• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 					struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 				  struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 		       const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87 static struct inode *ext4_get_journal_inode(struct super_block *sb,
88 					    unsigned int journal_inum);
89 
90 /*
91  * Lock ordering
92  *
93  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
94  * i_mmap_rwsem (inode->i_mmap_rwsem)!
95  *
96  * page fault path:
97  * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
98  *   page lock -> i_data_sem (rw)
99  *
100  * buffered write path:
101  * sb_start_write -> i_mutex -> mmap_lock
102  * sb_start_write -> i_mutex -> transaction start -> page lock ->
103  *   i_data_sem (rw)
104  *
105  * truncate:
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
107  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
108  *   i_data_sem (rw)
109  *
110  * direct IO:
111  * sb_start_write -> i_mutex -> mmap_lock
112  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113  *
114  * writepages:
115  * transaction start -> page lock(s) -> i_data_sem (rw)
116  */
117 
118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119 static struct file_system_type ext2_fs_type = {
120 	.owner		= THIS_MODULE,
121 	.name		= "ext2",
122 	.mount		= ext4_mount,
123 	.kill_sb	= kill_block_super,
124 	.fs_flags	= FS_REQUIRES_DEV,
125 };
126 MODULE_ALIAS_FS("ext2");
127 MODULE_ALIAS("ext2");
128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #else
130 #define IS_EXT2_SB(sb) (0)
131 #endif
132 
133 
134 static struct file_system_type ext3_fs_type = {
135 	.owner		= THIS_MODULE,
136 	.name		= "ext3",
137 	.mount		= ext4_mount,
138 	.kill_sb	= kill_block_super,
139 	.fs_flags	= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext3");
142 MODULE_ALIAS("ext3");
143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
144 
145 
__ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)146 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
147 				  bh_end_io_t *end_io)
148 {
149 	/*
150 	 * buffer's verified bit is no longer valid after reading from
151 	 * disk again due to write out error, clear it to make sure we
152 	 * recheck the buffer contents.
153 	 */
154 	clear_buffer_verified(bh);
155 
156 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
157 	get_bh(bh);
158 	submit_bh(REQ_OP_READ, op_flags, bh);
159 }
160 
ext4_read_bh_nowait(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)161 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
162 			 bh_end_io_t *end_io)
163 {
164 	BUG_ON(!buffer_locked(bh));
165 
166 	if (ext4_buffer_uptodate(bh)) {
167 		unlock_buffer(bh);
168 		return;
169 	}
170 	__ext4_read_bh(bh, op_flags, end_io);
171 }
172 
ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)173 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
174 {
175 	BUG_ON(!buffer_locked(bh));
176 
177 	if (ext4_buffer_uptodate(bh)) {
178 		unlock_buffer(bh);
179 		return 0;
180 	}
181 
182 	__ext4_read_bh(bh, op_flags, end_io);
183 
184 	wait_on_buffer(bh);
185 	if (buffer_uptodate(bh))
186 		return 0;
187 	return -EIO;
188 }
189 
ext4_read_bh_lock(struct buffer_head * bh,int op_flags,bool wait)190 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
191 {
192 	lock_buffer(bh);
193 	if (!wait) {
194 		ext4_read_bh_nowait(bh, op_flags, NULL);
195 		return 0;
196 	}
197 	return ext4_read_bh(bh, op_flags, NULL);
198 }
199 
200 /*
201  * This works like __bread_gfp() except it uses ERR_PTR for error
202  * returns.  Currently with sb_bread it's impossible to distinguish
203  * between ENOMEM and EIO situations (since both result in a NULL
204  * return.
205  */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,int op_flags,gfp_t gfp)206 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
207 					       sector_t block, int op_flags,
208 					       gfp_t gfp)
209 {
210 	struct buffer_head *bh;
211 	int ret;
212 
213 	bh = sb_getblk_gfp(sb, block, gfp);
214 	if (bh == NULL)
215 		return ERR_PTR(-ENOMEM);
216 	if (ext4_buffer_uptodate(bh))
217 		return bh;
218 
219 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
220 	if (ret) {
221 		put_bh(bh);
222 		return ERR_PTR(ret);
223 	}
224 	return bh;
225 }
226 
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)227 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
228 				   int op_flags)
229 {
230 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
231 }
232 
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)233 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
234 					    sector_t block)
235 {
236 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
237 }
238 
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)239 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
240 {
241 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
242 
243 	if (likely(bh)) {
244 		if (trylock_buffer(bh))
245 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
246 		brelse(bh);
247 	}
248 }
249 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)250 static int ext4_verify_csum_type(struct super_block *sb,
251 				 struct ext4_super_block *es)
252 {
253 	if (!ext4_has_feature_metadata_csum(sb))
254 		return 1;
255 
256 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
257 }
258 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)259 static __le32 ext4_superblock_csum(struct super_block *sb,
260 				   struct ext4_super_block *es)
261 {
262 	struct ext4_sb_info *sbi = EXT4_SB(sb);
263 	int offset = offsetof(struct ext4_super_block, s_checksum);
264 	__u32 csum;
265 
266 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
267 
268 	return cpu_to_le32(csum);
269 }
270 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)271 static int ext4_superblock_csum_verify(struct super_block *sb,
272 				       struct ext4_super_block *es)
273 {
274 	if (!ext4_has_metadata_csum(sb))
275 		return 1;
276 
277 	return es->s_checksum == ext4_superblock_csum(sb, es);
278 }
279 
ext4_superblock_csum_set(struct super_block * sb)280 void ext4_superblock_csum_set(struct super_block *sb)
281 {
282 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
283 
284 	if (!ext4_has_metadata_csum(sb))
285 		return;
286 
287 	es->s_checksum = ext4_superblock_csum(sb, es);
288 }
289 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)290 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
291 			       struct ext4_group_desc *bg)
292 {
293 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
294 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
295 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
296 }
297 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)298 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
299 			       struct ext4_group_desc *bg)
300 {
301 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
302 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
303 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
304 }
305 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)306 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
307 			      struct ext4_group_desc *bg)
308 {
309 	return le32_to_cpu(bg->bg_inode_table_lo) |
310 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
311 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
312 }
313 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)314 __u32 ext4_free_group_clusters(struct super_block *sb,
315 			       struct ext4_group_desc *bg)
316 {
317 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
318 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
320 }
321 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)322 __u32 ext4_free_inodes_count(struct super_block *sb,
323 			      struct ext4_group_desc *bg)
324 {
325 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
326 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
328 }
329 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)330 __u32 ext4_used_dirs_count(struct super_block *sb,
331 			      struct ext4_group_desc *bg)
332 {
333 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
334 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
336 }
337 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)338 __u32 ext4_itable_unused_count(struct super_block *sb,
339 			      struct ext4_group_desc *bg)
340 {
341 	return le16_to_cpu(bg->bg_itable_unused_lo) |
342 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
344 }
345 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)346 void ext4_block_bitmap_set(struct super_block *sb,
347 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
348 {
349 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
350 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
351 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
352 }
353 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)354 void ext4_inode_bitmap_set(struct super_block *sb,
355 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
356 {
357 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
358 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
359 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
360 }
361 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)362 void ext4_inode_table_set(struct super_block *sb,
363 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
364 {
365 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
366 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
367 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
368 }
369 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)370 void ext4_free_group_clusters_set(struct super_block *sb,
371 				  struct ext4_group_desc *bg, __u32 count)
372 {
373 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
374 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
376 }
377 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)378 void ext4_free_inodes_set(struct super_block *sb,
379 			  struct ext4_group_desc *bg, __u32 count)
380 {
381 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
382 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
384 }
385 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)386 void ext4_used_dirs_set(struct super_block *sb,
387 			  struct ext4_group_desc *bg, __u32 count)
388 {
389 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
390 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
392 }
393 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)394 void ext4_itable_unused_set(struct super_block *sb,
395 			  struct ext4_group_desc *bg, __u32 count)
396 {
397 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
398 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
400 }
401 
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)402 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
403 {
404 	now = clamp_val(now, 0, (1ull << 40) - 1);
405 
406 	*lo = cpu_to_le32(lower_32_bits(now));
407 	*hi = upper_32_bits(now);
408 }
409 
__ext4_get_tstamp(__le32 * lo,__u8 * hi)410 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
411 {
412 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
413 }
414 #define ext4_update_tstamp(es, tstamp) \
415 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
416 			     ktime_get_real_seconds())
417 #define ext4_get_tstamp(es, tstamp) \
418 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
419 
420 /*
421  * The del_gendisk() function uninitializes the disk-specific data
422  * structures, including the bdi structure, without telling anyone
423  * else.  Once this happens, any attempt to call mark_buffer_dirty()
424  * (for example, by ext4_commit_super), will cause a kernel OOPS.
425  * This is a kludge to prevent these oops until we can put in a proper
426  * hook in del_gendisk() to inform the VFS and file system layers.
427  */
block_device_ejected(struct super_block * sb)428 static int block_device_ejected(struct super_block *sb)
429 {
430 	struct inode *bd_inode = sb->s_bdev->bd_inode;
431 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
432 
433 	return bdi->dev == NULL;
434 }
435 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)436 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
437 {
438 	struct super_block		*sb = journal->j_private;
439 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
440 	int				error = is_journal_aborted(journal);
441 	struct ext4_journal_cb_entry	*jce;
442 
443 	BUG_ON(txn->t_state == T_FINISHED);
444 
445 	ext4_process_freed_data(sb, txn->t_tid);
446 
447 	spin_lock(&sbi->s_md_lock);
448 	while (!list_empty(&txn->t_private_list)) {
449 		jce = list_entry(txn->t_private_list.next,
450 				 struct ext4_journal_cb_entry, jce_list);
451 		list_del_init(&jce->jce_list);
452 		spin_unlock(&sbi->s_md_lock);
453 		jce->jce_func(sb, jce, error);
454 		spin_lock(&sbi->s_md_lock);
455 	}
456 	spin_unlock(&sbi->s_md_lock);
457 }
458 
459 /*
460  * This writepage callback for write_cache_pages()
461  * takes care of a few cases after page cleaning.
462  *
463  * write_cache_pages() already checks for dirty pages
464  * and calls clear_page_dirty_for_io(), which we want,
465  * to write protect the pages.
466  *
467  * However, we may have to redirty a page (see below.)
468  */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)469 static int ext4_journalled_writepage_callback(struct page *page,
470 					      struct writeback_control *wbc,
471 					      void *data)
472 {
473 	transaction_t *transaction = (transaction_t *) data;
474 	struct buffer_head *bh, *head;
475 	struct journal_head *jh;
476 
477 	bh = head = page_buffers(page);
478 	do {
479 		/*
480 		 * We have to redirty a page in these cases:
481 		 * 1) If buffer is dirty, it means the page was dirty because it
482 		 * contains a buffer that needs checkpointing. So the dirty bit
483 		 * needs to be preserved so that checkpointing writes the buffer
484 		 * properly.
485 		 * 2) If buffer is not part of the committing transaction
486 		 * (we may have just accidentally come across this buffer because
487 		 * inode range tracking is not exact) or if the currently running
488 		 * transaction already contains this buffer as well, dirty bit
489 		 * needs to be preserved so that the buffer gets writeprotected
490 		 * properly on running transaction's commit.
491 		 */
492 		jh = bh2jh(bh);
493 		if (buffer_dirty(bh) ||
494 		    (jh && (jh->b_transaction != transaction ||
495 			    jh->b_next_transaction))) {
496 			redirty_page_for_writepage(wbc, page);
497 			goto out;
498 		}
499 	} while ((bh = bh->b_this_page) != head);
500 
501 out:
502 	return AOP_WRITEPAGE_ACTIVATE;
503 }
504 
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)505 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
506 {
507 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
508 	struct writeback_control wbc = {
509 		.sync_mode =  WB_SYNC_ALL,
510 		.nr_to_write = LONG_MAX,
511 		.range_start = jinode->i_dirty_start,
512 		.range_end = jinode->i_dirty_end,
513         };
514 
515 	return write_cache_pages(mapping, &wbc,
516 				 ext4_journalled_writepage_callback,
517 				 jinode->i_transaction);
518 }
519 
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)520 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
521 {
522 	int ret;
523 
524 	if (ext4_should_journal_data(jinode->i_vfs_inode))
525 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
526 	else
527 		ret = jbd2_journal_submit_inode_data_buffers(jinode);
528 
529 	return ret;
530 }
531 
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)532 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
533 {
534 	int ret = 0;
535 
536 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
537 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
538 
539 	return ret;
540 }
541 
system_going_down(void)542 static bool system_going_down(void)
543 {
544 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
545 		|| system_state == SYSTEM_RESTART;
546 }
547 
548 struct ext4_err_translation {
549 	int code;
550 	int errno;
551 };
552 
553 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
554 
555 static struct ext4_err_translation err_translation[] = {
556 	EXT4_ERR_TRANSLATE(EIO),
557 	EXT4_ERR_TRANSLATE(ENOMEM),
558 	EXT4_ERR_TRANSLATE(EFSBADCRC),
559 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
560 	EXT4_ERR_TRANSLATE(ENOSPC),
561 	EXT4_ERR_TRANSLATE(ENOKEY),
562 	EXT4_ERR_TRANSLATE(EROFS),
563 	EXT4_ERR_TRANSLATE(EFBIG),
564 	EXT4_ERR_TRANSLATE(EEXIST),
565 	EXT4_ERR_TRANSLATE(ERANGE),
566 	EXT4_ERR_TRANSLATE(EOVERFLOW),
567 	EXT4_ERR_TRANSLATE(EBUSY),
568 	EXT4_ERR_TRANSLATE(ENOTDIR),
569 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
570 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
571 	EXT4_ERR_TRANSLATE(EFAULT),
572 };
573 
ext4_errno_to_code(int errno)574 static int ext4_errno_to_code(int errno)
575 {
576 	int i;
577 
578 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
579 		if (err_translation[i].errno == errno)
580 			return err_translation[i].code;
581 	return EXT4_ERR_UNKNOWN;
582 }
583 
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)584 static void save_error_info(struct super_block *sb, int error,
585 			    __u32 ino, __u64 block,
586 			    const char *func, unsigned int line)
587 {
588 	struct ext4_sb_info *sbi = EXT4_SB(sb);
589 
590 	/* We default to EFSCORRUPTED error... */
591 	if (error == 0)
592 		error = EFSCORRUPTED;
593 
594 	spin_lock(&sbi->s_error_lock);
595 	sbi->s_add_error_count++;
596 	sbi->s_last_error_code = error;
597 	sbi->s_last_error_line = line;
598 	sbi->s_last_error_ino = ino;
599 	sbi->s_last_error_block = block;
600 	sbi->s_last_error_func = func;
601 	sbi->s_last_error_time = ktime_get_real_seconds();
602 	if (!sbi->s_first_error_time) {
603 		sbi->s_first_error_code = error;
604 		sbi->s_first_error_line = line;
605 		sbi->s_first_error_ino = ino;
606 		sbi->s_first_error_block = block;
607 		sbi->s_first_error_func = func;
608 		sbi->s_first_error_time = sbi->s_last_error_time;
609 	}
610 	spin_unlock(&sbi->s_error_lock);
611 }
612 
613 /* Deal with the reporting of failure conditions on a filesystem such as
614  * inconsistencies detected or read IO failures.
615  *
616  * On ext2, we can store the error state of the filesystem in the
617  * superblock.  That is not possible on ext4, because we may have other
618  * write ordering constraints on the superblock which prevent us from
619  * writing it out straight away; and given that the journal is about to
620  * be aborted, we can't rely on the current, or future, transactions to
621  * write out the superblock safely.
622  *
623  * We'll just use the jbd2_journal_abort() error code to record an error in
624  * the journal instead.  On recovery, the journal will complain about
625  * that error until we've noted it down and cleared it.
626  *
627  * If force_ro is set, we unconditionally force the filesystem into an
628  * ABORT|READONLY state, unless the error response on the fs has been set to
629  * panic in which case we take the easy way out and panic immediately. This is
630  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
631  * at a critical moment in log management.
632  */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)633 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
634 			      __u32 ino, __u64 block,
635 			      const char *func, unsigned int line)
636 {
637 	journal_t *journal = EXT4_SB(sb)->s_journal;
638 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
639 
640 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
641 	if (test_opt(sb, WARN_ON_ERROR))
642 		WARN_ON_ONCE(1);
643 
644 	if (!continue_fs && !sb_rdonly(sb)) {
645 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
646 		if (journal)
647 			jbd2_journal_abort(journal, -EIO);
648 	}
649 
650 	if (!bdev_read_only(sb->s_bdev)) {
651 		save_error_info(sb, error, ino, block, func, line);
652 		/*
653 		 * In case the fs should keep running, we need to writeout
654 		 * superblock through the journal. Due to lock ordering
655 		 * constraints, it may not be safe to do it right here so we
656 		 * defer superblock flushing to a workqueue.
657 		 */
658 		if (continue_fs && journal)
659 			schedule_work(&EXT4_SB(sb)->s_error_work);
660 		else
661 			ext4_commit_super(sb);
662 	}
663 
664 	/*
665 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
666 	 * could panic during 'reboot -f' as the underlying device got already
667 	 * disabled.
668 	 */
669 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
670 		panic("EXT4-fs (device %s): panic forced after error\n",
671 			sb->s_id);
672 	}
673 
674 	if (sb_rdonly(sb) || continue_fs)
675 		return;
676 
677 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
678 	/*
679 	 * Make sure updated value of ->s_mount_flags will be visible before
680 	 * ->s_flags update
681 	 */
682 	smp_wmb();
683 	sb->s_flags |= SB_RDONLY;
684 }
685 
flush_stashed_error_work(struct work_struct * work)686 static void flush_stashed_error_work(struct work_struct *work)
687 {
688 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
689 						s_error_work);
690 	journal_t *journal = sbi->s_journal;
691 	handle_t *handle;
692 
693 	/*
694 	 * If the journal is still running, we have to write out superblock
695 	 * through the journal to avoid collisions of other journalled sb
696 	 * updates.
697 	 *
698 	 * We use directly jbd2 functions here to avoid recursing back into
699 	 * ext4 error handling code during handling of previous errors.
700 	 */
701 	if (!sb_rdonly(sbi->s_sb) && journal) {
702 		struct buffer_head *sbh = sbi->s_sbh;
703 		handle = jbd2_journal_start(journal, 1);
704 		if (IS_ERR(handle))
705 			goto write_directly;
706 		if (jbd2_journal_get_write_access(handle, sbh)) {
707 			jbd2_journal_stop(handle);
708 			goto write_directly;
709 		}
710 		ext4_update_super(sbi->s_sb);
711 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
712 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
713 				 "superblock detected");
714 			clear_buffer_write_io_error(sbh);
715 			set_buffer_uptodate(sbh);
716 		}
717 
718 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
719 			jbd2_journal_stop(handle);
720 			goto write_directly;
721 		}
722 		jbd2_journal_stop(handle);
723 		return;
724 	}
725 write_directly:
726 	/*
727 	 * Write through journal failed. Write sb directly to get error info
728 	 * out and hope for the best.
729 	 */
730 	ext4_commit_super(sbi->s_sb);
731 }
732 
733 #define ext4_error_ratelimit(sb)					\
734 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
735 			     "EXT4-fs error")
736 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)737 void __ext4_error(struct super_block *sb, const char *function,
738 		  unsigned int line, bool force_ro, int error, __u64 block,
739 		  const char *fmt, ...)
740 {
741 	struct va_format vaf;
742 	va_list args;
743 
744 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
745 		return;
746 
747 	trace_ext4_error(sb, function, line);
748 	if (ext4_error_ratelimit(sb)) {
749 		va_start(args, fmt);
750 		vaf.fmt = fmt;
751 		vaf.va = &args;
752 		printk(KERN_CRIT
753 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
754 		       sb->s_id, function, line, current->comm, &vaf);
755 		va_end(args);
756 	}
757 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
758 }
759 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)760 void __ext4_error_inode(struct inode *inode, const char *function,
761 			unsigned int line, ext4_fsblk_t block, int error,
762 			const char *fmt, ...)
763 {
764 	va_list args;
765 	struct va_format vaf;
766 
767 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
768 		return;
769 
770 	trace_ext4_error(inode->i_sb, function, line);
771 	if (ext4_error_ratelimit(inode->i_sb)) {
772 		va_start(args, fmt);
773 		vaf.fmt = fmt;
774 		vaf.va = &args;
775 		if (block)
776 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
777 			       "inode #%lu: block %llu: comm %s: %pV\n",
778 			       inode->i_sb->s_id, function, line, inode->i_ino,
779 			       block, current->comm, &vaf);
780 		else
781 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
782 			       "inode #%lu: comm %s: %pV\n",
783 			       inode->i_sb->s_id, function, line, inode->i_ino,
784 			       current->comm, &vaf);
785 		va_end(args);
786 	}
787 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
788 			  function, line);
789 }
790 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)791 void __ext4_error_file(struct file *file, const char *function,
792 		       unsigned int line, ext4_fsblk_t block,
793 		       const char *fmt, ...)
794 {
795 	va_list args;
796 	struct va_format vaf;
797 	struct inode *inode = file_inode(file);
798 	char pathname[80], *path;
799 
800 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
801 		return;
802 
803 	trace_ext4_error(inode->i_sb, function, line);
804 	if (ext4_error_ratelimit(inode->i_sb)) {
805 		path = file_path(file, pathname, sizeof(pathname));
806 		if (IS_ERR(path))
807 			path = "(unknown)";
808 		va_start(args, fmt);
809 		vaf.fmt = fmt;
810 		vaf.va = &args;
811 		if (block)
812 			printk(KERN_CRIT
813 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
814 			       "block %llu: comm %s: path %s: %pV\n",
815 			       inode->i_sb->s_id, function, line, inode->i_ino,
816 			       block, current->comm, path, &vaf);
817 		else
818 			printk(KERN_CRIT
819 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
820 			       "comm %s: path %s: %pV\n",
821 			       inode->i_sb->s_id, function, line, inode->i_ino,
822 			       current->comm, path, &vaf);
823 		va_end(args);
824 	}
825 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
826 			  function, line);
827 }
828 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])829 const char *ext4_decode_error(struct super_block *sb, int errno,
830 			      char nbuf[16])
831 {
832 	char *errstr = NULL;
833 
834 	switch (errno) {
835 	case -EFSCORRUPTED:
836 		errstr = "Corrupt filesystem";
837 		break;
838 	case -EFSBADCRC:
839 		errstr = "Filesystem failed CRC";
840 		break;
841 	case -EIO:
842 		errstr = "IO failure";
843 		break;
844 	case -ENOMEM:
845 		errstr = "Out of memory";
846 		break;
847 	case -EROFS:
848 		if (!sb || (EXT4_SB(sb)->s_journal &&
849 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
850 			errstr = "Journal has aborted";
851 		else
852 			errstr = "Readonly filesystem";
853 		break;
854 	default:
855 		/* If the caller passed in an extra buffer for unknown
856 		 * errors, textualise them now.  Else we just return
857 		 * NULL. */
858 		if (nbuf) {
859 			/* Check for truncated error codes... */
860 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
861 				errstr = nbuf;
862 		}
863 		break;
864 	}
865 
866 	return errstr;
867 }
868 
869 /* __ext4_std_error decodes expected errors from journaling functions
870  * automatically and invokes the appropriate error response.  */
871 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)872 void __ext4_std_error(struct super_block *sb, const char *function,
873 		      unsigned int line, int errno)
874 {
875 	char nbuf[16];
876 	const char *errstr;
877 
878 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
879 		return;
880 
881 	/* Special case: if the error is EROFS, and we're not already
882 	 * inside a transaction, then there's really no point in logging
883 	 * an error. */
884 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
885 		return;
886 
887 	if (ext4_error_ratelimit(sb)) {
888 		errstr = ext4_decode_error(sb, errno, nbuf);
889 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
890 		       sb->s_id, function, line, errstr);
891 	}
892 
893 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
894 }
895 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)896 void __ext4_msg(struct super_block *sb,
897 		const char *prefix, const char *fmt, ...)
898 {
899 	struct va_format vaf;
900 	va_list args;
901 
902 	atomic_inc(&EXT4_SB(sb)->s_msg_count);
903 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
904 		return;
905 
906 	va_start(args, fmt);
907 	vaf.fmt = fmt;
908 	vaf.va = &args;
909 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
910 	va_end(args);
911 }
912 
ext4_warning_ratelimit(struct super_block * sb)913 static int ext4_warning_ratelimit(struct super_block *sb)
914 {
915 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
916 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
917 			    "EXT4-fs warning");
918 }
919 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)920 void __ext4_warning(struct super_block *sb, const char *function,
921 		    unsigned int line, const char *fmt, ...)
922 {
923 	struct va_format vaf;
924 	va_list args;
925 
926 	if (!ext4_warning_ratelimit(sb))
927 		return;
928 
929 	va_start(args, fmt);
930 	vaf.fmt = fmt;
931 	vaf.va = &args;
932 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
933 	       sb->s_id, function, line, &vaf);
934 	va_end(args);
935 }
936 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)937 void __ext4_warning_inode(const struct inode *inode, const char *function,
938 			  unsigned int line, const char *fmt, ...)
939 {
940 	struct va_format vaf;
941 	va_list args;
942 
943 	if (!ext4_warning_ratelimit(inode->i_sb))
944 		return;
945 
946 	va_start(args, fmt);
947 	vaf.fmt = fmt;
948 	vaf.va = &args;
949 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
950 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
951 	       function, line, inode->i_ino, current->comm, &vaf);
952 	va_end(args);
953 }
954 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)955 void __ext4_grp_locked_error(const char *function, unsigned int line,
956 			     struct super_block *sb, ext4_group_t grp,
957 			     unsigned long ino, ext4_fsblk_t block,
958 			     const char *fmt, ...)
959 __releases(bitlock)
960 __acquires(bitlock)
961 {
962 	struct va_format vaf;
963 	va_list args;
964 
965 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
966 		return;
967 
968 	trace_ext4_error(sb, function, line);
969 	if (ext4_error_ratelimit(sb)) {
970 		va_start(args, fmt);
971 		vaf.fmt = fmt;
972 		vaf.va = &args;
973 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
974 		       sb->s_id, function, line, grp);
975 		if (ino)
976 			printk(KERN_CONT "inode %lu: ", ino);
977 		if (block)
978 			printk(KERN_CONT "block %llu:",
979 			       (unsigned long long) block);
980 		printk(KERN_CONT "%pV\n", &vaf);
981 		va_end(args);
982 	}
983 
984 	if (test_opt(sb, ERRORS_CONT)) {
985 		if (test_opt(sb, WARN_ON_ERROR))
986 			WARN_ON_ONCE(1);
987 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
988 		if (!bdev_read_only(sb->s_bdev)) {
989 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
990 					line);
991 			schedule_work(&EXT4_SB(sb)->s_error_work);
992 		}
993 		return;
994 	}
995 	ext4_unlock_group(sb, grp);
996 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
997 	/*
998 	 * We only get here in the ERRORS_RO case; relocking the group
999 	 * may be dangerous, but nothing bad will happen since the
1000 	 * filesystem will have already been marked read/only and the
1001 	 * journal has been aborted.  We return 1 as a hint to callers
1002 	 * who might what to use the return value from
1003 	 * ext4_grp_locked_error() to distinguish between the
1004 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1005 	 * aggressively from the ext4 function in question, with a
1006 	 * more appropriate error code.
