1 /*
2 * MJPEG encoder
3 * Copyright (c) 2016 William Ma, Ted Ying, Jerry Jiang
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <string.h>
23 #include <stdint.h>
24 #include <stdlib.h>
25 #include "libavutil/avassert.h"
26 #include "libavutil/common.h"
27 #include "libavutil/error.h"
28 #include "libavutil/qsort.h"
29 #include "mjpegenc_huffman.h"
30
31 /**
32 * Comparison function for two PTables by prob
33 *
34 * @param a First PTable to compare
35 * @param b Second PTable to compare
36 * @return < 0 for less than, 0 for equals, > 0 for greater than
37 */
compare_by_prob(const void * a,const void * b)38 static int compare_by_prob(const void *a, const void *b)
39 {
40 PTable a_val = *(PTable *) a;
41 PTable b_val = *(PTable *) b;
42 return a_val.prob - b_val.prob;
43 }
44
45 /**
46 * Comparison function for two HuffTables by length
47 *
48 * @param a First HuffTable to compare
49 * @param b Second HuffTable to compare
50 * @return < 0 for less than, 0 for equals, > 0 for greater than
51 */
compare_by_length(const void * a,const void * b)52 static int compare_by_length(const void *a, const void *b)
53 {
54 HuffTable a_val = *(HuffTable *) a;
55 HuffTable b_val = *(HuffTable *) b;
56 return a_val.length - b_val.length;
57 }
58
59 /**
60 * Computes the length of the Huffman encoding for each distinct input value.
61 * Uses package merge algorithm as follows:
62 * 1. start with an empty list, lets call it list(0), set i = 0
63 * 2. add 1 entry to list(i) for each symbol we have and give each a score equal to the probability of the respective symbol
64 * 3. merge the 2 symbols of least score and put them in list(i+1), and remove them from list(i). The new score will be the sum of the 2 scores
65 * 4. if there is more than 1 symbol left in the current list(i), then goto 3
66 * 5. i++
67 * 6. if i < 16 goto 2
68 * 7. select the n-1 elements in the last list with the lowest score (n = the number of symbols)
69 * 8. the length of the huffman code for symbol s will be equal to the number of times the symbol occurs in the select elements
70 * Go to guru.multimedia.cx/small-tasks-for-ffmpeg/ for more details
71 *
72 * All probabilities should be positive integers. The output is sorted by code,
73 * not by length.
74 *
75 * @param prob_table input array of a PTable for each distinct input value
76 * @param distincts output array of a HuffTable that will be populated by this function
77 * @param size size of the prob_table array
78 * @param max_length max length of an encoding
79 */
ff_mjpegenc_huffman_compute_bits(PTable * prob_table,HuffTable * distincts,int size,int max_length)80 void ff_mjpegenc_huffman_compute_bits(PTable *prob_table, HuffTable *distincts, int size, int max_length)
81 {
82 PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp;
83
84 int times, i, j, k;
85
86 int nbits[257] = {0};
87
88 int min;
89
90 av_assert0(max_length > 0);
91
92 to->nitems = 0;
93 from->nitems = 0;
94 to->item_idx[0] = 0;
95 from->item_idx[0] = 0;
96 AV_QSORT(prob_table, size, PTable, compare_by_prob);
97
98 for (times = 0; times <= max_length; times++) {
99 to->nitems = 0;
100 to->item_idx[0] = 0;
101
102 j = 0;
103 k = 0;
104
105 if (times < max_length) {
106 i = 0;
107 }
108 while (i < size || j + 1 < from->nitems) {
109 to->nitems++;
110 to->item_idx[to->nitems] = to->item_idx[to->nitems - 1];
111 if (i < size &&
112 (j + 1 >= from->nitems ||
113 prob_table[i].prob <
114 from->probability[j] + from->probability[j + 1])) {
115 to->items[to->item_idx[to->nitems]++] = prob_table[i].value;
116 to->probability[to->nitems - 1] = prob_table[i].prob;
117 i++;
118 } else {
119 for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) {
120 to->items[to->item_idx[to->nitems]++] = from->items[k];
121 }
122 to->probability[to->nitems - 1] =
123 from->probability[j] + from->probability[j + 1];
124 j += 2;
125 }
126 }
127 temp = to;
128 to = from;
129 from = temp;
130 }
131
132 min = (size - 1 < from->nitems) ? size - 1 : from->nitems;
133 for (i = 0; i < from->item_idx[min]; i++) {
134 nbits[from->items[i]]++;
135 }
136 // we don't want to return the 256 bit count (it was just in here to prevent
137 // all 1s encoding)
138 j = 0;
139 for (i = 0; i < 256; i++) {
140 if (nbits[i] > 0) {
141 distincts[j].code = i;
142 distincts[j].length = nbits[i];
143 j++;
144 }
145 }
146 }
147
ff_mjpeg_encode_huffman_init(MJpegEncHuffmanContext * s)148 void ff_mjpeg_encode_huffman_init(MJpegEncHuffmanContext *s)
149 {
150 memset(s->val_count, 0, sizeof(s->val_count));
151 }
152
153 /**
154 * Produces a Huffman encoding with a given input
155 *
156 * @param s input to encode
157 * @param bits output array where the ith character represents how many input values have i length encoding
158 * @param val output array of input values sorted by their encoded length
159 * @param max_nval maximum number of distinct input values
160 */
ff_mjpeg_encode_huffman_close(MJpegEncHuffmanContext * s,uint8_t bits[17],uint8_t val[],int max_nval)161 void ff_mjpeg_encode_huffman_close(MJpegEncHuffmanContext *s, uint8_t bits[17],
162 uint8_t val[], int max_nval)
163 {
164 int i, j;
165 int nval = 0;
166 PTable val_counts[257];
167 HuffTable distincts[256];
168
169 for (i = 0; i < 256; i++) {
170 if (s->val_count[i]) nval++;
171 }
172 av_assert0 (nval <= max_nval);
173
174 j = 0;
175 for (i = 0; i < 256; i++) {
176 if (s->val_count[i]) {
177 val_counts[j].value = i;
178 val_counts[j].prob = s->val_count[i];
179 j++;
180 }
181 }
182 val_counts[j].value = 256;
183 val_counts[j].prob = 0;
184 ff_mjpegenc_huffman_compute_bits(val_counts, distincts, nval + 1, 16);
185 AV_QSORT(distincts, nval, HuffTable, compare_by_length);
186
187 memset(bits, 0, sizeof(bits[0]) * 17);
188 for (i = 0; i < nval; i++) {
189 val[i] = distincts[i].code;
190 bits[distincts[i].length]++;
191 }
192 }
193