1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
6 *
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
9 *
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
11 *
12 * This work is based on the LPC-trie which is originally described in:
13 *
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17 *
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20 *
21 * Code from fib_hash has been reused which includes the following header:
22 *
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
26 *
27 * IPv4 FIB: lookup engine and maintenance routines.
28 *
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30 *
31 * Substantial contributions to this work comes from:
32 *
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
37 */
38 #include <linux/cache.h>
39 #include <linux/uaccess.h>
40 #include <linux/bitops.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/mm.h>
44 #include <linux/string.h>
45 #include <linux/socket.h>
46 #include <linux/sockios.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/inetdevice.h>
51 #include <linux/netdevice.h>
52 #include <linux/if_arp.h>
53 #include <linux/proc_fs.h>
54 #include <linux/rcupdate.h>
55 #include <linux/skbuff.h>
56 #include <linux/netlink.h>
57 #include <linux/init.h>
58 #include <linux/list.h>
59 #include <linux/slab.h>
60 #include <linux/export.h>
61 #include <linux/vmalloc.h>
62 #include <linux/notifier.h>
63 #include <net/net_namespace.h>
64 #include <net/ip.h>
65 #include <net/protocol.h>
66 #include <net/route.h>
67 #include <net/tcp.h>
68 #include <net/sock.h>
69 #include <net/ip_fib.h>
70 #include <net/fib_notifier.h>
71 #include <trace/events/fib.h>
72 #include "fib_lookup.h"
73
call_fib_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)74 static int call_fib_entry_notifier(struct notifier_block *nb,
75 enum fib_event_type event_type, u32 dst,
76 int dst_len, struct fib_alias *fa,
77 struct netlink_ext_ack *extack)
78 {
79 struct fib_entry_notifier_info info = {
80 .info.extack = extack,
81 .dst = dst,
82 .dst_len = dst_len,
83 .fi = fa->fa_info,
84 .tos = fa->fa_tos,
85 .type = fa->fa_type,
86 .tb_id = fa->tb_id,
87 };
88 return call_fib4_notifier(nb, event_type, &info.info);
89 }
90
call_fib_entry_notifiers(struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)91 static int call_fib_entry_notifiers(struct net *net,
92 enum fib_event_type event_type, u32 dst,
93 int dst_len, struct fib_alias *fa,
94 struct netlink_ext_ack *extack)
95 {
96 struct fib_entry_notifier_info info = {
97 .info.extack = extack,
98 .dst = dst,
99 .dst_len = dst_len,
100 .fi = fa->fa_info,
101 .tos = fa->fa_tos,
102 .type = fa->fa_type,
103 .tb_id = fa->tb_id,
104 };
105 return call_fib4_notifiers(net, event_type, &info.info);
106 }
107
108 #define MAX_STAT_DEPTH 32
109
110 #define KEYLENGTH (8*sizeof(t_key))
111 #define KEY_MAX ((t_key)~0)
112
113 typedef unsigned int t_key;
114
115 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
116 #define IS_TNODE(n) ((n)->bits)
117 #define IS_LEAF(n) (!(n)->bits)
118
119 struct key_vector {
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned char slen;
124 union {
125 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
126 struct hlist_head leaf;
127 /* This array is valid if (pos | bits) > 0 (TNODE) */
128 struct key_vector __rcu *tnode[0];
129 };
130 };
131
132 struct tnode {
133 struct rcu_head rcu;
134 t_key empty_children; /* KEYLENGTH bits needed */
135 t_key full_children; /* KEYLENGTH bits needed */
136 struct key_vector __rcu *parent;
137 struct key_vector kv[1];
138 #define tn_bits kv[0].bits
139 };
140
141 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
142 #define LEAF_SIZE TNODE_SIZE(1)
143
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats {
146 unsigned int gets;
147 unsigned int backtrack;
148 unsigned int semantic_match_passed;
149 unsigned int semantic_match_miss;
150 unsigned int null_node_hit;
151 unsigned int resize_node_skipped;
152 };
153 #endif
154
155 struct trie_stat {
156 unsigned int totdepth;
157 unsigned int maxdepth;
158 unsigned int tnodes;
159 unsigned int leaves;
160 unsigned int nullpointers;
161 unsigned int prefixes;
162 unsigned int nodesizes[MAX_STAT_DEPTH];
163 };
164
165 struct trie {
166 struct key_vector kv[1];
167 #ifdef CONFIG_IP_FIB_TRIE_STATS
168 struct trie_use_stats __percpu *stats;
169 #endif
170 };
171
172 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
173 static unsigned int tnode_free_size;
174
175 /*
176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
177 * especially useful before resizing the root node with PREEMPT_NONE configs;
178 * the value was obtained experimentally, aiming to avoid visible slowdown.
179 */
180 unsigned int sysctl_fib_sync_mem = 512 * 1024;
181 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
182 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
183
184 static struct kmem_cache *fn_alias_kmem __ro_after_init;
185 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
186
tn_info(struct key_vector * kv)187 static inline struct tnode *tn_info(struct key_vector *kv)
188 {
189 return container_of(kv, struct tnode, kv[0]);
190 }
191
192 /* caller must hold RTNL */
193 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
194 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
195
196 /* caller must hold RCU read lock or RTNL */
197 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
198 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
199
200 /* wrapper for rcu_assign_pointer */
node_set_parent(struct key_vector * n,struct key_vector * tp)201 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
202 {
203 if (n)
204 rcu_assign_pointer(tn_info(n)->parent, tp);
205 }
206
207 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
208
209 /* This provides us with the number of children in this node, in the case of a
210 * leaf this will return 0 meaning none of the children are accessible.
211 */
child_length(const struct key_vector * tn)212 static inline unsigned long child_length(const struct key_vector *tn)
213 {
214 return (1ul << tn->bits) & ~(1ul);
215 }
216
217 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
218
get_index(t_key key,struct key_vector * kv)219 static inline unsigned long get_index(t_key key, struct key_vector *kv)
220 {
221 unsigned long index = key ^ kv->key;
222
223 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
224 return 0;
225
226 return index >> kv->pos;
227 }
228
229 /* To understand this stuff, an understanding of keys and all their bits is
230 * necessary. Every node in the trie has a key associated with it, but not
231 * all of the bits in that key are significant.
232 *
233 * Consider a node 'n' and its parent 'tp'.
234 *
235 * If n is a leaf, every bit in its key is significant. Its presence is
236 * necessitated by path compression, since during a tree traversal (when
237 * searching for a leaf - unless we are doing an insertion) we will completely
238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
239 * a potentially successful search, that we have indeed been walking the
240 * correct key path.
241 *
242 * Note that we can never "miss" the correct key in the tree if present by
243 * following the wrong path. Path compression ensures that segments of the key
244 * that are the same for all keys with a given prefix are skipped, but the
245 * skipped part *is* identical for each node in the subtrie below the skipped
246 * bit! trie_insert() in this implementation takes care of that.
247 *
248 * if n is an internal node - a 'tnode' here, the various parts of its key
249 * have many different meanings.
250 *
251 * Example:
252 * _________________________________________________________________
253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
254 * -----------------------------------------------------------------
255 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
256 *
257 * _________________________________________________________________
258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
259 * -----------------------------------------------------------------
260 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
261 *
262 * tp->pos = 22
263 * tp->bits = 3
264 * n->pos = 13
265 * n->bits = 4
266 *
267 * First, let's just ignore the bits that come before the parent tp, that is
268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
269 * point we do not use them for anything.
270 *
271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
272 * index into the parent's child array. That is, they will be used to find
273 * 'n' among tp's children.
274 *
275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
276 * for the node n.
277 *
278 * All the bits we have seen so far are significant to the node n. The rest
279 * of the bits are really not needed or indeed known in n->key.
280 *
281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
282 * n's child array, and will of course be different for each child.
283 *
284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
285 * at this point.
286 */
287
288 static const int halve_threshold = 25;
289 static const int inflate_threshold = 50;
290 static const int halve_threshold_root = 15;
291 static const int inflate_threshold_root = 30;
292
__alias_free_mem(struct rcu_head * head)293 static void __alias_free_mem(struct rcu_head *head)
294 {
295 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
296 kmem_cache_free(fn_alias_kmem, fa);
297 }
298
alias_free_mem_rcu(struct fib_alias * fa)299 static inline void alias_free_mem_rcu(struct fib_alias *fa)
300 {
301 call_rcu(&fa->rcu, __alias_free_mem);
302 }
303
304 #define TNODE_VMALLOC_MAX \
305 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
306
__node_free_rcu(struct rcu_head * head)307 static void __node_free_rcu(struct rcu_head *head)
308 {
309 struct tnode *n = container_of(head, struct tnode, rcu);
310
311 if (!n->tn_bits)
312 kmem_cache_free(trie_leaf_kmem, n);
313 else
314 kvfree(n);
315 }
316
317 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
318
tnode_alloc(int bits)319 static struct tnode *tnode_alloc(int bits)
320 {
321 size_t size;
322
323 /* verify bits is within bounds */
324 if (bits > TNODE_VMALLOC_MAX)
325 return NULL;
326
327 /* determine size and verify it is non-zero and didn't overflow */
328 size = TNODE_SIZE(1ul << bits);
329
330 if (size <= PAGE_SIZE)
331 return kzalloc(size, GFP_KERNEL);
332 else
333 return vzalloc(size);
334 }
335
empty_child_inc(struct key_vector * n)336 static inline void empty_child_inc(struct key_vector *n)
337 {
338 tn_info(n)->empty_children++;
339
340 if (!tn_info(n)->empty_children)
341 tn_info(n)->full_children++;
342 }
343
empty_child_dec(struct key_vector * n)344 static inline void empty_child_dec(struct key_vector *n)
345 {
346 if (!tn_info(n)->empty_children)
347 tn_info(n)->full_children--;
348
349 tn_info(n)->empty_children--;
350 }
351
leaf_new(t_key key,struct fib_alias * fa)352 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
353 {
354 struct key_vector *l;
355 struct tnode *kv;
356
357 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
358 if (!kv)
359 return NULL;
360
361 /* initialize key vector */
362 l = kv->kv;
363 l->key = key;
364 l->pos = 0;
365 l->bits = 0;
366 l->slen = fa->fa_slen;
367
368 /* link leaf to fib alias */
369 INIT_HLIST_HEAD(&l->leaf);
370 hlist_add_head(&fa->fa_list, &l->leaf);
371
372 return l;
373 }
374
tnode_new(t_key key,int pos,int bits)375 static struct key_vector *tnode_new(t_key key, int pos, int bits)
376 {
377 unsigned int shift = pos + bits;
378 struct key_vector *tn;
379 struct tnode *tnode;
380
381 /* verify bits and pos their msb bits clear and values are valid */
382 BUG_ON(!bits || (shift > KEYLENGTH));
383
384 tnode = tnode_alloc(bits);
385 if (!tnode)
386 return NULL;
387
388 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
389 sizeof(struct key_vector *) << bits);
390
391 if (bits == KEYLENGTH)
392 tnode->full_children = 1;
393 else
394 tnode->empty_children = 1ul << bits;
395
396 tn = tnode->kv;
397 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
398 tn->pos = pos;
399 tn->bits = bits;
400 tn->slen = pos;
401
402 return tn;
403 }
404
405 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
406 * and no bits are skipped. See discussion in dyntree paper p. 6
407 */
tnode_full(struct key_vector * tn,struct key_vector * n)408 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
409 {
410 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
411 }
412
413 /* Add a child at position i overwriting the old value.
