• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	Forwarding Information Database
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  *
9  *	Changes:
10  *	Yuji SEKIYA @USAGI:	Support default route on router node;
11  *				remove ip6_null_entry from the top of
12  *				routing table.
13  *	Ville Nuorvala:		Fixed routing subtrees.
14  */
15 
16 #define pr_fmt(fmt) "IPv6: " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/types.h>
20 #include <linux/net.h>
21 #include <linux/route.h>
22 #include <linux/netdevice.h>
23 #include <linux/in6.h>
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/slab.h>
27 
28 #include <net/ip.h>
29 #include <net/ipv6.h>
30 #include <net/ndisc.h>
31 #include <net/addrconf.h>
32 #include <net/lwtunnel.h>
33 #include <net/fib_notifier.h>
34 
35 #include <net/ip6_fib.h>
36 #include <net/ip6_route.h>
37 
38 static struct kmem_cache *fib6_node_kmem __read_mostly;
39 
40 struct fib6_cleaner {
41 	struct fib6_walker w;
42 	struct net *net;
43 	int (*func)(struct fib6_info *, void *arg);
44 	int sernum;
45 	void *arg;
46 	bool skip_notify;
47 };
48 
49 #ifdef CONFIG_IPV6_SUBTREES
50 #define FWS_INIT FWS_S
51 #else
52 #define FWS_INIT FWS_L
53 #endif
54 
55 static struct fib6_info *fib6_find_prefix(struct net *net,
56 					 struct fib6_table *table,
57 					 struct fib6_node *fn);
58 static struct fib6_node *fib6_repair_tree(struct net *net,
59 					  struct fib6_table *table,
60 					  struct fib6_node *fn);
61 static int fib6_walk(struct net *net, struct fib6_walker *w);
62 static int fib6_walk_continue(struct fib6_walker *w);
63 
64 /*
65  *	A routing update causes an increase of the serial number on the
66  *	affected subtree. This allows for cached routes to be asynchronously
67  *	tested when modifications are made to the destination cache as a
68  *	result of redirects, path MTU changes, etc.
69  */
70 
71 static void fib6_gc_timer_cb(struct timer_list *t);
72 
73 #define FOR_WALKERS(net, w) \
74 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
75 
fib6_walker_link(struct net * net,struct fib6_walker * w)76 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
77 {
78 	write_lock_bh(&net->ipv6.fib6_walker_lock);
79 	list_add(&w->lh, &net->ipv6.fib6_walkers);
80 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
81 }
82 
fib6_walker_unlink(struct net * net,struct fib6_walker * w)83 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
84 {
85 	write_lock_bh(&net->ipv6.fib6_walker_lock);
86 	list_del(&w->lh);
87 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
88 }
89 
fib6_new_sernum(struct net * net)90 static int fib6_new_sernum(struct net *net)
91 {
92 	int new, old;
93 
94 	do {
95 		old = atomic_read(&net->ipv6.fib6_sernum);
96 		new = old < INT_MAX ? old + 1 : 1;
97 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
98 				old, new) != old);
99 	return new;
100 }
101 
102 enum {
103 	FIB6_NO_SERNUM_CHANGE = 0,
104 };
105 
fib6_update_sernum(struct net * net,struct fib6_info * f6i)106 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
107 {
108 	struct fib6_node *fn;
109 
110 	fn = rcu_dereference_protected(f6i->fib6_node,
111 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
112 	if (fn)
113 		WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
114 }
115 
116 /*
117  *	Auxiliary address test functions for the radix tree.
118  *
119  *	These assume a 32bit processor (although it will work on
120  *	64bit processors)
121  */
122 
123 /*
124  *	test bit
125  */
126 #if defined(__LITTLE_ENDIAN)
127 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
128 #else
129 # define BITOP_BE32_SWIZZLE	0
130 #endif
131 
addr_bit_set(const void * token,int fn_bit)132 static __be32 addr_bit_set(const void *token, int fn_bit)
133 {
134 	const __be32 *addr = token;
135 	/*
136 	 * Here,
137 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
138 	 * is optimized version of
139 	 *	htonl(1 << ((~fn_bit)&0x1F))
140 	 * See include/asm-generic/bitops/le.h.
141 	 */
142 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
143 	       addr[fn_bit >> 5];
144 }
145 
fib6_info_alloc(gfp_t gfp_flags,bool with_fib6_nh)146 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
147 {
148 	struct fib6_info *f6i;
149 	size_t sz = sizeof(*f6i);
150 
151 	if (with_fib6_nh)
152 		sz += sizeof(struct fib6_nh);
153 
154 	f6i = kzalloc(sz, gfp_flags);
155 	if (!f6i)
156 		return NULL;
157 
158 	/* fib6_siblings is a union with nh_list, so this initializes both */
159 	INIT_LIST_HEAD(&f6i->fib6_siblings);
160 	refcount_set(&f6i->fib6_ref, 1);
161 
162 	return f6i;
163 }
164 
fib6_info_destroy_rcu(struct rcu_head * head)165 void fib6_info_destroy_rcu(struct rcu_head *head)
166 {
167 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
168 
169 	WARN_ON(f6i->fib6_node);
170 
171 	if (f6i->nh)
172 		nexthop_put(f6i->nh);
173 	else
174 		fib6_nh_release(f6i->fib6_nh);
175 
176 	ip_fib_metrics_put(f6i->fib6_metrics);
177 	kfree(f6i);
178 }
179 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
180 
node_alloc(struct net * net)181 static struct fib6_node *node_alloc(struct net *net)
182 {
183 	struct fib6_node *fn;
184 
185 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
186 	if (fn)
187 		net->ipv6.rt6_stats->fib_nodes++;
188 
189 	return fn;
190 }
191 
node_free_immediate(struct net * net,struct fib6_node * fn)192 static void node_free_immediate(struct net *net, struct fib6_node *fn)
193 {
194 	kmem_cache_free(fib6_node_kmem, fn);
195 	net->ipv6.rt6_stats->fib_nodes--;
196 }
197 
node_free_rcu(struct rcu_head * head)198 static void node_free_rcu(struct rcu_head *head)
199 {
200 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
201 
202 	kmem_cache_free(fib6_node_kmem, fn);
203 }
204 
node_free(struct net * net,struct fib6_node * fn)205 static void node_free(struct net *net, struct fib6_node *fn)
206 {
207 	call_rcu(&fn->rcu, node_free_rcu);
208 	net->ipv6.rt6_stats->fib_nodes--;
209 }
210 
fib6_free_table(struct fib6_table * table)211 static void fib6_free_table(struct fib6_table *table)
212 {
213 	inetpeer_invalidate_tree(&table->tb6_peers);
214 	kfree(table);
215 }
216 
fib6_link_table(struct net * net,struct fib6_table * tb)217 static void fib6_link_table(struct net *net, struct fib6_table *tb)
218 {
219 	unsigned int h;
220 
221 	/*
222 	 * Initialize table lock at a single place to give lockdep a key,
223 	 * tables aren't visible prior to being linked to the list.
224 	 */
225 	spin_lock_init(&tb->tb6_lock);
226 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
227 
228 	/*
229 	 * No protection necessary, this is the only list mutatation
230 	 * operation, tables never disappear once they exist.
231 	 */
232 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
233 }
234 
235 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
236 
fib6_alloc_table(struct net * net,u32 id)237 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
238 {
239 	struct fib6_table *table;
240 
241 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
242 	if (table) {
243 		table->tb6_id = id;
244 		rcu_assign_pointer(table->tb6_root.leaf,
245 				   net->ipv6.fib6_null_entry);
246 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
247 		inet_peer_base_init(&table->tb6_peers);
248 	}
249 
250 	return table;
251 }
252 
fib6_new_table(struct net * net,u32 id)253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255 	struct fib6_table *tb;
256 
257 	if (id == 0)
258 		id = RT6_TABLE_MAIN;
259 	tb = fib6_get_table(net, id);
260 	if (tb)
261 		return tb;
262 
263 	tb = fib6_alloc_table(net, id);
264 	if (tb)
265 		fib6_link_table(net, tb);
266 
267 	return tb;
268 }
269 EXPORT_SYMBOL_GPL(fib6_new_table);
270 
fib6_get_table(struct net * net,u32 id)271 struct fib6_table *fib6_get_table(struct net *net, u32 id)
272 {
273 	struct fib6_table *tb;
274 	struct hlist_head *head;
275 	unsigned int h;
276 
277 	if (id == 0)
278 		id = RT6_TABLE_MAIN;
279 	h = id & (FIB6_TABLE_HASHSZ - 1);
280 	rcu_read_lock();
281 	head = &net->ipv6.fib_table_hash[h];
282 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
283 		if (tb->tb6_id == id) {
284 			rcu_read_unlock();
285 			return tb;
286 		}
287 	}
288 	rcu_read_unlock();
289 
290 	return NULL;
291 }
292 EXPORT_SYMBOL_GPL(fib6_get_table);
293 
fib6_tables_init(struct net * net)294 static void __net_init fib6_tables_init(struct net *net)
295 {
296 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
297 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
298 }
299 #else
300 
fib6_new_table(struct net * net,u32 id)301 struct fib6_table *fib6_new_table(struct net *net, u32 id)
302 {
303 	return fib6_get_table(net, id);
304 }
305 
fib6_get_table(struct net * net,u32 id)306 struct fib6_table *fib6_get_table(struct net *net, u32 id)
307 {
308 	  return net->ipv6.fib6_main_tbl;
309 }
310 
fib6_rule_lookup(struct net * net,struct flowi6 * fl6,const struct sk_buff * skb,int flags,pol_lookup_t lookup)311 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
312 				   const struct sk_buff *skb,
313 				   int flags, pol_lookup_t lookup)
314 {
315 	struct rt6_info *rt;
316 
317 	rt = pol_lookup_func(lookup,
318 			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
319 	if (rt->dst.error == -EAGAIN) {
320 		ip6_rt_put_flags(rt, flags);
321 		rt = net->ipv6.ip6_null_entry;
322 		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
323 			dst_hold(&rt->dst);
324 	}
325 
326 	return &rt->dst;
327 }
328 
329 /* called with rcu lock held; no reference taken on fib6_info */
fib6_lookup(struct net * net,int oif,struct flowi6 * fl6,struct fib6_result * res,int flags)330 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
331 		struct fib6_result *res, int flags)
332 {
333 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
334 				 res, flags);
335 }
336 
fib6_tables_init(struct net * net)337 static void __net_init fib6_tables_init(struct net *net)
338 {
339 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
340 }
341 
342 #endif
343 
fib6_tables_seq_read(struct net * net)344 unsigned int fib6_tables_seq_read(struct net *net)
345 {
346 	unsigned int h, fib_seq = 0;
347 
348 	rcu_read_lock();
349 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
350 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
351 		struct fib6_table *tb;
352 
353 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
354 			fib_seq += tb->fib_seq;
355 	}
