1 /*
2 * Bink video decoder
3 * Copyright (c) 2009 Konstantin Shishkov
4 * Copyright (C) 2011 Peter Ross <pross@xvid.org>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #include "libavutil/attributes.h"
24 #include "libavutil/imgutils.h"
25 #include "libavutil/internal.h"
26 #include "libavutil/mem_internal.h"
27
28 #define BITSTREAM_READER_LE
29 #include "avcodec.h"
30 #include "binkdata.h"
31 #include "binkdsp.h"
32 #include "blockdsp.h"
33 #include "get_bits.h"
34 #include "hpeldsp.h"
35 #include "internal.h"
36 #include "mathops.h"
37
38 #define BINK_FLAG_ALPHA 0x00100000
39 #define BINK_FLAG_GRAY 0x00020000
40
41 static VLC bink_trees[16];
42
43 /**
44 * IDs for different data types used in old version of Bink video codec
45 */
46 enum OldSources {
47 BINKB_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
48 BINKB_SRC_COLORS, ///< pixel values used for different block types
49 BINKB_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
50 BINKB_SRC_X_OFF, ///< X components of motion value
51 BINKB_SRC_Y_OFF, ///< Y components of motion value
52 BINKB_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
53 BINKB_SRC_INTER_DC, ///< DC values for interblocks with DCT
54 BINKB_SRC_INTRA_Q, ///< quantizer values for intrablocks with DCT
55 BINKB_SRC_INTER_Q, ///< quantizer values for interblocks with DCT
56 BINKB_SRC_INTER_COEFS, ///< number of coefficients for residue blocks
57
58 BINKB_NB_SRC
59 };
60
61 static const int binkb_bundle_sizes[BINKB_NB_SRC] = {
62 4, 8, 8, 5, 5, 11, 11, 4, 4, 7
63 };
64
65 static const int binkb_bundle_signed[BINKB_NB_SRC] = {
66 0, 0, 0, 1, 1, 0, 1, 0, 0, 0
67 };
68
69 static int32_t binkb_intra_quant[16][64];
70 static int32_t binkb_inter_quant[16][64];
71
72 /**
73 * IDs for different data types used in Bink video codec
74 */
75 enum Sources {
76 BINK_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
77 BINK_SRC_SUB_BLOCK_TYPES, ///< 16x16 block types (a subset of 8x8 block types)
78 BINK_SRC_COLORS, ///< pixel values used for different block types
79 BINK_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
80 BINK_SRC_X_OFF, ///< X components of motion value
81 BINK_SRC_Y_OFF, ///< Y components of motion value
82 BINK_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
83 BINK_SRC_INTER_DC, ///< DC values for interblocks with DCT
84 BINK_SRC_RUN, ///< run lengths for special fill block
85
86 BINK_NB_SRC
87 };
88
89 /**
90 * data needed to decode 4-bit Huffman-coded value
91 */
92 typedef struct Tree {
93 int vlc_num; ///< tree number (in bink_trees[])
94 uint8_t syms[16]; ///< leaf value to symbol mapping
95 } Tree;
96
97 #define GET_HUFF(gb, tree) (tree).syms[get_vlc2(gb, bink_trees[(tree).vlc_num].table,\
98 bink_trees[(tree).vlc_num].bits, 1)]
99
100 /**
101 * data structure used for decoding single Bink data type
102 */
103 typedef struct Bundle {
104 int len; ///< length of number of entries to decode (in bits)
105 Tree tree; ///< Huffman tree-related data
106 uint8_t *data; ///< buffer for decoded symbols
107 uint8_t *data_end; ///< buffer end
108 uint8_t *cur_dec; ///< pointer to the not yet decoded part of the buffer
109 uint8_t *cur_ptr; ///< pointer to the data that is not read from buffer yet
110 } Bundle;
111
112 /*
113 * Decoder context
114 */
115 typedef struct BinkContext {
116 AVCodecContext *avctx;
117 BlockDSPContext bdsp;
118 op_pixels_func put_pixels_tab;
119 BinkDSPContext binkdsp;
120 AVFrame *last;
121 int version; ///< internal Bink file version
122 int has_alpha;
123 int swap_planes;
124 unsigned frame_num;
125
126 Bundle bundle[BINKB_NB_SRC]; ///< bundles for decoding all data types
127 Tree col_high[16]; ///< trees for decoding high nibble in "colours" data type
128 int col_lastval; ///< value of last decoded high nibble in "colours" data type
129 } BinkContext;
130
131 /**
132 * Bink video block types
133 */
134 enum BlockTypes {
135 SKIP_BLOCK = 0, ///< skipped block
136 SCALED_BLOCK, ///< block has size 16x16
137 MOTION_BLOCK, ///< block is copied from previous frame with some offset
138 RUN_BLOCK, ///< block is composed from runs of colours with custom scan order
139 RESIDUE_BLOCK, ///< motion block with some difference added
140 INTRA_BLOCK, ///< intra DCT block
141 FILL_BLOCK, ///< block is filled with single colour
142 INTER_BLOCK, ///< motion block with DCT applied to the difference
143 PATTERN_BLOCK, ///< block is filled with two colours following custom pattern
144 RAW_BLOCK, ///< uncoded 8x8 block
145 };
146
147 /**
148 * Initialize length in all bundles.
149 *
150 * @param c decoder context
151 * @param width plane width
152 * @param bw plane width in 8x8 blocks
153 */
init_lengths(BinkContext * c,int width,int bw)154 static void init_lengths(BinkContext *c, int width, int bw)
155 {
156 width = FFALIGN(width, 8);
157
158 c->bundle[BINK_SRC_BLOCK_TYPES].len = av_log2((width >> 3) + 511) + 1;
159
160 c->bundle[BINK_SRC_SUB_BLOCK_TYPES].len = av_log2((width >> 4) + 511) + 1;
161
162 c->bundle[BINK_SRC_COLORS].len = av_log2(bw*64 + 511) + 1;
163
164 c->bundle[BINK_SRC_INTRA_DC].len =
165 c->bundle[BINK_SRC_INTER_DC].len =
166 c->bundle[BINK_SRC_X_OFF].len =
167 c->bundle[BINK_SRC_Y_OFF].len = av_log2((width >> 3) + 511) + 1;
168
169 c->bundle[BINK_SRC_PATTERN].len = av_log2((bw << 3) + 511) + 1;
170
171 c->bundle[BINK_SRC_RUN].len = av_log2(bw*48 + 511) + 1;
172 }
173
174 /**
175 * Allocate memory for bundles.