414 * Update the value of full_children and empty_children.
415 */
put_child(struct key_vector * tn,unsigned long i,struct key_vector * n)416 static void put_child(struct key_vector *tn, unsigned long i,
417 struct key_vector *n)
418 {
419 struct key_vector *chi = get_child(tn, i);
420 int isfull, wasfull;
421
422 BUG_ON(i >= child_length(tn));
423
424 /* update emptyChildren, overflow into fullChildren */
425 if (!n && chi)
426 empty_child_inc(tn);
427 if (n && !chi)
428 empty_child_dec(tn);
429
430 /* update fullChildren */
431 wasfull = tnode_full(tn, chi);
432 isfull = tnode_full(tn, n);
433
434 if (wasfull && !isfull)
435 tn_info(tn)->full_children--;
436 else if (!wasfull && isfull)
437 tn_info(tn)->full_children++;
438
439 if (n && (tn->slen < n->slen))
440 tn->slen = n->slen;
441
442 rcu_assign_pointer(tn->tnode[i], n);
443 }
444
update_children(struct key_vector * tn)445 static void update_children(struct key_vector *tn)
446 {
447 unsigned long i;
448
449 /* update all of the child parent pointers */
450 for (i = child_length(tn); i;) {
451 struct key_vector *inode = get_child(tn, --i);
452
453 if (!inode)
454 continue;
455
456 /* Either update the children of a tnode that
457 * already belongs to us or update the child
458 * to point to ourselves.
459 */
460 if (node_parent(inode) == tn)
461 update_children(inode);
462 else
463 node_set_parent(inode, tn);
464 }
465 }
466
put_child_root(struct key_vector * tp,t_key key,struct key_vector * n)467 static inline void put_child_root(struct key_vector *tp, t_key key,
468 struct key_vector *n)
469 {
470 if (IS_TRIE(tp))
471 rcu_assign_pointer(tp->tnode[0], n);
472 else
473 put_child(tp, get_index(key, tp), n);
474 }
475
tnode_free_init(struct key_vector * tn)476 static inline void tnode_free_init(struct key_vector *tn)
477 {
478 tn_info(tn)->rcu.next = NULL;
479 }
480
tnode_free_append(struct key_vector * tn,struct key_vector * n)481 static inline void tnode_free_append(struct key_vector *tn,
482 struct key_vector *n)
483 {
484 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
485 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
486 }
487
tnode_free(struct key_vector * tn)488 static void tnode_free(struct key_vector *tn)
489 {
490 struct callback_head *head = &tn_info(tn)->rcu;
491
492 while (head) {
493 head = head->next;
494 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
495 node_free(tn);
496
497 tn = container_of(head, struct tnode, rcu)->kv;
498 }
499
500 if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
501 tnode_free_size = 0;
502 synchronize_rcu();
503 }
504 }
505
replace(struct trie * t,struct key_vector * oldtnode,struct key_vector * tn)506 static struct key_vector *replace(struct trie *t,
507 struct key_vector *oldtnode,
508 struct key_vector *tn)
509 {
510 struct key_vector *tp = node_parent(oldtnode);
511 unsigned long i;
512
513 /* setup the parent pointer out of and back into this node */
514 NODE_INIT_PARENT(tn, tp);
515 put_child_root(tp, tn->key, tn);
516
517 /* update all of the child parent pointers */
518 update_children(tn);
519
520 /* all pointers should be clean so we are done */
521 tnode_free(oldtnode);
522
523 /* resize children now that oldtnode is freed */
524 for (i = child_length(tn); i;) {
525 struct key_vector *inode = get_child(tn, --i);
526
527 /* resize child node */
528 if (tnode_full(tn, inode))
529 tn = resize(t, inode);
530 }
531
532 return tp;
533 }
534
inflate(struct trie * t,struct key_vector * oldtnode)535 static struct key_vector *inflate(struct trie *t,
536 struct key_vector *oldtnode)
537 {
538 struct key_vector *tn;
539 unsigned long i;
540 t_key m;
541
542 pr_debug("In inflate\n");
543
544 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
545 if (!tn)
546 goto notnode;
547
548 /* prepare oldtnode to be freed */
549 tnode_free_init(oldtnode);
550
551 /* Assemble all of the pointers in our cluster, in this case that
552 * represents all of the pointers out of our allocated nodes that
553 * point to existing tnodes and the links between our allocated
554 * nodes.
555 */
556 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
557 struct key_vector *inode = get_child(oldtnode, --i);
558 struct key_vector *node0, *node1;
559 unsigned long j, k;
560
561 /* An empty child */
562 if (!inode)
563 continue;
564
565 /* A leaf or an internal node with skipped bits */
566 if (!tnode_full(oldtnode, inode)) {
567 put_child(tn, get_index(inode->key, tn), inode);
568 continue;
569 }
570
571 /* drop the node in the old tnode free list */
572 tnode_free_append(oldtnode, inode);
573
574 /* An internal node with two children */
575 if (inode->bits == 1) {
576 put_child(tn, 2 * i + 1, get_child(inode, 1));
577 put_child(tn, 2 * i, get_child(inode, 0));
578 continue;
579 }
580
581 /* We will replace this node 'inode' with two new
582 * ones, 'node0' and 'node1', each with half of the
583 * original children. The two new nodes will have
584 * a position one bit further down the key and this
585 * means that the "significant" part of their keys
586 * (see the discussion near the top of this file)
587 * will differ by one bit, which will be "0" in
588 * node0's key and "1" in node1's key. Since we are
589 * moving the key position by one step, the bit that
590 * we are moving away from - the bit at position
591 * (tn->pos) - is the one that will differ between
592 * node0 and node1. So... we synthesize that bit in the
593 * two new keys.
594 */
595 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
596 if (!node1)
597 goto nomem;
598 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
599
600 tnode_free_append(tn, node1);
601 if (!node0)
602 goto nomem;
603 tnode_free_append(tn, node0);
604
605 /* populate child pointers in new nodes */
606 for (k = child_length(inode), j = k / 2; j;) {
607 put_child(node1, --j, get_child(inode, --k));
608 put_child(node0, j, get_child(inode, j));
609 put_child(node1, --j, get_child(inode, --k));
610 put_child(node0, j, get_child(inode, j));
611 }
612
613 /* link new nodes to parent */
614 NODE_INIT_PARENT(node1, tn);
615 NODE_INIT_PARENT(node0, tn);
616
617 /* link parent to nodes */
618 put_child(tn, 2 * i + 1, node1);
619 put_child(tn, 2 * i, node0);
620 }
621
622 /* setup the parent pointers into and out of this node */
623 return replace(t, oldtnode, tn);
624 nomem:
625 /* all pointers should be clean so we are done */
626 tnode_free(tn);
627 notnode:
628 return NULL;
629 }
630
halve(struct trie * t,struct key_vector * oldtnode)631 static struct key_vector *halve(struct trie *t,
632 struct key_vector *oldtnode)
633 {
634 struct key_vector *tn;
635 unsigned long i;
636
637 pr_debug("In halve\n");
638
639 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
640 if (!tn)
641 goto notnode;
642
643 /* prepare oldtnode to be freed */
644 tnode_free_init(oldtnode);
645
646 /* Assemble all of the pointers in our cluster, in this case that
647 * represents all of the pointers out of our allocated nodes that
648 * point to existing tnodes and the links between our allocated
649 * nodes.
650 */
651 for (i = child_length(oldtnode); i;) {
652 struct key_vector *node1 = get_child(oldtnode, --i);
653 struct key_vector *node0 = get_child(oldtnode, --i);
654 struct key_vector *inode;
655
656 /* At least one of the children is empty */
657 if (!node1 || !node0) {
658 put_child(tn, i / 2, node1 ? : node0);
659 continue;
660 }
661
662 /* Two nonempty children */
663 inode = tnode_new(node0->key, oldtnode->pos, 1);
664 if (!inode)
665 goto nomem;
666 tnode_free_append(tn, inode);
667
668 /* initialize pointers out of node */
669 put_child(inode, 1, node1);
670 put_child(inode, 0, node0);
671 NODE_INIT_PARENT(inode, tn);
672
673 /* link parent to node */
674 put_child(tn, i / 2, inode);
675 }
676
677 /* setup the parent pointers into and out of this node */
678 return replace(t, oldtnode, tn);
679 nomem:
680 /* all pointers should be clean so we are done */
681 tnode_free(tn);
682 notnode:
683 return NULL;
684 }
685
collapse(struct trie * t,struct key_vector * oldtnode)686 static struct key_vector *collapse(struct trie *t,
687 struct key_vector *oldtnode)
688 {
689 struct key_vector *n, *tp;
690 unsigned long i;
691
692 /* scan the tnode looking for that one child that might still exist */
693 for (n = NULL, i = child_length(oldtnode); !n && i;)
694 n = get_child(oldtnode, --i);
695
696 /* compress one level */
697 tp = node_parent(oldtnode);
698 put_child_root(tp, oldtnode->key, n);
699 node_set_parent(n, tp);
700
701 /* drop dead node */
702 node_free(oldtnode);
703
704 return tp;
705 }
706
update_suffix(struct key_vector * tn)707 static unsigned char update_suffix(struct key_vector *tn)
708 {
709 unsigned char slen = tn->pos;
710 unsigned long stride, i;
711 unsigned char slen_max;
712
713 /* only vector 0 can have a suffix length greater than or equal to
714 * tn->pos + tn->bits, the second highest node will have a suffix
715 * length at most of tn->pos + tn->bits - 1
716 */
717 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
718
719 /* search though the list of children looking for nodes that might
720 * have a suffix greater than the one we currently have. This is
721 * why we start with a stride of 2 since a stride of 1 would
722 * represent the nodes with suffix length equal to tn->pos
723 */
724 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
725 struct key_vector *n = get_child(tn, i);
726
727 if (!n || (n->slen <= slen))
728 continue;
729
730 /* update stride and slen based on new value */
731 stride <<= (n->slen - slen);
732 slen = n->slen;
733 i &= ~(stride - 1);
734
735 /* stop searching if we have hit the maximum possible value */
736 if (slen >= slen_max)
737 break;
738 }
739
740 tn->slen = slen;
741
742 return slen;
743 }
744
745 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
746 * the Helsinki University of Technology and Matti Tikkanen of Nokia
747 * Telecommunications, page 6:
748 * "A node is doubled if the ratio of non-empty children to all
749 * children in the *doubled* node is at least 'high'."
750 *
751 * 'high' in this instance is the variable 'inflate_threshold'. It
752 * is expressed as a percentage, so we multiply it with
753 * child_length() and instead of multiplying by 2 (since the
754 * child array will be doubled by inflate()) and multiplying
755 * the left-hand side by 100 (to handle the percentage thing) we
756 * multiply the left-hand side by 50.
757 *
758 * The left-hand side may look a bit weird: child_length(tn)
759 * - tn->empty_children is of course the number of non-null children
760 * in the current node. tn->full_children is the number of "full"
761 * children, that is non-null tnodes with a skip value of 0.
762 * All of those will be doubled in the resulting inflated tnode, so
763 * we just count them one extra time here.
