• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27 
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31 
extent_state_in_tree(const struct extent_state * state)32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34 	return !RB_EMPTY_NODE(&state->rb_node);
35 }
36 
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40 
btrfs_leak_debug_add(spinlock_t * lock,struct list_head * new,struct list_head * head)41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 					struct list_head *new,
43 					struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(lock, flags);
50 }
51 
btrfs_leak_debug_del(spinlock_t * lock,struct list_head * entry)52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 					struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(lock, flags);
60 }
61 
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64 	struct extent_buffer *eb;
65 	unsigned long flags;
66 
67 	/*
68 	 * If we didn't get into open_ctree our allocated_ebs will not be
69 	 * initialized, so just skip this.
70 	 */
71 	if (!fs_info->allocated_ebs.next)
72 		return;
73 
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		pr_err(
79 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87 
btrfs_extent_state_leak_debug_check(void)88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90 	struct extent_state *state;
91 
92 	while (!list_empty(&states)) {
93 		state = list_entry(states.next, struct extent_state, leak_list);
94 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 		       state->start, state->end, state->state,
96 		       extent_state_in_tree(state),
97 		       refcount_read(&state->refs));
98 		list_del(&state->leak_list);
99 		kmem_cache_free(extent_state_cache, state);
100 	}
101 }
102 
103 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
104 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
__btrfs_debug_check_extent_io_range(const char * caller,struct extent_io_tree * tree,u64 start,u64 end)105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106 		struct extent_io_tree *tree, u64 start, u64 end)
107 {
108 	struct inode *inode = tree->private_data;
109 	u64 isize;
110 
111 	if (!inode || !is_data_inode(inode))
112 		return;
113 
114 	isize = i_size_read(inode);
115 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 	}
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry)	do {} while (0)
124 #define btrfs_extent_state_leak_debug_check()	do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
126 #endif
127 
128 struct tree_entry {
129 	u64 start;
130 	u64 end;
131 	struct rb_node rb_node;
132 };
133 
134 struct extent_page_data {
135 	struct bio *bio;
136 	/* tells writepage not to lock the state bits for this range
137 	 * it still does the unlocking
138 	 */
139 	unsigned int extent_locked:1;
140 
141 	/* tells the submit_bio code to use REQ_SYNC */
142 	unsigned int sync_io:1;
143 };
144 
add_extent_changeset(struct extent_state * state,unsigned bits,struct extent_changeset * changeset,int set)145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146 				 struct extent_changeset *changeset,
147 				 int set)
148 {
149 	int ret;
150 
151 	if (!changeset)
152 		return 0;
153 	if (set && (state->state & bits) == bits)
154 		return 0;
155 	if (!set && (state->state & bits) == 0)
156 		return 0;
157 	changeset->bytes_changed += state->end - state->start + 1;
158 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
159 			GFP_ATOMIC);
160 	return ret;
161 }
162 
submit_one_bio(struct bio * bio,int mirror_num,unsigned long bio_flags)163 int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 				unsigned long bio_flags)
165 {
166 	blk_status_t ret = 0;
167 	struct extent_io_tree *tree = bio->bi_private;
168 
169 	bio->bi_private = NULL;
170 
171 	if (is_data_inode(tree->private_data))
172 		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
173 					    bio_flags);
174 	else
175 		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
176 						mirror_num, bio_flags);
177 
178 	return blk_status_to_errno(ret);
179 }
180 
181 /* Cleanup unsubmitted bios */
end_write_bio(struct extent_page_data * epd,int ret)182 static void end_write_bio(struct extent_page_data *epd, int ret)
183 {
184 	if (epd->bio) {
185 		epd->bio->bi_status = errno_to_blk_status(ret);
186 		bio_endio(epd->bio);
187 		epd->bio = NULL;
188 	}
189 }
190 
191 /*
192  * Submit bio from extent page data via submit_one_bio
193  *
194  * Return 0 if everything is OK.
195  * Return <0 for error.
196  */
flush_write_bio(struct extent_page_data * epd)197 static int __must_check flush_write_bio(struct extent_page_data *epd)
198 {
199 	int ret = 0;
200 
201 	if (epd->bio) {
202 		ret = submit_one_bio(epd->bio, 0, 0);
203 		/*
204 		 * Clean up of epd->bio is handled by its endio function.
205 		 * And endio is either triggered by successful bio execution
206 		 * or the error handler of submit bio hook.
207 		 * So at this point, no matter what happened, we don't need
208 		 * to clean up epd->bio.
209 		 */
210 		epd->bio = NULL;
211 	}
212 	return ret;
213 }
214 
extent_state_cache_init(void)215 int __init extent_state_cache_init(void)
216 {
217 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
218 			sizeof(struct extent_state), 0,
219 			SLAB_MEM_SPREAD, NULL);
220 	if (!extent_state_cache)
221 		return -ENOMEM;
222 	return 0;
223 }
224 
extent_io_init(void)225 int __init extent_io_init(void)
226 {
227 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
228 			sizeof(struct extent_buffer), 0,
229 			SLAB_MEM_SPREAD, NULL);
230 	if (!extent_buffer_cache)
231 		return -ENOMEM;
232 
233 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
234 			offsetof(struct btrfs_io_bio, bio),
235 			BIOSET_NEED_BVECS))
236 		goto free_buffer_cache;
237 
238 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
239 		goto free_bioset;
240 
241 	return 0;
242 
243 free_bioset:
244 	bioset_exit(&btrfs_bioset);
245 
246 free_buffer_cache:
247 	kmem_cache_destroy(extent_buffer_cache);
248 	extent_buffer_cache = NULL;
249 	return -ENOMEM;
250 }
251 
extent_state_cache_exit(void)252 void __cold extent_state_cache_exit(void)
253 {
254 	btrfs_extent_state_leak_debug_check();
255 	kmem_cache_destroy(extent_state_cache);
256 }
257 
extent_io_exit(void)258 void __cold extent_io_exit(void)
259 {
260 	/*
261 	 * Make sure all delayed rcu free are flushed before we
262 	 * destroy caches.
263 	 */
264 	rcu_barrier();
265 	kmem_cache_destroy(extent_buffer_cache);
266 	bioset_exit(&btrfs_bioset);
267 }
268 
269 /*
270  * For the file_extent_tree, we want to hold the inode lock when we lookup and
271  * update the disk_i_size, but lockdep will complain because our io_tree we hold
272  * the tree lock and get the inode lock when setting delalloc.  These two things
273  * are unrelated, so make a class for the file_extent_tree so we don't get the
274  * two locking patterns mixed up.
275  */
276 static struct lock_class_key file_extent_tree_class;
277 
extent_io_tree_init(struct btrfs_fs_info * fs_info,struct extent_io_tree * tree,unsigned int owner,void * private_data)278 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
279 			 struct extent_io_tree *tree, unsigned int owner,
280 			 void *private_data)
281 {
282 	tree->fs_info = fs_info;
283 	tree->state = RB_ROOT;
284 	tree->dirty_bytes = 0;
285 	spin_lock_init(&tree->lock);
286 	tree->private_data = private_data;
287 	tree->owner = owner;
288 	if (owner == IO_TREE_INODE_FILE_EXTENT)
289 		lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291 
extent_io_tree_release(struct extent_io_tree * tree)292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294 	spin_lock(&tree->lock);
295 	/*
296 	 * Do a single barrier for the waitqueue_active check here, the state
297 	 * of the waitqueue should not change once extent_io_tree_release is
298 	 * called.
299 	 */
300 	smp_mb();
301 	while (!RB_EMPTY_ROOT(&tree->state)) {
302 		struct rb_node *node;
303 		struct extent_state *state;
304 
305 		node = rb_first(&tree->state);
306 		state = rb_entry(node, struct extent_state, rb_node);
307 		rb_erase(&state->rb_node, &tree->state);
308 		RB_CLEAR_NODE(&state->rb_node);
309 		/*
310 		 * btree io trees aren't supposed to have tasks waiting for
311 		 * changes in the flags of extent states ever.
312 		 */
313 		ASSERT(!waitqueue_active(&state->wq));
314 		free_extent_state(state);
315 
316 		cond_resched_lock(&tree->lock);
317 	}
318 	spin_unlock(&tree->lock);
319 }
320 
alloc_extent_state(gfp_t mask)321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323 	struct extent_state *state;
324 
325 	/*
326 	 * The given mask might be not appropriate for the slab allocator,
327 	 * drop the unsupported bits
328 	 */
329 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330 	state = kmem_cache_alloc(extent_state_cache, mask);
331 	if (!state)
332 		return state;
333 	state->state = 0;
334 	state->failrec = NULL;
335 	RB_CLEAR_NODE(&state->rb_node);
336 	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337 	refcount_set(&state->refs, 1);
338 	init_waitqueue_head(&state->wq);
339 	trace_alloc_extent_state(state, mask, _RET_IP_);
340 	return state;
341 }
342 
free_extent_state(struct extent_state * state)343 void free_extent_state(struct extent_state *state)
344 {
345 	if (!state)
346 		return;
347 	if (refcount_dec_and_test(&state->refs)) {
348 		WARN_ON(extent_state_in_tree(state));
349 		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350 		trace_free_extent_state(state, _RET_IP_);
351 		kmem_cache_free(extent_state_cache, state);
352 	}
353 }
354 
tree_insert(struct rb_root * root,struct rb_node * search_start,u64 offset,struct rb_node * node,struct rb_node *** p_in,struct rb_node ** parent_in)355 static struct rb_node *tree_insert(struct rb_root *root,
356 				   struct rb_node *search_start,
357 				   u64 offset,
358 				   struct rb_node *node,
359 				   struct rb_node ***p_in,
360 				   struct rb_node **parent_in)
361 {
362 	struct rb_node **p;
363 	struct rb_node *parent = NULL;
364 	struct tree_entry *entry;
365 
366 	if (p_in && parent_in) {
367 		p = *p_in;
368 		parent = *parent_in;
369 		goto do_insert;
370 	}
371 
372 	p = search_start ? &search_start : &root->rb_node;
373 	while (*p) {
374 		parent = *p;
375 		entry = rb_entry(parent, struct tree_entry, rb_node);
376 
377 		if (offset < entry->start)
378 			p = &(*p)->rb_left;
379 		else if (offset > entry->end)
380 			p = &(*p)->rb_right;
381 		else
382 			return parent;
383 	}
384 
385 do_insert:
386 	rb_link_node(node, parent, p);
387 	rb_insert_color(node, root);
388 	return NULL;
389 }
390 
391 /**
392  * __etree_search - searche @tree for an entry that contains @offset. Such
393  * entry would have entry->start <= offset && entry->end >= offset.
394  *
395  * @tree - the tree to search
396  * @offset - offset that should fall within an entry in @tree
397  * @next_ret - pointer to the first entry whose range ends after @offset
398  * @prev - pointer to the first entry whose range begins before @offset
399  * @p_ret - pointer where new node should be anchored (used when inserting an
400  *	    entry in the tree)
401  * @parent_ret - points to entry which would have been the parent of the entry,
402  *               containing @offset
403  *
404  * This function returns a pointer to the entry that contains @offset byte
405  * address. If no such entry exists, then NULL is returned and the other
406  * pointer arguments to the function are filled, otherwise the found entry is
407  * returned and other pointers are left untouched.
408  */
__etree_search(struct extent_io_tree * tree,u64 offset,struct rb_node ** next_ret,struct rb_node ** prev_ret,struct rb_node *** p_ret,struct rb_node ** parent_ret)409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410 				      struct rb_node **next_ret,
411 				      struct rb_node **prev_ret,
412 				      struct rb_node ***p_ret,
413 				      struct rb_node **parent_ret)
414 {
415 	struct rb_root *root = &tree->state;
416 	struct rb_node **n = &root->rb_node;
417 	struct rb_node *prev = NULL;
418 	struct rb_node *orig_prev = NULL;
419 	struct tree_entry *entry;
420 	struct tree_entry *prev_entry = NULL;
421 
422 	while (*n) {
423 		prev = *n;
424 		entry = rb_entry(prev, struct tree_entry, rb_node);
425 		prev_entry = entry;
426 
427 		if (offset < entry->start)
428 			n = &(*n)->rb_left;
429 		else if (offset > entry->end)
430 			n = &(*n)->rb_right;
431 		else
432 			return *n;
433 	}
434 
435 	if (p_ret)
436 		*p_ret = n;
437 	if (parent_ret)
438 		*parent_ret = prev;
439 
440 	if (next_ret) {
441 		orig_prev = prev;
442 		while (prev && offset > prev_entry->end) {
443 			prev = rb_next(prev);
444 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 		}
446 		*next_ret = prev;
447 		prev = orig_prev;
448 	}
449 
450 	if (prev_ret) {
451 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 		while (prev && offset < prev_entry->start) {
453 			prev = rb_prev(prev);
454 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 		}
456 		*prev_ret = prev;
457 	}
458 	return NULL;
459 }
460 
461 static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree * tree,u64 offset,struct rb_node *** p_ret,struct rb_node ** parent_ret)462 tree_search_for_insert(struct extent_io_tree *tree,
463 		       u64 offset,
464 		       struct rb_node ***p_ret,
465 		       struct rb_node **parent_ret)
466 {
467 	struct rb_node *next= NULL;
468 	struct rb_node *ret;
469 
470 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471 	if (!ret)
472 		return next;
473 	return ret;
474 }
475 
tree_search(struct extent_io_tree * tree,u64 offset)476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 					  u64 offset)
478 {
479 	return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481 
482 /*
483  * utility function to look for merge candidates inside a given range.
484  * Any extents with matching state are merged together into a single
485  * extent in the tree.  Extents with EXTENT_IO in their state field
486  * are not merged because the end_io handlers need to be able to do
487  * operations on them without sleeping (or doing allocations/splits).
488  *
489  * This should be called with the tree lock held.
490  */
merge_state(struct extent_io_tree * tree,struct extent_state * state)491 static void merge_state(struct extent_io_tree *tree,
492 		        struct extent_state *state)
493 {
494 	struct extent_state *other;
495 	struct rb_node *other_node;
496 
497 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498 		return;
499 
500 	other_node = rb_prev(&state->rb_node);
501 	if (other_node) {
502 		other = rb_entry(other_node, struct extent_state, rb_node);
503 		if (other->end == state->start - 1 &&
504 		    other->state == state->state) {
505 			if (tree->private_data &&
506 			    is_data_inode(tree->private_data))
507 				btrfs_merge_delalloc_extent(tree->private_data,
508 							    state, other);
509 			state->start = other->start;
510 			rb_erase(&other->rb_node, &tree->state);
511 			RB_CLEAR_NODE(&other->rb_node);
512 			free_extent_state(other);
513 		}
514 	}
515 	other_node = rb_next(&state->rb_node);
516 	if (other_node) {
517 		other = rb_entry(other_node, struct extent_state, rb_node);
518 		if (other->start == state->end + 1 &&
519 		    other->state == state->state) {
520 			if (tree->private_data &&
521 			    is_data_inode(tree->private_data))
522 				btrfs_merge_delalloc_extent(tree->private_data,
523 							    state, other);
524 			state->end = other->end;
525 			rb_erase(&other->rb_node, &tree->state);
526 			RB_CLEAR_NODE(&other->rb_node);
527 			free_extent_state(other);
528 		}
529 	}
530 }
531 
532 static void set_state_bits(struct extent_io_tree *tree,
533 			   struct extent_state *state, unsigned *bits,
534 			   struct extent_changeset *changeset);
535 
536 /*
537  * insert an extent_state struct into the tree.  'bits' are set on the
538  * struct before it is inserted.
539  *
540  * This may return -EEXIST if the extent is already there, in which case the
541  * state struct is freed.
542  *
543  * The tree lock is not taken internally.  This is a utility function and
544  * probably isn't what you want to call (see set/clear_extent_bit).
545  */
insert_state(struct extent_io_tree * tree,struct extent_state * state,u64 start,u64 end,struct rb_node *** p,struct rb_node ** parent,unsigned * bits,struct extent_changeset * changeset)546 static int insert_state(struct extent_io_tree *tree,
547 			struct extent_state *state, u64 start, u64 end,
548 			struct rb_node ***p,
549 			struct rb_node **parent,
550 			unsigned *bits, struct extent_changeset *changeset)
551 {
552 	struct rb_node *node;
553 
554 	if (end < start) {
555 		btrfs_err(tree->fs_info,
556 			"insert state: end < start %llu %llu", end, start);
557 		WARN_ON(1);
558 	}
559 	state->start = start;
560 	state->end = end;
561 
562 	set_state_bits(tree, state, bits, changeset);
563 
564 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565 	if (node) {
566 		struct extent_state *found;
567 		found = rb_entry(node, struct extent_state, rb_node);
568 		btrfs_err(tree->fs_info,
569 		       "found node %llu %llu on insert of %llu %llu",
570 		       found->start, found->end, start, end);
571 		return -EEXIST;
572 	}
573 	merge_state(tree, state);
574 	return 0;
575 }
576 
577 /*
578  * split a given extent state struct in two, inserting the preallocated
579  * struct 'prealloc' as the newly created second half.  'split' indicates an
580  * offset inside 'orig' where it should be split.
581  *
582  * Before calling,
583  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584  * are two extent state structs in the tree:
585  * prealloc: [orig->start, split - 1]
586  * orig: [ split, orig->end ]
587  *
588  * The tree locks are not taken by this function. They need to be held
589  * by the caller.
590  */
split_state(struct extent_io_tree * tree,struct extent_state * orig,struct extent_state * prealloc,u64 split)591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 		       struct extent_state *prealloc, u64 split)
593 {
594 	struct rb_node *node;
595 
596 	if (tree->private_data && is_data_inode(tree->private_data))
597 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
598 
599 	prealloc->start = orig->start;
600 	prealloc->end = split - 1;
601 	prealloc->state = orig->state;
602 	orig->start = split;
603 
604 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 			   &prealloc->rb_node, NULL, NULL);
606 	if (node) {
607 		free_extent_state(prealloc);
608 		return -EEXIST;
609 	}
610 	return 0;
611 }
612 
next_state(struct extent_state * state)613 static struct extent_state *next_state(struct extent_state *state)
614 {
615 	struct rb_node *next = rb_next(&state->rb_node);
616 	if (next)
617 		return rb_entry(next, struct extent_state, rb_node);
618 	else
619 		return NULL;
620 }
621 
622 /*
623  * utility function to clear some bits in an extent state struct.
624  * it will optionally wake up anyone waiting on this state (wake == 1).
625  *
626  * If no bits are set on the state struct after clearing things, the
627  * struct is freed and removed from the tree
628  */
clear_state_bit(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,int wake,struct extent_changeset * changeset)629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 					    struct extent_state *state,
631 					    unsigned *bits, int wake,
632 					    struct extent_changeset *changeset)
633 {
634 	struct extent_state *next;
635 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636 	int ret;
637 
638 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639 		u64 range = state->end - state->start + 1;
640 		WARN_ON(range > tree->dirty_bytes);
641 		tree->dirty_bytes -= range;
642 	}
643 
644 	if (tree->private_data && is_data_inode(tree->private_data))
645 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646 
647 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 	BUG_ON(ret < 0);
649 	state->state &= ~bits_to_clear;
650 	if (wake)
651 		wake_up(&state->wq);
652 	if (state->state == 0) {
653 		next = next_state(state);
654 		if (extent_state_in_tree(state)) {
655 			rb_erase(&state->rb_node, &tree->state);
656 			RB_CLEAR_NODE(&state->rb_node);
657 			free_extent_state(state);
658 		} else {
659 			WARN_ON(1);
660 		}
661 	} else {
662 		merge_state(tree, state);
663 		next = next_state(state);
664 	}
665 	return next;
666 }
667 
668 static struct extent_state *
alloc_extent_state_atomic(struct extent_state * prealloc)669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671 	if (!prealloc)
672 		prealloc = alloc_extent_state(GFP_ATOMIC);
673 
674 	return prealloc;
675 }
676 
extent_io_tree_panic(struct extent_io_tree * tree,int err)677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679 	btrfs_panic(tree->fs_info, err,
680 	"locking error: extent tree was modified by another thread while locked");
681 }
682 
683 /*
684  * clear some bits on a range in the tree.  This may require splitting
685  * or inserting elements in the tree, so the gfp mask is used to
686  * indicate which allocations or sleeping are allowed.
687  *
688  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
689  * the given range from the tree regardless of state (ie for truncate).
690  *
691  * the range [start, end] is inclusive.
692  *
693  * This takes the tree lock, and returns 0 on success and < 0 on error.
694  */
__clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)695 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
696 			      unsigned bits, int wake, int delete,
697 			      struct extent_state **cached_state,
698 			      gfp_t mask, struct extent_changeset *changeset)
699 {
700 	struct extent_state *state;
701 	struct extent_state *cached;
702 	struct extent_state *prealloc = NULL;
703 	struct rb_node *node;
704 	u64 last_end;
705 	int err;
706 	int clear = 0;
707 
708 	btrfs_debug_check_extent_io_range(tree, start, end);
709 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
710 
711 	if (bits & EXTENT_DELALLOC)
712 		bits |= EXTENT_NORESERVE;
713 
714 	if (delete)
715 		bits |= ~EXTENT_CTLBITS;
716 
717 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
718 		clear = 1;
719 again:
720 	if (!prealloc && gfpflags_allow_blocking(mask)) {
721 		/*
722 		 * Don't care for allocation failure here because we might end
723 		 * up not needing the pre-allocated extent state at all, which
724 		 * is the case if we only have in the tree extent states that
725 		 * cover our input range and don't cover too any other range.
726 		 * If we end up needing a new extent state we allocate it later.
727 		 */
728 		prealloc = alloc_extent_state(mask);
729 	}
730 
731 	spin_lock(&tree->lock);
732 	if (cached_state) {
733 		cached = *cached_state;
734 
735 		if (clear) {
736 			*cached_state = NULL;
737 			cached_state = NULL;
738 		}
739 
740 		if (cached && extent_state_in_tree(cached) &&
741 		    cached->start <= start && cached->end > start) {
742 			if (clear)
743 				refcount_dec(&cached->refs);
744 			state = cached;
745 			goto hit_next;
746 		}
747 		if (clear)
748 			free_extent_state(cached);
749 	}
750 	/*
751 	 * this search will find the extents that end after
752 	 * our range starts
753 	 */
754 	node = tree_search(tree, start);
755 	if (!node)
756 		goto out;
757 	state = rb_entry(node, struct extent_state, rb_node);
758 hit_next:
759 	if (state->start > end)
760 		goto out;
761 	WARN_ON(state->end < start);
762 	last_end = state->end;
763 
764 	/* the state doesn't have the wanted bits, go ahead */
765 	if (!(state->state & bits)) {
766 		state = next_state(state);
767 		goto next;
768 	}
769 
770 	/*
771 	 *     | ---- desired range ---- |
772 	 *  | state | or
773 	 *  | ------------- state -------------- |
774 	 *
775 	 * We need to split the extent we found, and may flip
776 	 * bits on second half.
