * We may need to allocate external xattr block so we need quotas
5864 	 * initialized. Here we can be called with various locks held so we
5865 	 * cannot affort to initialize quotas ourselves. So just bail.
5866 	 */
5867 	if (dquot_initialize_needed(inode))
5868 		return -EAGAIN;
5869 
5870 	/* try to expand with EAs present */
5871 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5872 					   raw_inode, handle);
5873 	if (error) {
5874 		/*
5875 		 * Inode size expansion failed; don't try again
5876 		 */
5877 		*no_expand = 1;
5878 	}
5879 
5880 	return error;
5881 }
5882 
5883 /*
5884  * Expand an inode by new_extra_isize bytes.
5885  * Returns 0 on success or negative error number on failure.
5886  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5887 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5888 					  unsigned int new_extra_isize,
5889 					  struct ext4_iloc iloc,
5890 					  handle_t *handle)
5891 {
5892 	int no_expand;
5893 	int error;
5894 
5895 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5896 		return -EOVERFLOW;
5897 
5898 	/*
5899 	 * In nojournal mode, we can immediately attempt to expand
5900 	 * the inode.  When journaled, we first need to obtain extra
5901 	 * buffer credits since we may write into the EA block
5902 	 * with this same handle. If journal_extend fails, then it will
5903 	 * only result in a minor loss of functionality for that inode.
5904 	 * If this is felt to be critical, then e2fsck should be run to
5905 	 * force a large enough s_min_extra_isize.
5906 	 */
5907 	if (ext4_journal_extend(handle,
5908 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5909 		return -ENOSPC;
5910 
5911 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5912 		return -EBUSY;
5913 
5914 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5915 					  handle, &no_expand);
5916 	ext4_write_unlock_xattr(inode, &no_expand);
5917 
5918 	return error;
5919 }
5920 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5921 int ext4_expand_extra_isize(struct inode *inode,
5922 			    unsigned int new_extra_isize,
5923 			    struct ext4_iloc *iloc)
5924 {
5925 	handle_t *handle;
5926 	int no_expand;
5927 	int error, rc;
5928 
5929 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5930 		brelse(iloc->bh);
5931 		return -EOVERFLOW;
5932 	}
5933 
5934 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5935 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5936 	if (IS_ERR(handle)) {
5937 		error = PTR_ERR(handle);
5938 		brelse(iloc->bh);
5939 		return error;
5940 	}
5941 
5942 	ext4_write_lock_xattr(inode, &no_expand);
5943 
5944 	BUFFER_TRACE(iloc->bh, "get_write_access");
5945 	error = ext4_journal_get_write_access(handle, iloc->bh);
5946 	if (error) {
5947 		brelse(iloc->bh);
5948 		goto out_unlock;
5949 	}
5950 
5951 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5952 					  handle, &no_expand);
5953 
5954 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5955 	if (!error)
5956 		error = rc;
5957 
5958 out_unlock:
5959 	ext4_write_unlock_xattr(inode, &no_expand);
5960 	ext4_journal_stop(handle);
5961 	return error;
5962 }
5963 
5964 /*
5965  * What we do here is to mark the in-core inode as clean with respect to inode
5966  * dirtiness (it may still be data-dirty).
5967  * This means that the in-core inode may be reaped by prune_icache
5968  * without having to perform any I/O.  This is a very good thing,
5969  * because *any* task may call prune_icache - even ones which
5970  * have a transaction open against a different journal.
5971  *
5972  * Is this cheating?  Not really.  Sure, we haven't written the
5973  * inode out, but prune_icache isn't a user-visible syncing function.
5974  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5975  * we start and wait on commits.
5976  */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)5977 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5978 				const char *func, unsigned int line)
5979 {
5980 	struct ext4_iloc iloc;
5981 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5982 	int err;
5983 
5984 	might_sleep();
5985 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5986 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5987 	if (err)
5988 		goto out;
5989 
5990 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5991 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5992 					       iloc, handle);
5993 
5994 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5995 out:
5996 	if (unlikely(err))
5997 		ext4_error_inode_err(inode, func, line, 0, err,
5998 					"mark_inode_dirty error");
5999 	return err;
6000 }
6001 
6002 /*
6003  * ext4_dirty_inode() is called from __mark_inode_dirty()
6004  *
6005  * We're really interested in the case where a file is being extended.
6006  * i_size has been changed by generic_commit_write() and we thus need
6007  * to include the updated inode in the current transaction.
6008  *
6009  * Also, dquot_alloc_block() will always dirty the inode when blocks
6010  * are allocated to the file.
6011  *
6012  * If the inode is marked synchronous, we don't honour that here - doing
6013  * so would cause a commit on atime updates, which we don't bother doing.
6014  * We handle synchronous inodes at the highest possible level.
6015  *
6016  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6017  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6018  * to copy into the on-disk inode structure are the timestamp files.