176 *
177 * @param c decoder context
178 */
init_bundles(BinkContext * c)179 static av_cold int init_bundles(BinkContext *c)
180 {
181 int bw, bh, blocks;
182 uint8_t *tmp;
183 int i;
184
185 bw = (c->avctx->width + 7) >> 3;
186 bh = (c->avctx->height + 7) >> 3;
187 blocks = bw * bh;
188
189 tmp = av_calloc(blocks, 64 * BINKB_NB_SRC);
190 if (!tmp)
191 return AVERROR(ENOMEM);
192 for (i = 0; i < BINKB_NB_SRC; i++) {
193 c->bundle[i].data = tmp;
194 tmp += blocks * 64;
195 c->bundle[i].data_end = tmp;
196 }
197
198 return 0;
199 }
200
201 /**
202 * Free memory used by bundles.
203 *
204 * @param c decoder context
205 */
free_bundles(BinkContext * c)206 static av_cold void free_bundles(BinkContext *c)
207 {
208 av_freep(&c->bundle[0].data);
209 }
210
211 /**
212 * Merge two consequent lists of equal size depending on bits read.
213 *
214 * @param gb context for reading bits
215 * @param dst buffer where merged list will be written to
216 * @param src pointer to the head of the first list (the second lists starts at src+size)
217 * @param size input lists size
218 */
merge(GetBitContext * gb,uint8_t * dst,uint8_t * src,int size)219 static void merge(GetBitContext *gb, uint8_t *dst, uint8_t *src, int size)
220 {
221 uint8_t *src2 = src + size;
222 int size2 = size;
223
224 do {
225 if (!get_bits1(gb)) {
226 *dst++ = *src++;
227 size--;
228 } else {
229 *dst++ = *src2++;
230 size2--;
231 }
232 } while (size && size2);
233
234 while (size--)
235 *dst++ = *src++;
236 while (size2--)
237 *dst++ = *src2++;
238 }
239
240 /**
241 * Read information about Huffman tree used to decode data.
242 *
243 * @param gb context for reading bits
244 * @param tree pointer for storing tree data
245 */
read_tree(GetBitContext * gb,Tree * tree)246 static int read_tree(GetBitContext *gb, Tree *tree)
247 {
248 uint8_t tmp1[16] = { 0 }, tmp2[16], *in = tmp1, *out = tmp2;
249 int i, t, len;
250
251 if (get_bits_left(gb) < 4)
252 return AVERROR_INVALIDDATA;
253
254 tree->vlc_num = get_bits(gb, 4);
255 if (!tree->vlc_num) {
256 for (i = 0; i < 16; i++)
257 tree->syms[i] = i;
258 return 0;
259 }
260 if (get_bits1(gb)) {
261 len = get_bits(gb, 3);
262 for (i = 0; i <= len; i++) {
263 tree->syms[i] = get_bits(gb, 4);
264 tmp1[tree->syms[i]] = 1;
265 }
266 for (i = 0; i < 16 && len < 16 - 1; i++)
267 if (!tmp1[i])
268 tree->syms[++len] = i;
269 } else {
270 len = get_bits(gb, 2);
271 for (i = 0; i < 16; i++)
272 in[i] = i;
273 for (i = 0; i <= len; i++) {
274 int size = 1 << i;
275 for (t = 0; t < 16; t += size << 1)
276 merge(gb, out + t, in + t, size);
277 FFSWAP(uint8_t*, in, out);
278 }
279 memcpy(tree->syms, in, 16);
280 }
281 return 0;
282 }
283
284 /**
285 * Prepare bundle for decoding data.
286 *
287 * @param gb context for reading bits
288 * @param c decoder context
289 * @param bundle_num number of the bundle to initialize
290 */
read_bundle(GetBitContext * gb,BinkContext * c,int bundle_num)291 static int read_bundle(GetBitContext *gb, BinkContext *c, int bundle_num)
292 {
293 int i;
294
295 if (bundle_num == BINK_SRC_COLORS) {
296 for (i = 0; i < 16; i++) {
297 int ret = read_tree(gb, &c->col_high[i]);
298 if (ret < 0)
299 return ret;
300 }
301 c->col_lastval = 0;
302 }
303 if (bundle_num != BINK_SRC_INTRA_DC && bundle_num != BINK_SRC_INTER_DC) {
304 int ret = read_tree(gb, &c->bundle[bundle_num].tree);
305 if (ret < 0)
306 return ret;
307 }
308 c->bundle[bundle_num].cur_dec =
309 c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
310
311 return 0;
312 }
313
314 /**
315 * common check before starting decoding bundle data
316 *
317 * @param gb context for reading bits
318 * @param b bundle
319 * @param t variable where number of elements to decode will be stored
320 */
321 #define CHECK_READ_VAL(gb, b, t) \
322 if (!b->cur_dec || (b->cur_dec > b->cur_ptr)) \
323 return 0; \
324 t = get_bits(gb, b->len); \
325 if (!t) { \
326 b->cur_dec = NULL; \
327 return 0; \
328 } \
329
read_runs(AVCodecContext * avctx,GetBitContext * gb,Bundle * b)330 static int read_runs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
331 {
332 int t, v;
333 const uint8_t *dec_end;
334
335 CHECK_READ_VAL(gb, b, t);
336 dec_end = b->cur_dec + t;
337 if (dec_end > b->data_end) {
338 av_log(avctx, AV_LOG_ERROR, "Run value went out of bounds\n");
339 return AVERROR_INVALIDDATA;
340 }
341 if (get_bits_left(gb) < 1)
342 return AVERROR_INVALIDDATA;
343 if (get_bits1(gb)) {
344 v = get_bits(gb, 4);
345 memset(b->cur_dec, v, t);
346 b->cur_dec += t;
347 } else {
348 while (b->cur_dec < dec_end)
349 *b->cur_dec++ = GET_HUFF(gb, b->tree);
350 }
351 return 0;
352 }
353
read_motion_values(AVCodecContext * avctx,GetBitContext * gb,Bundle * b)354 static int read_motion_values(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
355 {
356 int t, sign, v;
357 const uint8_t *dec_end;
358
359 CHECK_READ_VAL(gb, b, t);
360 dec_end = b->cur_dec + t;
361 if (dec_end > b->data_end) {