1007 	 */
1008 	ext4_lock_group(sb, grp);
1009 	return;
1010 }
1011 
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1012 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1013 				     ext4_group_t group,
1014 				     unsigned int flags)
1015 {
1016 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1017 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1018 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1019 	int ret;
1020 
1021 	if (!grp || !gdp)
1022 		return;
1023 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1024 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1025 					    &grp->bb_state);
1026 		if (!ret)
1027 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1028 					   grp->bb_free);
1029 	}
1030 
1031 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1032 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1033 					    &grp->bb_state);
1034 		if (!ret && gdp) {
1035 			int count;
1036 
1037 			count = ext4_free_inodes_count(sb, gdp);
1038 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1039 					   count);
1040 		}
1041 	}
1042 }
1043 
ext4_update_dynamic_rev(struct super_block * sb)1044 void ext4_update_dynamic_rev(struct super_block *sb)
1045 {
1046 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1047 
1048 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1049 		return;
1050 
1051 	ext4_warning(sb,
1052 		     "updating to rev %d because of new feature flag, "
1053 		     "running e2fsck is recommended",
1054 		     EXT4_DYNAMIC_REV);
1055 
1056 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1057 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1058 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1059 	/* leave es->s_feature_*compat flags alone */
1060 	/* es->s_uuid will be set by e2fsck if empty */
1061 
1062 	/*
1063 	 * The rest of the superblock fields should be zero, and if not it
1064 	 * means they are likely already in use, so leave them alone.  We
1065 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1066 	 */
1067 }
1068 
1069 /*
1070  * Open the external journal device
1071  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1072 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1073 {
1074 	struct block_device *bdev;
1075 
1076 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1077 	if (IS_ERR(bdev))
1078 		goto fail;
1079 	return bdev;
1080 
1081 fail:
1082 	ext4_msg(sb, KERN_ERR,
1083 		 "failed to open journal device unknown-block(%u,%u) %ld",
1084 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1085 	return NULL;
1086 }
1087 
1088 /*
1089  * Release the journal device
1090  */
ext4_blkdev_put(struct block_device * bdev)1091 static void ext4_blkdev_put(struct block_device *bdev)
1092 {
1093 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1094 }
1095 
ext4_blkdev_remove(struct ext4_sb_info * sbi)1096 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1097 {
1098 	struct block_device *bdev;
1099 	bdev = sbi->s_journal_bdev;
1100 	if (bdev) {
1101 		ext4_blkdev_put(bdev);
1102 		sbi->s_journal_bdev = NULL;
1103 	}
1104 }
1105 
orphan_list_entry(struct list_head * l)1106 static inline struct inode *orphan_list_entry(struct list_head *l)
1107 {
1108 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1109 }
1110 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1111 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1112 {
1113 	struct list_head *l;
1114 
1115 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1116 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1117 
1118 	printk(KERN_ERR "sb_info orphan list:\n");
1119 	list_for_each(l, &sbi->s_orphan) {
1120 		struct inode *inode = orphan_list_entry(l);
1121 		printk(KERN_ERR "  "
1122 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1123 		       inode->i_sb->s_id, inode->i_ino, inode,
1124 		       inode->i_mode, inode->i_nlink,
1125 		       NEXT_ORPHAN(inode));
1126 	}
1127 }
1128 
1129 #ifdef CONFIG_QUOTA
1130 static int ext4_quota_off(struct super_block *sb, int type);
1131 
ext4_quota_off_umount(struct super_block * sb)1132 static inline void ext4_quota_off_umount(struct super_block *sb)
1133 {
1134 	int type;
1135 
1136 	/* Use our quota_off function to clear inode flags etc. */
1137 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1138 		ext4_quota_off(sb, type);
1139 }
1140 
1141 /*
1142  * This is a helper function which is used in the mount/remount
1143  * codepaths (which holds s_umount) to fetch the quota file name.
1144  */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1145 static inline char *get_qf_name(struct super_block *sb,
1146 				struct ext4_sb_info *sbi,
1147 				int type)
1148 {
1149 	return rcu_dereference_protected(sbi->s_qf_names[type],
1150 					 lockdep_is_held(&sb->s_umount));
1151 }
1152 #else
ext4_quota_off_umount(struct super_block * sb)1153 static inline void ext4_quota_off_umount(struct super_block *sb)
1154 {
1155 }
1156 #endif
1157 
ext4_put_super(struct super_block * sb)1158 static void ext4_put_super(struct super_block *sb)
1159 {
1160 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1161 	struct ext4_super_block *es = sbi->s_es;
1162 	struct buffer_head **group_desc;
1163 	struct flex_groups **flex_groups;
1164 	int aborted = 0;
1165 	int i, err;
1166 
1167 	/*
1168 	 * Unregister sysfs before destroying jbd2 journal.
1169 	 * Since we could still access attr_journal_task attribute via sysfs
1170 	 * path which could have sbi->s_journal->j_task as NULL
1171 	 * Unregister sysfs before flush sbi->s_error_work.
1172 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1173 	 * read metadata verify failed then will queue error work.
1174 	 * flush_stashed_error_work will call start_this_handle may trigger
1175 	 * BUG_ON.
1176 	 */
1177 	ext4_unregister_sysfs(sb);
1178 
1179 	ext4_unregister_li_request(sb);
1180 	ext4_quota_off_umount(sb);
1181 	flush_work(&sbi->s_error_work);
1182 	destroy_workqueue(sbi->rsv_conversion_wq);
1183 
1184 	if (sbi->s_journal) {
1185 		aborted = is_journal_aborted(sbi->s_journal);
1186 		err = jbd2_journal_destroy(sbi->s_journal);
1187 		sbi->s_journal = NULL;
1188 		if ((err < 0) && !aborted) {
1189 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1190 		}
1191 	}
1192 
1193 	ext4_es_unregister_shrinker(sbi);
1194 	del_timer_sync(&sbi->s_err_report);
1195 	ext4_release_system_zone(sb);
1196 	ext4_mb_release(sb);
1197 	ext4_ext_release(sb);
1198 
1199 	if (!sb_rdonly(sb) && !aborted) {
1200 		ext4_clear_feature_journal_needs_recovery(sb);
1201 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1202 	}
1203 	if (!sb_rdonly(sb))
1204 		ext4_commit_super(sb);
1205 
1206 	rcu_read_lock();
1207 	group_desc = rcu_dereference(sbi->s_group_desc);
1208 	for (i = 0; i < sbi->s_gdb_count; i++)
1209 		brelse(group_desc[i]);
1210 	kvfree(group_desc);
1211 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1212 	if (flex_groups) {
1213 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1214 			kvfree(flex_groups[i]);
1215 		kvfree(flex_groups);
1216 	}
1217 	rcu_read_unlock();
1218 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1219 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1220 	percpu_counter_destroy(&sbi->s_dirs_counter);
1221 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1222 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1223 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1224 #ifdef CONFIG_QUOTA
1225 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1226 		kfree(get_qf_name(sb, sbi, i));
1227 #endif
1228 
1229 	/* Debugging code just in case the in-memory inode orphan list
1230 	 * isn't empty.  The on-disk one can be non-empty if we've
1231 	 * detected an error and taken the fs readonly, but the
1232 	 * in-memory list had better be clean by this point. */
1233 	if (!list_empty(&sbi->s_orphan))
1234 		dump_orphan_list(sb, sbi);
1235 	J_ASSERT(list_empty(&sbi->s_orphan));
1236 
1237 	sync_blockdev(sb->s_bdev);
1238 	invalidate_bdev(sb->s_bdev);
1239 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1240 		/*
1241 		 * Invalidate the journal device's buffers.  We don't want them
1242 		 * floating about in memory - the physical journal device may
1243 		 * hotswapped, and it breaks the `ro-after' testing code.
1244 		 */
1245 		sync_blockdev(sbi->s_journal_bdev);
1246 		invalidate_bdev(sbi->s_journal_bdev);
1247 		ext4_blkdev_remove(sbi);
1248 	}
1249 
1250 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1251 	sbi->s_ea_inode_cache = NULL;
1252 
1253 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1254 	sbi->s_ea_block_cache = NULL;
1255 
1256 	ext4_stop_mmpd(sbi);
1257 
1258 	brelse(sbi->s_sbh);
1259 	sb->s_fs_info = NULL;
1260 	/*
1261 	 * Now that we are completely done shutting down the
1262 	 * superblock, we need to actually destroy the kobject.
1263 	 */
1264 	kobject_put(&sbi->s_kobj);
1265 	wait_for_completion(&sbi->s_kobj_unregister);
1266 	if (sbi->s_chksum_driver)
1267 		crypto_free_shash(sbi->s_chksum_driver);
1268 	kfree(sbi->s_blockgroup_lock);
1269 	fs_put_dax(sbi->s_daxdev);
1270 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1271 #ifdef CONFIG_UNICODE
1272 	utf8_unload(sb->s_encoding);
1273 #endif
1274 	kfree(sbi);
1275 }
1276 
1277 static struct kmem_cache *ext4_inode_cachep;
1278 
1279 /*
1280  * Called inside transaction, so use GFP_NOFS
1281  */
ext4_alloc_inode(struct super_block * sb)1282 static struct inode *ext4_alloc_inode(struct super_block *sb)
1283 {
1284 	struct ext4_inode_info *ei;
1285 
1286 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1287 	if (!ei)
1288 		return NULL;
1289 
1290 	inode_set_iversion(&ei->vfs_inode, 1);
1291 	ei->i_flags = 0;
1292 	spin_lock_init(&ei->i_raw_lock);
1293 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1294 	atomic_set(&ei->i_prealloc_active, 0);
1295 	spin_lock_init(&ei->i_prealloc_lock);
1296 	ext4_es_init_tree(&ei->i_es_tree);
1297 	rwlock_init(&ei->i_es_lock);
1298 	INIT_LIST_HEAD(&ei->i_es_list);
1299 	ei->i_es_all_nr = 0;
1300 	ei->i_es_shk_nr = 0;
1301 	ei->i_es_shrink_lblk = 0;
1302 	ei->i_reserved_data_blocks = 0;
1303 	spin_lock_init(&(ei->i_block_reservation_lock));
1304 	ext4_init_pending_tree(&ei->i_pending_tree);
1305 #ifdef CONFIG_QUOTA
1306 	ei->i_reserved_quota = 0;
1307 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1308 #endif
1309 	ei->jinode = NULL;
1310 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1311 	spin_lock_init(&ei->i_completed_io_lock);
1312 	ei->i_sync_tid = 0;
1313 	ei->i_datasync_tid = 0;
1314 	atomic_set(&ei->i_unwritten, 0);
1315 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1316 	ext4_fc_init_inode(&ei->vfs_inode);
1317 	mutex_init(&ei->i_fc_lock);
1318 	return &ei->vfs_inode;
1319 }
1320 
ext4_drop_inode(struct inode * inode)1321 static int ext4_drop_inode(struct inode *inode)
1322 {
1323 	int drop = generic_drop_inode(inode);
1324 
1325 	if (!drop)
1326 		drop = fscrypt_drop_inode(inode);
1327 
1328 	trace_ext4_drop_inode(inode, drop);
1329 	return drop;
1330 }
1331 
ext4_free_in_core_inode(struct inode * inode)1332 static void ext4_free_in_core_inode(struct inode *inode)
1333 {
1334 	fscrypt_free_inode(inode);
1335 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1336 		pr_warn("%s: inode %ld still in fc list",
1337 			__func__, inode->i_ino);
1338 	}
1339 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1340 }
1341 
ext4_destroy_inode(struct inode * inode)1342 static void ext4_destroy_inode(struct inode *inode)
1343 {
1344 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1345 		ext4_msg(inode->i_sb, KERN_ERR,
1346 			 "Inode %lu (%p): orphan list check failed!",
1347 			 inode->i_ino, EXT4_I(inode));
1348 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1349 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1350 				true);
1351 		dump_stack();
1352 	}
1353 
1354 	if (EXT4_I(inode)->i_reserved_data_blocks)
1355 		ext4_msg(inode->i_sb, KERN_ERR,
1356 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1357 			 inode->i_ino, EXT4_I(inode),
1358 			 EXT4_I(inode)->i_reserved_data_blocks);
1359 }
1360 
init_once(void * foo)1361 static void init_once(void *foo)
1362 {
1363 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1364 
1365 	INIT_LIST_HEAD(&ei->i_orphan);
1366 	init_rwsem(&ei->xattr_sem);
1367 	init_rwsem(&ei->i_data_sem);
1368 	init_rwsem(&ei->i_mmap_sem);
1369 	inode_init_once(&ei->vfs_inode);
1370 	ext4_fc_init_inode(&ei->vfs_inode);
1371 }
1372 
init_inodecache(void)1373 static int __init init_inodecache(void)
1374 {
1375 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1376 				sizeof(struct ext4_inode_info), 0,
1377 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1378 					SLAB_ACCOUNT),
1379 				offsetof(struct ext4_inode_info, i_data),
1380 				sizeof_field(struct ext4_inode_info, i_data),
1381 				init_once);
1382 	if (ext4_inode_cachep == NULL)
1383 		return -ENOMEM;
1384 	return 0;
1385 }
1386 
destroy_inodecache(void)1387 static void destroy_inodecache(void)
1388 {
1389 	/*
1390 	 * Make sure all delayed rcu free inodes are flushed before we
1391 	 * destroy cache.
1392 	 */
1393 	rcu_barrier();
1394 	kmem_cache_destroy(ext4_inode_cachep);
1395 }
1396 
ext4_clear_inode(struct inode * inode)1397 void ext4_clear_inode(struct inode *inode)
1398 {
1399 	ext4_fc_del(inode);
1400 	invalidate_inode_buffers(inode);
1401 	clear_inode(inode);
1402 	ext4_discard_preallocations(inode, 0);
1403 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1404 	dquot_drop(inode);
1405 	if (EXT4_I(inode)->jinode) {
1406 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1407 					       EXT4_I(inode)->jinode);
1408 		jbd2_free_inode(EXT4_I(inode)->jinode);
1409 		EXT4_I(inode)->jinode = NULL;
1410 	}
1411 	fscrypt_put_encryption_info(inode);
1412 	fsverity_cleanup_inode(inode);
1413 }
1414 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1415 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1416 					u64 ino, u32 generation)
1417 {
1418 	struct inode *inode;
1419 
1420 	/*
1421 	 * Currently we don't know the generation for parent directory, so
1422 	 * a generation of 0 means "accept any"
1423 	 */
1424 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1425 	if (IS_ERR(inode))
1426 		return ERR_CAST(inode);
1427 	if (generation && inode->i_generation != generation) {
1428 		iput(inode);
1429 		return ERR_PTR(-ESTALE);
1430 	}
1431 
1432 	return inode;
1433 }
1434 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1435 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1436 					int fh_len, int fh_type)
1437 {
1438 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1439 				    ext4_nfs_get_inode);
1440 }
1441 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1442 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1443 					int fh_len, int fh_type)
1444 {
1445 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1446 				    ext4_nfs_get_inode);
1447 }
1448 
ext4_nfs_commit_metadata(struct inode * inode)1449 static int ext4_nfs_commit_metadata(struct inode *inode)
1450 {
1451 	struct writeback_control wbc = {
1452 		.sync_mode = WB_SYNC_ALL
1453 	};
1454 
1455 	trace_ext4_nfs_commit_metadata(inode);
1456 	return ext4_write_inode(inode, &wbc);
1457 }
1458 
1459 #ifdef CONFIG_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1460 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1461 {
1462 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1463 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1464 }
1465 
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1466 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1467 							void *fs_data)
1468 {
1469 	handle_t *handle = fs_data;
1470 	int res, res2, credits, retries = 0;
1471 
1472 	/*
1473 	 * Encrypting the root directory is not allowed because e2fsck expects
1474 	 * lost+found to exist and be unencrypted, and encrypting the root
1475 	 * directory would imply encrypting the lost+found directory as well as
1476 	 * the filename "lost+found" itself.
1477 	 */
1478 	if (inode->i_ino == EXT4_ROOT_INO)
1479 		return -EPERM;
1480 
1481 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1482 		return -EINVAL;
1483 
1484 	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1485 		return -EOPNOTSUPP;
1486 
1487 	res = ext4_convert_inline_data(inode);
1488 	if (res)
1489 		return res;
1490 
1491 	/*
1492 	 * If a journal handle was specified, then the encryption context is
1493 	 * being set on a new inode via inheritance and is part of a larger
1494 	 * transaction to create the inode.  Otherwise the encryption context is
1495 	 * being set on an existing inode in its own transaction.  Only in the
1496 	 * latter case should the "retry on ENOSPC" logic be used.
1497 	 */
1498 
1499 	if (handle) {
1500 		res = ext4_xattr_set_handle(handle, inode,
1501 					    EXT4_XATTR_INDEX_ENCRYPTION,
1502 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1503 					    ctx, len, 0);
1504 		if (!res) {
1505 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1506 			ext4_clear_inode_state(inode,
1507 					EXT4_STATE_MAY_INLINE_DATA);
1508 			/*
1509 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1510 			 * S_DAX may be disabled
1511 			 */
1512 			ext4_set_inode_flags(inode, false);
1513 		}
1514 		return res;
1515 	}
1516 
1517 	res = dquot_initialize(inode);
1518 	if (res)
1519 		return res;
1520 retry:
1521 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1522 				     &credits);
1523 	if (res)
1524 		return res;
1525 
1526 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1527 	if (IS_ERR(handle))
1528 		return PTR_ERR(handle);
1529 
1530 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1531 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1532 				    ctx, len, 0);
1533 	if (!res) {
1534 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1535 		/*
1536 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1537 		 * S_DAX may be disabled
1538 		 */
1539 		ext4_set_inode_flags(inode, false);
1540 		res = ext4_mark_inode_dirty(handle, inode);
1541 		if (res)
1542 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1543 	}
1544 	res2 = ext4_journal_stop(handle);
1545 
1546 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1547 		goto retry;
1548 	if (!res)
1549 		res = res2;
1550 	return res;
1551 }
1552 
ext4_get_dummy_policy(struct super_block * sb)1553 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1554 {
1555 	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1556 }
1557 
ext4_has_stable_inodes(struct super_block * sb)1558 static bool ext4_has_stable_inodes(struct super_block *sb)
1559 {
1560 	return ext4_has_feature_stable_inodes(sb);
1561 }
1562 
ext4_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)1563 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1564 				       int *ino_bits_ret, int *lblk_bits_ret)
1565 {
1566 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1567 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1568 }
1569 
1570 static const struct fscrypt_operations ext4_cryptops = {
1571 	.key_prefix		= "ext4:",
1572 	.get_context		= ext4_get_context,
1573 	.set_context		= ext4_set_context,
1574 	.get_dummy_policy	= ext4_get_dummy_policy,
1575 	.empty_dir		= ext4_empty_dir,
1576 	.max_namelen		= EXT4_NAME_LEN,
1577 	.has_stable_inodes	= ext4_has_stable_inodes,
1578 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1579 };
1580 #endif
1581 
1582 #ifdef CONFIG_QUOTA
1583 static const char * const quotatypes[] = INITQFNAMES;
1584 #define QTYPE2NAME(t) (quotatypes[t])
1585 
1586 static int ext4_write_dquot(struct dquot *dquot);
1587 static int ext4_acquire_dquot(struct dquot *dquot);
1588 static int ext4_release_dquot(struct dquot *dquot);
1589 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1590 static int ext4_write_info(struct super_block *sb, int type);
1591 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1592 			 const struct path *path);
1593 static int ext4_quota_on_mount(struct super_block *sb, int type);
1594 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1595 			       size_t len, loff_t off);
1596 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1597 				const char *data, size_t len, loff_t off);
1598 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1599 			     unsigned int flags);
1600 static int ext4_enable_quotas(struct super_block *sb);
1601 
ext4_get_dquots(struct inode * inode)1602 static struct dquot **ext4_get_dquots(struct inode *inode)
1603 {
1604 	return EXT4_I(inode)->i_dquot;
1605 }
1606 
1607 static const struct dquot_operations ext4_quota_operations = {
1608 	.get_reserved_space	= ext4_get_reserved_space,
1609 	.write_dquot		= ext4_write_dquot,
1610 	.acquire_dquot		= ext4_acquire_dquot,
1611 	.release_dquot		= ext4_release_dquot,
1612 	.mark_dirty		= ext4_mark_dquot_dirty,
1613 	.write_info		= ext4_write_info,
1614 	.alloc_dquot		= dquot_alloc,
1615 	.destroy_dquot		= dquot_destroy,
1616 	.get_projid		= ext4_get_projid,
1617 	.get_inode_usage	= ext4_get_inode_usage,
1618 	.get_next_id		= dquot_get_next_id,
1619 };
1620 
1621 static const struct quotactl_ops ext4_qctl_operations = {
1622 	.quota_on	= ext4_quota_on,
1623 	.quota_off	= ext4_quota_off,
1624 	.quota_sync	= dquot_quota_sync,
1625 	.get_state	= dquot_get_state,
1626 	.set_info	= dquot_set_dqinfo,
1627 	.get_dqblk	= dquot_get_dqblk,
1628 	.set_dqblk	= dquot_set_dqblk,
1629 	.get_nextdqblk	= dquot_get_next_dqblk,
1630 };
1631 #endif
1632 
1633 static const struct super_operations ext4_sops = {
1634 	.alloc_inode	= ext4_alloc_inode,
1635 	.free_inode	= ext4_free_in_core_inode,
1636 	.destroy_inode	= ext4_destroy_inode,
1637 	.write_inode	= ext4_write_inode,
1638 	.dirty_inode	= ext4_dirty_inode,
1639 	.drop_inode	= ext4_drop_inode,
1640 	.evict_inode	= ext4_evict_inode,
1641 	.put_super	= ext4_put_super,
1642 	.sync_fs	= ext4_sync_fs,
1643 	.freeze_fs	= ext4_freeze,
1644 	.unfreeze_fs	= ext4_unfreeze,
1645 	.statfs		= ext4_statfs,
1646 	.remount_fs	= ext4_remount,
1647 	.show_options	= ext4_show_options,
1648 #ifdef CONFIG_QUOTA
1649 	.quota_read	= ext4_quota_read,
1650 	.quota_write	= ext4_quota_write,
1651 	.get_dquots	= ext4_get_dquots,
1652 #endif
1653 };
1654 
1655 static const struct export_operations ext4_export_ops = {
1656 	.fh_to_dentry = ext4_fh_to_dentry,
1657 	.fh_to_parent = ext4_fh_to_parent,
1658 	.get_parent = ext4_get_parent,
1659 	.commit_metadata = ext4_nfs_commit_metadata,
1660 };
1661 
1662 enum {
1663 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1664 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1665 	Opt_nouid32, Opt_debug, Opt_removed,
1666 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1667 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1668 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1669 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1670 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1671 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1672 	Opt_inlinecrypt,
1673 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1674 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1675 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1676 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1677 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1678 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1679 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1680 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1681 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1682 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1683 	Opt_dioread_nolock, Opt_dioread_lock,
1684 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1685 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1686 	Opt_prefetch_block_bitmaps,
1687 #ifdef CONFIG_EXT4_DEBUG
1688 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1689 #endif
1690 };
1691 
1692 static const match_table_t tokens = {
1693 	{Opt_bsd_df, "bsddf"},
1694 	{Opt_minix_df, "minixdf"},
1695 	{Opt_grpid, "grpid"},
1696 	{Opt_grpid, "bsdgroups"},
1697 	{Opt_nogrpid, "nogrpid"},
1698 	{Opt_nogrpid, "sysvgroups"},
1699 	{Opt_resgid, "resgid=%u"},
1700 	{Opt_resuid, "resuid=%u"},
1701 	{Opt_sb, "sb=%u"},
1702 	{Opt_err_cont, "errors=continue"},
1703 	{Opt_err_panic, "errors=panic"},
1704 	{Opt_err_ro, "errors=remount-ro"},
1705 	{Opt_nouid32, "nouid32"},
1706 	{Opt_debug, "debug"},
1707 	{Opt_removed, "oldalloc"},
1708 	{Opt_removed, "orlov"},
1709 	{Opt_user_xattr, "user_xattr"},
1710 	{Opt_nouser_xattr, "nouser_xattr"},
1711 	{Opt_acl, "acl"},
1712 	{Opt_noacl, "noacl"},
1713 	{Opt_noload, "norecovery"},
1714 	{Opt_noload, "noload"},
1715 	{Opt_removed, "nobh"},
1716 	{Opt_removed, "bh"},
1717 	{Opt_commit, "commit=%u"},
1718 	{Opt_min_batch_time, "min_batch_time=%u"},
1719 	{Opt_max_batch_time, "max_batch_time=%u"},
1720 	{Opt_journal_dev, "journal_dev=%u"},
1721 	{Opt_journal_path, "journal_path=%s"},
1722 	{Opt_journal_checksum, "journal_checksum"},
1723 	{Opt_nojournal_checksum, "nojournal_checksum"},
1724 	{Opt_journal_async_commit, "journal_async_commit"},
1725 	{Opt_abort, "abort"},
1726 	{Opt_data_journal, "data=journal"},
1727 	{Opt_data_ordered, "data=ordered"},
1728 	{Opt_data_writeback, "data=writeback"},
1729 	{Opt_data_err_abort, "data_err=abort"},
1730 	{Opt_data_err_ignore, "data_err=ignore"},
1731 	{Opt_offusrjquota, "usrjquota="},
1732 	{Opt_usrjquota, "usrjquota=%s"},
1733 	{Opt_offgrpjquota, "grpjquota="},
1734 	{Opt_grpjquota, "grpjquota=%s"},
1735 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1736 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1737 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1738 	{Opt_grpquota, "grpquota"},
