• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2012 Andrew D'Addesio
3  * Copyright (c) 2013-2014 Mozilla Corporation
4  * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * Opus CELT decoder
26  */
27 
28 #include "opus_celt.h"
29 #include "opustab.h"
30 #include "opus_pvq.h"
31 
32 /* Use the 2D z-transform to apply prediction in both the time domain (alpha)
33  * and the frequency domain (beta) */
celt_decode_coarse_energy(CeltFrame * f,OpusRangeCoder * rc)34 static void celt_decode_coarse_energy(CeltFrame *f, OpusRangeCoder *rc)
35 {
36     int i, j;
37     float prev[2] = { 0 };
38     float alpha = ff_celt_alpha_coef[f->size];
39     float beta  = ff_celt_beta_coef[f->size];
40     const uint8_t *model = ff_celt_coarse_energy_dist[f->size][0];
41 
42     /* intra frame */
43     if (opus_rc_tell(rc) + 3 <= f->framebits && ff_opus_rc_dec_log(rc, 3)) {
44         alpha = 0.0f;
45         beta  = 1.0f - (4915.0f/32768.0f);
46         model = ff_celt_coarse_energy_dist[f->size][1];
47     }
48 
49     for (i = 0; i < CELT_MAX_BANDS; i++) {
50         for (j = 0; j < f->channels; j++) {
51             CeltBlock *block = &f->block[j];
52             float value;
53             int available;
54 
55             if (i < f->start_band || i >= f->end_band) {
56                 block->energy[i] = 0.0;
57                 continue;
58             }
59 
60             available = f->framebits - opus_rc_tell(rc);
61             if (available >= 15) {
62                 /* decode using a Laplace distribution */
63                 int k = FFMIN(i, 20) << 1;
64                 value = ff_opus_rc_dec_laplace(rc, model[k] << 7, model[k+1] << 6);
65             } else if (available >= 2) {
66                 int x = ff_opus_rc_dec_cdf(rc, ff_celt_model_energy_small);
67                 value = (x>>1) ^ -(x&1);
68             } else if (available >= 1) {
69                 value = -(float)ff_opus_rc_dec_log(rc, 1);
70             } else value = -1;
71 
72             block->energy[i] = FFMAX(-9.0f, block->energy[i]) * alpha + prev[j] + value;
73             prev[j] += beta * value;
74         }
75     }
76 }
77 
celt_decode_fine_energy(CeltFrame * f,OpusRangeCoder * rc)78 static void celt_decode_fine_energy(CeltFrame *f, OpusRangeCoder *rc)
79 {
80     int i;
81     for (i = f->start_band; i < f->end_band; i++) {
82         int j;
83         if (!f->fine_bits[i])
84             continue;
85 
86         for (j = 0; j < f->channels; j++) {
87             CeltBlock *block = &f->block[j];
88             int q2;
89             float offset;
90             q2 = ff_opus_rc_get_raw(rc, f->fine_bits[i]);
91             offset = (q2 + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f - 0.5f;
92             block->energy[i] += offset;
93         }
94     }
95 }
96 
celt_decode_final_energy(CeltFrame * f,OpusRangeCoder * rc)97 static void celt_decode_final_energy(CeltFrame *f, OpusRangeCoder *rc)
98 {
99     int priority, i, j;
100     int bits_left = f->framebits - opus_rc_tell(rc);
101 
102     for (priority = 0; priority < 2; priority++) {
103         for (i = f->start_band; i < f->end_band && bits_left >= f->channels; i++) {
104             if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS)
105                 continue;
106 
107             for (j = 0; j < f->channels; j++) {
108                 int q2;
109                 float offset;
110                 q2 = ff_opus_rc_get_raw(rc, 1);
111                 offset = (q2 - 0.5f) * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f;
112                 f->block[j].energy[i] += offset;
113                 bits_left--;
114             }
115         }
116     }
117 }
118 
celt_decode_tf_changes(CeltFrame * f,OpusRangeCoder * rc)119 static void celt_decode_tf_changes(CeltFrame *f, OpusRangeCoder *rc)
120 {
121     int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit;
122     int consumed, bits = f->transient ? 2 : 4;
123 
124     consumed = opus_rc_tell(rc);
125     tf_select_bit = (f->size != 0 && consumed+bits+1 <= f->framebits);
126 
127     for (i = f->start_band; i < f->end_band; i++) {
128         if (consumed+bits+tf_select_bit <= f->framebits) {
129             diff ^= ff_opus_rc_dec_log(rc, bits);
130             consumed = opus_rc_tell(rc);
131             tf_changed |= diff;
132         }
133         f->tf_change[i] = diff;
134         bits = f->transient ? 4 : 5;
135     }
136 