777 	 *
778 	 * If the extent we found extends past our range, we
779 	 * just split and search again.  It'll get split again
780 	 * the next time though.
781 	 *
782 	 * If the extent we found is inside our range, we clear
783 	 * the desired bit on it.
784 	 */
785 
786 	if (state->start < start) {
787 		prealloc = alloc_extent_state_atomic(prealloc);
788 		BUG_ON(!prealloc);
789 		err = split_state(tree, state, prealloc, start);
790 		if (err)
791 			extent_io_tree_panic(tree, err);
792 
793 		prealloc = NULL;
794 		if (err)
795 			goto out;
796 		if (state->end <= end) {
797 			state = clear_state_bit(tree, state, &bits, wake,
798 						changeset);
799 			goto next;
800 		}
801 		goto search_again;
802 	}
803 	/*
804 	 * | ---- desired range ---- |
805 	 *                        | state |
806 	 * We need to split the extent, and clear the bit
807 	 * on the first half
808 	 */
809 	if (state->start <= end && state->end > end) {
810 		prealloc = alloc_extent_state_atomic(prealloc);
811 		BUG_ON(!prealloc);
812 		err = split_state(tree, state, prealloc, end + 1);
813 		if (err)
814 			extent_io_tree_panic(tree, err);
815 
816 		if (wake)
817 			wake_up(&state->wq);
818 
819 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
820 
821 		prealloc = NULL;
822 		goto out;
823 	}
824 
825 	state = clear_state_bit(tree, state, &bits, wake, changeset);
826 next:
827 	if (last_end == (u64)-1)
828 		goto out;
829 	start = last_end + 1;
830 	if (start <= end && state && !need_resched())
831 		goto hit_next;
832 
833 search_again:
834 	if (start > end)
835 		goto out;
836 	spin_unlock(&tree->lock);
837 	if (gfpflags_allow_blocking(mask))
838 		cond_resched();
839 	goto again;
840 
841 out:
842 	spin_unlock(&tree->lock);
843 	if (prealloc)
844 		free_extent_state(prealloc);
845 
846 	return 0;
847 
848 }
849 
wait_on_state(struct extent_io_tree * tree,struct extent_state * state)850 static void wait_on_state(struct extent_io_tree *tree,
851 			  struct extent_state *state)
852 		__releases(tree->lock)
853 		__acquires(tree->lock)
854 {
855 	DEFINE_WAIT(wait);
856 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
857 	spin_unlock(&tree->lock);
858 	schedule();
859 	spin_lock(&tree->lock);
860 	finish_wait(&state->wq, &wait);
861 }
862 
863 /*
864  * waits for one or more bits to clear on a range in the state tree.
865  * The range [start, end] is inclusive.
866  * The tree lock is taken by this function
867  */
wait_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned long bits)868 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
869 			    unsigned long bits)
870 {
871 	struct extent_state *state;
872 	struct rb_node *node;
873 
874 	btrfs_debug_check_extent_io_range(tree, start, end);
875 
876 	spin_lock(&tree->lock);
877 again:
878 	while (1) {
879 		/*
880 		 * this search will find all the extents that end after
881 		 * our range starts
882 		 */
883 		node = tree_search(tree, start);
884 process_node:
885 		if (!node)
886 			break;
887 
888 		state = rb_entry(node, struct extent_state, rb_node);
889 
890 		if (state->start > end)
891 			goto out;
892 
893 		if (state->state & bits) {
894 			start = state->start;
895 			refcount_inc(&state->refs);
896 			wait_on_state(tree, state);
897 			free_extent_state(state);
898 			goto again;
899 		}
900 		start = state->end + 1;
901 
902 		if (start > end)
903 			break;
904 
905 		if (!cond_resched_lock(&tree->lock)) {
906 			node = rb_next(node);
907 			goto process_node;
908 		}
909 	}
910 out:
911 	spin_unlock(&tree->lock);
912 }
913 
set_state_bits(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,struct extent_changeset * changeset)914 static void set_state_bits(struct extent_io_tree *tree,
915 			   struct extent_state *state,
916 			   unsigned *bits, struct extent_changeset *changeset)
917 {
918 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
919 	int ret;
920 
921 	if (tree->private_data && is_data_inode(tree->private_data))
922 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
923 
924 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
925 		u64 range = state->end - state->start + 1;
926 		tree->dirty_bytes += range;
927 	}
928 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
929 	BUG_ON(ret < 0);
930 	state->state |= bits_to_set;
931 }
932 
cache_state_if_flags(struct extent_state * state,struct extent_state ** cached_ptr,unsigned flags)933 static void cache_state_if_flags(struct extent_state *state,
934 				 struct extent_state **cached_ptr,
935 				 unsigned flags)
936 {
937 	if (cached_ptr && !(*cached_ptr)) {
938 		if (!flags || (state->state & flags)) {
939 			*cached_ptr = state;
940 			refcount_inc(&state->refs);
941 		}
942 	}
943 }
944 
cache_state(struct extent_state * state,struct extent_state ** cached_ptr)945 static void cache_state(struct extent_state *state,
946 			struct extent_state **cached_ptr)
947 {
948 	return cache_state_if_flags(state, cached_ptr,
949 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
950 }
951 
952 /*
953  * set some bits on a range in the tree.  This may require allocations or
954  * sleeping, so the gfp mask is used to indicate what is allowed.
955  *
956  * If any of the exclusive bits are set, this will fail with -EEXIST if some
957  * part of the range already has the desired bits set.  The start of the
958  * existing range is returned in failed_start in this case.
959  *
960  * [start, end] is inclusive This takes the tree lock.
961  */
962 
963 static int __must_check
__set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned exclusive_bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)964 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
965 		 unsigned bits, unsigned exclusive_bits,
966 		 u64 *failed_start, struct extent_state **cached_state,
967 		 gfp_t mask, struct extent_changeset *changeset)
968 {
969 	struct extent_state *state;
970 	struct extent_state *prealloc = NULL;
971 	struct rb_node *node;
972 	struct rb_node **p;
973 	struct rb_node *parent;
974 	int err = 0;
975 	u64 last_start;
976 	u64 last_end;
977 
978 	btrfs_debug_check_extent_io_range(tree, start, end);
979 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
980 
981 again:
982 	if (!prealloc && gfpflags_allow_blocking(mask)) {
983 		/*
984 		 * Don't care for allocation failure here because we might end
985 		 * up not needing the pre-allocated extent state at all, which
986 		 * is the case if we only have in the tree extent states that
987 		 * cover our input range and don't cover too any other range.
988 		 * If we end up needing a new extent state we allocate it later.
989 		 */
990 		prealloc = alloc_extent_state(mask);
991 	}
992 
993 	spin_lock(&tree->lock);
994 	if (cached_state && *cached_state) {
995 		state = *cached_state;
996 		if (state->start <= start && state->end > start &&
997 		    extent_state_in_tree(state)) {
998 			node = &state->rb_node;
999 			goto hit_next;
1000 		}
1001 	}
1002 	/*
1003 	 * this search will find all the extents that end after
1004 	 * our range starts.
1005 	 */
1006 	node = tree_search_for_insert(tree, start, &p, &parent);
1007 	if (!node) {
1008 		prealloc = alloc_extent_state_atomic(prealloc);
1009 		BUG_ON(!prealloc);
1010 		err = insert_state(tree, prealloc, start, end,
1011 				   &p, &parent, &bits, changeset);
1012 		if (err)
1013 			extent_io_tree_panic(tree, err);
1014 
1015 		cache_state(prealloc, cached_state);
1016 		prealloc = NULL;
1017 		goto out;
1018 	}
1019 	state = rb_entry(node, struct extent_state, rb_node);
1020 hit_next:
1021 	last_start = state->start;
1022 	last_end = state->end;
1023 
1024 	/*
1025 	 * | ---- desired range ---- |
1026 	 * | state |
1027 	 *
1028 	 * Just lock what we found and keep going
1029 	 */
1030 	if (state->start == start && state->end <= end) {
1031 		if (state->state & exclusive_bits) {
1032 			*failed_start = state->start;
1033 			err = -EEXIST;
1034 			goto out;
1035 		}
1036 
1037 		set_state_bits(tree, state, &bits, changeset);
1038 		cache_state(state, cached_state);
1039 		merge_state(tree, state);
1040 		if (last_end == (u64)-1)
1041 			goto out;
1042 		start = last_end + 1;
1043 		state = next_state(state);
1044 		if (start < end && state && state->start == start &&
1045 		    !need_resched())
1046 			goto hit_next;
1047 		goto search_again;
1048 	}
1049 
1050 	/*
1051 	 *     | ---- desired range ---- |
1052 	 * | state |
1053 	 *   or
1054 	 * | ------------- state -------------- |
1055 	 *
1056 	 * We need to split the extent we found, and may flip bits on
1057 	 * second half.
1058 	 *
1059 	 * If the extent we found extends past our
1060 	 * range, we just split and search again.  It'll get split
1061 	 * again the next time though.
1062 	 *
1063 	 * If the extent we found is inside our range, we set the
1064 	 * desired bit on it.
1065 	 */
1066 	if (state->start < start) {
1067 		if (state->state & exclusive_bits) {
1068 			*failed_start = start;
1069 			err = -EEXIST;
1070 			goto out;
1071 		}
1072 
1073 		/*
1074 		 * If this extent already has all the bits we want set, then
1075 		 * skip it, not necessary to split it or do anything with it.
1076 		 */
1077 		if ((state->state & bits) == bits) {
1078 			start = state->end + 1;
1079 			cache_state(state, cached_state);
1080 			goto search_again;
1081 		}
1082 
1083 		prealloc = alloc_extent_state_atomic(prealloc);
1084 		BUG_ON(!prealloc);
1085 		err = split_state(tree, state, prealloc, start);
1086 		if (err)
1087 			extent_io_tree_panic(tree, err);
1088 
1089 		prealloc = NULL;
1090 		if (err)
1091 			goto out;
1092 		if (state->end <= end) {
1093 			set_state_bits(tree, state, &bits, changeset);
1094 			cache_state(state, cached_state);
1095 			merge_state(tree, state);
1096 			if (last_end == (u64)-1)
1097 				goto out;
1098 			start = last_end + 1;
1099 			state = next_state(state);
1100 			if (start < end && state && state->start == start &&
1101 			    !need_resched())
1102 				goto hit_next;
1103 		}
1104 		goto search_again;
1105 	}
1106 	/*
1107 	 * | ---- desired range ---- |
1108 	 *     | state | or               | state |
1109 	 *
1110 	 * There's a hole, we need to insert something in it and
1111 	 * ignore the extent we found.
1112 	 */
1113 	if (state->start > start) {
1114 		u64 this_end;
1115 		if (end < last_start)
1116 			this_end = end;
1117 		else
1118 			this_end = last_start - 1;
1119 
1120 		prealloc = alloc_extent_state_atomic(prealloc);
1121 		BUG_ON(!prealloc);
1122 
1123 		/*
1124 		 * Avoid to free 'prealloc' if it can be merged with
1125 		 * the later extent.
1126 		 */
1127 		err = insert_state(tree, prealloc, start, this_end,
1128 				   NULL, NULL, &bits, changeset);
1129 		if (err)
1130 			extent_io_tree_panic(tree, err);
1131 
1132 		cache_state(prealloc, cached_state);
1133 		prealloc = NULL;
1134 		start = this_end + 1;
1135 		goto search_again;
1136 	}
1137 	/*
1138 	 * | ---- desired range ---- |
1139 	 *                        | state |
1140 	 * We need to split the extent, and set the bit
1141 	 * on the first half
1142 	 */
1143 	if (state->start <= end && state->end > end) {
1144 		if (state->state & exclusive_bits) {
1145 			*failed_start = start;
1146 			err = -EEXIST;
1147 			goto out;
1148 		}
1149 
1150 		prealloc = alloc_extent_state_atomic(prealloc);
1151 		BUG_ON(!prealloc);
1152 		err = split_state(tree, state, prealloc, end + 1);
1153 		if (err)
1154 			extent_io_tree_panic(tree, err);
1155 
1156 		set_state_bits(tree, prealloc, &bits, changeset);
1157 		cache_state(prealloc, cached_state);
1158 		merge_state(tree, prealloc);
1159 		prealloc = NULL;
1160 		goto out;
1161 	}
1162 
1163 search_again:
1164 	if (start > end)
1165 		goto out;
1166 	spin_unlock(&tree->lock);
1167 	if (gfpflags_allow_blocking(mask))
1168 		cond_resched();
1169 	goto again;
1170 
1171 out:
1172 	spin_unlock(&tree->lock);
1173 	if (prealloc)
1174 		free_extent_state(prealloc);
1175 
1176 	return err;
1177 
1178 }
1179 
set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask)1180 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1181 		   unsigned bits, u64 * failed_start,
1182 		   struct extent_state **cached_state, gfp_t mask)
1183 {
1184 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1185 				cached_state, mask, NULL);
1186 }
1187 
1188 
1189 /**
1190  * convert_extent_bit - convert all bits in a given range from one bit to
1191  * 			another
1192  * @tree:	the io tree to search
1193  * @start:	the start offset in bytes
1194  * @end:	the end offset in bytes (inclusive)
1195  * @bits:	the bits to set in this range
1196  * @clear_bits:	the bits to clear in this range
1197  * @cached_state:	state that we're going to cache
1198  *
1199  * This will go through and set bits for the given range.  If any states exist
1200  * already in this range they are set with the given bit and cleared of the
1201  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1202  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1203  * boundary bits like LOCK.
1204  *
1205  * All allocations are done with GFP_NOFS.
1206  */
convert_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned clear_bits,struct extent_state ** cached_state)1207 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208 		       unsigned bits, unsigned clear_bits,
1209 		       struct extent_state **cached_state)
1210 {
1211 	struct extent_state *state;
1212 	struct extent_state *prealloc = NULL;
1213 	struct rb_node *node;
1214 	struct rb_node **p;
1215 	struct rb_node *parent;
1216 	int err = 0;
1217 	u64 last_start;
1218 	u64 last_end;
1219 	bool first_iteration = true;
1220 
1221 	btrfs_debug_check_extent_io_range(tree, start, end);
1222 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1223 				       clear_bits);
1224 
1225 again:
1226 	if (!prealloc) {
1227 		/*
1228 		 * Best effort, don't worry if extent state allocation fails
1229 		 * here for the first iteration. We might have a cached state
1230 		 * that matches exactly the target range, in which case no
1231 		 * extent state allocations are needed. We'll only know this
1232 		 * after locking the tree.
1233 		 */
1234 		prealloc = alloc_extent_state(GFP_NOFS);
1235 		if (!prealloc && !first_iteration)
1236 			return -ENOMEM;
1237 	}
1238 
1239 	spin_lock(&tree->lock);
1240 	if (cached_state && *cached_state) {
1241 		state = *cached_state;
1242 		if (state->start <= start && state->end > start &&
1243 		    extent_state_in_tree(state)) {
1244 			node = &state->rb_node;
1245 			goto hit_next;
1246 		}
1247 	}
1248 
1249 	/*
1250 	 * this search will find all the extents that end after
1251 	 * our range starts.
1252 	 */
1253 	node = tree_search_for_insert(tree, start, &p, &parent);
1254 	if (!node) {
1255 		prealloc = alloc_extent_state_atomic(prealloc);
1256 		if (!prealloc) {
1257 			err = -ENOMEM;
1258 			goto out;
1259 		}
1260 		err = insert_state(tree, prealloc, start, end,
1261 				   &p, &parent, &bits, NULL);
1262 		if (err)
1263 			extent_io_tree_panic(tree, err);
1264 		cache_state(prealloc, cached_state);
1265 		prealloc = NULL;
1266 		goto out;
1267 	}
1268 	state = rb_entry(node, struct extent_state, rb_node);
1269 hit_next:
1270 	last_start = state->start;
1271 	last_end = state->end;
1272 
1273 	/*
1274 	 * | ---- desired range ---- |
1275 	 * | state |
1276 	 *
1277 	 * Just lock what we found and keep going
1278 	 */
1279 	if (state->start == start && state->end <= end) {
1280 		set_state_bits(tree, state, &bits, NULL);
1281 		cache_state(state, cached_state);
1282 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1283 		if (last_end == (u64)-1)
1284 			goto out;
1285 		start = last_end + 1;
1286 		if (start < end && state && state->start == start &&
1287 		    !need_resched())
1288 			goto hit_next;
1289 		goto search_again;
1290 	}
1291 
1292 	/*
1293 	 *     | ---- desired range ---- |
1294 	 * | state |
1295 	 *   or
1296 	 * | ------------- state -------------- |
1297 	 *
1298 	 * We need to split the extent we found, and may flip bits on
1299 	 * second half.
1300 	 *
1301 	 * If the extent we found extends past our
1302 	 * range, we just split and search again.  It'll get split
1303 	 * again the next time though.
1304 	 *
1305 	 * If the extent we found is inside our range, we set the
1306 	 * desired bit on it.
1307 	 */
1308 	if (state->start < start) {
1309 		prealloc = alloc_extent_state_atomic(prealloc);
1310 		if (!prealloc) {
1311 			err = -ENOMEM;
1312 			goto out;
1313 		}
1314 		err = split_state(tree, state, prealloc, start);
1315 		if (err)
1316 			extent_io_tree_panic(tree, err);
1317 		prealloc = NULL;
1318 		if (err)
1319 			goto out;
1320 		if (state->end <= end) {
1321 			set_state_bits(tree, state, &bits, NULL);
1322 			cache_state(state, cached_state);
1323 			state = clear_state_bit(tree, state, &clear_bits, 0,
1324 						NULL);
1325 			if (last_end == (u64)-1)
1326 				goto out;
1327 			start = last_end + 1;
1328 			if (start < end && state && state->start == start &&
1329 			    !need_resched())
1330 				goto hit_next;
1331 		}
1332 		goto search_again;
1333 	}
1334 	/*
1335 	 * | ---- desired range ---- |
1336 	 *     | state | or               | state |
1337 	 *
1338 	 * There's a hole, we need to insert something in it and
1339 	 * ignore the extent we found.
1340 	 */
1341 	if (state->start > start) {
1342 		u64 this_end;
1343 		if (end < last_start)
1344 			this_end = end;
1345 		else
1346 			this_end = last_start - 1;
1347 
1348 		prealloc = alloc_extent_state_atomic(prealloc);
1349 		if (!prealloc) {
1350 			err = -ENOMEM;
1351 			goto out;
1352 		}
1353 
1354 		/*
1355 		 * Avoid to free 'prealloc' if it can be merged with
1356 		 * the later extent.
1357 		 */
1358 		err = insert_state(tree, prealloc, start, this_end,
1359 				   NULL, NULL, &bits, NULL);
1360 		if (err)
1361 			extent_io_tree_panic(tree, err);
1362 		cache_state(prealloc, cached_state);
1363 		prealloc = NULL;
1364 		start = this_end + 1;
1365 		goto search_again;
1366 	}
1367 	/*
1368 	 * | ---- desired range ---- |
1369 	 *                        | state |
1370 	 * We need to split the extent, and set the bit
1371 	 * on the first half
1372 	 */
1373 	if (state->start <= end && state->end > end) {
1374 		prealloc = alloc_extent_state_atomic(prealloc);
1375 		if (!prealloc) {
1376 			err = -ENOMEM;
1377 			goto out;
1378 		}
1379 
1380 		err = split_state(tree, state, prealloc, end + 1);
1381 		if (err)
1382 			extent_io_tree_panic(tree, err);
1383 
1384 		set_state_bits(tree, prealloc, &bits, NULL);
1385 		cache_state(prealloc, cached_state);
1386 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1387 		prealloc = NULL;
1388 		goto out;
1389 	}
1390 
1391 search_again:
1392 	if (start > end)
1393 		goto out;
1394 	spin_unlock(&tree->lock);
1395 	cond_resched();
1396 	first_iteration = false;
1397 	goto again;
1398 
1399 out:
1400 	spin_unlock(&tree->lock);
1401 	if (prealloc)
1402 		free_extent_state(prealloc);
1403 
1404 	return err;
1405 }
1406 
1407 /* wrappers around set/clear extent bit */
set_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_changeset * changeset)1408 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409 			   unsigned bits, struct extent_changeset *changeset)
1410 {
1411 	/*
1412 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1413 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1414 	 * either fail with -EEXIST or changeset will record the whole
1415 	 * range.
1416 	 */
1417 	BUG_ON(bits & EXTENT_LOCKED);
1418 
1419 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1420 				changeset);
1421 }
1422 
set_extent_bits_nowait(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits)1423 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424 			   unsigned bits)
1425 {
1426 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1427 				GFP_NOWAIT, NULL);
1428 }
1429 
clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached)1430 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431 		     unsigned bits, int wake, int delete,
1432 		     struct extent_state **cached)
1433 {
1434 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435 				  cached, GFP_NOFS, NULL);
1436 }
1437 
clear_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_changeset * changeset)1438 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439 		unsigned bits, struct extent_changeset *changeset)
1440 {
1441 	/*
1442 	 * Don't support EXTENT_LOCKED case, same reason as
1443 	 * set_record_extent_bits().
1444 	 */
1445 	BUG_ON(bits & EXTENT_LOCKED);
1446 
1447 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448 				  changeset);
1449 }
1450 
1451 /*
1452  * either insert or lock state struct between start and end use mask to tell
1453  * us if waiting is desired.
1454  */
lock_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state)1455 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456 		     struct extent_state **cached_state)
1457 {
1458 	int err;
1459 	u64 failed_start;
1460 
1461 	while (1) {
1462 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1463 				       EXTENT_LOCKED, &failed_start,
1464 				       cached_state, GFP_NOFS, NULL);
1465 		if (err == -EEXIST) {
1466 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1467 			start = failed_start;
1468 		} else
1469 			break;
1470 		WARN_ON(start > end);
1471 	}
1472 	return err;
1473 }
1474 
try_lock_extent(struct extent_io_tree * tree,u64 start,u64 end)1475 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476 {
1477 	int err;
1478 	u64 failed_start;
1479 
1480 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1481 			       &failed_start, NULL, GFP_NOFS, NULL);
1482 	if (err == -EEXIST) {
1483 		if (failed_start > start)
1484 			clear_extent_bit(tree, start, failed_start - 1,
1485 					 EXTENT_LOCKED, 1, 0, NULL);
1486 		return 0;
1487 	}
1488 	return 1;
1489 }
1490 
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)1491 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492 {
1493 	unsigned long index = start >> PAGE_SHIFT;
1494 	unsigned long end_index = end >> PAGE_SHIFT;
1495 	struct page *page;
1496 
1497 	while (index <= end_index) {
1498 		page = find_get_page(inode->i_mapping, index);
1499 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1500 		clear_page_dirty_for_io(page);
1501 		put_page(page);
1502 		index++;
1503 	}
1504 }
1505 
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)1506 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507 {
1508 	unsigned long index = start >> PAGE_SHIFT;
1509 	unsigned long end_index = end >> PAGE_SHIFT;
1510 	struct page *page;
1511 
1512 	while (index <= end_index) {
1513 		page = find_get_page(inode->i_mapping, index);
1514 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1515 		__set_page_dirty_nobuffers(page);
1516 		account_page_redirty(page);
1517 		put_page(page);
1518 		index++;
1519 	}
1520 }
1521 
1522 /* find the first state struct with 'bits' set after 'start', and
1523  * return it.  tree->lock must be held.  NULL will returned if
1524  * nothing was found after 'start'
1525  */
1526 static struct extent_state *
find_first_extent_bit_state(struct extent_io_tree * tree,u64 start,unsigned bits)1527 find_first_extent_bit_state(struct extent_io_tree *tree,
1528 			    u64 start, unsigned bits)
1529 {
1530 	struct rb_node *node;
1531 	struct extent_state *state;
1532 
1533 	/*
1534 	 * this search will find all the extents that end after
1535 	 * our range starts.