1739 	{Opt_noquota, "noquota"},
1740 	{Opt_quota, "quota"},
1741 	{Opt_usrquota, "usrquota"},
1742 	{Opt_prjquota, "prjquota"},
1743 	{Opt_barrier, "barrier=%u"},
1744 	{Opt_barrier, "barrier"},
1745 	{Opt_nobarrier, "nobarrier"},
1746 	{Opt_i_version, "i_version"},
1747 	{Opt_dax, "dax"},
1748 	{Opt_dax_always, "dax=always"},
1749 	{Opt_dax_inode, "dax=inode"},
1750 	{Opt_dax_never, "dax=never"},
1751 	{Opt_stripe, "stripe=%u"},
1752 	{Opt_delalloc, "delalloc"},
1753 	{Opt_warn_on_error, "warn_on_error"},
1754 	{Opt_nowarn_on_error, "nowarn_on_error"},
1755 	{Opt_lazytime, "lazytime"},
1756 	{Opt_nolazytime, "nolazytime"},
1757 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1758 	{Opt_nodelalloc, "nodelalloc"},
1759 	{Opt_removed, "mblk_io_submit"},
1760 	{Opt_removed, "nomblk_io_submit"},
1761 	{Opt_block_validity, "block_validity"},
1762 	{Opt_noblock_validity, "noblock_validity"},
1763 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1764 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1765 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1766 	{Opt_auto_da_alloc, "auto_da_alloc"},
1767 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1768 	{Opt_dioread_nolock, "dioread_nolock"},
1769 	{Opt_dioread_lock, "nodioread_nolock"},
1770 	{Opt_dioread_lock, "dioread_lock"},
1771 	{Opt_discard, "discard"},
1772 	{Opt_nodiscard, "nodiscard"},
1773 	{Opt_init_itable, "init_itable=%u"},
1774 	{Opt_init_itable, "init_itable"},
1775 	{Opt_noinit_itable, "noinit_itable"},
1776 #ifdef CONFIG_EXT4_DEBUG
1777 	{Opt_fc_debug_force, "fc_debug_force"},
1778 	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1779 #endif
1780 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1781 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1782 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1783 	{Opt_inlinecrypt, "inlinecrypt"},
1784 	{Opt_nombcache, "nombcache"},
1785 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1786 	{Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1787 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1788 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1789 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1790 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1791 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1792 	{Opt_err, NULL},
1793 };
1794 
get_sb_block(void ** data)1795 static ext4_fsblk_t get_sb_block(void **data)
1796 {
1797 	ext4_fsblk_t	sb_block;
1798 	char		*options = (char *) *data;
1799 
1800 	if (!options || strncmp(options, "sb=", 3) != 0)
1801 		return 1;	/* Default location */
1802 
1803 	options += 3;
1804 	/* TODO: use simple_strtoll with >32bit ext4 */
1805 	sb_block = simple_strtoul(options, &options, 0);
1806 	if (*options && *options != ',') {
1807 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1808 		       (char *) *data);
1809 		return 1;
1810 	}
1811 	if (*options == ',')
1812 		options++;
1813 	*data = (void *) options;
1814 
1815 	return sb_block;
1816 }
1817 
1818 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1819 static const char deprecated_msg[] =
1820 	"Mount option \"%s\" will be removed by %s\n"
1821 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1822 
1823 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1824 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1825 {
1826 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1827 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1828 	int ret = -1;
1829 
1830 	if (sb_any_quota_loaded(sb) && !old_qname) {
1831 		ext4_msg(sb, KERN_ERR,
1832 			"Cannot change journaled "
1833 			"quota options when quota turned on");
1834 		return -1;
1835 	}
1836 	if (ext4_has_feature_quota(sb)) {
1837 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1838 			 "ignored when QUOTA feature is enabled");
1839 		return 1;
1840 	}
1841 	qname = match_strdup(args);
1842 	if (!qname) {
1843 		ext4_msg(sb, KERN_ERR,
1844 			"Not enough memory for storing quotafile name");
1845 		return -1;
1846 	}
1847 	if (old_qname) {
1848 		if (strcmp(old_qname, qname) == 0)
1849 			ret = 1;
1850 		else
1851 			ext4_msg(sb, KERN_ERR,
1852 				 "%s quota file already specified",
1853 				 QTYPE2NAME(qtype));
1854 		goto errout;
1855 	}
1856 	if (strchr(qname, '/')) {
1857 		ext4_msg(sb, KERN_ERR,
1858 			"quotafile must be on filesystem root");
1859 		goto errout;
1860 	}
1861 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1862 	set_opt(sb, QUOTA);
1863 	return 1;
1864 errout:
1865 	kfree(qname);
1866 	return ret;
1867 }
1868 
clear_qf_name(struct super_block * sb,int qtype)1869 static int clear_qf_name(struct super_block *sb, int qtype)
1870 {
1871 
1872 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1873 	char *old_qname = get_qf_name(sb, sbi, qtype);
1874 
1875 	if (sb_any_quota_loaded(sb) && old_qname) {
1876 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1877 			" when quota turned on");
1878 		return -1;
1879 	}
1880 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1881 	synchronize_rcu();
1882 	kfree(old_qname);
1883 	return 1;
1884 }
1885 #endif
1886 
1887 #define MOPT_SET	0x0001
1888 #define MOPT_CLEAR	0x0002
1889 #define MOPT_NOSUPPORT	0x0004
1890 #define MOPT_EXPLICIT	0x0008
1891 #define MOPT_CLEAR_ERR	0x0010
1892 #define MOPT_GTE0	0x0020
1893 #ifdef CONFIG_QUOTA
1894 #define MOPT_Q		0
1895 #define MOPT_QFMT	0x0040
1896 #else
1897 #define MOPT_Q		MOPT_NOSUPPORT
1898 #define MOPT_QFMT	MOPT_NOSUPPORT
1899 #endif
1900 #define MOPT_DATAJ	0x0080
1901 #define MOPT_NO_EXT2	0x0100
1902 #define MOPT_NO_EXT3	0x0200
1903 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1904 #define MOPT_STRING	0x0400
1905 #define MOPT_SKIP	0x0800
1906 #define	MOPT_2		0x1000
1907 
1908 static const struct mount_opts {
1909 	int	token;
1910 	int	mount_opt;
1911 	int	flags;
1912 } ext4_mount_opts[] = {
1913 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1914 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1915 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1916 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1917 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1918 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1919 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1920 	 MOPT_EXT4_ONLY | MOPT_SET},
1921 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1922 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1923 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1924 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1925 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1926 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1927 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1928 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1929 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1930 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1931 	{Opt_commit, 0, MOPT_NO_EXT2},
1932 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1933 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1934 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1935 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1936 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1937 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1938 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1939 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1940 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1941 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1942 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1943 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1944 	 MOPT_NO_EXT2},
1945 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1946 	 MOPT_NO_EXT2},
1947 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1948 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1949 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1950 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1951 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1952 	{Opt_commit, 0, MOPT_GTE0},
1953 	{Opt_max_batch_time, 0, MOPT_GTE0},
1954 	{Opt_min_batch_time, 0, MOPT_GTE0},
1955 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1956 	{Opt_init_itable, 0, MOPT_GTE0},
1957 	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1958 	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1959 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1960 	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1961 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1962 	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1963 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1964 	{Opt_stripe, 0, MOPT_GTE0},
1965 	{Opt_resuid, 0, MOPT_GTE0},
1966 	{Opt_resgid, 0, MOPT_GTE0},
1967 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1968 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1969 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1970 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1971 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1972 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1973 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1974 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1975 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1976 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1977 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1978 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1979 #else
1980 	{Opt_acl, 0, MOPT_NOSUPPORT},
1981 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1982 #endif
1983 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1984 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1985 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1986 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1987 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1988 							MOPT_SET | MOPT_Q},
1989 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1990 							MOPT_SET | MOPT_Q},
1991 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1992 							MOPT_SET | MOPT_Q},
1993 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1994 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1995 							MOPT_CLEAR | MOPT_Q},
1996 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1997 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1998 	{Opt_offusrjquota, 0, MOPT_Q},
1999 	{Opt_offgrpjquota, 0, MOPT_Q},
2000 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2001 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2002 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2003 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
2004 	{Opt_test_dummy_encryption, 0, MOPT_STRING},
2005 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2006 	{Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
2007 	 MOPT_SET},
2008 #ifdef CONFIG_EXT4_DEBUG
2009 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2010 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2011 	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2012 #endif
2013 	{Opt_err, 0, 0}
2014 };
2015 
2016 #ifdef CONFIG_UNICODE
2017 static const struct ext4_sb_encodings {
2018 	__u16 magic;
2019 	char *name;
2020 	char *version;
2021 } ext4_sb_encoding_map[] = {
2022 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2023 };
2024 
ext4_sb_read_encoding(const struct ext4_super_block * es,const struct ext4_sb_encodings ** encoding,__u16 * flags)2025 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2026 				 const struct ext4_sb_encodings **encoding,
2027 				 __u16 *flags)
2028 {
2029 	__u16 magic = le16_to_cpu(es->s_encoding);
2030 	int i;
2031 
2032 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2033 		if (magic == ext4_sb_encoding_map[i].magic)
2034 			break;
2035 
2036 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2037 		return -EINVAL;
2038 
2039 	*encoding = &ext4_sb_encoding_map[i];
2040 	*flags = le16_to_cpu(es->s_encoding_flags);
2041 
2042 	return 0;
2043 }
2044 #endif
2045 
ext4_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)2046 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2047 					  const char *opt,
2048 					  const substring_t *arg,
2049 					  bool is_remount)
2050 {
2051 #ifdef CONFIG_FS_ENCRYPTION
2052 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2053 	int err;
2054 
2055 	if (!ext4_has_feature_encrypt(sb)) {
2056 		ext4_msg(sb, KERN_WARNING,
2057 			 "test_dummy_encryption requires encrypt feature");
2058 		return -1;
2059 	}
2060 
2061 	/*
2062 	 * This mount option is just for testing, and it's not worthwhile to
2063 	 * implement the extra complexity (e.g. RCU protection) that would be
2064 	 * needed to allow it to be set or changed during remount.  We do allow
2065 	 * it to be specified during remount, but only if there is no change.
2066 	 */
2067 	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2068 		ext4_msg(sb, KERN_WARNING,
2069 			 "Can't set test_dummy_encryption on remount");
2070 		return -1;
2071 	}
2072 	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2073 						&sbi->s_dummy_enc_policy);
2074 	if (err) {
2075 		if (err == -EEXIST)
2076 			ext4_msg(sb, KERN_WARNING,
2077 				 "Can't change test_dummy_encryption on remount");
2078 		else if (err == -EINVAL)
2079 			ext4_msg(sb, KERN_WARNING,
2080 				 "Value of option \"%s\" is unrecognized", opt);
2081 		else
2082 			ext4_msg(sb, KERN_WARNING,
2083 				 "Error processing option \"%s\" [%d]",
2084 				 opt, err);
2085 		return -1;
2086 	}
2087 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2088 	return 1;
2089 #else
2090 	ext4_msg(sb, KERN_WARNING,
2091 		 "test_dummy_encryption option not supported");
2092 	return -1;
2093 
2094 #endif
2095 }
2096 
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2097 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2098 			    substring_t *args, unsigned long *journal_devnum,
2099 			    unsigned int *journal_ioprio, int is_remount)
2100 {
2101 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2102 	const struct mount_opts *m;
2103 	kuid_t uid;
2104 	kgid_t gid;
2105 	int arg = 0;
2106 
2107 #ifdef CONFIG_QUOTA
2108 	if (token == Opt_usrjquota)
2109 		return set_qf_name(sb, USRQUOTA, &args[0]);
2110 	else if (token == Opt_grpjquota)
2111 		return set_qf_name(sb, GRPQUOTA, &args[0]);
2112 	else if (token == Opt_offusrjquota)
2113 		return clear_qf_name(sb, USRQUOTA);
2114 	else if (token == Opt_offgrpjquota)
2115 		return clear_qf_name(sb, GRPQUOTA);
2116 #endif
2117 	switch (token) {
2118 	case Opt_noacl:
2119 	case Opt_nouser_xattr:
2120 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2121 		break;
2122 	case Opt_sb:
2123 		return 1;	/* handled by get_sb_block() */
2124 	case Opt_removed:
2125 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2126 		return 1;
2127 	case Opt_abort:
2128 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2129 		return 1;
2130 	case Opt_i_version:
2131 		sb->s_flags |= SB_I_VERSION;
2132 		return 1;
2133 	case Opt_lazytime:
2134 		sb->s_flags |= SB_LAZYTIME;
2135 		return 1;
2136 	case Opt_nolazytime:
2137 		sb->s_flags &= ~SB_LAZYTIME;
2138 		return 1;
2139 	case Opt_inlinecrypt:
2140 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2141 		sb->s_flags |= SB_INLINECRYPT;
2142 #else
2143 		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2144 #endif
2145 		return 1;
2146 	}
2147 
2148 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2149 		if (token == m->token)
2150 			break;
2151 
2152 	if (m->token == Opt_err) {
2153 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2154 			 "or missing value", opt);
2155 		return -1;
2156 	}
2157 
2158 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2159 		ext4_msg(sb, KERN_ERR,
2160 			 "Mount option \"%s\" incompatible with ext2", opt);
2161 		return -1;
2162 	}
2163 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2164 		ext4_msg(sb, KERN_ERR,
2165 			 "Mount option \"%s\" incompatible with ext3", opt);
2166 		return -1;
2167 	}
2168 
2169 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2170 		return -1;
2171 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2172 		return -1;
2173 	if (m->flags & MOPT_EXPLICIT) {
2174 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2175 			set_opt2(sb, EXPLICIT_DELALLOC);
2176 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2177 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2178 		} else
2179 			return -1;
2180 	}
2181 	if (m->flags & MOPT_CLEAR_ERR)
2182 		clear_opt(sb, ERRORS_MASK);
2183 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2184 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2185 			 "options when quota turned on");
2186 		return -1;
2187 	}
2188 
2189 	if (m->flags & MOPT_NOSUPPORT) {
2190 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2191 	} else if (token == Opt_commit) {
2192 		if (arg == 0)
2193 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2194 		else if (arg > INT_MAX / HZ) {
2195 			ext4_msg(sb, KERN_ERR,
2196 				 "Invalid commit interval %d, "
2197 				 "must be smaller than %d",
2198 				 arg, INT_MAX / HZ);
2199 			return -1;
2200 		}
2201 		sbi->s_commit_interval = HZ * arg;
2202 	} else if (token == Opt_debug_want_extra_isize) {
2203 		if ((arg & 1) ||
2204 		    (arg < 4) ||
2205 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2206 			ext4_msg(sb, KERN_ERR,
2207 				 "Invalid want_extra_isize %d", arg);
2208 			return -1;
2209 		}
2210 		sbi->s_want_extra_isize = arg;
2211 	} else if (token == Opt_max_batch_time) {
2212 		sbi->s_max_batch_time = arg;
2213 	} else if (token == Opt_min_batch_time) {
2214 		sbi->s_min_batch_time = arg;
2215 	} else if (token == Opt_inode_readahead_blks) {
2216 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2217 			ext4_msg(sb, KERN_ERR,
2218 				 "EXT4-fs: inode_readahead_blks must be "
2219 				 "0 or a power of 2 smaller than 2^31");
2220 			return -1;
2221 		}
2222 		sbi->s_inode_readahead_blks = arg;
2223 	} else if (token == Opt_init_itable) {
2224 		set_opt(sb, INIT_INODE_TABLE);
2225 		if (!args->from)
2226 			arg = EXT4_DEF_LI_WAIT_MULT;
2227 		sbi->s_li_wait_mult = arg;
2228 	} else if (token == Opt_max_dir_size_kb) {
2229 		sbi->s_max_dir_size_kb = arg;
2230 #ifdef CONFIG_EXT4_DEBUG
2231 	} else if (token == Opt_fc_debug_max_replay) {
2232 		sbi->s_fc_debug_max_replay = arg;
2233 #endif
2234 	} else if (token == Opt_stripe) {
2235 		sbi->s_stripe = arg;
2236 	} else if (token == Opt_resuid) {
2237 		uid = make_kuid(current_user_ns(), arg);
2238 		if (!uid_valid(uid)) {
2239 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2240 			return -1;
2241 		}
2242 		sbi->s_resuid = uid;
2243 	} else if (token == Opt_resgid) {
2244 		gid = make_kgid(current_user_ns(), arg);
2245 		if (!gid_valid(gid)) {
2246 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2247 			return -1;
2248 		}
2249 		sbi->s_resgid = gid;
2250 	} else if (token == Opt_journal_dev) {
2251 		if (is_remount) {
2252 			ext4_msg(sb, KERN_ERR,
2253 				 "Cannot specify journal on remount");
2254 			return -1;
2255 		}
2256 		*journal_devnum = arg;
2257 	} else if (token == Opt_journal_path) {
2258 		char *journal_path;
2259 		struct inode *journal_inode;
2260 		struct path path;
2261 		int error;
2262 
2263 		if (is_remount) {
2264 			ext4_msg(sb, KERN_ERR,
2265 				 "Cannot specify journal on remount");
2266 			return -1;
2267 		}
2268 		journal_path = match_strdup(&args[0]);
2269 		if (!journal_path) {
2270 			ext4_msg(sb, KERN_ERR, "error: could not dup "
2271 				"journal device string");
2272 			return -1;
2273 		}
2274 
2275 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2276 		if (error) {
2277 			ext4_msg(sb, KERN_ERR, "error: could not find "
2278 				"journal device path: error %d", error);
2279 			kfree(journal_path);
2280 			return -1;
2281 		}
2282 
2283 		journal_inode = d_inode(path.dentry);
2284 		if (!S_ISBLK(journal_inode->i_mode)) {
2285 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2286 				"is not a block device", journal_path);
2287 			path_put(&path);
2288 			kfree(journal_path);
2289 			return -1;
2290 		}
2291 
2292 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
2293 		path_put(&path);
2294 		kfree(journal_path);
2295 	} else if (token == Opt_journal_ioprio) {
2296 		if (arg > 7) {
2297 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2298 				 " (must be 0-7)");
2299 			return -1;
2300 		}
2301 		*journal_ioprio =
2302 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2303 	} else if (token == Opt_test_dummy_encryption) {
2304 		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2305 						      is_remount);
2306 	} else if (m->flags & MOPT_DATAJ) {
2307 		if (is_remount) {
2308 			if (!sbi->s_journal)
2309 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2310 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2311 				ext4_msg(sb, KERN_ERR,
2312 					 "Cannot change data mode on remount");
2313 				return -1;
2314 			}
2315 		} else {
2316 			clear_opt(sb, DATA_FLAGS);
2317 			sbi->s_mount_opt |= m->mount_opt;
2318 		}
2319 #ifdef CONFIG_QUOTA
2320 	} else if (m->flags & MOPT_QFMT) {
2321 		if (sb_any_quota_loaded(sb) &&
2322 		    sbi->s_jquota_fmt != m->mount_opt) {
2323 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2324 				 "quota options when quota turned on");
2325 			return -1;
2326 		}
2327 		if (ext4_has_feature_quota(sb)) {
2328 			ext4_msg(sb, KERN_INFO,
2329 				 "Quota format mount options ignored "
2330 				 "when QUOTA feature is enabled");
2331 			return 1;
2332 		}
2333 		sbi->s_jquota_fmt = m->mount_opt;
2334 #endif
2335 	} else if (token == Opt_dax || token == Opt_dax_always ||
2336 		   token == Opt_dax_inode || token == Opt_dax_never) {
2337 #ifdef CONFIG_FS_DAX
2338 		switch (token) {
2339 		case Opt_dax:
2340 		case Opt_dax_always:
2341 			if (is_remount &&
2342 			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2343 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2344 			fail_dax_change_remount:
2345 				ext4_msg(sb, KERN_ERR, "can't change "
2346 					 "dax mount option while remounting");
2347 				return -1;
2348 			}
2349 			if (is_remount &&
2350 			    (test_opt(sb, DATA_FLAGS) ==
2351 			     EXT4_MOUNT_JOURNAL_DATA)) {
2352 				    ext4_msg(sb, KERN_ERR, "can't mount with "
2353 					     "both data=journal and dax");
2354 				    return -1;
2355 			}
2356 			ext4_msg(sb, KERN_WARNING,
2357 				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2358 			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2359 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2360 			break;
2361 		case Opt_dax_never:
2362 			if (is_remount &&
2363 			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2364 			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2365 				goto fail_dax_change_remount;
2366 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2367 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2368 			break;
2369 		case Opt_dax_inode:
2370 			if (is_remount &&
2371 			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2372 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2373 			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2374 				goto fail_dax_change_remount;
2375 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2376 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2377 			/* Strictly for printing options */
2378 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2379 			break;
2380 		}
2381 #else
2382 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2383 		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2384 		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2385 		return -1;
2386 #endif
2387 	} else if (token == Opt_data_err_abort) {
2388 		sbi->s_mount_opt |= m->mount_opt;
2389 	} else if (token == Opt_data_err_ignore) {
2390 		sbi->s_mount_opt &= ~m->mount_opt;
2391 	} else {
2392 		if (!args->from)
2393 			arg = 1;
2394 		if (m->flags & MOPT_CLEAR)
2395 			arg = !arg;
2396 		else if (unlikely(!(m->flags & MOPT_SET))) {
2397 			ext4_msg(sb, KERN_WARNING,
2398 				 "buggy handling of option %s", opt);
2399 			WARN_ON(1);
2400 			return -1;
2401 		}
2402 		if (m->flags & MOPT_2) {
2403 			if (arg != 0)
2404 				sbi->s_mount_opt2 |= m->mount_opt;
2405 			else
2406 				sbi->s_mount_opt2 &= ~m->mount_opt;
2407 		} else {
2408 			if (arg != 0)
2409 				sbi->s_mount_opt |= m->mount_opt;
2410 			else
2411 				sbi->s_mount_opt &= ~m->mount_opt;
2412 		}
2413 	}
2414 	return 1;
2415 }
2416 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2417 static int parse_options(char *options, struct super_block *sb,
2418 			 unsigned long *journal_devnum,
2419 			 unsigned int *journal_ioprio,
2420 			 int is_remount)
2421 {
2422 	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2423 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2424 	substring_t args[MAX_OPT_ARGS];
2425 	int token;
2426 
2427 	if (!options)
2428 		return 1;
2429 
2430 	while ((p = strsep(&options, ",")) != NULL) {
2431 		if (!*p)
2432 			continue;
2433 		/*
2434 		 * Initialize args struct so we know whether arg was
2435 		 * found; some options take optional arguments.
2436 		 */
2437 		args[0].to = args[0].from = NULL;
2438 		token = match_token(p, tokens, args);
2439 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
2440 				     journal_ioprio, is_remount) < 0)
2441 			return 0;
2442 	}
2443 #ifdef CONFIG_QUOTA
2444 	/*
2445 	 * We do the test below only for project quotas. 'usrquota' and
2446 	 * 'grpquota' mount options are allowed even without quota feature
2447 	 * to support legacy quotas in quota files.