356 	rcu_read_unlock();
357 
358 	return fib_seq;
359 }
360 
call_fib6_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)361 static int call_fib6_entry_notifier(struct notifier_block *nb,
362 				    enum fib_event_type event_type,
363 				    struct fib6_info *rt,
364 				    struct netlink_ext_ack *extack)
365 {
366 	struct fib6_entry_notifier_info info = {
367 		.info.extack = extack,
368 		.rt = rt,
369 	};
370 
371 	return call_fib6_notifier(nb, event_type, &info.info);
372 }
373 
call_fib6_multipath_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)374 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
375 					      enum fib_event_type event_type,
376 					      struct fib6_info *rt,
377 					      unsigned int nsiblings,
378 					      struct netlink_ext_ack *extack)
379 {
380 	struct fib6_entry_notifier_info info = {
381 		.info.extack = extack,
382 		.rt = rt,
383 		.nsiblings = nsiblings,
384 	};
385 
386 	return call_fib6_notifier(nb, event_type, &info.info);
387 }
388 
call_fib6_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)389 int call_fib6_entry_notifiers(struct net *net,
390 			      enum fib_event_type event_type,
391 			      struct fib6_info *rt,
392 			      struct netlink_ext_ack *extack)
393 {
394 	struct fib6_entry_notifier_info info = {
395 		.info.extack = extack,
396 		.rt = rt,
397 	};
398 
399 	rt->fib6_table->fib_seq++;
400 	return call_fib6_notifiers(net, event_type, &info.info);
401 }
402 
call_fib6_multipath_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)403 int call_fib6_multipath_entry_notifiers(struct net *net,
404 					enum fib_event_type event_type,
405 					struct fib6_info *rt,
406 					unsigned int nsiblings,
407 					struct netlink_ext_ack *extack)
408 {
409 	struct fib6_entry_notifier_info info = {
410 		.info.extack = extack,
411 		.rt = rt,
412 		.nsiblings = nsiblings,
413 	};
414 
415 	rt->fib6_table->fib_seq++;
416 	return call_fib6_notifiers(net, event_type, &info.info);
417 }
418 
call_fib6_entry_notifiers_replace(struct net * net,struct fib6_info * rt)419 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
420 {
421 	struct fib6_entry_notifier_info info = {
422 		.rt = rt,
423 		.nsiblings = rt->fib6_nsiblings,
424 	};
425 
426 	rt->fib6_table->fib_seq++;
427 	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
428 }
429 
430 struct fib6_dump_arg {
431 	struct net *net;
432 	struct notifier_block *nb;
433 	struct netlink_ext_ack *extack;
434 };
435 
fib6_rt_dump(struct fib6_info * rt,struct fib6_dump_arg * arg)436 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
437 {
438 	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
439 	int err;
440 
441 	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
442 		return 0;
443 
444 	if (rt->fib6_nsiblings)
445 		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
446 							 rt,
447 							 rt->fib6_nsiblings,
448 							 arg->extack);
449 	else
450 		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
451 					       arg->extack);
452 
453 	return err;
454 }
455 
fib6_node_dump(struct fib6_walker * w)456 static int fib6_node_dump(struct fib6_walker *w)
457 {
458 	int err;
459 
460 	err = fib6_rt_dump(w->leaf, w->args);
461 	w->leaf = NULL;
462 	return err;
463 }
464 
fib6_table_dump(struct net * net,struct fib6_table * tb,struct fib6_walker * w)465 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
466 			   struct fib6_walker *w)
467 {
468 	int err;
469 
470 	w->root = &tb->tb6_root;
471 	spin_lock_bh(&tb->tb6_lock);
472 	err = fib6_walk(net, w);
473 	spin_unlock_bh(&tb->tb6_lock);
474 	return err;
475 }
476 
477 /* Called with rcu_read_lock() */
fib6_tables_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)478 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
479 		     struct netlink_ext_ack *extack)
480 {
481 	struct fib6_dump_arg arg;
482 	struct fib6_walker *w;
483 	unsigned int h;
484 	int err = 0;
485 
486 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
487 	if (!w)
488 		return -ENOMEM;
489 
490 	w->func = fib6_node_dump;
491 	arg.net = net;
492 	arg.nb = nb;
493 	arg.extack = extack;
494 	w->args = &arg;
495 
496 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
497 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
498 		struct fib6_table *tb;
499 
500 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
501 			err = fib6_table_dump(net, tb, w);
502 			if (err)
503 				goto out;
504 		}
505 	}
506 
507 out:
508 	kfree(w);
509 
510 	/* The tree traversal function should never return a positive value. */
511 	return err > 0 ? -EINVAL : err;
512 }
513 
fib6_dump_node(struct fib6_walker * w)514 static int fib6_dump_node(struct fib6_walker *w)
515 {
516 	int res;
517 	struct fib6_info *rt;
518 
519 	for_each_fib6_walker_rt(w) {
520 		res = rt6_dump_route(rt, w->args, w->skip_in_node);
521 		if (res >= 0) {
522 			/* Frame is full, suspend walking */
523 			w->leaf = rt;
524 
525 			/* We'll restart from this node, so if some routes were
526 			 * already dumped, skip them next time.
527 			 */
528 			w->skip_in_node += res;
529 
530 			return 1;
531 		}
532 		w->skip_in_node = 0;
533 
534 		/* Multipath routes are dumped in one route with the
535 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
536 		 * last sibling of this route (no need to dump the
537 		 * sibling routes again)
538 		 */
539 		if (rt->fib6_nsiblings)
540 			rt = list_last_entry(&rt->fib6_siblings,
541 					     struct fib6_info,
542 					     fib6_siblings);
543 	}
544 	w->leaf = NULL;
545 	return 0;
546 }
547 
fib6_dump_end(struct netlink_callback * cb)548 static void fib6_dump_end(struct netlink_callback *cb)
549 {
550 	struct net *net = sock_net(cb->skb->sk);
551 	struct fib6_walker *w = (void *)cb->args[2];
552 
553 	if (w) {
554 		if (cb->args[4]) {
555 			cb->args[4] = 0;
556 			fib6_walker_unlink(net, w);
557 		}
558 		cb->args[2] = 0;
559 		kfree(w);
560 	}
561 	cb->done = (void *)cb->args[3];
562 	cb->args[1] = 3;
563 }
564 
fib6_dump_done(struct netlink_callback * cb)565 static int fib6_dump_done(struct netlink_callback *cb)
566 {
567 	fib6_dump_end(cb);
568 	return cb->done ? cb->done(cb) : 0;
569 }
570 
fib6_dump_table(struct fib6_table * table,struct sk_buff * skb,struct netlink_callback * cb)571 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
572 			   struct netlink_callback *cb)
573 {
574 	struct net *net = sock_net(skb->sk);
575 	struct fib6_walker *w;
576 	int res;
577 
578 	w = (void *)cb->args[2];
579 	w->root = &table->tb6_root;
580 
581 	if (cb->args[4] == 0) {
582 		w->count = 0;
583 		w->skip = 0;
584 		w->skip_in_node = 0;
585 
586 		spin_lock_bh(&table->tb6_lock);
587 		res = fib6_walk(net, w);
588 		spin_unlock_bh(&table->tb6_lock);
589 		if (res > 0) {
590 			cb->args[4] = 1;
591 			cb->args[5] = READ_ONCE(w->root->fn_sernum);
592 		}
593 	} else {
594 		int sernum = READ_ONCE(w->root->fn_sernum);
595 		if (cb->args[5] != sernum) {
596 			/* Begin at the root if the tree changed */
597 			cb->args[5] = sernum;
598 			w->state = FWS_INIT;
599 			w->node = w->root;
600 			w->skip = w->count;
601 			w->skip_in_node = 0;
602 		} else
603 			w->skip = 0;
604 
605 		spin_lock_bh(&table->tb6_lock);
606 		res = fib6_walk_continue(w);
607 		spin_unlock_bh(&table->tb6_lock);
608 		if (res <= 0) {
609 			fib6_walker_unlink(net, w);
610 			cb->args[4] = 0;
611 		}
612 	}
613 
614 	return res;
615 }
616 
inet6_dump_fib(struct sk_buff * skb,struct netlink_callback * cb)617 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
618 {
619 	struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
620 					 .filter.dump_routes = true };
621 	const struct nlmsghdr *nlh = cb->nlh;
622 	struct net *net = sock_net(skb->sk);
623 	unsigned int h, s_h;
624 	unsigned int e = 0, s_e;
625 	struct fib6_walker *w;
626 	struct fib6_table *tb;
627 	struct hlist_head *head;
628 	int res = 0;
629 
630 	if (cb->strict_check) {
631 		int err;
632 
633 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
634 		if (err < 0)
635 			return err;
636 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
637 		struct rtmsg *rtm = nlmsg_data(nlh);
638 
639 		if (rtm->rtm_flags & RTM_F_PREFIX)
640 			arg.filter.flags = RTM_F_PREFIX;
641 	}
642 
643 	w = (void *)cb->args[2];
644 	if (!w) {
645 		/* New dump:
646 		 *
647 		 * 1. hook callback destructor.
648 		 */
649 		cb->args[3] = (long)cb->done;
650 		cb->done = fib6_dump_done;
651 
652 		/*
653 		 * 2. allocate and initialize walker.
654 		 */
655 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
656 		if (!w)
657 			return -ENOMEM;
658 		w->func = fib6_dump_node;
659 		cb->args[2] = (long)w;
660 	}
661 
662 	arg.skb = skb;
663 	arg.cb = cb;
664 	arg.net = net;
665 	w->args = &arg;
666 
667 	if (arg.filter.table_id) {
668 		tb = fib6_get_table(net, arg.filter.table_id);
669 		if (!tb) {
670 			if (rtnl_msg_family(cb->nlh) != PF_INET6)
671 				goto out;
672 
673 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
674 			return -ENOENT;
675 		}
676 
677 		if (!cb->args[0]) {
678 			res = fib6_dump_table(tb, skb, cb);
679 			if (!res)
680 				cb->args[0] = 1;
681 		}
682 		goto out;
683 	}
684 
685 	s_h = cb->args[0];
686 	s_e = cb->args[1];
687 
688 	rcu_read_lock();
689 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
690 		e = 0;
691 		head = &net->ipv6.fib_table_hash[h];
692 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
693 			if (e < s_e)
694 				goto next;
695 			res = fib6_dump_table(tb, skb, cb);
696 			if (res != 0)
697 				goto out_unlock;
698 next:
699 			e++;
700 		}
701 	}
702 out_unlock:
703 	rcu_read_unlock();
704 	cb->args[1] = e;
705 	cb->args[0] = h;
706 out:
707 	res = res < 0 ? res : skb->len;
708 	if (res <= 0)
709 		fib6_dump_end(cb);
710 	return res;
711 }
712 
fib6_metric_set(struct fib6_info * f6i,int metric,u32 val)713 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
714 {
715 	if (!f6i)
716 		return;
717 
718 	if (f6i->fib6_metrics == &dst_default_metrics) {
719 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
720 
721 		if (!p)
722 			return;
723 
724 		refcount_set(&p->refcnt, 1);
725 		f6i->fib6_metrics = p;
726 	}
727 
728 	f6i->fib6_metrics->metrics[metric - 1] = val;
729 }
730 
731 /*
732  *	Routing Table
733  *
734  *	return the appropriate node for a routing tree "add" operation
735  *	by either creating and inserting or by returning an existing
736  *	node.
