• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * VC3/DNxHD encoder
3  * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4  * Copyright (c) 2011 MirriAd Ltd
5  *
6  * VC-3 encoder funded by the British Broadcasting Corporation
7  * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
8  *
9  * This file is part of FFmpeg.
10  *
11  * FFmpeg is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * FFmpeg is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with FFmpeg; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25 
26 #include "libavutil/attributes.h"
27 #include "libavutil/internal.h"
28 #include "libavutil/mem_internal.h"
29 #include "libavutil/opt.h"
30 
31 #include "avcodec.h"
32 #include "blockdsp.h"
33 #include "fdctdsp.h"
34 #include "internal.h"
35 #include "mpegvideo.h"
36 #include "pixblockdsp.h"
37 #include "packet_internal.h"
38 #include "profiles.h"
39 #include "dnxhdenc.h"
40 
41 // The largest value that will not lead to overflow for 10-bit samples.
42 #define DNX10BIT_QMAT_SHIFT 18
43 #define RC_VARIANCE 1 // use variance or ssd for fast rc
44 #define LAMBDA_FRAC_BITS 10
45 
46 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
47 static const AVOption options[] = {
48     { "nitris_compat", "encode with Avid Nitris compatibility",
49         offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
50     { "ibias", "intra quant bias",
51         offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
52         { .i64 = 0 }, INT_MIN, INT_MAX, VE },
53     { "profile",       NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
54         { .i64 = FF_PROFILE_DNXHD },
55         FF_PROFILE_DNXHD, FF_PROFILE_DNXHR_444, VE, "profile" },
56     { "dnxhd",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHD },
57         0, 0, VE, "profile" },
58     { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_444 },
59         0, 0, VE, "profile" },
60     { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQX },
61         0, 0, VE, "profile" },
62     { "dnxhr_hq",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQ },
63         0, 0, VE, "profile" },
64     { "dnxhr_sq",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_SQ },
65         0, 0, VE, "profile" },
66     { "dnxhr_lb",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_LB },
67         0, 0, VE, "profile" },
68     { NULL }
69 };
70 
71 static const AVClass dnxhd_class = {
72     .class_name = "dnxhd",
73     .item_name  = av_default_item_name,
74     .option     = options,
75     .version    = LIBAVUTIL_VERSION_INT,
76 };
77 
dnxhd_8bit_get_pixels_8x4_sym(int16_t * av_restrict block,const uint8_t * pixels,ptrdiff_t line_size)78 static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
79                                           const uint8_t *pixels,
80                                           ptrdiff_t line_size)
81 {
82     int i;
83     for (i = 0; i < 4; i++) {
84         block[0] = pixels[0];
85         block[1] = pixels[1];
86         block[2] = pixels[2];
87         block[3] = pixels[3];
88         block[4] = pixels[4];
89         block[5] = pixels[5];
90         block[6] = pixels[6];
91         block[7] = pixels[7];
92         pixels  += line_size;
93         block   += 8;
94     }
95     memcpy(block,      block -  8, sizeof(*block) * 8);
96     memcpy(block +  8, block - 16, sizeof(*block) * 8);
97     memcpy(block + 16, block - 24, sizeof(*block) * 8);
98     memcpy(block + 24, block - 32, sizeof(*block) * 8);
99 }
100 
101 static av_always_inline
dnxhd_10bit_get_pixels_8x4_sym(int16_t * av_restrict block,const uint8_t * pixels,ptrdiff_t line_size)102 void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
103                                     const uint8_t *pixels,
104                                     ptrdiff_t line_size)
105 {
106     memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
107     memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
108     memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
109     memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
110     memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
111     memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
112     memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
113     memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
114 }
115 
dnxhd_10bit_dct_quantize_444(MpegEncContext * ctx,int16_t * block,int n,int qscale,int * overflow)116 static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block,
117                                         int n, int qscale, int *overflow)
118 {
119     int i, j, level, last_non_zero, start_i;
120     const int *qmat;
121     const uint8_t *scantable= ctx->intra_scantable.scantable;
122     int bias;
123     int max = 0;
124     unsigned int threshold1, threshold2;
125 
126     ctx->fdsp.fdct(block);
127 
128     block[0] = (block[0] + 2) >> 2;
129     start_i = 1;
130     last_non_zero = 0;
131     qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
132     bias= ctx->intra_quant_bias * (1 << (16 - 8));
133     threshold1 = (1 << 16) - bias - 1;
134     threshold2 = (threshold1 << 1);
135 
136     for (i = 63; i >= start_i; i--) {
137         j = scantable[i];
138         level = block[j] * qmat[j];
139 
140         if (((unsigned)(level + threshold1)) > threshold2) {
141             last_non_zero = i;
142             break;
143         } else{
144             block[j]=0;
145         }
146     }
147 
148     for (i = start_i; i <= last_non_zero; i++) {
149         j = scantable[i];
150         level = block[j] * qmat[j];
151 
152         if (((unsigned)(level + threshold1)) > threshold2) {
153             if (level > 0) {
154                 level = (bias + level) >> 16;
155                 block[j] = level;
156             } else{
157                 level = (bias - level) >> 16;
158                 block[j] = -level;
159             }
160             max |= level;
161         } else {
162             block[j] = 0;
163         }
164     }
165     *overflow = ctx->max_qcoeff < max; //overflow might have happened
166 
167     /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
168     if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
169         ff_block_permute(block, ctx->idsp.idct_permutation,
170                          scantable, last_non_zero);
171 
172     return last_non_zero;
173 }
174 
dnxhd_10bit_dct_quantize(MpegEncContext * ctx,int16_t * block,int n,int qscale,int * overflow)175 static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
176                                     int n, int qscale, int *overflow)
177 {
178     const uint8_t *scantable= ctx->intra_scantable.scantable;
179     const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
180     int last_non_zero = 0;
181     int i;
182 
183     ctx->fdsp.fdct(block);
184 
185     // Divide by 4 with rounding, to compensate scaling of DCT coefficients
186     block[0] = (block[0] + 2) >> 2;
187 
188     for (i = 1; i < 64; ++i) {
189         int j = scantable[i];
190         int sign = FF_SIGNBIT(block[j]);