2448 	 */
2449 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2450 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2451 			 "Cannot enable project quota enforcement.");
2452 		return 0;
2453 	}
2454 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2455 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2456 	if (usr_qf_name || grp_qf_name) {
2457 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2458 			clear_opt(sb, USRQUOTA);
2459 
2460 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2461 			clear_opt(sb, GRPQUOTA);
2462 
2463 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2464 			ext4_msg(sb, KERN_ERR, "old and new quota "
2465 					"format mixing");
2466 			return 0;
2467 		}
2468 
2469 		if (!sbi->s_jquota_fmt) {
2470 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2471 					"not specified");
2472 			return 0;
2473 		}
2474 	}
2475 #endif
2476 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2477 		int blocksize =
2478 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2479 		if (blocksize < PAGE_SIZE)
2480 			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2481 				 "experimental mount option 'dioread_nolock' "
2482 				 "for blocksize < PAGE_SIZE");
2483 	}
2484 	return 1;
2485 }
2486 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2487 static inline void ext4_show_quota_options(struct seq_file *seq,
2488 					   struct super_block *sb)
2489 {
2490 #if defined(CONFIG_QUOTA)
2491 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2492 	char *usr_qf_name, *grp_qf_name;
2493 
2494 	if (sbi->s_jquota_fmt) {
2495 		char *fmtname = "";
2496 
2497 		switch (sbi->s_jquota_fmt) {
2498 		case QFMT_VFS_OLD:
2499 			fmtname = "vfsold";
2500 			break;
2501 		case QFMT_VFS_V0:
2502 			fmtname = "vfsv0";
2503 			break;
2504 		case QFMT_VFS_V1:
2505 			fmtname = "vfsv1";
2506 			break;
2507 		}
2508 		seq_printf(seq, ",jqfmt=%s", fmtname);
2509 	}
2510 
2511 	rcu_read_lock();
2512 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2513 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2514 	if (usr_qf_name)
2515 		seq_show_option(seq, "usrjquota", usr_qf_name);
2516 	if (grp_qf_name)
2517 		seq_show_option(seq, "grpjquota", grp_qf_name);
2518 	rcu_read_unlock();
2519 #endif
2520 }
2521 
token2str(int token)2522 static const char *token2str(int token)
2523 {
2524 	const struct match_token *t;
2525 
2526 	for (t = tokens; t->token != Opt_err; t++)
2527 		if (t->token == token && !strchr(t->pattern, '='))
2528 			break;
2529 	return t->pattern;
2530 }
2531 
2532 /*
2533  * Show an option if
2534  *  - it's set to a non-default value OR
2535  *  - if the per-sb default is different from the global default
2536  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2537 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2538 			      int nodefs)
2539 {
2540 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2541 	struct ext4_super_block *es = sbi->s_es;
2542 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2543 	const struct mount_opts *m;
2544 	char sep = nodefs ? '\n' : ',';
2545 
2546 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2547 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2548 
2549 	if (sbi->s_sb_block != 1)
2550 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2551 
2552 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2553 		int want_set = m->flags & MOPT_SET;
2554 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2555 		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2556 			continue;
2557 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2558 			continue; /* skip if same as the default */
2559 		if ((want_set &&
2560 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2561 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2562 			continue; /* select Opt_noFoo vs Opt_Foo */
2563 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2564 	}
2565 
2566 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2567 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2568 		SEQ_OPTS_PRINT("resuid=%u",
2569 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2570 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2571 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2572 		SEQ_OPTS_PRINT("resgid=%u",
2573 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2574 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2575 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2576 		SEQ_OPTS_PUTS("errors=remount-ro");
2577 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2578 		SEQ_OPTS_PUTS("errors=continue");
2579 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2580 		SEQ_OPTS_PUTS("errors=panic");
2581 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2582 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2583 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2584 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2585 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2586 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2587 	if (sb->s_flags & SB_I_VERSION)
2588 		SEQ_OPTS_PUTS("i_version");
2589 	if (nodefs || sbi->s_stripe)
2590 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2591 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2592 			(sbi->s_mount_opt ^ def_mount_opt)) {
2593 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2594 			SEQ_OPTS_PUTS("data=journal");
2595 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2596 			SEQ_OPTS_PUTS("data=ordered");
2597 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2598 			SEQ_OPTS_PUTS("data=writeback");
2599 	}
2600 	if (nodefs ||
2601 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2602 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2603 			       sbi->s_inode_readahead_blks);
2604 
2605 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2606 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2607 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2608 	if (nodefs || sbi->s_max_dir_size_kb)
2609 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2610 	if (test_opt(sb, DATA_ERR_ABORT))
2611 		SEQ_OPTS_PUTS("data_err=abort");
2612 
2613 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2614 
2615 	if (sb->s_flags & SB_INLINECRYPT)
2616 		SEQ_OPTS_PUTS("inlinecrypt");
2617 
2618 	if (test_opt(sb, DAX_ALWAYS)) {
2619 		if (IS_EXT2_SB(sb))
2620 			SEQ_OPTS_PUTS("dax");
2621 		else
2622 			SEQ_OPTS_PUTS("dax=always");
2623 	} else if (test_opt2(sb, DAX_NEVER)) {
2624 		SEQ_OPTS_PUTS("dax=never");
2625 	} else if (test_opt2(sb, DAX_INODE)) {
2626 		SEQ_OPTS_PUTS("dax=inode");
2627 	}
2628 	ext4_show_quota_options(seq, sb);
2629 	return 0;
2630 }
2631 
ext4_show_options(struct seq_file * seq,struct dentry * root)2632 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2633 {
2634 	return _ext4_show_options(seq, root->d_sb, 0);
2635 }
2636 
ext4_seq_options_show(struct seq_file * seq,void * offset)2637 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2638 {
2639 	struct super_block *sb = seq->private;
2640 	int rc;
2641 
2642 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2643 	rc = _ext4_show_options(seq, sb, 1);
2644 	seq_puts(seq, "\n");
2645 	return rc;
2646 }
2647 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2648 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2649 			    int read_only)
2650 {
2651 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2652 	int err = 0;
2653 
2654 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2655 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2656 			 "forcing read-only mode");
2657 		err = -EROFS;
2658 		goto done;
2659 	}
2660 	if (read_only)
2661 		goto done;
2662 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2663 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2664 			 "running e2fsck is recommended");
2665 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2666 		ext4_msg(sb, KERN_WARNING,
2667 			 "warning: mounting fs with errors, "
2668 			 "running e2fsck is recommended");
2669 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2670 		 le16_to_cpu(es->s_mnt_count) >=
2671 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2672 		ext4_msg(sb, KERN_WARNING,
2673 			 "warning: maximal mount count reached, "
2674 			 "running e2fsck is recommended");
2675 	else if (le32_to_cpu(es->s_checkinterval) &&
2676 		 (ext4_get_tstamp(es, s_lastcheck) +
2677 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2678 		ext4_msg(sb, KERN_WARNING,
2679 			 "warning: checktime reached, "
2680 			 "running e2fsck is recommended");
2681 	if (!sbi->s_journal)
2682 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2683 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2684 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2685 	le16_add_cpu(&es->s_mnt_count, 1);
2686 	ext4_update_tstamp(es, s_mtime);
2687 	if (sbi->s_journal)
2688 		ext4_set_feature_journal_needs_recovery(sb);
2689 
2690 	err = ext4_commit_super(sb);
2691 done:
2692 	if (test_opt(sb, DEBUG))
2693 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2694 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2695 			sb->s_blocksize,
2696 			sbi->s_groups_count,
2697 			EXT4_BLOCKS_PER_GROUP(sb),
2698 			EXT4_INODES_PER_GROUP(sb),
2699 			sbi->s_mount_opt, sbi->s_mount_opt2);
2700 
2701 	cleancache_init_fs(sb);
2702 	return err;
2703 }
2704 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2705 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2706 {
2707 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2708 	struct flex_groups **old_groups, **new_groups;
2709 	int size, i, j;
2710 
2711 	if (!sbi->s_log_groups_per_flex)
2712 		return 0;
2713 
2714 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2715 	if (size <= sbi->s_flex_groups_allocated)
2716 		return 0;
2717 
2718 	new_groups = kvzalloc(roundup_pow_of_two(size *
2719 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2720 	if (!new_groups) {
2721 		ext4_msg(sb, KERN_ERR,
2722 			 "not enough memory for %d flex group pointers", size);
2723 		return -ENOMEM;
2724 	}
2725 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2726 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2727 					 sizeof(struct flex_groups)),
2728 					 GFP_KERNEL);
2729 		if (!new_groups[i]) {
2730 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2731 				kvfree(new_groups[j]);
2732 			kvfree(new_groups);
2733 			ext4_msg(sb, KERN_ERR,
2734 				 "not enough memory for %d flex groups", size);
2735 			return -ENOMEM;
2736 		}
2737 	}
2738 	rcu_read_lock();
2739 	old_groups = rcu_dereference(sbi->s_flex_groups);
2740 	if (old_groups)
2741 		memcpy(new_groups, old_groups,
2742 		       (sbi->s_flex_groups_allocated *
2743 			sizeof(struct flex_groups *)));
2744 	rcu_read_unlock();
2745 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2746 	sbi->s_flex_groups_allocated = size;
2747 	if (old_groups)
2748 		ext4_kvfree_array_rcu(old_groups);
2749 	return 0;
2750 }
2751 
ext4_fill_flex_info(struct super_block * sb)2752 static int ext4_fill_flex_info(struct super_block *sb)
2753 {
2754 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2755 	struct ext4_group_desc *gdp = NULL;
2756 	struct flex_groups *fg;
2757 	ext4_group_t flex_group;
2758 	int i, err;
2759 
2760 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2761 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2762 		sbi->s_log_groups_per_flex = 0;
2763 		return 1;
2764 	}
2765 
2766 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2767 	if (err)
2768 		goto failed;
2769 
2770 	for (i = 0; i < sbi->s_groups_count; i++) {
2771 		gdp = ext4_get_group_desc(sb, i, NULL);
2772 
2773 		flex_group = ext4_flex_group(sbi, i);
2774 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2775 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2776 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2777 			     &fg->free_clusters);
2778 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2779 	}
2780 
2781 	return 1;
2782 failed:
2783 	return 0;
2784 }
2785 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2786 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2787 				   struct ext4_group_desc *gdp)
2788 {
2789 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2790 	__u16 crc = 0;
2791 	__le32 le_group = cpu_to_le32(block_group);
2792 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2793 
2794 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2795 		/* Use new metadata_csum algorithm */
2796 		__u32 csum32;
2797 		__u16 dummy_csum = 0;
2798 
2799 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2800 				     sizeof(le_group));
2801 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2802 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2803 				     sizeof(dummy_csum));
2804 		offset += sizeof(dummy_csum);
2805 		if (offset < sbi->s_desc_size)
2806 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2807 					     sbi->s_desc_size - offset);
2808 
2809 		crc = csum32 & 0xFFFF;
2810 		goto out;
2811 	}
2812 
2813 	/* old crc16 code */
2814 	if (!ext4_has_feature_gdt_csum(sb))
2815 		return 0;
2816 
2817 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2818 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2819 	crc = crc16(crc, (__u8 *)gdp, offset);
2820 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2821 	/* for checksum of struct ext4_group_desc do the rest...*/
2822 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
2823 		crc = crc16(crc, (__u8 *)gdp + offset,
2824 			    sbi->s_desc_size - offset);
2825 
2826 out:
2827 	return cpu_to_le16(crc);
2828 }
2829 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2830 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2831 				struct ext4_group_desc *gdp)
2832 {
2833 	if (ext4_has_group_desc_csum(sb) &&
2834 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2835 		return 0;
2836 
2837 	return 1;
2838 }
2839 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2840 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2841 			      struct ext4_group_desc *gdp)
2842 {
2843 	if (!ext4_has_group_desc_csum(sb))
2844 		return;
2845 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2846 }
2847 
2848 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2849 static int ext4_check_descriptors(struct super_block *sb,
2850 				  ext4_fsblk_t sb_block,
2851 				  ext4_group_t *first_not_zeroed)
2852 {
2853 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2854 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2855 	ext4_fsblk_t last_block;
2856 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2857 	ext4_fsblk_t block_bitmap;
2858 	ext4_fsblk_t inode_bitmap;
2859 	ext4_fsblk_t inode_table;
2860 	int flexbg_flag = 0;
2861 	ext4_group_t i, grp = sbi->s_groups_count;
2862 
2863 	if (ext4_has_feature_flex_bg(sb))
2864 		flexbg_flag = 1;
2865 
2866 	ext4_debug("Checking group descriptors");
2867 
2868 	for (i = 0; i < sbi->s_groups_count; i++) {
2869 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2870 
2871 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2872 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2873 		else
2874 			last_block = first_block +
2875 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2876 
2877 		if ((grp == sbi->s_groups_count) &&
2878 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2879 			grp = i;
2880 
2881 		block_bitmap = ext4_block_bitmap(sb, gdp);
2882 		if (block_bitmap == sb_block) {
2883 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2884 				 "Block bitmap for group %u overlaps "
2885 				 "superblock", i);
2886 			if (!sb_rdonly(sb))
2887 				return 0;
2888 		}
2889 		if (block_bitmap >= sb_block + 1 &&
2890 		    block_bitmap <= last_bg_block) {
2891 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2892 				 "Block bitmap for group %u overlaps "
2893 				 "block group descriptors", i);
2894 			if (!sb_rdonly(sb))
2895 				return 0;
2896 		}
2897 		if (block_bitmap < first_block || block_bitmap > last_block) {
2898 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2899 			       "Block bitmap for group %u not in group "
2900 			       "(block %llu)!", i, block_bitmap);
2901 			return 0;
2902 		}
2903 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2904 		if (inode_bitmap == sb_block) {
2905 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2906 				 "Inode bitmap for group %u overlaps "
2907 				 "superblock", i);
2908 			if (!sb_rdonly(sb))
2909 				return 0;
2910 		}
2911 		if (inode_bitmap >= sb_block + 1 &&
2912 		    inode_bitmap <= last_bg_block) {
2913 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2914 				 "Inode bitmap for group %u overlaps "
2915 				 "block group descriptors", i);
2916 			if (!sb_rdonly(sb))
2917 				return 0;
2918 		}
2919 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2920 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2921 			       "Inode bitmap for group %u not in group "
2922 			       "(block %llu)!", i, inode_bitmap);
2923 			return 0;
2924 		}
2925 		inode_table = ext4_inode_table(sb, gdp);
2926 		if (inode_table == sb_block) {
2927 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2928 				 "Inode table for group %u overlaps "
2929 				 "superblock", i);
2930 			if (!sb_rdonly(sb))
2931 				return 0;
2932 		}
2933 		if (inode_table >= sb_block + 1 &&
2934 		    inode_table <= last_bg_block) {
2935 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2936 				 "Inode table for group %u overlaps "
2937 				 "block group descriptors", i);
2938 			if (!sb_rdonly(sb))
2939 				return 0;
2940 		}
2941 		if (inode_table < first_block ||
2942 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2943 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2944 			       "Inode table for group %u not in group "
2945 			       "(block %llu)!", i, inode_table);
2946 			return 0;
2947 		}
2948 		ext4_lock_group(sb, i);
2949 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2950 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2951 				 "Checksum for group %u failed (%u!=%u)",
2952 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2953 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2954 			if (!sb_rdonly(sb)) {
2955 				ext4_unlock_group(sb, i);
2956 				return 0;
2957 			}
2958 		}
2959 		ext4_unlock_group(sb, i);
2960 		if (!flexbg_flag)
2961 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2962 	}
2963 	if (NULL != first_not_zeroed)
2964 		*first_not_zeroed = grp;
2965 	return 1;
2966 }
2967 
2968 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2969  * the superblock) which were deleted from all directories, but held open by
2970  * a process at the time of a crash.  We walk the list and try to delete these
2971  * inodes at recovery time (only with a read-write filesystem).
2972  *
2973  * In order to keep the orphan inode chain consistent during traversal (in
2974  * case of crash during recovery), we link each inode into the superblock
2975  * orphan list_head and handle it the same way as an inode deletion during
2976  * normal operation (which journals the operations for us).
2977  *
2978  * We only do an iget() and an iput() on each inode, which is very safe if we
2979  * accidentally point at an in-use or already deleted inode.  The worst that
2980  * can happen in this case is that we get a "bit already cleared" message from
2981  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2982  * e2fsck was run on this filesystem, and it must have already done the orphan
2983  * inode cleanup for us, so we can safely abort without any further action.
2984  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2985 static void ext4_orphan_cleanup(struct super_block *sb,
2986 				struct ext4_super_block *es)
2987 {
2988 	unsigned int s_flags = sb->s_flags;
2989 	int ret, nr_orphans = 0, nr_truncates = 0;
2990 #ifdef CONFIG_QUOTA
2991 	int quota_update = 0;
2992 	int i;
2993 #endif
2994 	if (!es->s_last_orphan) {
2995 		jbd_debug(4, "no orphan inodes to clean up\n");
2996 		return;
2997 	}
2998 
2999 	if (bdev_read_only(sb->s_bdev)) {
3000 		ext4_msg(sb, KERN_ERR, "write access "
3001 			"unavailable, skipping orphan cleanup");
3002 		return;
3003 	}
3004 
3005 	/* Check if feature set would not allow a r/w mount */
3006 	if (!ext4_feature_set_ok(sb, 0)) {
3007 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3008 			 "unknown ROCOMPAT features");
3009 		return;
3010 	}
3011 
3012 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3013 		/* don't clear list on RO mount w/ errors */
3014 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3015 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3016 				  "clearing orphan list.\n");
3017 			es->s_last_orphan = 0;
3018 		}
3019 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3020 		return;
3021 	}
3022 
3023 	if (s_flags & SB_RDONLY) {
3024 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3025 		sb->s_flags &= ~SB_RDONLY;
3026 	}
3027 #ifdef CONFIG_QUOTA
3028 	/*
3029 	 * Turn on quotas which were not enabled for read-only mounts if
3030 	 * filesystem has quota feature, so that they are updated correctly.
3031 	 */
3032 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3033 		int ret = ext4_enable_quotas(sb);
3034 
3035 		if (!ret)
3036 			quota_update = 1;
3037 		else
3038 			ext4_msg(sb, KERN_ERR,
3039 				"Cannot turn on quotas: error %d", ret);
3040 	}
3041 
3042 	/* Turn on journaled quotas used for old sytle */
3043 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3044 		if (EXT4_SB(sb)->s_qf_names[i]) {
3045 			int ret = ext4_quota_on_mount(sb, i);
3046 
3047 			if (!ret)
3048 				quota_update = 1;
3049 			else
3050 				ext4_msg(sb, KERN_ERR,
3051 					"Cannot turn on journaled "
3052 					"quota: type %d: error %d", i, ret);
3053 		}
3054 	}
3055 #endif
3056 
3057 	while (es->s_last_orphan) {
3058 		struct inode *inode;
3059 
3060 		/*
3061 		 * We may have encountered an error during cleanup; if
3062 		 * so, skip the rest.
3063 		 */
3064 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3065 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3066 			es->s_last_orphan = 0;
3067 			break;
3068 		}
3069 
3070 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3071 		if (IS_ERR(inode)) {
3072 			es->s_last_orphan = 0;
3073 			break;
3074 		}
3075 
3076 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3077 		dquot_initialize(inode);
3078 		if (inode->i_nlink) {
3079 			if (test_opt(sb, DEBUG))
3080 				ext4_msg(sb, KERN_DEBUG,
3081 					"%s: truncating inode %lu to %lld bytes",
3082 					__func__, inode->i_ino, inode->i_size);
3083 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3084 				  inode->i_ino, inode->i_size);
3085 			inode_lock(inode);
3086 			truncate_inode_pages(inode->i_mapping, inode->i_size);
3087 			ret = ext4_truncate(inode);
3088 			if (ret) {
3089 				/*
3090 				 * We need to clean up the in-core orphan list
3091 				 * manually if ext4_truncate() failed to get a
3092 				 * transaction handle.
3093 				 */
3094 				ext4_orphan_del(NULL, inode);
3095 				ext4_std_error(inode->i_sb, ret);
3096 			}
3097 			inode_unlock(inode);
3098 			nr_truncates++;
3099 		} else {
3100 			if (test_opt(sb, DEBUG))
3101 				ext4_msg(sb, KERN_DEBUG,
3102 					"%s: deleting unreferenced inode %lu",
3103 					__func__, inode->i_ino);
3104 			jbd_debug(2, "deleting unreferenced inode %lu\n",
3105 				  inode->i_ino);
3106 			nr_orphans++;
3107 		}
3108 		iput(inode);  /* The delete magic happens here! */
3109 	}
3110 
3111 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3112 
3113 	if (nr_orphans)
3114 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3115 		       PLURAL(nr_orphans));
3116 	if (nr_truncates)
3117 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3118 		       PLURAL(nr_truncates));
3119 #ifdef CONFIG_QUOTA
3120 	/* Turn off quotas if they were enabled for orphan cleanup */
3121 	if (quota_update) {
3122 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3123 			if (sb_dqopt(sb)->files[i])
3124 				dquot_quota_off(sb, i);
3125 		}
3126 	}
3127 #endif
3128 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3129 }
3130 
3131 /*
3132  * Maximal extent format file size.
3133  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3134  * extent format containers, within a sector_t, and within i_blocks
3135  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3136  * so that won't be a limiting factor.
3137  *
3138  * However there is other limiting factor. We do store extents in the form
3139  * of starting block and length, hence the resulting length of the extent
3140  * covering maximum file size must fit into on-disk format containers as
3141  * well. Given that length is always by 1 unit bigger than max unit (because
3142  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3143  *
3144  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3145  */
ext4_max_size(int blkbits,int has_huge_files)3146 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3147 {
3148 	loff_t res;
3149 	loff_t upper_limit = MAX_LFS_FILESIZE;
3150 
3151 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3152 
3153 	if (!has_huge_files) {
3154 		upper_limit = (1LL << 32) - 1;
3155 
3156 		/* total blocks in file system block size */
3157 		upper_limit >>= (blkbits - 9);
3158 		upper_limit <<= blkbits;
3159 	}
3160 
3161 	/*
3162 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3163 	 * by one fs block, so ee_len can cover the extent of maximum file
3164 	 * size
3165 	 */
3166 	res = (1LL << 32) - 1;
3167 	res <<= blkbits;
3168 
3169 	/* Sanity check against vm- & vfs- imposed limits */
3170 	if (res > upper_limit)
3171 		res = upper_limit;
3172 
3173 	return res;
3174 }
3175 
3176 /*
3177  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3178  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3179  * We need to be 1 filesystem block less than the 2^48 sector limit.
3180  */
ext4_max_bitmap_size(int bits,int has_huge_files)3181 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3182 {
3183 	unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3184 	int meta_blocks;
3185 
3186 	/*
3187 	 * This is calculated to be the largest file size for a dense, block
3188 	 * mapped file such that the file's total number of 512-byte sectors,
3189 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3190 	 *
3191 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3192 	 * number of 512-byte sectors of the file.
3193 	 */
3194 	if (!has_huge_files) {
3195 		/*
3196 		 * !has_huge_files or implies that the inode i_block field
3197 		 * represents total file blocks in 2^32 512-byte sectors ==
3198 		 * size of vfs inode i_blocks * 8
3199 		 */
3200 		upper_limit = (1LL << 32) - 1;
3201 
3202 		/* total blocks in file system block size */
3203 		upper_limit >>= (bits - 9);
3204 
3205 	} else {
3206 		/*
3207 		 * We use 48 bit ext4_inode i_blocks
3208 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3209 		 * represent total number of blocks in
3210 		 * file system block size
3211 		 */
3212 		upper_limit = (1LL << 48) - 1;
3213 
3214 	}
3215 
3216 	/* indirect blocks */
3217 	meta_blocks = 1;
3218 	/* double indirect blocks */
3219 	meta_blocks += 1 + (1LL << (bits-2));
3220 	/* tripple indirect blocks */
3221 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3222 
3223 	upper_limit -= meta_blocks;
3224 	upper_limit <<= bits;
3225 
3226 	res += 1LL << (bits-2);
3227 	res += 1LL << (2*(bits-2));
3228 	res += 1LL << (3*(bits-2));
3229 	res <<= bits;
3230 	if (res > upper_limit)
3231 		res = upper_limit;
3232 
3233 	if (res > MAX_LFS_FILESIZE)
3234 		res = MAX_LFS_FILESIZE;
3235 
3236 	return (loff_t)res;
3237 }
3238 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3239 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3240 				   ext4_fsblk_t logical_sb_block, int nr)
3241 {
3242 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3243 	ext4_group_t bg, first_meta_bg;
3244 	int has_super = 0;
3245 
3246 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3247 
3248 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3249 		return logical_sb_block + nr + 1;
3250 	bg = sbi->s_desc_per_block * nr;
3251 	if (ext4_bg_has_super(sb, bg))
3252 		has_super = 1;
3253 
3254 	/*
3255 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3256 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3257 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3258 	 * compensate.
3259 	 */
3260 	if (sb->s_blocksize == 1024 && nr == 0 &&
3261 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3262 		has_super++;
3263 
3264 	return (has_super + ext4_group_first_block_no(sb, bg));
3265 }
3266 
3267 /**
3268  * ext4_get_stripe_size: Get the stripe size.
3269  * @sbi: In memory super block info
3270  *
3271  * If we have specified it via mount option, then
3272  * use the mount option value. If the value specified at mount time is
3273  * greater than the blocks per group use the super block value.
3274  * If the super block value is greater than blocks per group return 0.
3275  * Allocator needs it be less than blocks per group.
3276  *
3277  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3278 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3279 {
3280 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3281 	unsigned long stripe_width =
3282 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3283 	int ret;
3284 
3285 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3286 		ret = sbi->s_stripe;
3287 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3288 		ret = stripe_width;
3289 	else if (stride && stride <= sbi->s_blocks_per_group)
3290 		ret = stride;
3291 	else
3292 		ret = 0;
3293 
3294 	/*
3295 	 * If the stripe width is 1, this makes no sense and
3296 	 * we set it to 0 to turn off stripe handling code.
3297 	 */
3298 	if (ret <= 1)
3299 		ret = 0;
3300 
3301 	return ret;
3302 }
3303 
3304 /*
3305  * Check whether this filesystem can be mounted based on
3306  * the features present and the RDONLY/RDWR mount requested.
3307  * Returns 1 if this filesystem can be mounted as requested,
3308  * 0 if it cannot be.
3309  */
ext4_feature_set_ok(struct super_block * sb,int readonly)3310 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3311 {
3312 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3313 		ext4_msg(sb, KERN_ERR,
3314 			"Couldn't mount because of "
3315 			"unsupported optional features (%x)",
3316 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3317 			~EXT4_FEATURE_INCOMPAT_SUPP));
3318 		return 0;
3319 	}
3320 
3321 #ifndef CONFIG_UNICODE
3322 	if (ext4_has_feature_casefold(sb)) {
3323 		ext4_msg(sb, KERN_ERR,
3324 			 "Filesystem with casefold feature cannot be "
3325 			 "mounted without CONFIG_UNICODE");
3326 		return 0;
3327 	}
3328 #endif
3329 
3330 	if (readonly)
3331 		return 1;
3332 
3333 	if (ext4_has_feature_readonly(sb)) {
3334 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3335 		sb->s_flags |= SB_RDONLY;
3336 		return 1;
3337 	}
3338 
3339 	/* Check that feature set is OK for a read-write mount */
3340 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3341 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3342 			 "unsupported optional features (%x)",
3343 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3344 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3345 		return 0;
3346 	}
3347 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3348 		ext4_msg(sb, KERN_ERR,
3349 			 "Can't support bigalloc feature without "
3350 			 "extents feature\n");
3351 		return 0;
3352 	}
3353 
3354 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3355 	if (!readonly && (ext4_has_feature_quota(sb) ||
3356 			  ext4_has_feature_project(sb))) {
3357 		ext4_msg(sb, KERN_ERR,
3358 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3359 		return 0;
3360 	}
3361 #endif  /* CONFIG_QUOTA */
3362 	return 1;
3363 }
3364 
3365 /*
3366  * This function is called once a day if we have errors logged
3367  * on the file system
3368  */
print_daily_error_info(struct timer_list * t)3369 static void print_daily_error_info(struct timer_list *t)
3370 {
3371 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3372 	struct super_block *sb = sbi->s_sb;
3373 	struct ext4_super_block *es = sbi->s_es;
3374 
3375 	if (es->s_error_count)
3376 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3377 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3378 			 le32_to_cpu(es->s_error_count));
3379 	if (es->s_first_error_time) {
3380 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3381 		       sb->s_id,
3382 		       ext4_get_tstamp(es, s_first_error_time),
3383 		       (int) sizeof(es->s_first_error_func),
3384 		       es->s_first_error_func,
3385 		       le32_to_cpu(es->s_first_error_line));
3386 		if (es->s_first_error_ino)
3387 			printk(KERN_CONT ": inode %u",
3388 			       le32_to_cpu(es->s_first_error_ino));
3389 		if (es->s_first_error_block)
3390 			printk(KERN_CONT ": block %llu", (unsigned long long)
3391 			       le64_to_cpu(es->s_first_error_block));
3392 		printk(KERN_CONT "\n");
3393 	}
3394 	if (es->s_last_error_time) {
3395 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3396 		       sb->s_id,
3397 		       ext4_get_tstamp(es, s_last_error_time),
3398 		       (int) sizeof(es->s_last_error_func),
3399 		       es->s_last_error_func,
3400 		       le32_to_cpu(es->s_last_error_line));
3401 		if (es->s_last_error_ino)
3402 			printk(KERN_CONT ": inode %u",
3403 			       le32_to_cpu(es->s_last_error_ino));
3404 		if (es->s_last_error_block)
3405 			printk(KERN_CONT ": block %llu", (unsigned long long)
3406 			       le64_to_cpu(es->s_last_error_block));
3407 		printk(KERN_CONT "\n");
3408 	}
3409 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3410 }
3411 
3412 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3413 static int ext4_run_li_request(struct ext4_li_request *elr)
3414 {
3415 	struct ext4_group_desc *gdp = NULL;
3416 	struct super_block *sb = elr->lr_super;
3417 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3418 	ext4_group_t group = elr->lr_next_group;
3419 	unsigned int prefetch_ios = 0;
3420 	int ret = 0;
3421 	u64 start_time;
3422 
3423 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3424 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3425 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3426 		if (prefetch_ios)
3427 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3428 					      prefetch_ios);
3429 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3430 					    prefetch_ios);
3431 		if (group >= elr->lr_next_group) {
3432 			ret = 1;
3433 			if (elr->lr_first_not_zeroed != ngroups &&
3434 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3435 				elr->lr_next_group = elr->lr_first_not_zeroed;
3436 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3437 				ret = 0;
3438 			}
3439 		}
3440 		return ret;
3441 	}
3442 
3443 	for (; group < ngroups; group++) {
3444 		gdp = ext4_get_group_desc(sb, group, NULL);
3445 		if (!gdp) {
3446 			ret = 1;
3447 			break;
3448 		}
3449 
3450 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3451 			break;
3452 	}
3453 
3454 	if (group >= ngroups)
3455 		ret = 1;
3456 
3457 	if (!ret) {
3458 		start_time = ktime_get_real_ns();
3459 		ret = ext4_init_inode_table(sb, group,
3460 					    elr->lr_timeout ? 0 : 1);
3461 		trace_ext4_lazy_itable_init(sb, group);
3462 		if (elr->lr_timeout == 0) {
3463 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3464 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3465 		}
3466 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3467 		elr->lr_next_group = group + 1;
3468 	}
3469 	return ret;
3470 }
3471 
3472 /*
3473  * Remove lr_request from the list_request and free the
3474  * request structure. Should be called with li_list_mtx held
3475  */
ext4_remove_li_request(struct ext4_li_request * elr)3476 static void ext4_remove_li_request(struct ext4_li_request *elr)
3477 {
3478 	if (!elr)
3479 		return;
3480 
3481 	list_del(&elr->lr_request);
3482 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3483 	kfree(elr);
3484 }
3485 
ext4_unregister_li_request(struct super_block * sb)3486 static void ext4_unregister_li_request(struct super_block *sb)
3487 {
3488 	mutex_lock(&ext4_li_mtx);
3489 	if (!ext4_li_info) {
3490 		mutex_unlock(&ext4_li_mtx);
3491 		return;
3492 	}
3493 
3494 	mutex_lock(&ext4_li_info->li_list_mtx);
3495 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3496 	mutex_unlock(&ext4_li_info->li_list_mtx);
3497 	mutex_unlock(&ext4_li_mtx);
3498 }
3499 
3500 static struct task_struct *ext4_lazyinit_task;
3501 
3502 /*
3503  * This is the function where ext4lazyinit thread lives. It walks
3504  * through the request list searching for next scheduled filesystem.