362 av_log(avctx, AV_LOG_ERROR, "Too many motion values\n");
363 return AVERROR_INVALIDDATA;
364 }
365 if (get_bits_left(gb) < 1)
366 return AVERROR_INVALIDDATA;
367 if (get_bits1(gb)) {
368 v = get_bits(gb, 4);
369 if (v) {
370 sign = -get_bits1(gb);
371 v = (v ^ sign) - sign;
372 }
373 memset(b->cur_dec, v, t);
374 b->cur_dec += t;
375 } else {
376 while (b->cur_dec < dec_end) {
377 v = GET_HUFF(gb, b->tree);
378 if (v) {
379 sign = -get_bits1(gb);
380 v = (v ^ sign) - sign;
381 }
382 *b->cur_dec++ = v;
383 }
384 }
385 return 0;
386 }
387
388 static const uint8_t bink_rlelens[4] = { 4, 8, 12, 32 };
389
read_block_types(AVCodecContext * avctx,GetBitContext * gb,Bundle * b)390 static int read_block_types(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
391 {
392 BinkContext * const c = avctx->priv_data;
393 int t, v;
394 int last = 0;
395 const uint8_t *dec_end;
396
397 CHECK_READ_VAL(gb, b, t);
398 if (c->version == 'k') {
399 t ^= 0xBBu;
400 if (t == 0) {
401 b->cur_dec = NULL;
402 return 0;
403 }
404 }
405 dec_end = b->cur_dec + t;
406 if (dec_end > b->data_end) {
407 av_log(avctx, AV_LOG_ERROR, "Too many block type values\n");
408 return AVERROR_INVALIDDATA;
409 }
410 if (get_bits_left(gb) < 1)
411 return AVERROR_INVALIDDATA;
412 if (get_bits1(gb)) {
413 v = get_bits(gb, 4);
414 memset(b->cur_dec, v, t);
415 b->cur_dec += t;
416 } else {
417 while (b->cur_dec < dec_end) {
418 v = GET_HUFF(gb, b->tree);
419 if (v < 12) {
420 last = v;
421 *b->cur_dec++ = v;
422 } else {
423 int run = bink_rlelens[v - 12];
424
425 if (dec_end - b->cur_dec < run)
426 return AVERROR_INVALIDDATA;
427 memset(b->cur_dec, last, run);
428 b->cur_dec += run;
429 }
430 }
431 }
432 return 0;
433 }
434
read_patterns(AVCodecContext * avctx,GetBitContext * gb,Bundle * b)435 static int read_patterns(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
436 {
437 int t, v;
438 const uint8_t *dec_end;
439
440 CHECK_READ_VAL(gb, b, t);
441 dec_end = b->cur_dec + t;
442 if (dec_end > b->data_end) {
443 av_log(avctx, AV_LOG_ERROR, "Too many pattern values\n");
444 return AVERROR_INVALIDDATA;
445 }
446 while (b->cur_dec < dec_end) {
447 if (get_bits_left(gb) < 2)
448 return AVERROR_INVALIDDATA;
449 v = GET_HUFF(gb, b->tree);
450 v |= GET_HUFF(gb, b->tree) << 4;
451 *b->cur_dec++ = v;
452 }
453
454 return 0;
455 }
456
read_colors(GetBitContext * gb,Bundle * b,BinkContext * c)457 static int read_colors(GetBitContext *gb, Bundle *b, BinkContext *c)
458 {
459 int t, sign, v;
460 const uint8_t *dec_end;
461
462 CHECK_READ_VAL(gb, b, t);
463 dec_end = b->cur_dec + t;
464 if (dec_end > b->data_end) {
465 av_log(c->avctx, AV_LOG_ERROR, "Too many color values\n");
466 return AVERROR_INVALIDDATA;
467 }
468 if (get_bits_left(gb) < 1)
469 return AVERROR_INVALIDDATA;
470 if (get_bits1(gb)) {
471 c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
472 v = GET_HUFF(gb, b->tree);
473 v = (c->col_lastval << 4) | v;
474 if (c->version < 'i') {
475 sign = ((int8_t) v) >> 7;
476 v = ((v & 0x7F) ^ sign) - sign;
477 v += 0x80;
478 }
479 memset(b->cur_dec, v, t);
480 b->cur_dec += t;
481 } else {
482 while (b->cur_dec < dec_end) {
483 if (get_bits_left(gb) < 2)
484 return AVERROR_INVALIDDATA;
485 c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
486 v = GET_HUFF(gb, b->tree);
487 v = (c->col_lastval << 4) | v;
488 if (c->version < 'i') {
489 sign = ((int8_t) v) >> 7;
490 v = ((v & 0x7F) ^ sign) - sign;
491 v += 0x80;
492 }
493 *b->cur_dec++ = v;
494 }
495 }
496 return 0;
497 }
498
499 /** number of bits used to store first DC value in bundle */
500 #define DC_START_BITS 11
501
read_dcs(AVCodecContext * avctx,GetBitContext * gb,Bundle * b,int start_bits,int has_sign)502 static int read_dcs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b,
503 int start_bits, int has_sign)
504 {
505 int i, j, len, len2, bsize, sign, v, v2;
506 int16_t *dst = (int16_t*)b->cur_dec;
507 int16_t *dst_end = (int16_t*)b->data_end;
508
509 CHECK_READ_VAL(gb, b, len);
510 if (get_bits_left(gb) < start_bits - has_sign)
511 return AVERROR_INVALIDDATA;
512 v = get_bits(gb, start_bits - has_sign);
513 if (v && has_sign) {
514 sign = -get_bits1(gb);
515 v = (v ^ sign) - sign;
516 }
517 if (dst_end - dst < 1)
518 return AVERROR_INVALIDDATA;
519 *dst++ = v;
520 len--;
521 for (i = 0; i < len; i += 8) {
522 len2 = FFMIN(len - i, 8);
523 if (dst_end - dst < len2)
524 return AVERROR_INVALIDDATA;
525 bsize = get_bits(gb, 4);
526 if (bsize) {
527 for (j = 0; j < len2; j++) {
528 v2 = get_bits(gb, bsize);
529 if (v2) {
530 sign = -get_bits1(gb);
531 v2 = (v2 ^ sign) - sign;
532 }
533 v += v2;
534 *dst++ = v;
535 if (v < -32768 || v > 32767) {
536 av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v);
537 return AVERROR_INVALIDDATA;
538 }
539 }
540 } else {
541 for (j = 0; j < len2; j++)
542 *dst++ = v;
543 }
544 }
545
546 b->cur_dec = (uint8_t*)dst;
547 return 0;
548 }
549
550 /**
551 * Retrieve next value from bundle.