191         int level = (block[j] ^ sign) - sign;
192         level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
193         block[j] = (level ^ sign) - sign;
194         if (level)
195             last_non_zero = i;
196     }
197 
198     /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
199     if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
200         ff_block_permute(block, ctx->idsp.idct_permutation,
201                          scantable, last_non_zero);
202 
203     return last_non_zero;
204 }
205 
dnxhd_init_vlc(DNXHDEncContext * ctx)206 static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
207 {
208     int i, j, level, run;
209     int max_level = 1 << (ctx->bit_depth + 2);
210 
211     if (!FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_codes, max_level * 4) ||
212         !FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_bits,  max_level * 4) ||
213         !(ctx->run_codes = av_mallocz(63 * 2))                     ||
214         !(ctx->run_bits  = av_mallocz(63)))
215         return AVERROR(ENOMEM);
216     ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2;
217     ctx->vlc_bits  = ctx->orig_vlc_bits + max_level * 2;
218     for (level = -max_level; level < max_level; level++) {
219         for (run = 0; run < 2; run++) {
220             int index = level * (1 << 1) | run;
221             int sign, offset = 0, alevel = level;
222 
223             MASK_ABS(sign, alevel);
224             if (alevel > 64) {
225                 offset  = (alevel - 1) >> 6;
226                 alevel -= offset << 6;
227             }
228             for (j = 0; j < 257; j++) {
229                 if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
230                     (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
231                     (!run    || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
232                     av_assert1(!ctx->vlc_codes[index]);
233                     if (alevel) {
234                         ctx->vlc_codes[index] =
235                             (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
236                         ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
237                     } else {
238                         ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
239                         ctx->vlc_bits[index]  = ctx->cid_table->ac_bits[j];
240                     }
241                     break;
242                 }
243             }
244             av_assert0(!alevel || j < 257);
245             if (offset) {
246                 ctx->vlc_codes[index] =
247                     (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
248                 ctx->vlc_bits[index] += ctx->cid_table->index_bits;
249             }
250         }
251     }
252     for (i = 0; i < 62; i++) {
253         int run = ctx->cid_table->run[i];
254         av_assert0(run < 63);
255         ctx->run_codes[run] = ctx->cid_table->run_codes[i];
256         ctx->run_bits[run]  = ctx->cid_table->run_bits[i];
257     }
258     return 0;
259 }
260 
dnxhd_init_qmat(DNXHDEncContext * ctx,int lbias,int cbias)261 static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
262 {
263     // init first elem to 1 to avoid div by 0 in convert_matrix
264     uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
265     int qscale, i;
266     const uint8_t *luma_weight_table   = ctx->cid_table->luma_weight;
267     const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
268 
269     if (!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l,   ctx->m.avctx->qmax + 1) ||
270         !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c,   ctx->m.avctx->qmax + 1) ||
271         !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l16, ctx->m.avctx->qmax + 1) ||
272         !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c16, ctx->m.avctx->qmax + 1))
273         return AVERROR(ENOMEM);
274 
275     if (ctx->bit_depth == 8) {
276         for (i = 1; i < 64; i++) {
277             int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
278             weight_matrix[j] = ctx->cid_table->luma_weight[i];
279         }
280         ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
281                           weight_matrix, ctx->intra_quant_bias, 1,
282                           ctx->m.avctx->qmax, 1);
283         for (i = 1; i < 64; i++) {
284             int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
285             weight_matrix[j] = ctx->cid_table->chroma_weight[i];
286         }
287         ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
288                           weight_matrix, ctx->intra_quant_bias, 1,
289                           ctx->m.avctx->qmax, 1);
290 
291         for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
292             for (i = 0; i < 64; i++) {
293                 ctx->qmatrix_l[qscale][i]      <<= 2;
294                 ctx->qmatrix_c[qscale][i]      <<= 2;
295                 ctx->qmatrix_l16[qscale][0][i] <<= 2;
296                 ctx->qmatrix_l16[qscale][1][i] <<= 2;
297                 ctx->qmatrix_c16[qscale][0][i] <<= 2;
298                 ctx->qmatrix_c16[qscale][1][i] <<= 2;
299             }
300         }
301     } else {
302         // 10-bit
303         for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
304             for (i = 1; i < 64; i++) {
305                 int j = ff_zigzag_direct[i];
306 
307                 /* The quantization formula from the VC-3 standard is:
308                  * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
309                  *             (qscale * weight_table[i]))
310                  * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
311                  * The s factor compensates scaling of DCT coefficients done by
312                  * the DCT routines, and therefore is not present in standard.
313                  * It's 8 for 8-bit samples and 4 for 10-bit ones.
314                  * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
315                  *     ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
316                  *     (qscale * weight_table[i])
317                  * For 10-bit samples, p / s == 2 */
318                 ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
319                                             (qscale * luma_weight_table[i]);
320                 ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
321                                             (qscale * chroma_weight_table[i]);
322             }
323         }
324     }
325 
326     ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
327     ctx->m.q_chroma_intra_matrix   = ctx->qmatrix_c;
328     ctx->m.q_intra_matrix16        = ctx->qmatrix_l16;
329     ctx->m.q_intra_matrix          = ctx->qmatrix_l;
330 
331     return 0;
332 }
333 
dnxhd_init_rc(DNXHDEncContext * ctx)334 static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
335 {
336     if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_rc, (ctx->m.avctx->qmax + 1) * ctx->m.mb_num))