137     if (tf_select_bit && ff_celt_tf_select[f->size][f->transient][0][tf_changed] !=
138                          ff_celt_tf_select[f->size][f->transient][1][tf_changed])
139         tf_select = ff_opus_rc_dec_log(rc, 1);
140 
141     for (i = f->start_band; i < f->end_band; i++) {
142         f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
143     }
144 }
145 
celt_denormalize(CeltFrame * f,CeltBlock * block,float * data)146 static void celt_denormalize(CeltFrame *f, CeltBlock *block, float *data)
147 {
148     int i, j;
149 
150     for (i = f->start_band; i < f->end_band; i++) {
151         float *dst = data + (ff_celt_freq_bands[i] << f->size);
152         float log_norm = block->energy[i] + ff_celt_mean_energy[i];
153         float norm = exp2f(FFMIN(log_norm, 32.0f));
154 
155         for (j = 0; j < ff_celt_freq_range[i] << f->size; j++)
156             dst[j] *= norm;
157     }
158 }
159 
celt_postfilter_apply_transition(CeltBlock * block,float * data)160 static void celt_postfilter_apply_transition(CeltBlock *block, float *data)
161 {
162     const int T0 = block->pf_period_old;
163     const int T1 = block->pf_period;
164 
165     float g00, g01, g02;
166     float g10, g11, g12;
167 
168     float x0, x1, x2, x3, x4;
169 
170     int i;
171 
172     if (block->pf_gains[0]     == 0.0 &&
173         block->pf_gains_old[0] == 0.0)
174         return;
175 
176     g00 = block->pf_gains_old[0];
177     g01 = block->pf_gains_old[1];
178     g02 = block->pf_gains_old[2];
179     g10 = block->pf_gains[0];
180     g11 = block->pf_gains[1];
181     g12 = block->pf_gains[2];
182 
183     x1 = data[-T1 + 1];
184     x2 = data[-T1];
185     x3 = data[-T1 - 1];
186     x4 = data[-T1 - 2];
187 
188     for (i = 0; i < CELT_OVERLAP; i++) {
189         float w = ff_celt_window2[i];
190         x0 = data[i - T1 + 2];
191 
192         data[i] +=  (1.0 - w) * g00 * data[i - T0]                          +
193                     (1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) +
194                     (1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) +
195                     w         * g10 * x2                                    +
196                     w         * g11 * (x1 + x3)                             +
197                     w         * g12 * (x0 + x4);
198         x4 = x3;
199         x3 = x2;
200         x2 = x1;
201         x1 = x0;
202     }
203 }
204 
celt_postfilter(CeltFrame * f,CeltBlock * block)205 static void celt_postfilter(CeltFrame *f, CeltBlock *block)
206 {
207     int len = f->blocksize * f->blocks;
208     const int filter_len = len - 2 * CELT_OVERLAP;
209 
210     celt_postfilter_apply_transition(block, block->buf + 1024);
211 
212     block->pf_period_old = block->pf_period;
213     memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains));
214 
215     block->pf_period = block->pf_period_new;
216     memcpy(block->pf_gains, block->pf_gains_new, sizeof(block->pf_gains));
217 
218     if (len > CELT_OVERLAP) {
219         celt_postfilter_apply_transition(block, block->buf + 1024 + CELT_OVERLAP);
220 
221         if (block->pf_gains[0] > FLT_EPSILON && filter_len > 0)
222             f->opusdsp.postfilter(block->buf + 1024 + 2 * CELT_OVERLAP,
223                                   block->pf_period, block->pf_gains,
224                                   filter_len);
225 
226         block->pf_period_old = block->pf_period;
227         memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains));
228     }
229 
230     memmove(block->buf, block->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float));
231 }
232 
parse_postfilter(CeltFrame * f,OpusRangeCoder * rc,int consumed)233 static int parse_postfilter(CeltFrame *f, OpusRangeCoder *rc, int consumed)
234 {
235     int i;
236 
237     memset(f->block[0].pf_gains_new, 0, sizeof(f->block[0].pf_gains_new));
238     memset(f->block[1].pf_gains_new, 0, sizeof(f->block[1].pf_gains_new));
239 
240     if (f->start_band == 0 && consumed + 16 <= f->framebits) {
241         int has_postfilter = ff_opus_rc_dec_log(rc, 1);
242         if (has_postfilter) {
243             float gain;
244             int tapset, octave, period;
245 
246             octave = ff_opus_rc_dec_uint(rc, 6);
247             period = (16 << octave) + ff_opus_rc_get_raw(rc, 4 + octave) - 1;
248             gain   = 0.09375f * (ff_opus_rc_get_raw(rc, 3) + 1);
249             tapset = (opus_rc_tell(rc) + 2 <= f->framebits) ?