1536 	 */
1537 	node = tree_search(tree, start);
1538 	if (!node)
1539 		goto out;
1540 
1541 	while (1) {
1542 		state = rb_entry(node, struct extent_state, rb_node);
1543 		if (state->end >= start && (state->state & bits))
1544 			return state;
1545 
1546 		node = rb_next(node);
1547 		if (!node)
1548 			break;
1549 	}
1550 out:
1551 	return NULL;
1552 }
1553 
1554 /*
1555  * find the first offset in the io tree with 'bits' set. zero is
1556  * returned if we find something, and *start_ret and *end_ret are
1557  * set to reflect the state struct that was found.
1558  *
1559  * If nothing was found, 1 is returned. If found something, return 0.
1560  */
find_first_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,unsigned bits,struct extent_state ** cached_state)1561 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1563 			  struct extent_state **cached_state)
1564 {
1565 	struct extent_state *state;
1566 	int ret = 1;
1567 
1568 	spin_lock(&tree->lock);
1569 	if (cached_state && *cached_state) {
1570 		state = *cached_state;
1571 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1572 			while ((state = next_state(state)) != NULL) {
1573 				if (state->state & bits)
1574 					goto got_it;
1575 			}
1576 			free_extent_state(*cached_state);
1577 			*cached_state = NULL;
1578 			goto out;
1579 		}
1580 		free_extent_state(*cached_state);
1581 		*cached_state = NULL;
1582 	}
1583 
1584 	state = find_first_extent_bit_state(tree, start, bits);
1585 got_it:
1586 	if (state) {
1587 		cache_state_if_flags(state, cached_state, 0);
1588 		*start_ret = state->start;
1589 		*end_ret = state->end;
1590 		ret = 0;
1591 	}
1592 out:
1593 	spin_unlock(&tree->lock);
1594 	return ret;
1595 }
1596 
1597 /**
1598  * find_contiguous_extent_bit: find a contiguous area of bits
1599  * @tree - io tree to check
1600  * @start - offset to start the search from
1601  * @start_ret - the first offset we found with the bits set
1602  * @end_ret - the final contiguous range of the bits that were set
1603  * @bits - bits to look for
1604  *
1605  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1606  * to set bits appropriately, and then merge them again.  During this time it
1607  * will drop the tree->lock, so use this helper if you want to find the actual
1608  * contiguous area for given bits.  We will search to the first bit we find, and
1609  * then walk down the tree until we find a non-contiguous area.  The area
1610  * returned will be the full contiguous area with the bits set.
1611  */
find_contiguous_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,unsigned bits)1612 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1613 			       u64 *start_ret, u64 *end_ret, unsigned bits)
1614 {
1615 	struct extent_state *state;
1616 	int ret = 1;
1617 
1618 	spin_lock(&tree->lock);
1619 	state = find_first_extent_bit_state(tree, start, bits);
1620 	if (state) {
1621 		*start_ret = state->start;
1622 		*end_ret = state->end;
1623 		while ((state = next_state(state)) != NULL) {
1624 			if (state->start > (*end_ret + 1))
1625 				break;
1626 			*end_ret = state->end;
1627 		}
1628 		ret = 0;
1629 	}
1630 	spin_unlock(&tree->lock);
1631 	return ret;
1632 }
1633 
1634 /**
1635  * find_first_clear_extent_bit - find the first range that has @bits not set.
1636  * This range could start before @start.
1637  *
1638  * @tree - the tree to search
1639  * @start - the offset at/after which the found extent should start
1640  * @start_ret - records the beginning of the range
1641  * @end_ret - records the end of the range (inclusive)
1642  * @bits - the set of bits which must be unset
1643  *
1644  * Since unallocated range is also considered one which doesn't have the bits
1645  * set it's possible that @end_ret contains -1, this happens in case the range
1646  * spans (last_range_end, end of device]. In this case it's up to the caller to
1647  * trim @end_ret to the appropriate size.
1648  */
find_first_clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,unsigned bits)1649 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1650 				 u64 *start_ret, u64 *end_ret, unsigned bits)
1651 {
1652 	struct extent_state *state;
1653 	struct rb_node *node, *prev = NULL, *next;
1654 
1655 	spin_lock(&tree->lock);
1656 
1657 	/* Find first extent with bits cleared */
1658 	while (1) {
1659 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1660 		if (!node && !next && !prev) {
1661 			/*
1662 			 * Tree is completely empty, send full range and let
1663 			 * caller deal with it
1664 			 */
1665 			*start_ret = 0;
1666 			*end_ret = -1;
1667 			goto out;
1668 		} else if (!node && !next) {
1669 			/*
1670 			 * We are past the last allocated chunk, set start at
1671 			 * the end of the last extent.
1672 			 */
1673 			state = rb_entry(prev, struct extent_state, rb_node);
1674 			*start_ret = state->end + 1;
1675 			*end_ret = -1;
1676 			goto out;
1677 		} else if (!node) {
1678 			node = next;
1679 		}
1680 		/*
1681 		 * At this point 'node' either contains 'start' or start is
1682 		 * before 'node'
1683 		 */
1684 		state = rb_entry(node, struct extent_state, rb_node);
1685 
1686 		if (in_range(start, state->start, state->end - state->start + 1)) {
1687 			if (state->state & bits) {
1688 				/*
1689 				 * |--range with bits sets--|
1690 				 *    |
1691 				 *    start
1692 				 */
1693 				start = state->end + 1;
1694 			} else {
1695 				/*
1696 				 * 'start' falls within a range that doesn't
1697 				 * have the bits set, so take its start as
1698 				 * the beginning of the desired range
1699 				 *
1700 				 * |--range with bits cleared----|
1701 				 *      |
1702 				 *      start
1703 				 */
1704 				*start_ret = state->start;
1705 				break;
1706 			}
1707 		} else {
1708 			/*
1709 			 * |---prev range---|---hole/unset---|---node range---|
1710 			 *                          |
1711 			 *                        start
1712 			 *
1713 			 *                        or
1714 			 *
1715 			 * |---hole/unset--||--first node--|
1716 			 * 0   |
1717 			 *    start
1718 			 */
1719 			if (prev) {
1720 				state = rb_entry(prev, struct extent_state,
1721 						 rb_node);
1722 				*start_ret = state->end + 1;
1723 			} else {
1724 				*start_ret = 0;
1725 			}
1726 			break;
1727 		}
1728 	}
1729 
1730 	/*
1731 	 * Find the longest stretch from start until an entry which has the
1732 	 * bits set
1733 	 */
1734 	while (1) {
1735 		state = rb_entry(node, struct extent_state, rb_node);
1736 		if (state->end >= start && !(state->state & bits)) {
1737 			*end_ret = state->end;
1738 		} else {
1739 			*end_ret = state->start - 1;
1740 			break;
1741 		}
1742 
1743 		node = rb_next(node);
1744 		if (!node)
1745 			break;
1746 	}
1747 out:
1748 	spin_unlock(&tree->lock);
1749 }
1750 
1751 /*
1752  * find a contiguous range of bytes in the file marked as delalloc, not
1753  * more than 'max_bytes'.  start and end are used to return the range,
1754  *
1755  * true is returned if we find something, false if nothing was in the tree
1756  */
btrfs_find_delalloc_range(struct extent_io_tree * tree,u64 * start,u64 * end,u64 max_bytes,struct extent_state ** cached_state)1757 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1758 			       u64 *end, u64 max_bytes,
1759 			       struct extent_state **cached_state)
1760 {
1761 	struct rb_node *node;
1762 	struct extent_state *state;
1763 	u64 cur_start = *start;
1764 	bool found = false;
1765 	u64 total_bytes = 0;
1766 
1767 	spin_lock(&tree->lock);
1768 
1769 	/*
1770 	 * this search will find all the extents that end after
1771 	 * our range starts.
1772 	 */
1773 	node = tree_search(tree, cur_start);
1774 	if (!node) {
1775 		*end = (u64)-1;
1776 		goto out;
1777 	}
1778 
1779 	while (1) {
1780 		state = rb_entry(node, struct extent_state, rb_node);
1781 		if (found && (state->start != cur_start ||
1782 			      (state->state & EXTENT_BOUNDARY))) {
1783 			goto out;
1784 		}
1785 		if (!(state->state & EXTENT_DELALLOC)) {
1786 			if (!found)
1787 				*end = state->end;
1788 			goto out;
1789 		}
1790 		if (!found) {
1791 			*start = state->start;
1792 			*cached_state = state;
1793 			refcount_inc(&state->refs);
1794 		}
1795 		found = true;
1796 		*end = state->end;
1797 		cur_start = state->end + 1;
1798 		node = rb_next(node);
1799 		total_bytes += state->end - state->start + 1;
1800 		if (total_bytes >= max_bytes)
1801 			break;
1802 		if (!node)
1803 			break;
1804 	}
1805 out:
1806 	spin_unlock(&tree->lock);
1807 	return found;
1808 }
1809 
1810 static int __process_pages_contig(struct address_space *mapping,
1811 				  struct page *locked_page,
1812 				  pgoff_t start_index, pgoff_t end_index,
1813 				  unsigned long page_ops, pgoff_t *index_ret);
1814 
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)1815 static noinline void __unlock_for_delalloc(struct inode *inode,
1816 					   struct page *locked_page,
1817 					   u64 start, u64 end)
1818 {
1819 	unsigned long index = start >> PAGE_SHIFT;
1820 	unsigned long end_index = end >> PAGE_SHIFT;
1821 
1822 	ASSERT(locked_page);
1823 	if (index == locked_page->index && end_index == index)
1824 		return;
1825 
1826 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1827 			       PAGE_UNLOCK, NULL);
1828 }
1829 
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)1830 static noinline int lock_delalloc_pages(struct inode *inode,
1831 					struct page *locked_page,
1832 					u64 delalloc_start,
1833 					u64 delalloc_end)
1834 {
1835 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1836 	unsigned long index_ret = index;
1837 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1838 	int ret;
1839 
1840 	ASSERT(locked_page);
1841 	if (index == locked_page->index && index == end_index)
1842 		return 0;
1843 
1844 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1845 				     end_index, PAGE_LOCK, &index_ret);
1846 	if (ret == -EAGAIN)
1847 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1848 				      (u64)index_ret << PAGE_SHIFT);
1849 	return ret;
1850 }
1851 
1852 /*
1853  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1854  * more than @max_bytes.  @Start and @end are used to return the range,
1855  *
1856  * Return: true if we find something
1857  *         false if nothing was in the tree
1858  */
1859 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct page * locked_page,u64 * start,u64 * end)1860 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1861 				    struct page *locked_page, u64 *start,
1862 				    u64 *end)
1863 {
1864 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1865 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1866 	u64 delalloc_start;
1867 	u64 delalloc_end;
1868 	bool found;
1869 	struct extent_state *cached_state = NULL;
1870 	int ret;
1871 	int loops = 0;
1872 
1873 again:
1874 	/* step one, find a bunch of delalloc bytes starting at start */
1875 	delalloc_start = *start;
1876 	delalloc_end = 0;
1877 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1878 					  max_bytes, &cached_state);
1879 	if (!found || delalloc_end <= *start) {
1880 		*start = delalloc_start;
1881 		*end = delalloc_end;
1882 		free_extent_state(cached_state);
1883 		return false;
1884 	}
1885 
1886 	/*
1887 	 * start comes from the offset of locked_page.  We have to lock
1888 	 * pages in order, so we can't process delalloc bytes before
1889 	 * locked_page
1890 	 */
1891 	if (delalloc_start < *start)
1892 		delalloc_start = *start;
1893 
1894 	/*
1895 	 * make sure to limit the number of pages we try to lock down
1896 	 */
1897 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1898 		delalloc_end = delalloc_start + max_bytes - 1;
1899 
1900 	/* step two, lock all the pages after the page that has start */
1901 	ret = lock_delalloc_pages(inode, locked_page,
1902 				  delalloc_start, delalloc_end);
1903 	ASSERT(!ret || ret == -EAGAIN);
1904 	if (ret == -EAGAIN) {
1905 		/* some of the pages are gone, lets avoid looping by
1906 		 * shortening the size of the delalloc range we're searching
1907 		 */
1908 		free_extent_state(cached_state);
1909 		cached_state = NULL;
1910 		if (!loops) {
1911 			max_bytes = PAGE_SIZE;
1912 			loops = 1;
1913 			goto again;
1914 		} else {
1915 			found = false;
1916 			goto out_failed;
1917 		}
1918 	}
1919 
1920 	/* step three, lock the state bits for the whole range */
1921 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1922 
1923 	/* then test to make sure it is all still delalloc */
1924 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1925 			     EXTENT_DELALLOC, 1, cached_state);
1926 	if (!ret) {
1927 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1928 				     &cached_state);
1929 		__unlock_for_delalloc(inode, locked_page,
1930 			      delalloc_start, delalloc_end);
1931 		cond_resched();
1932 		goto again;
1933 	}
1934 	free_extent_state(cached_state);
1935 	*start = delalloc_start;
1936 	*end = delalloc_end;
1937 out_failed:
1938 	return found;
1939 }
1940 
__process_pages_contig(struct address_space * mapping,struct page * locked_page,pgoff_t start_index,pgoff_t end_index,unsigned long page_ops,pgoff_t * index_ret)1941 static int __process_pages_contig(struct address_space *mapping,
1942 				  struct page *locked_page,
1943 				  pgoff_t start_index, pgoff_t end_index,
1944 				  unsigned long page_ops, pgoff_t *index_ret)
1945 {
1946 	unsigned long nr_pages = end_index - start_index + 1;
1947 	unsigned long pages_locked = 0;
1948 	pgoff_t index = start_index;
1949 	struct page *pages[16];
1950 	unsigned ret;
1951 	int err = 0;
1952 	int i;
1953 
1954 	if (page_ops & PAGE_LOCK) {
1955 		ASSERT(page_ops == PAGE_LOCK);
1956 		ASSERT(index_ret && *index_ret == start_index);
1957 	}
1958 
1959 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1960 		mapping_set_error(mapping, -EIO);
1961 
1962 	while (nr_pages > 0) {
1963 		ret = find_get_pages_contig(mapping, index,
1964 				     min_t(unsigned long,
1965 				     nr_pages, ARRAY_SIZE(pages)), pages);
1966 		if (ret == 0) {
1967 			/*
1968 			 * Only if we're going to lock these pages,
1969 			 * can we find nothing at @index.
1970 			 */
1971 			ASSERT(page_ops & PAGE_LOCK);
1972 			err = -EAGAIN;
1973 			goto out;
1974 		}
1975 
1976 		for (i = 0; i < ret; i++) {
1977 			if (page_ops & PAGE_SET_PRIVATE2)
1978 				SetPagePrivate2(pages[i]);
1979 
1980 			if (locked_page && pages[i] == locked_page) {
1981 				put_page(pages[i]);
1982 				pages_locked++;
1983 				continue;
1984 			}
1985 			if (page_ops & PAGE_CLEAR_DIRTY)
1986 				clear_page_dirty_for_io(pages[i]);
1987 			if (page_ops & PAGE_SET_WRITEBACK)
1988 				set_page_writeback(pages[i]);
1989 			if (page_ops & PAGE_SET_ERROR)
1990 				SetPageError(pages[i]);
1991 			if (page_ops & PAGE_END_WRITEBACK)
1992 				end_page_writeback(pages[i]);
1993 			if (page_ops & PAGE_UNLOCK)
1994 				unlock_page(pages[i]);
1995 			if (page_ops & PAGE_LOCK) {
1996 				lock_page(pages[i]);
1997 				if (!PageDirty(pages[i]) ||
1998 				    pages[i]->mapping != mapping) {
1999 					unlock_page(pages[i]);
2000 					for (; i < ret; i++)
2001 						put_page(pages[i]);
2002 					err = -EAGAIN;
2003 					goto out;
2004 				}
2005 			}
2006 			put_page(pages[i]);
2007 			pages_locked++;
2008 		}
2009 		nr_pages -= ret;
2010 		index += ret;
2011 		cond_resched();
2012 	}
2013 out:
2014 	if (err && index_ret)
2015 		*index_ret = start_index + pages_locked - 1;
2016 	return err;
2017 }
2018 
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,struct page * locked_page,unsigned clear_bits,unsigned long page_ops)2019 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2020 				  struct page *locked_page,
2021 				  unsigned clear_bits,
2022 				  unsigned long page_ops)
2023 {
2024 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2025 
2026 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2027 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2028 			       page_ops, NULL);
2029 }
2030 
2031 /*
2032  * count the number of bytes in the tree that have a given bit(s)
2033  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2034  * cached.  The total number found is returned.
2035  */
count_range_bits(struct extent_io_tree * tree,u64 * start,u64 search_end,u64 max_bytes,unsigned bits,int contig)2036 u64 count_range_bits(struct extent_io_tree *tree,
2037 		     u64 *start, u64 search_end, u64 max_bytes,
2038 		     unsigned bits, int contig)
2039 {
2040 	struct rb_node *node;
2041 	struct extent_state *state;
2042 	u64 cur_start = *start;
2043 	u64 total_bytes = 0;
2044 	u64 last = 0;
2045 	int found = 0;
2046 
2047 	if (WARN_ON(search_end <= cur_start))
2048 		return 0;
2049 
2050 	spin_lock(&tree->lock);
2051 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2052 		total_bytes = tree->dirty_bytes;
2053 		goto out;
2054 	}
2055 	/*
2056 	 * this search will find all the extents that end after
2057 	 * our range starts.
2058 	 */
2059 	node = tree_search(tree, cur_start);
2060 	if (!node)
2061 		goto out;
2062 
2063 	while (1) {
2064 		state = rb_entry(node, struct extent_state, rb_node);
2065 		if (state->start > search_end)
2066 			break;
2067 		if (contig && found && state->start > last + 1)
2068 			break;
2069 		if (state->end >= cur_start && (state->state & bits) == bits) {
2070 			total_bytes += min(search_end, state->end) + 1 -
2071 				       max(cur_start, state->start);
2072 			if (total_bytes >= max_bytes)
2073 				break;
2074 			if (!found) {
2075 				*start = max(cur_start, state->start);
2076 				found = 1;
2077 			}
2078 			last = state->end;
2079 		} else if (contig && found) {
2080 			break;
2081 		}
2082 		node = rb_next(node);
2083 		if (!node)
2084 			break;
2085 	}
2086 out:
2087 	spin_unlock(&tree->lock);
2088 	return total_bytes;
2089 }
2090 
2091 /*
2092  * set the private field for a given byte offset in the tree.  If there isn't
2093  * an extent_state there already, this does nothing.
2094  */
set_state_failrec(struct extent_io_tree * tree,u64 start,struct io_failure_record * failrec)2095 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2096 		      struct io_failure_record *failrec)
2097 {
2098 	struct rb_node *node;
2099 	struct extent_state *state;
2100 	int ret = 0;
2101 
2102 	spin_lock(&tree->lock);
2103 	/*
2104 	 * this search will find all the extents that end after
2105 	 * our range starts.
2106 	 */
2107 	node = tree_search(tree, start);
2108 	if (!node) {
2109 		ret = -ENOENT;
2110 		goto out;
2111 	}
2112 	state = rb_entry(node, struct extent_state, rb_node);
2113 	if (state->start != start) {
2114 		ret = -ENOENT;
2115 		goto out;
2116 	}
2117 	state->failrec = failrec;
2118 out:
2119 	spin_unlock(&tree->lock);
2120 	return ret;
2121 }
2122 
get_state_failrec(struct extent_io_tree * tree,u64 start)2123 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2124 {
2125 	struct rb_node *node;
2126 	struct extent_state *state;
2127 	struct io_failure_record *failrec;
2128 
2129 	spin_lock(&tree->lock);
2130 	/*
2131 	 * this search will find all the extents that end after
2132 	 * our range starts.
2133 	 */
2134 	node = tree_search(tree, start);
2135 	if (!node) {
2136 		failrec = ERR_PTR(-ENOENT);
2137 		goto out;
2138 	}
2139 	state = rb_entry(node, struct extent_state, rb_node);
2140 	if (state->start != start) {
2141 		failrec = ERR_PTR(-ENOENT);
2142 		goto out;
2143 	}
2144 
2145 	failrec = state->failrec;
2146 out:
2147 	spin_unlock(&tree->lock);
2148 	return failrec;
2149 }
2150 
2151 /*
2152  * searches a range in the state tree for a given mask.
2153  * If 'filled' == 1, this returns 1 only if every extent in the tree
2154  * has the bits set.  Otherwise, 1 is returned if any bit in the
2155  * range is found set.