6019  */
ext4_dirty_inode(struct inode * inode,int flags)6020 void ext4_dirty_inode(struct inode *inode, int flags)
6021 {
6022 	handle_t *handle;
6023 
6024 	if (flags == I_DIRTY_TIME)
6025 		return;
6026 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6027 	if (IS_ERR(handle))
6028 		goto out;
6029 
6030 	ext4_mark_inode_dirty(handle, inode);
6031 
6032 	ext4_journal_stop(handle);
6033 out:
6034 	return;
6035 }
6036 
ext4_change_inode_journal_flag(struct inode * inode,int val)6037 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6038 {
6039 	journal_t *journal;
6040 	handle_t *handle;
6041 	int err;
6042 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6043 
6044 	/*
6045 	 * We have to be very careful here: changing a data block's
6046 	 * journaling status dynamically is dangerous.  If we write a
6047 	 * data block to the journal, change the status and then delete
6048 	 * that block, we risk forgetting to revoke the old log record
6049 	 * from the journal and so a subsequent replay can corrupt data.
6050 	 * So, first we make sure that the journal is empty and that
6051 	 * nobody is changing anything.
6052 	 */
6053 
6054 	journal = EXT4_JOURNAL(inode);
6055 	if (!journal)
6056 		return 0;
6057 	if (is_journal_aborted(journal))
6058 		return -EROFS;
6059 
6060 	/* Wait for all existing dio workers */
6061 	inode_dio_wait(inode);
6062 
6063 	/*
6064 	 * Before flushing the journal and switching inode's aops, we have
6065 	 * to flush all dirty data the inode has. There can be outstanding
6066 	 * delayed allocations, there can be unwritten extents created by
6067 	 * fallocate or buffered writes in dioread_nolock mode covered by
6068 	 * dirty data which can be converted only after flushing the dirty
6069 	 * data (and journalled aops don't know how to handle these cases).
6070 	 */
6071 	if (val) {
6072 		down_write(&EXT4_I(inode)->i_mmap_sem);
6073 		err = filemap_write_and_wait(inode->i_mapping);
6074 		if (err < 0) {
6075 			up_write(&EXT4_I(inode)->i_mmap_sem);
6076 			return err;
6077 		}
6078 	}
6079 
6080 	percpu_down_write(&sbi->s_writepages_rwsem);
6081 	jbd2_journal_lock_updates(journal);
6082 
6083 	/*
6084 	 * OK, there are no updates running now, and all cached data is
6085 	 * synced to disk.  We are now in a completely consistent state
6086 	 * which doesn't have anything in the journal, and we know that
6087 	 * no filesystem updates are running, so it is safe to modify
6088 	 * the inode's in-core data-journaling state flag now.
6089 	 */
6090 
6091 	if (val)
6092 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6093 	else {
6094 		err = jbd2_journal_flush(journal);
6095 		if (err < 0) {
6096 			jbd2_journal_unlock_updates(journal);
6097 			percpu_up_write(&sbi->s_writepages_rwsem);
6098 			return err;
6099 		}
6100 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6101 	}
6102 	ext4_set_aops(inode);
6103 
6104 	jbd2_journal_unlock_updates(journal);
6105 	percpu_up_write(&sbi->s_writepages_rwsem);
6106 
6107 	if (val)
6108 		up_write(&EXT4_I(inode)->i_mmap_sem);
6109 
6110 	/* Finally we can mark the inode as dirty. */
6111 
6112 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6113 	if (IS_ERR(handle))
6114 		return PTR_ERR(handle);
6115 
6116 	ext4_fc_mark_ineligible(inode->i_sb,
6117 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6118 	err = ext4_mark_inode_dirty(handle, inode);
6119 	ext4_handle_sync(handle);
6120 	ext4_journal_stop(handle);
6121 	ext4_std_error(inode->i_sb, err);
6122 
6123 	return err;
6124 }
6125 
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)6126 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6127 {
6128 	return !buffer_mapped(bh);
6129 }
6130 
ext4_page_mkwrite(struct vm_fault * vmf)6131 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6132 {
6133 	struct vm_area_struct *vma = vmf->vma;
6134 	struct page *page = vmf->page;
6135 	loff_t size;
6136 	unsigned long len;
6137 	int err;
6138 	vm_fault_t ret;
6139 	struct file *file = vma->vm_file;
6140 	struct inode *inode = file_inode(file);
6141 	struct address_space *mapping = inode->i_mapping;
6142 	handle_t *handle;
6143 	get_block_t *get_block;
6144 	int retries = 0;
6145 
6146 	if (unlikely(IS_IMMUTABLE(inode)))
6147 		return VM_FAULT_SIGBUS;
6148 
6149 	sb_start_pagefault(inode->i_sb);
6150 	file_update_time(vma->vm_file);