3505  * When such a fs is found, run the lazy initialization request
3506  * (ext4_rn_li_request) and keep track of the time spend in this
3507  * function. Based on that time we compute next schedule time of
3508  * the request. When walking through the list is complete, compute
3509  * next waking time and put itself into sleep.
3510  */
ext4_lazyinit_thread(void * arg)3511 static int ext4_lazyinit_thread(void *arg)
3512 {
3513 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3514 	struct list_head *pos, *n;
3515 	struct ext4_li_request *elr;
3516 	unsigned long next_wakeup, cur;
3517 
3518 	BUG_ON(NULL == eli);
3519 	set_freezable();
3520 
3521 cont_thread:
3522 	while (true) {
3523 		next_wakeup = MAX_JIFFY_OFFSET;
3524 
3525 		mutex_lock(&eli->li_list_mtx);
3526 		if (list_empty(&eli->li_request_list)) {
3527 			mutex_unlock(&eli->li_list_mtx);
3528 			goto exit_thread;
3529 		}
3530 		list_for_each_safe(pos, n, &eli->li_request_list) {
3531 			int err = 0;
3532 			int progress = 0;
3533 			elr = list_entry(pos, struct ext4_li_request,
3534 					 lr_request);
3535 
3536 			if (time_before(jiffies, elr->lr_next_sched)) {
3537 				if (time_before(elr->lr_next_sched, next_wakeup))
3538 					next_wakeup = elr->lr_next_sched;
3539 				continue;
3540 			}
3541 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3542 				if (sb_start_write_trylock(elr->lr_super)) {
3543 					progress = 1;
3544 					/*
3545 					 * We hold sb->s_umount, sb can not
3546 					 * be removed from the list, it is
3547 					 * now safe to drop li_list_mtx
3548 					 */
3549 					mutex_unlock(&eli->li_list_mtx);
3550 					err = ext4_run_li_request(elr);
3551 					sb_end_write(elr->lr_super);
3552 					mutex_lock(&eli->li_list_mtx);
3553 					n = pos->next;
3554 				}
3555 				up_read((&elr->lr_super->s_umount));
3556 			}
3557 			/* error, remove the lazy_init job */
3558 			if (err) {
3559 				ext4_remove_li_request(elr);
3560 				continue;
3561 			}
3562 			if (!progress) {
3563 				elr->lr_next_sched = jiffies +
3564 					(prandom_u32()
3565 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3566 			}
3567 			if (time_before(elr->lr_next_sched, next_wakeup))
3568 				next_wakeup = elr->lr_next_sched;
3569 		}
3570 		mutex_unlock(&eli->li_list_mtx);
3571 
3572 		try_to_freeze();
3573 
3574 		cur = jiffies;
3575 		if ((time_after_eq(cur, next_wakeup)) ||
3576 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3577 			cond_resched();
3578 			continue;
3579 		}
3580 
3581 		schedule_timeout_interruptible(next_wakeup - cur);
3582 
3583 		if (kthread_should_stop()) {
3584 			ext4_clear_request_list();
3585 			goto exit_thread;
3586 		}
3587 	}
3588 
3589 exit_thread:
3590 	/*
3591 	 * It looks like the request list is empty, but we need
3592 	 * to check it under the li_list_mtx lock, to prevent any
3593 	 * additions into it, and of course we should lock ext4_li_mtx
3594 	 * to atomically free the list and ext4_li_info, because at
3595 	 * this point another ext4 filesystem could be registering
3596 	 * new one.
3597 	 */
3598 	mutex_lock(&ext4_li_mtx);
3599 	mutex_lock(&eli->li_list_mtx);
3600 	if (!list_empty(&eli->li_request_list)) {
3601 		mutex_unlock(&eli->li_list_mtx);
3602 		mutex_unlock(&ext4_li_mtx);
3603 		goto cont_thread;
3604 	}
3605 	mutex_unlock(&eli->li_list_mtx);
3606 	kfree(ext4_li_info);
3607 	ext4_li_info = NULL;
3608 	mutex_unlock(&ext4_li_mtx);
3609 
3610 	return 0;
3611 }
3612 
ext4_clear_request_list(void)3613 static void ext4_clear_request_list(void)
3614 {
3615 	struct list_head *pos, *n;
3616 	struct ext4_li_request *elr;
3617 
3618 	mutex_lock(&ext4_li_info->li_list_mtx);
3619 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3620 		elr = list_entry(pos, struct ext4_li_request,
3621 				 lr_request);
3622 		ext4_remove_li_request(elr);
3623 	}
3624 	mutex_unlock(&ext4_li_info->li_list_mtx);
3625 }
3626 
ext4_run_lazyinit_thread(void)3627 static int ext4_run_lazyinit_thread(void)
3628 {
3629 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3630 					 ext4_li_info, "ext4lazyinit");
3631 	if (IS_ERR(ext4_lazyinit_task)) {
3632 		int err = PTR_ERR(ext4_lazyinit_task);
3633 		ext4_clear_request_list();
3634 		kfree(ext4_li_info);
3635 		ext4_li_info = NULL;
3636 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3637 				 "initialization thread\n",
3638 				 err);
3639 		return err;
3640 	}
3641 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3642 	return 0;
3643 }
3644 
3645 /*
3646  * Check whether it make sense to run itable init. thread or not.
3647  * If there is at least one uninitialized inode table, return
3648  * corresponding group number, else the loop goes through all
3649  * groups and return total number of groups.
3650  */
ext4_has_uninit_itable(struct super_block * sb)3651 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3652 {
3653 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3654 	struct ext4_group_desc *gdp = NULL;
3655 
3656 	if (!ext4_has_group_desc_csum(sb))
3657 		return ngroups;
3658 
3659 	for (group = 0; group < ngroups; group++) {
3660 		gdp = ext4_get_group_desc(sb, group, NULL);
3661 		if (!gdp)
3662 			continue;
3663 
3664 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3665 			break;
3666 	}
3667 
3668 	return group;
3669 }
3670 
ext4_li_info_new(void)3671 static int ext4_li_info_new(void)
3672 {
3673 	struct ext4_lazy_init *eli = NULL;
3674 
3675 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3676 	if (!eli)
3677 		return -ENOMEM;
3678 
3679 	INIT_LIST_HEAD(&eli->li_request_list);
3680 	mutex_init(&eli->li_list_mtx);
3681 
3682 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3683 
3684 	ext4_li_info = eli;
3685 
3686 	return 0;
3687 }
3688 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3689 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3690 					    ext4_group_t start)
3691 {
3692 	struct ext4_li_request *elr;
3693 
3694 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3695 	if (!elr)
3696 		return NULL;
3697 
3698 	elr->lr_super = sb;
3699 	elr->lr_first_not_zeroed = start;
3700 	if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3701 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3702 	else {
3703 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3704 		elr->lr_next_group = start;
3705 	}
3706 
3707 	/*
3708 	 * Randomize first schedule time of the request to
3709 	 * spread the inode table initialization requests
3710 	 * better.
3711 	 */
3712 	elr->lr_next_sched = jiffies + (prandom_u32() %
3713 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3714 	return elr;
3715 }
3716 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3717 int ext4_register_li_request(struct super_block *sb,
3718 			     ext4_group_t first_not_zeroed)
3719 {
3720 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3721 	struct ext4_li_request *elr = NULL;
3722 	ext4_group_t ngroups = sbi->s_groups_count;
3723 	int ret = 0;
3724 
3725 	mutex_lock(&ext4_li_mtx);
3726 	if (sbi->s_li_request != NULL) {
3727 		/*
3728 		 * Reset timeout so it can be computed again, because
3729 		 * s_li_wait_mult might have changed.
3730 		 */
3731 		sbi->s_li_request->lr_timeout = 0;
3732 		goto out;
3733 	}
3734 
3735 	if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3736 	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3737 	     !test_opt(sb, INIT_INODE_TABLE)))
3738 		goto out;
3739 
3740 	elr = ext4_li_request_new(sb, first_not_zeroed);
3741 	if (!elr) {
3742 		ret = -ENOMEM;
3743 		goto out;
3744 	}
3745 
3746 	if (NULL == ext4_li_info) {
3747 		ret = ext4_li_info_new();
3748 		if (ret)
3749 			goto out;
3750 	}
3751 
3752 	mutex_lock(&ext4_li_info->li_list_mtx);
3753 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3754 	mutex_unlock(&ext4_li_info->li_list_mtx);
3755 
3756 	sbi->s_li_request = elr;
3757 	/*
3758 	 * set elr to NULL here since it has been inserted to
3759 	 * the request_list and the removal and free of it is
3760 	 * handled by ext4_clear_request_list from now on.
3761 	 */
3762 	elr = NULL;
3763 
3764 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3765 		ret = ext4_run_lazyinit_thread();
3766 		if (ret)
3767 			goto out;
3768 	}
3769 out:
3770 	mutex_unlock(&ext4_li_mtx);
3771 	if (ret)
3772 		kfree(elr);
3773 	return ret;
3774 }
3775 
3776 /*
3777  * We do not need to lock anything since this is called on
3778  * module unload.
3779  */
ext4_destroy_lazyinit_thread(void)3780 static void ext4_destroy_lazyinit_thread(void)
3781 {
3782 	/*
3783 	 * If thread exited earlier
3784 	 * there's nothing to be done.
3785 	 */
3786 	if (!ext4_li_info || !ext4_lazyinit_task)
3787 		return;
3788 
3789 	kthread_stop(ext4_lazyinit_task);
3790 }
3791 
set_journal_csum_feature_set(struct super_block * sb)3792 static int set_journal_csum_feature_set(struct super_block *sb)
3793 {
3794 	int ret = 1;
3795 	int compat, incompat;
3796 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3797 
3798 	if (ext4_has_metadata_csum(sb)) {
3799 		/* journal checksum v3 */
3800 		compat = 0;
3801 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3802 	} else {
3803 		/* journal checksum v1 */
3804 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3805 		incompat = 0;
3806 	}
3807 
3808 	jbd2_journal_clear_features(sbi->s_journal,
3809 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3810 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3811 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3812 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3813 		ret = jbd2_journal_set_features(sbi->s_journal,
3814 				compat, 0,
3815 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3816 				incompat);
3817 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3818 		ret = jbd2_journal_set_features(sbi->s_journal,
3819 				compat, 0,
3820 				incompat);
3821 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3822 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3823 	} else {
3824 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3825 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3826 	}
3827 
3828 	return ret;
3829 }
3830 
3831 /*
3832  * Note: calculating the overhead so we can be compatible with
3833  * historical BSD practice is quite difficult in the face of
3834  * clusters/bigalloc.  This is because multiple metadata blocks from
3835  * different block group can end up in the same allocation cluster.
3836  * Calculating the exact overhead in the face of clustered allocation
3837  * requires either O(all block bitmaps) in memory or O(number of block
3838  * groups**2) in time.  We will still calculate the superblock for
3839  * older file systems --- and if we come across with a bigalloc file
3840  * system with zero in s_overhead_clusters the estimate will be close to
3841  * correct especially for very large cluster sizes --- but for newer
3842  * file systems, it's better to calculate this figure once at mkfs
3843  * time, and store it in the superblock.  If the superblock value is
3844  * present (even for non-bigalloc file systems), we will use it.
3845  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3846 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3847 			  char *buf)
3848 {
3849 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3850 	struct ext4_group_desc	*gdp;
3851 	ext4_fsblk_t		first_block, last_block, b;
3852 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3853 	int			s, j, count = 0;
3854 	int			has_super = ext4_bg_has_super(sb, grp);
3855 
3856 	if (!ext4_has_feature_bigalloc(sb))
3857 		return (has_super + ext4_bg_num_gdb(sb, grp) +
3858 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
3859 			sbi->s_itb_per_group + 2);
3860 
3861 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3862 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3863 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3864 	for (i = 0; i < ngroups; i++) {
3865 		gdp = ext4_get_group_desc(sb, i, NULL);
3866 		b = ext4_block_bitmap(sb, gdp);
3867 		if (b >= first_block && b <= last_block) {
3868 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3869 			count++;
3870 		}
3871 		b = ext4_inode_bitmap(sb, gdp);
3872 		if (b >= first_block && b <= last_block) {
3873 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3874 			count++;
3875 		}
3876 		b = ext4_inode_table(sb, gdp);
3877 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3878 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3879 				int c = EXT4_B2C(sbi, b - first_block);
3880 				ext4_set_bit(c, buf);
3881 				count++;
3882 			}
3883 		if (i != grp)
3884 			continue;
3885 		s = 0;
3886 		if (ext4_bg_has_super(sb, grp)) {
3887 			ext4_set_bit(s++, buf);
3888 			count++;
3889 		}
3890 		j = ext4_bg_num_gdb(sb, grp);
3891 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3892 			ext4_error(sb, "Invalid number of block group "
3893 				   "descriptor blocks: %d", j);
3894 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3895 		}
3896 		count += j;
3897 		for (; j > 0; j--)
3898 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3899 	}
3900 	if (!count)
3901 		return 0;
3902 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3903 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3904 }
3905 
3906 /*
3907  * Compute the overhead and stash it in sbi->s_overhead
3908  */
ext4_calculate_overhead(struct super_block * sb)3909 int ext4_calculate_overhead(struct super_block *sb)
3910 {
3911 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3912 	struct ext4_super_block *es = sbi->s_es;
3913 	struct inode *j_inode;
3914 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3915 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3916 	ext4_fsblk_t overhead = 0;
3917 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3918 
3919 	if (!buf)
3920 		return -ENOMEM;
3921 
3922 	/*
3923 	 * Compute the overhead (FS structures).  This is constant
3924 	 * for a given filesystem unless the number of block groups
3925 	 * changes so we cache the previous value until it does.
3926 	 */
3927 
3928 	/*
3929 	 * All of the blocks before first_data_block are overhead
3930 	 */
3931 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3932 
3933 	/*
3934 	 * Add the overhead found in each block group
3935 	 */
3936 	for (i = 0; i < ngroups; i++) {
3937 		int blks;
3938 
3939 		blks = count_overhead(sb, i, buf);
3940 		overhead += blks;
3941 		if (blks)
3942 			memset(buf, 0, PAGE_SIZE);
3943 		cond_resched();
3944 	}
3945 
3946 	/*
3947 	 * Add the internal journal blocks whether the journal has been
3948 	 * loaded or not
3949 	 */
3950 	if (sbi->s_journal && !sbi->s_journal_bdev)
3951 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3952 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3953 		/* j_inum for internal journal is non-zero */
3954 		j_inode = ext4_get_journal_inode(sb, j_inum);
3955 		if (j_inode) {
3956 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3957 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3958 			iput(j_inode);
3959 		} else {
3960 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3961 		}
3962 	}
3963 	sbi->s_overhead = overhead;
3964 	smp_wmb();
3965 	free_page((unsigned long) buf);
3966 	return 0;
3967 }
3968 
ext4_set_resv_clusters(struct super_block * sb)3969 static void ext4_set_resv_clusters(struct super_block *sb)
3970 {
3971 	ext4_fsblk_t resv_clusters;
3972 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3973 
3974 	/*
3975 	 * There's no need to reserve anything when we aren't using extents.
3976 	 * The space estimates are exact, there are no unwritten extents,
3977 	 * hole punching doesn't need new metadata... This is needed especially
3978 	 * to keep ext2/3 backward compatibility.
3979 	 */
3980 	if (!ext4_has_feature_extents(sb))
3981 		return;
3982 	/*
3983 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3984 	 * This should cover the situations where we can not afford to run
3985 	 * out of space like for example punch hole, or converting
3986 	 * unwritten extents in delalloc path. In most cases such
3987 	 * allocation would require 1, or 2 blocks, higher numbers are
3988 	 * very rare.
3989 	 */
3990 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3991 			 sbi->s_cluster_bits);
3992 
3993 	do_div(resv_clusters, 50);
3994 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3995 
3996 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3997 }
3998 
ext4_fill_super(struct super_block * sb,void * data,int silent)3999 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4000 {
4001 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4002 	char *orig_data = kstrdup(data, GFP_KERNEL);
4003 	struct buffer_head *bh, **group_desc;
4004 	struct ext4_super_block *es = NULL;
4005 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4006 	struct flex_groups **flex_groups;
4007 	ext4_fsblk_t block;
4008 	ext4_fsblk_t sb_block = get_sb_block(&data);
4009 	ext4_fsblk_t logical_sb_block;
4010 	unsigned long offset = 0;
4011 	unsigned long journal_devnum = 0;
4012 	unsigned long def_mount_opts;
4013 	struct inode *root;
4014 	const char *descr;
4015 	int ret = -ENOMEM;
4016 	int blocksize, clustersize;
4017 	unsigned int db_count;
4018 	unsigned int i;
4019 	int needs_recovery, has_huge_files;
4020 	__u64 blocks_count;
4021 	int err = 0;
4022 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4023 	ext4_group_t first_not_zeroed;
4024 
4025 	if ((data && !orig_data) || !sbi)
4026 		goto out_free_base;
4027 
4028 	sbi->s_daxdev = dax_dev;
4029 	sbi->s_blockgroup_lock =
4030 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4031 	if (!sbi->s_blockgroup_lock)
4032 		goto out_free_base;
4033 
4034 	sb->s_fs_info = sbi;
4035 	sbi->s_sb = sb;
4036 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4037 	sbi->s_sb_block = sb_block;
4038 	if (sb->s_bdev->bd_part)
4039 		sbi->s_sectors_written_start =
4040 			part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
4041 
4042 	/* Cleanup superblock name */
4043 	strreplace(sb->s_id, '/', '!');
4044 
4045 	/* -EINVAL is default */
4046 	ret = -EINVAL;
4047 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4048 	if (!blocksize) {
4049 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4050 		goto out_fail;
4051 	}
4052 
4053 	/*
4054 	 * The ext4 superblock will not be buffer aligned for other than 1kB
4055 	 * block sizes.  We need to calculate the offset from buffer start.
4056 	 */
4057 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4058 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4059 		offset = do_div(logical_sb_block, blocksize);
4060 	} else {
4061 		logical_sb_block = sb_block;
4062 	}
4063 
4064 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4065 	if (IS_ERR(bh)) {
4066 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
4067 		ret = PTR_ERR(bh);
4068 		bh = NULL;
4069 		goto out_fail;
4070 	}
4071 	/*
4072 	 * Note: s_es must be initialized as soon as possible because
4073 	 *       some ext4 macro-instructions depend on its value
4074 	 */
4075 	es = (struct ext4_super_block *) (bh->b_data + offset);
4076 	sbi->s_es = es;
4077 	sb->s_magic = le16_to_cpu(es->s_magic);
4078 	if (sb->s_magic != EXT4_SUPER_MAGIC)
4079 		goto cantfind_ext4;
4080 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4081 
4082 	/* Warn if metadata_csum and gdt_csum are both set. */
4083 	if (ext4_has_feature_metadata_csum(sb) &&
4084 	    ext4_has_feature_gdt_csum(sb))
4085 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4086 			     "redundant flags; please run fsck.");
4087 
4088 	/* Check for a known checksum algorithm */
4089 	if (!ext4_verify_csum_type(sb, es)) {
4090 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4091 			 "unknown checksum algorithm.");
4092 		silent = 1;
4093 		goto cantfind_ext4;
4094 	}
4095 
4096 	/* Load the checksum driver */
4097 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4098 	if (IS_ERR(sbi->s_chksum_driver)) {
4099 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4100 		ret = PTR_ERR(sbi->s_chksum_driver);
4101 		sbi->s_chksum_driver = NULL;
4102 		goto failed_mount;
4103 	}
4104 
4105 	/* Check superblock checksum */
4106 	if (!ext4_superblock_csum_verify(sb, es)) {
4107 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4108 			 "invalid superblock checksum.  Run e2fsck?");
4109 		silent = 1;
4110 		ret = -EFSBADCRC;
4111 		goto cantfind_ext4;
4112 	}
4113 
4114 	/* Precompute checksum seed for all metadata */
4115 	if (ext4_has_feature_csum_seed(sb))
4116 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4117 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4118 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4119 					       sizeof(es->s_uuid));
4120 
4121 	/* Set defaults before we parse the mount options */
4122 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4123 	set_opt(sb, INIT_INODE_TABLE);
4124 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4125 		set_opt(sb, DEBUG);
4126 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4127 		set_opt(sb, GRPID);
4128 	if (def_mount_opts & EXT4_DEFM_UID16)
4129 		set_opt(sb, NO_UID32);
4130 	/* xattr user namespace & acls are now defaulted on */
4131 	set_opt(sb, XATTR_USER);
4132 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4133 	set_opt(sb, POSIX_ACL);
4134 #endif
4135 	if (ext4_has_feature_fast_commit(sb))
4136 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4137 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4138 	if (ext4_has_metadata_csum(sb))
4139 		set_opt(sb, JOURNAL_CHECKSUM);
4140 
4141 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4142 		set_opt(sb, JOURNAL_DATA);
4143 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4144 		set_opt(sb, ORDERED_DATA);
4145 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4146 		set_opt(sb, WRITEBACK_DATA);
4147 
4148 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4149 		set_opt(sb, ERRORS_PANIC);
4150 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4151 		set_opt(sb, ERRORS_CONT);
4152 	else
4153 		set_opt(sb, ERRORS_RO);
4154 	/* block_validity enabled by default; disable with noblock_validity */
4155 	set_opt(sb, BLOCK_VALIDITY);
4156 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4157 		set_opt(sb, DISCARD);
4158 
4159 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4160 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4161 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4162 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4163 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4164 
4165 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4166 		set_opt(sb, BARRIER);
4167 
4168 	/*
4169 	 * enable delayed allocation by default
4170 	 * Use -o nodelalloc to turn it off
4171 	 */
4172 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4173 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4174 		set_opt(sb, DELALLOC);
4175 
4176 	/*
4177 	 * set default s_li_wait_mult for lazyinit, for the case there is
4178 	 * no mount option specified.
4179 	 */
4180 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4181 
4182 	if (le32_to_cpu(es->s_log_block_size) >
4183 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4184 		ext4_msg(sb, KERN_ERR,
4185 			 "Invalid log block size: %u",
4186 			 le32_to_cpu(es->s_log_block_size));
4187 		goto failed_mount;
4188 	}
4189 	if (le32_to_cpu(es->s_log_cluster_size) >
4190 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4191 		ext4_msg(sb, KERN_ERR,
4192 			 "Invalid log cluster size: %u",
4193 			 le32_to_cpu(es->s_log_cluster_size));
4194 		goto failed_mount;
4195 	}
4196 
4197 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4198 
4199 	if (blocksize == PAGE_SIZE)
4200 		set_opt(sb, DIOREAD_NOLOCK);
4201 
4202 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4203 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4204 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4205 	} else {
4206 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4207 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4208 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4209 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4210 				 sbi->s_first_ino);
4211 			goto failed_mount;
4212 		}
4213 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4214 		    (!is_power_of_2(sbi->s_inode_size)) ||
4215 		    (sbi->s_inode_size > blocksize)) {
4216 			ext4_msg(sb, KERN_ERR,
4217 			       "unsupported inode size: %d",
4218 			       sbi->s_inode_size);
4219 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4220 			goto failed_mount;
4221 		}
4222 		/*
4223 		 * i_atime_extra is the last extra field available for
4224 		 * [acm]times in struct ext4_inode. Checking for that
4225 		 * field should suffice to ensure we have extra space
4226 		 * for all three.
4227 		 */
4228 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4229 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4230 			sb->s_time_gran = 1;
4231 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4232 		} else {
4233 			sb->s_time_gran = NSEC_PER_SEC;
4234 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4235 		}
4236 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4237 	}
4238 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4239 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4240 			EXT4_GOOD_OLD_INODE_SIZE;
4241 		if (ext4_has_feature_extra_isize(sb)) {
4242 			unsigned v, max = (sbi->s_inode_size -
4243 					   EXT4_GOOD_OLD_INODE_SIZE);
4244 
4245 			v = le16_to_cpu(es->s_want_extra_isize);
4246 			if (v > max) {
4247 				ext4_msg(sb, KERN_ERR,
4248 					 "bad s_want_extra_isize: %d", v);
4249 				goto failed_mount;
4250 			}
4251 			if (sbi->s_want_extra_isize < v)
4252 				sbi->s_want_extra_isize = v;
4253 
4254 			v = le16_to_cpu(es->s_min_extra_isize);
4255 			if (v > max) {
4256 				ext4_msg(sb, KERN_ERR,
4257 					 "bad s_min_extra_isize: %d", v);
4258 				goto failed_mount;
4259 			}
4260 			if (sbi->s_want_extra_isize < v)
4261 				sbi->s_want_extra_isize = v;
4262 		}
4263 	}
4264 
4265 	if (sbi->s_es->s_mount_opts[0]) {
4266 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4267 					      sizeof(sbi->s_es->s_mount_opts),
4268 					      GFP_KERNEL);
4269 		if (!s_mount_opts)
4270 			goto failed_mount;
4271 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
4272 				   &journal_ioprio, 0)) {
4273 			ext4_msg(sb, KERN_WARNING,
4274 				 "failed to parse options in superblock: %s",
4275 				 s_mount_opts);
4276 		}
4277 		kfree(s_mount_opts);
4278 	}
4279 	sbi->s_def_mount_opt = sbi->s_mount_opt;
4280 	if (!parse_options((char *) data, sb, &journal_devnum,
4281 			   &journal_ioprio, 0))
4282 		goto failed_mount;
4283 
4284 #ifdef CONFIG_UNICODE
4285 	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4286 		const struct ext4_sb_encodings *encoding_info;
4287 		struct unicode_map *encoding;
4288 		__u16 encoding_flags;
4289 
4290 		if (ext4_has_feature_encrypt(sb)) {
4291 			ext4_msg(sb, KERN_ERR,
4292 				 "Can't mount with encoding and encryption");
4293 			goto failed_mount;
4294 		}
4295 
4296 		if (ext4_sb_read_encoding(es, &encoding_info,
4297 					  &encoding_flags)) {
4298 			ext4_msg(sb, KERN_ERR,
4299 				 "Encoding requested by superblock is unknown");
4300 			goto failed_mount;
4301 		}
4302 
4303 		encoding = utf8_load(encoding_info->version);
4304 		if (IS_ERR(encoding)) {
4305 			ext4_msg(sb, KERN_ERR,
4306 				 "can't mount with superblock charset: %s-%s "
4307 				 "not supported by the kernel. flags: 0x%x.",
4308 				 encoding_info->name, encoding_info->version,
4309 				 encoding_flags);
4310 			goto failed_mount;
4311 		}
4312 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4313 			 "%s-%s with flags 0x%hx", encoding_info->name,
4314 			 encoding_info->version?:"\b", encoding_flags);
4315 
4316 		sb->s_encoding = encoding;
4317 		sb->s_encoding_flags = encoding_flags;
4318 	}
4319 #endif
4320 
4321 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4322 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4323 		/* can't mount with both data=journal and dioread_nolock. */
4324 		clear_opt(sb, DIOREAD_NOLOCK);
4325 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4326 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4327 			ext4_msg(sb, KERN_ERR, "can't mount with "
4328 				 "both data=journal and delalloc");
4329 			goto failed_mount;
4330 		}
4331 		if (test_opt(sb, DAX_ALWAYS)) {
4332 			ext4_msg(sb, KERN_ERR, "can't mount with "
4333 				 "both data=journal and dax");
4334 			goto failed_mount;
4335 		}
4336 		if (ext4_has_feature_encrypt(sb)) {
4337 			ext4_msg(sb, KERN_WARNING,
4338 				 "encrypted files will use data=ordered "
4339 				 "instead of data journaling mode");
4340 		}
4341 		if (test_opt(sb, DELALLOC))
4342 			clear_opt(sb, DELALLOC);
4343 	} else {
4344 		sb->s_iflags |= SB_I_CGROUPWB;
4345 	}
4346 
4347 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4348 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4349 
4350 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4351 	    (ext4_has_compat_features(sb) ||
4352 	     ext4_has_ro_compat_features(sb) ||
4353 	     ext4_has_incompat_features(sb)))
4354 		ext4_msg(sb, KERN_WARNING,
4355 		       "feature flags set on rev 0 fs, "
4356 		       "running e2fsck is recommended");
4357 
4358 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4359 		set_opt2(sb, HURD_COMPAT);
4360 		if (ext4_has_feature_64bit(sb)) {
4361 			ext4_msg(sb, KERN_ERR,
4362 				 "The Hurd can't support 64-bit file systems");
4363 			goto failed_mount;
4364 		}
4365 
4366 		/*
4367 		 * ea_inode feature uses l_i_version field which is not
4368 		 * available in HURD_COMPAT mode.