2156  */
test_range_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int filled,struct extent_state * cached)2157 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2158 		   unsigned bits, int filled, struct extent_state *cached)
2159 {
2160 	struct extent_state *state = NULL;
2161 	struct rb_node *node;
2162 	int bitset = 0;
2163 
2164 	spin_lock(&tree->lock);
2165 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2166 	    cached->end > start)
2167 		node = &cached->rb_node;
2168 	else
2169 		node = tree_search(tree, start);
2170 	while (node && start <= end) {
2171 		state = rb_entry(node, struct extent_state, rb_node);
2172 
2173 		if (filled && state->start > start) {
2174 			bitset = 0;
2175 			break;
2176 		}
2177 
2178 		if (state->start > end)
2179 			break;
2180 
2181 		if (state->state & bits) {
2182 			bitset = 1;
2183 			if (!filled)
2184 				break;
2185 		} else if (filled) {
2186 			bitset = 0;
2187 			break;
2188 		}
2189 
2190 		if (state->end == (u64)-1)
2191 			break;
2192 
2193 		start = state->end + 1;
2194 		if (start > end)
2195 			break;
2196 		node = rb_next(node);
2197 		if (!node) {
2198 			if (filled)
2199 				bitset = 0;
2200 			break;
2201 		}
2202 	}
2203 	spin_unlock(&tree->lock);
2204 	return bitset;
2205 }
2206 
2207 /*
2208  * helper function to set a given page up to date if all the
2209  * extents in the tree for that page are up to date
2210  */
check_page_uptodate(struct extent_io_tree * tree,struct page * page)2211 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2212 {
2213 	u64 start = page_offset(page);
2214 	u64 end = start + PAGE_SIZE - 1;
2215 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2216 		SetPageUptodate(page);
2217 }
2218 
free_io_failure(struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,struct io_failure_record * rec)2219 int free_io_failure(struct extent_io_tree *failure_tree,
2220 		    struct extent_io_tree *io_tree,
2221 		    struct io_failure_record *rec)
2222 {
2223 	int ret;
2224 	int err = 0;
2225 
2226 	set_state_failrec(failure_tree, rec->start, NULL);
2227 	ret = clear_extent_bits(failure_tree, rec->start,
2228 				rec->start + rec->len - 1,
2229 				EXTENT_LOCKED | EXTENT_DIRTY);
2230 	if (ret)
2231 		err = ret;
2232 
2233 	ret = clear_extent_bits(io_tree, rec->start,
2234 				rec->start + rec->len - 1,
2235 				EXTENT_DAMAGED);
2236 	if (ret && !err)
2237 		err = ret;
2238 
2239 	kfree(rec);
2240 	return err;
2241 }
2242 
2243 /*
2244  * this bypasses the standard btrfs submit functions deliberately, as
2245  * the standard behavior is to write all copies in a raid setup. here we only
2246  * want to write the one bad copy. so we do the mapping for ourselves and issue
2247  * submit_bio directly.
2248  * to avoid any synchronization issues, wait for the data after writing, which
2249  * actually prevents the read that triggered the error from finishing.
2250  * currently, there can be no more than two copies of every data bit. thus,
2251  * exactly one rewrite is required.
2252  */
repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)2253 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2254 		      u64 length, u64 logical, struct page *page,
2255 		      unsigned int pg_offset, int mirror_num)
2256 {
2257 	struct bio *bio;
2258 	struct btrfs_device *dev;
2259 	u64 map_length = 0;
2260 	u64 sector;
2261 	struct btrfs_bio *bbio = NULL;
2262 	int ret;
2263 
2264 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2265 	BUG_ON(!mirror_num);
2266 
2267 	bio = btrfs_io_bio_alloc(1);
2268 	bio->bi_iter.bi_size = 0;
2269 	map_length = length;
2270 
2271 	/*
2272 	 * Avoid races with device replace and make sure our bbio has devices
2273 	 * associated to its stripes that don't go away while we are doing the
2274 	 * read repair operation.
2275 	 */
2276 	btrfs_bio_counter_inc_blocked(fs_info);
2277 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2278 		/*
2279 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2280 		 * to update all raid stripes, but here we just want to correct
2281 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2282 		 * stripe's dev and sector.
2283 		 */
2284 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2285 				      &map_length, &bbio, 0);
2286 		if (ret) {
2287 			btrfs_bio_counter_dec(fs_info);
2288 			bio_put(bio);
2289 			return -EIO;
2290 		}
2291 		ASSERT(bbio->mirror_num == 1);
2292 	} else {
2293 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2294 				      &map_length, &bbio, mirror_num);
2295 		if (ret) {
2296 			btrfs_bio_counter_dec(fs_info);
2297 			bio_put(bio);
2298 			return -EIO;
2299 		}
2300 		BUG_ON(mirror_num != bbio->mirror_num);
2301 	}
2302 
2303 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2304 	bio->bi_iter.bi_sector = sector;
2305 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2306 	btrfs_put_bbio(bbio);
2307 	if (!dev || !dev->bdev ||
2308 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2309 		btrfs_bio_counter_dec(fs_info);
2310 		bio_put(bio);
2311 		return -EIO;
2312 	}
2313 	bio_set_dev(bio, dev->bdev);
2314 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2315 	bio_add_page(bio, page, length, pg_offset);
2316 
2317 	if (btrfsic_submit_bio_wait(bio)) {
2318 		/* try to remap that extent elsewhere? */
2319 		btrfs_bio_counter_dec(fs_info);
2320 		bio_put(bio);
2321 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2322 		return -EIO;
2323 	}
2324 
2325 	btrfs_info_rl_in_rcu(fs_info,
2326 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2327 				  ino, start,
2328 				  rcu_str_deref(dev->name), sector);
2329 	btrfs_bio_counter_dec(fs_info);
2330 	bio_put(bio);
2331 	return 0;
2332 }
2333 
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)2334 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2335 {
2336 	struct btrfs_fs_info *fs_info = eb->fs_info;
2337 	u64 start = eb->start;
2338 	int i, num_pages = num_extent_pages(eb);
2339 	int ret = 0;
2340 
2341 	if (sb_rdonly(fs_info->sb))
2342 		return -EROFS;
2343 
2344 	for (i = 0; i < num_pages; i++) {
2345 		struct page *p = eb->pages[i];
2346 
2347 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2348 					start - page_offset(p), mirror_num);
2349 		if (ret)
2350 			break;
2351 		start += PAGE_SIZE;
2352 	}
2353 
2354 	return ret;
2355 }
2356 
2357 /*
2358  * each time an IO finishes, we do a fast check in the IO failure tree
2359  * to see if we need to process or clean up an io_failure_record
2360  */
clean_io_failure(struct btrfs_fs_info * fs_info,struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,u64 start,struct page * page,u64 ino,unsigned int pg_offset)2361 int clean_io_failure(struct btrfs_fs_info *fs_info,
2362 		     struct extent_io_tree *failure_tree,
2363 		     struct extent_io_tree *io_tree, u64 start,
2364 		     struct page *page, u64 ino, unsigned int pg_offset)
2365 {
2366 	u64 private;
2367 	struct io_failure_record *failrec;
2368 	struct extent_state *state;
2369 	int num_copies;
2370 	int ret;
2371 
2372 	private = 0;
2373 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2374 			       EXTENT_DIRTY, 0);
2375 	if (!ret)
2376 		return 0;
2377 
2378 	failrec = get_state_failrec(failure_tree, start);
2379 	if (IS_ERR(failrec))
2380 		return 0;
2381 
2382 	BUG_ON(!failrec->this_mirror);
2383 
2384 	if (failrec->in_validation) {
2385 		/* there was no real error, just free the record */
2386 		btrfs_debug(fs_info,
2387 			"clean_io_failure: freeing dummy error at %llu",
2388 			failrec->start);
2389 		goto out;
2390 	}
2391 	if (sb_rdonly(fs_info->sb))
2392 		goto out;
2393 
2394 	spin_lock(&io_tree->lock);
2395 	state = find_first_extent_bit_state(io_tree,
2396 					    failrec->start,
2397 					    EXTENT_LOCKED);
2398 	spin_unlock(&io_tree->lock);
2399 
2400 	if (state && state->start <= failrec->start &&
2401 	    state->end >= failrec->start + failrec->len - 1) {
2402 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2403 					      failrec->len);
2404 		if (num_copies > 1)  {
2405 			repair_io_failure(fs_info, ino, start, failrec->len,
2406 					  failrec->logical, page, pg_offset,
2407 					  failrec->failed_mirror);
2408 		}
2409 	}
2410 
2411 out:
2412 	free_io_failure(failure_tree, io_tree, failrec);
2413 
2414 	return 0;
2415 }
2416 
2417 /*
2418  * Can be called when
2419  * - hold extent lock
2420  * - under ordered extent
2421  * - the inode is freeing
2422  */
btrfs_free_io_failure_record(struct btrfs_inode * inode,u64 start,u64 end)2423 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2424 {
2425 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2426 	struct io_failure_record *failrec;
2427 	struct extent_state *state, *next;
2428 
2429 	if (RB_EMPTY_ROOT(&failure_tree->state))
2430 		return;
2431 
2432 	spin_lock(&failure_tree->lock);
2433 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2434 	while (state) {
2435 		if (state->start > end)
2436 			break;
2437 
2438 		ASSERT(state->end <= end);
2439 
2440 		next = next_state(state);
2441 
2442 		failrec = state->failrec;
2443 		free_extent_state(state);
2444 		kfree(failrec);
2445 
2446 		state = next;
2447 	}
2448 	spin_unlock(&failure_tree->lock);
2449 }
2450 
btrfs_get_io_failure_record(struct inode * inode,u64 start,u64 end)2451 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2452 							     u64 start, u64 end)
2453 {
2454 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2455 	struct io_failure_record *failrec;
2456 	struct extent_map *em;
2457 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2458 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2459 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2460 	int ret;
2461 	u64 logical;
2462 
2463 	failrec = get_state_failrec(failure_tree, start);
2464 	if (!IS_ERR(failrec)) {
2465 		btrfs_debug(fs_info,
2466 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2467 			failrec->logical, failrec->start, failrec->len,
2468 			failrec->in_validation);
2469 		/*
2470 		 * when data can be on disk more than twice, add to failrec here
2471 		 * (e.g. with a list for failed_mirror) to make
2472 		 * clean_io_failure() clean all those errors at once.
2473 		 */
2474 
2475 		return failrec;
2476 	}
2477 
2478 	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2479 	if (!failrec)
2480 		return ERR_PTR(-ENOMEM);
2481 
2482 	failrec->start = start;
2483 	failrec->len = end - start + 1;
2484 	failrec->this_mirror = 0;
2485 	failrec->bio_flags = 0;
2486 	failrec->in_validation = 0;
2487 
2488 	read_lock(&em_tree->lock);
2489 	em = lookup_extent_mapping(em_tree, start, failrec->len);
2490 	if (!em) {
2491 		read_unlock(&em_tree->lock);
2492 		kfree(failrec);
2493 		return ERR_PTR(-EIO);
2494 	}
2495 
2496 	if (em->start > start || em->start + em->len <= start) {
2497 		free_extent_map(em);
2498 		em = NULL;
2499 	}
2500 	read_unlock(&em_tree->lock);
2501 	if (!em) {
2502 		kfree(failrec);
2503 		return ERR_PTR(-EIO);
2504 	}
2505 
2506 	logical = start - em->start;
2507 	logical = em->block_start + logical;
2508 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2509 		logical = em->block_start;
2510 		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2511 		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2512 	}
2513 
2514 	btrfs_debug(fs_info,
2515 		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2516 		    logical, start, failrec->len);
2517 
2518 	failrec->logical = logical;
2519 	free_extent_map(em);
2520 
2521 	/* Set the bits in the private failure tree */
2522 	ret = set_extent_bits(failure_tree, start, end,
2523 			      EXTENT_LOCKED | EXTENT_DIRTY);
2524 	if (ret >= 0) {
2525 		ret = set_state_failrec(failure_tree, start, failrec);
2526 		/* Set the bits in the inode's tree */
2527 		ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2528 	} else if (ret < 0) {
2529 		kfree(failrec);
2530 		return ERR_PTR(ret);
2531 	}
2532 
2533 	return failrec;
2534 }
2535 
btrfs_check_repairable(struct inode * inode,bool needs_validation,struct io_failure_record * failrec,int failed_mirror)2536 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2537 				   struct io_failure_record *failrec,
2538 				   int failed_mirror)
2539 {
2540 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2541 	int num_copies;
2542 
2543 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2544 	if (num_copies == 1) {
2545 		/*
2546 		 * we only have a single copy of the data, so don't bother with
2547 		 * all the retry and error correction code that follows. no
2548 		 * matter what the error is, it is very likely to persist.
2549 		 */
2550 		btrfs_debug(fs_info,
2551 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2552 			num_copies, failrec->this_mirror, failed_mirror);
2553 		return false;
2554 	}
2555 
2556 	/*
2557 	 * there are two premises:
2558 	 *	a) deliver good data to the caller
2559 	 *	b) correct the bad sectors on disk
2560 	 */
2561 	if (needs_validation) {
2562 		/*
2563 		 * to fulfill b), we need to know the exact failing sectors, as
2564 		 * we don't want to rewrite any more than the failed ones. thus,
2565 		 * we need separate read requests for the failed bio
2566 		 *
2567 		 * if the following BUG_ON triggers, our validation request got
2568 		 * merged. we need separate requests for our algorithm to work.
2569 		 */
2570 		BUG_ON(failrec->in_validation);
2571 		failrec->in_validation = 1;
2572 		failrec->this_mirror = failed_mirror;
2573 	} else {
2574 		/*
2575 		 * we're ready to fulfill a) and b) alongside. get a good copy
2576 		 * of the failed sector and if we succeed, we have setup
2577 		 * everything for repair_io_failure to do the rest for us.
2578 		 */
2579 		if (failrec->in_validation) {
2580 			BUG_ON(failrec->this_mirror != failed_mirror);
2581 			failrec->in_validation = 0;
2582 			failrec->this_mirror = 0;
2583 		}
2584 		failrec->failed_mirror = failed_mirror;
2585 		failrec->this_mirror++;
2586 		if (failrec->this_mirror == failed_mirror)
2587 			failrec->this_mirror++;
2588 	}
2589 
2590 	if (failrec->this_mirror > num_copies) {
2591 		btrfs_debug(fs_info,
2592 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2593 			num_copies, failrec->this_mirror, failed_mirror);
2594 		return false;
2595 	}
2596 
2597 	return true;
2598 }
2599 
btrfs_io_needs_validation(struct inode * inode,struct bio * bio)2600 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2601 {
2602 	u64 len = 0;
2603 	const u32 blocksize = inode->i_sb->s_blocksize;
2604 
2605 	/*
2606 	 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2607 	 * I/O error. In this case, we already know exactly which sector was
2608 	 * bad, so we don't need to validate.
2609 	 */
2610 	if (bio->bi_status == BLK_STS_OK)
2611 		return false;
2612 
2613 	/*
2614 	 * We need to validate each sector individually if the failed I/O was
2615 	 * for multiple sectors.
2616 	 *
2617 	 * There are a few possible bios that can end up here:
2618 	 * 1. A buffered read bio, which is not cloned.
2619 	 * 2. A direct I/O read bio, which is cloned.
2620 	 * 3. A (buffered or direct) repair bio, which is not cloned.
2621 	 *
2622 	 * For cloned bios (case 2), we can get the size from
2623 	 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2624 	 * it from the bvecs.
2625 	 */
2626 	if (bio_flagged(bio, BIO_CLONED)) {
2627 		if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2628 			return true;
2629 	} else {
2630 		struct bio_vec *bvec;
2631 		int i;
2632 
2633 		bio_for_each_bvec_all(bvec, bio, i) {
2634 			len += bvec->bv_len;
2635 			if (len > blocksize)
2636 				return true;
2637 		}
2638 	}
2639 	return false;
2640 }
2641 
btrfs_submit_read_repair(struct inode * inode,struct bio * failed_bio,u64 phy_offset,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,submit_bio_hook_t * submit_bio_hook)2642 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2643 				      struct bio *failed_bio, u64 phy_offset,
2644 				      struct page *page, unsigned int pgoff,
2645 				      u64 start, u64 end, int failed_mirror,
2646 				      submit_bio_hook_t *submit_bio_hook)
2647 {
2648 	struct io_failure_record *failrec;
2649 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2650 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2651 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2652 	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2653 	const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2654 	bool need_validation;
2655 	struct bio *repair_bio;
2656 	struct btrfs_io_bio *repair_io_bio;
2657 	blk_status_t status;
2658 
2659 	btrfs_debug(fs_info,
2660 		   "repair read error: read error at %llu", start);
2661 
2662 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2663 
2664 	failrec = btrfs_get_io_failure_record(inode, start, end);
2665 	if (IS_ERR(failrec))
2666 		return errno_to_blk_status(PTR_ERR(failrec));
2667 
2668 	need_validation = btrfs_io_needs_validation(inode, failed_bio);
2669 
2670 	if (!btrfs_check_repairable(inode, need_validation, failrec,
2671 				    failed_mirror)) {
2672 		free_io_failure(failure_tree, tree, failrec);
2673 		return BLK_STS_IOERR;
2674 	}
2675 
2676 	repair_bio = btrfs_io_bio_alloc(1);
2677 	repair_io_bio = btrfs_io_bio(repair_bio);
2678 	repair_bio->bi_opf = REQ_OP_READ;
2679 	if (need_validation)
2680 		repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2681 	repair_bio->bi_end_io = failed_bio->bi_end_io;
2682 	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2683 	repair_bio->bi_private = failed_bio->bi_private;
2684 
2685 	if (failed_io_bio->csum) {
2686 		const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2687 
2688 		repair_io_bio->csum = repair_io_bio->csum_inline;
2689 		memcpy(repair_io_bio->csum,
2690 		       failed_io_bio->csum + csum_size * icsum, csum_size);
2691 	}
2692 
2693 	bio_add_page(repair_bio, page, failrec->len, pgoff);
2694 	repair_io_bio->logical = failrec->start;
2695 	repair_io_bio->iter = repair_bio->bi_iter;
2696 
2697 	btrfs_debug(btrfs_sb(inode->i_sb),
2698 "repair read error: submitting new read to mirror %d, in_validation=%d",
2699 		    failrec->this_mirror, failrec->in_validation);
2700 
2701 	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2702 				 failrec->bio_flags);
2703 	if (status) {
2704 		free_io_failure(failure_tree, tree, failrec);
2705 		bio_put(repair_bio);
2706 	}
2707 	return status;
2708 }
2709 
2710 /* lots and lots of room for performance fixes in the end_bio funcs */
2711 
end_extent_writepage(struct page * page,int err,u64 start,u64 end)2712 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2713 {
2714 	int uptodate = (err == 0);
2715 	int ret = 0;
2716 
2717 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2718 
2719 	if (!uptodate) {
2720 		ClearPageUptodate(page);
2721 		SetPageError(page);
2722 		ret = err < 0 ? err : -EIO;
2723 		mapping_set_error(page->mapping, ret);
2724 	}
2725 }
2726 
2727 /*
2728  * after a writepage IO is done, we need to:
2729  * clear the uptodate bits on error
2730  * clear the writeback bits in the extent tree for this IO
2731  * end_page_writeback if the page has no more pending IO
2732  *
2733  * Scheduling is not allowed, so the extent state tree is expected
2734  * to have one and only one object corresponding to this IO.
2735  */
end_bio_extent_writepage(struct bio * bio)2736 static void end_bio_extent_writepage(struct bio *bio)
2737 {
2738 	int error = blk_status_to_errno(bio->bi_status);
2739 	struct bio_vec *bvec;
2740 	u64 start;
2741 	u64 end;
2742 	struct bvec_iter_all iter_all;
2743 
2744 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2745 	bio_for_each_segment_all(bvec, bio, iter_all) {
2746 		struct page *page = bvec->bv_page;
2747 		struct inode *inode = page->mapping->host;
2748 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2749 
2750 		/* We always issue full-page reads, but if some block
2751 		 * in a page fails to read, blk_update_request() will
2752 		 * advance bv_offset and adjust bv_len to compensate.
2753 		 * Print a warning for nonzero offsets, and an error
2754 		 * if they don't add up to a full page.  */
2755 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2756 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2757 				btrfs_err(fs_info,
2758 				   "partial page write in btrfs with offset %u and length %u",
2759 					bvec->bv_offset, bvec->bv_len);
2760 			else
2761 				btrfs_info(fs_info,
2762 				   "incomplete page write in btrfs with offset %u and length %u",
2763 					bvec->bv_offset, bvec->bv_len);
2764 		}
2765 
2766 		start = page_offset(page);
2767 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2768 
2769 		end_extent_writepage(page, error, start, end);
2770 		end_page_writeback(page);
2771 	}
2772 
2773 	bio_put(bio);
2774 }
2775 
2776 static void
endio_readpage_release_extent(struct extent_io_tree * tree,u64 start,u64 len,int uptodate)2777 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2778 			      int uptodate)
2779 {
2780 	struct extent_state *cached = NULL;
2781 	u64 end = start + len - 1;
2782 
2783 	if (uptodate && tree->track_uptodate)
2784 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2785 	unlock_extent_cached_atomic(tree, start, end, &cached);
2786 }
2787 
2788 /*
2789  * after a readpage IO is done, we need to:
2790  * clear the uptodate bits on error
2791  * set the uptodate bits if things worked
2792  * set the page up to date if all extents in the tree are uptodate
2793  * clear the lock bit in the extent tree
2794  * unlock the page if there are no other extents locked for it
2795  *
2796  * Scheduling is not allowed, so the extent state tree is expected
2797  * to have one and only one object corresponding to this IO.
2798  */
end_bio_extent_readpage(struct bio * bio)2799 static void end_bio_extent_readpage(struct bio *bio)
2800 {
2801 	struct bio_vec *bvec;
2802 	int uptodate = !bio->bi_status;
2803 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2804 	struct extent_io_tree *tree, *failure_tree;
2805 	u64 offset = 0;
2806 	u64 start;
2807 	u64 end;
2808 	u64 len;
2809 	u64 extent_start = 0;
2810 	u64 extent_len = 0;
2811 	int mirror;
2812 	int ret;
2813 	struct bvec_iter_all iter_all;
2814 
2815 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2816 	bio_for_each_segment_all(bvec, bio, iter_all) {
2817 		struct page *page = bvec->bv_page;
2818 		struct inode *inode = page->mapping->host;
2819 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820 
2821 		btrfs_debug(fs_info,
2822 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2823 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2824 			io_bio->mirror_num);
2825 		tree = &BTRFS_I(inode)->io_tree;
2826 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2827 
2828 		/* We always issue full-page reads, but if some block
2829 		 * in a page fails to read, blk_update_request() will
2830 		 * advance bv_offset and adjust bv_len to compensate.
2831 		 * Print a warning for nonzero offsets, and an error
2832 		 * if they don't add up to a full page.  */
2833 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2834 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2835 				btrfs_err(fs_info,
2836 					"partial page read in btrfs with offset %u and length %u",
2837 					bvec->bv_offset, bvec->bv_len);
2838 			else
2839 				btrfs_info(fs_info,
2840 					"incomplete page read in btrfs with offset %u and length %u",
2841 					bvec->bv_offset, bvec->bv_len);
2842 		}
2843 
2844 		start = page_offset(page);
2845 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2846 		len = bvec->bv_len;
2847 
2848 		mirror = io_bio->mirror_num;
2849 		if (likely(uptodate)) {
2850 			if (is_data_inode(inode))
2851 				ret = btrfs_verify_data_csum(io_bio, offset, page,
2852 							     start, end, mirror);
2853 			else
2854 				ret = btrfs_validate_metadata_buffer(io_bio,
2855 					offset, page, start, end, mirror);
2856 			if (ret)
2857 				uptodate = 0;
2858 			else
2859 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2860 						 failure_tree, tree, start,
2861 						 page,
2862 						 btrfs_ino(BTRFS_I(inode)), 0);
2863 		}
2864 
2865 		if (likely(uptodate))
2866 			goto readpage_ok;
2867 
2868 		if (is_data_inode(inode)) {
2869 
2870 			/*
2871 			 * The generic bio_readpage_error handles errors the
2872 			 * following way: If possible, new read requests are
2873 			 * created and submitted and will end up in
2874 			 * end_bio_extent_readpage as well (if we're lucky,
2875 			 * not in the !uptodate case). In that case it returns
2876 			 * 0 and we just go on with the next page in our bio.