337         return AVERROR(ENOMEM);
338 
339     if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) {
340         if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp,     ctx->m.mb_num) ||
341             !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp_tmp, ctx->m.mb_num))
342             return AVERROR(ENOMEM);
343     }
344     ctx->frame_bits = (ctx->coding_unit_size -
345                        ctx->data_offset - 4 - ctx->min_padding) * 8;
346     ctx->qscale = 1;
347     ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
348     return 0;
349 }
350 
dnxhd_encode_init(AVCodecContext * avctx)351 static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
352 {
353     DNXHDEncContext *ctx = avctx->priv_data;
354     int i, ret;
355 
356     switch (avctx->pix_fmt) {
357     case AV_PIX_FMT_YUV422P:
358         ctx->bit_depth = 8;
359         break;
360     case AV_PIX_FMT_YUV422P10:
361     case AV_PIX_FMT_YUV444P10:
362     case AV_PIX_FMT_GBRP10:
363         ctx->bit_depth = 10;
364         break;
365     default:
366         av_log(avctx, AV_LOG_ERROR,
367                "pixel format is incompatible with DNxHD\n");
368         return AVERROR(EINVAL);
369     }
370 
371     if ((ctx->profile == FF_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 &&
372                                                   avctx->pix_fmt != AV_PIX_FMT_GBRP10)) ||
373         (ctx->profile != FF_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ||
374                                                   avctx->pix_fmt == AV_PIX_FMT_GBRP10))) {
375         av_log(avctx, AV_LOG_ERROR,
376                "pixel format is incompatible with DNxHD profile\n");
377         return AVERROR(EINVAL);
378     }
379 
380     if (ctx->profile == FF_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) {
381         av_log(avctx, AV_LOG_ERROR,
382                "pixel format is incompatible with DNxHR HQX profile\n");
383         return AVERROR(EINVAL);
384     }
385 
386     if ((ctx->profile == FF_PROFILE_DNXHR_LB ||
387          ctx->profile == FF_PROFILE_DNXHR_SQ ||
388          ctx->profile == FF_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
389         av_log(avctx, AV_LOG_ERROR,
390                "pixel format is incompatible with DNxHR LB/SQ/HQ profile\n");
391         return AVERROR(EINVAL);
392     }
393 
394     ctx->is_444 = ctx->profile == FF_PROFILE_DNXHR_444;
395     avctx->profile = ctx->profile;
396     ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth);
397     if (!ctx->cid) {
398         av_log(avctx, AV_LOG_ERROR,
399                "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
400         ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
401         return AVERROR(EINVAL);
402     }
403     av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
404 
405     if (ctx->cid >= 1270 && ctx->cid <= 1274)
406         avctx->codec_tag = MKTAG('A','V','d','h');
407 
408     if (avctx->width < 256 || avctx->height < 120) {
409         av_log(avctx, AV_LOG_ERROR,
410                "Input dimensions too small, input must be at least 256x120\n");
411         return AVERROR(EINVAL);
412     }
413 
414     ctx->cid_table = ff_dnxhd_get_cid_table(ctx->cid);
415     av_assert0(ctx->cid_table);
416 
417     ctx->m.avctx    = avctx;
418     ctx->m.mb_intra = 1;
419     ctx->m.h263_aic = 1;
420 
421     avctx->bits_per_raw_sample = ctx->bit_depth;
422 
423     ff_blockdsp_init(&ctx->bdsp, avctx);
424     ff_fdctdsp_init(&ctx->m.fdsp, avctx);
425     ff_mpv_idct_init(&ctx->m);
426     ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
427     ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
428     ff_dct_encode_init(&ctx->m);
429 
430     if (ctx->profile != FF_PROFILE_DNXHD)
431         ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth);
432 
433     if (!ctx->m.dct_quantize)
434         ctx->m.dct_quantize = ff_dct_quantize_c;
435 
436     if (ctx->is_444 || ctx->profile == FF_PROFILE_DNXHR_HQX) {
437         ctx->m.dct_quantize     = dnxhd_10bit_dct_quantize_444;
438         ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
439         ctx->block_width_l2     = 4;
440     } else if (ctx->bit_depth == 10) {
441         ctx->m.dct_quantize     = dnxhd_10bit_dct_quantize;
442         ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
443         ctx->block_width_l2     = 4;
444     } else {
445         ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
446         ctx->block_width_l2     = 3;
447     }
448 
449     if (ARCH_X86)
450         ff_dnxhdenc_init_x86(ctx);
451 
452     ctx->m.mb_height = (avctx->height + 15) / 16;
453     ctx->m.mb_width  = (avctx->width  + 15) / 16;
454 
455     if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
456         ctx->interlaced   = 1;
457         ctx->m.mb_height /= 2;
458     }
459 
460     if (ctx->interlaced && ctx->profile != FF_PROFILE_DNXHD) {
461         av_log(avctx, AV_LOG_ERROR,
462                "Interlaced encoding is not supported for DNxHR profiles.\n");
463         return AVERROR(EINVAL);
464     }
465 
466     ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
467 
468     if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
469         ctx->frame_size = avpriv_dnxhd_get_hr_frame_size(ctx->cid,
470                                                      avctx->width, avctx->height);
471         av_assert0(ctx->frame_size >= 0);
472         ctx->coding_unit_size = ctx->frame_size;
473     } else {
474         ctx->frame_size = ctx->cid_table->frame_size;
475         ctx->coding_unit_size = ctx->cid_table->coding_unit_size;
476     }
477 
478     if (ctx->m.mb_height > 68)
479         ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
480     else
481         ctx->data_offset = 0x280;
482 
483     // XXX tune lbias/cbias
484     if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
485         return ret;
486 
487     /* Avid Nitris hardware decoder requires a minimum amount of padding
488      * in the coding unit payload */
489     if (ctx->nitris_compat)
490         ctx->min_padding = 1600;
491 
492     if ((ret = dnxhd_init_vlc(ctx)) < 0)
493         return ret;
494     if ((ret = dnxhd_init_rc(ctx)) < 0)
495         return ret;
496 
497     if (!FF_ALLOCZ_TYPED_ARRAY(ctx->slice_size, ctx->m.mb_height) ||
498         !FF_ALLOCZ_TYPED_ARRAY(ctx->slice_offs, ctx->m.mb_height) ||
499         !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_bits,    ctx->m.mb_num)    ||
500         !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_qscale,  ctx->m.mb_num))
501         return AVERROR(ENOMEM);
502 #if FF_API_CODED_FRAME
503 FF_DISABLE_DEPRECATION_WARNINGS
504     avctx->coded_frame->key_frame = 1;
505     avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
506 FF_ENABLE_DEPRECATION_WARNINGS
507 #endif
508 
509     if (avctx->active_thread_type == FF_THREAD_SLICE) {
510         if (avctx->thread_count > MAX_THREADS) {
511             av_log(avctx, AV_LOG_ERROR, "too many threads\n");
512             return AVERROR(EINVAL);
513         }
514     }
515 