4369 		 */
4370 		if (ext4_has_feature_ea_inode(sb)) {
4371 			ext4_msg(sb, KERN_ERR,
4372 				 "ea_inode feature is not supported for Hurd");
4373 			goto failed_mount;
4374 		}
4375 	}
4376 
4377 	if (IS_EXT2_SB(sb)) {
4378 		if (ext2_feature_set_ok(sb))
4379 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4380 				 "using the ext4 subsystem");
4381 		else {
4382 			/*
4383 			 * If we're probing be silent, if this looks like
4384 			 * it's actually an ext[34] filesystem.
4385 			 */
4386 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4387 				goto failed_mount;
4388 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4389 				 "to feature incompatibilities");
4390 			goto failed_mount;
4391 		}
4392 	}
4393 
4394 	if (IS_EXT3_SB(sb)) {
4395 		if (ext3_feature_set_ok(sb))
4396 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4397 				 "using the ext4 subsystem");
4398 		else {
4399 			/*
4400 			 * If we're probing be silent, if this looks like
4401 			 * it's actually an ext4 filesystem.
4402 			 */
4403 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4404 				goto failed_mount;
4405 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4406 				 "to feature incompatibilities");
4407 			goto failed_mount;
4408 		}
4409 	}
4410 
4411 	/*
4412 	 * Check feature flags regardless of the revision level, since we
4413 	 * previously didn't change the revision level when setting the flags,
4414 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4415 	 */
4416 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4417 		goto failed_mount;
4418 
4419 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4420 		ext4_msg(sb, KERN_ERR,
4421 			 "Number of reserved GDT blocks insanely large: %d",
4422 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4423 		goto failed_mount;
4424 	}
4425 
4426 	if (bdev_dax_supported(sb->s_bdev, blocksize))
4427 		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4428 
4429 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4430 		if (ext4_has_feature_inline_data(sb)) {
4431 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4432 					" that may contain inline data");
4433 			goto failed_mount;
4434 		}
4435 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4436 			ext4_msg(sb, KERN_ERR,
4437 				"DAX unsupported by block device.");
4438 			goto failed_mount;
4439 		}
4440 	}
4441 
4442 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4443 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4444 			 es->s_encryption_level);
4445 		goto failed_mount;
4446 	}
4447 
4448 	if (sb->s_blocksize != blocksize) {
4449 		/*
4450 		 * bh must be released before kill_bdev(), otherwise
4451 		 * it won't be freed and its page also. kill_bdev()
4452 		 * is called by sb_set_blocksize().
4453 		 */
4454 		brelse(bh);
4455 		/* Validate the filesystem blocksize */
4456 		if (!sb_set_blocksize(sb, blocksize)) {
4457 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4458 					blocksize);
4459 			bh = NULL;
4460 			goto failed_mount;
4461 		}
4462 
4463 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4464 		offset = do_div(logical_sb_block, blocksize);
4465 		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4466 		if (IS_ERR(bh)) {
4467 			ext4_msg(sb, KERN_ERR,
4468 			       "Can't read superblock on 2nd try");
4469 			ret = PTR_ERR(bh);
4470 			bh = NULL;
4471 			goto failed_mount;
4472 		}
4473 		es = (struct ext4_super_block *)(bh->b_data + offset);
4474 		sbi->s_es = es;
4475 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4476 			ext4_msg(sb, KERN_ERR,
4477 			       "Magic mismatch, very weird!");
4478 			goto failed_mount;
4479 		}
4480 	}
4481 
4482 	has_huge_files = ext4_has_feature_huge_file(sb);
4483 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4484 						      has_huge_files);
4485 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4486 
4487 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4488 	if (ext4_has_feature_64bit(sb)) {
4489 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4490 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4491 		    !is_power_of_2(sbi->s_desc_size)) {
4492 			ext4_msg(sb, KERN_ERR,
4493 			       "unsupported descriptor size %lu",
4494 			       sbi->s_desc_size);
4495 			goto failed_mount;
4496 		}
4497 	} else
4498 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4499 
4500 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4501 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4502 
4503 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4504 	if (sbi->s_inodes_per_block == 0)
4505 		goto cantfind_ext4;
4506 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4507 	    sbi->s_inodes_per_group > blocksize * 8) {
4508 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4509 			 sbi->s_inodes_per_group);
4510 		goto failed_mount;
4511 	}
4512 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4513 					sbi->s_inodes_per_block;
4514 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4515 	sbi->s_sbh = bh;
4516 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
4517 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4518 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4519 
4520 	for (i = 0; i < 4; i++)
4521 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4522 	sbi->s_def_hash_version = es->s_def_hash_version;
4523 	if (ext4_has_feature_dir_index(sb)) {
4524 		i = le32_to_cpu(es->s_flags);
4525 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4526 			sbi->s_hash_unsigned = 3;
4527 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4528 #ifdef __CHAR_UNSIGNED__
4529 			if (!sb_rdonly(sb))
4530 				es->s_flags |=
4531 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4532 			sbi->s_hash_unsigned = 3;
4533 #else
4534 			if (!sb_rdonly(sb))
4535 				es->s_flags |=
4536 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4537 #endif
4538 		}
4539 	}
4540 
4541 	/* Handle clustersize */
4542 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4543 	if (ext4_has_feature_bigalloc(sb)) {
4544 		if (clustersize < blocksize) {
4545 			ext4_msg(sb, KERN_ERR,
4546 				 "cluster size (%d) smaller than "
4547 				 "block size (%d)", clustersize, blocksize);
4548 			goto failed_mount;
4549 		}
4550 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4551 			le32_to_cpu(es->s_log_block_size);
4552 		sbi->s_clusters_per_group =
4553 			le32_to_cpu(es->s_clusters_per_group);
4554 		if (sbi->s_clusters_per_group > blocksize * 8) {
4555 			ext4_msg(sb, KERN_ERR,
4556 				 "#clusters per group too big: %lu",
4557 				 sbi->s_clusters_per_group);
4558 			goto failed_mount;
4559 		}
4560 		if (sbi->s_blocks_per_group !=
4561 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4562 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4563 				 "clusters per group (%lu) inconsistent",
4564 				 sbi->s_blocks_per_group,
4565 				 sbi->s_clusters_per_group);
4566 			goto failed_mount;
4567 		}
4568 	} else {
4569 		if (clustersize != blocksize) {
4570 			ext4_msg(sb, KERN_ERR,
4571 				 "fragment/cluster size (%d) != "
4572 				 "block size (%d)", clustersize, blocksize);
4573 			goto failed_mount;
4574 		}
4575 		if (sbi->s_blocks_per_group > blocksize * 8) {
4576 			ext4_msg(sb, KERN_ERR,
4577 				 "#blocks per group too big: %lu",
4578 				 sbi->s_blocks_per_group);
4579 			goto failed_mount;
4580 		}
4581 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4582 		sbi->s_cluster_bits = 0;
4583 	}
4584 	sbi->s_cluster_ratio = clustersize / blocksize;
4585 
4586 	/* Do we have standard group size of clustersize * 8 blocks ? */
4587 	if (sbi->s_blocks_per_group == clustersize << 3)
4588 		set_opt2(sb, STD_GROUP_SIZE);
4589 
4590 	/*
4591 	 * Test whether we have more sectors than will fit in sector_t,
4592 	 * and whether the max offset is addressable by the page cache.
4593 	 */
4594 	err = generic_check_addressable(sb->s_blocksize_bits,
4595 					ext4_blocks_count(es));
4596 	if (err) {
4597 		ext4_msg(sb, KERN_ERR, "filesystem"
4598 			 " too large to mount safely on this system");
4599 		goto failed_mount;
4600 	}
4601 
4602 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4603 		goto cantfind_ext4;
4604 
4605 	/* check blocks count against device size */
4606 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4607 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4608 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4609 		       "exceeds size of device (%llu blocks)",
4610 		       ext4_blocks_count(es), blocks_count);
4611 		goto failed_mount;
4612 	}
4613 
4614 	/*
4615 	 * It makes no sense for the first data block to be beyond the end
4616 	 * of the filesystem.
4617 	 */
4618 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4619 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4620 			 "block %u is beyond end of filesystem (%llu)",
4621 			 le32_to_cpu(es->s_first_data_block),
4622 			 ext4_blocks_count(es));
4623 		goto failed_mount;
4624 	}
4625 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4626 	    (sbi->s_cluster_ratio == 1)) {
4627 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4628 			 "block is 0 with a 1k block and cluster size");
4629 		goto failed_mount;
4630 	}
4631 
4632 	blocks_count = (ext4_blocks_count(es) -
4633 			le32_to_cpu(es->s_first_data_block) +
4634 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4635 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4636 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4637 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4638 		       "(block count %llu, first data block %u, "
4639 		       "blocks per group %lu)", blocks_count,
4640 		       ext4_blocks_count(es),
4641 		       le32_to_cpu(es->s_first_data_block),
4642 		       EXT4_BLOCKS_PER_GROUP(sb));
4643 		goto failed_mount;
4644 	}
4645 	sbi->s_groups_count = blocks_count;
4646 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4647 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4648 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4649 	    le32_to_cpu(es->s_inodes_count)) {
4650 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4651 			 le32_to_cpu(es->s_inodes_count),
4652 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4653 		ret = -EINVAL;
4654 		goto failed_mount;
4655 	}
4656 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4657 		   EXT4_DESC_PER_BLOCK(sb);
4658 	if (ext4_has_feature_meta_bg(sb)) {
4659 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4660 			ext4_msg(sb, KERN_WARNING,
4661 				 "first meta block group too large: %u "
4662 				 "(group descriptor block count %u)",
4663 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4664 			goto failed_mount;
4665 		}
4666 	}
4667 	rcu_assign_pointer(sbi->s_group_desc,
4668 			   kvmalloc_array(db_count,
4669 					  sizeof(struct buffer_head *),
4670 					  GFP_KERNEL));
4671 	if (sbi->s_group_desc == NULL) {
4672 		ext4_msg(sb, KERN_ERR, "not enough memory");
4673 		ret = -ENOMEM;
4674 		goto failed_mount;
4675 	}
4676 
4677 	bgl_lock_init(sbi->s_blockgroup_lock);
4678 
4679 	/* Pre-read the descriptors into the buffer cache */
4680 	for (i = 0; i < db_count; i++) {
4681 		block = descriptor_loc(sb, logical_sb_block, i);
4682 		ext4_sb_breadahead_unmovable(sb, block);
4683 	}
4684 
4685 	for (i = 0; i < db_count; i++) {
4686 		struct buffer_head *bh;
4687 
4688 		block = descriptor_loc(sb, logical_sb_block, i);
4689 		bh = ext4_sb_bread_unmovable(sb, block);
4690 		if (IS_ERR(bh)) {
4691 			ext4_msg(sb, KERN_ERR,
4692 			       "can't read group descriptor %d", i);
4693 			db_count = i;
4694 			ret = PTR_ERR(bh);
4695 			bh = NULL;
4696 			goto failed_mount2;
4697 		}
4698 		rcu_read_lock();
4699 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4700 		rcu_read_unlock();
4701 	}
4702 	sbi->s_gdb_count = db_count;
4703 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4704 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4705 		ret = -EFSCORRUPTED;
4706 		goto failed_mount2;
4707 	}
4708 
4709 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4710 	spin_lock_init(&sbi->s_error_lock);
4711 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4712 
4713 	/* Register extent status tree shrinker */
4714 	if (ext4_es_register_shrinker(sbi))
4715 		goto failed_mount3;
4716 
4717 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4718 	sbi->s_extent_max_zeroout_kb = 32;
4719 
4720 	/*
4721 	 * set up enough so that it can read an inode
4722 	 */
4723 	sb->s_op = &ext4_sops;
4724 	sb->s_export_op = &ext4_export_ops;
4725 	sb->s_xattr = ext4_xattr_handlers;
4726 #ifdef CONFIG_FS_ENCRYPTION
4727 	sb->s_cop = &ext4_cryptops;
4728 #endif
4729 #ifdef CONFIG_FS_VERITY
4730 	sb->s_vop = &ext4_verityops;
4731 #endif
4732 #ifdef CONFIG_QUOTA
4733 	sb->dq_op = &ext4_quota_operations;
4734 	if (ext4_has_feature_quota(sb))
4735 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4736 	else
4737 		sb->s_qcop = &ext4_qctl_operations;
4738 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4739 #endif
4740 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4741 
4742 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4743 	mutex_init(&sbi->s_orphan_lock);
4744 
4745 	/* Initialize fast commit stuff */
4746 	atomic_set(&sbi->s_fc_subtid, 0);
4747 	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4748 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4749 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4750 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4751 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4752 	sbi->s_fc_bytes = 0;
4753 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4754 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4755 	spin_lock_init(&sbi->s_fc_lock);
4756 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4757 	sbi->s_fc_replay_state.fc_regions = NULL;
4758 	sbi->s_fc_replay_state.fc_regions_size = 0;
4759 	sbi->s_fc_replay_state.fc_regions_used = 0;
4760 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4761 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4762 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4763 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4764 
4765 	sb->s_root = NULL;
4766 
4767 	needs_recovery = (es->s_last_orphan != 0 ||
4768 			  ext4_has_feature_journal_needs_recovery(sb));
4769 
4770 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4771 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4772 			goto failed_mount3a;
4773 
4774 	/*
4775 	 * The first inode we look at is the journal inode.  Don't try
4776 	 * root first: it may be modified in the journal!
4777 	 */
4778 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4779 		err = ext4_load_journal(sb, es, journal_devnum);
4780 		if (err)
4781 			goto failed_mount3a;
4782 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4783 		   ext4_has_feature_journal_needs_recovery(sb)) {
4784 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4785 		       "suppressed and not mounted read-only");
4786 		goto failed_mount3a;
4787 	} else {
4788 		/* Nojournal mode, all journal mount options are illegal */
4789 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4790 			ext4_msg(sb, KERN_ERR, "can't mount with "
4791 				 "journal_async_commit, fs mounted w/o journal");
4792 			goto failed_mount3a;
4793 		}
4794 
4795 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4796 			ext4_msg(sb, KERN_ERR, "can't mount with "
4797 				 "journal_checksum, fs mounted w/o journal");
4798 			goto failed_mount3a;
4799 		}
4800 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4801 			ext4_msg(sb, KERN_ERR, "can't mount with "
4802 				 "commit=%lu, fs mounted w/o journal",
4803 				 sbi->s_commit_interval / HZ);
4804 			goto failed_mount3a;
4805 		}
4806 		if (EXT4_MOUNT_DATA_FLAGS &
4807 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4808 			ext4_msg(sb, KERN_ERR, "can't mount with "
4809 				 "data=, fs mounted w/o journal");
4810 			goto failed_mount3a;
4811 		}
4812 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4813 		clear_opt(sb, JOURNAL_CHECKSUM);
4814 		clear_opt(sb, DATA_FLAGS);
4815 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4816 		sbi->s_journal = NULL;
4817 		needs_recovery = 0;
4818 		goto no_journal;
4819 	}
4820 
4821 	if (ext4_has_feature_64bit(sb) &&
4822 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4823 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4824 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4825 		goto failed_mount_wq;
4826 	}
4827 
4828 	if (!set_journal_csum_feature_set(sb)) {
4829 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4830 			 "feature set");
4831 		goto failed_mount_wq;
4832 	}
4833 
4834 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4835 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4836 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4837 		ext4_msg(sb, KERN_ERR,
4838 			"Failed to set fast commit journal feature");
4839 		goto failed_mount_wq;
4840 	}
4841 
4842 	/* We have now updated the journal if required, so we can
4843 	 * validate the data journaling mode. */
4844 	switch (test_opt(sb, DATA_FLAGS)) {
4845 	case 0:
4846 		/* No mode set, assume a default based on the journal
4847 		 * capabilities: ORDERED_DATA if the journal can
4848 		 * cope, else JOURNAL_DATA
4849 		 */
4850 		if (jbd2_journal_check_available_features
4851 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4852 			set_opt(sb, ORDERED_DATA);
4853 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4854 		} else {
4855 			set_opt(sb, JOURNAL_DATA);
4856 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4857 		}
4858 		break;
4859 
4860 	case EXT4_MOUNT_ORDERED_DATA:
4861 	case EXT4_MOUNT_WRITEBACK_DATA:
4862 		if (!jbd2_journal_check_available_features
4863 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4864 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4865 			       "requested data journaling mode");
4866 			goto failed_mount_wq;
4867 		}
4868 	default:
4869 		break;
4870 	}
4871 
4872 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4873 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4874 		ext4_msg(sb, KERN_ERR, "can't mount with "
4875 			"journal_async_commit in data=ordered mode");
4876 		goto failed_mount_wq;
4877 	}
4878 
4879 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4880 
4881 	sbi->s_journal->j_submit_inode_data_buffers =
4882 		ext4_journal_submit_inode_data_buffers;
4883 	sbi->s_journal->j_finish_inode_data_buffers =
4884 		ext4_journal_finish_inode_data_buffers;
4885 
4886 no_journal:
4887 	if (!test_opt(sb, NO_MBCACHE)) {
4888 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4889 		if (!sbi->s_ea_block_cache) {
4890 			ext4_msg(sb, KERN_ERR,
4891 				 "Failed to create ea_block_cache");
4892 			goto failed_mount_wq;
4893 		}
4894 
4895 		if (ext4_has_feature_ea_inode(sb)) {
4896 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4897 			if (!sbi->s_ea_inode_cache) {
4898 				ext4_msg(sb, KERN_ERR,
4899 					 "Failed to create ea_inode_cache");
4900 				goto failed_mount_wq;
4901 			}
4902 		}
4903 	}
4904 
4905 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4906 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4907 		goto failed_mount_wq;
4908 	}
4909 
4910 	/*
4911 	 * Get the # of file system overhead blocks from the
4912 	 * superblock if present.
4913 	 */
4914 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4915 	/* ignore the precalculated value if it is ridiculous */
4916 	if (sbi->s_overhead > ext4_blocks_count(es))
4917 		sbi->s_overhead = 0;
4918 	/*
4919 	 * If the bigalloc feature is not enabled recalculating the
4920 	 * overhead doesn't take long, so we might as well just redo
4921 	 * it to make sure we are using the correct value.
4922 	 */
4923 	if (!ext4_has_feature_bigalloc(sb))
4924 		sbi->s_overhead = 0;
4925 	if (sbi->s_overhead == 0) {
4926 		err = ext4_calculate_overhead(sb);
4927 		if (err)
4928 			goto failed_mount_wq;
4929 	}
4930 
4931 	/*
4932 	 * The maximum number of concurrent works can be high and
4933 	 * concurrency isn't really necessary.  Limit it to 1.
4934 	 */
4935 	EXT4_SB(sb)->rsv_conversion_wq =
4936 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4937 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4938 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4939 		ret = -ENOMEM;
4940 		goto failed_mount4;
4941 	}
4942 
4943 	/*
4944 	 * The jbd2_journal_load will have done any necessary log recovery,
4945 	 * so we can safely mount the rest of the filesystem now.
4946 	 */
4947 
4948 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4949 	if (IS_ERR(root)) {
4950 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4951 		ret = PTR_ERR(root);
4952 		root = NULL;
4953 		goto failed_mount4;
4954 	}
4955 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4956 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4957 		iput(root);
4958 		goto failed_mount4;
4959 	}
4960 
4961 #ifdef CONFIG_UNICODE
4962 	if (sb->s_encoding)
4963 		sb->s_d_op = &ext4_dentry_ops;
4964 #endif
4965 
4966 	sb->s_root = d_make_root(root);
4967 	if (!sb->s_root) {
4968 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4969 		ret = -ENOMEM;
4970 		goto failed_mount4;
4971 	}
4972 
4973 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4974 	if (ret == -EROFS) {
4975 		sb->s_flags |= SB_RDONLY;
4976 		ret = 0;
4977 	} else if (ret)
4978 		goto failed_mount4a;
4979 
4980 	ext4_set_resv_clusters(sb);
4981 
4982 	if (test_opt(sb, BLOCK_VALIDITY)) {
4983 		err = ext4_setup_system_zone(sb);
4984 		if (err) {
4985 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4986 				 "zone (%d)", err);
4987 			goto failed_mount4a;
4988 		}
4989 	}
4990 	ext4_fc_replay_cleanup(sb);
4991 
4992 	ext4_ext_init(sb);
4993 	err = ext4_mb_init(sb);
4994 	if (err) {
4995 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4996 			 err);
4997 		goto failed_mount5;
4998 	}
4999 
5000 	/*
5001 	 * We can only set up the journal commit callback once
5002 	 * mballoc is initialized
5003 	 */
5004 	if (sbi->s_journal)
5005 		sbi->s_journal->j_commit_callback =
5006 			ext4_journal_commit_callback;
5007 
5008 	block = ext4_count_free_clusters(sb);
5009 	ext4_free_blocks_count_set(sbi->s_es,
5010 				   EXT4_C2B(sbi, block));
5011 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5012 				  GFP_KERNEL);
5013 	if (!err) {
5014 		unsigned long freei = ext4_count_free_inodes(sb);
5015 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5016 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5017 					  GFP_KERNEL);
5018 	}
5019 	/*
5020 	 * Update the checksum after updating free space/inode
5021 	 * counters.  Otherwise the superblock can have an incorrect
5022 	 * checksum in the buffer cache until it is written out and
5023 	 * e2fsprogs programs trying to open a file system immediately
5024 	 * after it is mounted can fail.
5025 	 */
5026 	ext4_superblock_csum_set(sb);
5027 	if (!err)
5028 		err = percpu_counter_init(&sbi->s_dirs_counter,
5029 					  ext4_count_dirs(sb), GFP_KERNEL);
5030 	if (!err)
5031 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5032 					  GFP_KERNEL);
5033 	if (!err)
5034 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5035 					  GFP_KERNEL);
5036 	if (!err)
5037 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5038 
5039 	if (err) {
5040 		ext4_msg(sb, KERN_ERR, "insufficient memory");
5041 		goto failed_mount6;
5042 	}
5043 
5044 	if (ext4_has_feature_flex_bg(sb))
5045 		if (!ext4_fill_flex_info(sb)) {
5046 			ext4_msg(sb, KERN_ERR,
5047 			       "unable to initialize "
5048 			       "flex_bg meta info!");
5049 			ret = -ENOMEM;
5050 			goto failed_mount6;
5051 		}
5052 
5053 	err = ext4_register_li_request(sb, first_not_zeroed);
5054 	if (err)
5055 		goto failed_mount6;
5056 
5057 	err = ext4_register_sysfs(sb);
5058 	if (err)
5059 		goto failed_mount7;
5060 
5061 #ifdef CONFIG_QUOTA
5062 	/* Enable quota usage during mount. */
5063 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5064 		err = ext4_enable_quotas(sb);
5065 		if (err)
5066 			goto failed_mount8;
5067 	}
5068 #endif  /* CONFIG_QUOTA */
5069 
5070 	/*
5071 	 * Save the original bdev mapping's wb_err value which could be
5072 	 * used to detect the metadata async write error.