2877 			 * If it can't handle the error it will return -EIO and
2878 			 * we remain responsible for that page.
2879 			 */
2880 			if (!btrfs_submit_read_repair(inode, bio, offset, page,
2881 						start - page_offset(page),
2882 						start, end, mirror,
2883 						btrfs_submit_data_bio)) {
2884 				uptodate = !bio->bi_status;
2885 				offset += len;
2886 				continue;
2887 			}
2888 		} else {
2889 			struct extent_buffer *eb;
2890 
2891 			eb = (struct extent_buffer *)page->private;
2892 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2893 			eb->read_mirror = mirror;
2894 			atomic_dec(&eb->io_pages);
2895 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2896 					       &eb->bflags))
2897 				btree_readahead_hook(eb, -EIO);
2898 		}
2899 readpage_ok:
2900 		if (likely(uptodate)) {
2901 			loff_t i_size = i_size_read(inode);
2902 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2903 			unsigned off;
2904 
2905 			/* Zero out the end if this page straddles i_size */
2906 			off = offset_in_page(i_size);
2907 			if (page->index == end_index && off)
2908 				zero_user_segment(page, off, PAGE_SIZE);
2909 			SetPageUptodate(page);
2910 		} else {
2911 			ClearPageUptodate(page);
2912 			SetPageError(page);
2913 		}
2914 		unlock_page(page);
2915 		offset += len;
2916 
2917 		if (unlikely(!uptodate)) {
2918 			if (extent_len) {
2919 				endio_readpage_release_extent(tree,
2920 							      extent_start,
2921 							      extent_len, 1);
2922 				extent_start = 0;
2923 				extent_len = 0;
2924 			}
2925 			endio_readpage_release_extent(tree, start,
2926 						      end - start + 1, 0);
2927 		} else if (!extent_len) {
2928 			extent_start = start;
2929 			extent_len = end + 1 - start;
2930 		} else if (extent_start + extent_len == start) {
2931 			extent_len += end + 1 - start;
2932 		} else {
2933 			endio_readpage_release_extent(tree, extent_start,
2934 						      extent_len, uptodate);
2935 			extent_start = start;
2936 			extent_len = end + 1 - start;
2937 		}
2938 	}
2939 
2940 	if (extent_len)
2941 		endio_readpage_release_extent(tree, extent_start, extent_len,
2942 					      uptodate);
2943 	btrfs_io_bio_free_csum(io_bio);
2944 	bio_put(bio);
2945 }
2946 
2947 /*
2948  * Initialize the members up to but not including 'bio'. Use after allocating a
2949  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2950  * 'bio' because use of __GFP_ZERO is not supported.
2951  */
btrfs_io_bio_init(struct btrfs_io_bio * btrfs_bio)2952 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2953 {
2954 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2955 }
2956 
2957 /*
2958  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2959  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2960  * for the appropriate container_of magic
2961  */
btrfs_bio_alloc(u64 first_byte)2962 struct bio *btrfs_bio_alloc(u64 first_byte)
2963 {
2964 	struct bio *bio;
2965 
2966 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2967 	bio->bi_iter.bi_sector = first_byte >> 9;
2968 	btrfs_io_bio_init(btrfs_io_bio(bio));
2969 	return bio;
2970 }
2971 
btrfs_bio_clone(struct bio * bio)2972 struct bio *btrfs_bio_clone(struct bio *bio)
2973 {
2974 	struct btrfs_io_bio *btrfs_bio;
2975 	struct bio *new;
2976 
2977 	/* Bio allocation backed by a bioset does not fail */
2978 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2979 	btrfs_bio = btrfs_io_bio(new);
2980 	btrfs_io_bio_init(btrfs_bio);
2981 	btrfs_bio->iter = bio->bi_iter;
2982 	return new;
2983 }
2984 
btrfs_io_bio_alloc(unsigned int nr_iovecs)2985 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2986 {
2987 	struct bio *bio;
2988 
2989 	/* Bio allocation backed by a bioset does not fail */
2990 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2991 	btrfs_io_bio_init(btrfs_io_bio(bio));
2992 	return bio;
2993 }
2994 
btrfs_bio_clone_partial(struct bio * orig,int offset,int size)2995 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2996 {
2997 	struct bio *bio;
2998 	struct btrfs_io_bio *btrfs_bio;
2999 
3000 	/* this will never fail when it's backed by a bioset */
3001 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3002 	ASSERT(bio);
3003 
3004 	btrfs_bio = btrfs_io_bio(bio);
3005 	btrfs_io_bio_init(btrfs_bio);
3006 
3007 	bio_trim(bio, offset >> 9, size >> 9);
3008 	btrfs_bio->iter = bio->bi_iter;
3009 	return bio;
3010 }
3011 
3012 /*
3013  * @opf:	bio REQ_OP_* and REQ_* flags as one value
3014  * @wbc:	optional writeback control for io accounting
3015  * @page:	page to add to the bio
3016  * @pg_offset:	offset of the new bio or to check whether we are adding
3017  *              a contiguous page to the previous one
3018  * @size:	portion of page that we want to write
3019  * @offset:	starting offset in the page
3020  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3021  * @end_io_func:     end_io callback for new bio
3022  * @mirror_num:	     desired mirror to read/write
3023  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3024  * @bio_flags:	flags of the current bio to see if we can merge them
3025  */
submit_extent_page(unsigned int opf,struct writeback_control * wbc,struct page * page,u64 offset,size_t size,unsigned long pg_offset,struct bio ** bio_ret,bio_end_io_t end_io_func,int mirror_num,unsigned long prev_bio_flags,unsigned long bio_flags,bool force_bio_submit)3026 static int submit_extent_page(unsigned int opf,
3027 			      struct writeback_control *wbc,
3028 			      struct page *page, u64 offset,
3029 			      size_t size, unsigned long pg_offset,
3030 			      struct bio **bio_ret,
3031 			      bio_end_io_t end_io_func,
3032 			      int mirror_num,
3033 			      unsigned long prev_bio_flags,
3034 			      unsigned long bio_flags,
3035 			      bool force_bio_submit)
3036 {
3037 	int ret = 0;
3038 	struct bio *bio;
3039 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
3040 	sector_t sector = offset >> 9;
3041 	struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3042 
3043 	ASSERT(bio_ret);
3044 
3045 	if (*bio_ret) {
3046 		bool contig;
3047 		bool can_merge = true;
3048 
3049 		bio = *bio_ret;
3050 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3051 			contig = bio->bi_iter.bi_sector == sector;
3052 		else
3053 			contig = bio_end_sector(bio) == sector;
3054 
3055 		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3056 			can_merge = false;
3057 
3058 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3059 		    force_bio_submit ||
3060 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3061 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3062 			if (ret < 0) {
3063 				*bio_ret = NULL;
3064 				return ret;
3065 			}
3066 			bio = NULL;
3067 		} else {
3068 			if (wbc)
3069 				wbc_account_cgroup_owner(wbc, page, page_size);
3070 			return 0;
3071 		}
3072 	}
3073 
3074 	bio = btrfs_bio_alloc(offset);
3075 	bio_add_page(bio, page, page_size, pg_offset);
3076 	bio->bi_end_io = end_io_func;
3077 	bio->bi_private = tree;
3078 	bio->bi_write_hint = page->mapping->host->i_write_hint;
3079 	bio->bi_opf = opf;
3080 	if (wbc) {
3081 		struct block_device *bdev;
3082 
3083 		bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3084 		bio_set_dev(bio, bdev);
3085 		wbc_init_bio(wbc, bio);
3086 		wbc_account_cgroup_owner(wbc, page, page_size);
3087 	}
3088 
3089 	*bio_ret = bio;
3090 
3091 	return ret;
3092 }
3093 
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page)3094 static void attach_extent_buffer_page(struct extent_buffer *eb,
3095 				      struct page *page)
3096 {
3097 	if (!PagePrivate(page))
3098 		attach_page_private(page, eb);
3099 	else
3100 		WARN_ON(page->private != (unsigned long)eb);
3101 }
3102 
set_page_extent_mapped(struct page * page)3103 void set_page_extent_mapped(struct page *page)
3104 {
3105 	if (!PagePrivate(page))
3106 		attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3107 }
3108 
3109 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,struct extent_map ** em_cached)3110 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3111 		 u64 start, u64 len, struct extent_map **em_cached)
3112 {
3113 	struct extent_map *em;
3114 
3115 	if (em_cached && *em_cached) {
3116 		em = *em_cached;
3117 		if (extent_map_in_tree(em) && start >= em->start &&
3118 		    start < extent_map_end(em)) {
3119 			refcount_inc(&em->refs);
3120 			return em;
3121 		}
3122 
3123 		free_extent_map(em);
3124 		*em_cached = NULL;
3125 	}
3126 
3127 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3128 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3129 		BUG_ON(*em_cached);
3130 		refcount_inc(&em->refs);
3131 		*em_cached = em;
3132 	}
3133 	return em;
3134 }
3135 /*
3136  * basic readpage implementation.  Locked extent state structs are inserted
3137  * into the tree that are removed when the IO is done (by the end_io
3138  * handlers)
3139  * XXX JDM: This needs looking at to ensure proper page locking
3140  * return 0 on success, otherwise return error
3141  */
btrfs_do_readpage(struct page * page,struct extent_map ** em_cached,struct bio ** bio,unsigned long * bio_flags,unsigned int read_flags,u64 * prev_em_start)3142 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3143 		      struct bio **bio, unsigned long *bio_flags,
3144 		      unsigned int read_flags, u64 *prev_em_start)
3145 {
3146 	struct inode *inode = page->mapping->host;
3147 	u64 start = page_offset(page);
3148 	const u64 end = start + PAGE_SIZE - 1;
3149 	u64 cur = start;
3150 	u64 extent_offset;
3151 	u64 last_byte = i_size_read(inode);
3152 	u64 block_start;
3153 	u64 cur_end;
3154 	struct extent_map *em;
3155 	int ret = 0;
3156 	int nr = 0;
3157 	size_t pg_offset = 0;
3158 	size_t iosize;
3159 	size_t disk_io_size;
3160 	size_t blocksize = inode->i_sb->s_blocksize;
3161 	unsigned long this_bio_flag = 0;
3162 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3163 
3164 	set_page_extent_mapped(page);
3165 
3166 	if (!PageUptodate(page)) {
3167 		if (cleancache_get_page(page) == 0) {
3168 			BUG_ON(blocksize != PAGE_SIZE);
3169 			unlock_extent(tree, start, end);
3170 			goto out;
3171 		}
3172 	}
3173 
3174 	if (page->index == last_byte >> PAGE_SHIFT) {
3175 		char *userpage;
3176 		size_t zero_offset = offset_in_page(last_byte);
3177 
3178 		if (zero_offset) {
3179 			iosize = PAGE_SIZE - zero_offset;
3180 			userpage = kmap_atomic(page);
3181 			memset(userpage + zero_offset, 0, iosize);
3182 			flush_dcache_page(page);
3183 			kunmap_atomic(userpage);
3184 		}
3185 	}
3186 	while (cur <= end) {
3187 		bool force_bio_submit = false;
3188 		u64 offset;
3189 
3190 		if (cur >= last_byte) {
3191 			char *userpage;
3192 			struct extent_state *cached = NULL;
3193 
3194 			iosize = PAGE_SIZE - pg_offset;
3195 			userpage = kmap_atomic(page);
3196 			memset(userpage + pg_offset, 0, iosize);
3197 			flush_dcache_page(page);
3198 			kunmap_atomic(userpage);
3199 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3200 					    &cached, GFP_NOFS);
3201 			unlock_extent_cached(tree, cur,
3202 					     cur + iosize - 1, &cached);
3203 			break;
3204 		}
3205 		em = __get_extent_map(inode, page, pg_offset, cur,
3206 				      end - cur + 1, em_cached);
3207 		if (IS_ERR_OR_NULL(em)) {
3208 			SetPageError(page);
3209 			unlock_extent(tree, cur, end);
3210 			break;
3211 		}
3212 		extent_offset = cur - em->start;
3213 		BUG_ON(extent_map_end(em) <= cur);
3214 		BUG_ON(end < cur);
3215 
3216 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3217 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3218 			extent_set_compress_type(&this_bio_flag,
3219 						 em->compress_type);
3220 		}
3221 
3222 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3223 		cur_end = min(extent_map_end(em) - 1, end);
3224 		iosize = ALIGN(iosize, blocksize);
3225 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3226 			disk_io_size = em->block_len;
3227 			offset = em->block_start;
3228 		} else {
3229 			offset = em->block_start + extent_offset;
3230 			disk_io_size = iosize;
3231 		}
3232 		block_start = em->block_start;
3233 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3234 			block_start = EXTENT_MAP_HOLE;
3235 
3236 		/*
3237 		 * If we have a file range that points to a compressed extent
3238 		 * and it's followed by a consecutive file range that points
3239 		 * to the same compressed extent (possibly with a different
3240 		 * offset and/or length, so it either points to the whole extent
3241 		 * or only part of it), we must make sure we do not submit a
3242 		 * single bio to populate the pages for the 2 ranges because
3243 		 * this makes the compressed extent read zero out the pages
3244 		 * belonging to the 2nd range. Imagine the following scenario:
3245 		 *
3246 		 *  File layout
3247 		 *  [0 - 8K]                     [8K - 24K]
3248 		 *    |                               |
3249 		 *    |                               |
3250 		 * points to extent X,         points to extent X,
3251 		 * offset 4K, length of 8K     offset 0, length 16K
3252 		 *
3253 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3254 		 *
3255 		 * If the bio to read the compressed extent covers both ranges,
3256 		 * it will decompress extent X into the pages belonging to the
3257 		 * first range and then it will stop, zeroing out the remaining
3258 		 * pages that belong to the other range that points to extent X.
3259 		 * So here we make sure we submit 2 bios, one for the first
3260 		 * range and another one for the third range. Both will target
3261 		 * the same physical extent from disk, but we can't currently
3262 		 * make the compressed bio endio callback populate the pages
3263 		 * for both ranges because each compressed bio is tightly
3264 		 * coupled with a single extent map, and each range can have
3265 		 * an extent map with a different offset value relative to the
3266 		 * uncompressed data of our extent and different lengths. This
3267 		 * is a corner case so we prioritize correctness over
3268 		 * non-optimal behavior (submitting 2 bios for the same extent).
3269 		 */
3270 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3271 		    prev_em_start && *prev_em_start != (u64)-1 &&
3272 		    *prev_em_start != em->start)
3273 			force_bio_submit = true;
3274 
3275 		if (prev_em_start)
3276 			*prev_em_start = em->start;
3277 
3278 		free_extent_map(em);
3279 		em = NULL;
3280 
3281 		/* we've found a hole, just zero and go on */
3282 		if (block_start == EXTENT_MAP_HOLE) {
3283 			char *userpage;
3284 			struct extent_state *cached = NULL;
3285 
3286 			userpage = kmap_atomic(page);
3287 			memset(userpage + pg_offset, 0, iosize);
3288 			flush_dcache_page(page);
3289 			kunmap_atomic(userpage);
3290 
3291 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3292 					    &cached, GFP_NOFS);
3293 			unlock_extent_cached(tree, cur,
3294 					     cur + iosize - 1, &cached);
3295 			cur = cur + iosize;
3296 			pg_offset += iosize;
3297 			continue;
3298 		}
3299 		/* the get_extent function already copied into the page */
3300 		if (test_range_bit(tree, cur, cur_end,
3301 				   EXTENT_UPTODATE, 1, NULL)) {
3302 			check_page_uptodate(tree, page);
3303 			unlock_extent(tree, cur, cur + iosize - 1);
3304 			cur = cur + iosize;
3305 			pg_offset += iosize;
3306 			continue;
3307 		}
3308 		/* we have an inline extent but it didn't get marked up
3309 		 * to date.  Error out
3310 		 */
3311 		if (block_start == EXTENT_MAP_INLINE) {
3312 			SetPageError(page);
3313 			unlock_extent(tree, cur, cur + iosize - 1);
3314 			cur = cur + iosize;
3315 			pg_offset += iosize;
3316 			continue;
3317 		}
3318 
3319 		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3320 					 page, offset, disk_io_size,
3321 					 pg_offset, bio,
3322 					 end_bio_extent_readpage, 0,
3323 					 *bio_flags,
3324 					 this_bio_flag,
3325 					 force_bio_submit);
3326 		if (!ret) {
3327 			nr++;
3328 			*bio_flags = this_bio_flag;
3329 		} else {
3330 			SetPageError(page);
3331 			unlock_extent(tree, cur, cur + iosize - 1);
3332 			goto out;
3333 		}
3334 		cur = cur + iosize;
3335 		pg_offset += iosize;
3336 	}
3337 out:
3338 	if (!nr) {
3339 		if (!PageError(page))
3340 			SetPageUptodate(page);
3341 		unlock_page(page);
3342 	}
3343 	return ret;
3344 }
3345 
contiguous_readpages(struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct bio ** bio,unsigned long * bio_flags,u64 * prev_em_start)3346 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3347 					     u64 start, u64 end,
3348 					     struct extent_map **em_cached,
3349 					     struct bio **bio,
3350 					     unsigned long *bio_flags,
3351 					     u64 *prev_em_start)
3352 {
3353 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3354 	int index;
3355 
3356 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3357 
3358 	for (index = 0; index < nr_pages; index++) {
3359 		btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
3360 				  REQ_RAHEAD, prev_em_start);
3361 		put_page(pages[index]);
3362 	}
3363 }
3364 
update_nr_written(struct writeback_control * wbc,unsigned long nr_written)3365 static void update_nr_written(struct writeback_control *wbc,
3366 			      unsigned long nr_written)
3367 {
3368 	wbc->nr_to_write -= nr_written;
3369 }
3370 
3371 /*
3372  * helper for __extent_writepage, doing all of the delayed allocation setup.
3373  *
3374  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3375  * to write the page (copy into inline extent).  In this case the IO has
3376  * been started and the page is already unlocked.
3377  *
3378  * This returns 0 if all went well (page still locked)
3379  * This returns < 0 if there were errors (page still locked)
3380  */
writepage_delalloc(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc,u64 delalloc_start,unsigned long * nr_written)3381 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3382 		struct page *page, struct writeback_control *wbc,
3383 		u64 delalloc_start, unsigned long *nr_written)
3384 {
3385 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3386 	bool found;
3387 	u64 delalloc_to_write = 0;
3388 	u64 delalloc_end = 0;
3389 	int ret;
3390 	int page_started = 0;
3391 
3392 
3393 	while (delalloc_end < page_end) {
3394 		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3395 					       &delalloc_start,
3396 					       &delalloc_end);
3397 		if (!found) {
3398 			delalloc_start = delalloc_end + 1;
3399 			continue;
3400 		}
3401 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3402 				delalloc_end, &page_started, nr_written, wbc);
3403 		if (ret) {
3404 			SetPageError(page);
3405 			/*
3406 			 * btrfs_run_delalloc_range should return < 0 for error
3407 			 * but just in case, we use > 0 here meaning the IO is
3408 			 * started, so we don't want to return > 0 unless
3409 			 * things are going well.
3410 			 */
3411 			return ret < 0 ? ret : -EIO;
3412 		}
3413 		/*
3414 		 * delalloc_end is already one less than the total length, so
3415 		 * we don't subtract one from PAGE_SIZE
3416 		 */
3417 		delalloc_to_write += (delalloc_end - delalloc_start +
3418 				      PAGE_SIZE) >> PAGE_SHIFT;
3419 		delalloc_start = delalloc_end + 1;
3420 	}
3421 	if (wbc->nr_to_write < delalloc_to_write) {
3422 		int thresh = 8192;
3423 
3424 		if (delalloc_to_write < thresh * 2)
3425 			thresh = delalloc_to_write;
3426 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3427 					 thresh);
3428 	}
3429 
3430 	/* did the fill delalloc function already unlock and start
3431 	 * the IO?
3432 	 */
3433 	if (page_started) {
3434 		/*
3435 		 * we've unlocked the page, so we can't update
3436 		 * the mapping's writeback index, just update
3437 		 * nr_to_write.
3438 		 */
3439 		wbc->nr_to_write -= *nr_written;
3440 		return 1;
3441 	}
3442 
3443 	return 0;
3444 }
3445 
3446 /*
3447  * helper for __extent_writepage.  This calls the writepage start hooks,
3448  * and does the loop to map the page into extents and bios.