250                      ff_opus_rc_dec_cdf(rc, ff_celt_model_tapset) : 0;
251 
252             for (i = 0; i < 2; i++) {
253                 CeltBlock *block = &f->block[i];
254 
255                 block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
256                 block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0];
257                 block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1];
258                 block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2];
259             }
260         }
261 
262         consumed = opus_rc_tell(rc);
263     }
264 
265     return consumed;
266 }
267 
process_anticollapse(CeltFrame * f,CeltBlock * block,float * X)268 static void process_anticollapse(CeltFrame *f, CeltBlock *block, float *X)
269 {
270     int i, j, k;
271 
272     for (i = f->start_band; i < f->end_band; i++) {
273         int renormalize = 0;
274         float *xptr;
275         float prev[2];
276         float Ediff, r;
277         float thresh, sqrt_1;
278         int depth;
279 
280         /* depth in 1/8 bits */
281         depth = (1 + f->pulses[i]) / (ff_celt_freq_range[i] << f->size);
282         thresh = exp2f(-1.0 - 0.125f * depth);
283         sqrt_1 = 1.0f / sqrtf(ff_celt_freq_range[i] << f->size);
284 
285         xptr = X + (ff_celt_freq_bands[i] << f->size);
286 
287         prev[0] = block->prev_energy[0][i];
288         prev[1] = block->prev_energy[1][i];
289         if (f->channels == 1) {
290             CeltBlock *block1 = &f->block[1];
291 
292             prev[0] = FFMAX(prev[0], block1->prev_energy[0][i]);
293             prev[1] = FFMAX(prev[1], block1->prev_energy[1][i]);
294         }
295         Ediff = block->energy[i] - FFMIN(prev[0], prev[1]);
296         Ediff = FFMAX(0, Ediff);
297 
298         /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
299         short blocks don't have the same energy as long */
300         r = exp2f(1 - Ediff);
301         if (f->size == 3)
302             r *= M_SQRT2;
303         r = FFMIN(thresh, r) * sqrt_1;
304         for (k = 0; k < 1 << f->size; k++) {
305             /* Detect collapse */
306             if (!(block->collapse_masks[i] & 1 << k)) {
307                 /* Fill with noise */
308                 for (j = 0; j < ff_celt_freq_range[i]; j++)
309                     xptr[(j << f->size) + k] = (celt_rng(f) & 0x8000) ? r : -r;
310                 renormalize = 1;
311             }
312         }
313 
314         /* We just added some energy, so we need to renormalize */
315         if (renormalize)
316             celt_renormalize_vector(xptr, ff_celt_freq_range[i] << f->size, 1.0f);
317     }
318 }
319 
ff_celt_decode_frame(CeltFrame * f,OpusRangeCoder * rc,float ** output,int channels,int frame_size,int start_band,int end_band)320 int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc,
321                          float **output, int channels, int frame_size,
322                          int start_band,  int end_band)
323 {
324     int i, j, downmix = 0;
325     int consumed;           // bits of entropy consumed thus far for this frame
326     MDCT15Context *imdct;
327 
328     if (channels != 1 && channels != 2) {
329         av_log(f->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n",
330                channels);
331         return AVERROR_INVALIDDATA;
332     }
333     if (start_band < 0 || start_band > end_band || end_band > CELT_MAX_BANDS) {
334         av_log(f->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n",
335                start_band, end_band);
336         return AVERROR_INVALIDDATA;
337     }
338 
339     f->silence        = 0;
340     f->transient      = 0;
341     f->anticollapse   = 0;
342     f->flushed        = 0;
343     f->channels       = channels;
344     f->start_band     = start_band;
345     f->end_band       = end_band;
346     f->framebits      = rc->rb.bytes * 8;
347 
348     f->size = av_log2(frame_size / CELT_SHORT_BLOCKSIZE);
349     if (f->size > CELT_MAX_LOG_BLOCKS ||