737  */
738 
fib6_add_1(struct net * net,struct fib6_table * table,struct fib6_node * root,struct in6_addr * addr,int plen,int offset,int allow_create,int replace_required,struct netlink_ext_ack * extack)739 static struct fib6_node *fib6_add_1(struct net *net,
740 				    struct fib6_table *table,
741 				    struct fib6_node *root,
742 				    struct in6_addr *addr, int plen,
743 				    int offset, int allow_create,
744 				    int replace_required,
745 				    struct netlink_ext_ack *extack)
746 {
747 	struct fib6_node *fn, *in, *ln;
748 	struct fib6_node *pn = NULL;
749 	struct rt6key *key;
750 	int	bit;
751 	__be32	dir = 0;
752 
753 	RT6_TRACE("fib6_add_1\n");
754 
755 	/* insert node in tree */
756 
757 	fn = root;
758 
759 	do {
760 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
761 					    lockdep_is_held(&table->tb6_lock));
762 		key = (struct rt6key *)((u8 *)leaf + offset);
763 
764 		/*
765 		 *	Prefix match
766 		 */
767 		if (plen < fn->fn_bit ||
768 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
769 			if (!allow_create) {
770 				if (replace_required) {
771 					NL_SET_ERR_MSG(extack,
772 						       "Can not replace route - no match found");
773 					pr_warn("Can't replace route, no match found\n");
774 					return ERR_PTR(-ENOENT);
775 				}
776 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
777 			}
778 			goto insert_above;
779 		}
780 
781 		/*
782 		 *	Exact match ?
783 		 */
784 
785 		if (plen == fn->fn_bit) {
786 			/* clean up an intermediate node */
787 			if (!(fn->fn_flags & RTN_RTINFO)) {
788 				RCU_INIT_POINTER(fn->leaf, NULL);
789 				fib6_info_release(leaf);
790 			/* remove null_entry in the root node */
791 			} else if (fn->fn_flags & RTN_TL_ROOT &&
792 				   rcu_access_pointer(fn->leaf) ==
793 				   net->ipv6.fib6_null_entry) {
794 				RCU_INIT_POINTER(fn->leaf, NULL);
795 			}
796 
797 			return fn;
798 		}
799 
800 		/*
801 		 *	We have more bits to go
802 		 */
803 
804 		/* Try to walk down on tree. */
805 		dir = addr_bit_set(addr, fn->fn_bit);
806 		pn = fn;
807 		fn = dir ?
808 		     rcu_dereference_protected(fn->right,
809 					lockdep_is_held(&table->tb6_lock)) :
810 		     rcu_dereference_protected(fn->left,
811 					lockdep_is_held(&table->tb6_lock));
812 	} while (fn);
813 
814 	if (!allow_create) {
815 		/* We should not create new node because
816 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
817 		 * I assume it is safe to require NLM_F_CREATE when
818 		 * REPLACE flag is used! Later we may want to remove the
819 		 * check for replace_required, because according
820 		 * to netlink specification, NLM_F_CREATE
821 		 * MUST be specified if new route is created.
822 		 * That would keep IPv6 consistent with IPv4
823 		 */
824 		if (replace_required) {
825 			NL_SET_ERR_MSG(extack,
826 				       "Can not replace route - no match found");
827 			pr_warn("Can't replace route, no match found\n");
828 			return ERR_PTR(-ENOENT);
829 		}
830 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
831 	}
832 	/*
833 	 *	We walked to the bottom of tree.
834 	 *	Create new leaf node without children.
835 	 */
836 
837 	ln = node_alloc(net);
838 
839 	if (!ln)
840 		return ERR_PTR(-ENOMEM);
841 	ln->fn_bit = plen;
842 	RCU_INIT_POINTER(ln->parent, pn);
843 
844 	if (dir)
845 		rcu_assign_pointer(pn->right, ln);
846 	else
847 		rcu_assign_pointer(pn->left, ln);
848 
849 	return ln;
850 
851 
852 insert_above:
853 	/*
854 	 * split since we don't have a common prefix anymore or
855 	 * we have a less significant route.
856 	 * we've to insert an intermediate node on the list
857 	 * this new node will point to the one we need to create
858 	 * and the current
859 	 */
860 
861 	pn = rcu_dereference_protected(fn->parent,
862 				       lockdep_is_held(&table->tb6_lock));
863 
864 	/* find 1st bit in difference between the 2 addrs.
865 
866 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
867 	   but if it is >= plen, the value is ignored in any case.
868 	 */
869 
870 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
871 
872 	/*
873 	 *		(intermediate)[in]
874 	 *	          /	   \
875 	 *	(new leaf node)[ln] (old node)[fn]
876 	 */
877 	if (plen > bit) {
878 		in = node_alloc(net);
879 		ln = node_alloc(net);
880 
881 		if (!in || !ln) {
882 			if (in)
883 				node_free_immediate(net, in);
884 			if (ln)
885 				node_free_immediate(net, ln);
886 			return ERR_PTR(-ENOMEM);
887 		}
888 
889 		/*
890 		 * new intermediate node.
891 		 * RTN_RTINFO will
892 		 * be off since that an address that chooses one of
893 		 * the branches would not match less specific routes
894 		 * in the other branch
895 		 */
896 
897 		in->fn_bit = bit;
898 
899 		RCU_INIT_POINTER(in->parent, pn);
900 		in->leaf = fn->leaf;
901 		fib6_info_hold(rcu_dereference_protected(in->leaf,
902 				lockdep_is_held(&table->tb6_lock)));
903 
904 		/* update parent pointer */
905 		if (dir)
906 			rcu_assign_pointer(pn->right, in);
907 		else
908 			rcu_assign_pointer(pn->left, in);
909 
910 		ln->fn_bit = plen;
911 
912 		RCU_INIT_POINTER(ln->parent, in);
913 		rcu_assign_pointer(fn->parent, in);
914 
915 		if (addr_bit_set(addr, bit)) {
916 			rcu_assign_pointer(in->right, ln);
917 			rcu_assign_pointer(in->left, fn);
918 		} else {
919 			rcu_assign_pointer(in->left, ln);
920 			rcu_assign_pointer(in->right, fn);
921 		}
922 	} else { /* plen <= bit */
923 
924 		/*
925 		 *		(new leaf node)[ln]
926 		 *	          /	   \
927 		 *	     (old node)[fn] NULL
928 		 */
929 
930 		ln = node_alloc(net);
931 
932 		if (!ln)
933 			return ERR_PTR(-ENOMEM);
934 
935 		ln->fn_bit = plen;
936 
937 		RCU_INIT_POINTER(ln->parent, pn);
938 
939 		if (addr_bit_set(&key->addr, plen))
940 			RCU_INIT_POINTER(ln->right, fn);
941 		else
942 			RCU_INIT_POINTER(ln->left, fn);
943 
944 		rcu_assign_pointer(fn->parent, ln);
945 
946 		if (dir)
947 			rcu_assign_pointer(pn->right, ln);
948 		else
949 			rcu_assign_pointer(pn->left, ln);
950 	}
951 	return ln;
952 }
953 
__fib6_drop_pcpu_from(struct fib6_nh * fib6_nh,const struct fib6_info * match,const struct fib6_table * table)954 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
955 				  const struct fib6_info *match,
956 				  const struct fib6_table *table)
957 {
958 	int cpu;
959 
960 	if (!fib6_nh->rt6i_pcpu)
961 		return;
962 
963 	/* release the reference to this fib entry from
964 	 * all of its cached pcpu routes
965 	 */
966 	for_each_possible_cpu(cpu) {
967 		struct rt6_info **ppcpu_rt;
968 		struct rt6_info *pcpu_rt;
969 
970 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
971 		pcpu_rt = *ppcpu_rt;
972 
973 		/* only dropping the 'from' reference if the cached route
974 		 * is using 'match'. The cached pcpu_rt->from only changes
975 		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
976 		 * change from one fib6_info reference to another
977 		 */
978 		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
979 			struct fib6_info *from;
980 
981 			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
982 			fib6_info_release(from);
983 		}
984 	}
985 }
986 
987 struct fib6_nh_pcpu_arg {
988 	struct fib6_info	*from;
989 	const struct fib6_table *table;
990 };
991 
fib6_nh_drop_pcpu_from(struct fib6_nh * nh,void * _arg)992 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
993 {
994 	struct fib6_nh_pcpu_arg *arg = _arg;
995 
996 	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
997 	return 0;
998 }
999 
fib6_drop_pcpu_from(struct fib6_info * f6i,const struct fib6_table * table)1000 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1001 				const struct fib6_table *table)
1002 {
1003 	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1004 	 * while we are cleaning them here.
1005 	 */
1006 	f6i->fib6_destroying = 1;
1007 	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1008 
1009 	if (f6i->nh) {
1010 		struct fib6_nh_pcpu_arg arg = {
1011 			.from = f6i,
1012 			.table = table
1013 		};
1014 
1015 		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1016 					 &arg);
1017 	} else {
1018 		struct fib6_nh *fib6_nh;
1019 
1020 		fib6_nh = f6i->fib6_nh;
1021 		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1022 	}
1023 }
1024 
fib6_purge_rt(struct fib6_info * rt,struct fib6_node * fn,struct net * net)1025 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1026 			  struct net *net)
1027 {
1028 	struct fib6_table *table = rt->fib6_table;
1029 
1030 	/* Flush all cached dst in exception table */
1031 	rt6_flush_exceptions(rt);
1032 	fib6_drop_pcpu_from(rt, table);
1033 
1034 	if (rt->nh && !list_empty(&rt->nh_list))
1035 		list_del_init(&rt->nh_list);
1036 
1037 	if (refcount_read(&rt->fib6_ref) != 1) {
1038 		/* This route is used as dummy address holder in some split
1039 		 * nodes. It is not leaked, but it still holds other resources,
1040 		 * which must be released in time. So, scan ascendant nodes
1041 		 * and replace dummy references to this route with references
1042 		 * to still alive ones.
1043 		 */
1044 		while (fn) {
1045 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1046 					    lockdep_is_held(&table->tb6_lock));
1047 			struct fib6_info *new_leaf;
1048 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1049 				new_leaf = fib6_find_prefix(net, table, fn);
1050 				fib6_info_hold(new_leaf);
1051 
1052 				rcu_assign_pointer(fn->leaf, new_leaf);
1053 				fib6_info_release(rt);
1054 			}
1055 			fn = rcu_dereference_protected(fn->parent,
1056 				    lockdep_is_held(&table->tb6_lock));
1057 		}
1058 	}
1059 }
1060 
1061 /*
1062  *	Insert routing information in a node.