5073 	 */
5074 	spin_lock_init(&sbi->s_bdev_wb_lock);
5075 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5076 				 &sbi->s_bdev_wb_err);
5077 	sb->s_bdev->bd_super = sb;
5078 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5079 	ext4_orphan_cleanup(sb, es);
5080 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5081 	if (needs_recovery) {
5082 		ext4_msg(sb, KERN_INFO, "recovery complete");
5083 		err = ext4_mark_recovery_complete(sb, es);
5084 		if (err)
5085 			goto failed_mount8;
5086 	}
5087 	if (EXT4_SB(sb)->s_journal) {
5088 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5089 			descr = " journalled data mode";
5090 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5091 			descr = " ordered data mode";
5092 		else
5093 			descr = " writeback data mode";
5094 	} else
5095 		descr = "out journal";
5096 
5097 	if (test_opt(sb, DISCARD)) {
5098 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
5099 		if (!blk_queue_discard(q))
5100 			ext4_msg(sb, KERN_WARNING,
5101 				 "mounting with \"discard\" option, but "
5102 				 "the device does not support discard");
5103 	}
5104 
5105 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5106 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5107 			 "Opts: %.*s%s%s", descr,
5108 			 (int) sizeof(sbi->s_es->s_mount_opts),
5109 			 sbi->s_es->s_mount_opts,
5110 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
5111 
5112 	if (es->s_error_count)
5113 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5114 
5115 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5116 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5117 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5118 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5119 	atomic_set(&sbi->s_warning_count, 0);
5120 	atomic_set(&sbi->s_msg_count, 0);
5121 
5122 	kfree(orig_data);
5123 	return 0;
5124 
5125 cantfind_ext4:
5126 	if (!silent)
5127 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5128 	goto failed_mount;
5129 
5130 failed_mount8:
5131 	ext4_unregister_sysfs(sb);
5132 	kobject_put(&sbi->s_kobj);
5133 failed_mount7:
5134 	ext4_unregister_li_request(sb);
5135 failed_mount6:
5136 	ext4_mb_release(sb);
5137 	rcu_read_lock();
5138 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5139 	if (flex_groups) {
5140 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5141 			kvfree(flex_groups[i]);
5142 		kvfree(flex_groups);
5143 	}
5144 	rcu_read_unlock();
5145 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5146 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5147 	percpu_counter_destroy(&sbi->s_dirs_counter);
5148 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5149 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5150 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5151 failed_mount5:
5152 	ext4_ext_release(sb);
5153 	ext4_release_system_zone(sb);
5154 failed_mount4a:
5155 	dput(sb->s_root);
5156 	sb->s_root = NULL;
5157 failed_mount4:
5158 	ext4_msg(sb, KERN_ERR, "mount failed");
5159 	if (EXT4_SB(sb)->rsv_conversion_wq)
5160 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5161 failed_mount_wq:
5162 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5163 	sbi->s_ea_inode_cache = NULL;
5164 
5165 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5166 	sbi->s_ea_block_cache = NULL;
5167 
5168 	if (sbi->s_journal) {
5169 		/* flush s_error_work before journal destroy. */
5170 		flush_work(&sbi->s_error_work);
5171 		jbd2_journal_destroy(sbi->s_journal);
5172 		sbi->s_journal = NULL;
5173 	}
5174 failed_mount3a:
5175 	ext4_es_unregister_shrinker(sbi);
5176 failed_mount3:
5177 	/* flush s_error_work before sbi destroy */
5178 	flush_work(&sbi->s_error_work);
5179 	del_timer_sync(&sbi->s_err_report);
5180 	ext4_stop_mmpd(sbi);
5181 failed_mount2:
5182 	rcu_read_lock();
5183 	group_desc = rcu_dereference(sbi->s_group_desc);
5184 	for (i = 0; i < db_count; i++)
5185 		brelse(group_desc[i]);
5186 	kvfree(group_desc);
5187 	rcu_read_unlock();
5188 failed_mount:
5189 	if (sbi->s_chksum_driver)
5190 		crypto_free_shash(sbi->s_chksum_driver);
5191 
5192 #ifdef CONFIG_UNICODE
5193 	utf8_unload(sb->s_encoding);
5194 #endif
5195 
5196 #ifdef CONFIG_QUOTA
5197 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5198 		kfree(get_qf_name(sb, sbi, i));
5199 #endif
5200 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5201 	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5202 	brelse(bh);
5203 	ext4_blkdev_remove(sbi);
5204 out_fail:
5205 	sb->s_fs_info = NULL;
5206 	kfree(sbi->s_blockgroup_lock);
5207 out_free_base:
5208 	kfree(sbi);
5209 	kfree(orig_data);
5210 	fs_put_dax(dax_dev);
5211 	return err ? err : ret;
5212 }
5213 
5214 /*
5215  * Setup any per-fs journal parameters now.  We'll do this both on
5216  * initial mount, once the journal has been initialised but before we've
5217  * done any recovery; and again on any subsequent remount.
5218  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5219 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5220 {
5221 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5222 
5223 	journal->j_commit_interval = sbi->s_commit_interval;
5224 	journal->j_min_batch_time = sbi->s_min_batch_time;
5225 	journal->j_max_batch_time = sbi->s_max_batch_time;
5226 	ext4_fc_init(sb, journal);
5227 
5228 	write_lock(&journal->j_state_lock);
5229 	if (test_opt(sb, BARRIER))
5230 		journal->j_flags |= JBD2_BARRIER;
5231 	else
5232 		journal->j_flags &= ~JBD2_BARRIER;
5233 	if (test_opt(sb, DATA_ERR_ABORT))
5234 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5235 	else
5236 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5237 	write_unlock(&journal->j_state_lock);
5238 }
5239 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5240 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5241 					     unsigned int journal_inum)
5242 {
5243 	struct inode *journal_inode;
5244 
5245 	/*
5246 	 * Test for the existence of a valid inode on disk.  Bad things
5247 	 * happen if we iget() an unused inode, as the subsequent iput()
5248 	 * will try to delete it.
5249 	 */
5250 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5251 	if (IS_ERR(journal_inode)) {
5252 		ext4_msg(sb, KERN_ERR, "no journal found");
5253 		return NULL;
5254 	}
5255 	if (!journal_inode->i_nlink) {
5256 		make_bad_inode(journal_inode);
5257 		iput(journal_inode);
5258 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5259 		return NULL;
5260 	}
5261 
5262 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5263 		  journal_inode, journal_inode->i_size);
5264 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5265 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5266 		iput(journal_inode);
5267 		return NULL;
5268 	}
5269 	return journal_inode;
5270 }
5271 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5272 static journal_t *ext4_get_journal(struct super_block *sb,
5273 				   unsigned int journal_inum)
5274 {
5275 	struct inode *journal_inode;
5276 	journal_t *journal;
5277 
5278 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5279 		return NULL;
5280 
5281 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5282 	if (!journal_inode)
5283 		return NULL;
5284 
5285 	journal = jbd2_journal_init_inode(journal_inode);
5286 	if (!journal) {
5287 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5288 		iput(journal_inode);
5289 		return NULL;
5290 	}
5291 	journal->j_private = sb;
5292 	ext4_init_journal_params(sb, journal);
5293 	return journal;
5294 }
5295 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5296 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5297 				       dev_t j_dev)
5298 {
5299 	struct buffer_head *bh;
5300 	journal_t *journal;
5301 	ext4_fsblk_t start;
5302 	ext4_fsblk_t len;
5303 	int hblock, blocksize;
5304 	ext4_fsblk_t sb_block;
5305 	unsigned long offset;
5306 	struct ext4_super_block *es;
5307 	struct block_device *bdev;
5308 
5309 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5310 		return NULL;
5311 
5312 	bdev = ext4_blkdev_get(j_dev, sb);
5313 	if (bdev == NULL)
5314 		return NULL;
5315 
5316 	blocksize = sb->s_blocksize;
5317 	hblock = bdev_logical_block_size(bdev);
5318 	if (blocksize < hblock) {
5319 		ext4_msg(sb, KERN_ERR,
5320 			"blocksize too small for journal device");
5321 		goto out_bdev;
5322 	}
5323 
5324 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5325 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5326 	set_blocksize(bdev, blocksize);
5327 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5328 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5329 		       "external journal");
5330 		goto out_bdev;
5331 	}
5332 
5333 	es = (struct ext4_super_block *) (bh->b_data + offset);
5334 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5335 	    !(le32_to_cpu(es->s_feature_incompat) &
5336 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5337 		ext4_msg(sb, KERN_ERR, "external journal has "
5338 					"bad superblock");
5339 		brelse(bh);
5340 		goto out_bdev;
5341 	}
5342 
5343 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5344 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5345 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5346 		ext4_msg(sb, KERN_ERR, "external journal has "
5347 				       "corrupt superblock");
5348 		brelse(bh);
5349 		goto out_bdev;
5350 	}
5351 
5352 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5353 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5354 		brelse(bh);
5355 		goto out_bdev;
5356 	}
5357 
5358 	len = ext4_blocks_count(es);
5359 	start = sb_block + 1;
5360 	brelse(bh);	/* we're done with the superblock */
5361 
5362 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5363 					start, len, blocksize);
5364 	if (!journal) {
5365 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5366 		goto out_bdev;
5367 	}
5368 	journal->j_private = sb;
5369 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5370 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5371 		goto out_journal;
5372 	}
5373 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5374 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5375 					"user (unsupported) - %d",
5376 			be32_to_cpu(journal->j_superblock->s_nr_users));
5377 		goto out_journal;
5378 	}
5379 	EXT4_SB(sb)->s_journal_bdev = bdev;
5380 	ext4_init_journal_params(sb, journal);
5381 	return journal;
5382 
5383 out_journal:
5384 	jbd2_journal_destroy(journal);
5385 out_bdev:
5386 	ext4_blkdev_put(bdev);
5387 	return NULL;
5388 }
5389 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5390 static int ext4_load_journal(struct super_block *sb,
5391 			     struct ext4_super_block *es,
5392 			     unsigned long journal_devnum)
5393 {
5394 	journal_t *journal;
5395 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5396 	dev_t journal_dev;
5397 	int err = 0;
5398 	int really_read_only;
5399 	int journal_dev_ro;
5400 
5401 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5402 		return -EFSCORRUPTED;
5403 
5404 	if (journal_devnum &&
5405 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5406 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5407 			"numbers have changed");
5408 		journal_dev = new_decode_dev(journal_devnum);
5409 	} else
5410 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5411 
5412 	if (journal_inum && journal_dev) {
5413 		ext4_msg(sb, KERN_ERR,
5414 			 "filesystem has both journal inode and journal device!");
5415 		return -EINVAL;
5416 	}
5417 
5418 	if (journal_inum) {
5419 		journal = ext4_get_journal(sb, journal_inum);
5420 		if (!journal)
5421 			return -EINVAL;
5422 	} else {
5423 		journal = ext4_get_dev_journal(sb, journal_dev);
5424 		if (!journal)
5425 			return -EINVAL;
5426 	}
5427 
5428 	journal_dev_ro = bdev_read_only(journal->j_dev);
5429 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5430 
5431 	if (journal_dev_ro && !sb_rdonly(sb)) {
5432 		ext4_msg(sb, KERN_ERR,
5433 			 "journal device read-only, try mounting with '-o ro'");
5434 		err = -EROFS;
5435 		goto err_out;
5436 	}
5437 
5438 	/*
5439 	 * Are we loading a blank journal or performing recovery after a
5440 	 * crash?  For recovery, we need to check in advance whether we
5441 	 * can get read-write access to the device.
5442 	 */
5443 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5444 		if (sb_rdonly(sb)) {
5445 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5446 					"required on readonly filesystem");
5447 			if (really_read_only) {
5448 				ext4_msg(sb, KERN_ERR, "write access "
5449 					"unavailable, cannot proceed "
5450 					"(try mounting with noload)");
5451 				err = -EROFS;
5452 				goto err_out;
5453 			}
5454 			ext4_msg(sb, KERN_INFO, "write access will "
5455 			       "be enabled during recovery");
5456 		}
5457 	}
5458 
5459 	if (!(journal->j_flags & JBD2_BARRIER))
5460 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5461 
5462 	if (!ext4_has_feature_journal_needs_recovery(sb))
5463 		err = jbd2_journal_wipe(journal, !really_read_only);
5464 	if (!err) {
5465 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5466 		if (save)
5467 			memcpy(save, ((char *) es) +
5468 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5469 		err = jbd2_journal_load(journal);
5470 		if (save)
5471 			memcpy(((char *) es) + EXT4_S_ERR_START,
5472 			       save, EXT4_S_ERR_LEN);
5473 		kfree(save);
5474 	}
5475 
5476 	if (err) {
5477 		ext4_msg(sb, KERN_ERR, "error loading journal");
5478 		goto err_out;
5479 	}
5480 
5481 	EXT4_SB(sb)->s_journal = journal;
5482 	err = ext4_clear_journal_err(sb, es);
5483 	if (err) {
5484 		EXT4_SB(sb)->s_journal = NULL;
5485 		jbd2_journal_destroy(journal);
5486 		return err;
5487 	}
5488 
5489 	if (!really_read_only && journal_devnum &&
5490 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5491 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5492 
5493 		/* Make sure we flush the recovery flag to disk. */
5494 		ext4_commit_super(sb);
5495 	}
5496 
5497 	return 0;
5498 
5499 err_out:
5500 	jbd2_journal_destroy(journal);
5501 	return err;
5502 }
5503 
5504 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)5505 static void ext4_update_super(struct super_block *sb)
5506 {
5507 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5508 	struct ext4_super_block *es = sbi->s_es;
5509 	struct buffer_head *sbh = sbi->s_sbh;
5510 
5511 	lock_buffer(sbh);
5512 	/*
5513 	 * If the file system is mounted read-only, don't update the
5514 	 * superblock write time.  This avoids updating the superblock
5515 	 * write time when we are mounting the root file system
5516 	 * read/only but we need to replay the journal; at that point,
5517 	 * for people who are east of GMT and who make their clock
5518 	 * tick in localtime for Windows bug-for-bug compatibility,
5519 	 * the clock is set in the future, and this will cause e2fsck
5520 	 * to complain and force a full file system check.
5521 	 */
5522 	if (!(sb->s_flags & SB_RDONLY))
5523 		ext4_update_tstamp(es, s_wtime);
5524 	if (sb->s_bdev->bd_part)
5525 		es->s_kbytes_written =
5526 			cpu_to_le64(sbi->s_kbytes_written +
5527 			    ((part_stat_read(sb->s_bdev->bd_part,
5528 					     sectors[STAT_WRITE]) -
5529 			      sbi->s_sectors_written_start) >> 1));
5530 	else
5531 		es->s_kbytes_written = cpu_to_le64(sbi->s_kbytes_written);
5532 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5533 		ext4_free_blocks_count_set(es,
5534 			EXT4_C2B(sbi, percpu_counter_sum_positive(
5535 				&sbi->s_freeclusters_counter)));
5536 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5537 		es->s_free_inodes_count =
5538 			cpu_to_le32(percpu_counter_sum_positive(
5539 				&sbi->s_freeinodes_counter));
5540 	/* Copy error information to the on-disk superblock */
5541 	spin_lock(&sbi->s_error_lock);
5542 	if (sbi->s_add_error_count > 0) {
5543 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5544 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5545 			__ext4_update_tstamp(&es->s_first_error_time,
5546 					     &es->s_first_error_time_hi,
5547 					     sbi->s_first_error_time);
5548 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5549 				sizeof(es->s_first_error_func));
5550 			es->s_first_error_line =
5551 				cpu_to_le32(sbi->s_first_error_line);
5552 			es->s_first_error_ino =
5553 				cpu_to_le32(sbi->s_first_error_ino);
5554 			es->s_first_error_block =
5555 				cpu_to_le64(sbi->s_first_error_block);
5556 			es->s_first_error_errcode =
5557 				ext4_errno_to_code(sbi->s_first_error_code);
5558 		}
5559 		__ext4_update_tstamp(&es->s_last_error_time,
5560 				     &es->s_last_error_time_hi,
5561 				     sbi->s_last_error_time);
5562 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5563 			sizeof(es->s_last_error_func));
5564 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5565 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5566 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5567 		es->s_last_error_errcode =
5568 				ext4_errno_to_code(sbi->s_last_error_code);
5569 		/*
5570 		 * Start the daily error reporting function if it hasn't been
5571 		 * started already
5572 		 */
5573 		if (!es->s_error_count)
5574 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5575 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5576 		sbi->s_add_error_count = 0;
5577 	}
5578 	spin_unlock(&sbi->s_error_lock);
5579 
5580 	ext4_superblock_csum_set(sb);
5581 	unlock_buffer(sbh);
5582 }
5583 
ext4_commit_super(struct super_block * sb)5584 static int ext4_commit_super(struct super_block *sb)
5585 {
5586 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5587 	int error = 0;
5588 
5589 	if (!sbh)
5590 		return -EINVAL;
5591 	if (block_device_ejected(sb))
5592 		return -ENODEV;
5593 
5594 	ext4_update_super(sb);
5595 
5596 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5597 		/*
5598 		 * Oh, dear.  A previous attempt to write the
5599 		 * superblock failed.  This could happen because the
5600 		 * USB device was yanked out.  Or it could happen to
5601 		 * be a transient write error and maybe the block will
5602 		 * be remapped.  Nothing we can do but to retry the
5603 		 * write and hope for the best.
5604 		 */
5605 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5606 		       "superblock detected");
5607 		clear_buffer_write_io_error(sbh);
5608 		set_buffer_uptodate(sbh);
5609 	}
5610 	BUFFER_TRACE(sbh, "marking dirty");
5611 	mark_buffer_dirty(sbh);
5612 	error = __sync_dirty_buffer(sbh,
5613 		REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5614 	if (buffer_write_io_error(sbh)) {
5615 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
5616 		       "superblock");
5617 		clear_buffer_write_io_error(sbh);
5618 		set_buffer_uptodate(sbh);
5619 	}
5620 	return error;
5621 }
5622 
5623 /*
5624  * Have we just finished recovery?  If so, and if we are mounting (or
5625  * remounting) the filesystem readonly, then we will end up with a
5626  * consistent fs on disk.  Record that fact.
5627  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5628 static int ext4_mark_recovery_complete(struct super_block *sb,
5629 				       struct ext4_super_block *es)
5630 {
5631 	int err;
5632 	journal_t *journal = EXT4_SB(sb)->s_journal;
5633 
5634 	if (!ext4_has_feature_journal(sb)) {
5635 		if (journal != NULL) {
5636 			ext4_error(sb, "Journal got removed while the fs was "
5637 				   "mounted!");
5638 			return -EFSCORRUPTED;
5639 		}
5640 		return 0;
5641 	}
5642 	jbd2_journal_lock_updates(journal);
5643 	err = jbd2_journal_flush(journal);
5644 	if (err < 0)
5645 		goto out;
5646 
5647 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5648 		ext4_clear_feature_journal_needs_recovery(sb);
5649 		ext4_commit_super(sb);
5650 	}
5651 out:
5652 	jbd2_journal_unlock_updates(journal);
5653 	return err;
5654 }
5655 
5656 /*
5657  * If we are mounting (or read-write remounting) a filesystem whose journal
5658  * has recorded an error from a previous lifetime, move that error to the
5659  * main filesystem now.
5660  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5661 static int ext4_clear_journal_err(struct super_block *sb,
5662 				   struct ext4_super_block *es)
5663 {
5664 	journal_t *journal;
5665 	int j_errno;
5666 	const char *errstr;
5667 
5668 	if (!ext4_has_feature_journal(sb)) {
5669 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5670 		return -EFSCORRUPTED;
5671 	}
5672 
5673 	journal = EXT4_SB(sb)->s_journal;
5674 
5675 	/*
5676 	 * Now check for any error status which may have been recorded in the
5677 	 * journal by a prior ext4_error() or ext4_abort()
5678 	 */
5679 
5680 	j_errno = jbd2_journal_errno(journal);
5681 	if (j_errno) {
5682 		char nbuf[16];
5683 
5684 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5685 		ext4_warning(sb, "Filesystem error recorded "
5686 			     "from previous mount: %s", errstr);
5687 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5688 
5689 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5690 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5691 		ext4_commit_super(sb);
5692 
5693 		jbd2_journal_clear_err(journal);
5694 		jbd2_journal_update_sb_errno(journal);
5695 	}
5696 	return 0;
5697 }
5698 
5699 /*
5700  * Force the running and committing transactions to commit,
5701  * and wait on the commit.
5702  */
ext4_force_commit(struct super_block * sb)5703 int ext4_force_commit(struct super_block *sb)
5704 {
5705 	journal_t *journal;
5706 
5707 	if (sb_rdonly(sb))
5708 		return 0;
5709 
5710 	journal = EXT4_SB(sb)->s_journal;
5711 	return ext4_journal_force_commit(journal);
5712 }
5713 
ext4_sync_fs(struct super_block * sb,int wait)5714 static int ext4_sync_fs(struct super_block *sb, int wait)
5715 {
5716 	int ret = 0;
5717 	tid_t target;
5718 	bool needs_barrier = false;
5719 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5720 
5721 	if (unlikely(ext4_forced_shutdown(sbi)))
5722 		return 0;
5723 
5724 	trace_ext4_sync_fs(sb, wait);
5725 	flush_workqueue(sbi->rsv_conversion_wq);
5726 	/*
5727 	 * Writeback quota in non-journalled quota case - journalled quota has
5728 	 * no dirty dquots
5729 	 */
5730 	dquot_writeback_dquots(sb, -1);
5731 	/*
5732 	 * Data writeback is possible w/o journal transaction, so barrier must
5733 	 * being sent at the end of the function. But we can skip it if
5734 	 * transaction_commit will do it for us.
5735 	 */
5736 	if (sbi->s_journal) {
5737 		target = jbd2_get_latest_transaction(sbi->s_journal);
5738 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5739 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5740 			needs_barrier = true;
5741 
5742 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5743 			if (wait)
5744 				ret = jbd2_log_wait_commit(sbi->s_journal,
5745 							   target);
5746 		}
5747 	} else if (wait && test_opt(sb, BARRIER))
5748 		needs_barrier = true;
5749 	if (needs_barrier) {
5750 		int err;
5751 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5752 		if (!ret)
5753 			ret = err;
5754 	}
5755 
5756 	return ret;
5757 }
5758 
5759 /*
5760  * LVM calls this function before a (read-only) snapshot is created.  This
5761  * gives us a chance to flush the journal completely and mark the fs clean.
5762  *
5763  * Note that only this function cannot bring a filesystem to be in a clean
5764  * state independently. It relies on upper layer to stop all data & metadata
5765  * modifications.
5766  */
ext4_freeze(struct super_block * sb)5767 static int ext4_freeze(struct super_block *sb)
5768 {
5769 	int error = 0;
5770 	journal_t *journal;
5771 
5772 	if (sb_rdonly(sb))
5773 		return 0;
5774 
5775 	journal = EXT4_SB(sb)->s_journal;
5776 
5777 	if (journal) {
5778 		/* Now we set up the journal barrier. */
5779 		jbd2_journal_lock_updates(journal);
5780 
5781 		/*
5782 		 * Don't clear the needs_recovery flag if we failed to
5783 		 * flush the journal.
5784 		 */
5785 		error = jbd2_journal_flush(journal);
5786 		if (error < 0)
5787 			goto out;
5788 
5789 		/* Journal blocked and flushed, clear needs_recovery flag. */
5790 		ext4_clear_feature_journal_needs_recovery(sb);
5791 	}
5792 
5793 	error = ext4_commit_super(sb);
5794 out:
5795 	if (journal)
5796 		/* we rely on upper layer to stop further updates */
5797 		jbd2_journal_unlock_updates(journal);
5798 	return error;
5799 }
5800 
5801 /*
5802  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5803  * flag here, even though the filesystem is not technically dirty yet.
5804  */
ext4_unfreeze(struct super_block * sb)5805 static int ext4_unfreeze(struct super_block *sb)
5806 {
5807 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5808 		return 0;
5809 
5810 	if (EXT4_SB(sb)->s_journal) {
5811 		/* Reset the needs_recovery flag before the fs is unlocked. */
5812 		ext4_set_feature_journal_needs_recovery(sb);
5813 	}
5814 
5815 	ext4_commit_super(sb);
5816 	return 0;
5817 }
5818 
5819 /*
5820  * Structure to save mount options for ext4_remount's benefit
5821  */
5822 struct ext4_mount_options {
5823 	unsigned long s_mount_opt;
5824 	unsigned long s_mount_opt2;
5825 	kuid_t s_resuid;
5826 	kgid_t s_resgid;
5827 	unsigned long s_commit_interval;
5828 	u32 s_min_batch_time, s_max_batch_time;
5829 #ifdef CONFIG_QUOTA
5830 	int s_jquota_fmt;
5831 	char *s_qf_names[EXT4_MAXQUOTAS];
5832 #endif
5833 };
5834 
ext4_remount(struct super_block * sb,int * flags,char * data)5835 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5836 {
5837 	struct ext4_super_block *es;
5838 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5839 	unsigned long old_sb_flags, vfs_flags;
5840 	struct ext4_mount_options old_opts;
5841 	int enable_quota = 0;
5842 	ext4_group_t g;
5843 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5844 	int err = 0;
5845 #ifdef CONFIG_QUOTA
5846 	int i, j;
5847 	char *to_free[EXT4_MAXQUOTAS];
5848 #endif
5849 	char *orig_data = kstrdup(data, GFP_KERNEL);
5850 
5851 	if (data && !orig_data)
5852 		return -ENOMEM;
5853 
5854 	/* Store the original options */
5855 	old_sb_flags = sb->s_flags;
5856 	old_opts.s_mount_opt = sbi->s_mount_opt;
5857 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5858 	old_opts.s_resuid = sbi->s_resuid;
5859 	old_opts.s_resgid = sbi->s_resgid;
5860 	old_opts.s_commit_interval = sbi->s_commit_interval;
5861 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5862 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5863 #ifdef CONFIG_QUOTA
5864 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5865 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5866 		if (sbi->s_qf_names[i]) {
5867 			char *qf_name = get_qf_name(sb, sbi, i);
5868 
5869 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5870 			if (!old_opts.s_qf_names[i]) {
5871 				for (j = 0; j < i; j++)
5872 					kfree(old_opts.s_qf_names[j]);
5873 				kfree(orig_data);
5874 				return -ENOMEM;
5875 			}
5876 		} else
5877 			old_opts.s_qf_names[i] = NULL;
5878 #endif
5879 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5880 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5881 
5882 	/*
5883 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5884 	 * either way we need to make sure it matches in both *flags and
5885 	 * s_flags. Copy those selected flags from *flags to s_flags
5886 	 */
5887 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5888 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5889 
5890 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5891 		err = -EINVAL;
5892 		goto restore_opts;
5893 	}
5894 
5895 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5896 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5897 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5898 			 "during remount not supported; ignoring");
5899 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5900 	}
5901 
5902 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5903 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5904 			ext4_msg(sb, KERN_ERR, "can't mount with "
5905 				 "both data=journal and delalloc");
5906 			err = -EINVAL;
5907 			goto restore_opts;
5908 		}
5909 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5910 			ext4_msg(sb, KERN_ERR, "can't mount with "
5911 				 "both data=journal and dioread_nolock");
5912 			err = -EINVAL;
5913 			goto restore_opts;
5914 		}
5915 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5916 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5917 			ext4_msg(sb, KERN_ERR, "can't mount with "
5918 				"journal_async_commit in data=ordered mode");
5919 			err = -EINVAL;
5920 			goto restore_opts;
5921 		}
5922 	}
5923 
5924 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5925 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5926 		err = -EINVAL;
5927 		goto restore_opts;
5928 	}
5929 
5930 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5931 		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5932 
5933 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5934 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5935 
5936 	es = sbi->s_es;
5937 
5938 	if (sbi->s_journal) {
5939 		ext4_init_journal_params(sb, sbi->s_journal);
5940 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5941 	}
5942 
5943 	/* Flush outstanding errors before changing fs state */
5944 	flush_work(&sbi->s_error_work);
5945 
5946 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5947 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5948 			err = -EROFS;
5949 			goto restore_opts;
5950 		}
5951 
5952 		if (*flags & SB_RDONLY) {
5953 			err = sync_filesystem(sb);
5954 			if (err < 0)
5955 				goto restore_opts;
5956 			err = dquot_suspend(sb, -1);
5957 			if (err < 0)
5958 				goto restore_opts;
5959 
5960 			/*
5961 			 * First of all, the unconditional stuff we have to do
5962 			 * to disable replay of the journal when we next remount
5963 			 */
5964 			sb->s_flags |= SB_RDONLY;
5965 
5966 			/*
5967 			 * OK, test if we are remounting a valid rw partition
5968 			 * readonly, and if so set the rdonly flag and then
5969 			 * mark the partition as valid again.
5970 			 */
5971 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5972 			    (sbi->s_mount_state & EXT4_VALID_FS))
5973 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5974 
5975 			if (sbi->s_journal) {
5976 				/*
5977 				 * We let remount-ro finish even if marking fs
5978 				 * as clean failed...
