1 /*
2 * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
3 *
4 * Triangular with Noise Shaping is based on opusfile.
5 * Copyright (c) 1994-2012 by the Xiph.Org Foundation and contributors
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /**
25 * @file
26 * Dithered Audio Sample Quantization
27 *
28 * Converts from dbl, flt, or s32 to s16 using dithering.
29 */
30
31 #include <math.h>
32 #include <stdint.h>
33
34 #include "libavutil/attributes.h"
35 #include "libavutil/common.h"
36 #include "libavutil/lfg.h"
37 #include "libavutil/mem.h"
38 #include "libavutil/samplefmt.h"
39 #include "audio_convert.h"
40 #include "dither.h"
41 #include "internal.h"
42
43 typedef struct DitherState {
44 int mute;
45 unsigned int seed;
46 AVLFG lfg;
47 float *noise_buf;
48 int noise_buf_size;
49 int noise_buf_ptr;
50 float dither_a[4];
51 float dither_b[4];
52 } DitherState;
53
54 struct DitherContext {
55 DitherDSPContext ddsp;
56 enum AVResampleDitherMethod method;
57 int apply_map;
58 ChannelMapInfo *ch_map_info;
59
60 int mute_dither_threshold; // threshold for disabling dither
61 int mute_reset_threshold; // threshold for resetting noise shaping
62 const float *ns_coef_b; // noise shaping coeffs
63 const float *ns_coef_a; // noise shaping coeffs
64
65 int channels;
66 DitherState *state; // dither states for each channel
67
68 AudioData *flt_data; // input data in fltp
69 AudioData *s16_data; // dithered output in s16p
70 AudioConvert *ac_in; // converter for input to fltp
71 AudioConvert *ac_out; // converter for s16p to s16 (if needed)
72
73 void (*quantize)(int16_t *dst, const float *src, float *dither, int len);
74 int samples_align;
75 };
76
77 /* mute threshold, in seconds */
78 #define MUTE_THRESHOLD_SEC 0.000333
79
80 /* scale factor for 16-bit output.
81 The signal is attenuated slightly to avoid clipping */
82 #define S16_SCALE 32753.0f
83
84 /* scale to convert lfg from INT_MIN/INT_MAX to -0.5/0.5 */
85 #define LFG_SCALE (1.0f / (2.0f * INT32_MAX))
86
87 /* noise shaping coefficients */
88
89 static const float ns_48_coef_b[4] = {
90 2.2374f, -0.7339f, -0.1251f, -0.6033f
91 };
92
93 static const float ns_48_coef_a[4] = {
94 0.9030f, 0.0116f, -0.5853f, -0.2571f
95 };
96
97 static const float ns_44_coef_b[4] = {
98 2.2061f, -0.4707f, -0.2534f, -0.6213f
99 };
100
101 static const float ns_44_coef_a[4] = {
102 1.0587f, 0.0676f, -0.6054f, -0.2738f
103 };
104
dither_int_to_float_rectangular_c(float * dst,int * src,int len)105 static void dither_int_to_float_rectangular_c(float *dst, int *src, int len)
106 {
107 int i;
108 for (i = 0; i < len; i++)
109 dst[i] = src[i] * LFG_SCALE;
110 }
111
dither_int_to_float_triangular_c(float * dst,int * src0,int len)112 static void dither_int_to_float_triangular_c(float *dst, int *src0, int len)
113 {
114 int i;
115 int *src1 = src0 + len;
116
117 for (i = 0; i < len; i++) {
118 float r = src0[i] * LFG_SCALE;
119 r += src1[i] * LFG_SCALE;
120 dst[i] = r;
121 }
122 }
123
quantize_c(int16_t * dst,const float * src,float * dither,int len)124 static void quantize_c(int16_t *dst, const float *src, float *dither, int len)
125 {
126 int i;
127 for (i = 0; i < len; i++)
128 dst[i] = av_clip_int16(lrintf(src[i] * S16_SCALE + dither[i]));
129 }
130
131 #define SQRT_1_6 0.40824829046386301723f
132