764 *
765 * A clearer way to write this would be:
766 *
767 * to_be_doubled = tn->full_children;
768 * not_to_be_doubled = child_length(tn) - tn->empty_children -
769 * tn->full_children;
770 *
771 * new_child_length = child_length(tn) * 2;
772 *
773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
774 * new_child_length;
775 * if (new_fill_factor >= inflate_threshold)
776 *
777 * ...and so on, tho it would mess up the while () loop.
778 *
779 * anyway,
780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
781 * inflate_threshold
782 *
783 * avoid a division:
784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
785 * inflate_threshold * new_child_length
786 *
787 * expand not_to_be_doubled and to_be_doubled, and shorten:
788 * 100 * (child_length(tn) - tn->empty_children +
789 * tn->full_children) >= inflate_threshold * new_child_length
790 *
791 * expand new_child_length:
792 * 100 * (child_length(tn) - tn->empty_children +
793 * tn->full_children) >=
794 * inflate_threshold * child_length(tn) * 2
795 *
796 * shorten again:
797 * 50 * (tn->full_children + child_length(tn) -
798 * tn->empty_children) >= inflate_threshold *
799 * child_length(tn)
800 *
801 */
should_inflate(struct key_vector * tp,struct key_vector * tn)802 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
803 {
804 unsigned long used = child_length(tn);
805 unsigned long threshold = used;
806
807 /* Keep root node larger */
808 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
809 used -= tn_info(tn)->empty_children;
810 used += tn_info(tn)->full_children;
811
812 /* if bits == KEYLENGTH then pos = 0, and will fail below */
813
814 return (used > 1) && tn->pos && ((50 * used) >= threshold);
815 }
816
should_halve(struct key_vector * tp,struct key_vector * tn)817 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
818 {
819 unsigned long used = child_length(tn);
820 unsigned long threshold = used;
821
822 /* Keep root node larger */
823 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
824 used -= tn_info(tn)->empty_children;
825
826 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
827
828 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
829 }
830
should_collapse(struct key_vector * tn)831 static inline bool should_collapse(struct key_vector *tn)
832 {
833 unsigned long used = child_length(tn);
834
835 used -= tn_info(tn)->empty_children;
836
837 /* account for bits == KEYLENGTH case */
838 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
839 used -= KEY_MAX;
840
841 /* One child or none, time to drop us from the trie */
842 return used < 2;
843 }
844
845 #define MAX_WORK 10
resize(struct trie * t,struct key_vector * tn)846 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
847 {
848 #ifdef CONFIG_IP_FIB_TRIE_STATS
849 struct trie_use_stats __percpu *stats = t->stats;
850 #endif
851 struct key_vector *tp = node_parent(tn);
852 unsigned long cindex = get_index(tn->key, tp);
853 int max_work = MAX_WORK;
854
855 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
856 tn, inflate_threshold, halve_threshold);
857
858 /* track the tnode via the pointer from the parent instead of
859 * doing it ourselves. This way we can let RCU fully do its
860 * thing without us interfering
861 */
862 BUG_ON(tn != get_child(tp, cindex));
863
864 /* Double as long as the resulting node has a number of
865 * nonempty nodes that are above the threshold.
866 */
867 while (should_inflate(tp, tn) && max_work) {
868 tp = inflate(t, tn);
869 if (!tp) {
870 #ifdef CONFIG_IP_FIB_TRIE_STATS
871 this_cpu_inc(stats->resize_node_skipped);
872 #endif
873 break;
874 }
875
876 max_work--;
877 tn = get_child(tp, cindex);
878 }
879
880 /* update parent in case inflate failed */
881 tp = node_parent(tn);
882
883 /* Return if at least one inflate is run */
884 if (max_work != MAX_WORK)
885 return tp;
886
887 /* Halve as long as the number of empty children in this
888 * node is above threshold.
889 */
890 while (should_halve(tp, tn) && max_work) {
891 tp = halve(t, tn);
892 if (!tp) {
893 #ifdef CONFIG_IP_FIB_TRIE_STATS
894 this_cpu_inc(stats->resize_node_skipped);
895 #endif
896 break;
897 }
898
899 max_work--;
900 tn = get_child(tp, cindex);
901 }
902
903 /* Only one child remains */
904 if (should_collapse(tn))
905 return collapse(t, tn);
906
907 /* update parent in case halve failed */
908 return node_parent(tn);
909 }
910
node_pull_suffix(struct key_vector * tn,unsigned char slen)911 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
912 {
913 unsigned char node_slen = tn->slen;
914
915 while ((node_slen > tn->pos) && (node_slen > slen)) {
916 slen = update_suffix(tn);
917 if (node_slen == slen)
918 break;
919
920 tn = node_parent(tn);
921 node_slen = tn->slen;
922 }
923 }
924
node_push_suffix(struct key_vector * tn,unsigned char slen)925 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
926 {
927 while (tn->slen < slen) {
928 tn->slen = slen;
929 tn = node_parent(tn);
930 }
931 }
932
933 /* rcu_read_lock needs to be hold by caller from readside */
fib_find_node(struct trie * t,struct key_vector ** tp,u32 key)934 static struct key_vector *fib_find_node(struct trie *t,
935 struct key_vector **tp, u32 key)
936 {
937 struct key_vector *pn, *n = t->kv;
938 unsigned long index = 0;
939
940 do {
941 pn = n;
942 n = get_child_rcu(n, index);
943
944 if (!n)
945 break;
946
947 index = get_cindex(key, n);
948
949 /* This bit of code is a bit tricky but it combines multiple
950 * checks into a single check. The prefix consists of the
951 * prefix plus zeros for the bits in the cindex. The index
952 * is the difference between the key and this value. From
953 * this we can actually derive several pieces of data.
954 * if (index >= (1ul << bits))
955 * we have a mismatch in skip bits and failed
956 * else
957 * we know the value is cindex
958 *
959 * This check is safe even if bits == KEYLENGTH due to the
960 * fact that we can only allocate a node with 32 bits if a
961 * long is greater than 32 bits.
962 */
963 if (index >= (1ul << n->bits)) {
964 n = NULL;
965 break;
966 }
967
968 /* keep searching until we find a perfect match leaf or NULL */
969 } while (IS_TNODE(n));
970
971 *tp = pn;
972
973 return n;
974 }
975
976 /* Return the first fib alias matching TOS with
977 * priority less than or equal to PRIO.
978 * If 'find_first' is set, return the first matching
979 * fib alias, regardless of TOS and priority.
980 */
fib_find_alias(struct hlist_head * fah,u8 slen,u8 tos,u32 prio,u32 tb_id,bool find_first)981 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
982 u8 tos, u32 prio, u32 tb_id,
983 bool find_first)
984 {
985 struct fib_alias *fa;
986
987 if (!fah)
988 return NULL;
989
990 hlist_for_each_entry(fa, fah, fa_list) {
991 if (fa->fa_slen < slen)
992 continue;
993 if (fa->fa_slen != slen)
994 break;
995 if (fa->tb_id > tb_id)
996 continue;
997 if (fa->tb_id != tb_id)
998 break;
999 if (find_first)
1000 return fa;
1001 if (fa->fa_tos > tos)
1002 continue;
1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 return fa;
1005 }
1006
1007 return NULL;
1008 }
1009
1010 static struct fib_alias *
fib_find_matching_alias(struct net * net,const struct fib_rt_info * fri)1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012 {
1013 u8 slen = KEYLENGTH - fri->dst_len;
1014 struct key_vector *l, *tp;
1015 struct fib_table *tb;
1016 struct fib_alias *fa;
1017 struct trie *t;
1018
1019 tb = fib_get_table(net, fri->tb_id);
1020 if (!tb)
1021 return NULL;
1022
1023 t = (struct trie *)tb->tb_data;
1024 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025 if (!l)
1026 return NULL;
1027
1028 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030 fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031 fa->fa_type == fri->type)
1032 return fa;
1033 }
1034
1035 return NULL;
1036 }
1037
fib_alias_hw_flags_set(struct net * net,const struct fib_rt_info * fri)1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039 {
1040 struct fib_alias *fa_match;
1041
1042 rcu_read_lock();
1043
1044 fa_match = fib_find_matching_alias(net, fri);
1045 if (!fa_match)
1046 goto out;
1047
1048 fa_match->offload = fri->offload;
1049 fa_match->trap = fri->trap;
1050
1051 out:
1052 rcu_read_unlock();
1053 }
1054 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1055
trie_rebalance(struct trie * t,struct key_vector * tn)1056 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1057 {
1058 while (!IS_TRIE(tn))
1059 tn = resize(t, tn);
1060 }
1061
fib_insert_node(struct trie * t,struct key_vector * tp,struct fib_alias * new,t_key key)1062 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1063 struct fib_alias *new, t_key key)
1064 {
1065 struct key_vector *n, *l;
1066
1067 l = leaf_new(key, new);
1068 if (!l)
1069 goto noleaf;
1070
1071 /* retrieve child from parent node */
1072 n = get_child(tp, get_index(key, tp));
1073
1074 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1075 *
1076 * Add a new tnode here
1077 * first tnode need some special handling
1078 * leaves us in position for handling as case 3
1079 */
1080 if (n) {
1081 struct key_vector *tn;
1082
1083 tn = tnode_new(key, __fls(key ^ n->key), 1);
1084 if (!tn)
1085 goto notnode;
1086
1087 /* initialize routes out of node */
1088 NODE_INIT_PARENT(tn, tp);
1089 put_child(tn, get_index(key, tn) ^ 1, n);
1090
1091 /* start adding routes into the node */
1092 put_child_root(tp, key, tn);
1093 node_set_parent(n, tn);
1094
1095 /* parent now has a NULL spot where the leaf can go */
1096 tp = tn;
1097 }
1098
1099 /* Case 3: n is NULL, and will just insert a new leaf */
1100 node_push_suffix(tp, new->fa_slen);
1101 NODE_INIT_PARENT(l, tp);
1102 put_child_root(tp, key, l);
1103 trie_rebalance(t, tp);
1104
1105 return 0;
1106 notnode:
1107 node_free(l);
1108 noleaf:
1109 return -ENOMEM;
1110 }
1111
fib_insert_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * new,struct fib_alias * fa,t_key key)1112 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1113 struct key_vector *l, struct fib_alias *new,
1114 struct fib_alias *fa, t_key key)
1115 {
1116 if (!l)
1117 return fib_insert_node(t, tp, new, key);
1118
1119 if (fa) {
1120 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1121 } else {
1122 struct fib_alias *last;
1123
1124 hlist_for_each_entry(last, &l->leaf, fa_list) {
1125 if (new->fa_slen < last->fa_slen)
1126 break;
1127 if ((new->fa_slen == last->fa_slen) &&
1128 (new->tb_id > last->tb_id))
1129 break;
1130 fa = last;
1131 }
1132
1133 if (fa)
1134 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1135 else
1136 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1137 }
1138
1139 /* if we added to the tail node then we need to update slen */
1140 if (l->slen < new->fa_slen) {
1141 l->slen = new->fa_slen;
1142 node_push_suffix(tp, new->fa_slen);
1143 }
1144
1145 return 0;
1146 }
1147
fib_valid_key_len(u32 key,u8 plen,struct netlink_ext_ack * extack)1148 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1149 {
1150 if (plen > KEYLENGTH) {
1151 NL_SET_ERR_MSG(extack, "Invalid prefix length");
1152 return false;
1153 }
1154
1155 if ((plen < KEYLENGTH) && (key << plen)) {
1156 NL_SET_ERR_MSG(extack,
1157 "Invalid prefix for given prefix length");
1158 return false;
1159 }
1160
1161 return true;
1162 }
1163
1164 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1165 struct key_vector *l, struct fib_alias *old);
1166
1167 /* Caller must hold RTNL. */
fib_table_insert(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1168 int fib_table_insert(struct net *net, struct fib_table *tb,
1169 struct fib_config *cfg, struct netlink_ext_ack *extack)
1170 {
1171 struct trie *t = (struct trie *)tb->tb_data;
1172 struct fib_alias *fa, *new_fa;
1173 struct key_vector *l, *tp;
1174 u16 nlflags = NLM_F_EXCL;
1175 struct fib_info *fi;
1176 u8 plen = cfg->fc_dst_len;
1177 u8 slen = KEYLENGTH - plen;
1178 u8 tos = cfg->fc_tos;
1179 u32 key;
1180 int err;
1181
1182 key = ntohl(cfg->fc_dst);
1183
1184 if (!fib_valid_key_len(key, plen, extack))
1185 return -EINVAL;
1186
1187 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1188
1189 fi = fib_create_info(cfg, extack);
1190 if (IS_ERR(fi)) {
1191 err = PTR_ERR(fi);
1192 goto err;
1193 }
1194
1195 l = fib_find_node(t, &tp, key);
1196 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1197 tb->tb_id, false) : NULL;
1198
1199 /* Now fa, if non-NULL, points to the first fib alias
1200 * with the same keys [prefix,tos,priority], if such key already
1201 * exists or to the node before which we will insert new one.