516     if (avctx->qmax <= 1) {
517         av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
518         return AVERROR(EINVAL);
519     }
520 
521     ctx->thread[0] = ctx;
522     if (avctx->active_thread_type == FF_THREAD_SLICE) {
523         for (i = 1; i < avctx->thread_count; i++) {
524             ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
525             if (!ctx->thread[i])
526                 return AVERROR(ENOMEM);
527             memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
528         }
529     }
530 
531     return 0;
532 }
533 
dnxhd_write_header(AVCodecContext * avctx,uint8_t * buf)534 static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
535 {
536     DNXHDEncContext *ctx = avctx->priv_data;
537 
538     memset(buf, 0, ctx->data_offset);
539 
540     // * write prefix */
541     AV_WB16(buf + 0x02, ctx->data_offset);
542     if (ctx->cid >= 1270 && ctx->cid <= 1274)
543         buf[4] = 0x03;
544     else
545         buf[4] = 0x01;
546 
547     buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
548     buf[6] = 0x80; // crc flag off
549     buf[7] = 0xa0; // reserved
550     AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
551     AV_WB16(buf + 0x1a, avctx->width);  // SPL
552     AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
553 
554     buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38;
555     buf[0x22] = 0x88 + (ctx->interlaced << 2);
556     AV_WB32(buf + 0x28, ctx->cid); // CID
557     buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
558 
559     buf[0x5f] = 0x01; // UDL
560 
561     buf[0x167] = 0x02; // reserved
562     AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
563     AV_WB16(buf + 0x16c, ctx->m.mb_height); // Ns
564     buf[0x16f] = 0x10; // reserved
565 
566     ctx->msip = buf + 0x170;
567     return 0;
568 }
569 
dnxhd_encode_dc(DNXHDEncContext * ctx,int diff)570 static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
571 {
572     int nbits;
573     if (diff < 0) {
574         nbits = av_log2_16bit(-2 * diff);
575         diff--;
576     } else {
577         nbits = av_log2_16bit(2 * diff);
578     }
579     put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
580              (ctx->cid_table->dc_codes[nbits] << nbits) +
581              av_mod_uintp2(diff, nbits));
582 }
583 
584 static av_always_inline
dnxhd_encode_block(DNXHDEncContext * ctx,int16_t * block,int last_index,int n)585 void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
586                         int last_index, int n)
587 {
588     int last_non_zero = 0;
589     int slevel, i, j;
590 
591     dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
592     ctx->m.last_dc[n] = block[0];
593 
594     for (i = 1; i <= last_index; i++) {
595         j = ctx->m.intra_scantable.permutated[i];
596         slevel = block[j];
597         if (slevel) {
598             int run_level = i - last_non_zero - 1;
599             int rlevel = slevel * (1 << 1) | !!run_level;
600             put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
601             if (run_level)
602                 put_bits(&ctx->m.pb, ctx->run_bits[run_level],
603                          ctx->run_codes[run_level]);
604             last_non_zero = i;
605         }
606     }
607     put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
608 }
609 
610 static av_always_inline
dnxhd_unquantize_c(DNXHDEncContext * ctx,int16_t * block,int n,int qscale,int last_index)611 void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
612                         int qscale, int last_index)
613 {
614     const uint8_t *weight_matrix;
615     int level;
616     int i;
617 
618     if (ctx->is_444) {
619         weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight
620                                       : ctx->cid_table->chroma_weight;
621     } else {
622         weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
623                                 : ctx->cid_table->luma_weight;
624     }
625 
626     for (i = 1; i <= last_index; i++) {
627         int j = ctx->m.intra_scantable.permutated[i];
628         level = block[j];
629         if (level) {
630             if (level < 0) {
631                 level = (1 - 2 * level) * qscale * weight_matrix[i];
632                 if (ctx->bit_depth == 10) {
633                     if (weight_matrix[i] != 8)
634                         level += 8;
635                     level >>= 4;
636                 } else {
637                     if (weight_matrix[i] != 32)
638                         level += 32;
639                     level >>= 6;
640                 }
641                 level = -level;
642             } else {
643                 level = (2 * level + 1) * qscale * weight_matrix[i];
644                 if (ctx->bit_depth == 10) {
645                     if (weight_matrix[i] != 8)
646                         level += 8;
647                     level >>= 4;
648                 } else {
649                     if (weight_matrix[i] != 32)
650                         level += 32;
651                     level >>= 6;
652                 }
653             }
654             block[j] = level;
655         }
656     }
657 }
658 
dnxhd_ssd_block(int16_t * qblock,int16_t * block)659 static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
660 {
661     int score = 0;
662     int i;
663     for (i = 0; i < 64; i++)
664         score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
665     return score;
666 }
667 
668 static av_always_inline
dnxhd_calc_ac_bits(DNXHDEncContext * ctx,int16_t * block,int last_index)669 int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
670 {
671     int last_non_zero = 0;
672     int bits = 0;
673     int i, j, level;
674     for (i = 1; i <= last_index; i++) {
675         j = ctx->m.intra_scantable.permutated[i];
676         level = block[j];
677         if (level) {
678             int run_level = i - last_non_zero - 1;
679             bits += ctx->vlc_bits[level * (1 << 1) |
680                     !!run_level] + ctx->run_bits[run_level];
681             last_non_zero = i;
682         }
683     }
684     return bits;
685 }
686 
687 static av_always_inline
dnxhd_get_blocks(DNXHDEncContext * ctx,int mb_x,int mb_y)688 void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
689 {
690     const int bs = ctx->block_width_l2;
691     const int bw = 1 << bs;
692     int dct_y_offset = ctx->dct_y_offset;
693     int dct_uv_offset = ctx->dct_uv_offset;
694     int linesize = ctx->m.linesize;
695     int uvlinesize = ctx->m.uvlinesize;
696     const uint8_t *ptr_y = ctx->thread[0]->src[0] +
697                            ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
698     const uint8_t *ptr_u = ctx->thread[0]->src[1] +
699                            ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
700     const uint8_t *ptr_v = ctx->thread[0]->src[2] +
701                            ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
702     PixblockDSPContext *pdsp = &ctx->m.pdsp;
703     VideoDSPContext *vdsp = &ctx->m.vdsp;
704 