350         frame_size != CELT_SHORT_BLOCKSIZE * (1 << f->size)) {
351         av_log(f->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n",
352                frame_size);
353         return AVERROR_INVALIDDATA;
354     }
355 
356     if (!f->output_channels)
357         f->output_channels = channels;
358 
359     for (i = 0; i < f->channels; i++) {
360         memset(f->block[i].coeffs,         0, sizeof(f->block[i].coeffs));
361         memset(f->block[i].collapse_masks, 0, sizeof(f->block[i].collapse_masks));
362     }
363 
364     consumed = opus_rc_tell(rc);
365 
366     /* obtain silence flag */
367     if (consumed >= f->framebits)
368         f->silence = 1;
369     else if (consumed == 1)
370         f->silence = ff_opus_rc_dec_log(rc, 15);
371 
372 
373     if (f->silence) {
374         consumed = f->framebits;
375         rc->total_bits += f->framebits - opus_rc_tell(rc);
376     }
377 
378     /* obtain post-filter options */
379     consumed = parse_postfilter(f, rc, consumed);
380 
381     /* obtain transient flag */
382     if (f->size != 0 && consumed+3 <= f->framebits)
383         f->transient = ff_opus_rc_dec_log(rc, 3);
384 
385     f->blocks    = f->transient ? 1 << f->size : 1;
386     f->blocksize = frame_size / f->blocks;
387 
388     imdct = f->imdct[f->transient ? 0 : f->size];
389 
390     if (channels == 1) {
391         for (i = 0; i < CELT_MAX_BANDS; i++)
392             f->block[0].energy[i] = FFMAX(f->block[0].energy[i], f->block[1].energy[i]);
393     }
394 
395     celt_decode_coarse_energy(f, rc);
396     celt_decode_tf_changes   (f, rc);
397     ff_celt_bitalloc         (f, rc, 0);
398     celt_decode_fine_energy  (f, rc);
399     ff_celt_quant_bands      (f, rc);
400 
401     if (f->anticollapse_needed)
402         f->anticollapse = ff_opus_rc_get_raw(rc, 1);
403 
404     celt_decode_final_energy(f, rc);
405 
406     /* apply anti-collapse processing and denormalization to
407      * each coded channel */
408     for (i = 0; i < f->channels; i++) {
409         CeltBlock *block = &f->block[i];
410 
411         if (f->anticollapse)
412             process_anticollapse(f, block, f->block[i].coeffs);
413 
414         celt_denormalize(f, block, f->block[i].coeffs);
415     }
416 
417     /* stereo -> mono downmix */
418     if (f->output_channels < f->channels) {
419         f->dsp->vector_fmac_scalar(f->block[0].coeffs, f->block[1].coeffs, 1.0, FFALIGN(frame_size, 16));
420         downmix = 1;
421     } else if (f->output_channels > f->channels)
422         memcpy(f->block[1].coeffs, f->block[0].coeffs, frame_size * sizeof(float));
423 
424     if (f->silence) {
425         for (i = 0; i < 2; i++) {
426             CeltBlock *block = &f->block[i];
427 
428             for (j = 0; j < FF_ARRAY_ELEMS(block->energy); j++)
429                 block->energy[j] = CELT_ENERGY_SILENCE;
430         }
431         memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs));
432         memset(f->block[1].coeffs, 0, sizeof(f->block[1].coeffs));
433     }
434 
435     /* transform and output for each output channel */
436     for (i = 0; i < f->output_channels; i++) {
437         CeltBlock *block = &f->block[i];
438 
439         /* iMDCT and overlap-add */
440         for (j = 0; j < f->blocks; j++) {
441             float *dst  = block->buf + 1024 + j * f->blocksize;
442 
443             imdct->imdct_half(imdct, dst + CELT_OVERLAP / 2, f->block[i].coeffs + j,
444                               f->blocks);
445             f->dsp->vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2,
446                                        ff_celt_window, CELT_OVERLAP / 2);
447         }
448 
449         if (downmix)
450             f->dsp->vector_fmul_scalar(&block->buf[1024], &block->buf[1024], 0.5f, frame_size);
451 
452         /* postfilter */
453         celt_postfilter(f, block);
454 
455         /* deemphasis */
456         block->emph_coeff = f->opusdsp.deemphasis(output[i],
457                                                   &block->buf[1024 - frame_size],