1202 *
1203 * If fa is NULL, we will need to allocate a new one and
1204 * insert to the tail of the section matching the suffix length
1205 * of the new alias.
1206 */
1207
1208 if (fa && fa->fa_tos == tos &&
1209 fa->fa_info->fib_priority == fi->fib_priority) {
1210 struct fib_alias *fa_first, *fa_match;
1211
1212 err = -EEXIST;
1213 if (cfg->fc_nlflags & NLM_F_EXCL)
1214 goto out;
1215
1216 nlflags &= ~NLM_F_EXCL;
1217
1218 /* We have 2 goals:
1219 * 1. Find exact match for type, scope, fib_info to avoid
1220 * duplicate routes
1221 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1222 */
1223 fa_match = NULL;
1224 fa_first = fa;
1225 hlist_for_each_entry_from(fa, fa_list) {
1226 if ((fa->fa_slen != slen) ||
1227 (fa->tb_id != tb->tb_id) ||
1228 (fa->fa_tos != tos))
1229 break;
1230 if (fa->fa_info->fib_priority != fi->fib_priority)
1231 break;
1232 if (fa->fa_type == cfg->fc_type &&
1233 fa->fa_info == fi) {
1234 fa_match = fa;
1235 break;
1236 }
1237 }
1238
1239 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1240 struct fib_info *fi_drop;
1241 u8 state;
1242
1243 nlflags |= NLM_F_REPLACE;
1244 fa = fa_first;
1245 if (fa_match) {
1246 if (fa == fa_match)
1247 err = 0;
1248 goto out;
1249 }
1250 err = -ENOBUFS;
1251 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1252 if (!new_fa)
1253 goto out;
1254
1255 fi_drop = fa->fa_info;
1256 new_fa->fa_tos = fa->fa_tos;
1257 new_fa->fa_info = fi;
1258 new_fa->fa_type = cfg->fc_type;
1259 state = fa->fa_state;
1260 new_fa->fa_state = state & ~FA_S_ACCESSED;
1261 new_fa->fa_slen = fa->fa_slen;
1262 new_fa->tb_id = tb->tb_id;
1263 new_fa->fa_default = -1;
1264 new_fa->offload = 0;
1265 new_fa->trap = 0;
1266
1267 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1268
1269 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1270 tb->tb_id, true) == new_fa) {
1271 enum fib_event_type fib_event;
1272
1273 fib_event = FIB_EVENT_ENTRY_REPLACE;
1274 err = call_fib_entry_notifiers(net, fib_event,
1275 key, plen,
1276 new_fa, extack);
1277 if (err) {
1278 hlist_replace_rcu(&new_fa->fa_list,
1279 &fa->fa_list);
1280 goto out_free_new_fa;
1281 }
1282 }
1283
1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1286
1287 alias_free_mem_rcu(fa);
1288
1289 fib_release_info(fi_drop);
1290 if (state & FA_S_ACCESSED)
1291 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1292
1293 goto succeeded;
1294 }
1295 /* Error if we find a perfect match which
1296 * uses the same scope, type, and nexthop
1297 * information.
1298 */
1299 if (fa_match)
1300 goto out;
1301
1302 if (cfg->fc_nlflags & NLM_F_APPEND)
1303 nlflags |= NLM_F_APPEND;
1304 else
1305 fa = fa_first;
1306 }
1307 err = -ENOENT;
1308 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1309 goto out;
1310
1311 nlflags |= NLM_F_CREATE;
1312 err = -ENOBUFS;
1313 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1314 if (!new_fa)
1315 goto out;
1316
1317 new_fa->fa_info = fi;
1318 new_fa->fa_tos = tos;
1319 new_fa->fa_type = cfg->fc_type;
1320 new_fa->fa_state = 0;
1321 new_fa->fa_slen = slen;
1322 new_fa->tb_id = tb->tb_id;
1323 new_fa->fa_default = -1;
1324 new_fa->offload = 0;
1325 new_fa->trap = 0;
1326
1327 /* Insert new entry to the list. */
1328 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1329 if (err)
1330 goto out_free_new_fa;
1331
1332 /* The alias was already inserted, so the node must exist. */
1333 l = l ? l : fib_find_node(t, &tp, key);
1334 if (WARN_ON_ONCE(!l)) {
1335 err = -ENOENT;
1336 goto out_free_new_fa;
1337 }
1338
1339 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1340 new_fa) {
1341 enum fib_event_type fib_event;
1342
1343 fib_event = FIB_EVENT_ENTRY_REPLACE;
1344 err = call_fib_entry_notifiers(net, fib_event, key, plen,
1345 new_fa, extack);
1346 if (err)
1347 goto out_remove_new_fa;
1348 }
1349
1350 if (!plen)
1351 tb->tb_num_default++;
1352
1353 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1354 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1355 &cfg->fc_nlinfo, nlflags);
1356 succeeded:
1357 return 0;
1358
1359 out_remove_new_fa:
1360 fib_remove_alias(t, tp, l, new_fa);
1361 out_free_new_fa:
1362 kmem_cache_free(fn_alias_kmem, new_fa);
1363 out:
1364 fib_release_info(fi);
1365 err:
1366 return err;
1367 }
1368
prefix_mismatch(t_key key,struct key_vector * n)1369 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1370 {
1371 t_key prefix = n->key;
1372
1373 return (key ^ prefix) & (prefix | -prefix);
1374 }
1375
fib_lookup_good_nhc(const struct fib_nh_common * nhc,int fib_flags,const struct flowi4 * flp)1376 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1377 const struct flowi4 *flp)
1378 {
1379 if (nhc->nhc_flags & RTNH_F_DEAD)
1380 return false;
1381
1382 if (ip_ignore_linkdown(nhc->nhc_dev) &&
1383 nhc->nhc_flags & RTNH_F_LINKDOWN &&
1384 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1385 return false;
1386
1387 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1388 if (flp->flowi4_oif &&
1389 flp->flowi4_oif != nhc->nhc_oif)
1390 return false;
1391 }
1392
1393 return true;
1394 }
1395
1396 /* should be called with rcu_read_lock */
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1397 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1398 struct fib_result *res, int fib_flags)
1399 {
1400 struct trie *t = (struct trie *) tb->tb_data;
1401 #ifdef CONFIG_IP_FIB_TRIE_STATS
1402 struct trie_use_stats __percpu *stats = t->stats;
1403 #endif
1404 const t_key key = ntohl(flp->daddr);
1405 struct key_vector *n, *pn;
1406 struct fib_alias *fa;
1407 unsigned long index;
1408 t_key cindex;
1409
1410 pn = t->kv;
1411 cindex = 0;
1412
1413 n = get_child_rcu(pn, cindex);
1414 if (!n) {
1415 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1416 return -EAGAIN;
1417 }
1418
1419 #ifdef CONFIG_IP_FIB_TRIE_STATS
1420 this_cpu_inc(stats->gets);
1421 #endif
1422
1423 /* Step 1: Travel to the longest prefix match in the trie */
1424 for (;;) {
1425 index = get_cindex(key, n);
1426
1427 /* This bit of code is a bit tricky but it combines multiple
1428 * checks into a single check. The prefix consists of the
1429 * prefix plus zeros for the "bits" in the prefix. The index
1430 * is the difference between the key and this value. From
1431 * this we can actually derive several pieces of data.
1432 * if (index >= (1ul << bits))
1433 * we have a mismatch in skip bits and failed
1434 * else
1435 * we know the value is cindex
1436 *
1437 * This check is safe even if bits == KEYLENGTH due to the
1438 * fact that we can only allocate a node with 32 bits if a
1439 * long is greater than 32 bits.
1440 */
1441 if (index >= (1ul << n->bits))
1442 break;
1443
1444 /* we have found a leaf. Prefixes have already been compared */
1445 if (IS_LEAF(n))
1446 goto found;
1447
1448 /* only record pn and cindex if we are going to be chopping
1449 * bits later. Otherwise we are just wasting cycles.
1450 */
1451 if (n->slen > n->pos) {
1452 pn = n;
1453 cindex = index;
1454 }
1455
1456 n = get_child_rcu(n, index);
1457 if (unlikely(!n))
1458 goto backtrace;
1459 }
1460
1461 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1462 for (;;) {
1463 /* record the pointer where our next node pointer is stored */
1464 struct key_vector __rcu **cptr = n->tnode;
1465
1466 /* This test verifies that none of the bits that differ
1467 * between the key and the prefix exist in the region of
1468 * the lsb and higher in the prefix.
1469 */
1470 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1471 goto backtrace;
1472
1473 /* exit out and process leaf */
1474 if (unlikely(IS_LEAF(n)))
1475 break;
1476
1477 /* Don't bother recording parent info. Since we are in
1478 * prefix match mode we will have to come back to wherever
1479 * we started this traversal anyway
1480 */
1481
1482 while ((n = rcu_dereference(*cptr)) == NULL) {
1483 backtrace:
1484 #ifdef CONFIG_IP_FIB_TRIE_STATS
1485 if (!n)
1486 this_cpu_inc(stats->null_node_hit);
1487 #endif
1488 /* If we are at cindex 0 there are no more bits for
1489 * us to strip at this level so we must ascend back
1490 * up one level to see if there are any more bits to
1491 * be stripped there.
1492 */
1493 while (!cindex) {
1494 t_key pkey = pn->key;
1495
1496 /* If we don't have a parent then there is
1497 * nothing for us to do as we do not have any
1498 * further nodes to parse.