3449  *
3450  * We return 1 if the IO is started and the page is unlocked,
3451  * 0 if all went well (page still locked)
3452  * < 0 if there were errors (page still locked)
3453  */
__extent_writepage_io(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,unsigned long nr_written,int * nr_ret)3454 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3455 				 struct page *page,
3456 				 struct writeback_control *wbc,
3457 				 struct extent_page_data *epd,
3458 				 loff_t i_size,
3459 				 unsigned long nr_written,
3460 				 int *nr_ret)
3461 {
3462 	struct extent_io_tree *tree = &inode->io_tree;
3463 	u64 start = page_offset(page);
3464 	u64 page_end = start + PAGE_SIZE - 1;
3465 	u64 end;
3466 	u64 cur = start;
3467 	u64 extent_offset;
3468 	u64 block_start;
3469 	u64 iosize;
3470 	struct extent_map *em;
3471 	size_t pg_offset = 0;
3472 	size_t blocksize;
3473 	int ret = 0;
3474 	int nr = 0;
3475 	const unsigned int write_flags = wbc_to_write_flags(wbc);
3476 	bool compressed;
3477 
3478 	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3479 	if (ret) {
3480 		/* Fixup worker will requeue */
3481 		redirty_page_for_writepage(wbc, page);
3482 		update_nr_written(wbc, nr_written);
3483 		unlock_page(page);
3484 		return 1;
3485 	}
3486 
3487 	/*
3488 	 * we don't want to touch the inode after unlocking the page,
3489 	 * so we update the mapping writeback index now
3490 	 */
3491 	update_nr_written(wbc, nr_written + 1);
3492 
3493 	end = page_end;
3494 	blocksize = inode->vfs_inode.i_sb->s_blocksize;
3495 
3496 	while (cur <= end) {
3497 		u64 em_end;
3498 		u64 offset;
3499 
3500 		if (cur >= i_size) {
3501 			btrfs_writepage_endio_finish_ordered(page, cur,
3502 							     page_end, 1);
3503 			break;
3504 		}
3505 		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3506 		if (IS_ERR_OR_NULL(em)) {
3507 			SetPageError(page);
3508 			ret = PTR_ERR_OR_ZERO(em);
3509 			break;
3510 		}
3511 
3512 		extent_offset = cur - em->start;
3513 		em_end = extent_map_end(em);
3514 		BUG_ON(em_end <= cur);
3515 		BUG_ON(end < cur);
3516 		iosize = min(em_end - cur, end - cur + 1);
3517 		iosize = ALIGN(iosize, blocksize);
3518 		offset = em->block_start + extent_offset;
3519 		block_start = em->block_start;
3520 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3521 		free_extent_map(em);
3522 		em = NULL;
3523 
3524 		/*
3525 		 * compressed and inline extents are written through other
3526 		 * paths in the FS
3527 		 */
3528 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3529 		    block_start == EXTENT_MAP_INLINE) {
3530 			if (compressed)
3531 				nr++;
3532 			else
3533 				btrfs_writepage_endio_finish_ordered(page, cur,
3534 							cur + iosize - 1, 1);
3535 			cur += iosize;
3536 			pg_offset += iosize;
3537 			continue;
3538 		}
3539 
3540 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3541 		if (!PageWriteback(page)) {
3542 			btrfs_err(inode->root->fs_info,
3543 				   "page %lu not writeback, cur %llu end %llu",
3544 			       page->index, cur, end);
3545 		}
3546 
3547 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3548 					 page, offset, iosize, pg_offset,
3549 					 &epd->bio,
3550 					 end_bio_extent_writepage,
3551 					 0, 0, 0, false);
3552 		if (ret) {
3553 			SetPageError(page);
3554 			if (PageWriteback(page))
3555 				end_page_writeback(page);
3556 		}
3557 
3558 		cur = cur + iosize;
3559 		pg_offset += iosize;
3560 		nr++;
3561 	}
3562 	*nr_ret = nr;
3563 	return ret;
3564 }
3565 
3566 /*
3567  * the writepage semantics are similar to regular writepage.  extent
3568  * records are inserted to lock ranges in the tree, and as dirty areas
3569  * are found, they are marked writeback.  Then the lock bits are removed
3570  * and the end_io handler clears the writeback ranges
3571  *
3572  * Return 0 if everything goes well.
3573  * Return <0 for error.
3574  */
__extent_writepage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)3575 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3576 			      struct extent_page_data *epd)
3577 {
3578 	struct inode *inode = page->mapping->host;
3579 	u64 start = page_offset(page);
3580 	u64 page_end = start + PAGE_SIZE - 1;
3581 	int ret;
3582 	int nr = 0;
3583 	size_t pg_offset;
3584 	loff_t i_size = i_size_read(inode);
3585 	unsigned long end_index = i_size >> PAGE_SHIFT;
3586 	unsigned long nr_written = 0;
3587 
3588 	trace___extent_writepage(page, inode, wbc);
3589 
3590 	WARN_ON(!PageLocked(page));
3591 
3592 	ClearPageError(page);
3593 
3594 	pg_offset = offset_in_page(i_size);
3595 	if (page->index > end_index ||
3596 	   (page->index == end_index && !pg_offset)) {
3597 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3598 		unlock_page(page);
3599 		return 0;
3600 	}
3601 
3602 	if (page->index == end_index) {
3603 		char *userpage;
3604 
3605 		userpage = kmap_atomic(page);
3606 		memset(userpage + pg_offset, 0,
3607 		       PAGE_SIZE - pg_offset);
3608 		kunmap_atomic(userpage);
3609 		flush_dcache_page(page);
3610 	}
3611 
3612 	set_page_extent_mapped(page);
3613 
3614 	if (!epd->extent_locked) {
3615 		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3616 					 &nr_written);
3617 		if (ret == 1)
3618 			return 0;
3619 		if (ret)
3620 			goto done;
3621 	}
3622 
3623 	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3624 				    nr_written, &nr);
3625 	if (ret == 1)
3626 		return 0;
3627 
3628 done:
3629 	if (nr == 0) {
3630 		/* make sure the mapping tag for page dirty gets cleared */
3631 		set_page_writeback(page);
3632 		end_page_writeback(page);
3633 	}
3634 	if (PageError(page)) {
3635 		ret = ret < 0 ? ret : -EIO;
3636 		end_extent_writepage(page, ret, start, page_end);
3637 	}
3638 	unlock_page(page);
3639 	ASSERT(ret <= 0);
3640 	return ret;
3641 }
3642 
wait_on_extent_buffer_writeback(struct extent_buffer * eb)3643 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3644 {
3645 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3646 		       TASK_UNINTERRUPTIBLE);
3647 }
3648 
end_extent_buffer_writeback(struct extent_buffer * eb)3649 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3650 {
3651 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3652 	smp_mb__after_atomic();
3653 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3654 }
3655 
3656 /*
3657  * Lock eb pages and flush the bio if we can't the locks
3658  *
3659  * Return  0 if nothing went wrong
3660  * Return >0 is same as 0, except bio is not submitted
3661  * Return <0 if something went wrong, no page is locked
3662  */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct extent_page_data * epd)3663 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3664 			  struct extent_page_data *epd)
3665 {
3666 	struct btrfs_fs_info *fs_info = eb->fs_info;
3667 	int i, num_pages, failed_page_nr;
3668 	int flush = 0;
3669 	int ret = 0;
3670 
3671 	if (!btrfs_try_tree_write_lock(eb)) {
3672 		ret = flush_write_bio(epd);
3673 		if (ret < 0)
3674 			return ret;
3675 		flush = 1;
3676 		btrfs_tree_lock(eb);
3677 	}
3678 
3679 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3680 		btrfs_tree_unlock(eb);
3681 		if (!epd->sync_io)
3682 			return 0;
3683 		if (!flush) {
3684 			ret = flush_write_bio(epd);
3685 			if (ret < 0)
3686 				return ret;
3687 			flush = 1;
3688 		}
3689 		while (1) {
3690 			wait_on_extent_buffer_writeback(eb);
3691 			btrfs_tree_lock(eb);
3692 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3693 				break;
3694 			btrfs_tree_unlock(eb);
3695 		}
3696 	}
3697 
3698 	/*
3699 	 * We need to do this to prevent races in people who check if the eb is
3700 	 * under IO since we can end up having no IO bits set for a short period
3701 	 * of time.
3702 	 */
3703 	spin_lock(&eb->refs_lock);
3704 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3705 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3706 		spin_unlock(&eb->refs_lock);
3707 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3708 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3709 					 -eb->len,
3710 					 fs_info->dirty_metadata_batch);
3711 		ret = 1;
3712 	} else {
3713 		spin_unlock(&eb->refs_lock);
3714 	}
3715 
3716 	btrfs_tree_unlock(eb);
3717 
3718 	if (!ret)
3719 		return ret;
3720 
3721 	num_pages = num_extent_pages(eb);
3722 	for (i = 0; i < num_pages; i++) {
3723 		struct page *p = eb->pages[i];
3724 
3725 		if (!trylock_page(p)) {
3726 			if (!flush) {
3727 				int err;
3728 
3729 				err = flush_write_bio(epd);
3730 				if (err < 0) {
3731 					ret = err;
3732 					failed_page_nr = i;
3733 					goto err_unlock;
3734 				}
3735 				flush = 1;
3736 			}
3737 			lock_page(p);
3738 		}
3739 	}
3740 
3741 	return ret;
3742 err_unlock:
3743 	/* Unlock already locked pages */
3744 	for (i = 0; i < failed_page_nr; i++)
3745 		unlock_page(eb->pages[i]);
3746 	/*
3747 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3748 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3749 	 * be made and undo everything done before.
3750 	 */
3751 	btrfs_tree_lock(eb);
3752 	spin_lock(&eb->refs_lock);
3753 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3754 	end_extent_buffer_writeback(eb);
3755 	spin_unlock(&eb->refs_lock);
3756 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3757 				 fs_info->dirty_metadata_batch);
3758 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3759 	btrfs_tree_unlock(eb);
3760 	return ret;
3761 }
3762 
set_btree_ioerr(struct page * page)3763 static void set_btree_ioerr(struct page *page)
3764 {
3765 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3766 	struct btrfs_fs_info *fs_info;
3767 
3768 	SetPageError(page);
3769 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3770 		return;
3771 
3772 	/*
3773 	 * A read may stumble upon this buffer later, make sure that it gets an
3774 	 * error and knows there was an error.
3775 	 */
3776 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3777 
3778 	/*
3779 	 * If we error out, we should add back the dirty_metadata_bytes
3780 	 * to make it consistent.
3781 	 */
3782 	fs_info = eb->fs_info;
3783 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3784 				 eb->len, fs_info->dirty_metadata_batch);
3785 
3786 	/*
3787 	 * If writeback for a btree extent that doesn't belong to a log tree
3788 	 * failed, increment the counter transaction->eb_write_errors.
3789 	 * We do this because while the transaction is running and before it's
3790 	 * committing (when we call filemap_fdata[write|wait]_range against
3791 	 * the btree inode), we might have
3792 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3793 	 * returns an error or an error happens during writeback, when we're
3794 	 * committing the transaction we wouldn't know about it, since the pages
3795 	 * can be no longer dirty nor marked anymore for writeback (if a
3796 	 * subsequent modification to the extent buffer didn't happen before the
3797 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3798 	 * able to find the pages tagged with SetPageError at transaction
3799 	 * commit time. So if this happens we must abort the transaction,
3800 	 * otherwise we commit a super block with btree roots that point to
3801 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3802 	 * or the content of some node/leaf from a past generation that got
3803 	 * cowed or deleted and is no longer valid.
3804 	 *
3805 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3806 	 * not be enough - we need to distinguish between log tree extents vs
3807 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3808 	 * will catch and clear such errors in the mapping - and that call might
3809 	 * be from a log sync and not from a transaction commit. Also, checking
3810 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3811 	 * not done and would not be reliable - the eb might have been released
3812 	 * from memory and reading it back again means that flag would not be
3813 	 * set (since it's a runtime flag, not persisted on disk).
3814 	 *
3815 	 * Using the flags below in the btree inode also makes us achieve the
3816 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3817 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3818 	 * is called, the writeback for all dirty pages had already finished
3819 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3820 	 * filemap_fdatawait_range() would return success, as it could not know
3821 	 * that writeback errors happened (the pages were no longer tagged for
3822 	 * writeback).
3823 	 */
3824 	switch (eb->log_index) {
3825 	case -1:
3826 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3827 		break;
3828 	case 0:
3829 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3830 		break;
3831 	case 1:
3832 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3833 		break;
3834 	default:
3835 		BUG(); /* unexpected, logic error */
3836 	}
3837 }
3838 
end_bio_extent_buffer_writepage(struct bio * bio)3839 static void end_bio_extent_buffer_writepage(struct bio *bio)
3840 {
3841 	struct bio_vec *bvec;
3842 	struct extent_buffer *eb;
3843 	int done;
3844 	struct bvec_iter_all iter_all;
3845 
3846 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3847 	bio_for_each_segment_all(bvec, bio, iter_all) {
3848 		struct page *page = bvec->bv_page;
3849 
3850 		eb = (struct extent_buffer *)page->private;
3851 		BUG_ON(!eb);
3852 		done = atomic_dec_and_test(&eb->io_pages);
3853 
3854 		if (bio->bi_status ||
3855 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3856 			ClearPageUptodate(page);
3857 			set_btree_ioerr(page);
3858 		}
3859 
3860 		end_page_writeback(page);
3861 
3862 		if (!done)
3863 			continue;
3864 
3865 		end_extent_buffer_writeback(eb);
3866 	}
3867 
3868 	bio_put(bio);
3869 }
3870 
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)3871 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3872 			struct writeback_control *wbc,
3873 			struct extent_page_data *epd)
3874 {
3875 	u64 offset = eb->start;
3876 	u32 nritems;
3877 	int i, num_pages;
3878 	unsigned long start, end;
3879 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3880 	int ret = 0;
3881 
3882 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3883 	num_pages = num_extent_pages(eb);
3884 	atomic_set(&eb->io_pages, num_pages);
3885 
3886 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3887 	nritems = btrfs_header_nritems(eb);
3888 	if (btrfs_header_level(eb) > 0) {
3889 		end = btrfs_node_key_ptr_offset(nritems);
3890 
3891 		memzero_extent_buffer(eb, end, eb->len - end);
3892 	} else {
3893 		/*
3894 		 * leaf:
3895 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3896 		 */
3897 		start = btrfs_item_nr_offset(nritems);
3898 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3899 		memzero_extent_buffer(eb, start, end - start);
3900 	}
3901 
3902 	for (i = 0; i < num_pages; i++) {
3903 		struct page *p = eb->pages[i];
3904 
3905 		clear_page_dirty_for_io(p);
3906 		set_page_writeback(p);
3907 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3908 					 p, offset, PAGE_SIZE, 0,
3909 					 &epd->bio,
3910 					 end_bio_extent_buffer_writepage,
3911 					 0, 0, 0, false);
3912 		if (ret) {
3913 			set_btree_ioerr(p);
3914 			if (PageWriteback(p))
3915 				end_page_writeback(p);
3916 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3917 				end_extent_buffer_writeback(eb);
3918 			ret = -EIO;
3919 			break;
3920 		}
3921 		offset += PAGE_SIZE;
3922 		update_nr_written(wbc, 1);
3923 		unlock_page(p);
3924 	}
3925 
3926 	if (unlikely(ret)) {
3927 		for (; i < num_pages; i++) {
3928 			struct page *p = eb->pages[i];
3929 			clear_page_dirty_for_io(p);
3930 			unlock_page(p);
3931 		}
3932 	}
3933 
3934 	return ret;
3935 }
3936 
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)3937 int btree_write_cache_pages(struct address_space *mapping,
3938 				   struct writeback_control *wbc)
3939 {
3940 	struct extent_buffer *eb, *prev_eb = NULL;
3941 	struct extent_page_data epd = {
3942 		.bio = NULL,
3943 		.extent_locked = 0,
3944 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3945 	};
3946 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3947 	int ret = 0;
3948 	int done = 0;
3949 	int nr_to_write_done = 0;
3950 	struct pagevec pvec;
3951 	int nr_pages;
3952 	pgoff_t index;
3953 	pgoff_t end;		/* Inclusive */
3954 	int scanned = 0;
3955 	xa_mark_t tag;
3956 
3957 	pagevec_init(&pvec);
3958 	if (wbc->range_cyclic) {
3959 		index = mapping->writeback_index; /* Start from prev offset */
3960 		end = -1;
3961 		/*
3962 		 * Start from the beginning does not need to cycle over the
3963 		 * range, mark it as scanned.
3964 		 */
3965 		scanned = (index == 0);
3966 	} else {
3967 		index = wbc->range_start >> PAGE_SHIFT;
3968 		end = wbc->range_end >> PAGE_SHIFT;
3969 		scanned = 1;
3970 	}
3971 	if (wbc->sync_mode == WB_SYNC_ALL)
3972 		tag = PAGECACHE_TAG_TOWRITE;
3973 	else
3974 		tag = PAGECACHE_TAG_DIRTY;
3975 retry:
3976 	if (wbc->sync_mode == WB_SYNC_ALL)
3977 		tag_pages_for_writeback(mapping, index, end);
3978 	while (!done && !nr_to_write_done && (index <= end) &&
3979 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3980 			tag))) {
3981 		unsigned i;
3982 
3983 		for (i = 0; i < nr_pages; i++) {
3984 			struct page *page = pvec.pages[i];
3985 
3986 			if (!PagePrivate(page))
3987 				continue;
3988 
3989 			spin_lock(&mapping->private_lock);
3990 			if (!PagePrivate(page)) {
3991 				spin_unlock(&mapping->private_lock);
3992 				continue;
3993 			}
3994 
3995 			eb = (struct extent_buffer *)page->private;
3996 
3997 			/*
3998 			 * Shouldn't happen and normally this would be a BUG_ON
3999 			 * but no sense in crashing the users box for something
4000 			 * we can survive anyway.
4001 			 */
4002 			if (WARN_ON(!eb)) {
4003 				spin_unlock(&mapping->private_lock);
4004 				continue;
4005 			}
4006 
4007 			if (eb == prev_eb) {
4008 				spin_unlock(&mapping->private_lock);
4009 				continue;
4010 			}
4011 
4012 			ret = atomic_inc_not_zero(&eb->refs);
4013 			spin_unlock(&mapping->private_lock);
4014 			if (!ret)
4015 				continue;
4016 
4017 			prev_eb = eb;
4018 			ret = lock_extent_buffer_for_io(eb, &epd);
4019 			if (!ret) {
4020 				free_extent_buffer(eb);
4021 				continue;
4022 			} else if (ret < 0) {
4023 				done = 1;
4024 				free_extent_buffer(eb);
4025 				break;
4026 			}
4027 
4028 			ret = write_one_eb(eb, wbc, &epd);
4029 			if (ret) {
4030 				done = 1;
4031 				free_extent_buffer(eb);
4032 				break;
4033 			}
4034 			free_extent_buffer(eb);
4035 
4036 			/*
4037 			 * the filesystem may choose to bump up nr_to_write.
4038 			 * We have to make sure to honor the new nr_to_write
4039 			 * at any time
4040 			 */
4041 			nr_to_write_done = wbc->nr_to_write <= 0;
4042 		}
4043 		pagevec_release(&pvec);
4044 		cond_resched();
4045 	}
4046 	if (!scanned && !done) {
4047 		/*
4048 		 * We hit the last page and there is more work to be done: wrap
4049 		 * back to the start of the file
4050 		 */
4051 		scanned = 1;
4052 		index = 0;
4053 		goto retry;
4054 	}
4055 	ASSERT(ret <= 0);
4056 	if (ret < 0) {
4057 		end_write_bio(&epd, ret);
4058 		return ret;
4059 	}
4060 	/*
4061 	 * If something went wrong, don't allow any metadata write bio to be
4062 	 * submitted.
4063 	 *
4064 	 * This would prevent use-after-free if we had dirty pages not
4065 	 * cleaned up, which can still happen by fuzzed images.
4066 	 *
4067 	 * - Bad extent tree
4068 	 *   Allowing existing tree block to be allocated for other trees.
4069 	 *
4070 	 * - Log tree operations
4071 	 *   Exiting tree blocks get allocated to log tree, bumps its
4072 	 *   generation, then get cleaned in tree re-balance.
4073 	 *   Such tree block will not be written back, since it's clean,
4074 	 *   thus no WRITTEN flag set.
4075 	 *   And after log writes back, this tree block is not traced by
4076 	 *   any dirty extent_io_tree.
4077 	 *
4078 	 * - Offending tree block gets re-dirtied from its original owner
4079 	 *   Since it has bumped generation, no WRITTEN flag, it can be
4080 	 *   reused without COWing. This tree block will not be traced
4081 	 *   by btrfs_transaction::dirty_pages.
4082 	 *
4083 	 *   Now such dirty tree block will not be cleaned by any dirty
4084 	 *   extent io tree. Thus we don't want to submit such wild eb
4085 	 *   if the fs already has error.
4086 	 */
4087 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4088 		ret = flush_write_bio(&epd);
4089 	} else {
4090 		ret = -EROFS;
4091 		end_write_bio(&epd, ret);
4092 	}
4093 	return ret;
4094 }
4095 
4096 /**
4097  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4098  * @mapping: address space structure to write
4099  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4100  * @data: data passed to __extent_writepage function
4101  *
4102  * If a page is already under I/O, write_cache_pages() skips it, even
4103  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4104  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4105  * and msync() need to guarantee that all the data which was dirty at the time
4106  * the call was made get new I/O started against them.  If wbc->sync_mode is
4107  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4108  * existing IO to complete.
4109  */
extent_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,struct extent_page_data * epd)4110 static int extent_write_cache_pages(struct address_space *mapping,
4111 			     struct writeback_control *wbc,
4112 			     struct extent_page_data *epd)
4113 {
4114 	struct inode *inode = mapping->host;
4115 	int ret = 0;
4116 	int done = 0;
4117 	int nr_to_write_done = 0;
4118 	struct pagevec pvec;
4119 	int nr_pages;
4120 	pgoff_t index;
4121 	pgoff_t end;		/* Inclusive */
4122 	pgoff_t done_index;
4123 	int range_whole = 0;
4124 	int scanned = 0;
4125 	xa_mark_t tag;
4126 
4127 	/*
4128 	 * We have to hold onto the inode so that ordered extents can do their
4129 	 * work when the IO finishes.  The alternative to this is failing to add
4130 	 * an ordered extent if the igrab() fails there and that is a huge pain
4131 	 * to deal with, so instead just hold onto the inode throughout the
4132 	 * writepages operation.  If it fails here we are freeing up the inode
4133 	 * anyway and we'd rather not waste our time writing out stuff that is
4134 	 * going to be truncated anyway.
4135 	 */
4136 	if (!igrab(inode))
4137 		return 0;
4138 
4139 	pagevec_init(&pvec);
4140 	if (wbc->range_cyclic) {
4141 		index = mapping->writeback_index; /* Start from prev offset */
4142 		end = -1;
4143 		/*
4144 		 * Start from the beginning does not need to cycle over the
4145 		 * range, mark it as scanned.
4146 		 */
4147 		scanned = (index == 0);
4148 	} else {
4149 		index = wbc->range_start >> PAGE_SHIFT;
4150 		end = wbc->range_end >> PAGE_SHIFT;
4151 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4152 			range_whole = 1;
4153 		scanned = 1;
4154 	}
4155 
4156 	/*
4157 	 * We do the tagged writepage as long as the snapshot flush bit is set
4158 	 * and we are the first one who do the filemap_flush() on this inode.
4159 	 *
4160 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4161 	 * not race in and drop the bit.
4162 	 */
4163 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4164 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4165 			       &BTRFS_I(inode)->runtime_flags))
4166 		wbc->tagged_writepages = 1;
4167 
4168 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4169 		tag = PAGECACHE_TAG_TOWRITE;
4170 	else
4171 		tag = PAGECACHE_TAG_DIRTY;
4172 retry:
4173 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4174 		tag_pages_for_writeback(mapping, index, end);
4175 	done_index = index;
4176 	while (!done && !nr_to_write_done && (index <= end) &&
4177 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4178 						&index, end, tag))) {
4179 		unsigned i;
4180 
4181 		for (i = 0; i < nr_pages; i++) {
4182 			struct page *page = pvec.pages[i];
4183 
4184 			done_index = page->index + 1;
4185 			/*
4186 			 * At this point we hold neither the i_pages lock nor
4187 			 * the page lock: the page may be truncated or
4188 			 * invalidated (changing page->mapping to NULL),
4189 			 * or even swizzled back from swapper_space to
4190 			 * tmpfs file mapping
4191 			 */
4192 			if (!trylock_page(page)) {
4193 				ret = flush_write_bio(epd);
4194 				BUG_ON(ret < 0);
4195 				lock_page(page);
4196 			}
4197 
4198 			if (unlikely(page->mapping != mapping)) {
4199 				unlock_page(page);
4200 				continue;
4201 			}
4202 
4203 			if (wbc->sync_mode != WB_SYNC_NONE) {
4204 				if (PageWriteback(page)) {
4205 					ret = flush_write_bio(epd);
4206 					BUG_ON(ret < 0);
4207 				}
4208 				wait_on_page_writeback(page);
4209 			}
4210 
4211 			if (PageWriteback(page) ||
4212 			    !clear_page_dirty_for_io(page)) {
4213 				unlock_page(page);
4214 				continue;
4215 			}
4216 
4217 			ret = __extent_writepage(page, wbc, epd);
4218 			if (ret < 0) {
4219 				done = 1;
4220 				break;
4221 			}
4222 
4223 			/*
4224 			 * the filesystem may choose to bump up nr_to_write.