458                                                   block->emph_coeff, frame_size);
459     }
460 
461     if (channels == 1)
462         memcpy(f->block[1].energy, f->block[0].energy, sizeof(f->block[0].energy));
463 
464     for (i = 0; i < 2; i++ ) {
465         CeltBlock *block = &f->block[i];
466 
467         if (!f->transient) {
468             memcpy(block->prev_energy[1], block->prev_energy[0], sizeof(block->prev_energy[0]));
469             memcpy(block->prev_energy[0], block->energy,         sizeof(block->prev_energy[0]));
470         } else {
471             for (j = 0; j < CELT_MAX_BANDS; j++)
472                 block->prev_energy[0][j] = FFMIN(block->prev_energy[0][j], block->energy[j]);
473         }
474 
475         for (j = 0; j < f->start_band; j++) {
476             block->prev_energy[0][j] = CELT_ENERGY_SILENCE;
477             block->energy[j]         = 0.0;
478         }
479         for (j = f->end_band; j < CELT_MAX_BANDS; j++) {
480             block->prev_energy[0][j] = CELT_ENERGY_SILENCE;
481             block->energy[j]         = 0.0;
482         }
483     }
484 
485     f->seed = rc->range;
486 
487     return 0;
488 }
489 
ff_celt_flush(CeltFrame * f)490 void ff_celt_flush(CeltFrame *f)
491 {
492     int i, j;
493 
494     if (f->flushed)
495         return;
496 
497     for (i = 0; i < 2; i++) {
498         CeltBlock *block = &f->block[i];
499 
500         for (j = 0; j < CELT_MAX_BANDS; j++)
501             block->prev_energy[0][j] = block->prev_energy[1][j] = CELT_ENERGY_SILENCE;
502 
503         memset(block->energy, 0, sizeof(block->energy));
504         memset(block->buf,    0, sizeof(block->buf));
505 
506         memset(block->pf_gains,     0, sizeof(block->pf_gains));
507         memset(block->pf_gains_old, 0, sizeof(block->pf_gains_old));
508         memset(block->pf_gains_new, 0, sizeof(block->pf_gains_new));
509 
510         /* libopus uses CELT_EMPH_COEFF on init, but 0 is better since there's
511          * a lesser discontinuity when seeking.
512          * The deemphasis functions differ from libopus in that they require
513          * an initial state divided by the coefficient. */
514         block->emph_coeff = 0.0f / CELT_EMPH_COEFF;
515     }
516     f->seed = 0;
517 
518     f->flushed = 1;
519 }
520 
ff_celt_free(CeltFrame ** f)521 void ff_celt_free(CeltFrame **f)
522 {
523     CeltFrame *frm = *f;
524     int i;
525 
526     if (!frm)
527         return;
528 
529     for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
530         ff_mdct15_uninit(&frm->imdct[i]);
531 
532     ff_celt_pvq_uninit(&frm->pvq);
533 
534     av_freep(&frm->dsp);
535     av_freep(f);
536 }
537 
ff_celt_init(AVCodecContext * avctx,CeltFrame ** f,int output_channels,int apply_phase_inv)538 int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels,
539                  int apply_phase_inv)
540 {
541     CeltFrame *frm;
542     int i, ret;
543 
544     if (output_channels != 1 && output_channels != 2) {
545         av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
546                output_channels);
547         return AVERROR(EINVAL);
548     }
549 
550     frm = av_mallocz(sizeof(*frm));
551     if (!frm)
552         return AVERROR(ENOMEM);
553 
554     frm->avctx           = avctx;
555     frm->output_channels = output_channels;
556     frm->apply_phase_inv = apply_phase_inv;
557 
558     for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
559         if ((ret = ff_mdct15_init(&frm->imdct[i], 1, i + 3, -1.0f/32768)) < 0)
560             goto fail;
561 
562     if ((ret = ff_celt_pvq_init(&frm->pvq, 0)) < 0)
563         goto fail;
564 
565     frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
566     if (!frm->dsp) {
567         ret = AVERROR(ENOMEM);
568         goto fail;
569     }
570 
571     ff_opus_dsp_init(&frm->opusdsp);
572     ff_celt_flush(frm);
573 
574     *f = frm;
575 
576     return 0;
577 fail:
578     ff_celt_free(&frm);
579     return ret;
580 }
581