5979 				 */
5980 				ext4_mark_recovery_complete(sb, es);
5981 			}
5982 		} else {
5983 			/* Make sure we can mount this feature set readwrite */
5984 			if (ext4_has_feature_readonly(sb) ||
5985 			    !ext4_feature_set_ok(sb, 0)) {
5986 				err = -EROFS;
5987 				goto restore_opts;
5988 			}
5989 			/*
5990 			 * Make sure the group descriptor checksums
5991 			 * are sane.  If they aren't, refuse to remount r/w.
5992 			 */
5993 			for (g = 0; g < sbi->s_groups_count; g++) {
5994 				struct ext4_group_desc *gdp =
5995 					ext4_get_group_desc(sb, g, NULL);
5996 
5997 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5998 					ext4_msg(sb, KERN_ERR,
5999 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6000 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6001 					       le16_to_cpu(gdp->bg_checksum));
6002 					err = -EFSBADCRC;
6003 					goto restore_opts;
6004 				}
6005 			}
6006 
6007 			/*
6008 			 * If we have an unprocessed orphan list hanging
6009 			 * around from a previously readonly bdev mount,
6010 			 * require a full umount/remount for now.
6011 			 */
6012 			if (es->s_last_orphan) {
6013 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6014 				       "remount RDWR because of unprocessed "
6015 				       "orphan inode list.  Please "
6016 				       "umount/remount instead");
6017 				err = -EINVAL;
6018 				goto restore_opts;
6019 			}
6020 
6021 			/*
6022 			 * Mounting a RDONLY partition read-write, so reread
6023 			 * and store the current valid flag.  (It may have
6024 			 * been changed by e2fsck since we originally mounted
6025 			 * the partition.)
6026 			 */
6027 			if (sbi->s_journal) {
6028 				err = ext4_clear_journal_err(sb, es);
6029 				if (err)
6030 					goto restore_opts;
6031 			}
6032 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6033 					      ~EXT4_FC_REPLAY);
6034 
6035 			err = ext4_setup_super(sb, es, 0);
6036 			if (err)
6037 				goto restore_opts;
6038 
6039 			sb->s_flags &= ~SB_RDONLY;
6040 			if (ext4_has_feature_mmp(sb))
6041 				if (ext4_multi_mount_protect(sb,
6042 						le64_to_cpu(es->s_mmp_block))) {
6043 					err = -EROFS;
6044 					goto restore_opts;
6045 				}
6046 			enable_quota = 1;
6047 		}
6048 	}
6049 
6050 	/*
6051 	 * Reinitialize lazy itable initialization thread based on
6052 	 * current settings
6053 	 */
6054 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6055 		ext4_unregister_li_request(sb);
6056 	else {
6057 		ext4_group_t first_not_zeroed;
6058 		first_not_zeroed = ext4_has_uninit_itable(sb);
6059 		ext4_register_li_request(sb, first_not_zeroed);
6060 	}
6061 
6062 	/*
6063 	 * Handle creation of system zone data early because it can fail.
6064 	 * Releasing of existing data is done when we are sure remount will
6065 	 * succeed.
6066 	 */
6067 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6068 		err = ext4_setup_system_zone(sb);
6069 		if (err)
6070 			goto restore_opts;
6071 	}
6072 
6073 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6074 		err = ext4_commit_super(sb);
6075 		if (err)
6076 			goto restore_opts;
6077 	}
6078 
6079 #ifdef CONFIG_QUOTA
6080 	if (enable_quota) {
6081 		if (sb_any_quota_suspended(sb))
6082 			dquot_resume(sb, -1);
6083 		else if (ext4_has_feature_quota(sb)) {
6084 			err = ext4_enable_quotas(sb);
6085 			if (err)
6086 				goto restore_opts;
6087 		}
6088 	}
6089 	/* Release old quota file names */
6090 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6091 		kfree(old_opts.s_qf_names[i]);
6092 #endif
6093 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6094 		ext4_release_system_zone(sb);
6095 
6096 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6097 		ext4_stop_mmpd(sbi);
6098 
6099 	/*
6100 	 * Some options can be enabled by ext4 and/or by VFS mount flag
6101 	 * either way we need to make sure it matches in both *flags and
6102 	 * s_flags. Copy those selected flags from s_flags to *flags
6103 	 */
6104 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6105 
6106 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
6107 	kfree(orig_data);
6108 	return 0;
6109 
6110 restore_opts:
6111 	/*
6112 	 * If there was a failing r/w to ro transition, we may need to
6113 	 * re-enable quota
6114 	 */
6115 	if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) &&
6116 	    sb_any_quota_suspended(sb))
6117 		dquot_resume(sb, -1);
6118 	sb->s_flags = old_sb_flags;
6119 	sbi->s_mount_opt = old_opts.s_mount_opt;
6120 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6121 	sbi->s_resuid = old_opts.s_resuid;
6122 	sbi->s_resgid = old_opts.s_resgid;
6123 	sbi->s_commit_interval = old_opts.s_commit_interval;
6124 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6125 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6126 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6127 		ext4_release_system_zone(sb);
6128 #ifdef CONFIG_QUOTA
6129 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6130 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6131 		to_free[i] = get_qf_name(sb, sbi, i);
6132 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6133 	}
6134 	synchronize_rcu();
6135 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6136 		kfree(to_free[i]);
6137 #endif
6138 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6139 		ext4_stop_mmpd(sbi);
6140 	kfree(orig_data);
6141 	return err;
6142 }
6143 
6144 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6145 static int ext4_statfs_project(struct super_block *sb,
6146 			       kprojid_t projid, struct kstatfs *buf)
6147 {
6148 	struct kqid qid;
6149 	struct dquot *dquot;
6150 	u64 limit;
6151 	u64 curblock;
6152 
6153 	qid = make_kqid_projid(projid);
6154 	dquot = dqget(sb, qid);
6155 	if (IS_ERR(dquot))
6156 		return PTR_ERR(dquot);
6157 	spin_lock(&dquot->dq_dqb_lock);
6158 
6159 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6160 			     dquot->dq_dqb.dqb_bhardlimit);
6161 	limit >>= sb->s_blocksize_bits;
6162 
6163 	if (limit && buf->f_blocks > limit) {
6164 		curblock = (dquot->dq_dqb.dqb_curspace +
6165 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6166 		buf->f_blocks = limit;
6167 		buf->f_bfree = buf->f_bavail =
6168 			(buf->f_blocks > curblock) ?
6169 			 (buf->f_blocks - curblock) : 0;
6170 	}
6171 
6172 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6173 			     dquot->dq_dqb.dqb_ihardlimit);
6174 	if (limit && buf->f_files > limit) {
6175 		buf->f_files = limit;
6176 		buf->f_ffree =
6177 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6178 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6179 	}
6180 
6181 	spin_unlock(&dquot->dq_dqb_lock);
6182 	dqput(dquot);
6183 	return 0;
6184 }
6185 #endif
6186 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6187 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6188 {
6189 	struct super_block *sb = dentry->d_sb;
6190 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6191 	struct ext4_super_block *es = sbi->s_es;
6192 	ext4_fsblk_t overhead = 0, resv_blocks;
6193 	u64 fsid;
6194 	s64 bfree;
6195 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6196 
6197 	if (!test_opt(sb, MINIX_DF))
6198 		overhead = sbi->s_overhead;
6199 
6200 	buf->f_type = EXT4_SUPER_MAGIC;
6201 	buf->f_bsize = sb->s_blocksize;
6202 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6203 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6204 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6205 	/* prevent underflow in case that few free space is available */
6206 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6207 	buf->f_bavail = buf->f_bfree -
6208 			(ext4_r_blocks_count(es) + resv_blocks);
6209 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6210 		buf->f_bavail = 0;
6211 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6212 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6213 	buf->f_namelen = EXT4_NAME_LEN;
6214 	fsid = le64_to_cpup((void *)es->s_uuid) ^
6215 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6216 	buf->f_fsid = u64_to_fsid(fsid);
6217 
6218 #ifdef CONFIG_QUOTA
6219 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6220 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6221 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6222 #endif
6223 	return 0;
6224 }
6225 
6226 
6227 #ifdef CONFIG_QUOTA
6228 
6229 /*
6230  * Helper functions so that transaction is started before we acquire dqio_sem
6231  * to keep correct lock ordering of transaction > dqio_sem
6232  */
dquot_to_inode(struct dquot * dquot)6233 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6234 {
6235 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6236 }
6237 
ext4_write_dquot(struct dquot * dquot)6238 static int ext4_write_dquot(struct dquot *dquot)
6239 {
6240 	int ret, err;
6241 	handle_t *handle;
6242 	struct inode *inode;
6243 
6244 	inode = dquot_to_inode(dquot);
6245 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6246 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6247 	if (IS_ERR(handle))
6248 		return PTR_ERR(handle);
6249 	ret = dquot_commit(dquot);
6250 	err = ext4_journal_stop(handle);
6251 	if (!ret)
6252 		ret = err;
6253 	return ret;
6254 }
6255 
ext4_acquire_dquot(struct dquot * dquot)6256 static int ext4_acquire_dquot(struct dquot *dquot)
6257 {
6258 	int ret, err;
6259 	handle_t *handle;
6260 
6261 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6262 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6263 	if (IS_ERR(handle))
6264 		return PTR_ERR(handle);
6265 	ret = dquot_acquire(dquot);
6266 	err = ext4_journal_stop(handle);
6267 	if (!ret)
6268 		ret = err;
6269 	return ret;
6270 }
6271 
ext4_release_dquot(struct dquot * dquot)6272 static int ext4_release_dquot(struct dquot *dquot)
6273 {
6274 	int ret, err;
6275 	handle_t *handle;
6276 
6277 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6278 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6279 	if (IS_ERR(handle)) {
6280 		/* Release dquot anyway to avoid endless cycle in dqput() */
6281 		dquot_release(dquot);
6282 		return PTR_ERR(handle);
6283 	}
6284 	ret = dquot_release(dquot);
6285 	err = ext4_journal_stop(handle);
6286 	if (!ret)
6287 		ret = err;
6288 	return ret;
6289 }
6290 
ext4_mark_dquot_dirty(struct dquot * dquot)6291 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6292 {
6293 	struct super_block *sb = dquot->dq_sb;
6294 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6295 
6296 	/* Are we journaling quotas? */
6297 	if (ext4_has_feature_quota(sb) ||
6298 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
6299 		dquot_mark_dquot_dirty(dquot);
6300 		return ext4_write_dquot(dquot);
6301 	} else {
6302 		return dquot_mark_dquot_dirty(dquot);
6303 	}
6304 }
6305 
ext4_write_info(struct super_block * sb,int type)6306 static int ext4_write_info(struct super_block *sb, int type)
6307 {
6308 	int ret, err;
6309 	handle_t *handle;
6310 
6311 	/* Data block + inode block */
6312 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6313 	if (IS_ERR(handle))
6314 		return PTR_ERR(handle);
6315 	ret = dquot_commit_info(sb, type);
6316 	err = ext4_journal_stop(handle);
6317 	if (!ret)
6318 		ret = err;
6319 	return ret;
6320 }
6321 
6322 /*
6323  * Turn on quotas during mount time - we need to find
6324  * the quota file and such...
6325  */
ext4_quota_on_mount(struct super_block * sb,int type)6326 static int ext4_quota_on_mount(struct super_block *sb, int type)
6327 {
6328 	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6329 					EXT4_SB(sb)->s_jquota_fmt, type);
6330 }
6331 
lockdep_set_quota_inode(struct inode * inode,int subclass)6332 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6333 {
6334 	struct ext4_inode_info *ei = EXT4_I(inode);
6335 
6336 	/* The first argument of lockdep_set_subclass has to be
6337 	 * *exactly* the same as the argument to init_rwsem() --- in
6338 	 * this case, in init_once() --- or lockdep gets unhappy
6339 	 * because the name of the lock is set using the
6340 	 * stringification of the argument to init_rwsem().
6341 	 */
6342 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6343 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6344 }
6345 
6346 /*
6347  * Standard function to be called on quota_on
6348  */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6349 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6350 			 const struct path *path)
6351 {
6352 	int err;
6353 
6354 	if (!test_opt(sb, QUOTA))
6355 		return -EINVAL;
6356 
6357 	/* Quotafile not on the same filesystem? */
6358 	if (path->dentry->d_sb != sb)
6359 		return -EXDEV;
6360 
6361 	/* Quota already enabled for this file? */
6362 	if (IS_NOQUOTA(d_inode(path->dentry)))
6363 		return -EBUSY;
6364 
6365 	/* Journaling quota? */
6366 	if (EXT4_SB(sb)->s_qf_names[type]) {
6367 		/* Quotafile not in fs root? */
6368 		if (path->dentry->d_parent != sb->s_root)
6369 			ext4_msg(sb, KERN_WARNING,
6370 				"Quota file not on filesystem root. "
6371 				"Journaled quota will not work");
6372 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6373 	} else {
6374 		/*
6375 		 * Clear the flag just in case mount options changed since
6376 		 * last time.
6377 		 */
6378 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6379 	}
6380 
6381 	/*
6382 	 * When we journal data on quota file, we have to flush journal to see
6383 	 * all updates to the file when we bypass pagecache...
6384 	 */
6385 	if (EXT4_SB(sb)->s_journal &&
6386 	    ext4_should_journal_data(d_inode(path->dentry))) {
6387 		/*
6388 		 * We don't need to lock updates but journal_flush() could
6389 		 * otherwise be livelocked...
6390 		 */
6391 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6392 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6393 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6394 		if (err)
6395 			return err;
6396 	}
6397 
6398 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6399 	err = dquot_quota_on(sb, type, format_id, path);
6400 	if (!err) {
6401 		struct inode *inode = d_inode(path->dentry);
6402 		handle_t *handle;
6403 
6404 		/*
6405 		 * Set inode flags to prevent userspace from messing with quota
6406 		 * files. If this fails, we return success anyway since quotas
6407 		 * are already enabled and this is not a hard failure.
6408 		 */
6409 		inode_lock(inode);
6410 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6411 		if (IS_ERR(handle))
6412 			goto unlock_inode;
6413 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6414 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6415 				S_NOATIME | S_IMMUTABLE);
6416 		err = ext4_mark_inode_dirty(handle, inode);
6417 		ext4_journal_stop(handle);
6418 	unlock_inode:
6419 		inode_unlock(inode);
6420 		if (err)
6421 			dquot_quota_off(sb, type);
6422 	}
6423 	if (err)
6424 		lockdep_set_quota_inode(path->dentry->d_inode,
6425 					     I_DATA_SEM_NORMAL);
6426 	return err;
6427 }
6428 
ext4_check_quota_inum(int type,unsigned long qf_inum)6429 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6430 {
6431 	switch (type) {
6432 	case USRQUOTA:
6433 		return qf_inum == EXT4_USR_QUOTA_INO;
6434 	case GRPQUOTA:
6435 		return qf_inum == EXT4_GRP_QUOTA_INO;
6436 	case PRJQUOTA:
6437 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6438 	default:
6439 		BUG();
6440 	}
6441 }
6442 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6443 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6444 			     unsigned int flags)
6445 {
6446 	int err;
6447 	struct inode *qf_inode;
6448 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6449 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6450 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6451 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6452 	};
6453 
6454 	BUG_ON(!ext4_has_feature_quota(sb));
6455 
6456 	if (!qf_inums[type])
6457 		return -EPERM;
6458 
6459 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
6460 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
6461 				qf_inums[type], type);
6462 		return -EUCLEAN;
6463 	}
6464 
6465 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6466 	if (IS_ERR(qf_inode)) {
6467 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
6468 				qf_inums[type], type);
6469 		return PTR_ERR(qf_inode);
6470 	}
6471 
6472 	/* Don't account quota for quota files to avoid recursion */
6473 	qf_inode->i_flags |= S_NOQUOTA;
6474 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6475 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6476 	if (err)
6477 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6478 	iput(qf_inode);
6479 
6480 	return err;
6481 }
6482 
6483 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6484 static int ext4_enable_quotas(struct super_block *sb)
6485 {
6486 	int type, err = 0;
6487 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6488 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6489 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6490 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6491 	};
6492 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6493 		test_opt(sb, USRQUOTA),
6494 		test_opt(sb, GRPQUOTA),
6495 		test_opt(sb, PRJQUOTA),
6496 	};
6497 
6498 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6499 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6500 		if (qf_inums[type]) {
6501 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6502 				DQUOT_USAGE_ENABLED |
6503 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6504 			if (err) {
6505 				ext4_warning(sb,
6506 					"Failed to enable quota tracking "
6507 					"(type=%d, err=%d, ino=%lu). "
6508 					"Please run e2fsck to fix.", type,
6509 					err, qf_inums[type]);
6510 				for (type--; type >= 0; type--) {
6511 					struct inode *inode;
6512 
6513 					inode = sb_dqopt(sb)->files[type];
6514 					if (inode)
6515 						inode = igrab(inode);
6516 					dquot_quota_off(sb, type);
6517 					if (inode) {
6518 						lockdep_set_quota_inode(inode,
6519 							I_DATA_SEM_NORMAL);
6520 						iput(inode);
6521 					}
6522 				}
6523 
6524 				return err;
6525 			}
6526 		}
6527 	}
6528 	return 0;
6529 }
6530 
ext4_quota_off(struct super_block * sb,int type)6531 static int ext4_quota_off(struct super_block *sb, int type)
6532 {
6533 	struct inode *inode = sb_dqopt(sb)->files[type];
6534 	handle_t *handle;
6535 	int err;
6536 
6537 	/* Force all delayed allocation blocks to be allocated.
6538 	 * Caller already holds s_umount sem */
6539 	if (test_opt(sb, DELALLOC))
6540 		sync_filesystem(sb);
6541 
6542 	if (!inode || !igrab(inode))
6543 		goto out;
6544 
6545 	err = dquot_quota_off(sb, type);
6546 	if (err || ext4_has_feature_quota(sb))
6547 		goto out_put;
6548 
6549 	inode_lock(inode);
6550 	/*
6551 	 * Update modification times of quota files when userspace can
6552 	 * start looking at them. If we fail, we return success anyway since
6553 	 * this is not a hard failure and quotas are already disabled.
6554 	 */
6555 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6556 	if (IS_ERR(handle)) {
6557 		err = PTR_ERR(handle);
6558 		goto out_unlock;
6559 	}
6560 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6561 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6562 	inode->i_mtime = inode->i_ctime = current_time(inode);
6563 	err = ext4_mark_inode_dirty(handle, inode);
6564 	ext4_journal_stop(handle);
6565 out_unlock:
6566 	inode_unlock(inode);
6567 out_put:
6568 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6569 	iput(inode);
6570 	return err;
6571 out:
6572 	return dquot_quota_off(sb, type);
6573 }
6574 
6575 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6576  * acquiring the locks... As quota files are never truncated and quota code
6577  * itself serializes the operations (and no one else should touch the files)
6578  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)6579 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6580 			       size_t len, loff_t off)
6581 {
6582 	struct inode *inode = sb_dqopt(sb)->files[type];
6583 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6584 	int offset = off & (sb->s_blocksize - 1);
6585 	int tocopy;
6586 	size_t toread;
6587 	struct buffer_head *bh;
6588 	loff_t i_size = i_size_read(inode);
6589 
6590 	if (off > i_size)
6591 		return 0;
6592 	if (off+len > i_size)
6593 		len = i_size-off;
6594 	toread = len;
6595 	while (toread > 0) {
6596 		tocopy = sb->s_blocksize - offset < toread ?
6597 				sb->s_blocksize - offset : toread;
6598 		bh = ext4_bread(NULL, inode, blk, 0);
6599 		if (IS_ERR(bh))
6600 			return PTR_ERR(bh);
6601 		if (!bh)	/* A hole? */
6602 			memset(data, 0, tocopy);
6603 		else
6604 			memcpy(data, bh->b_data+offset, tocopy);
6605 		brelse(bh);
6606 		offset = 0;
6607 		toread -= tocopy;
6608 		data += tocopy;
6609 		blk++;
6610 	}
6611 	return len;
6612 }
6613 
6614 /* Write to quotafile (we know the transaction is already started and has
6615  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)6616 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6617 				const char *data, size_t len, loff_t off)
6618 {
6619 	struct inode *inode = sb_dqopt(sb)->files[type];
6620 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6621 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6622 	int retries = 0;
6623 	struct buffer_head *bh;
6624 	handle_t *handle = journal_current_handle();
6625 
6626 	if (!handle) {
6627 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6628 			" cancelled because transaction is not started",
6629 			(unsigned long long)off, (unsigned long long)len);
6630 		return -EIO;
6631 	}
6632 	/*
6633 	 * Since we account only one data block in transaction credits,
6634 	 * then it is impossible to cross a block boundary.
6635 	 */
6636 	if (sb->s_blocksize - offset < len) {
6637 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6638 			" cancelled because not block aligned",
6639 			(unsigned long long)off, (unsigned long long)len);
6640 		return -EIO;
6641 	}
6642 
6643 	do {
6644 		bh = ext4_bread(handle, inode, blk,
6645 				EXT4_GET_BLOCKS_CREATE |
6646 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6647 	} while (PTR_ERR(bh) == -ENOSPC &&
6648 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6649 	if (IS_ERR(bh))
6650 		return PTR_ERR(bh);
6651 	if (!bh)
6652 		goto out;
6653 	BUFFER_TRACE(bh, "get write access");
6654 	err = ext4_journal_get_write_access(handle, bh);
6655 	if (err) {
6656 		brelse(bh);
6657 		return err;
6658 	}
6659 	lock_buffer(bh);
6660 	memcpy(bh->b_data+offset, data, len);
6661 	flush_dcache_page(bh->b_page);
6662 	unlock_buffer(bh);
6663 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6664 	brelse(bh);
6665 out:
6666 	if (inode->i_size < off + len) {
6667 		i_size_write(inode, off + len);
6668 		EXT4_I(inode)->i_disksize = inode->i_size;
6669 		err2 = ext4_mark_inode_dirty(handle, inode);
6670 		if (unlikely(err2 && !err))
6671 			err = err2;
6672 	}
6673 	return err ? err : len;
6674 }
6675 #endif
6676 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6677 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6678 		       const char *dev_name, void *data)
6679 {
6680 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6681 }
6682 
6683 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6684 static inline void register_as_ext2(void)
6685 {
6686 	int err = register_filesystem(&ext2_fs_type);
6687 	if (err)
6688 		printk(KERN_WARNING
6689 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6690 }
6691 
unregister_as_ext2(void)6692 static inline void unregister_as_ext2(void)
6693 {
6694 	unregister_filesystem(&ext2_fs_type);
6695 }
6696 
ext2_feature_set_ok(struct super_block * sb)6697 static inline int ext2_feature_set_ok(struct super_block *sb)
6698 {
6699 	if (ext4_has_unknown_ext2_incompat_features(sb))
6700 		return 0;
6701 	if (sb_rdonly(sb))
6702 		return 1;
6703 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6704 		return 0;
6705 	return 1;
6706 }
6707 #else
register_as_ext2(void)6708 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6709 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6710 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6711 #endif
6712 
register_as_ext3(void)6713 static inline void register_as_ext3(void)
6714 {
6715 	int err = register_filesystem(&ext3_fs_type);
6716 	if (err)
6717 		printk(KERN_WARNING
6718 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6719 }
6720 
unregister_as_ext3(void)6721 static inline void unregister_as_ext3(void)
6722 {
6723 	unregister_filesystem(&ext3_fs_type);
6724 }
6725 
ext3_feature_set_ok(struct super_block * sb)6726 static inline int ext3_feature_set_ok(struct super_block *sb)
6727 {
6728 	if (ext4_has_unknown_ext3_incompat_features(sb))
6729 		return 0;
6730 	if (!ext4_has_feature_journal(sb))
6731 		return 0;
6732 	if (sb_rdonly(sb))
6733 		return 1;
6734 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6735 		return 0;
6736 	return 1;
6737 }
6738 
6739 static struct file_system_type ext4_fs_type = {
6740 	.owner		= THIS_MODULE,
6741 	.name		= "ext4",
6742 	.mount		= ext4_mount,
6743 	.kill_sb	= kill_block_super,
6744 	.fs_flags	= FS_REQUIRES_DEV,
6745 };
6746 MODULE_ALIAS_FS("ext4");
6747 
6748 /* Shared across all ext4 file systems */
6749 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6750 
ext4_init_fs(void)6751 static int __init ext4_init_fs(void)
6752 {
6753 	int i, err;
6754 
6755 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6756 	ext4_li_info = NULL;
6757 	mutex_init(&ext4_li_mtx);
6758 
6759 	/* Build-time check for flags consistency */
6760 	ext4_check_flag_values();
6761 
6762 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6763 		init_waitqueue_head(&ext4__ioend_wq[i]);
6764 
6765 	err = ext4_init_es();
6766 	if (err)
6767 		return err;
6768 
6769 	err = ext4_init_pending();
6770 	if (err)
6771 		goto out7;
6772 
6773 	err = ext4_init_post_read_processing();
6774 	if (err)
6775 		goto out6;
6776 
6777 	err = ext4_init_pageio();
6778 	if (err)
6779 		goto out5;
6780 
6781 	err = ext4_init_system_zone();
6782 	if (err)
6783 		goto out4;
6784 
6785 	err = ext4_init_sysfs();
6786 	if (err)
6787 		goto out3;
6788 
6789 	err = ext4_init_mballoc();
6790 	if (err)
6791 		goto out2;
6792 	err = init_inodecache();
6793 	if (err)
6794 		goto out1;
6795 
6796 	err = ext4_fc_init_dentry_cache();
6797 	if (err)
6798 		goto out05;
6799 
6800 	register_as_ext3();
6801 	register_as_ext2();
6802 	err = register_filesystem(&ext4_fs_type);
6803 	if (err)
6804 		goto out;
6805 
6806 	return 0;
6807 out:
6808 	unregister_as_ext2();
6809 	unregister_as_ext3();
6810 	ext4_fc_destroy_dentry_cache();
6811 out05:
6812 	destroy_inodecache();
6813 out1:
6814 	ext4_exit_mballoc();
6815 out2:
6816 	ext4_exit_sysfs();
6817 out3:
6818 	ext4_exit_system_zone();
6819 out4:
6820 	ext4_exit_pageio();
6821 out5:
6822 	ext4_exit_post_read_processing();
6823 out6:
6824 	ext4_exit_pending();
6825 out7:
6826 	ext4_exit_es();
6827 
6828 	return err;
6829 }
6830 
ext4_exit_fs(void)6831 static void __exit ext4_exit_fs(void)
6832 {
6833 	ext4_destroy_lazyinit_thread();
6834 	unregister_as_ext2();
6835 	unregister_as_ext3();
6836 	unregister_filesystem(&ext4_fs_type);
6837 	ext4_fc_destroy_dentry_cache();
6838 	destroy_inodecache();
6839 	ext4_exit_mballoc();
6840 	ext4_exit_sysfs();
6841 	ext4_exit_system_zone();
6842 	ext4_exit_pageio();
6843 	ext4_exit_post_read_processing();
6844 	ext4_exit_es();
6845 	ext4_exit_pending();
6846 }
6847 
6848 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6849 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6850 MODULE_LICENSE("GPL");
6851 MODULE_SOFTDEP("pre: crc32c");
6852 module_init(ext4_init_fs)
6853 module_exit(ext4_exit_fs)
6854