dither_highpass_filter(float * src,int len)133 static void dither_highpass_filter(float *src, int len)
134 {
135 int i;
136
137 /* filter is from libswresample in FFmpeg */
138 for (i = 0; i < len - 2; i++)
139 src[i] = (-src[i] + 2 * src[i + 1] - src[i + 2]) * SQRT_1_6;
140 }
141
generate_dither_noise(DitherContext * c,DitherState * state,int min_samples)142 static int generate_dither_noise(DitherContext *c, DitherState *state,
143 int min_samples)
144 {
145 int i;
146 int nb_samples = FFALIGN(min_samples, 16) + 16;
147 int buf_samples = nb_samples *
148 (c->method == AV_RESAMPLE_DITHER_RECTANGULAR ? 1 : 2);
149 unsigned int *noise_buf_ui;
150
151 av_freep(&state->noise_buf);
152 state->noise_buf_size = state->noise_buf_ptr = 0;
153
154 state->noise_buf = av_malloc(buf_samples * sizeof(*state->noise_buf));
155 if (!state->noise_buf)
156 return AVERROR(ENOMEM);
157 state->noise_buf_size = FFALIGN(min_samples, 16);
158 noise_buf_ui = (unsigned int *)state->noise_buf;
159
160 av_lfg_init(&state->lfg, state->seed);
161 for (i = 0; i < buf_samples; i++)
162 noise_buf_ui[i] = av_lfg_get(&state->lfg);
163
164 c->ddsp.dither_int_to_float(state->noise_buf, noise_buf_ui, nb_samples);
165
166 if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_HP)
167 dither_highpass_filter(state->noise_buf, nb_samples);
168
169 return 0;
170 }
171
quantize_triangular_ns(DitherContext * c,DitherState * state,int16_t * dst,const float * src,int nb_samples)172 static void quantize_triangular_ns(DitherContext *c, DitherState *state,
173 int16_t *dst, const float *src,
174 int nb_samples)
175 {
176 int i, j;
177 float *dither = &state->noise_buf[state->noise_buf_ptr];
178
179 if (state->mute > c->mute_reset_threshold)
180 memset(state->dither_a, 0, sizeof(state->dither_a));
181
182 for (i = 0; i < nb_samples; i++) {
183 float err = 0;
184 float sample = src[i] * S16_SCALE;
185
186 for (j = 0; j < 4; j++) {
187 err += c->ns_coef_b[j] * state->dither_b[j] -
188 c->ns_coef_a[j] * state->dither_a[j];
189 }
190 for (j = 3; j > 0; j--) {
191 state->dither_a[j] = state->dither_a[j - 1];
192 state->dither_b[j] = state->dither_b[j - 1];
193 }
194 state->dither_a[0] = err;
195 sample -= err;
196
197 if (state->mute > c->mute_dither_threshold) {
198 dst[i] = av_clip_int16(lrintf(sample));
199 state->dither_b[0] = 0;
200 } else {
201 dst[i] = av_clip_int16(lrintf(sample + dither[i]));
202 state->dither_b[0] = av_clipf(dst[i] - sample, -1.5f, 1.5f);
203 }
204
205 state->mute++;
206 if (src[i])
207 state->mute = 0;
208 }
209 }
210
convert_samples(DitherContext * c,int16_t ** dst,float * const * src,int channels,int nb_samples)211 static int convert_samples(DitherContext *c, int16_t **dst, float * const *src,
212 int channels, int nb_samples)
213 {
214 int ch, ret;
215 int aligned_samples = FFALIGN(nb_samples, 16);
216
217 for (ch = 0; ch < channels; ch++) {
218 DitherState *state = &c->state[ch];
219
220 if (state->noise_buf_size < aligned_samples) {
221 ret = generate_dither_noise(c, state, nb_samples);
222 if (ret < 0)
223 return ret;
224 } else if (state->noise_buf_size - state->noise_buf_ptr < aligned_samples) {
225 state->noise_buf_ptr = 0;
226 }
227
228 if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_NS) {
229 quantize_triangular_ns(c, state, dst[ch], src[ch], nb_samples);