705     if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
706                                                            (mb_y << 4) + 16 > ctx->m.avctx->height)) {
707         int y_w = ctx->m.avctx->width  - (mb_x << 4);
708         int y_h = ctx->m.avctx->height - (mb_y << 4);
709         int uv_w = (y_w + 1) / 2;
710         int uv_h = y_h;
711         linesize = 16;
712         uvlinesize = 8;
713 
714         vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
715                                linesize, ctx->m.linesize,
716                                linesize, 16,
717                                0, 0, y_w, y_h);
718         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
719                                uvlinesize, ctx->m.uvlinesize,
720                                uvlinesize, 16,
721                                0, 0, uv_w, uv_h);
722         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
723                                uvlinesize, ctx->m.uvlinesize,
724                                uvlinesize, 16,
725                                0, 0, uv_w, uv_h);
726 
727         dct_y_offset =  bw * linesize;
728         dct_uv_offset = bw * uvlinesize;
729         ptr_y = &ctx->edge_buf_y[0];
730         ptr_u = &ctx->edge_buf_uv[0][0];
731         ptr_v = &ctx->edge_buf_uv[1][0];
732     } else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
733                                                                   (mb_y << 4) + 16 > ctx->m.avctx->height)) {
734         int y_w = ctx->m.avctx->width  - (mb_x << 4);
735         int y_h = ctx->m.avctx->height - (mb_y << 4);
736         int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2;
737         int uv_h = y_h;
738         linesize = 32;
739         uvlinesize = 16 + 16 * ctx->is_444;
740 
741         vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
742                                linesize, ctx->m.linesize,
743                                linesize / 2, 16,
744                                0, 0, y_w, y_h);
745         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
746                                uvlinesize, ctx->m.uvlinesize,
747                                uvlinesize / 2, 16,
748                                0, 0, uv_w, uv_h);
749         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
750                                uvlinesize, ctx->m.uvlinesize,
751                                uvlinesize / 2, 16,
752                                0, 0, uv_w, uv_h);
753 
754         dct_y_offset =  bw * linesize / 2;
755         dct_uv_offset = bw * uvlinesize / 2;
756         ptr_y = &ctx->edge_buf_y[0];
757         ptr_u = &ctx->edge_buf_uv[0][0];
758         ptr_v = &ctx->edge_buf_uv[1][0];
759     }
760 
761     if (!ctx->is_444) {
762         pdsp->get_pixels(ctx->blocks[0], ptr_y,      linesize);
763         pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
764         pdsp->get_pixels(ctx->blocks[2], ptr_u,      uvlinesize);
765         pdsp->get_pixels(ctx->blocks[3], ptr_v,      uvlinesize);
766 
767         if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
768             if (ctx->interlaced) {
769                 ctx->get_pixels_8x4_sym(ctx->blocks[4],
770                                         ptr_y + dct_y_offset,
771                                         linesize);
772                 ctx->get_pixels_8x4_sym(ctx->blocks[5],
773                                         ptr_y + dct_y_offset + bw,
774                                         linesize);
775                 ctx->get_pixels_8x4_sym(ctx->blocks[6],
776                                         ptr_u + dct_uv_offset,
777                                         uvlinesize);
778                 ctx->get_pixels_8x4_sym(ctx->blocks[7],
779                                         ptr_v + dct_uv_offset,
780                                         uvlinesize);
781             } else {
782                 ctx->bdsp.clear_block(ctx->blocks[4]);
783                 ctx->bdsp.clear_block(ctx->blocks[5]);
784                 ctx->bdsp.clear_block(ctx->blocks[6]);
785                 ctx->bdsp.clear_block(ctx->blocks[7]);
786             }
787         } else {
788             pdsp->get_pixels(ctx->blocks[4],
789                              ptr_y + dct_y_offset, linesize);
790             pdsp->get_pixels(ctx->blocks[5],
791                              ptr_y + dct_y_offset + bw, linesize);
792             pdsp->get_pixels(ctx->blocks[6],
793                              ptr_u + dct_uv_offset, uvlinesize);
794             pdsp->get_pixels(ctx->blocks[7],
795                              ptr_v + dct_uv_offset, uvlinesize);
796         }
797     } else {
798         pdsp->get_pixels(ctx->blocks[0], ptr_y,      linesize);
799         pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
800         pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize);
801         pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize);
802 
803         pdsp->get_pixels(ctx->blocks[2], ptr_u,      uvlinesize);
804         pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize);
805         pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize);
806         pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize);
807 
808         pdsp->get_pixels(ctx->blocks[4], ptr_v,      uvlinesize);
809         pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize);
810         pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize);
811         pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize);
812     }
813 }
814 
815 static av_always_inline
dnxhd_switch_matrix(DNXHDEncContext * ctx,int i)816 int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
817 {
818     int x;
819 
820     if (ctx->is_444) {
821         x = (i >> 1) % 3;
822     } else {
823         const static uint8_t component[8]={0,0,1,2,0,0,1,2};
824         x = component[i];
825     }
826     return x;
827 }
828 
dnxhd_calc_bits_thread(AVCodecContext * avctx,void * arg,int jobnr,int threadnr)829 static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
830                                   int jobnr, int threadnr)
831 {
832     DNXHDEncContext *ctx = avctx->priv_data;
833     int mb_y = jobnr, mb_x;
834     int qscale = ctx->qscale;
835     LOCAL_ALIGNED_16(int16_t, block, [64]);
836     ctx = ctx->thread[threadnr];
837 
838     ctx->m.last_dc[0] =
839     ctx->m.last_dc[1] =
840     ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
841 
842     for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
843         unsigned mb = mb_y * ctx->m.mb_width + mb_x;
844         int ssd     = 0;
845         int ac_bits = 0;
846         int dc_bits = 0;
847         int i;
848 
849         dnxhd_get_blocks(ctx, mb_x, mb_y);
850 
851         for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
852             int16_t *src_block = ctx->blocks[i];
853             int overflow, nbits, diff, last_index;
854             int n = dnxhd_switch_matrix(ctx, i);
855 
856             memcpy(block, src_block, 64 * sizeof(*block));