1063  */
1064 
fib6_add_rt2node(struct fib6_node * fn,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1065 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1066 			    struct nl_info *info,
1067 			    struct netlink_ext_ack *extack)
1068 {
1069 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1070 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1071 	struct fib6_info *iter = NULL;
1072 	struct fib6_info __rcu **ins;
1073 	struct fib6_info __rcu **fallback_ins = NULL;
1074 	int replace = (info->nlh &&
1075 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1076 	int add = (!info->nlh ||
1077 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1078 	int found = 0;
1079 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1080 	bool notify_sibling_rt = false;
1081 	u16 nlflags = NLM_F_EXCL;
1082 	int err;
1083 
1084 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1085 		nlflags |= NLM_F_APPEND;
1086 
1087 	ins = &fn->leaf;
1088 
1089 	for (iter = leaf; iter;
1090 	     iter = rcu_dereference_protected(iter->fib6_next,
1091 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1092 		/*
1093 		 *	Search for duplicates
1094 		 */
1095 
1096 		if (iter->fib6_metric == rt->fib6_metric) {
1097 			/*
1098 			 *	Same priority level
1099 			 */
1100 			if (info->nlh &&
1101 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1102 				return -EEXIST;
1103 
1104 			nlflags &= ~NLM_F_EXCL;
1105 			if (replace) {
1106 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1107 					found++;
1108 					break;
1109 				}
1110 				fallback_ins = fallback_ins ?: ins;
1111 				goto next_iter;
1112 			}
1113 
1114 			if (rt6_duplicate_nexthop(iter, rt)) {
1115 				if (rt->fib6_nsiblings)
1116 					rt->fib6_nsiblings = 0;
1117 				if (!(iter->fib6_flags & RTF_EXPIRES))
1118 					return -EEXIST;
1119 				if (!(rt->fib6_flags & RTF_EXPIRES))
1120 					fib6_clean_expires(iter);
1121 				else
1122 					fib6_set_expires(iter, rt->expires);
1123 
1124 				if (rt->fib6_pmtu)
1125 					fib6_metric_set(iter, RTAX_MTU,
1126 							rt->fib6_pmtu);
1127 				return -EEXIST;
1128 			}
1129 			/* If we have the same destination and the same metric,
1130 			 * but not the same gateway, then the route we try to
1131 			 * add is sibling to this route, increment our counter
1132 			 * of siblings, and later we will add our route to the
1133 			 * list.
1134 			 * Only static routes (which don't have flag
1135 			 * RTF_EXPIRES) are used for ECMPv6.
1136 			 *
1137 			 * To avoid long list, we only had siblings if the
1138 			 * route have a gateway.
1139 			 */
1140 			if (rt_can_ecmp &&
1141 			    rt6_qualify_for_ecmp(iter))
1142 				rt->fib6_nsiblings++;
1143 		}
1144 
1145 		if (iter->fib6_metric > rt->fib6_metric)
1146 			break;
1147 
1148 next_iter:
1149 		ins = &iter->fib6_next;
1150 	}
1151 
1152 	if (fallback_ins && !found) {
1153 		/* No matching route with same ecmp-able-ness found, replace
1154 		 * first matching route
1155 		 */
1156 		ins = fallback_ins;
1157 		iter = rcu_dereference_protected(*ins,
1158 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1159 		found++;
1160 	}
1161 
1162 	/* Reset round-robin state, if necessary */
1163 	if (ins == &fn->leaf)
1164 		fn->rr_ptr = NULL;
1165 
1166 	/* Link this route to others same route. */
1167 	if (rt->fib6_nsiblings) {
1168 		unsigned int fib6_nsiblings;
1169 		struct fib6_info *sibling, *temp_sibling;
1170 
1171 		/* Find the first route that have the same metric */
1172 		sibling = leaf;
1173 		notify_sibling_rt = true;
1174 		while (sibling) {
1175 			if (sibling->fib6_metric == rt->fib6_metric &&
1176 			    rt6_qualify_for_ecmp(sibling)) {
1177 				list_add_tail(&rt->fib6_siblings,
1178 					      &sibling->fib6_siblings);
1179 				break;
1180 			}
1181 			sibling = rcu_dereference_protected(sibling->fib6_next,
1182 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1183 			notify_sibling_rt = false;
1184 		}
1185 		/* For each sibling in the list, increment the counter of
1186 		 * siblings. BUG() if counters does not match, list of siblings
1187 		 * is broken!
1188 		 */
1189 		fib6_nsiblings = 0;
1190 		list_for_each_entry_safe(sibling, temp_sibling,
1191 					 &rt->fib6_siblings, fib6_siblings) {
1192 			sibling->fib6_nsiblings++;
1193 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1194 			fib6_nsiblings++;
1195 		}
1196 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1197 		rt6_multipath_rebalance(temp_sibling);
1198 	}
1199 
1200 	/*
1201 	 *	insert node
1202 	 */
1203 	if (!replace) {
1204 		if (!add)
1205 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1206 
1207 add:
1208 		nlflags |= NLM_F_CREATE;
1209 
1210 		/* The route should only be notified if it is the first
1211 		 * route in the node or if it is added as a sibling
1212 		 * route to the first route in the node.
1213 		 */
1214 		if (!info->skip_notify_kernel &&
1215 		    (notify_sibling_rt || ins == &fn->leaf)) {
1216 			enum fib_event_type fib_event;
1217 
1218 			if (notify_sibling_rt)
1219 				fib_event = FIB_EVENT_ENTRY_APPEND;
1220 			else
1221 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1222 			err = call_fib6_entry_notifiers(info->nl_net,
1223 							fib_event, rt,
1224 							extack);
1225 			if (err) {
1226 				struct fib6_info *sibling, *next_sibling;
1227 
1228 				/* If the route has siblings, then it first
1229 				 * needs to be unlinked from them.
1230 				 */
1231 				if (!rt->fib6_nsiblings)
1232 					return err;
1233 
1234 				list_for_each_entry_safe(sibling, next_sibling,
1235 							 &rt->fib6_siblings,
1236 							 fib6_siblings)
1237 					sibling->fib6_nsiblings--;
1238 				rt->fib6_nsiblings = 0;
1239 				list_del_init(&rt->fib6_siblings);
1240 				rt6_multipath_rebalance(next_sibling);
1241 				return err;
1242 			}
1243 		}
1244 
1245 		rcu_assign_pointer(rt->fib6_next, iter);
1246 		fib6_info_hold(rt);
1247 		rcu_assign_pointer(rt->fib6_node, fn);
1248 		rcu_assign_pointer(*ins, rt);
1249 		if (!info->skip_notify)
1250 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1251 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1252 
1253 		if (!(fn->fn_flags & RTN_RTINFO)) {
1254 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1255 			fn->fn_flags |= RTN_RTINFO;
1256 		}
1257 
1258 	} else {
1259 		int nsiblings;
1260 
1261 		if (!found) {
1262 			if (add)
1263 				goto add;
1264 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1265 			return -ENOENT;
1266 		}
1267 
1268 		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1269 			err = call_fib6_entry_notifiers(info->nl_net,
1270 							FIB_EVENT_ENTRY_REPLACE,
1271 							rt, extack);
1272 			if (err)
1273 				return err;
1274 		}
1275 
1276 		fib6_info_hold(rt);
1277 		rcu_assign_pointer(rt->fib6_node, fn);
1278 		rt->fib6_next = iter->fib6_next;
1279 		rcu_assign_pointer(*ins, rt);
1280 		if (!info->skip_notify)
1281 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1282 		if (!(fn->fn_flags & RTN_RTINFO)) {
1283 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1284 			fn->fn_flags |= RTN_RTINFO;
1285 		}
1286 		nsiblings = iter->fib6_nsiblings;
1287 		iter->fib6_node = NULL;
1288 		fib6_purge_rt(iter, fn, info->nl_net);
1289 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1290 			fn->rr_ptr = NULL;
1291 		fib6_info_release(iter);
1292 
1293 		if (nsiblings) {
1294 			/* Replacing an ECMP route, remove all siblings */
1295 			ins = &rt->fib6_next;
1296 			iter = rcu_dereference_protected(*ins,
1297 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1298 			while (iter) {
1299 				if (iter->fib6_metric > rt->fib6_metric)
1300 					break;
1301 				if (rt6_qualify_for_ecmp(iter)) {
1302 					*ins = iter->fib6_next;
1303 					iter->fib6_node = NULL;
1304 					fib6_purge_rt(iter, fn, info->nl_net);
1305 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1306 						fn->rr_ptr = NULL;
1307 					fib6_info_release(iter);
1308 					nsiblings--;
1309 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1310 				} else {
1311 					ins = &iter->fib6_next;
1312 				}
1313 				iter = rcu_dereference_protected(*ins,
1314 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1315 			}
1316 			WARN_ON(nsiblings != 0);
1317 		}
1318 	}
1319 
1320 	return 0;
1321 }
1322 
fib6_start_gc(struct net * net,struct fib6_info * rt)1323 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1324 {
1325 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1326 	    (rt->fib6_flags & RTF_EXPIRES))
1327 		mod_timer(&net->ipv6.ip6_fib_timer,
1328 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1329 }
1330 
fib6_force_start_gc(struct net * net)1331 void fib6_force_start_gc(struct net *net)
1332 {
1333 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1334 		mod_timer(&net->ipv6.ip6_fib_timer,
1335 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1336 }
1337 
__fib6_update_sernum_upto_root(struct fib6_info * rt,int sernum)1338 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1339 					   int sernum)
1340 {
1341 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1342 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1343 
1344 	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1345 	smp_wmb();
1346 	while (fn) {
1347 		WRITE_ONCE(fn->fn_sernum, sernum);
1348 		fn = rcu_dereference_protected(fn->parent,
1349 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1350 	}
1351 }
1352 
fib6_update_sernum_upto_root(struct net * net,struct fib6_info * rt)1353 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1354 {
1355 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1356 }
1357 
1358 /* allow ipv4 to update sernum via ipv6_stub */
fib6_update_sernum_stub(struct net * net,struct fib6_info * f6i)1359 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1360 {
1361 	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1362 	fib6_update_sernum_upto_root(net, f6i);
1363 	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1364 }
1365 
1366 /*
1367  *	Add routing information to the routing tree.