6151 
6152 	down_read(&EXT4_I(inode)->i_mmap_sem);
6153 
6154 	err = ext4_convert_inline_data(inode);
6155 	if (err)
6156 		goto out_ret;
6157 
6158 	/*
6159 	 * On data journalling we skip straight to the transaction handle:
6160 	 * there's no delalloc; page truncated will be checked later; the
6161 	 * early return w/ all buffers mapped (calculates size/len) can't
6162 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6163 	 */
6164 	if (ext4_should_journal_data(inode))
6165 		goto retry_alloc;
6166 
6167 	/* Delalloc case is easy... */
6168 	if (test_opt(inode->i_sb, DELALLOC) &&
6169 	    !ext4_nonda_switch(inode->i_sb)) {
6170 		do {
6171 			err = block_page_mkwrite(vma, vmf,
6172 						   ext4_da_get_block_prep);
6173 		} while (err == -ENOSPC &&
6174 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6175 		goto out_ret;
6176 	}
6177 
6178 	lock_page(page);
6179 	size = i_size_read(inode);
6180 	/* Page got truncated from under us? */
6181 	if (page->mapping != mapping || page_offset(page) > size) {
6182 		unlock_page(page);
6183 		ret = VM_FAULT_NOPAGE;
6184 		goto out;
6185 	}
6186 
6187 	if (page->index == size >> PAGE_SHIFT)
6188 		len = size & ~PAGE_MASK;
6189 	else
6190 		len = PAGE_SIZE;
6191 	/*
6192 	 * Return if we have all the buffers mapped. This avoids the need to do
6193 	 * journal_start/journal_stop which can block and take a long time
6194 	 *
6195 	 * This cannot be done for data journalling, as we have to add the
6196 	 * inode to the transaction's list to writeprotect pages on commit.
6197 	 */
6198 	if (page_has_buffers(page)) {
6199 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6200 					    0, len, NULL,
6201 					    ext4_bh_unmapped)) {
6202 			/* Wait so that we don't change page under IO */
6203 			wait_for_stable_page(page);
6204 			ret = VM_FAULT_LOCKED;
6205 			goto out;
6206 		}
6207 	}
6208 	unlock_page(page);
6209 	/* OK, we need to fill the hole... */
6210 	if (ext4_should_dioread_nolock(inode))
6211 		get_block = ext4_get_block_unwritten;
6212 	else
6213 		get_block = ext4_get_block;
6214 retry_alloc:
6215 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6216 				    ext4_writepage_trans_blocks(inode));
6217 	if (IS_ERR(handle)) {
6218 		ret = VM_FAULT_SIGBUS;
6219 		goto out;
6220 	}
6221 	/*
6222 	 * Data journalling can't use block_page_mkwrite() because it
6223 	 * will set_buffer_dirty() before do_journal_get_write_access()
6224 	 * thus might hit warning messages for dirty metadata buffers.
6225 	 */
6226 	if (!ext4_should_journal_data(inode)) {
6227 		err = block_page_mkwrite(vma, vmf, get_block);
6228 	} else {
6229 		lock_page(page);
6230 		size = i_size_read(inode);
6231 		/* Page got truncated from under us? */
6232 		if (page->mapping != mapping || page_offset(page) > size) {
6233 			ret = VM_FAULT_NOPAGE;
6234 			goto out_error;
6235 		}
6236 
6237 		if (page->index == size >> PAGE_SHIFT)
6238 			len = size & ~PAGE_MASK;
6239 		else
6240 			len = PAGE_SIZE;
6241 
6242 		err = __block_write_begin(page, 0, len, ext4_get_block);
6243 		if (!err) {
6244 			ret = VM_FAULT_SIGBUS;
6245 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6246 					0, len, NULL, do_journal_get_write_access))
6247 				goto out_error;
6248 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6249 					0, len, NULL, write_end_fn))
6250 				goto out_error;
6251 			if (ext4_jbd2_inode_add_write(handle, inode,
6252 						      page_offset(page), len))
6253 				goto out_error;
6254 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6255 		} else {
6256 			unlock_page(page);
6257 		}
6258 	}
6259 	ext4_journal_stop(handle);
6260 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6261 		goto retry_alloc;
6262 out_ret:
6263 	ret = block_page_mkwrite_return(err);
6264 out:
6265 	up_read(&EXT4_I(inode)->i_mmap_sem);
6266 	sb_end_pagefault(inode->i_sb);
6267 	return ret;
6268 out_error:
6269 	unlock_page(page);
6270 	ext4_journal_stop(handle);
6271 	goto out;
6272 }
6273 
ext4_filemap_fault(struct vm_fault * vmf)6274 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6275 {
6276 	struct inode *inode = file_inode(vmf->vma->vm_file);
6277 	vm_fault_t ret;
6278 
6279 	down_read(&EXT4_I(inode)->i_mmap_sem);
6280 	ret = filemap_fault(vmf);
6281 	up_read(&EXT4_I(inode)->i_mmap_sem);
6282 
6283 	return ret;
6284 }
6285