552 *
553 * @param c decoder context
554 * @param bundle bundle number
555 */
get_value(BinkContext * c,int bundle)556 static inline int get_value(BinkContext *c, int bundle)
557 {
558 int ret;
559
560 if (bundle < BINK_SRC_X_OFF || bundle == BINK_SRC_RUN)
561 return *c->bundle[bundle].cur_ptr++;
562 if (bundle == BINK_SRC_X_OFF || bundle == BINK_SRC_Y_OFF)
563 return (int8_t)*c->bundle[bundle].cur_ptr++;
564 ret = *(int16_t*)c->bundle[bundle].cur_ptr;
565 c->bundle[bundle].cur_ptr += 2;
566 return ret;
567 }
568
binkb_init_bundle(BinkContext * c,int bundle_num)569 static av_cold void binkb_init_bundle(BinkContext *c, int bundle_num)
570 {
571 c->bundle[bundle_num].cur_dec =
572 c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
573 c->bundle[bundle_num].len = 13;
574 }
575
binkb_init_bundles(BinkContext * c)576 static av_cold void binkb_init_bundles(BinkContext *c)
577 {
578 int i;
579 for (i = 0; i < BINKB_NB_SRC; i++)
580 binkb_init_bundle(c, i);
581 }
582
binkb_read_bundle(BinkContext * c,GetBitContext * gb,int bundle_num)583 static int binkb_read_bundle(BinkContext *c, GetBitContext *gb, int bundle_num)
584 {
585 const int bits = binkb_bundle_sizes[bundle_num];
586 const int mask = 1 << (bits - 1);
587 const int issigned = binkb_bundle_signed[bundle_num];
588 Bundle *b = &c->bundle[bundle_num];
589 int i, len;
590
591 CHECK_READ_VAL(gb, b, len);
592 if (b->data_end - b->cur_dec < len * (1 + (bits > 8)))
593 return AVERROR_INVALIDDATA;
594 if (bits <= 8) {
595 if (!issigned) {
596 for (i = 0; i < len; i++)
597 *b->cur_dec++ = get_bits(gb, bits);
598 } else {
599 for (i = 0; i < len; i++)
600 *b->cur_dec++ = get_bits(gb, bits) - mask;
601 }
602 } else {
603 int16_t *dst = (int16_t*)b->cur_dec;
604
605 if (!issigned) {
606 for (i = 0; i < len; i++)
607 *dst++ = get_bits(gb, bits);
608 } else {
609 for (i = 0; i < len; i++)
610 *dst++ = get_bits(gb, bits) - mask;
611 }
612 b->cur_dec = (uint8_t*)dst;
613 }
614 return 0;
615 }
616
binkb_get_value(BinkContext * c,int bundle_num)617 static inline int binkb_get_value(BinkContext *c, int bundle_num)
618 {
619 int16_t ret;
620 const int bits = binkb_bundle_sizes[bundle_num];
621
622 if (bits <= 8) {
623 int val = *c->bundle[bundle_num].cur_ptr++;
624 return binkb_bundle_signed[bundle_num] ? (int8_t)val : val;
625 }
626 ret = *(int16_t*)c->bundle[bundle_num].cur_ptr;
627 c->bundle[bundle_num].cur_ptr += 2;
628 return ret;
629 }
630
631 /**
632 * Read 8x8 block of DCT coefficients.
633 *
634 * @param gb context for reading bits
635 * @param block place for storing coefficients
636 * @param scan scan order table
637 * @param quant_matrices quantization matrices
638 * @return 0 for success, negative value in other cases
639 */
read_dct_coeffs(BinkContext * c,GetBitContext * gb,int32_t block[64],const uint8_t * scan,int * coef_count_,int coef_idx[64],int q)640 static int read_dct_coeffs(BinkContext *c, GetBitContext *gb, int32_t block[64],
641 const uint8_t *scan, int *coef_count_,
642 int coef_idx[64], int q)
643 {
644 int coef_list[128];
645 int mode_list[128];
646 int i, t, bits, ccoef, mode, sign;
647 int list_start = 64, list_end = 64, list_pos;
648 int coef_count = 0;
649 int quant_idx;
650
651 if (get_bits_left(gb) < 4)
652 return AVERROR_INVALIDDATA;
653
654 coef_list[list_end] = 4; mode_list[list_end++] = 0;
655 coef_list[list_end] = 24; mode_list[list_end++] = 0;
656 coef_list[list_end] = 44; mode_list[list_end++] = 0;
657 coef_list[list_end] = 1; mode_list[list_end++] = 3;
658 coef_list[list_end] = 2; mode_list[list_end++] = 3;
659 coef_list[list_end] = 3; mode_list[list_end++] = 3;
660
661 for (bits = get_bits(gb, 4) - 1; bits >= 0; bits--) {
662 list_pos = list_start;
663 while (list_pos < list_end) {
664 if (!(mode_list[list_pos] | coef_list[list_pos]) || !get_bits1(gb)) {
665 list_pos++;
666 continue;
667 }
668 ccoef = coef_list[list_pos];
669 mode = mode_list[list_pos];
670 switch (mode) {
671 case 0:
672 coef_list[list_pos] = ccoef + 4;
673 mode_list[list_pos] = 1;
674 case 2:
675 if (mode == 2) {
676 coef_list[list_pos] = 0;
677 mode_list[list_pos++] = 0;
678 }
679 for (i = 0; i < 4; i++, ccoef++) {
680 if (get_bits1(gb)) {
681 coef_list[--list_start] = ccoef;
682 mode_list[ list_start] = 3;
683 } else {
684 if (!bits) {
685 t = 1 - (get_bits1(gb) << 1);
686 } else {
687 t = get_bits(gb, bits) | 1 << bits;
688 sign = -get_bits1(gb);
689 t = (t ^ sign) - sign;
690 }
691 block[scan[ccoef]] = t;
692 coef_idx[coef_count++] = ccoef;
693 }
694 }
695 break;
696 case 1:
697 mode_list[list_pos] = 2;
698 for (i = 0; i < 3; i++) {
699 ccoef += 4;
700 coef_list[list_end] = ccoef;
701 mode_list[list_end++] = 2;
702 }
703 break;
704 case 3:
705 if (!bits) {
706 t = 1 - (get_bits1(gb) << 1);
707 } else {
708 t = get_bits(gb, bits) | 1 << bits;
709 sign = -get_bits1(gb);
710 t = (t ^ sign) - sign;
711 }
712 block[scan[ccoef]] = t;
713 coef_idx[coef_count++] = ccoef;
714 coef_list[list_pos] = 0;
715 mode_list[list_pos++] = 0;
716 break;
717 }
718 }
719 }
720
721 if (q == -1) {
722 quant_idx = get_bits(gb, 4);
723 } else {
724 quant_idx = q;
725 if (quant_idx > 15U) {
726 av_log(c->avctx, AV_LOG_ERROR, "quant_index %d out of range\n", quant_idx);
727 return AVERROR_INVALIDDATA;
728 }
729 }
730
731 *coef_count_ = coef_count;
732
733 return quant_idx;
734 }
735
unquantize_dct_coeffs(int32_t block[64],const uint32_t quant[64],int coef_count,int coef_idx[64],const uint8_t * scan)736 static void unquantize_dct_coeffs(int32_t block[64], const uint32_t quant[64],
737 int coef_count, int coef_idx[64],
738 const uint8_t *scan)
739 {
740 int i;
741 block[0] = (int)(block[0] * quant[0]) >> 11;
742 for (i = 0; i < coef_count; i++) {
743 int idx = coef_idx[i];
744 block[scan[idx]] = (int)(block[scan[idx]] * quant[idx]) >> 11;
745 }
746 }
747
748 /**
749 * Read 8x8 block with residue after motion compensation.