1368  *	<destination addr>/<source addr>
1369  *	with source addr info in sub-trees
1370  *	Need to own table->tb6_lock
1371  */
1372 
fib6_add(struct fib6_node * root,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1373 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1374 	     struct nl_info *info, struct netlink_ext_ack *extack)
1375 {
1376 	struct fib6_table *table = rt->fib6_table;
1377 	struct fib6_node *fn, *pn = NULL;
1378 	int err = -ENOMEM;
1379 	int allow_create = 1;
1380 	int replace_required = 0;
1381 
1382 	if (info->nlh) {
1383 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1384 			allow_create = 0;
1385 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1386 			replace_required = 1;
1387 	}
1388 	if (!allow_create && !replace_required)
1389 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1390 
1391 	fn = fib6_add_1(info->nl_net, table, root,
1392 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1393 			offsetof(struct fib6_info, fib6_dst), allow_create,
1394 			replace_required, extack);
1395 	if (IS_ERR(fn)) {
1396 		err = PTR_ERR(fn);
1397 		fn = NULL;
1398 		goto out;
1399 	}
1400 
1401 	pn = fn;
1402 
1403 #ifdef CONFIG_IPV6_SUBTREES
1404 	if (rt->fib6_src.plen) {
1405 		struct fib6_node *sn;
1406 
1407 		if (!rcu_access_pointer(fn->subtree)) {
1408 			struct fib6_node *sfn;
1409 
1410 			/*
1411 			 * Create subtree.
1412 			 *
1413 			 *		fn[main tree]
1414 			 *		|
1415 			 *		sfn[subtree root]
1416 			 *		   \
1417 			 *		    sn[new leaf node]
1418 			 */
1419 
1420 			/* Create subtree root node */
1421 			sfn = node_alloc(info->nl_net);
1422 			if (!sfn)
1423 				goto failure;
1424 
1425 			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1426 			rcu_assign_pointer(sfn->leaf,
1427 					   info->nl_net->ipv6.fib6_null_entry);
1428 			sfn->fn_flags = RTN_ROOT;
1429 
1430 			/* Now add the first leaf node to new subtree */
1431 
1432 			sn = fib6_add_1(info->nl_net, table, sfn,
1433 					&rt->fib6_src.addr, rt->fib6_src.plen,
1434 					offsetof(struct fib6_info, fib6_src),
1435 					allow_create, replace_required, extack);
1436 
1437 			if (IS_ERR(sn)) {
1438 				/* If it is failed, discard just allocated
1439 				   root, and then (in failure) stale node
1440 				   in main tree.
1441 				 */
1442 				node_free_immediate(info->nl_net, sfn);
1443 				err = PTR_ERR(sn);
1444 				goto failure;
1445 			}
1446 
1447 			/* Now link new subtree to main tree */
1448 			rcu_assign_pointer(sfn->parent, fn);
1449 			rcu_assign_pointer(fn->subtree, sfn);
1450 		} else {
1451 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1452 					&rt->fib6_src.addr, rt->fib6_src.plen,
1453 					offsetof(struct fib6_info, fib6_src),
1454 					allow_create, replace_required, extack);
1455 
1456 			if (IS_ERR(sn)) {
1457 				err = PTR_ERR(sn);
1458 				goto failure;
1459 			}
1460 		}
1461 
1462 		if (!rcu_access_pointer(fn->leaf)) {
1463 			if (fn->fn_flags & RTN_TL_ROOT) {
1464 				/* put back null_entry for root node */
1465 				rcu_assign_pointer(fn->leaf,
1466 					    info->nl_net->ipv6.fib6_null_entry);
1467 			} else {
1468 				fib6_info_hold(rt);
1469 				rcu_assign_pointer(fn->leaf, rt);
1470 			}
1471 		}
1472 		fn = sn;
1473 	}
1474 #endif
1475 
1476 	err = fib6_add_rt2node(fn, rt, info, extack);
1477 	if (!err) {
1478 		if (rt->nh)
1479 			list_add(&rt->nh_list, &rt->nh->f6i_list);
1480 		__fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1481 		fib6_start_gc(info->nl_net, rt);
1482 	}
1483 
1484 out:
1485 	if (err) {
1486 #ifdef CONFIG_IPV6_SUBTREES
1487 		/*
1488 		 * If fib6_add_1 has cleared the old leaf pointer in the
1489 		 * super-tree leaf node we have to find a new one for it.
1490 		 */
1491 		if (pn != fn) {
1492 			struct fib6_info *pn_leaf =
1493 				rcu_dereference_protected(pn->leaf,
1494 				    lockdep_is_held(&table->tb6_lock));
1495 			if (pn_leaf == rt) {
1496 				pn_leaf = NULL;
1497 				RCU_INIT_POINTER(pn->leaf, NULL);
1498 				fib6_info_release(rt);
1499 			}
1500 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1501 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1502 							   pn);
1503 #if RT6_DEBUG >= 2
1504 				if (!pn_leaf) {
1505 					WARN_ON(!pn_leaf);
1506 					pn_leaf =
1507 					    info->nl_net->ipv6.fib6_null_entry;
1508 				}
1509 #endif
1510 				fib6_info_hold(pn_leaf);
1511 				rcu_assign_pointer(pn->leaf, pn_leaf);
1512 			}
1513 		}
1514 #endif
1515 		goto failure;
1516 	} else if (fib6_requires_src(rt)) {
1517 		fib6_routes_require_src_inc(info->nl_net);
1518 	}
1519 	return err;
1520 
1521 failure:
1522 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1523 	 * 1. fn is an intermediate node and we failed to add the new
1524 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1525 	 * failure case.
1526 	 * 2. fn is the root node in the table and we fail to add the first
1527 	 * default route to it.
1528 	 */
1529 	if (fn &&
1530 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1531 	     (fn->fn_flags & RTN_TL_ROOT &&
1532 	      !rcu_access_pointer(fn->leaf))))
1533 		fib6_repair_tree(info->nl_net, table, fn);
1534 	return err;
1535 }
1536 
1537 /*
1538  *	Routing tree lookup
1539  *
1540  */
1541 
1542 struct lookup_args {
1543 	int			offset;		/* key offset on fib6_info */
1544 	const struct in6_addr	*addr;		/* search key			*/
1545 };
1546 
fib6_node_lookup_1(struct fib6_node * root,struct lookup_args * args)1547 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1548 					    struct lookup_args *args)
1549 {
1550 	struct fib6_node *fn;
1551 	__be32 dir;
1552 
1553 	if (unlikely(args->offset == 0))
1554 		return NULL;
1555 
1556 	/*
1557 	 *	Descend on a tree
1558 	 */
1559 
1560 	fn = root;
1561 
1562 	for (;;) {
1563 		struct fib6_node *next;
1564 
1565 		dir = addr_bit_set(args->addr, fn->fn_bit);
1566 
1567 		next = dir ? rcu_dereference(fn->right) :
1568 			     rcu_dereference(fn->left);
1569 
1570 		if (next) {
1571 			fn = next;
1572 			continue;
1573 		}
1574 		break;
1575 	}
1576 
1577 	while (fn) {
1578 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1579 
1580 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1581 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1582 			struct rt6key *key;
1583 
1584 			if (!leaf)
1585 				goto backtrack;
1586 
1587 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1588 
1589 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1590 #ifdef CONFIG_IPV6_SUBTREES
1591 				if (subtree) {
1592 					struct fib6_node *sfn;
1593 					sfn = fib6_node_lookup_1(subtree,
1594 								 args + 1);
1595 					if (!sfn)
1596 						goto backtrack;
1597 					fn = sfn;
1598 				}
1599 #endif
1600 				if (fn->fn_flags & RTN_RTINFO)
1601 					return fn;
1602 			}
1603 		}
1604 backtrack:
1605 		if (fn->fn_flags & RTN_ROOT)
1606 			break;
1607 
1608 		fn = rcu_dereference(fn->parent);
1609 	}
1610 
1611 	return NULL;
1612 }
1613 
1614 /* called with rcu_read_lock() held
1615  */
fib6_node_lookup(struct fib6_node * root,const struct in6_addr * daddr,const struct in6_addr * saddr)1616 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1617 				   const struct in6_addr *daddr,
1618 				   const struct in6_addr *saddr)
1619 {
1620 	struct fib6_node *fn;
1621 	struct lookup_args args[] = {
1622 		{
1623 			.offset = offsetof(struct fib6_info, fib6_dst),
1624 			.addr = daddr,
1625 		},
1626 #ifdef CONFIG_IPV6_SUBTREES
1627 		{
1628 			.offset = offsetof(struct fib6_info, fib6_src),
1629 			.addr = saddr,
1630 		},
1631 #endif
1632 		{
1633 			.offset = 0,	/* sentinel */
1634 		}
1635 	};
1636 
1637 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1638 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1639 		fn = root;
1640 
1641 	return fn;
1642 }
1643 
1644 /*
1645  *	Get node with specified destination prefix (and source prefix,
1646  *	if subtrees are used)
1647  *	exact_match == true means we try to find fn with exact match of
1648  *	the passed in prefix addr
1649  *	exact_match == false means we try to find fn with longest prefix
1650  *	match of the passed in prefix addr. This is useful for finding fn
1651  *	for cached route as it will be stored in the exception table under
1652  *	the node with longest prefix length.
1653  */
1654 
1655 
fib6_locate_1(struct fib6_node * root,const struct in6_addr * addr,int plen,int offset,bool exact_match)1656 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1657 				       const struct in6_addr *addr,
1658 				       int plen, int offset,
1659 				       bool exact_match)
1660 {
1661 	struct fib6_node *fn, *prev = NULL;
1662 
1663 	for (fn = root; fn ; ) {
1664 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1665 		struct rt6key *key;
1666 
1667 		/* This node is being deleted */
1668 		if (!leaf) {
1669 			if (plen <= fn->fn_bit)
1670 				goto out;
1671 			else
1672 				goto next;
1673 		}
1674 
1675 		key = (struct rt6key *)((u8 *)leaf + offset);
1676 
1677 		/*
1678 		 *	Prefix match
1679 		 */
1680 		if (plen < fn->fn_bit ||
1681 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1682 			goto out;
1683 
1684 		if (plen == fn->fn_bit)
1685 			return fn;
1686 
1687 		if (fn->fn_flags & RTN_RTINFO)
1688 			prev = fn;
1689 
1690 next:
1691 		/*
1692 		 *	We have more bits to go
1693 		 */
1694 		if (addr_bit_set(addr, fn->fn_bit))
1695 			fn = rcu_dereference(fn->right);
1696 		else
1697 			fn = rcu_dereference(fn->left);
1698 	}
1699 out:
1700 	if (exact_match)
1701 		return NULL;
1702 	else
1703 		return prev;
1704 }
1705 
fib6_locate(struct fib6_node * root,const struct in6_addr * daddr,int dst_len,const struct in6_addr * saddr,int src_len,bool exact_match)1706 struct fib6_node *fib6_locate(struct fib6_node *root,
1707 			      const struct in6_addr *daddr, int dst_len,
1708 			      const struct in6_addr *saddr, int src_len,
1709 			      bool exact_match)
1710 {
1711 	struct fib6_node *fn;
1712 
1713 	fn = fib6_locate_1(root, daddr, dst_len,
1714 			   offsetof(struct fib6_info, fib6_dst),
1715 			   exact_match);
1716 
1717 #ifdef CONFIG_IPV6_SUBTREES
1718 	if (src_len) {
1719 		WARN_ON(saddr == NULL);
1720 		if (fn) {
1721 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1722 
1723 			if (subtree) {
1724 				fn = fib6_locate_1(subtree, saddr, src_len,
1725 					   offsetof(struct fib6_info, fib6_src),
1726 					   exact_match);
1727 			}
1728 		}
1729 	}
1730 #endif
1731 
1732 	if (fn && fn->fn_flags & RTN_RTINFO)
1733 		return fn;
1734 
1735 	return NULL;
1736 }
1737 
1738 
1739 /*
1740  *	Deletion
1741  *
1742  */
1743 
fib6_find_prefix(struct net * net,struct fib6_table * table,struct fib6_node * fn)1744 static struct fib6_info *fib6_find_prefix(struct net *net,
1745 					 struct fib6_table *table,
1746 					 struct fib6_node *fn)
1747 {
1748 	struct fib6_node *child_left, *child_right;
1749 
1750 	if (fn->fn_flags & RTN_ROOT)
1751 		return net->ipv6.fib6_null_entry;
1752 
1753 	while (fn) {
1754 		child_left = rcu_dereference_protected(fn->left,
1755 				    lockdep_is_held(&table->tb6_lock));
1756 		child_right = rcu_dereference_protected(fn->right,
1757 				    lockdep_is_held(&table->tb6_lock));
1758 		if (child_left)
1759 			return rcu_dereference_protected(child_left->leaf,
1760 					lockdep_is_held(&table->tb6_lock));
1761 		if (child_right)
1762 			return rcu_dereference_protected(child_right->leaf,
1763 					lockdep_is_held(&table->tb6_lock));
1764 
1765 		fn = FIB6_SUBTREE(fn);
1766 	}
1767 	return NULL;
1768 }
1769 
1770 /*
1771  *	Called to trim the tree of intermediate nodes when possible. "fn"
1772  *	is the node we want to try and remove.