4225 			 * We have to make sure to honor the new nr_to_write
4226 			 * at any time
4227 			 */
4228 			nr_to_write_done = wbc->nr_to_write <= 0;
4229 		}
4230 		pagevec_release(&pvec);
4231 		cond_resched();
4232 	}
4233 	if (!scanned && !done) {
4234 		/*
4235 		 * We hit the last page and there is more work to be done: wrap
4236 		 * back to the start of the file
4237 		 */
4238 		scanned = 1;
4239 		index = 0;
4240 
4241 		/*
4242 		 * If we're looping we could run into a page that is locked by a
4243 		 * writer and that writer could be waiting on writeback for a
4244 		 * page in our current bio, and thus deadlock, so flush the
4245 		 * write bio here.
4246 		 */
4247 		ret = flush_write_bio(epd);
4248 		if (!ret)
4249 			goto retry;
4250 	}
4251 
4252 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4253 		mapping->writeback_index = done_index;
4254 
4255 	btrfs_add_delayed_iput(inode);
4256 	return ret;
4257 }
4258 
extent_write_full_page(struct page * page,struct writeback_control * wbc)4259 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4260 {
4261 	int ret;
4262 	struct extent_page_data epd = {
4263 		.bio = NULL,
4264 		.extent_locked = 0,
4265 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4266 	};
4267 
4268 	ret = __extent_writepage(page, wbc, &epd);
4269 	ASSERT(ret <= 0);
4270 	if (ret < 0) {
4271 		end_write_bio(&epd, ret);
4272 		return ret;
4273 	}
4274 
4275 	ret = flush_write_bio(&epd);
4276 	ASSERT(ret <= 0);
4277 	return ret;
4278 }
4279 
extent_write_locked_range(struct inode * inode,u64 start,u64 end,int mode)4280 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4281 			      int mode)
4282 {
4283 	int ret = 0;
4284 	struct address_space *mapping = inode->i_mapping;
4285 	struct page *page;
4286 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4287 		PAGE_SHIFT;
4288 
4289 	struct extent_page_data epd = {
4290 		.bio = NULL,
4291 		.extent_locked = 1,
4292 		.sync_io = mode == WB_SYNC_ALL,
4293 	};
4294 	struct writeback_control wbc_writepages = {
4295 		.sync_mode	= mode,
4296 		.nr_to_write	= nr_pages * 2,
4297 		.range_start	= start,
4298 		.range_end	= end + 1,
4299 		/* We're called from an async helper function */
4300 		.punt_to_cgroup	= 1,
4301 		.no_cgroup_owner = 1,
4302 	};
4303 
4304 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4305 	while (start <= end) {
4306 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4307 		if (clear_page_dirty_for_io(page))
4308 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4309 		else {
4310 			btrfs_writepage_endio_finish_ordered(page, start,
4311 						    start + PAGE_SIZE - 1, 1);
4312 			unlock_page(page);
4313 		}
4314 		put_page(page);
4315 		start += PAGE_SIZE;
4316 	}
4317 
4318 	ASSERT(ret <= 0);
4319 	if (ret == 0)
4320 		ret = flush_write_bio(&epd);
4321 	else
4322 		end_write_bio(&epd, ret);
4323 
4324 	wbc_detach_inode(&wbc_writepages);
4325 	return ret;
4326 }
4327 
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)4328 int extent_writepages(struct address_space *mapping,
4329 		      struct writeback_control *wbc)
4330 {
4331 	int ret = 0;
4332 	struct extent_page_data epd = {
4333 		.bio = NULL,
4334 		.extent_locked = 0,
4335 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4336 	};
4337 
4338 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4339 	ASSERT(ret <= 0);
4340 	if (ret < 0) {
4341 		end_write_bio(&epd, ret);
4342 		return ret;
4343 	}
4344 	ret = flush_write_bio(&epd);
4345 	return ret;
4346 }
4347 
extent_readahead(struct readahead_control * rac)4348 void extent_readahead(struct readahead_control *rac)
4349 {
4350 	struct bio *bio = NULL;
4351 	unsigned long bio_flags = 0;
4352 	struct page *pagepool[16];
4353 	struct extent_map *em_cached = NULL;
4354 	u64 prev_em_start = (u64)-1;
4355 	int nr;
4356 
4357 	while ((nr = readahead_page_batch(rac, pagepool))) {
4358 		u64 contig_start = page_offset(pagepool[0]);
4359 		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4360 
4361 		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4362 
4363 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
4364 				&em_cached, &bio, &bio_flags, &prev_em_start);
4365 	}
4366 
4367 	if (em_cached)
4368 		free_extent_map(em_cached);
4369 
4370 	if (bio) {
4371 		if (submit_one_bio(bio, 0, bio_flags))
4372 			return;
4373 	}
4374 }
4375 
4376 /*
4377  * basic invalidatepage code, this waits on any locked or writeback
4378  * ranges corresponding to the page, and then deletes any extent state
4379  * records from the tree
4380  */
extent_invalidatepage(struct extent_io_tree * tree,struct page * page,unsigned long offset)4381 int extent_invalidatepage(struct extent_io_tree *tree,
4382 			  struct page *page, unsigned long offset)
4383 {
4384 	struct extent_state *cached_state = NULL;
4385 	u64 start = page_offset(page);
4386 	u64 end = start + PAGE_SIZE - 1;
4387 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4388 
4389 	start += ALIGN(offset, blocksize);
4390 	if (start > end)
4391 		return 0;
4392 
4393 	lock_extent_bits(tree, start, end, &cached_state);
4394 	wait_on_page_writeback(page);
4395 	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4396 			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4397 	return 0;
4398 }
4399 
4400 /*
4401  * a helper for releasepage, this tests for areas of the page that
4402  * are locked or under IO and drops the related state bits if it is safe
4403  * to drop the page.
4404  */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)4405 static int try_release_extent_state(struct extent_io_tree *tree,
4406 				    struct page *page, gfp_t mask)
4407 {
4408 	u64 start = page_offset(page);
4409 	u64 end = start + PAGE_SIZE - 1;
4410 	int ret = 1;
4411 
4412 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4413 		ret = 0;
4414 	} else {
4415 		/*
4416 		 * at this point we can safely clear everything except the
4417 		 * locked bit and the nodatasum bit
4418 		 */
4419 		ret = __clear_extent_bit(tree, start, end,
4420 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4421 				 0, 0, NULL, mask, NULL);
4422 
4423 		/* if clear_extent_bit failed for enomem reasons,
4424 		 * we can't allow the release to continue.
4425 		 */
4426 		if (ret < 0)
4427 			ret = 0;
4428 		else
4429 			ret = 1;
4430 	}
4431 	return ret;
4432 }
4433 
4434 /*
4435  * a helper for releasepage.  As long as there are no locked extents
4436  * in the range corresponding to the page, both state records and extent
4437  * map records are removed
4438  */
try_release_extent_mapping(struct page * page,gfp_t mask)4439 int try_release_extent_mapping(struct page *page, gfp_t mask)
4440 {
4441 	struct extent_map *em;
4442 	u64 start = page_offset(page);
4443 	u64 end = start + PAGE_SIZE - 1;
4444 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4445 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4446 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4447 
4448 	if (gfpflags_allow_blocking(mask) &&
4449 	    page->mapping->host->i_size > SZ_16M) {
4450 		u64 len;
4451 		while (start <= end) {
4452 			struct btrfs_fs_info *fs_info;
4453 			u64 cur_gen;
4454 
4455 			len = end - start + 1;
4456 			write_lock(&map->lock);
4457 			em = lookup_extent_mapping(map, start, len);
4458 			if (!em) {
4459 				write_unlock(&map->lock);
4460 				break;
4461 			}
4462 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4463 			    em->start != start) {
4464 				write_unlock(&map->lock);
4465 				free_extent_map(em);
4466 				break;
4467 			}
4468 			if (test_range_bit(tree, em->start,
4469 					   extent_map_end(em) - 1,
4470 					   EXTENT_LOCKED, 0, NULL))
4471 				goto next;
4472 			/*
4473 			 * If it's not in the list of modified extents, used
4474 			 * by a fast fsync, we can remove it. If it's being
4475 			 * logged we can safely remove it since fsync took an
4476 			 * extra reference on the em.
4477 			 */
4478 			if (list_empty(&em->list) ||
4479 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4480 				goto remove_em;
4481 			/*
4482 			 * If it's in the list of modified extents, remove it
4483 			 * only if its generation is older then the current one,
4484 			 * in which case we don't need it for a fast fsync.
4485 			 * Otherwise don't remove it, we could be racing with an
4486 			 * ongoing fast fsync that could miss the new extent.
4487 			 */
4488 			fs_info = btrfs_inode->root->fs_info;
4489 			spin_lock(&fs_info->trans_lock);
4490 			cur_gen = fs_info->generation;
4491 			spin_unlock(&fs_info->trans_lock);
4492 			if (em->generation >= cur_gen)
4493 				goto next;
4494 remove_em:
4495 			/*
4496 			 * We only remove extent maps that are not in the list of
4497 			 * modified extents or that are in the list but with a
4498 			 * generation lower then the current generation, so there
4499 			 * is no need to set the full fsync flag on the inode (it
4500 			 * hurts the fsync performance for workloads with a data
4501 			 * size that exceeds or is close to the system's memory).
4502 			 */
4503 			remove_extent_mapping(map, em);
4504 			/* once for the rb tree */
4505 			free_extent_map(em);
4506 next:
4507 			start = extent_map_end(em);
4508 			write_unlock(&map->lock);
4509 
4510 			/* once for us */
4511 			free_extent_map(em);
4512 
4513 			cond_resched(); /* Allow large-extent preemption. */
4514 		}
4515 	}
4516 	return try_release_extent_state(tree, page, mask);
4517 }
4518 
4519 /*
4520  * helper function for fiemap, which doesn't want to see any holes.
4521  * This maps until we find something past 'last'
4522  */
get_extent_skip_holes(struct btrfs_inode * inode,u64 offset,u64 last)4523 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4524 						u64 offset, u64 last)
4525 {
4526 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4527 	struct extent_map *em;
4528 	u64 len;
4529 
4530 	if (offset >= last)
4531 		return NULL;
4532 
4533 	while (1) {
4534 		len = last - offset;
4535 		if (len == 0)
4536 			break;
4537 		len = ALIGN(len, sectorsize);
4538 		em = btrfs_get_extent_fiemap(inode, offset, len);
4539 		if (IS_ERR_OR_NULL(em))
4540 			return em;
4541 
4542 		/* if this isn't a hole return it */
4543 		if (em->block_start != EXTENT_MAP_HOLE)
4544 			return em;
4545 
4546 		/* this is a hole, advance to the next extent */
4547 		offset = extent_map_end(em);
4548 		free_extent_map(em);
4549 		if (offset >= last)
4550 			break;
4551 	}
4552 	return NULL;
4553 }
4554 
4555 /*
4556  * To cache previous fiemap extent
4557  *
4558  * Will be used for merging fiemap extent
4559  */
4560 struct fiemap_cache {
4561 	u64 offset;
4562 	u64 phys;
4563 	u64 len;
4564 	u32 flags;
4565 	bool cached;
4566 };
4567 
4568 /*
4569  * Helper to submit fiemap extent.
4570  *
4571  * Will try to merge current fiemap extent specified by @offset, @phys,
4572  * @len and @flags with cached one.
4573  * And only when we fails to merge, cached one will be submitted as
4574  * fiemap extent.
4575  *
4576  * Return value is the same as fiemap_fill_next_extent().
4577  */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)4578 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4579 				struct fiemap_cache *cache,
4580 				u64 offset, u64 phys, u64 len, u32 flags)
4581 {
4582 	int ret = 0;
4583 
4584 	if (!cache->cached)
4585 		goto assign;
4586 
4587 	/*
4588 	 * Sanity check, extent_fiemap() should have ensured that new
4589 	 * fiemap extent won't overlap with cached one.
4590 	 * Not recoverable.
4591 	 *
4592 	 * NOTE: Physical address can overlap, due to compression
4593 	 */
4594 	if (cache->offset + cache->len > offset) {
4595 		WARN_ON(1);
4596 		return -EINVAL;
4597 	}
4598 
4599 	/*
4600 	 * Only merges fiemap extents if
4601 	 * 1) Their logical addresses are continuous
4602 	 *
4603 	 * 2) Their physical addresses are continuous
4604 	 *    So truly compressed (physical size smaller than logical size)
4605 	 *    extents won't get merged with each other
4606 	 *
4607 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4608 	 *    So regular extent won't get merged with prealloc extent
4609 	 */
4610 	if (cache->offset + cache->len  == offset &&
4611 	    cache->phys + cache->len == phys  &&
4612 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4613 			(flags & ~FIEMAP_EXTENT_LAST)) {
4614 		cache->len += len;
4615 		cache->flags |= flags;
4616 		goto try_submit_last;
4617 	}
4618 
4619 	/* Not mergeable, need to submit cached one */
4620 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4621 				      cache->len, cache->flags);
4622 	cache->cached = false;
4623 	if (ret)
4624 		return ret;
4625 assign:
4626 	cache->cached = true;
4627 	cache->offset = offset;
4628 	cache->phys = phys;
4629 	cache->len = len;
4630 	cache->flags = flags;
4631 try_submit_last:
4632 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4633 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4634 				cache->phys, cache->len, cache->flags);
4635 		cache->cached = false;
4636 	}
4637 	return ret;
4638 }
4639 
4640 /*
4641  * Emit last fiemap cache
4642  *
4643  * The last fiemap cache may still be cached in the following case:
4644  * 0		      4k		    8k
4645  * |<- Fiemap range ->|
4646  * |<------------  First extent ----------->|
4647  *
4648  * In this case, the first extent range will be cached but not emitted.
4649  * So we must emit it before ending extent_fiemap().
4650  */
emit_last_fiemap_cache(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)4651 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4652 				  struct fiemap_cache *cache)
4653 {
4654 	int ret;
4655 
4656 	if (!cache->cached)
4657 		return 0;
4658 
4659 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4660 				      cache->len, cache->flags);
4661 	cache->cached = false;
4662 	if (ret > 0)
4663 		ret = 0;
4664 	return ret;
4665 }
4666 
extent_fiemap(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)4667 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4668 		  u64 start, u64 len)
4669 {
4670 	int ret = 0;
4671 	u64 off;
4672 	u64 max = start + len;
4673 	u32 flags = 0;
4674 	u32 found_type;
4675 	u64 last;
4676 	u64 last_for_get_extent = 0;
4677 	u64 disko = 0;
4678 	u64 isize = i_size_read(&inode->vfs_inode);
4679 	struct btrfs_key found_key;
4680 	struct extent_map *em = NULL;
4681 	struct extent_state *cached_state = NULL;
4682 	struct btrfs_path *path;
4683 	struct btrfs_root *root = inode->root;
4684 	struct fiemap_cache cache = { 0 };
4685 	struct ulist *roots;
4686 	struct ulist *tmp_ulist;
4687 	int end = 0;
4688 	u64 em_start = 0;
4689 	u64 em_len = 0;
4690 	u64 em_end = 0;
4691 
4692 	if (len == 0)
4693 		return -EINVAL;
4694 
4695 	path = btrfs_alloc_path();
4696 	if (!path)
4697 		return -ENOMEM;
4698 	path->leave_spinning = 1;
4699 
4700 	roots = ulist_alloc(GFP_KERNEL);
4701 	tmp_ulist = ulist_alloc(GFP_KERNEL);
4702 	if (!roots || !tmp_ulist) {
4703 		ret = -ENOMEM;
4704 		goto out_free_ulist;
4705 	}
4706 
4707 	/*
4708 	 * We can't initialize that to 'start' as this could miss extents due
4709 	 * to extent item merging
4710 	 */
4711 	off = 0;
4712 	start = round_down(start, btrfs_inode_sectorsize(inode));
4713 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4714 
4715 	/*
4716 	 * lookup the last file extent.  We're not using i_size here
4717 	 * because there might be preallocation past i_size
4718 	 */
4719 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4720 				       0);
4721 	if (ret < 0) {
4722 		goto out_free_ulist;
4723 	} else {
4724 		WARN_ON(!ret);
4725 		if (ret == 1)
4726 			ret = 0;
4727 	}
4728 
4729 	path->slots[0]--;
4730 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4731 	found_type = found_key.type;
4732 
4733 	/* No extents, but there might be delalloc bits */
4734 	if (found_key.objectid != btrfs_ino(inode) ||
4735 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4736 		/* have to trust i_size as the end */
4737 		last = (u64)-1;
4738 		last_for_get_extent = isize;
4739 	} else {
4740 		/*
4741 		 * remember the start of the last extent.  There are a
4742 		 * bunch of different factors that go into the length of the
4743 		 * extent, so its much less complex to remember where it started
4744 		 */
4745 		last = found_key.offset;
4746 		last_for_get_extent = last + 1;
4747 	}
4748 	btrfs_release_path(path);
4749 
4750 	/*
4751 	 * we might have some extents allocated but more delalloc past those
4752 	 * extents.  so, we trust isize unless the start of the last extent is
4753 	 * beyond isize
4754 	 */
4755 	if (last < isize) {
4756 		last = (u64)-1;
4757 		last_for_get_extent = isize;
4758 	}
4759 
4760 	lock_extent_bits(&inode->io_tree, start, start + len - 1,
4761 			 &cached_state);
4762 
4763 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4764 	if (!em)
4765 		goto out;
4766 	if (IS_ERR(em)) {
4767 		ret = PTR_ERR(em);
4768 		goto out;
4769 	}
4770 
4771 	while (!end) {
4772 		u64 offset_in_extent = 0;
4773 
4774 		/* break if the extent we found is outside the range */
4775 		if (em->start >= max || extent_map_end(em) < off)
4776 			break;
4777 
4778 		/*
4779 		 * get_extent may return an extent that starts before our
4780 		 * requested range.  We have to make sure the ranges
4781 		 * we return to fiemap always move forward and don't
4782 		 * overlap, so adjust the offsets here
4783 		 */
4784 		em_start = max(em->start, off);
4785 
4786 		/*
4787 		 * record the offset from the start of the extent
4788 		 * for adjusting the disk offset below.  Only do this if the
4789 		 * extent isn't compressed since our in ram offset may be past
4790 		 * what we have actually allocated on disk.
4791 		 */
4792 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4793 			offset_in_extent = em_start - em->start;
4794 		em_end = extent_map_end(em);
4795 		em_len = em_end - em_start;
4796 		flags = 0;
4797 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4798 			disko = em->block_start + offset_in_extent;
4799 		else
4800 			disko = 0;
4801 
4802 		/*
4803 		 * bump off for our next call to get_extent
4804 		 */
4805 		off = extent_map_end(em);
4806 		if (off >= max)
4807 			end = 1;
4808 
4809 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4810 			end = 1;
4811 			flags |= FIEMAP_EXTENT_LAST;
4812 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4813 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4814 				  FIEMAP_EXTENT_NOT_ALIGNED);
4815 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4816 			flags |= (FIEMAP_EXTENT_DELALLOC |
4817 				  FIEMAP_EXTENT_UNKNOWN);
4818 		} else if (fieinfo->fi_extents_max) {
4819 			u64 bytenr = em->block_start -
4820 				(em->start - em->orig_start);
4821 
4822 			/*
4823 			 * As btrfs supports shared space, this information
4824 			 * can be exported to userspace tools via
4825 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4826 			 * then we're just getting a count and we can skip the
4827 			 * lookup stuff.
4828 			 */
4829 			ret = btrfs_check_shared(root, btrfs_ino(inode),
4830 						 bytenr, roots, tmp_ulist);
4831 			if (ret < 0)
4832 				goto out_free;
4833 			if (ret)
4834 				flags |= FIEMAP_EXTENT_SHARED;
4835 			ret = 0;
4836 		}
4837 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4838 			flags |= FIEMAP_EXTENT_ENCODED;
4839 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4840 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4841 
4842 		free_extent_map(em);
4843 		em = NULL;
4844 		if ((em_start >= last) || em_len == (u64)-1 ||
4845 		   (last == (u64)-1 && isize <= em_end)) {
4846 			flags |= FIEMAP_EXTENT_LAST;
4847 			end = 1;
4848 		}
4849 
4850 		/* now scan forward to see if this is really the last extent. */
4851 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4852 		if (IS_ERR(em)) {
4853 			ret = PTR_ERR(em);
4854 			goto out;
4855 		}
4856 		if (!em) {
4857 			flags |= FIEMAP_EXTENT_LAST;
4858 			end = 1;
4859 		}
4860 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4861 					   em_len, flags);
4862 		if (ret) {
4863 			if (ret == 1)
4864 				ret = 0;
4865 			goto out_free;
4866 		}
4867 	}
4868 out_free:
4869 	if (!ret)
4870 		ret = emit_last_fiemap_cache(fieinfo, &cache);
4871 	free_extent_map(em);
4872 out:
4873 	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
4874 			     &cached_state);
4875 
4876 out_free_ulist:
4877 	btrfs_free_path(path);
4878 	ulist_free(roots);
4879 	ulist_free(tmp_ulist);
4880 	return ret;
4881 }
4882 
__free_extent_buffer(struct extent_buffer * eb)4883 static void __free_extent_buffer(struct extent_buffer *eb)
4884 {
4885 	kmem_cache_free(extent_buffer_cache, eb);
4886 }
4887 
extent_buffer_under_io(const struct extent_buffer * eb)4888 int extent_buffer_under_io(const struct extent_buffer *eb)
4889 {
4890 	return (atomic_read(&eb->io_pages) ||
4891 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4892 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4893 }
4894 
4895 /*
4896  * Release all pages attached to the extent buffer.