750 *
751 * @param gb context for reading bits
752 * @param block place to store read data
753 * @param masks_count number of masks to decode
754 * @return 0 on success, negative value in other cases
755 */
read_residue(GetBitContext * gb,int16_t block[64],int masks_count)756 static int read_residue(GetBitContext *gb, int16_t block[64], int masks_count)
757 {
758 int coef_list[128];
759 int mode_list[128];
760 int i, sign, mask, ccoef, mode;
761 int list_start = 64, list_end = 64, list_pos;
762 int nz_coeff[64];
763 int nz_coeff_count = 0;
764
765 coef_list[list_end] = 4; mode_list[list_end++] = 0;
766 coef_list[list_end] = 24; mode_list[list_end++] = 0;
767 coef_list[list_end] = 44; mode_list[list_end++] = 0;
768 coef_list[list_end] = 0; mode_list[list_end++] = 2;
769
770 for (mask = 1 << get_bits(gb, 3); mask; mask >>= 1) {
771 for (i = 0; i < nz_coeff_count; i++) {
772 if (!get_bits1(gb))
773 continue;
774 if (block[nz_coeff[i]] < 0)
775 block[nz_coeff[i]] -= mask;
776 else
777 block[nz_coeff[i]] += mask;
778 masks_count--;
779 if (masks_count < 0)
780 return 0;
781 }
782 list_pos = list_start;
783 while (list_pos < list_end) {
784 if (!(coef_list[list_pos] | mode_list[list_pos]) || !get_bits1(gb)) {
785 list_pos++;
786 continue;
787 }
788 ccoef = coef_list[list_pos];
789 mode = mode_list[list_pos];
790 switch (mode) {
791 case 0:
792 coef_list[list_pos] = ccoef + 4;
793 mode_list[list_pos] = 1;
794 case 2:
795 if (mode == 2) {
796 coef_list[list_pos] = 0;
797 mode_list[list_pos++] = 0;
798 }
799 for (i = 0; i < 4; i++, ccoef++) {
800 if (get_bits1(gb)) {
801 coef_list[--list_start] = ccoef;
802 mode_list[ list_start] = 3;
803 } else {
804 nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
805 sign = -get_bits1(gb);
806 block[bink_scan[ccoef]] = (mask ^ sign) - sign;
807 masks_count--;
808 if (masks_count < 0)
809 return 0;
810 }
811 }
812 break;
813 case 1:
814 mode_list[list_pos] = 2;
815 for (i = 0; i < 3; i++) {
816 ccoef += 4;
817 coef_list[list_end] = ccoef;
818 mode_list[list_end++] = 2;
819 }
820 break;
821 case 3:
822 nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
823 sign = -get_bits1(gb);
824 block[bink_scan[ccoef]] = (mask ^ sign) - sign;
825 coef_list[list_pos] = 0;
826 mode_list[list_pos++] = 0;
827 masks_count--;
828 if (masks_count < 0)
829 return 0;
830 break;
831 }
832 }
833 }
834
835 return 0;
836 }
837
838 /**
839 * Copy 8x8 block from source to destination, where src and dst may be overlapped
840 */
put_pixels8x8_overlapped(uint8_t * dst,uint8_t * src,int stride)841 static inline void put_pixels8x8_overlapped(uint8_t *dst, uint8_t *src, int stride)
842 {
843 uint8_t tmp[64];
844 int i;
845 for (i = 0; i < 8; i++)
846 memcpy(tmp + i*8, src + i*stride, 8);
847 for (i = 0; i < 8; i++)
848 memcpy(dst + i*stride, tmp + i*8, 8);
849 }
850
binkb_decode_plane(BinkContext * c,AVFrame * frame,GetBitContext * gb,int plane_idx,int is_key,int is_chroma)851 static int binkb_decode_plane(BinkContext *c, AVFrame *frame, GetBitContext *gb,
852 int plane_idx, int is_key, int is_chroma)
853 {
854 int blk, ret;
855 int i, j, bx, by;
856 uint8_t *dst, *ref, *ref_start, *ref_end;
857 int v, col[2];
858 const uint8_t *scan;
859 int xoff, yoff;
860 LOCAL_ALIGNED_32(int16_t, block, [64]);
861 LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
862 int coordmap[64];
863 int ybias = is_key ? -15 : 0;
864 int qp, quant_idx, coef_count, coef_idx[64];
865
866 const int stride = frame->linesize[plane_idx];
867 int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
868 int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
869
870 binkb_init_bundles(c);
871 ref_start = frame->data[plane_idx];
872 ref_end = frame->data[plane_idx] + (bh * frame->linesize[plane_idx] + bw) * 8;
873
874 for (i = 0; i < 64; i++)
875 coordmap[i] = (i & 7) + (i >> 3) * stride;
876
877 for (by = 0; by < bh; by++) {
878 for (i = 0; i < BINKB_NB_SRC; i++) {
879 if ((ret = binkb_read_bundle(c, gb, i)) < 0)
880 return ret;
881 }
882
883 dst = frame->data[plane_idx] + 8*by*stride;
884 for (bx = 0; bx < bw; bx++, dst += 8) {
885 blk = binkb_get_value(c, BINKB_SRC_BLOCK_TYPES);
886 switch (blk) {
887 case 0:
888 break;
889 case 1:
890 scan = bink_patterns[get_bits(gb, 4)];
891 i = 0;
892 do {
893 int mode, run;
894
895 mode = get_bits1(gb);
896 run = get_bits(gb, binkb_runbits[i]) + 1;
897
898 i += run;
899 if (i > 64) {
900 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
901 return AVERROR_INVALIDDATA;
902 }
903 if (mode) {
904 v = binkb_get_value(c, BINKB_SRC_COLORS);
905 for (j = 0; j < run; j++)
906 dst[coordmap[*scan++]] = v;
907 } else {
908 for (j = 0; j < run; j++)
909 dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
910 }
911 } while (i < 63);
912 if (i == 63)
913 dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
914 break;
915 case 2:
916 memset(dctblock, 0, sizeof(*dctblock) * 64);
917 dctblock[0] = binkb_get_value(c, BINKB_SRC_INTRA_DC);
918 qp = binkb_get_value(c, BINKB_SRC_INTRA_Q);
919 if ((quant_idx = read_dct_coeffs(c, gb, dctblock, bink_scan, &coef_count, coef_idx, qp)) < 0)
920 return quant_idx;
921 unquantize_dct_coeffs(dctblock, binkb_intra_quant[quant_idx], coef_count, coef_idx, bink_scan);
922 c->binkdsp.idct_put(dst, stride, dctblock);
923 break;
924 case 3:
925 xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
926 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
927 ref = dst + xoff + yoff * stride;
928 if (ref < ref_start || ref + 8*stride > ref_end) {
929 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