1499 */
1500 if (IS_TRIE(pn)) {
1501 trace_fib_table_lookup(tb->tb_id, flp,
1502 NULL, -EAGAIN);
1503 return -EAGAIN;
1504 }
1505 #ifdef CONFIG_IP_FIB_TRIE_STATS
1506 this_cpu_inc(stats->backtrack);
1507 #endif
1508 /* Get Child's index */
1509 pn = node_parent_rcu(pn);
1510 cindex = get_index(pkey, pn);
1511 }
1512
1513 /* strip the least significant bit from the cindex */
1514 cindex &= cindex - 1;
1515
1516 /* grab pointer for next child node */
1517 cptr = &pn->tnode[cindex];
1518 }
1519 }
1520
1521 found:
1522 /* this line carries forward the xor from earlier in the function */
1523 index = key ^ n->key;
1524
1525 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1526 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1527 struct fib_info *fi = fa->fa_info;
1528 struct fib_nh_common *nhc;
1529 int nhsel, err;
1530
1531 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1532 if (index >= (1ul << fa->fa_slen))
1533 continue;
1534 }
1535 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1536 continue;
1537 if (fi->fib_dead)
1538 continue;
1539 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1540 continue;
1541 fib_alias_accessed(fa);
1542 err = fib_props[fa->fa_type].error;
1543 if (unlikely(err < 0)) {
1544 out_reject:
1545 #ifdef CONFIG_IP_FIB_TRIE_STATS
1546 this_cpu_inc(stats->semantic_match_passed);
1547 #endif
1548 trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1549 return err;
1550 }
1551 if (fi->fib_flags & RTNH_F_DEAD)
1552 continue;
1553
1554 if (unlikely(fi->nh)) {
1555 if (nexthop_is_blackhole(fi->nh)) {
1556 err = fib_props[RTN_BLACKHOLE].error;
1557 goto out_reject;
1558 }
1559
1560 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1561 &nhsel);
1562 if (nhc)
1563 goto set_result;
1564 goto miss;
1565 }
1566
1567 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1568 nhc = fib_info_nhc(fi, nhsel);
1569
1570 if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1571 continue;
1572 set_result:
1573 if (!(fib_flags & FIB_LOOKUP_NOREF))
1574 refcount_inc(&fi->fib_clntref);
1575
1576 res->prefix = htonl(n->key);
1577 res->prefixlen = KEYLENGTH - fa->fa_slen;
1578 res->nh_sel = nhsel;
1579 res->nhc = nhc;
1580 res->type = fa->fa_type;
1581 res->scope = fi->fib_scope;
1582 res->fi = fi;
1583 res->table = tb;
1584 res->fa_head = &n->leaf;
1585 #ifdef CONFIG_IP_FIB_TRIE_STATS
1586 this_cpu_inc(stats->semantic_match_passed);
1587 #endif
1588 trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1589
1590 return err;
1591 }
1592 }
1593 miss:
1594 #ifdef CONFIG_IP_FIB_TRIE_STATS
1595 this_cpu_inc(stats->semantic_match_miss);
1596 #endif
1597 goto backtrace;
1598 }
1599 EXPORT_SYMBOL_GPL(fib_table_lookup);
1600
fib_remove_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * old)1601 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1602 struct key_vector *l, struct fib_alias *old)
1603 {
1604 /* record the location of the previous list_info entry */
1605 struct hlist_node **pprev = old->fa_list.pprev;
1606 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1607
1608 /* remove the fib_alias from the list */
1609 hlist_del_rcu(&old->fa_list);
1610
1611 /* if we emptied the list this leaf will be freed and we can sort
1612 * out parent suffix lengths as a part of trie_rebalance
1613 */
1614 if (hlist_empty(&l->leaf)) {
1615 if (tp->slen == l->slen)
1616 node_pull_suffix(tp, tp->pos);
1617 put_child_root(tp, l->key, NULL);
1618 node_free(l);
1619 trie_rebalance(t, tp);
1620 return;
1621 }
1622
1623 /* only access fa if it is pointing at the last valid hlist_node */
1624 if (*pprev)
1625 return;
1626
1627 /* update the trie with the latest suffix length */
1628 l->slen = fa->fa_slen;
1629 node_pull_suffix(tp, fa->fa_slen);
1630 }
1631
fib_notify_alias_delete(struct net * net,u32 key,struct hlist_head * fah,struct fib_alias * fa_to_delete,struct netlink_ext_ack * extack)1632 static void fib_notify_alias_delete(struct net *net, u32 key,
1633 struct hlist_head *fah,
1634 struct fib_alias *fa_to_delete,
1635 struct netlink_ext_ack *extack)
1636 {
1637 struct fib_alias *fa_next, *fa_to_notify;
1638 u32 tb_id = fa_to_delete->tb_id;
1639 u8 slen = fa_to_delete->fa_slen;
1640 enum fib_event_type fib_event;
1641
1642 /* Do not notify if we do not care about the route. */
1643 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1644 return;
1645
1646 /* Determine if the route should be replaced by the next route in the
1647 * list.
1648 */
1649 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1650 struct fib_alias, fa_list);
1651 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1652 fib_event = FIB_EVENT_ENTRY_REPLACE;
1653 fa_to_notify = fa_next;
1654 } else {
1655 fib_event = FIB_EVENT_ENTRY_DEL;
1656 fa_to_notify = fa_to_delete;
1657 }
1658 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1659 fa_to_notify, extack);
1660 }
1661
1662 /* Caller must hold RTNL. */
fib_table_delete(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1663 int fib_table_delete(struct net *net, struct fib_table *tb,
1664 struct fib_config *cfg, struct netlink_ext_ack *extack)
1665 {
1666 struct trie *t = (struct trie *) tb->tb_data;
1667 struct fib_alias *fa, *fa_to_delete;
1668 struct key_vector *l, *tp;
1669 u8 plen = cfg->fc_dst_len;
1670 u8 slen = KEYLENGTH - plen;
1671 u8 tos = cfg->fc_tos;
1672 u32 key;
1673
1674 key = ntohl(cfg->fc_dst);
1675
1676 if (!fib_valid_key_len(key, plen, extack))
1677 return -EINVAL;
1678
1679 l = fib_find_node(t, &tp, key);
1680 if (!l)
1681 return -ESRCH;
1682
1683 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
1684 if (!fa)
1685 return -ESRCH;
1686
1687 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1688
1689 fa_to_delete = NULL;
1690 hlist_for_each_entry_from(fa, fa_list) {
1691 struct fib_info *fi = fa->fa_info;
1692
1693 if ((fa->fa_slen != slen) ||
1694 (fa->tb_id != tb->tb_id) ||
1695 (fa->fa_tos != tos))
1696 break;
1697
1698 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1699 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1700 fa->fa_info->fib_scope == cfg->fc_scope) &&
1701 (!cfg->fc_prefsrc ||
1702 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1703 (!cfg->fc_protocol ||
1704 fi->fib_protocol == cfg->fc_protocol) &&
1705 fib_nh_match(net, cfg, fi, extack) == 0 &&
1706 fib_metrics_match(cfg, fi)) {
1707 fa_to_delete = fa;
1708 break;
1709 }
1710 }
1711
1712 if (!fa_to_delete)
1713 return -ESRCH;
1714
1715 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1716 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1717 &cfg->fc_nlinfo, 0);
1718
1719 if (!plen)
1720 tb->tb_num_default--;
1721
1722 fib_remove_alias(t, tp, l, fa_to_delete);
1723
1724 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1725 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1726
1727 fib_release_info(fa_to_delete->fa_info);
1728 alias_free_mem_rcu(fa_to_delete);
1729 return 0;
1730 }
1731
1732 /* Scan for the next leaf starting at the provided key value */
leaf_walk_rcu(struct key_vector ** tn,t_key key)1733 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1734 {
1735 struct key_vector *pn, *n = *tn;
1736 unsigned long cindex;
1737
1738 /* this loop is meant to try and find the key in the trie */
1739 do {
1740 /* record parent and next child index */
1741 pn = n;
1742 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1743
1744 if (cindex >> pn->bits)
1745 break;
1746
1747 /* descend into the next child */
1748 n = get_child_rcu(pn, cindex++);
1749 if (!n)
1750 break;
1751
1752 /* guarantee forward progress on the keys */
1753 if (IS_LEAF(n) && (n->key >= key))
1754 goto found;
1755 } while (IS_TNODE(n));
1756
1757 /* this loop will search for the next leaf with a greater key */
1758 while (!IS_TRIE(pn)) {
1759 /* if we exhausted the parent node we will need to climb */
1760 if (cindex >= (1ul << pn->bits)) {
1761 t_key pkey = pn->key;
1762
1763 pn = node_parent_rcu(pn);
1764 cindex = get_index(pkey, pn) + 1;
1765 continue;
1766 }
1767
1768 /* grab the next available node */
1769 n = get_child_rcu(pn, cindex++);
1770 if (!n)
1771 continue;
1772
1773 /* no need to compare keys since we bumped the index */
1774 if (IS_LEAF(n))
1775 goto found;
1776
1777 /* Rescan start scanning in new node */
1778 pn = n;
1779 cindex = 0;
1780 }
1781
1782 *tn = pn;
1783 return NULL; /* Root of trie */
1784 found:
1785 /* if we are at the limit for keys just return NULL for the tnode */
1786 *tn = pn;
1787 return n;
1788 }
1789
fib_trie_free(struct fib_table * tb)1790 static void fib_trie_free(struct fib_table *tb)
1791 {
1792 struct trie *t = (struct trie *)tb->tb_data;
1793 struct key_vector *pn = t->kv;
1794 unsigned long cindex = 1;
1795 struct hlist_node *tmp;
1796 struct fib_alias *fa;
1797
1798 /* walk trie in reverse order and free everything */
1799 for (;;) {
1800 struct key_vector *n;
1801
1802 if (!(cindex--)) {
1803 t_key pkey = pn->key;
1804
1805 if (IS_TRIE(pn))
1806 break;
1807
1808 n = pn;
1809 pn = node_parent(pn);
1810
1811 /* drop emptied tnode */
1812 put_child_root(pn, n->key, NULL);
1813 node_free(n);
1814
1815 cindex = get_index(pkey, pn);
1816
1817 continue;
1818 }
1819
1820 /* grab the next available node */
1821 n = get_child(pn, cindex);
1822 if (!n)
1823 continue;
1824
1825 if (IS_TNODE(n)) {
1826 /* record pn and cindex for leaf walking */
1827 pn = n;
1828 cindex = 1ul << n->bits;
1829
1830 continue;
1831 }
1832
1833 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1834 hlist_del_rcu(&fa->fa_list);
1835 alias_free_mem_rcu(fa);
1836 }
1837
1838 put_child_root(pn, n->key, NULL);
1839 node_free(n);
1840 }
1841
1842 #ifdef CONFIG_IP_FIB_TRIE_STATS
1843 free_percpu(t->stats);
1844 #endif
1845 kfree(tb);
1846 }
1847
fib_trie_unmerge(struct fib_table * oldtb)1848 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1849 {
1850 struct trie *ot = (struct trie *)oldtb->tb_data;
1851 struct key_vector *l, *tp = ot->kv;
1852 struct fib_table *local_tb;
1853 struct fib_alias *fa;
1854 struct trie *lt;
1855 t_key key = 0;
1856
1857 if (oldtb->tb_data == oldtb->__data)
1858 return oldtb;
1859
1860 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1861 if (!local_tb)
1862 return NULL;
1863
1864 lt = (struct trie *)local_tb->tb_data;
1865
1866 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1867 struct key_vector *local_l = NULL, *local_tp;
1868
1869 hlist_for_each_entry(fa, &l->leaf, fa_list) {
1870 struct fib_alias *new_fa;
1871
1872 if (local_tb->tb_id != fa->tb_id)
1873 continue;
1874
1875 /* clone fa for new local table */
1876 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1877 if (!new_fa)
1878 goto out;
1879
1880 memcpy(new_fa, fa, sizeof(*fa));
1881
1882 /* insert clone into table */
1883 if (!local_l)
1884 local_l = fib_find_node(lt, &local_tp, l->key);
1885