230 } else {
231 c->quantize(dst[ch], src[ch],
232 &state->noise_buf[state->noise_buf_ptr],
233 FFALIGN(nb_samples, c->samples_align));
234 }
235
236 state->noise_buf_ptr += aligned_samples;
237 }
238
239 return 0;
240 }
241
ff_convert_dither(DitherContext * c,AudioData * dst,AudioData * src)242 int ff_convert_dither(DitherContext *c, AudioData *dst, AudioData *src)
243 {
244 int ret;
245 AudioData *flt_data;
246
247 /* output directly to dst if it is planar */
248 if (dst->sample_fmt == AV_SAMPLE_FMT_S16P)
249 c->s16_data = dst;
250 else {
251 /* make sure s16_data is large enough for the output */
252 ret = ff_audio_data_realloc(c->s16_data, src->nb_samples);
253 if (ret < 0)
254 return ret;
255 }
256
257 if (src->sample_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) {
258 /* make sure flt_data is large enough for the input */
259 ret = ff_audio_data_realloc(c->flt_data, src->nb_samples);
260 if (ret < 0)
261 return ret;
262 flt_data = c->flt_data;
263 }
264
265 if (src->sample_fmt != AV_SAMPLE_FMT_FLTP) {
266 /* convert input samples to fltp and scale to s16 range */
267 ret = ff_audio_convert(c->ac_in, flt_data, src);
268 if (ret < 0)
269 return ret;
270 } else if (c->apply_map) {
271 ret = ff_audio_data_copy(flt_data, src, c->ch_map_info);
272 if (ret < 0)
273 return ret;
274 } else {
275 flt_data = src;
276 }
277
278 /* check alignment and padding constraints */
279 if (c->method != AV_RESAMPLE_DITHER_TRIANGULAR_NS) {
280 int ptr_align = FFMIN(flt_data->ptr_align, c->s16_data->ptr_align);
281 int samples_align = FFMIN(flt_data->samples_align, c->s16_data->samples_align);
282 int aligned_len = FFALIGN(src->nb_samples, c->ddsp.samples_align);
283
284 if (!(ptr_align % c->ddsp.ptr_align) && samples_align >= aligned_len) {
285 c->quantize = c->ddsp.quantize;
286 c->samples_align = c->ddsp.samples_align;
287 } else {
288 c->quantize = quantize_c;
289 c->samples_align = 1;
290 }
291 }
292
293 ret = convert_samples(c, (int16_t **)c->s16_data->data,
294 (float * const *)flt_data->data, src->channels,
295 src->nb_samples);
296 if (ret < 0)
297 return ret;
298
299 c->s16_data->nb_samples = src->nb_samples;
300
301 /* interleave output to dst if needed */
302 if (dst->sample_fmt == AV_SAMPLE_FMT_S16) {
303 ret = ff_audio_convert(c->ac_out, dst, c->s16_data);
304 if (ret < 0)
305 return ret;
306 } else
307 c->s16_data = NULL;
308
309 return 0;
310 }
311
ff_dither_free(DitherContext ** cp)312 void ff_dither_free(DitherContext **cp)
313 {
314 DitherContext *c = *cp;
315 int ch;
316
317 if (!c)
318 return;
319 ff_audio_data_free(&c->flt_data);
320 ff_audio_data_free(&c->s16_data);
321 ff_audio_convert_free(&c->ac_in);
322 ff_audio_convert_free(&c->ac_out);
323 for (ch = 0; ch < c->channels; ch++)
324 av_free(c->state[ch].noise_buf);
325 av_free(c->state);
326 av_freep(cp);
327 }
328
dither_init(DitherDSPContext * ddsp,enum AVResampleDitherMethod method)329 static av_cold void dither_init(DitherDSPContext *ddsp,
330 enum AVResampleDitherMethod method)
331 {
332 ddsp->quantize = quantize_c;
333 ddsp->ptr_align = 1;
334 ddsp->samples_align = 1;
335
336 if (method == AV_RESAMPLE_DITHER_RECTANGULAR)
337 ddsp->dither_int_to_float = dither_int_to_float_rectangular_c;
338 else
339 ddsp->dither_int_to_float = dither_int_to_float_triangular_c;