1773  *	Need to own table->tb6_lock
1774  */
1775 
fib6_repair_tree(struct net * net,struct fib6_table * table,struct fib6_node * fn)1776 static struct fib6_node *fib6_repair_tree(struct net *net,
1777 					  struct fib6_table *table,
1778 					  struct fib6_node *fn)
1779 {
1780 	int children;
1781 	int nstate;
1782 	struct fib6_node *child;
1783 	struct fib6_walker *w;
1784 	int iter = 0;
1785 
1786 	/* Set fn->leaf to null_entry for root node. */
1787 	if (fn->fn_flags & RTN_TL_ROOT) {
1788 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1789 		return fn;
1790 	}
1791 
1792 	for (;;) {
1793 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1794 					    lockdep_is_held(&table->tb6_lock));
1795 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1796 					    lockdep_is_held(&table->tb6_lock));
1797 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1798 					    lockdep_is_held(&table->tb6_lock));
1799 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1800 					    lockdep_is_held(&table->tb6_lock));
1801 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1802 					    lockdep_is_held(&table->tb6_lock));
1803 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1804 					    lockdep_is_held(&table->tb6_lock));
1805 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1806 					    lockdep_is_held(&table->tb6_lock));
1807 		struct fib6_info *new_fn_leaf;
1808 
1809 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1810 		iter++;
1811 
1812 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1813 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1814 		WARN_ON(fn_leaf);
1815 
1816 		children = 0;
1817 		child = NULL;
1818 		if (fn_r) {
1819 			child = fn_r;
1820 			children |= 1;
1821 		}
1822 		if (fn_l) {
1823 			child = fn_l;
1824 			children |= 2;
1825 		}
1826 
1827 		if (children == 3 || FIB6_SUBTREE(fn)
1828 #ifdef CONFIG_IPV6_SUBTREES
1829 		    /* Subtree root (i.e. fn) may have one child */
1830 		    || (children && fn->fn_flags & RTN_ROOT)
1831 #endif
1832 		    ) {
1833 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1834 #if RT6_DEBUG >= 2
1835 			if (!new_fn_leaf) {
1836 				WARN_ON(!new_fn_leaf);
1837 				new_fn_leaf = net->ipv6.fib6_null_entry;
1838 			}
1839 #endif
1840 			fib6_info_hold(new_fn_leaf);
1841 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1842 			return pn;
1843 		}
1844 
1845 #ifdef CONFIG_IPV6_SUBTREES
1846 		if (FIB6_SUBTREE(pn) == fn) {
1847 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1848 			RCU_INIT_POINTER(pn->subtree, NULL);
1849 			nstate = FWS_L;
1850 		} else {
1851 			WARN_ON(fn->fn_flags & RTN_ROOT);
1852 #endif
1853 			if (pn_r == fn)
1854 				rcu_assign_pointer(pn->right, child);
1855 			else if (pn_l == fn)
1856 				rcu_assign_pointer(pn->left, child);
1857 #if RT6_DEBUG >= 2
1858 			else
1859 				WARN_ON(1);
1860 #endif
1861 			if (child)
1862 				rcu_assign_pointer(child->parent, pn);
1863 			nstate = FWS_R;
1864 #ifdef CONFIG_IPV6_SUBTREES
1865 		}
1866 #endif
1867 
1868 		read_lock(&net->ipv6.fib6_walker_lock);
1869 		FOR_WALKERS(net, w) {
1870 			if (!child) {
1871 				if (w->node == fn) {
1872 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1873 					w->node = pn;
1874 					w->state = nstate;
1875 				}
1876 			} else {
1877 				if (w->node == fn) {
1878 					w->node = child;
1879 					if (children&2) {
1880 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1881 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1882 					} else {
1883 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1884 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1885 					}
1886 				}
1887 			}
1888 		}
1889 		read_unlock(&net->ipv6.fib6_walker_lock);
1890 
1891 		node_free(net, fn);
1892 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1893 			return pn;
1894 
1895 		RCU_INIT_POINTER(pn->leaf, NULL);
1896 		fib6_info_release(pn_leaf);
1897 		fn = pn;
1898 	}
1899 }
1900 
fib6_del_route(struct fib6_table * table,struct fib6_node * fn,struct fib6_info __rcu ** rtp,struct nl_info * info)1901 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1902 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1903 {
1904 	struct fib6_info *leaf, *replace_rt = NULL;
1905 	struct fib6_walker *w;
1906 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1907 				    lockdep_is_held(&table->tb6_lock));
1908 	struct net *net = info->nl_net;
1909 	bool notify_del = false;
1910 
1911 	RT6_TRACE("fib6_del_route\n");
1912 
1913 	/* If the deleted route is the first in the node and it is not part of
1914 	 * a multipath route, then we need to replace it with the next route
1915 	 * in the node, if exists.
1916 	 */
1917 	leaf = rcu_dereference_protected(fn->leaf,
1918 					 lockdep_is_held(&table->tb6_lock));
1919 	if (leaf == rt && !rt->fib6_nsiblings) {
1920 		if (rcu_access_pointer(rt->fib6_next))
1921 			replace_rt = rcu_dereference_protected(rt->fib6_next,
1922 					    lockdep_is_held(&table->tb6_lock));
1923 		else
1924 			notify_del = true;
1925 	}
1926 
1927 	/* Unlink it */
1928 	*rtp = rt->fib6_next;
1929 	rt->fib6_node = NULL;
1930 	net->ipv6.rt6_stats->fib_rt_entries--;
1931 	net->ipv6.rt6_stats->fib_discarded_routes++;
1932 
1933 	/* Reset round-robin state, if necessary */
1934 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1935 		fn->rr_ptr = NULL;
1936 
1937 	/* Remove this entry from other siblings */
1938 	if (rt->fib6_nsiblings) {
1939 		struct fib6_info *sibling, *next_sibling;
1940 
1941 		/* The route is deleted from a multipath route. If this
1942 		 * multipath route is the first route in the node, then we need
1943 		 * to emit a delete notification. Otherwise, we need to skip
1944 		 * the notification.
1945 		 */
1946 		if (rt->fib6_metric == leaf->fib6_metric &&
1947 		    rt6_qualify_for_ecmp(leaf))
1948 			notify_del = true;
1949 		list_for_each_entry_safe(sibling, next_sibling,
1950 					 &rt->fib6_siblings, fib6_siblings)
1951 			sibling->fib6_nsiblings--;
1952 		rt->fib6_nsiblings = 0;
1953 		list_del_init(&rt->fib6_siblings);
1954 		rt6_multipath_rebalance(next_sibling);
1955 	}
1956 
1957 	/* Adjust walkers */
1958 	read_lock(&net->ipv6.fib6_walker_lock);
1959 	FOR_WALKERS(net, w) {
1960 		if (w->state == FWS_C && w->leaf == rt) {
1961 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1962 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1963 					    lockdep_is_held(&table->tb6_lock));
1964 			if (!w->leaf)
1965 				w->state = FWS_U;
1966 		}
1967 	}
1968 	read_unlock(&net->ipv6.fib6_walker_lock);
1969 
1970 	/* If it was last route, call fib6_repair_tree() to:
1971 	 * 1. For root node, put back null_entry as how the table was created.
1972 	 * 2. For other nodes, expunge its radix tree node.
1973 	 */
1974 	if (!rcu_access_pointer(fn->leaf)) {
1975 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1976 			fn->fn_flags &= ~RTN_RTINFO;
1977 			net->ipv6.rt6_stats->fib_route_nodes--;
1978 		}
1979 		fn = fib6_repair_tree(net, table, fn);
1980 	}
1981 
1982 	fib6_purge_rt(rt, fn, net);
1983 
1984 	if (!info->skip_notify_kernel) {
1985 		if (notify_del)
1986 			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1987 						  rt, NULL);
1988 		else if (replace_rt)
1989 			call_fib6_entry_notifiers_replace(net, replace_rt);
1990 	}
1991 	if (!info->skip_notify)
1992 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1993 
1994 	fib6_info_release(rt);
1995 }
1996 
1997 /* Need to own table->tb6_lock */
fib6_del(struct fib6_info * rt,struct nl_info * info)1998 int fib6_del(struct fib6_info *rt, struct nl_info *info)
1999 {
2000 	struct net *net = info->nl_net;
2001 	struct fib6_info __rcu **rtp;
2002 	struct fib6_info __rcu **rtp_next;
2003 	struct fib6_table *table;
2004 	struct fib6_node *fn;
2005 
2006 	if (rt == net->ipv6.fib6_null_entry)
2007 		return -ENOENT;
2008 
2009 	table = rt->fib6_table;
2010 	fn = rcu_dereference_protected(rt->fib6_node,
2011 				       lockdep_is_held(&table->tb6_lock));
2012 	if (!fn)
2013 		return -ENOENT;
2014 
2015 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2016 
2017 	/*
2018 	 *	Walk the leaf entries looking for ourself
2019 	 */
2020 
2021 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2022 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2023 					lockdep_is_held(&table->tb6_lock));
2024 		if (rt == cur) {
2025 			if (fib6_requires_src(cur))
2026 				fib6_routes_require_src_dec(info->nl_net);
2027 			fib6_del_route(table, fn, rtp, info);
2028 			return 0;
2029 		}
2030 		rtp_next = &cur->fib6_next;
2031 	}
2032 	return -ENOENT;
2033 }
2034 
2035 /*
2036  *	Tree traversal function.