1886 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1887 NULL, l->key)) {
1888 kmem_cache_free(fn_alias_kmem, new_fa);
1889 goto out;
1890 }
1891 }
1892
1893 /* stop loop if key wrapped back to 0 */
1894 key = l->key + 1;
1895 if (key < l->key)
1896 break;
1897 }
1898
1899 return local_tb;
1900 out:
1901 fib_trie_free(local_tb);
1902
1903 return NULL;
1904 }
1905
1906 /* Caller must hold RTNL */
fib_table_flush_external(struct fib_table * tb)1907 void fib_table_flush_external(struct fib_table *tb)
1908 {
1909 struct trie *t = (struct trie *)tb->tb_data;
1910 struct key_vector *pn = t->kv;
1911 unsigned long cindex = 1;
1912 struct hlist_node *tmp;
1913 struct fib_alias *fa;
1914
1915 /* walk trie in reverse order */
1916 for (;;) {
1917 unsigned char slen = 0;
1918 struct key_vector *n;
1919
1920 if (!(cindex--)) {
1921 t_key pkey = pn->key;
1922
1923 /* cannot resize the trie vector */
1924 if (IS_TRIE(pn))
1925 break;
1926
1927 /* update the suffix to address pulled leaves */
1928 if (pn->slen > pn->pos)
1929 update_suffix(pn);
1930
1931 /* resize completed node */
1932 pn = resize(t, pn);
1933 cindex = get_index(pkey, pn);
1934
1935 continue;
1936 }
1937
1938 /* grab the next available node */
1939 n = get_child(pn, cindex);
1940 if (!n)
1941 continue;
1942
1943 if (IS_TNODE(n)) {
1944 /* record pn and cindex for leaf walking */
1945 pn = n;
1946 cindex = 1ul << n->bits;
1947
1948 continue;
1949 }
1950
1951 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1952 /* if alias was cloned to local then we just
1953 * need to remove the local copy from main
1954 */
1955 if (tb->tb_id != fa->tb_id) {
1956 hlist_del_rcu(&fa->fa_list);
1957 alias_free_mem_rcu(fa);
1958 continue;
1959 }
1960
1961 /* record local slen */
1962 slen = fa->fa_slen;
1963 }
1964
1965 /* update leaf slen */
1966 n->slen = slen;
1967
1968 if (hlist_empty(&n->leaf)) {
1969 put_child_root(pn, n->key, NULL);
1970 node_free(n);
1971 }
1972 }
1973 }
1974
1975 /* Caller must hold RTNL. */
fib_table_flush(struct net * net,struct fib_table * tb,bool flush_all)1976 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1977 {
1978 struct trie *t = (struct trie *)tb->tb_data;
1979 struct key_vector *pn = t->kv;
1980 unsigned long cindex = 1;
1981 struct hlist_node *tmp;
1982 struct fib_alias *fa;
1983 int found = 0;
1984
1985 /* walk trie in reverse order */
1986 for (;;) {
1987 unsigned char slen = 0;
1988 struct key_vector *n;
1989
1990 if (!(cindex--)) {
1991 t_key pkey = pn->key;
1992
1993 /* cannot resize the trie vector */
1994 if (IS_TRIE(pn))
1995 break;
1996
1997 /* update the suffix to address pulled leaves */
1998 if (pn->slen > pn->pos)
1999 update_suffix(pn);
2000
2001 /* resize completed node */
2002 pn = resize(t, pn);
2003 cindex = get_index(pkey, pn);
2004
2005 continue;
2006 }
2007
2008 /* grab the next available node */
2009 n = get_child(pn, cindex);
2010 if (!n)
2011 continue;
2012
2013 if (IS_TNODE(n)) {
2014 /* record pn and cindex for leaf walking */
2015 pn = n;
2016 cindex = 1ul << n->bits;
2017
2018 continue;
2019 }
2020
2021 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2022 struct fib_info *fi = fa->fa_info;
2023
2024 if (!fi || tb->tb_id != fa->tb_id ||
2025 (!(fi->fib_flags & RTNH_F_DEAD) &&
2026 !fib_props[fa->fa_type].error)) {
2027 slen = fa->fa_slen;
2028 continue;
2029 }
2030
2031 /* Do not flush error routes if network namespace is
2032 * not being dismantled
2033 */
2034 if (!flush_all && fib_props[fa->fa_type].error) {
2035 slen = fa->fa_slen;
2036 continue;
2037 }
2038
2039 fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2040 NULL);
2041 hlist_del_rcu(&fa->fa_list);
2042 fib_release_info(fa->fa_info);
2043 alias_free_mem_rcu(fa);
2044 found++;
2045 }
2046
2047 /* update leaf slen */
2048 n->slen = slen;
2049
2050 if (hlist_empty(&n->leaf)) {
2051 put_child_root(pn, n->key, NULL);
2052 node_free(n);
2053 }
2054 }
2055
2056 pr_debug("trie_flush found=%d\n", found);
2057 return found;
2058 }
2059
2060 /* derived from fib_trie_free */
__fib_info_notify_update(struct net * net,struct fib_table * tb,struct nl_info * info)2061 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2062 struct nl_info *info)
2063 {
2064 struct trie *t = (struct trie *)tb->tb_data;
2065 struct key_vector *pn = t->kv;
2066 unsigned long cindex = 1;
2067 struct fib_alias *fa;
2068
2069 for (;;) {
2070 struct key_vector *n;
2071
2072 if (!(cindex--)) {
2073 t_key pkey = pn->key;
2074
2075 if (IS_TRIE(pn))
2076 break;
2077
2078 pn = node_parent(pn);
2079 cindex = get_index(pkey, pn);
2080 continue;
2081 }
2082
2083 /* grab the next available node */
2084 n = get_child(pn, cindex);
2085 if (!n)
2086 continue;
2087
2088 if (IS_TNODE(n)) {
2089 /* record pn and cindex for leaf walking */
2090 pn = n;
2091 cindex = 1ul << n->bits;
2092
2093 continue;
2094 }
2095
2096 hlist_for_each_entry(fa, &n->leaf, fa_list) {
2097 struct fib_info *fi = fa->fa_info;
2098
2099 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2100 continue;
2101
2102 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2103 KEYLENGTH - fa->fa_slen, tb->tb_id,
2104 info, NLM_F_REPLACE);
2105
2106 /* call_fib_entry_notifiers will be removed when
2107 * in-kernel notifier is implemented and supported
2108 * for nexthop objects
2109 */
2110 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
2111 n->key,
2112 KEYLENGTH - fa->fa_slen, fa,
2113 NULL);
2114 }
2115 }
2116 }
2117
fib_info_notify_update(struct net * net,struct nl_info * info)2118 void fib_info_notify_update(struct net *net, struct nl_info *info)
2119 {
2120 unsigned int h;
2121
2122 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2123 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2124 struct fib_table *tb;
2125
2126 hlist_for_each_entry_rcu(tb, head, tb_hlist,
2127 lockdep_rtnl_is_held())
2128 __fib_info_notify_update(net, tb, info);
2129 }
2130 }
2131
fib_leaf_notify(struct key_vector * l,struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2132 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2133 struct notifier_block *nb,
2134 struct netlink_ext_ack *extack)
2135 {
2136 struct fib_alias *fa;
2137 int last_slen = -1;
2138 int err;
2139
2140 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2141 struct fib_info *fi = fa->fa_info;
2142
2143 if (!fi)
2144 continue;
2145
2146 /* local and main table can share the same trie,
2147 * so don't notify twice for the same entry.
2148 */
2149 if (tb->tb_id != fa->tb_id)
2150 continue;
2151
2152 if (fa->fa_slen == last_slen)
2153 continue;
2154
2155 last_slen = fa->fa_slen;
2156 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2157 l->key, KEYLENGTH - fa->fa_slen,
2158 fa, extack);
2159 if (err)
2160 return err;
2161 }
2162 return 0;
2163 }
2164
fib_table_notify(struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2165 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2166 struct netlink_ext_ack *extack)
2167 {
2168 struct trie *t = (struct trie *)tb->tb_data;
2169 struct key_vector *l, *tp = t->kv;
2170 t_key key = 0;
2171 int err;
2172
2173 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2174 err = fib_leaf_notify(l, tb, nb, extack);
2175 if (err)
2176 return err;
2177
2178 key = l->key + 1;
2179 /* stop in case of wrap around */
2180 if (key < l->key)
2181 break;
2182 }
2183 return 0;
2184 }
2185
fib_notify(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)2186 int fib_notify(struct net *net, struct notifier_block *nb,
2187 struct netlink_ext_ack *extack)
2188 {
2189 unsigned int h;
2190 int err;
2191
2192 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2193 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2194 struct fib_table *tb;
2195
2196 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2197 err = fib_table_notify(tb, nb, extack);
2198 if (err)
2199 return err;
2200 }
2201 }
2202 return 0;
2203 }
2204
__trie_free_rcu(struct rcu_head * head)2205 static void __trie_free_rcu(struct rcu_head *head)
2206 {
2207 struct fib_table *tb = container_of(head, struct fib_table, rcu);
2208 #ifdef CONFIG_IP_FIB_TRIE_STATS
2209 struct trie *t = (struct trie *)tb->tb_data;
2210
2211 if (tb->tb_data == tb->__data)
2212 free_percpu(t->stats);
2213 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2214 kfree(tb);
2215 }
2216
fib_free_table(struct fib_table * tb)2217 void fib_free_table(struct fib_table *tb)
2218 {
2219 call_rcu(&tb->rcu, __trie_free_rcu);
2220 }
2221
fn_trie_dump_leaf(struct key_vector * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2222 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2223 struct sk_buff *skb, struct netlink_callback *cb,
2224 struct fib_dump_filter *filter)
2225 {
2226 unsigned int flags = NLM_F_MULTI;
2227 __be32 xkey = htonl(l->key);
2228 int i, s_i, i_fa, s_fa, err;
2229 struct fib_alias *fa;
2230
2231 if (filter->filter_set ||
2232 !filter->dump_exceptions || !filter->dump_routes)
2233 flags |= NLM_F_DUMP_FILTERED;
2234
2235 s_i = cb->args[4];
2236 s_fa = cb->args[5];
2237 i = 0;
2238
2239 /* rcu_read_lock is hold by caller */
2240 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2241 struct fib_info *fi = fa->fa_info;
2242
2243 if (i < s_i)
2244 goto next;
2245
2246 i_fa = 0;
2247
2248 if (tb->tb_id != fa->tb_id)
2249 goto next;
2250
2251 if (filter->filter_set) {
2252 if (filter->rt_type && fa->fa_type != filter->rt_type)
2253 goto next;
2254
2255 if ((filter->protocol &&
2256 fi->fib_protocol != filter->protocol))
2257 goto next;
2258
2259 if (filter->dev &&
2260 !fib_info_nh_uses_dev(fi, filter->dev))
2261 goto next;
2262 }
2263
2264 if (filter->dump_routes) {
2265 if (!s_fa) {
2266 struct fib_rt_info fri;
2267
2268 fri.fi = fi;
2269 fri.tb_id = tb->tb_id;
2270 fri.dst = xkey;
2271 fri.dst_len = KEYLENGTH - fa->fa_slen;
2272 fri.tos = fa->fa_tos;
2273 fri.type = fa->fa_type;
2274 fri.offload = fa->offload;
2275 fri.trap = fa->trap;
2276 err = fib_dump_info(skb,
2277 NETLINK_CB(cb->skb).portid,
2278 cb->nlh->nlmsg_seq,
2279 RTM_NEWROUTE, &fri, flags);
2280 if (err < 0)
2281 goto stop;
2282 }
2283
2284 i_fa++;
2285 }
2286
2287 if (filter->dump_exceptions) {
2288 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2289 &i_fa, s_fa, flags);
2290 if (err < 0)
2291 goto stop;
2292 }
2293
2294 next:
2295 i++;
2296 }
2297
2298 cb->args[4] = i;
2299 return skb->len;
2300
2301 stop:
2302 cb->args[4] = i;
2303 cb->args[5] = i_fa;
2304 return err;
2305 }
2306
2307 /* rcu_read_lock needs to be hold by caller from readside */
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2308 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2309 struct netlink_callback *cb, struct fib_dump_filter *filter)
2310 {
2311 struct trie *t = (struct trie *)tb->tb_data;
2312 struct key_vector *l, *tp = t->kv;
2313 /* Dump starting at last key.