930 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
931 c->put_pixels_tab(dst, ref, stride, 8);
932 } else {
933 put_pixels8x8_overlapped(dst, ref, stride);
934 }
935 c->bdsp.clear_block(block);
936 v = binkb_get_value(c, BINKB_SRC_INTER_COEFS);
937 read_residue(gb, block, v);
938 c->binkdsp.add_pixels8(dst, block, stride);
939 break;
940 case 4:
941 xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
942 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
943 ref = dst + xoff + yoff * stride;
944 if (ref < ref_start || ref + 8 * stride > ref_end) {
945 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
946 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
947 c->put_pixels_tab(dst, ref, stride, 8);
948 } else {
949 put_pixels8x8_overlapped(dst, ref, stride);
950 }
951 memset(dctblock, 0, sizeof(*dctblock) * 64);
952 dctblock[0] = binkb_get_value(c, BINKB_SRC_INTER_DC);
953 qp = binkb_get_value(c, BINKB_SRC_INTER_Q);
954 if ((quant_idx = read_dct_coeffs(c, gb, dctblock, bink_scan, &coef_count, coef_idx, qp)) < 0)
955 return quant_idx;
956 unquantize_dct_coeffs(dctblock, binkb_inter_quant[quant_idx], coef_count, coef_idx, bink_scan);
957 c->binkdsp.idct_add(dst, stride, dctblock);
958 break;
959 case 5:
960 v = binkb_get_value(c, BINKB_SRC_COLORS);
961 c->bdsp.fill_block_tab[1](dst, v, stride, 8);
962 break;
963 case 6:
964 for (i = 0; i < 2; i++)
965 col[i] = binkb_get_value(c, BINKB_SRC_COLORS);
966 for (i = 0; i < 8; i++) {
967 v = binkb_get_value(c, BINKB_SRC_PATTERN);
968 for (j = 0; j < 8; j++, v >>= 1)
969 dst[i*stride + j] = col[v & 1];
970 }
971 break;
972 case 7:
973 xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
974 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
975 ref = dst + xoff + yoff * stride;
976 if (ref < ref_start || ref + 8 * stride > ref_end) {
977 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
978 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
979 c->put_pixels_tab(dst, ref, stride, 8);
980 } else {
981 put_pixels8x8_overlapped(dst, ref, stride);
982 }
983 break;
984 case 8:
985 for (i = 0; i < 8; i++)
986 memcpy(dst + i*stride, c->bundle[BINKB_SRC_COLORS].cur_ptr + i*8, 8);
987 c->bundle[BINKB_SRC_COLORS].cur_ptr += 64;
988 break;
989 default:
990 av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
991 return AVERROR_INVALIDDATA;
992 }
993 }
994 }
995 if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
996 skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
997
998 return 0;
999 }
1000
bink_put_pixels(BinkContext * c,uint8_t * dst,uint8_t * prev,int stride,uint8_t * ref_start,uint8_t * ref_end)1001 static int bink_put_pixels(BinkContext *c,
1002 uint8_t *dst, uint8_t *prev, int stride,
1003 uint8_t *ref_start,
1004 uint8_t *ref_end)
1005 {
1006 int xoff = get_value(c, BINK_SRC_X_OFF);
1007 int yoff = get_value(c, BINK_SRC_Y_OFF);
1008 uint8_t *ref = prev + xoff + yoff * stride;
1009 if (ref < ref_start || ref > ref_end) {
1010 av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1011 xoff, yoff);
1012 return AVERROR_INVALIDDATA;
1013 }
1014 c->put_pixels_tab(dst, ref, stride, 8);
1015
1016 return 0;
1017 }
1018
bink_decode_plane(BinkContext * c,AVFrame * frame,GetBitContext * gb,int plane_idx,int is_chroma)1019 static int bink_decode_plane(BinkContext *c, AVFrame *frame, GetBitContext *gb,
1020 int plane_idx, int is_chroma)
1021 {
1022 int blk, ret;
1023 int i, j, bx, by;
1024 uint8_t *dst, *prev, *ref_start, *ref_end;
1025 int v, col[2];
1026 const uint8_t *scan;
1027 LOCAL_ALIGNED_32(int16_t, block, [64]);
1028 LOCAL_ALIGNED_16(uint8_t, ublock, [64]);
1029 LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
1030 int coordmap[64], quant_idx, coef_count, coef_idx[64];
1031
1032 const int stride = frame->linesize[plane_idx];
1033 int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
1034 int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
1035 int width = c->avctx->width >> is_chroma;
1036 int height = c->avctx->height >> is_chroma;
1037
1038 if (c->version == 'k' && get_bits1(gb)) {
1039 int fill = get_bits(gb, 8);
1040
1041 dst = frame->data[plane_idx];
1042
1043 for (i = 0; i < height; i++)
1044 memset(dst + i * stride, fill, width);
1045 goto end;
1046 }
1047
1048 init_lengths(c, FFMAX(width, 8), bw);
1049 for (i = 0; i < BINK_NB_SRC; i++) {
1050 ret = read_bundle(gb, c, i);
1051 if (ret < 0)
1052 return ret;
1053 }
1054
1055 ref_start = c->last->data[plane_idx] ? c->last->data[plane_idx]
1056 : frame->data[plane_idx];
1057 ref_end = ref_start
1058 + (bw - 1 + c->last->linesize[plane_idx] * (bh - 1)) * 8;
1059
1060 for (i = 0; i < 64; i++)
1061 coordmap[i] = (i & 7) + (i >> 3) * stride;
1062
1063 for (by = 0; by < bh; by++) {
1064 if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_BLOCK_TYPES])) < 0)
1065 return ret;
1066 if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_SUB_BLOCK_TYPES])) < 0)
1067 return ret;
1068 if ((ret = read_colors(gb, &c->bundle[BINK_SRC_COLORS], c)) < 0)
1069 return ret;
1070 if ((ret = read_patterns(c->avctx, gb, &c->bundle[BINK_SRC_PATTERN])) < 0)
1071 return ret;
1072 if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_X_OFF])) < 0)
1073 return ret;
1074 if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_Y_OFF])) < 0)
1075 return ret;
1076 if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTRA_DC], DC_START_BITS, 0)) < 0)
1077 return ret;
1078 if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTER_DC], DC_START_BITS, 1)) < 0)
1079 return ret;
1080 if ((ret = read_runs(c->avctx, gb, &c->bundle[BINK_SRC_RUN])) < 0)