857             last_index = ctx->m.dct_quantize(&ctx->m, block,
858                                              ctx->is_444 ? 4 * (n > 0): 4 & (2*i),
859                                              qscale, &overflow);
860             ac_bits   += dnxhd_calc_ac_bits(ctx, block, last_index);
861 
862             diff = block[0] - ctx->m.last_dc[n];
863             if (diff < 0)
864                 nbits = av_log2_16bit(-2 * diff);
865             else
866                 nbits = av_log2_16bit(2 * diff);
867 
868             av_assert1(nbits < ctx->bit_depth + 4);
869             dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
870 
871             ctx->m.last_dc[n] = block[0];
872 
873             if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
874                 dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
875                 ctx->m.idsp.idct(block);
876                 ssd += dnxhd_ssd_block(block, src_block);
877             }
878         }
879         ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd  = ssd;
880         ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
881                                      (1 + ctx->is_444) * 8 * ctx->vlc_bits[0];
882     }
883     return 0;
884 }
885 
dnxhd_encode_thread(AVCodecContext * avctx,void * arg,int jobnr,int threadnr)886 static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
887                                int jobnr, int threadnr)
888 {
889     DNXHDEncContext *ctx = avctx->priv_data;
890     int mb_y = jobnr, mb_x;
891     ctx = ctx->thread[threadnr];
892     init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
893                   ctx->slice_size[jobnr]);
894 
895     ctx->m.last_dc[0] =
896     ctx->m.last_dc[1] =
897     ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
898     for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
899         unsigned mb = mb_y * ctx->m.mb_width + mb_x;
900         int qscale = ctx->mb_qscale[mb];
901         int i;
902 
903         put_bits(&ctx->m.pb, 11, qscale);
904         put_bits(&ctx->m.pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
905 
906         dnxhd_get_blocks(ctx, mb_x, mb_y);
907 
908         for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
909             int16_t *block = ctx->blocks[i];
910             int overflow, n = dnxhd_switch_matrix(ctx, i);
911             int last_index = ctx->m.dct_quantize(&ctx->m, block,
912                                                  ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i),
913                                                  qscale, &overflow);
914 
915             dnxhd_encode_block(ctx, block, last_index, n);
916         }
917     }
918     if (put_bits_count(&ctx->m.pb) & 31)
919         put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
920     flush_put_bits(&ctx->m.pb);
921     return 0;
922 }
923 
dnxhd_setup_threads_slices(DNXHDEncContext * ctx)924 static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
925 {
926     int mb_y, mb_x;
927     int offset = 0;
928     for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
929         int thread_size;
930         ctx->slice_offs[mb_y] = offset;
931         ctx->slice_size[mb_y] = 0;
932         for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
933             unsigned mb = mb_y * ctx->m.mb_width + mb_x;
934             ctx->slice_size[mb_y] += ctx->mb_bits[mb];
935         }
936         ctx->slice_size[mb_y]   = (ctx->slice_size[mb_y] + 31) & ~31;
937         ctx->slice_size[mb_y] >>= 3;
938         thread_size = ctx->slice_size[mb_y];
939         offset += thread_size;
940     }
941 }
942 
dnxhd_mb_var_thread(AVCodecContext * avctx,void * arg,int jobnr,int threadnr)943 static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
944                                int jobnr, int threadnr)
945 {
946     DNXHDEncContext *ctx = avctx->priv_data;
947     int mb_y = jobnr, mb_x, x, y;
948     int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
949                            ((avctx->height >> ctx->interlaced) & 0xF);
950 
951     ctx = ctx->thread[threadnr];
952     if (ctx->bit_depth == 8) {
953         uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
954         for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
955             unsigned mb = mb_y * ctx->m.mb_width + mb_x;
956             int sum;
957             int varc;
958 
959             if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
960                 sum  = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
961                 varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
962             } else {
963                 int bw = FFMIN(avctx->width - 16 * mb_x, 16);
964                 int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
965                 sum = varc = 0;
966                 for (y = 0; y < bh; y++) {
967                     for (x = 0; x < bw; x++) {
968                         uint8_t val = pix[x + y * ctx->m.linesize];
969                         sum  += val;
970                         varc += val * val;
971                     }
972                 }
973             }
974             varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
975 
976             ctx->mb_cmp[mb].value = varc;
977             ctx->mb_cmp[mb].mb    = mb;
978         }
979     } else { // 10-bit
980         const int linesize = ctx->m.linesize >> 1;
981         for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
982             uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
983                             ((mb_y << 4) * linesize) + (mb_x << 4);
984             unsigned mb  = mb_y * ctx->m.mb_width + mb_x;
985             int sum = 0;
986             int sqsum = 0;
987             int bw = FFMIN(avctx->width - 16 * mb_x, 16);
988             int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
989             int mean, sqmean;
990             int i, j;
991             // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
992             for (i = 0; i < bh; ++i) {
993                 for (j = 0; j < bw; ++j) {
994                     // Turn 16-bit pixels into 10-bit ones.
995                     const int sample = (unsigned) pix[j] >> 6;
996                     sum   += sample;
997                     sqsum += sample * sample;
998                     // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
999                 }
1000                 pix += linesize;
1001             }
1002             mean = sum >> 8; // 16*16 == 2^8
1003             sqmean = sqsum >> 8;
1004             ctx->mb_cmp[mb].value = sqmean - mean * mean;
1005             ctx->mb_cmp[mb].mb    = mb;
1006         }
1007     }
1008     return 0;
1009 }
1010 
dnxhd_encode_rdo(AVCodecContext * avctx,DNXHDEncContext * ctx)1011 static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
1012 {
1013     int lambda, up_step, down_step;
1014     int last_lower = INT_MAX, last_higher = 0;
1015     int x, y, q;
1016 
1017     for (q = 1; q < avctx->qmax; q++) {
1018         ctx->qscale = q;