2314 * Note: 0.0.0.0/0 (ie default) is first key.
2315 */
2316 int count = cb->args[2];
2317 t_key key = cb->args[3];
2318
2319 /* First time here, count and key are both always 0. Count > 0
2320 * and key == 0 means the dump has wrapped around and we are done.
2321 */
2322 if (count && !key)
2323 return skb->len;
2324
2325 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2326 int err;
2327
2328 err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2329 if (err < 0) {
2330 cb->args[3] = key;
2331 cb->args[2] = count;
2332 return err;
2333 }
2334
2335 ++count;
2336 key = l->key + 1;
2337
2338 memset(&cb->args[4], 0,
2339 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2340
2341 /* stop loop if key wrapped back to 0 */
2342 if (key < l->key)
2343 break;
2344 }
2345
2346 cb->args[3] = key;
2347 cb->args[2] = count;
2348
2349 return skb->len;
2350 }
2351
fib_trie_init(void)2352 void __init fib_trie_init(void)
2353 {
2354 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2355 sizeof(struct fib_alias),
2356 0, SLAB_PANIC, NULL);
2357
2358 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2359 LEAF_SIZE,
2360 0, SLAB_PANIC, NULL);
2361 }
2362
fib_trie_table(u32 id,struct fib_table * alias)2363 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2364 {
2365 struct fib_table *tb;
2366 struct trie *t;
2367 size_t sz = sizeof(*tb);
2368
2369 if (!alias)
2370 sz += sizeof(struct trie);
2371
2372 tb = kzalloc(sz, GFP_KERNEL);
2373 if (!tb)
2374 return NULL;
2375
2376 tb->tb_id = id;
2377 tb->tb_num_default = 0;
2378 tb->tb_data = (alias ? alias->__data : tb->__data);
2379
2380 if (alias)
2381 return tb;
2382
2383 t = (struct trie *) tb->tb_data;
2384 t->kv[0].pos = KEYLENGTH;
2385 t->kv[0].slen = KEYLENGTH;
2386 #ifdef CONFIG_IP_FIB_TRIE_STATS
2387 t->stats = alloc_percpu(struct trie_use_stats);
2388 if (!t->stats) {
2389 kfree(tb);
2390 tb = NULL;
2391 }
2392 #endif
2393
2394 return tb;
2395 }
2396
2397 #ifdef CONFIG_PROC_FS
2398 /* Depth first Trie walk iterator */
2399 struct fib_trie_iter {
2400 struct seq_net_private p;
2401 struct fib_table *tb;
2402 struct key_vector *tnode;
2403 unsigned int index;
2404 unsigned int depth;
2405 };
2406
fib_trie_get_next(struct fib_trie_iter * iter)2407 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2408 {
2409 unsigned long cindex = iter->index;
2410 struct key_vector *pn = iter->tnode;
2411 t_key pkey;
2412
2413 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2414 iter->tnode, iter->index, iter->depth);
2415
2416 while (!IS_TRIE(pn)) {
2417 while (cindex < child_length(pn)) {
2418 struct key_vector *n = get_child_rcu(pn, cindex++);
2419
2420 if (!n)
2421 continue;
2422
2423 if (IS_LEAF(n)) {
2424 iter->tnode = pn;
2425 iter->index = cindex;
2426 } else {
2427 /* push down one level */
2428 iter->tnode = n;
2429 iter->index = 0;
2430 ++iter->depth;
2431 }
2432
2433 return n;
2434 }
2435
2436 /* Current node exhausted, pop back up */
2437 pkey = pn->key;
2438 pn = node_parent_rcu(pn);
2439 cindex = get_index(pkey, pn) + 1;
2440 --iter->depth;
2441 }
2442
2443 /* record root node so further searches know we are done */
2444 iter->tnode = pn;
2445 iter->index = 0;
2446
2447 return NULL;
2448 }
2449
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2450 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2451 struct trie *t)
2452 {
2453 struct key_vector *n, *pn;
2454
2455 if (!t)
2456 return NULL;
2457
2458 pn = t->kv;
2459 n = rcu_dereference(pn->tnode[0]);
2460 if (!n)
2461 return NULL;
2462
2463 if (IS_TNODE(n)) {
2464 iter->tnode = n;
2465 iter->index = 0;
2466 iter->depth = 1;
2467 } else {
2468 iter->tnode = pn;
2469 iter->index = 0;
2470 iter->depth = 0;
2471 }
2472
2473 return n;
2474 }
2475
trie_collect_stats(struct trie * t,struct trie_stat * s)2476 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2477 {
2478 struct key_vector *n;
2479 struct fib_trie_iter iter;
2480
2481 memset(s, 0, sizeof(*s));
2482
2483 rcu_read_lock();
2484 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2485 if (IS_LEAF(n)) {
2486 struct fib_alias *fa;
2487
2488 s->leaves++;
2489 s->totdepth += iter.depth;
2490 if (iter.depth > s->maxdepth)
2491 s->maxdepth = iter.depth;
2492
2493 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2494 ++s->prefixes;
2495 } else {
2496 s->tnodes++;
2497 if (n->bits < MAX_STAT_DEPTH)
2498 s->nodesizes[n->bits]++;
2499 s->nullpointers += tn_info(n)->empty_children;
2500 }
2501 }
2502 rcu_read_unlock();
2503 }
2504
2505 /*
2506 * This outputs /proc/net/fib_triestats
2507 */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2508 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2509 {
2510 unsigned int i, max, pointers, bytes, avdepth;
2511
2512 if (stat->leaves)
2513 avdepth = stat->totdepth*100 / stat->leaves;
2514 else
2515 avdepth = 0;
2516
2517 seq_printf(seq, "\tAver depth: %u.%02d\n",
2518 avdepth / 100, avdepth % 100);
2519 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2520
2521 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2522 bytes = LEAF_SIZE * stat->leaves;
2523
2524 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2525 bytes += sizeof(struct fib_alias) * stat->prefixes;
2526
2527 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2528 bytes += TNODE_SIZE(0) * stat->tnodes;
2529
2530 max = MAX_STAT_DEPTH;
2531 while (max > 0 && stat->nodesizes[max-1] == 0)
2532 max--;
2533
2534 pointers = 0;
2535 for (i = 1; i < max; i++)
2536 if (stat->nodesizes[i] != 0) {
2537 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2538 pointers += (1<<i) * stat->nodesizes[i];
2539 }
2540 seq_putc(seq, '\n');
2541 seq_printf(seq, "\tPointers: %u\n", pointers);
2542
2543 bytes += sizeof(struct key_vector *) * pointers;
2544 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2545 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2546 }
2547
2548 #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats __percpu * stats)2549 static void trie_show_usage(struct seq_file *seq,
2550 const struct trie_use_stats __percpu *stats)
2551 {
2552 struct trie_use_stats s = { 0 };
2553 int cpu;
2554
2555 /* loop through all of the CPUs and gather up the stats */
2556 for_each_possible_cpu(cpu) {
2557 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2558
2559 s.gets += pcpu->gets;
2560 s.backtrack += pcpu->backtrack;
2561 s.semantic_match_passed += pcpu->semantic_match_passed;
2562 s.semantic_match_miss += pcpu->semantic_match_miss;
2563 s.null_node_hit += pcpu->null_node_hit;
2564 s.resize_node_skipped += pcpu->resize_node_skipped;
2565 }
2566
2567 seq_printf(seq, "\nCounters:\n---------\n");
2568 seq_printf(seq, "gets = %u\n", s.gets);
2569 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2570 seq_printf(seq, "semantic match passed = %u\n",
2571 s.semantic_match_passed);
2572 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2573 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2574 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2575 }
2576 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2577
fib_table_print(struct seq_file * seq,struct fib_table * tb)2578 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2579 {
2580 if (tb->tb_id == RT_TABLE_LOCAL)
2581 seq_puts(seq, "Local:\n");
2582 else if (tb->tb_id == RT_TABLE_MAIN)
2583 seq_puts(seq, "Main:\n");
2584 else
2585 seq_printf(seq, "Id %d:\n", tb->tb_id);
2586 }
2587
2588
fib_triestat_seq_show(struct seq_file * seq,void * v)2589 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2590 {
2591 struct net *net = (struct net *)seq->private;
2592 unsigned int h;
2593
2594 seq_printf(seq,
2595 "Basic info: size of leaf:"
2596 " %zd bytes, size of tnode: %zd bytes.\n",
2597 LEAF_SIZE, TNODE_SIZE(0));
2598
2599 rcu_read_lock();
2600 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2601 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2602 struct fib_table *tb;
2603
2604 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2605 struct trie *t = (struct trie *) tb->tb_data;
2606 struct trie_stat stat;
2607
2608 if (!t)
2609 continue;
2610
2611 fib_table_print(seq, tb);
2612
2613 trie_collect_stats(t, &stat);
2614 trie_show_stats(seq, &stat);
2615 #ifdef CONFIG_IP_FIB_TRIE_STATS
2616 trie_show_usage(seq, t->stats);
2617 #endif
2618 }
2619 cond_resched_rcu();
2620 }
2621 rcu_read_unlock();
2622
2623 return 0;
2624 }
2625
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2626 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2627 {
2628 struct fib_trie_iter *iter = seq->private;
2629 struct net *net = seq_file_net(seq);
2630 loff_t idx = 0;
2631 unsigned int h;
2632
2633 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2634 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2635 struct fib_table *tb;
2636
2637 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2638 struct key_vector *n;
2639
2640 for (n = fib_trie_get_first(iter,
2641 (struct trie *) tb->tb_data);
2642 n; n = fib_trie_get_next(iter))
2643 if (pos == idx++) {
2644 iter->tb = tb;
2645 return n;
2646 }
2647 }
2648 }
2649
2650 return NULL;
2651 }
2652
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2653 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2654 __acquires(RCU)
2655 {
2656 rcu_read_lock();
2657 return fib_trie_get_idx(seq, *pos);
2658 }
2659
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2660 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2661 {
2662 struct fib_trie_iter *iter = seq->private;
2663 struct net *net = seq_file_net(seq);
2664 struct fib_table *tb = iter->tb;