2037  *
2038  *	Certainly, it is not interrupt safe.
2039  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2040  *	It means, that we can modify tree during walking
2041  *	and use this function for garbage collection, clone pruning,
2042  *	cleaning tree when a device goes down etc. etc.
2043  *
2044  *	It guarantees that every node will be traversed,
2045  *	and that it will be traversed only once.
2046  *
2047  *	Callback function w->func may return:
2048  *	0 -> continue walking.
2049  *	positive value -> walking is suspended (used by tree dumps,
2050  *	and probably by gc, if it will be split to several slices)
2051  *	negative value -> terminate walking.
2052  *
2053  *	The function itself returns:
2054  *	0   -> walk is complete.
2055  *	>0  -> walk is incomplete (i.e. suspended)
2056  *	<0  -> walk is terminated by an error.
2057  *
2058  *	This function is called with tb6_lock held.
2059  */
2060 
fib6_walk_continue(struct fib6_walker * w)2061 static int fib6_walk_continue(struct fib6_walker *w)
2062 {
2063 	struct fib6_node *fn, *pn, *left, *right;
2064 
2065 	/* w->root should always be table->tb6_root */
2066 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2067 
2068 	for (;;) {
2069 		fn = w->node;
2070 		if (!fn)
2071 			return 0;
2072 
2073 		switch (w->state) {
2074 #ifdef CONFIG_IPV6_SUBTREES
2075 		case FWS_S:
2076 			if (FIB6_SUBTREE(fn)) {
2077 				w->node = FIB6_SUBTREE(fn);
2078 				continue;
2079 			}
2080 			w->state = FWS_L;
2081 			fallthrough;
2082 #endif
2083 		case FWS_L:
2084 			left = rcu_dereference_protected(fn->left, 1);
2085 			if (left) {
2086 				w->node = left;
2087 				w->state = FWS_INIT;
2088 				continue;
2089 			}
2090 			w->state = FWS_R;
2091 			fallthrough;
2092 		case FWS_R:
2093 			right = rcu_dereference_protected(fn->right, 1);
2094 			if (right) {
2095 				w->node = right;
2096 				w->state = FWS_INIT;
2097 				continue;
2098 			}
2099 			w->state = FWS_C;
2100 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2101 			fallthrough;
2102 		case FWS_C:
2103 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2104 				int err;
2105 
2106 				if (w->skip) {
2107 					w->skip--;
2108 					goto skip;
2109 				}
2110 
2111 				err = w->func(w);
2112 				if (err)
2113 					return err;
2114 
2115 				w->count++;
2116 				continue;
2117 			}
2118 skip:
2119 			w->state = FWS_U;
2120 			fallthrough;
2121 		case FWS_U:
2122 			if (fn == w->root)
2123 				return 0;
2124 			pn = rcu_dereference_protected(fn->parent, 1);
2125 			left = rcu_dereference_protected(pn->left, 1);
2126 			right = rcu_dereference_protected(pn->right, 1);
2127 			w->node = pn;
2128 #ifdef CONFIG_IPV6_SUBTREES
2129 			if (FIB6_SUBTREE(pn) == fn) {
2130 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2131 				w->state = FWS_L;
2132 				continue;
2133 			}
2134 #endif
2135 			if (left == fn) {
2136 				w->state = FWS_R;
2137 				continue;
2138 			}
2139 			if (right == fn) {
2140 				w->state = FWS_C;
2141 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2142 				continue;
2143 			}
2144 #if RT6_DEBUG >= 2
2145 			WARN_ON(1);
2146 #endif
2147 		}
2148 	}
2149 }
2150 
fib6_walk(struct net * net,struct fib6_walker * w)2151 static int fib6_walk(struct net *net, struct fib6_walker *w)
2152 {
2153 	int res;
2154 
2155 	w->state = FWS_INIT;
2156 	w->node = w->root;
2157 
2158 	fib6_walker_link(net, w);
2159 	res = fib6_walk_continue(w);
2160 	if (res <= 0)
2161 		fib6_walker_unlink(net, w);
2162 	return res;
2163 }
2164 
fib6_clean_node(struct fib6_walker * w)2165 static int fib6_clean_node(struct fib6_walker *w)
2166 {
2167 	int res;
2168 	struct fib6_info *rt;
2169 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2170 	struct nl_info info = {
2171 		.nl_net = c->net,
2172 		.skip_notify = c->skip_notify,
2173 	};
2174 
2175 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2176 	    READ_ONCE(w->node->fn_sernum) != c->sernum)
2177 		WRITE_ONCE(w->node->fn_sernum, c->sernum);
2178 
2179 	if (!c->func) {
2180 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2181 		w->leaf = NULL;
2182 		return 0;
2183 	}
2184 
2185 	for_each_fib6_walker_rt(w) {
2186 		res = c->func(rt, c->arg);
2187 		if (res == -1) {
2188 			w->leaf = rt;
2189 			res = fib6_del(rt, &info);
2190 			if (res) {
2191 #if RT6_DEBUG >= 2
2192 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2193 					 __func__, rt,
2194 					 rcu_access_pointer(rt->fib6_node),
2195 					 res);
2196 #endif
2197 				continue;
2198 			}
2199 			return 0;
2200 		} else if (res == -2) {
2201 			if (WARN_ON(!rt->fib6_nsiblings))
2202 				continue;
2203 			rt = list_last_entry(&rt->fib6_siblings,
2204 					     struct fib6_info, fib6_siblings);
2205 			continue;
2206 		}
2207 		WARN_ON(res != 0);
2208 	}
2209 	w->leaf = rt;
2210 	return 0;
2211 }
2212 
2213 /*
2214  *	Convenient frontend to tree walker.
2215  *
2216  *	func is called on each route.
2217  *		It may return -2 -> skip multipath route.
2218  *			      -1 -> delete this route.
2219  *		              0  -> continue walking
2220  */
2221 
fib6_clean_tree(struct net * net,struct fib6_node * root,int (* func)(struct fib6_info *,void * arg),int sernum,void * arg,bool skip_notify)2222 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2223 			    int (*func)(struct fib6_info *, void *arg),
2224 			    int sernum, void *arg, bool skip_notify)
2225 {
2226 	struct fib6_cleaner c;
2227 
2228 	c.w.root = root;
2229 	c.w.func = fib6_clean_node;
2230 	c.w.count = 0;
2231 	c.w.skip = 0;
2232 	c.w.skip_in_node = 0;
2233 	c.func = func;
2234 	c.sernum = sernum;
2235 	c.arg = arg;
2236 	c.net = net;
2237 	c.skip_notify = skip_notify;
2238 
2239 	fib6_walk(net, &c.w);
2240 }
2241 
__fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),int sernum,void * arg,bool skip_notify)2242 static void __fib6_clean_all(struct net *net,
2243 			     int (*func)(struct fib6_info *, void *),
2244 			     int sernum, void *arg, bool skip_notify)
2245 {
2246 	struct fib6_table *table;
2247 	struct hlist_head *head;
2248 	unsigned int h;
2249 
2250 	rcu_read_lock();
2251 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2252 		head = &net->ipv6.fib_table_hash[h];
2253 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2254 			spin_lock_bh(&table->tb6_lock);
2255 			fib6_clean_tree(net, &table->tb6_root,
2256 					func, sernum, arg, skip_notify);
2257 			spin_unlock_bh(&table->tb6_lock);
2258 		}
2259 	}
2260 	rcu_read_unlock();
2261 }
2262 
fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2263 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2264 		    void *arg)
2265 {
2266 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2267 }
2268 
fib6_clean_all_skip_notify(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2269 void fib6_clean_all_skip_notify(struct net *net,
2270 				int (*func)(struct fib6_info *, void *),
2271 				void *arg)
2272 {
2273 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2274 }
2275 
fib6_flush_trees(struct net * net)2276 static void fib6_flush_trees(struct net *net)
2277 {
2278 	int new_sernum = fib6_new_sernum(net);
2279 
2280 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2281 }
2282 
2283 /*
2284  *	Garbage collection
2285  */
2286 
fib6_age(struct fib6_info * rt,void * arg)2287 static int fib6_age(struct fib6_info *rt, void *arg)
2288 {
2289 	struct fib6_gc_args *gc_args = arg;
2290 	unsigned long now = jiffies;
2291 
2292 	/*
2293 	 *	check addrconf expiration here.
2294 	 *	Routes are expired even if they are in use.
2295 	 */
2296 
2297 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2298 		if (time_after(now, rt->expires)) {
2299 			RT6_TRACE("expiring %p\n", rt);
2300 			return -1;
2301 		}
2302 		gc_args->more++;
2303 	}
2304 
2305 	/*	Also age clones in the exception table.
2306 	 *	Note, that clones are aged out
2307 	 *	only if they are not in use now.