1019         avctx->execute2(avctx, dnxhd_calc_bits_thread,
1020                         NULL, NULL, ctx->m.mb_height);
1021     }
1022     up_step = down_step = 2 << LAMBDA_FRAC_BITS;
1023     lambda  = ctx->lambda;
1024 
1025     for (;;) {
1026         int bits = 0;
1027         int end  = 0;
1028         if (lambda == last_higher) {
1029             lambda++;
1030             end = 1; // need to set final qscales/bits
1031         }
1032         for (y = 0; y < ctx->m.mb_height; y++) {
1033             for (x = 0; x < ctx->m.mb_width; x++) {
1034                 unsigned min = UINT_MAX;
1035                 int qscale = 1;
1036                 int mb     = y * ctx->m.mb_width + x;
1037                 int rc = 0;
1038                 for (q = 1; q < avctx->qmax; q++) {
1039                     int i = (q*ctx->m.mb_num) + mb;
1040                     unsigned score = ctx->mb_rc[i].bits * lambda +
1041                                      ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
1042                     if (score < min) {
1043                         min    = score;
1044                         qscale = q;
1045                         rc = i;
1046                     }
1047                 }
1048                 bits += ctx->mb_rc[rc].bits;
1049                 ctx->mb_qscale[mb] = qscale;
1050                 ctx->mb_bits[mb]   = ctx->mb_rc[rc].bits;
1051             }
1052             bits = (bits + 31) & ~31; // padding
1053             if (bits > ctx->frame_bits)
1054                 break;
1055         }
1056         if (end) {
1057             if (bits > ctx->frame_bits)
1058                 return AVERROR(EINVAL);
1059             break;
1060         }
1061         if (bits < ctx->frame_bits) {
1062             last_lower = FFMIN(lambda, last_lower);
1063             if (last_higher != 0)
1064                 lambda = (lambda+last_higher)>>1;
1065             else
1066                 lambda -= down_step;
1067             down_step = FFMIN((int64_t)down_step*5, INT_MAX);
1068             up_step = 1<<LAMBDA_FRAC_BITS;
1069             lambda = FFMAX(1, lambda);
1070             if (lambda == last_lower)
1071                 break;
1072         } else {
1073             last_higher = FFMAX(lambda, last_higher);
1074             if (last_lower != INT_MAX)
1075                 lambda = (lambda+last_lower)>>1;
1076             else if ((int64_t)lambda + up_step > INT_MAX)
1077                 return AVERROR(EINVAL);
1078             else
1079                 lambda += up_step;
1080             up_step = FFMIN((int64_t)up_step*5, INT_MAX);
1081             down_step = 1<<LAMBDA_FRAC_BITS;
1082         }
1083     }
1084     ctx->lambda = lambda;
1085     return 0;
1086 }
1087 
dnxhd_find_qscale(DNXHDEncContext * ctx)1088 static int dnxhd_find_qscale(DNXHDEncContext *ctx)
1089 {
1090     int bits = 0;
1091     int up_step = 1;
1092     int down_step = 1;
1093     int last_higher = 0;
1094     int last_lower = INT_MAX;
1095     int qscale;
1096     int x, y;
1097 
1098     qscale = ctx->qscale;
1099     for (;;) {
1100         bits = 0;
1101         ctx->qscale = qscale;
1102         // XXX avoid recalculating bits
1103         ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
1104                                NULL, NULL, ctx->m.mb_height);
1105         for (y = 0; y < ctx->m.mb_height; y++) {
1106             for (x = 0; x < ctx->m.mb_width; x++)
1107                 bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
1108             bits = (bits+31)&~31; // padding
1109             if (bits > ctx->frame_bits)
1110                 break;
1111         }
1112         if (bits < ctx->frame_bits) {
1113             if (qscale == 1)
1114                 return 1;
1115             if (last_higher == qscale - 1) {
1116                 qscale = last_higher;
1117                 break;
1118             }
1119             last_lower = FFMIN(qscale, last_lower);
1120             if (last_higher != 0)
1121                 qscale = (qscale + last_higher) >> 1;
1122             else
1123                 qscale -= down_step++;
1124             if (qscale < 1)
1125                 qscale = 1;
1126             up_step = 1;
1127         } else {
1128             if (last_lower == qscale + 1)
1129                 break;
1130             last_higher = FFMAX(qscale, last_higher);
1131             if (last_lower != INT_MAX)
1132                 qscale = (qscale + last_lower) >> 1;
1133             else
1134                 qscale += up_step++;
1135             down_step = 1;
1136             if (qscale >= ctx->m.avctx->qmax)
1137                 return AVERROR(EINVAL);
1138         }
1139     }
1140     ctx->qscale = qscale;
1141     return 0;
1142 }
1143 
1144 #define BUCKET_BITS 8
1145 #define RADIX_PASSES 4
1146 #define NBUCKETS (1 << BUCKET_BITS)
1147 
get_bucket(int value,int shift)1148 static inline int get_bucket(int value, int shift)
1149 {
1150     value >>= shift;
1151     value  &= NBUCKETS - 1;
1152     return NBUCKETS - 1 - value;
1153 }
1154 
radix_count(const RCCMPEntry * data,int size,int buckets[RADIX_PASSES][NBUCKETS])1155 static void radix_count(const RCCMPEntry *data, int size,
1156                         int buckets[RADIX_PASSES][NBUCKETS])
1157 {
1158     int i, j;
1159     memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
1160     for (i = 0; i < size; i++) {
1161         int v = data[i].value;
1162         for (j = 0; j < RADIX_PASSES; j++) {
1163             buckets[j][get_bucket(v, 0)]++;
1164             v >>= BUCKET_BITS;
1165         }
1166         av_assert1(!v);
1167     }
1168     for (j = 0; j < RADIX_PASSES; j++) {
1169         int offset = size;
1170         for (i = NBUCKETS - 1; i >= 0; i--)
1171             buckets[j][i] = offset -= buckets[j][i];
1172         av_assert1(!buckets[j][0]);
1173     }
1174 }
1175 
radix_sort_pass(RCCMPEntry * dst,const RCCMPEntry * data,int size,int buckets[NBUCKETS],int pass)1176 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
1177                             int size, int buckets[NBUCKETS], int pass)
1178 {
1179     int shift = pass * BUCKET_BITS;
1180     int i;
1181     for (i = 0; i < size; i++) {
1182         int v   = get_bucket(data[i].value, shift);
1183         int pos = buckets[v]++;
1184         dst[pos] = data[i];
1185     }
1186 }
1187 
radix_sort(RCCMPEntry * data,RCCMPEntry * tmp,int size)1188 static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
1189 {
1190     int buckets[RADIX_PASSES][NBUCKETS];
1191     radix_count(data, size, buckets);
1192     radix_sort_pass(tmp, data, size, buckets[0], 0);
1193     radix_sort_pass(data, tmp, size, buckets[1], 1);
1194     if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
1195         radix_sort_pass(tmp, data, size, buckets[2], 2);
1196         radix_sort_pass(data, tmp, size, buckets[3], 3);
1197     }
1198 }
1199 
dnxhd_encode_fast(AVCodecContext * avctx,DNXHDEncContext * ctx)1200 static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
1201 {
1202     int max_bits = 0;
1203     int ret, x, y;
1204     if ((ret = dnxhd_find_qscale(ctx)) < 0)