1081 return ret;
1082
1083 dst = frame->data[plane_idx] + 8*by*stride;
1084 prev = (c->last->data[plane_idx] ? c->last->data[plane_idx]
1085 : frame->data[plane_idx]) + 8*by*stride;
1086 for (bx = 0; bx < bw; bx++, dst += 8, prev += 8) {
1087 blk = get_value(c, BINK_SRC_BLOCK_TYPES);
1088 // 16x16 block type on odd line means part of the already decoded block, so skip it
1089 if ((by & 1) && blk == SCALED_BLOCK) {
1090 bx++;
1091 dst += 8;
1092 prev += 8;
1093 continue;
1094 }
1095 switch (blk) {
1096 case SKIP_BLOCK:
1097 c->put_pixels_tab(dst, prev, stride, 8);
1098 break;
1099 case SCALED_BLOCK:
1100 blk = get_value(c, BINK_SRC_SUB_BLOCK_TYPES);
1101 switch (blk) {
1102 case RUN_BLOCK:
1103 if (get_bits_left(gb) < 4)
1104 return AVERROR_INVALIDDATA;
1105 scan = bink_patterns[get_bits(gb, 4)];
1106 i = 0;
1107 do {
1108 int run = get_value(c, BINK_SRC_RUN) + 1;
1109
1110 i += run;
1111 if (i > 64) {
1112 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
1113 return AVERROR_INVALIDDATA;
1114 }
1115 if (get_bits1(gb)) {
1116 v = get_value(c, BINK_SRC_COLORS);
1117 for (j = 0; j < run; j++)
1118 ublock[*scan++] = v;
1119 } else {
1120 for (j = 0; j < run; j++)
1121 ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
1122 }
1123 } while (i < 63);
1124 if (i == 63)
1125 ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
1126 break;
1127 case INTRA_BLOCK:
1128 memset(dctblock, 0, sizeof(*dctblock) * 64);
1129 dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
1130 if ((quant_idx = read_dct_coeffs(c, gb, dctblock, bink_scan, &coef_count, coef_idx, -1)) < 0)
1131 return quant_idx;
1132 unquantize_dct_coeffs(dctblock, bink_intra_quant[quant_idx], coef_count, coef_idx, bink_scan);
1133 c->binkdsp.idct_put(ublock, 8, dctblock);
1134 break;
1135 case FILL_BLOCK:
1136 v = get_value(c, BINK_SRC_COLORS);
1137 c->bdsp.fill_block_tab[0](dst, v, stride, 16);
1138 break;
1139 case PATTERN_BLOCK:
1140 for (i = 0; i < 2; i++)
1141 col[i] = get_value(c, BINK_SRC_COLORS);
1142 for (j = 0; j < 8; j++) {
1143 v = get_value(c, BINK_SRC_PATTERN);
1144 for (i = 0; i < 8; i++, v >>= 1)
1145 ublock[i + j*8] = col[v & 1];
1146 }
1147 break;
1148 case RAW_BLOCK:
1149 for (j = 0; j < 8; j++)
1150 for (i = 0; i < 8; i++)
1151 ublock[i + j*8] = get_value(c, BINK_SRC_COLORS);
1152 break;
1153 default:
1154 av_log(c->avctx, AV_LOG_ERROR, "Incorrect 16x16 block type %d\n", blk);
1155 return AVERROR_INVALIDDATA;
1156 }
1157 if (blk != FILL_BLOCK)
1158 c->binkdsp.scale_block(ublock, dst, stride);
1159 bx++;
1160 dst += 8;
1161 prev += 8;
1162 break;
1163 case MOTION_BLOCK:
1164 ret = bink_put_pixels(c, dst, prev, stride,
1165 ref_start, ref_end);
1166 if (ret < 0)
1167 return ret;
1168 break;
1169 case RUN_BLOCK:
1170 scan = bink_patterns[get_bits(gb, 4)];
1171 i = 0;
1172 do {
1173 int run = get_value(c, BINK_SRC_RUN) + 1;
1174
1175 i += run;
1176 if (i > 64) {
1177 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
1178 return AVERROR_INVALIDDATA;
1179 }
1180 if (get_bits1(gb)) {
1181 v = get_value(c, BINK_SRC_COLORS);
1182 for (j = 0; j < run; j++)
1183 dst[coordmap[*scan++]] = v;
1184 } else {
1185 for (j = 0; j < run; j++)
1186 dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
1187 }
1188 } while (i < 63);
1189 if (i == 63)
1190 dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
1191 break;
1192 case RESIDUE_BLOCK:
1193 ret = bink_put_pixels(c, dst, prev, stride,
1194 ref_start, ref_end);
1195 if (ret < 0)
1196 return ret;
1197 c->bdsp.clear_block(block);
1198 v = get_bits(gb, 7);
1199 read_residue(gb, block, v);
1200 c->binkdsp.add_pixels8(dst, block, stride);
1201 break;
1202 case INTRA_BLOCK:
1203 memset(dctblock, 0, sizeof(*dctblock) * 64);
1204 dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
1205 if ((quant_idx = read_dct_coeffs(c, gb, dctblock, bink_scan, &coef_count, coef_idx, -1)) < 0)
1206 return quant_idx;
1207 unquantize_dct_coeffs(dctblock, bink_intra_quant[quant_idx], coef_count, coef_idx, bink_scan);
1208 c->binkdsp.idct_put(dst, stride, dctblock);
1209 break;
1210 case FILL_BLOCK:
1211 v = get_value(c, BINK_SRC_COLORS);
1212 c->bdsp.fill_block_tab[1](dst, v, stride, 8);
1213 break;
1214 case INTER_BLOCK:
1215 ret = bink_put_pixels(c, dst, prev, stride,
1216 ref_start, ref_end);
1217 if (ret < 0)
1218 return ret;
1219 memset(dctblock, 0, sizeof(*dctblock) * 64);
1220 dctblock[0] = get_value(c, BINK_SRC_INTER_DC);
1221 if ((quant_idx = read_dct_coeffs(c, gb, dctblock, bink_scan, &coef_count, coef_idx, -1)) < 0)
1222 return quant_idx;
1223 unquantize_dct_coeffs(dctblock, bink_inter_quant[quant_idx], coef_count, coef_idx, bink_scan);
1224 c->binkdsp.idct_add(dst, stride, dctblock);
1225 break;
1226 case PATTERN_BLOCK:
1227 for (i = 0; i < 2; i++)
1228 col[i] = get_value(c, BINK_SRC_COLORS);
1229 for (i = 0; i < 8; i++) {
1230 v = get_value(c, BINK_SRC_PATTERN);
1231 for (j = 0; j < 8; j++, v >>= 1)
1232 dst[i*stride + j] = col[v & 1];
1233 }
1234 break;
1235 case RAW_BLOCK:
1236 for (i = 0; i < 8; i++)
1237 memcpy(dst + i*stride, c->bundle[BINK_SRC_COLORS].cur_ptr + i*8, 8);
1238 c->bundle[BINK_SRC_COLORS].cur_ptr += 64;
1239 break;
1240 default:
1241 av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
1242 return AVERROR_INVALIDDATA;
1243 }
1244 }
1245 }
1246
1247 end:
1248 if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
1249 skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
1250
1251 return 0;
1252 }
1253
decode_frame(AVCodecContext * avctx,void * data,int * got_frame,AVPacket * pkt)1254 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