2665 struct hlist_node *tb_node;
2666 unsigned int h;
2667 struct key_vector *n;
2668
2669 ++*pos;
2670 /* next node in same table */
2671 n = fib_trie_get_next(iter);
2672 if (n)
2673 return n;
2674
2675 /* walk rest of this hash chain */
2676 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2677 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2678 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2679 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2680 if (n)
2681 goto found;
2682 }
2683
2684 /* new hash chain */
2685 while (++h < FIB_TABLE_HASHSZ) {
2686 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2687 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2688 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2689 if (n)
2690 goto found;
2691 }
2692 }
2693 return NULL;
2694
2695 found:
2696 iter->tb = tb;
2697 return n;
2698 }
2699
fib_trie_seq_stop(struct seq_file * seq,void * v)2700 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2701 __releases(RCU)
2702 {
2703 rcu_read_unlock();
2704 }
2705
seq_indent(struct seq_file * seq,int n)2706 static void seq_indent(struct seq_file *seq, int n)
2707 {
2708 while (n-- > 0)
2709 seq_puts(seq, " ");
2710 }
2711
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2712 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2713 {
2714 switch (s) {
2715 case RT_SCOPE_UNIVERSE: return "universe";
2716 case RT_SCOPE_SITE: return "site";
2717 case RT_SCOPE_LINK: return "link";
2718 case RT_SCOPE_HOST: return "host";
2719 case RT_SCOPE_NOWHERE: return "nowhere";
2720 default:
2721 snprintf(buf, len, "scope=%d", s);
2722 return buf;
2723 }
2724 }
2725
2726 static const char *const rtn_type_names[__RTN_MAX] = {
2727 [RTN_UNSPEC] = "UNSPEC",
2728 [RTN_UNICAST] = "UNICAST",
2729 [RTN_LOCAL] = "LOCAL",
2730 [RTN_BROADCAST] = "BROADCAST",
2731 [RTN_ANYCAST] = "ANYCAST",
2732 [RTN_MULTICAST] = "MULTICAST",
2733 [RTN_BLACKHOLE] = "BLACKHOLE",
2734 [RTN_UNREACHABLE] = "UNREACHABLE",
2735 [RTN_PROHIBIT] = "PROHIBIT",
2736 [RTN_THROW] = "THROW",
2737 [RTN_NAT] = "NAT",
2738 [RTN_XRESOLVE] = "XRESOLVE",
2739 };
2740
rtn_type(char * buf,size_t len,unsigned int t)2741 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2742 {
2743 if (t < __RTN_MAX && rtn_type_names[t])
2744 return rtn_type_names[t];
2745 snprintf(buf, len, "type %u", t);
2746 return buf;
2747 }
2748
2749 /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2750 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2751 {
2752 const struct fib_trie_iter *iter = seq->private;
2753 struct key_vector *n = v;
2754
2755 if (IS_TRIE(node_parent_rcu(n)))
2756 fib_table_print(seq, iter->tb);
2757
2758 if (IS_TNODE(n)) {
2759 __be32 prf = htonl(n->key);
2760
2761 seq_indent(seq, iter->depth-1);
2762 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2763 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2764 tn_info(n)->full_children,
2765 tn_info(n)->empty_children);
2766 } else {
2767 __be32 val = htonl(n->key);
2768 struct fib_alias *fa;
2769
2770 seq_indent(seq, iter->depth);
2771 seq_printf(seq, " |-- %pI4\n", &val);
2772
2773 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2774 char buf1[32], buf2[32];
2775
2776 seq_indent(seq, iter->depth + 1);
2777 seq_printf(seq, " /%zu %s %s",
2778 KEYLENGTH - fa->fa_slen,
2779 rtn_scope(buf1, sizeof(buf1),
2780 fa->fa_info->fib_scope),
2781 rtn_type(buf2, sizeof(buf2),
2782 fa->fa_type));
2783 if (fa->fa_tos)
2784 seq_printf(seq, " tos=%d", fa->fa_tos);
2785 seq_putc(seq, '\n');
2786 }
2787 }
2788
2789 return 0;
2790 }
2791
2792 static const struct seq_operations fib_trie_seq_ops = {
2793 .start = fib_trie_seq_start,
2794 .next = fib_trie_seq_next,
2795 .stop = fib_trie_seq_stop,
2796 .show = fib_trie_seq_show,
2797 };
2798
2799 struct fib_route_iter {
2800 struct seq_net_private p;
2801 struct fib_table *main_tb;
2802 struct key_vector *tnode;
2803 loff_t pos;
2804 t_key key;
2805 };
2806
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2807 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2808 loff_t pos)
2809 {
2810 struct key_vector *l, **tp = &iter->tnode;
2811 t_key key;
2812
2813 /* use cached location of previously found key */
2814 if (iter->pos > 0 && pos >= iter->pos) {
2815 key = iter->key;
2816 } else {
2817 iter->pos = 1;
2818 key = 0;
2819 }
2820
2821 pos -= iter->pos;
2822
2823 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2824 key = l->key + 1;
2825 iter->pos++;
2826 l = NULL;
2827
2828 /* handle unlikely case of a key wrap */
2829 if (!key)
2830 break;
2831 }
2832
2833 if (l)
2834 iter->key = l->key; /* remember it */
2835 else
2836 iter->pos = 0; /* forget it */
2837
2838 return l;
2839 }
2840
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2841 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2842 __acquires(RCU)
2843 {
2844 struct fib_route_iter *iter = seq->private;
2845 struct fib_table *tb;
2846 struct trie *t;
2847
2848 rcu_read_lock();
2849
2850 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2851 if (!tb)
2852 return NULL;
2853
2854 iter->main_tb = tb;
2855 t = (struct trie *)tb->tb_data;
2856 iter->tnode = t->kv;
2857
2858 if (*pos != 0)
2859 return fib_route_get_idx(iter, *pos);
2860
2861 iter->pos = 0;
2862 iter->key = KEY_MAX;
2863
2864 return SEQ_START_TOKEN;
2865 }
2866
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2867 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2868 {
2869 struct fib_route_iter *iter = seq->private;
2870 struct key_vector *l = NULL;
2871 t_key key = iter->key + 1;
2872
2873 ++*pos;
2874
2875 /* only allow key of 0 for start of sequence */
2876 if ((v == SEQ_START_TOKEN) || key)
2877 l = leaf_walk_rcu(&iter->tnode, key);
2878
2879 if (l) {
2880 iter->key = l->key;
2881 iter->pos++;
2882 } else {
2883 iter->pos = 0;
2884 }
2885
2886 return l;
2887 }
2888
fib_route_seq_stop(struct seq_file * seq,void * v)2889 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2890 __releases(RCU)
2891 {
2892 rcu_read_unlock();
2893 }
2894
fib_flag_trans(int type,__be32 mask,struct fib_info * fi)2895 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2896 {
2897 unsigned int flags = 0;
2898
2899 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2900 flags = RTF_REJECT;
2901 if (fi) {
2902 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2903
2904 if (nhc->nhc_gw.ipv4)
2905 flags |= RTF_GATEWAY;
2906 }
2907 if (mask == htonl(0xFFFFFFFF))
2908 flags |= RTF_HOST;
2909 flags |= RTF_UP;
2910 return flags;
2911 }
2912
2913 /*
2914 * This outputs /proc/net/route.
2915 * The format of the file is not supposed to be changed
2916 * and needs to be same as fib_hash output to avoid breaking
2917 * legacy utilities
2918 */
fib_route_seq_show(struct seq_file * seq,void * v)2919 static int fib_route_seq_show(struct seq_file *seq, void *v)
2920 {
2921 struct fib_route_iter *iter = seq->private;
2922 struct fib_table *tb = iter->main_tb;
2923 struct fib_alias *fa;
2924 struct key_vector *l = v;
2925 __be32 prefix;
2926
2927 if (v == SEQ_START_TOKEN) {
2928 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2929 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2930 "\tWindow\tIRTT");
2931 return 0;
2932 }
2933
2934 prefix = htonl(l->key);
2935
2936 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2937 struct fib_info *fi = fa->fa_info;
2938 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2939 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2940
2941 if ((fa->fa_type == RTN_BROADCAST) ||
2942 (fa->fa_type == RTN_MULTICAST))
2943 continue;
2944
2945 if (fa->tb_id != tb->tb_id)
2946 continue;
2947
2948 seq_setwidth(seq, 127);
2949
2950 if (fi) {
2951 struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2952 __be32 gw = 0;
2953
2954 if (nhc->nhc_gw_family == AF_INET)
2955 gw = nhc->nhc_gw.ipv4;
2956
2957 seq_printf(seq,
2958 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2959 "%d\t%08X\t%d\t%u\t%u",
2960 nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2961 prefix, gw, flags, 0, 0,
2962 fi->fib_priority,
2963 mask,
2964 (fi->fib_advmss ?
2965 fi->fib_advmss + 40 : 0),
2966 fi->fib_window,
2967 fi->fib_rtt >> 3);
2968 } else {
2969 seq_printf(seq,
2970 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2971 "%d\t%08X\t%d\t%u\t%u",
2972 prefix, 0, flags, 0, 0, 0,
2973 mask, 0, 0, 0);
2974 }
2975 seq_pad(seq, '\n');
2976 }
2977
2978 return 0;
2979 }
2980
2981 static const struct seq_operations fib_route_seq_ops = {
2982 .start = fib_route_seq_start,
2983 .next = fib_route_seq_next,
2984 .stop = fib_route_seq_stop,
2985 .show = fib_route_seq_show,
2986 };
2987
fib_proc_init(struct net * net)2988 int __net_init fib_proc_init(struct net *net)
2989 {
2990 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2991 sizeof(struct fib_trie_iter)))
2992 goto out1;
2993
2994 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2995 fib_triestat_seq_show, NULL))
2996 goto out2;
2997
2998 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2999 sizeof(struct fib_route_iter)))
3000 goto out3;
3001
3002 return 0;
3003
3004 out3:
3005 remove_proc_entry("fib_triestat", net->proc_net);
3006 out2:
3007 remove_proc_entry("fib_trie", net->proc_net);
3008 out1:
3009 return -ENOMEM;
3010 }
3011
fib_proc_exit(struct net * net)3012 void __net_exit fib_proc_exit(struct net *net)
3013 {
3014 remove_proc_entry("fib_trie", net->proc_net);
3015 remove_proc_entry("fib_triestat", net->proc_net);
3016 remove_proc_entry("route", net->proc_net);
3017 }
3018
3019 #endif /* CONFIG_PROC_FS */
3020