1205         return ret;
1206     for (y = 0; y < ctx->m.mb_height; y++) {
1207         for (x = 0; x < ctx->m.mb_width; x++) {
1208             int mb = y * ctx->m.mb_width + x;
1209             int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1210             int delta_bits;
1211             ctx->mb_qscale[mb] = ctx->qscale;
1212             ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
1213             max_bits += ctx->mb_rc[rc].bits;
1214             if (!RC_VARIANCE) {
1215                 delta_bits = ctx->mb_rc[rc].bits -
1216                              ctx->mb_rc[rc + ctx->m.mb_num].bits;
1217                 ctx->mb_cmp[mb].mb = mb;
1218                 ctx->mb_cmp[mb].value =
1219                     delta_bits ? ((ctx->mb_rc[rc].ssd -
1220                                    ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
1221                                   delta_bits
1222                                : INT_MIN; // avoid increasing qscale
1223             }
1224         }
1225         max_bits += 31; // worst padding
1226     }
1227     if (!ret) {
1228         if (RC_VARIANCE)
1229             avctx->execute2(avctx, dnxhd_mb_var_thread,
1230                             NULL, NULL, ctx->m.mb_height);
1231         radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num);
1232         for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
1233             int mb = ctx->mb_cmp[x].mb;
1234             int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1235             max_bits -= ctx->mb_rc[rc].bits -
1236                         ctx->mb_rc[rc + ctx->m.mb_num].bits;
1237             ctx->mb_qscale[mb] = ctx->qscale + 1;
1238             ctx->mb_bits[mb]   = ctx->mb_rc[rc + ctx->m.mb_num].bits;
1239         }
1240     }
1241     return 0;
1242 }
1243 
dnxhd_load_picture(DNXHDEncContext * ctx,const AVFrame * frame)1244 static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
1245 {
1246     int i;
1247 
1248     for (i = 0; i < ctx->m.avctx->thread_count; i++) {
1249         ctx->thread[i]->m.linesize    = frame->linesize[0] << ctx->interlaced;
1250         ctx->thread[i]->m.uvlinesize  = frame->linesize[1] << ctx->interlaced;
1251         ctx->thread[i]->dct_y_offset  = ctx->m.linesize  *8;
1252         ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
1253     }
1254 
1255 #if FF_API_CODED_FRAME
1256 FF_DISABLE_DEPRECATION_WARNINGS
1257     ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
1258 FF_ENABLE_DEPRECATION_WARNINGS
1259 #endif
1260     ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
1261 }
1262 
dnxhd_encode_picture(AVCodecContext * avctx,AVPacket * pkt,const AVFrame * frame,int * got_packet)1263 static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
1264                                 const AVFrame *frame, int *got_packet)
1265 {
1266     DNXHDEncContext *ctx = avctx->priv_data;
1267     int first_field = 1;
1268     int offset, i, ret;
1269     uint8_t *buf;
1270 
1271     if ((ret = ff_alloc_packet2(avctx, pkt, ctx->frame_size, 0)) < 0)
1272         return ret;
1273     buf = pkt->data;
1274 
1275     dnxhd_load_picture(ctx, frame);
1276 
1277 encode_coding_unit:
1278     for (i = 0; i < 3; i++) {
1279         ctx->src[i] = frame->data[i];
1280         if (ctx->interlaced && ctx->cur_field)
1281             ctx->src[i] += frame->linesize[i];
1282     }
1283 
1284     dnxhd_write_header(avctx, buf);
1285 
1286     if (avctx->mb_decision == FF_MB_DECISION_RD)
1287         ret = dnxhd_encode_rdo(avctx, ctx);
1288     else
1289         ret = dnxhd_encode_fast(avctx, ctx);
1290     if (ret < 0) {
1291         av_log(avctx, AV_LOG_ERROR,
1292                "picture could not fit ratecontrol constraints, increase qmax\n");
1293         return ret;
1294     }
1295 
1296     dnxhd_setup_threads_slices(ctx);
1297 
1298     offset = 0;
1299     for (i = 0; i < ctx->m.mb_height; i++) {
1300         AV_WB32(ctx->msip + i * 4, offset);
1301         offset += ctx->slice_size[i];
1302         av_assert1(!(ctx->slice_size[i] & 3));
1303     }
1304 
1305     avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
1306 
1307     av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
1308     memset(buf + ctx->data_offset + offset, 0,
1309            ctx->coding_unit_size - 4 - offset - ctx->data_offset);
1310 
1311     AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
1312 
1313     if (ctx->interlaced && first_field) {
1314         first_field     = 0;
1315         ctx->cur_field ^= 1;
1316         buf            += ctx->coding_unit_size;
1317         goto encode_coding_unit;
1318     }
1319 
1320 #if FF_API_CODED_FRAME
1321 FF_DISABLE_DEPRECATION_WARNINGS
1322     avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
1323 FF_ENABLE_DEPRECATION_WARNINGS
1324 #endif
1325 
1326     ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I);
1327 
1328     pkt->flags |= AV_PKT_FLAG_KEY;
1329     *got_packet = 1;
1330     return 0;
1331 }
1332 
dnxhd_encode_end(AVCodecContext * avctx)1333 static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
1334 {
1335     DNXHDEncContext *ctx = avctx->priv_data;
1336     int i;
1337 
1338     av_freep(&ctx->orig_vlc_codes);
1339     av_freep(&ctx->orig_vlc_bits);
1340     av_freep(&ctx->run_codes);
1341     av_freep(&ctx->run_bits);
1342 
1343     av_freep(&ctx->mb_bits);
1344     av_freep(&ctx->mb_qscale);
1345     av_freep(&ctx->mb_rc);
1346     av_freep(&ctx->mb_cmp);
1347     av_freep(&ctx->mb_cmp_tmp);
1348     av_freep(&ctx->slice_size);
1349     av_freep(&ctx->slice_offs);
1350 
1351     av_freep(&ctx->qmatrix_c);
1352     av_freep(&ctx->qmatrix_l);
1353     av_freep(&ctx->qmatrix_c16);
1354     av_freep(&ctx->qmatrix_l16);
1355 
1356     if (avctx->active_thread_type == FF_THREAD_SLICE) {
1357         for (i = 1; i < avctx->thread_count; i++)
1358             av_freep(&ctx->thread[i]);
1359     }
1360 
1361     return 0;
1362 }
1363 
1364 static const AVCodecDefault dnxhd_defaults[] = {
1365     { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
1366     { NULL },
1367 };
1368 
1369 AVCodec ff_dnxhd_encoder = {
1370     .name           = "dnxhd",
1371     .long_name      = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1372     .type           = AVMEDIA_TYPE_VIDEO,
1373     .id             = AV_CODEC_ID_DNXHD,
1374     .priv_data_size = sizeof(DNXHDEncContext),
1375     .init           = dnxhd_encode_init,
1376     .encode2        = dnxhd_encode_picture,
1377     .close          = dnxhd_encode_end,
1378     .capabilities   = AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
1379     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
1380     .pix_fmts       = (const enum AVPixelFormat[]) {
1381         AV_PIX_FMT_YUV422P,
1382         AV_PIX_FMT_YUV422P10,
1383         AV_PIX_FMT_YUV444P10,
1384         AV_PIX_FMT_GBRP10,
1385         AV_PIX_FMT_NONE
1386     },
1387     .priv_class     = &dnxhd_class,
1388     .defaults       = dnxhd_defaults,
1389     .profiles       = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles),
1390 };
1391