2308 	 */
2309 	rt6_age_exceptions(rt, gc_args, now);
2310 
2311 	return 0;
2312 }
2313 
fib6_run_gc(unsigned long expires,struct net * net,bool force)2314 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2315 {
2316 	struct fib6_gc_args gc_args;
2317 	unsigned long now;
2318 
2319 	if (force) {
2320 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2321 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2322 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2323 		return;
2324 	}
2325 	gc_args.timeout = expires ? (int)expires :
2326 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2327 	gc_args.more = 0;
2328 
2329 	fib6_clean_all(net, fib6_age, &gc_args);
2330 	now = jiffies;
2331 	net->ipv6.ip6_rt_last_gc = now;
2332 
2333 	if (gc_args.more)
2334 		mod_timer(&net->ipv6.ip6_fib_timer,
2335 			  round_jiffies(now
2336 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2337 	else
2338 		del_timer(&net->ipv6.ip6_fib_timer);
2339 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2340 }
2341 
fib6_gc_timer_cb(struct timer_list * t)2342 static void fib6_gc_timer_cb(struct timer_list *t)
2343 {
2344 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2345 
2346 	fib6_run_gc(0, arg, true);
2347 }
2348 
fib6_net_init(struct net * net)2349 static int __net_init fib6_net_init(struct net *net)
2350 {
2351 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2352 	int err;
2353 
2354 	err = fib6_notifier_init(net);
2355 	if (err)
2356 		return err;
2357 
2358 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2359 	rwlock_init(&net->ipv6.fib6_walker_lock);
2360 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2361 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2362 
2363 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2364 	if (!net->ipv6.rt6_stats)
2365 		goto out_timer;
2366 
2367 	/* Avoid false sharing : Use at least a full cache line */
2368 	size = max_t(size_t, size, L1_CACHE_BYTES);
2369 
2370 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2371 	if (!net->ipv6.fib_table_hash)
2372 		goto out_rt6_stats;
2373 
2374 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2375 					  GFP_KERNEL);
2376 	if (!net->ipv6.fib6_main_tbl)
2377 		goto out_fib_table_hash;
2378 
2379 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2380 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2381 			   net->ipv6.fib6_null_entry);
2382 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2383 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2384 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2385 
2386 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2387 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2388 					   GFP_KERNEL);
2389 	if (!net->ipv6.fib6_local_tbl)
2390 		goto out_fib6_main_tbl;
2391 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2392 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2393 			   net->ipv6.fib6_null_entry);
2394 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2395 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2396 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2397 #endif
2398 	fib6_tables_init(net);
2399 
2400 	return 0;
2401 
2402 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2403 out_fib6_main_tbl:
2404 	kfree(net->ipv6.fib6_main_tbl);
2405 #endif
2406 out_fib_table_hash:
2407 	kfree(net->ipv6.fib_table_hash);
2408 out_rt6_stats:
2409 	kfree(net->ipv6.rt6_stats);
2410 out_timer:
2411 	fib6_notifier_exit(net);
2412 	return -ENOMEM;
2413 }
2414 
fib6_net_exit(struct net * net)2415 static void fib6_net_exit(struct net *net)
2416 {
2417 	unsigned int i;
2418 
2419 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2420 
2421 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2422 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2423 		struct hlist_node *tmp;
2424 		struct fib6_table *tb;
2425 
2426 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2427 			hlist_del(&tb->tb6_hlist);
2428 			fib6_free_table(tb);
2429 		}
2430 	}
2431 
2432 	kfree(net->ipv6.fib_table_hash);
2433 	kfree(net->ipv6.rt6_stats);
2434 	fib6_notifier_exit(net);
2435 }
2436 
2437 static struct pernet_operations fib6_net_ops = {
2438 	.init = fib6_net_init,
2439 	.exit = fib6_net_exit,
2440 };
2441 
fib6_init(void)2442 int __init fib6_init(void)
2443 {
2444 	int ret = -ENOMEM;
2445 
2446 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2447 					   sizeof(struct fib6_node),
2448 					   0, SLAB_HWCACHE_ALIGN,
2449 					   NULL);
2450 	if (!fib6_node_kmem)
2451 		goto out;
2452 
2453 	ret = register_pernet_subsys(&fib6_net_ops);
2454 	if (ret)
2455 		goto out_kmem_cache_create;
2456 
2457 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2458 				   inet6_dump_fib, 0);
2459 	if (ret)
2460 		goto out_unregister_subsys;
2461 
2462 	__fib6_flush_trees = fib6_flush_trees;
2463 out:
2464 	return ret;
2465 
2466 out_unregister_subsys:
2467 	unregister_pernet_subsys(&fib6_net_ops);
2468 out_kmem_cache_create:
2469 	kmem_cache_destroy(fib6_node_kmem);
2470 	goto out;
2471 }
2472 
fib6_gc_cleanup(void)2473 void fib6_gc_cleanup(void)
2474 {
2475 	unregister_pernet_subsys(&fib6_net_ops);
2476 	kmem_cache_destroy(fib6_node_kmem);
2477 }
2478 
2479 #ifdef CONFIG_PROC_FS
ipv6_route_native_seq_show(struct seq_file * seq,void * v)2480 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2481 {
2482 	struct fib6_info *rt = v;
2483 	struct ipv6_route_iter *iter = seq->private;
2484 	struct fib6_nh *fib6_nh = rt->fib6_nh;
2485 	unsigned int flags = rt->fib6_flags;
2486 	const struct net_device *dev;
2487 
2488 	if (rt->nh)
2489 		fib6_nh = nexthop_fib6_nh_bh(rt->nh);
2490 
2491 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2492 
2493 #ifdef CONFIG_IPV6_SUBTREES
2494 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2495 #else
2496 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2497 #endif
2498 	if (fib6_nh->fib_nh_gw_family) {
2499 		flags |= RTF_GATEWAY;
2500 		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2501 	} else {
2502 		seq_puts(seq, "00000000000000000000000000000000");
2503 	}
2504 
2505 	dev = fib6_nh->fib_nh_dev;
2506 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2507 		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2508 		   flags, dev ? dev->name : "");
2509 	iter->w.leaf = NULL;
2510 	return 0;
2511 }
2512 
ipv6_route_yield(struct fib6_walker * w)2513 static int ipv6_route_yield(struct fib6_walker *w)
2514 {
2515 	struct ipv6_route_iter *iter = w->args;
2516 
2517 	if (!iter->skip)
2518 		return 1;
2519 
2520 	do {
2521 		iter->w.leaf = rcu_dereference_protected(
2522 				iter->w.leaf->fib6_next,
2523 				lockdep_is_held(&iter->tbl->tb6_lock));
2524 		iter->skip--;
2525 		if (!iter->skip && iter->w.leaf)
2526 			return 1;
2527 	} while (iter->w.leaf);
2528 
2529 	return 0;
2530 }
2531 
ipv6_route_seq_setup_walk(struct ipv6_route_iter * iter,struct net * net)2532 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2533 				      struct net *net)
2534 {
2535 	memset(&iter->w, 0, sizeof(iter->w));
2536 	iter->w.func = ipv6_route_yield;
2537 	iter->w.root = &iter->tbl->tb6_root;
2538 	iter->w.state = FWS_INIT;
2539 	iter->w.node = iter->w.root;
2540 	iter->w.args = iter;
2541 	iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2542 	INIT_LIST_HEAD(&iter->w.lh);
2543 	fib6_walker_link(net, &iter->w);
2544 }
2545 
ipv6_route_seq_next_table(struct fib6_table * tbl,struct net * net)2546 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2547 						    struct net *net)
2548 {
2549 	unsigned int h;
2550 	struct hlist_node *node;
2551 
2552 	if (tbl) {
2553 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2554 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2555 	} else {
2556 		h = 0;
2557 		node = NULL;
2558 	}
2559 
2560 	while (!node && h < FIB6_TABLE_HASHSZ) {
2561 		node = rcu_dereference_bh(
2562 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2563 	}
2564 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2565 }
2566 
ipv6_route_check_sernum(struct ipv6_route_iter * iter)2567 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2568 {
2569 	int sernum = READ_ONCE(iter->w.root->fn_sernum);
2570 
2571 	if (iter->sernum != sernum) {
2572 		iter->sernum = sernum;
2573 		iter->w.state = FWS_INIT;
2574 		iter->w.node = iter->w.root;
2575 		WARN_ON(iter->w.skip);
2576 		iter->w.skip = iter->w.count;
2577 	}
2578 }
2579 
ipv6_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2580 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2581 {
2582 	int r;
2583 	struct fib6_info *n;
2584 	struct net *net = seq_file_net(seq);
2585 	struct ipv6_route_iter *iter = seq->private;
2586 
2587 	++(*pos);
2588 	if (!v)
2589 		goto iter_table;
2590 
2591 	n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2592 	if (n)
2593 		return n;
2594 
2595 iter_table:
2596 	ipv6_route_check_sernum(iter);
2597 	spin_lock_bh(&iter->tbl->tb6_lock);
2598 	r = fib6_walk_continue(&iter->w);
2599 	spin_unlock_bh(&iter->tbl->tb6_lock);
2600 	if (r > 0) {
2601 		return iter->w.leaf;
2602 	} else if (r < 0) {
2603 		fib6_walker_unlink(net, &iter->w);
2604 		return NULL;
2605 	}
2606 	fib6_walker_unlink(net, &iter->w);
2607 
2608 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2609 	if (!iter->tbl)
2610 		return NULL;
2611 
2612 	ipv6_route_seq_setup_walk(iter, net);
2613 	goto iter_table;
2614 }
2615 
ipv6_route_seq_start(struct seq_file * seq,loff_t * pos)2616 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2617 	__acquires(RCU_BH)
2618 {
2619 	struct net *net = seq_file_net(seq);
2620 	struct ipv6_route_iter *iter = seq->private;
2621 
2622 	rcu_read_lock_bh();
2623 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2624 	iter->skip = *pos;
2625 
2626 	if (iter->tbl) {
2627 		loff_t p = 0;
2628 
2629 		ipv6_route_seq_setup_walk(iter, net);
2630 		return ipv6_route_seq_next(seq, NULL, &p);
2631 	} else {
2632 		return NULL;
2633 	}
2634 }
2635 
ipv6_route_iter_active(struct ipv6_route_iter * iter)2636 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2637 {
2638 	struct fib6_walker *w = &iter->w;
2639 	return w->node && !(w->state == FWS_U && w->node == w->root);
2640 }
2641 
ipv6_route_native_seq_stop(struct seq_file * seq,void * v)2642 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2643 	__releases(RCU_BH)
2644 {
2645 	struct net *net = seq_file_net(seq);
2646 	struct ipv6_route_iter *iter = seq->private;
2647 
2648 	if (ipv6_route_iter_active(iter))
2649 		fib6_walker_unlink(net, &iter->w);
2650 
2651 	rcu_read_unlock_bh();
2652 }
2653 
2654 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
ipv6_route_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,void * v)2655 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2656 				    struct bpf_iter_meta *meta,
2657 				    void *v)
2658 {
2659 	struct bpf_iter__ipv6_route ctx;
2660 
2661 	ctx.meta = meta;
2662 	ctx.rt = v;
2663 	return bpf_iter_run_prog(prog, &ctx);
2664 }
2665 
ipv6_route_seq_show(struct seq_file * seq,void * v)2666 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2667 {
2668 	struct ipv6_route_iter *iter = seq->private;
2669 	struct bpf_iter_meta meta;
2670 	struct bpf_prog *prog;
2671 	int ret;
2672 
2673 	meta.seq = seq;
2674 	prog = bpf_iter_get_info(&meta, false);
2675 	if (!prog)
2676 		return ipv6_route_native_seq_show(seq, v);
2677 
2678 	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2679 	iter->w.leaf = NULL;
2680 
2681 	return ret;
2682 }
2683 
ipv6_route_seq_stop(struct seq_file * seq,void * v)2684 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2685 {
2686 	struct bpf_iter_meta meta;
2687 	struct bpf_prog *prog;
2688 
2689 	if (!v) {
2690 		meta.seq = seq;
2691 		prog = bpf_iter_get_info(&meta, true);
2692 		if (prog)
2693 			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2694 	}
2695 
2696 	ipv6_route_native_seq_stop(seq, v);
2697 }
2698 #else
ipv6_route_seq_show(struct seq_file * seq,void * v)2699 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2700 {
2701 	return ipv6_route_native_seq_show(seq, v);
2702 }
2703 
ipv6_route_seq_stop(struct seq_file * seq,void * v)2704 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2705 {
2706 	ipv6_route_native_seq_stop(seq, v);
2707 }
2708 #endif
2709 
2710 const struct seq_operations ipv6_route_seq_ops = {
2711 	.start	= ipv6_route_seq_start,
2712 	.next	= ipv6_route_seq_next,
2713 	.stop	= ipv6_route_seq_stop,
2714 	.show	= ipv6_route_seq_show
2715 };
2716 #endif /* CONFIG_PROC_FS */
2717