1255 {
1256 BinkContext * const c = avctx->priv_data;
1257 AVFrame *frame = data;
1258 GetBitContext gb;
1259 int plane, plane_idx, ret;
1260 int bits_count = pkt->size << 3;
1261
1262 if (c->version > 'b') {
1263 if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0)
1264 return ret;
1265 } else {
1266 if ((ret = ff_reget_buffer(avctx, c->last, 0)) < 0)
1267 return ret;
1268 if ((ret = av_frame_ref(frame, c->last)) < 0)
1269 return ret;
1270 }
1271
1272 init_get_bits(&gb, pkt->data, bits_count);
1273 if (c->has_alpha) {
1274 if (c->version >= 'i')
1275 skip_bits_long(&gb, 32);
1276 if ((ret = bink_decode_plane(c, frame, &gb, 3, 0)) < 0)
1277 return ret;
1278 }
1279 if (c->version >= 'i')
1280 skip_bits_long(&gb, 32);
1281
1282 c->frame_num++;
1283
1284 for (plane = 0; plane < 3; plane++) {
1285 plane_idx = (!plane || !c->swap_planes) ? plane : (plane ^ 3);
1286
1287 if (c->version > 'b') {
1288 if ((ret = bink_decode_plane(c, frame, &gb, plane_idx, !!plane)) < 0)
1289 return ret;
1290 } else {
1291 if ((ret = binkb_decode_plane(c, frame, &gb, plane_idx,
1292 c->frame_num == 1, !!plane)) < 0)
1293 return ret;
1294 }
1295 if (get_bits_count(&gb) >= bits_count)
1296 break;
1297 }
1298 emms_c();
1299
1300 if (c->version > 'b') {
1301 av_frame_unref(c->last);
1302 if ((ret = av_frame_ref(c->last, frame)) < 0)
1303 return ret;
1304 }
1305
1306 *got_frame = 1;
1307
1308 /* always report that the buffer was completely consumed */
1309 return pkt->size;
1310 }
1311
1312 /**
1313 * Calculate quantization tables for version b
1314 */
binkb_calc_quant(void)1315 static av_cold void binkb_calc_quant(void)
1316 {
1317 uint8_t inv_bink_scan[64];
1318 static const int s[64]={
1319 1073741824,1489322693,1402911301,1262586814,1073741824, 843633538, 581104888, 296244703,
1320 1489322693,2065749918,1945893874,1751258219,1489322693,1170153332, 806015634, 410903207,
1321 1402911301,1945893874,1832991949,1649649171,1402911301,1102260336, 759250125, 387062357,
1322 1262586814,1751258219,1649649171,1484645031,1262586814, 992008094, 683307060, 348346918,
1323 1073741824,1489322693,1402911301,1262586814,1073741824, 843633538, 581104888, 296244703,
1324 843633538,1170153332,1102260336, 992008094, 843633538, 662838617, 456571181, 232757969,
1325 581104888, 806015634, 759250125, 683307060, 581104888, 456571181, 314491699, 160326478,
1326 296244703, 410903207, 387062357, 348346918, 296244703, 232757969, 160326478, 81733730,
1327 };
1328 int i, j;
1329 #define C (1LL<<30)
1330 for (i = 0; i < 64; i++)
1331 inv_bink_scan[bink_scan[i]] = i;
1332
1333 for (j = 0; j < 16; j++) {
1334 for (i = 0; i < 64; i++) {
1335 int k = inv_bink_scan[i];
1336 binkb_intra_quant[j][k] = binkb_intra_seed[i] * (int64_t)s[i] *
1337 binkb_num[j]/(binkb_den[j] * (C>>12));
1338 binkb_inter_quant[j][k] = binkb_inter_seed[i] * (int64_t)s[i] *
1339 binkb_num[j]/(binkb_den[j] * (C>>12));
1340 }
1341 }
1342 }
1343
decode_init(AVCodecContext * avctx)1344 static av_cold int decode_init(AVCodecContext *avctx)
1345 {
1346 BinkContext * const c = avctx->priv_data;
1347 static VLC_TYPE table[16 * 128][2];
1348 static int binkb_initialised = 0;
1349 HpelDSPContext hdsp;
1350 int i, ret;
1351 int flags;
1352
1353 c->version = avctx->codec_tag >> 24;
1354 if (avctx->extradata_size < 4) {
1355 av_log(avctx, AV_LOG_ERROR, "Extradata missing or too short\n");
1356 return AVERROR_INVALIDDATA;
1357 }
1358 flags = AV_RL32(avctx->extradata);
1359 c->has_alpha = flags & BINK_FLAG_ALPHA;
1360 c->swap_planes = c->version >= 'h';
1361 if (!bink_trees[15].table) {
1362 for (i = 0; i < 16; i++) {
1363 const int maxbits = bink_tree_lens[i][15];
1364 bink_trees[i].table = table + i*128;
1365 bink_trees[i].table_allocated = 1 << maxbits;
1366 init_vlc(&bink_trees[i], maxbits, 16,
1367 bink_tree_lens[i], 1, 1,
1368 bink_tree_bits[i], 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
1369 }
1370 }
1371 c->avctx = avctx;
1372
1373 if ((ret = av_image_check_size(avctx->width, avctx->height, 0, avctx)) < 0)
1374 return ret;
1375
1376 c->last = av_frame_alloc();
1377 if (!c->last)
1378 return AVERROR(ENOMEM);
1379
1380 avctx->pix_fmt = c->has_alpha ? AV_PIX_FMT_YUVA420P : AV_PIX_FMT_YUV420P;
1381 avctx->color_range = c->version == 'k' ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
1382
1383 ff_blockdsp_init(&c->bdsp, avctx);
1384 ff_hpeldsp_init(&hdsp, avctx->flags);
1385 c->put_pixels_tab = hdsp.put_pixels_tab[1][0];
1386 ff_binkdsp_init(&c->binkdsp);
1387
1388 if ((ret = init_bundles(c)) < 0)
1389 return ret;
1390
1391 if (c->version == 'b') {
1392 if (!binkb_initialised) {
1393 binkb_calc_quant();
1394 binkb_initialised = 1;
1395 }
1396 }
1397
1398 return 0;
1399 }
1400
decode_end(AVCodecContext * avctx)1401 static av_cold int decode_end(AVCodecContext *avctx)
1402 {
1403 BinkContext * const c = avctx->priv_data;
1404
1405 av_frame_free(&c->last);
1406
1407 free_bundles(c);
1408 return 0;
1409 }
1410
flush(AVCodecContext * avctx)1411 static void flush(AVCodecContext *avctx)
1412 {
1413 BinkContext * const c = avctx->priv_data;
1414
1415 c->frame_num = 0;
1416 }
1417
1418 AVCodec ff_bink_decoder = {
1419 .name = "binkvideo",
1420 .long_name = NULL_IF_CONFIG_SMALL("Bink video"),
1421 .type = AVMEDIA_TYPE_VIDEO,
1422 .id = AV_CODEC_ID_BINKVIDEO,
1423 .priv_data_size = sizeof(BinkContext),
1424 .init = decode_init,
1425 .close = decode_end,
1426 .decode = decode_frame,
1427 .flush = flush,
1428 .capabilities = AV_CODEC_CAP_DR1,
1429 .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
1430 };
1431