340
341 if (ARCH_X86)
342 ff_dither_init_x86(ddsp, method);
343 }
344
ff_dither_alloc(AVAudioResampleContext * avr,enum AVSampleFormat out_fmt,enum AVSampleFormat in_fmt,int channels,int sample_rate,int apply_map)345 DitherContext *ff_dither_alloc(AVAudioResampleContext *avr,
346 enum AVSampleFormat out_fmt,
347 enum AVSampleFormat in_fmt,
348 int channels, int sample_rate, int apply_map)
349 {
350 AVLFG seed_gen;
351 DitherContext *c;
352 int ch;
353
354 if (av_get_packed_sample_fmt(out_fmt) != AV_SAMPLE_FMT_S16 ||
355 av_get_bytes_per_sample(in_fmt) <= 2) {
356 av_log(avr, AV_LOG_ERROR, "dithering %s to %s is not supported\n",
357 av_get_sample_fmt_name(in_fmt), av_get_sample_fmt_name(out_fmt));
358 return NULL;
359 }
360
361 c = av_mallocz(sizeof(*c));
362 if (!c)
363 return NULL;
364
365 c->apply_map = apply_map;
366 if (apply_map)
367 c->ch_map_info = &avr->ch_map_info;
368
369 if (avr->dither_method == AV_RESAMPLE_DITHER_TRIANGULAR_NS &&
370 sample_rate != 48000 && sample_rate != 44100) {
371 av_log(avr, AV_LOG_WARNING, "sample rate must be 48000 or 44100 Hz "
372 "for triangular_ns dither. using triangular_hp instead.\n");
373 avr->dither_method = AV_RESAMPLE_DITHER_TRIANGULAR_HP;
374 }
375 c->method = avr->dither_method;
376 dither_init(&c->ddsp, c->method);
377
378 if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_NS) {
379 if (sample_rate == 48000) {
380 c->ns_coef_b = ns_48_coef_b;
381 c->ns_coef_a = ns_48_coef_a;
382 } else {
383 c->ns_coef_b = ns_44_coef_b;
384 c->ns_coef_a = ns_44_coef_a;
385 }
386 }
387
388 /* Either s16 or s16p output format is allowed, but s16p is used
389 internally, so we need to use a temp buffer and interleave if the output
390 format is s16 */
391 if (out_fmt != AV_SAMPLE_FMT_S16P) {
392 c->s16_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_S16P,
393 "dither s16 buffer");
394 if (!c->s16_data)
395 goto fail;
396
397 c->ac_out = ff_audio_convert_alloc(avr, out_fmt, AV_SAMPLE_FMT_S16P,
398 channels, sample_rate, 0);
399 if (!c->ac_out)
400 goto fail;
401 }
402
403 if (in_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) {
404 c->flt_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_FLTP,
405 "dither flt buffer");
406 if (!c->flt_data)
407 goto fail;
408 }
409 if (in_fmt != AV_SAMPLE_FMT_FLTP) {
410 c->ac_in = ff_audio_convert_alloc(avr, AV_SAMPLE_FMT_FLTP, in_fmt,
411 channels, sample_rate, c->apply_map);
412 if (!c->ac_in)
413 goto fail;
414 }
415
416 c->state = av_mallocz(channels * sizeof(*c->state));
417 if (!c->state)
418 goto fail;
419 c->channels = channels;
420
421 /* calculate thresholds for turning off dithering during periods of
422 silence to avoid replacing digital silence with quiet dither noise */
423 c->mute_dither_threshold = lrintf(sample_rate * MUTE_THRESHOLD_SEC);
424 c->mute_reset_threshold = c->mute_dither_threshold * 4;
425
426 /* initialize dither states */
427 av_lfg_init(&seed_gen, 0xC0FFEE);
428 for (ch = 0; ch < channels; ch++) {
429 DitherState *state = &c->state[ch];
430 state->mute = c->mute_reset_threshold + 1;
431 state->seed = av_lfg_get(&seed_gen);
432 generate_dither_noise(c, state, FFMAX(32768, sample_rate / 2));
433 }
434
435 return c;
436
437 fail:
438 ff_dither_free(&c);
439 return NULL;
440 }
441