4897  */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)4898 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4899 {
4900 	int i;
4901 	int num_pages;
4902 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4903 
4904 	BUG_ON(extent_buffer_under_io(eb));
4905 
4906 	num_pages = num_extent_pages(eb);
4907 	for (i = 0; i < num_pages; i++) {
4908 		struct page *page = eb->pages[i];
4909 
4910 		if (!page)
4911 			continue;
4912 		if (mapped)
4913 			spin_lock(&page->mapping->private_lock);
4914 		/*
4915 		 * We do this since we'll remove the pages after we've
4916 		 * removed the eb from the radix tree, so we could race
4917 		 * and have this page now attached to the new eb.  So
4918 		 * only clear page_private if it's still connected to
4919 		 * this eb.
4920 		 */
4921 		if (PagePrivate(page) &&
4922 		    page->private == (unsigned long)eb) {
4923 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4924 			BUG_ON(PageDirty(page));
4925 			BUG_ON(PageWriteback(page));
4926 			/*
4927 			 * We need to make sure we haven't be attached
4928 			 * to a new eb.
4929 			 */
4930 			detach_page_private(page);
4931 		}
4932 
4933 		if (mapped)
4934 			spin_unlock(&page->mapping->private_lock);
4935 
4936 		/* One for when we allocated the page */
4937 		put_page(page);
4938 	}
4939 }
4940 
4941 /*
4942  * Helper for releasing the extent buffer.
4943  */
btrfs_release_extent_buffer(struct extent_buffer * eb)4944 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4945 {
4946 	btrfs_release_extent_buffer_pages(eb);
4947 	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4948 	__free_extent_buffer(eb);
4949 }
4950 
4951 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4952 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4953 		      unsigned long len)
4954 {
4955 	struct extent_buffer *eb = NULL;
4956 
4957 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4958 	eb->start = start;
4959 	eb->len = len;
4960 	eb->fs_info = fs_info;
4961 	eb->bflags = 0;
4962 	rwlock_init(&eb->lock);
4963 	atomic_set(&eb->blocking_readers, 0);
4964 	eb->blocking_writers = 0;
4965 	eb->lock_recursed = false;
4966 	init_waitqueue_head(&eb->write_lock_wq);
4967 	init_waitqueue_head(&eb->read_lock_wq);
4968 
4969 	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4970 			     &fs_info->allocated_ebs);
4971 
4972 	spin_lock_init(&eb->refs_lock);
4973 	atomic_set(&eb->refs, 1);
4974 	atomic_set(&eb->io_pages, 0);
4975 
4976 	/*
4977 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4978 	 */
4979 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4980 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4981 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4982 
4983 #ifdef CONFIG_BTRFS_DEBUG
4984 	eb->spinning_writers = 0;
4985 	atomic_set(&eb->spinning_readers, 0);
4986 	atomic_set(&eb->read_locks, 0);
4987 	eb->write_locks = 0;
4988 #endif
4989 
4990 	return eb;
4991 }
4992 
btrfs_clone_extent_buffer(const struct extent_buffer * src)4993 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4994 {
4995 	int i;
4996 	struct page *p;
4997 	struct extent_buffer *new;
4998 	int num_pages = num_extent_pages(src);
4999 
5000 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5001 	if (new == NULL)
5002 		return NULL;
5003 
5004 	for (i = 0; i < num_pages; i++) {
5005 		p = alloc_page(GFP_NOFS);
5006 		if (!p) {
5007 			btrfs_release_extent_buffer(new);
5008 			return NULL;
5009 		}
5010 		attach_extent_buffer_page(new, p);
5011 		WARN_ON(PageDirty(p));
5012 		SetPageUptodate(p);
5013 		new->pages[i] = p;
5014 		copy_page(page_address(p), page_address(src->pages[i]));
5015 	}
5016 
5017 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5018 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5019 
5020 	return new;
5021 }
5022 
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)5023 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5024 						  u64 start, unsigned long len)
5025 {
5026 	struct extent_buffer *eb;
5027 	int num_pages;
5028 	int i;
5029 
5030 	eb = __alloc_extent_buffer(fs_info, start, len);
5031 	if (!eb)
5032 		return NULL;
5033 
5034 	num_pages = num_extent_pages(eb);
5035 	for (i = 0; i < num_pages; i++) {
5036 		eb->pages[i] = alloc_page(GFP_NOFS);
5037 		if (!eb->pages[i])
5038 			goto err;
5039 	}
5040 	set_extent_buffer_uptodate(eb);
5041 	btrfs_set_header_nritems(eb, 0);
5042 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5043 
5044 	return eb;
5045 err:
5046 	for (; i > 0; i--)
5047 		__free_page(eb->pages[i - 1]);
5048 	__free_extent_buffer(eb);
5049 	return NULL;
5050 }
5051 
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5052 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5053 						u64 start)
5054 {
5055 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5056 }
5057 
check_buffer_tree_ref(struct extent_buffer * eb)5058 static void check_buffer_tree_ref(struct extent_buffer *eb)
5059 {
5060 	int refs;
5061 	/*
5062 	 * The TREE_REF bit is first set when the extent_buffer is added
5063 	 * to the radix tree. It is also reset, if unset, when a new reference
5064 	 * is created by find_extent_buffer.
5065 	 *
5066 	 * It is only cleared in two cases: freeing the last non-tree
5067 	 * reference to the extent_buffer when its STALE bit is set or
5068 	 * calling releasepage when the tree reference is the only reference.
5069 	 *
5070 	 * In both cases, care is taken to ensure that the extent_buffer's
5071 	 * pages are not under io. However, releasepage can be concurrently
5072 	 * called with creating new references, which is prone to race
5073 	 * conditions between the calls to check_buffer_tree_ref in those
5074 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5075 	 *
5076 	 * The actual lifetime of the extent_buffer in the radix tree is
5077 	 * adequately protected by the refcount, but the TREE_REF bit and
5078 	 * its corresponding reference are not. To protect against this
5079 	 * class of races, we call check_buffer_tree_ref from the codepaths
5080 	 * which trigger io after they set eb->io_pages. Note that once io is
5081 	 * initiated, TREE_REF can no longer be cleared, so that is the
5082 	 * moment at which any such race is best fixed.
5083 	 */
5084 	refs = atomic_read(&eb->refs);
5085 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5086 		return;
5087 
5088 	spin_lock(&eb->refs_lock);
5089 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5090 		atomic_inc(&eb->refs);
5091 	spin_unlock(&eb->refs_lock);
5092 }
5093 
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)5094 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5095 		struct page *accessed)
5096 {
5097 	int num_pages, i;
5098 
5099 	check_buffer_tree_ref(eb);
5100 
5101 	num_pages = num_extent_pages(eb);
5102 	for (i = 0; i < num_pages; i++) {
5103 		struct page *p = eb->pages[i];
5104 
5105 		if (p != accessed)
5106 			mark_page_accessed(p);
5107 	}
5108 }
5109 
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5110 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5111 					 u64 start)
5112 {
5113 	struct extent_buffer *eb;
5114 
5115 	rcu_read_lock();
5116 	eb = radix_tree_lookup(&fs_info->buffer_radix,
5117 			       start >> PAGE_SHIFT);
5118 	if (eb && atomic_inc_not_zero(&eb->refs)) {
5119 		rcu_read_unlock();
5120 		/*
5121 		 * Lock our eb's refs_lock to avoid races with
5122 		 * free_extent_buffer. When we get our eb it might be flagged
5123 		 * with EXTENT_BUFFER_STALE and another task running
5124 		 * free_extent_buffer might have seen that flag set,
5125 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5126 		 * writeback flags not set) and it's still in the tree (flag
5127 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5128 		 * of decrementing the extent buffer's reference count twice.
5129 		 * So here we could race and increment the eb's reference count,
5130 		 * clear its stale flag, mark it as dirty and drop our reference
5131 		 * before the other task finishes executing free_extent_buffer,
5132 		 * which would later result in an attempt to free an extent
5133 		 * buffer that is dirty.
5134 		 */
5135 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5136 			spin_lock(&eb->refs_lock);
5137 			spin_unlock(&eb->refs_lock);
5138 		}
5139 		mark_extent_buffer_accessed(eb, NULL);
5140 		return eb;
5141 	}
5142 	rcu_read_unlock();
5143 
5144 	return NULL;
5145 }
5146 
5147 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5148 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5149 					u64 start)
5150 {
5151 	struct extent_buffer *eb, *exists = NULL;
5152 	int ret;
5153 
5154 	eb = find_extent_buffer(fs_info, start);
5155 	if (eb)
5156 		return eb;
5157 	eb = alloc_dummy_extent_buffer(fs_info, start);
5158 	if (!eb)
5159 		return ERR_PTR(-ENOMEM);
5160 	eb->fs_info = fs_info;
5161 again:
5162 	ret = radix_tree_preload(GFP_NOFS);
5163 	if (ret) {
5164 		exists = ERR_PTR(ret);
5165 		goto free_eb;
5166 	}
5167 	spin_lock(&fs_info->buffer_lock);
5168 	ret = radix_tree_insert(&fs_info->buffer_radix,
5169 				start >> PAGE_SHIFT, eb);
5170 	spin_unlock(&fs_info->buffer_lock);
5171 	radix_tree_preload_end();
5172 	if (ret == -EEXIST) {
5173 		exists = find_extent_buffer(fs_info, start);
5174 		if (exists)
5175 			goto free_eb;
5176 		else
5177 			goto again;
5178 	}
5179 	check_buffer_tree_ref(eb);
5180 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5181 
5182 	return eb;
5183 free_eb:
5184 	btrfs_release_extent_buffer(eb);
5185 	return exists;
5186 }
5187 #endif
5188 
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5189 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5190 					  u64 start)
5191 {
5192 	unsigned long len = fs_info->nodesize;
5193 	int num_pages;
5194 	int i;
5195 	unsigned long index = start >> PAGE_SHIFT;
5196 	struct extent_buffer *eb;
5197 	struct extent_buffer *exists = NULL;
5198 	struct page *p;
5199 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5200 	int uptodate = 1;
5201 	int ret;
5202 
5203 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5204 		btrfs_err(fs_info, "bad tree block start %llu", start);
5205 		return ERR_PTR(-EINVAL);
5206 	}
5207 
5208 	eb = find_extent_buffer(fs_info, start);
5209 	if (eb)
5210 		return eb;
5211 
5212 	eb = __alloc_extent_buffer(fs_info, start, len);
5213 	if (!eb)
5214 		return ERR_PTR(-ENOMEM);
5215 
5216 	num_pages = num_extent_pages(eb);
5217 	for (i = 0; i < num_pages; i++, index++) {
5218 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5219 		if (!p) {
5220 			exists = ERR_PTR(-ENOMEM);
5221 			goto free_eb;
5222 		}
5223 
5224 		spin_lock(&mapping->private_lock);
5225 		if (PagePrivate(p)) {
5226 			/*
5227 			 * We could have already allocated an eb for this page
5228 			 * and attached one so lets see if we can get a ref on
5229 			 * the existing eb, and if we can we know it's good and
5230 			 * we can just return that one, else we know we can just
5231 			 * overwrite page->private.
5232 			 */
5233 			exists = (struct extent_buffer *)p->private;
5234 			if (atomic_inc_not_zero(&exists->refs)) {
5235 				spin_unlock(&mapping->private_lock);
5236 				unlock_page(p);
5237 				put_page(p);
5238 				mark_extent_buffer_accessed(exists, p);
5239 				goto free_eb;
5240 			}
5241 			exists = NULL;
5242 
5243 			/*
5244 			 * Do this so attach doesn't complain and we need to
5245 			 * drop the ref the old guy had.
5246 			 */
5247 			ClearPagePrivate(p);
5248 			WARN_ON(PageDirty(p));
5249 			put_page(p);
5250 		}
5251 		attach_extent_buffer_page(eb, p);
5252 		spin_unlock(&mapping->private_lock);
5253 		WARN_ON(PageDirty(p));
5254 		eb->pages[i] = p;
5255 		if (!PageUptodate(p))
5256 			uptodate = 0;
5257 
5258 		/*
5259 		 * We can't unlock the pages just yet since the extent buffer
5260 		 * hasn't been properly inserted in the radix tree, this
5261 		 * opens a race with btree_releasepage which can free a page
5262 		 * while we are still filling in all pages for the buffer and
5263 		 * we could crash.
5264 		 */
5265 	}
5266 	if (uptodate)
5267 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5268 again:
5269 	ret = radix_tree_preload(GFP_NOFS);
5270 	if (ret) {
5271 		exists = ERR_PTR(ret);
5272 		goto free_eb;
5273 	}
5274 
5275 	spin_lock(&fs_info->buffer_lock);
5276 	ret = radix_tree_insert(&fs_info->buffer_radix,
5277 				start >> PAGE_SHIFT, eb);
5278 	spin_unlock(&fs_info->buffer_lock);
5279 	radix_tree_preload_end();
5280 	if (ret == -EEXIST) {
5281 		exists = find_extent_buffer(fs_info, start);
5282 		if (exists)
5283 			goto free_eb;
5284 		else
5285 			goto again;
5286 	}
5287 	/* add one reference for the tree */
5288 	check_buffer_tree_ref(eb);
5289 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5290 
5291 	/*
5292 	 * Now it's safe to unlock the pages because any calls to
5293 	 * btree_releasepage will correctly detect that a page belongs to a
5294 	 * live buffer and won't free them prematurely.
5295 	 */
5296 	for (i = 0; i < num_pages; i++)
5297 		unlock_page(eb->pages[i]);
5298 	return eb;
5299 
5300 free_eb:
5301 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5302 	for (i = 0; i < num_pages; i++) {
5303 		if (eb->pages[i])
5304 			unlock_page(eb->pages[i]);
5305 	}
5306 
5307 	btrfs_release_extent_buffer(eb);
5308 	return exists;
5309 }
5310 
btrfs_release_extent_buffer_rcu(struct rcu_head * head)5311 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5312 {
5313 	struct extent_buffer *eb =
5314 			container_of(head, struct extent_buffer, rcu_head);
5315 
5316 	__free_extent_buffer(eb);
5317 }
5318 
release_extent_buffer(struct extent_buffer * eb)5319 static int release_extent_buffer(struct extent_buffer *eb)
5320 	__releases(&eb->refs_lock)
5321 {
5322 	lockdep_assert_held(&eb->refs_lock);
5323 
5324 	WARN_ON(atomic_read(&eb->refs) == 0);
5325 	if (atomic_dec_and_test(&eb->refs)) {
5326 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5327 			struct btrfs_fs_info *fs_info = eb->fs_info;
5328 
5329 			spin_unlock(&eb->refs_lock);
5330 
5331 			spin_lock(&fs_info->buffer_lock);
5332 			radix_tree_delete(&fs_info->buffer_radix,
5333 					  eb->start >> PAGE_SHIFT);
5334 			spin_unlock(&fs_info->buffer_lock);
5335 		} else {
5336 			spin_unlock(&eb->refs_lock);
5337 		}
5338 
5339 		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5340 		/* Should be safe to release our pages at this point */
5341 		btrfs_release_extent_buffer_pages(eb);
5342 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5343 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5344 			__free_extent_buffer(eb);
5345 			return 1;
5346 		}
5347 #endif
5348 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5349 		return 1;
5350 	}
5351 	spin_unlock(&eb->refs_lock);
5352 
5353 	return 0;
5354 }
5355 
free_extent_buffer(struct extent_buffer * eb)5356 void free_extent_buffer(struct extent_buffer *eb)
5357 {
5358 	int refs;
5359 	int old;
5360 	if (!eb)
5361 		return;
5362 
5363 	while (1) {
5364 		refs = atomic_read(&eb->refs);
5365 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5366 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5367 			refs == 1))
5368 			break;
5369 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5370 		if (old == refs)
5371 			return;
5372 	}
5373 
5374 	spin_lock(&eb->refs_lock);
5375 	if (atomic_read(&eb->refs) == 2 &&
5376 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5377 	    !extent_buffer_under_io(eb) &&
5378 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5379 		atomic_dec(&eb->refs);
5380 
5381 	/*
5382 	 * I know this is terrible, but it's temporary until we stop tracking
5383 	 * the uptodate bits and such for the extent buffers.
5384 	 */
5385 	release_extent_buffer(eb);
5386 }
5387 
free_extent_buffer_stale(struct extent_buffer * eb)5388 void free_extent_buffer_stale(struct extent_buffer *eb)
5389 {
5390 	if (!eb)
5391 		return;
5392 
5393 	spin_lock(&eb->refs_lock);
5394 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5395 
5396 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5397 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5398 		atomic_dec(&eb->refs);
5399 	release_extent_buffer(eb);
5400 }
5401 
clear_extent_buffer_dirty(const struct extent_buffer * eb)5402 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5403 {
5404 	int i;
5405 	int num_pages;
5406 	struct page *page;
5407 
5408 	num_pages = num_extent_pages(eb);
5409 
5410 	for (i = 0; i < num_pages; i++) {
5411 		page = eb->pages[i];
5412 		if (!PageDirty(page))
5413 			continue;
5414 
5415 		lock_page(page);
5416 		WARN_ON(!PagePrivate(page));
5417 
5418 		clear_page_dirty_for_io(page);
5419 		xa_lock_irq(&page->mapping->i_pages);
5420 		if (!PageDirty(page))
5421 			__xa_clear_mark(&page->mapping->i_pages,
5422 					page_index(page), PAGECACHE_TAG_DIRTY);
5423 		xa_unlock_irq(&page->mapping->i_pages);
5424 		ClearPageError(page);
5425 		unlock_page(page);
5426 	}
5427 	WARN_ON(atomic_read(&eb->refs) == 0);
5428 }
5429 
set_extent_buffer_dirty(struct extent_buffer * eb)5430 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5431 {
5432 	int i;
5433 	int num_pages;
5434 	bool was_dirty;
5435 
5436 	check_buffer_tree_ref(eb);
5437 
5438 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5439 
5440 	num_pages = num_extent_pages(eb);
5441 	WARN_ON(atomic_read(&eb->refs) == 0);
5442 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5443 
5444 	if (!was_dirty)
5445 		for (i = 0; i < num_pages; i++)
5446 			set_page_dirty(eb->pages[i]);
5447 
5448 #ifdef CONFIG_BTRFS_DEBUG
5449 	for (i = 0; i < num_pages; i++)
5450 		ASSERT(PageDirty(eb->pages[i]));
5451 #endif
5452 
5453 	return was_dirty;
5454 }
5455 
clear_extent_buffer_uptodate(struct extent_buffer * eb)5456 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5457 {
5458 	int i;
5459 	struct page *page;
5460 	int num_pages;
5461 
5462 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5463 	num_pages = num_extent_pages(eb);
5464 	for (i = 0; i < num_pages; i++) {
5465 		page = eb->pages[i];
5466 		if (page)
5467 			ClearPageUptodate(page);
5468 	}
5469 }
5470 
set_extent_buffer_uptodate(struct extent_buffer * eb)5471 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5472 {
5473 	int i;
5474 	struct page *page;
5475 	int num_pages;
5476 
5477 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5478 	num_pages = num_extent_pages(eb);
5479 	for (i = 0; i < num_pages; i++) {
5480 		page = eb->pages[i];
5481 		SetPageUptodate(page);
5482 	}
5483 }
5484 
read_extent_buffer_pages(struct extent_buffer * eb,int wait,int mirror_num)5485 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5486 {
5487 	int i;
5488 	struct page *page;
5489 	int err;
5490 	int ret = 0;
5491 	int locked_pages = 0;
5492 	int all_uptodate = 1;
5493 	int num_pages;
5494 	unsigned long num_reads = 0;
5495 	struct bio *bio = NULL;
5496 	unsigned long bio_flags = 0;
5497 
5498 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5499 		return 0;
5500 
5501 	num_pages = num_extent_pages(eb);
5502 	for (i = 0; i < num_pages; i++) {
5503 		page = eb->pages[i];
5504 		if (wait == WAIT_NONE) {
5505 			if (!trylock_page(page))
5506 				goto unlock_exit;
5507 		} else {
5508 			lock_page(page);
5509 		}
5510 		locked_pages++;
5511 	}
5512 	/*
5513 	 * We need to firstly lock all pages to make sure that
5514 	 * the uptodate bit of our pages won't be affected by
5515 	 * clear_extent_buffer_uptodate().
5516 	 */
5517 	for (i = 0; i < num_pages; i++) {
5518 		page = eb->pages[i];
5519 		if (!PageUptodate(page)) {
5520 			num_reads++;
5521 			all_uptodate = 0;
5522 		}
5523 	}
5524 
5525 	if (all_uptodate) {
5526 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5527 		goto unlock_exit;
5528 	}
5529 
5530 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5531 	eb->read_mirror = 0;
5532 	atomic_set(&eb->io_pages, num_reads);
5533 	/*
5534 	 * It is possible for releasepage to clear the TREE_REF bit before we
5535 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5536 	 */
5537 	check_buffer_tree_ref(eb);
5538 	for (i = 0; i < num_pages; i++) {
5539 		page = eb->pages[i];
5540 
5541 		if (!PageUptodate(page)) {
5542 			if (ret) {
5543 				atomic_dec(&eb->io_pages);
5544 				unlock_page(page);
5545 				continue;
5546 			}
5547 
5548 			ClearPageError(page);
5549 			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
5550 					 page, page_offset(page), PAGE_SIZE, 0,
5551 					 &bio, end_bio_extent_readpage,
5552 					 mirror_num, 0, 0, false);
5553 			if (err) {
5554 				/*
5555 				 * We failed to submit the bio so it's the
5556 				 * caller's responsibility to perform cleanup
5557 				 * i.e unlock page/set error bit.
5558 				 */
5559 				ret = err;
5560 				SetPageError(page);
5561 				unlock_page(page);
5562 				atomic_dec(&eb->io_pages);
5563 			}
5564 		} else {
5565 			unlock_page(page);
5566 		}
5567 	}
5568 
5569 	if (bio) {
5570 		err = submit_one_bio(bio, mirror_num, bio_flags);
5571 		if (err)
5572 			return err;
5573 	}
5574 
5575 	if (ret || wait != WAIT_COMPLETE)
5576 		return ret;
5577 
5578 	for (i = 0; i < num_pages; i++) {
5579 		page = eb->pages[i];
5580 		wait_on_page_locked(page);
5581 		if (!PageUptodate(page))
5582 			ret = -EIO;
5583 	}
5584 
5585 	return ret;
5586 
5587 unlock_exit:
5588 	while (locked_pages > 0) {
5589 		locked_pages--;
5590 		page = eb->pages[locked_pages];
5591 		unlock_page(page);
5592 	}
5593 	return ret;
5594 }
5595 
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)5596 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5597 			    unsigned long len)
5598 {
5599 	btrfs_warn(eb->fs_info,
5600 		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
5601 		eb->start, eb->len, start, len);
5602 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5603 
5604 	return true;
5605 }
5606 
5607 /*
5608  * Check if the [start, start + len) range is valid before reading/writing
5609  * the eb.
5610  * NOTE: @start and @len are offset inside the eb, not logical address.
5611  *
5612  * Caller should not touch the dst/src memory if this function returns error.
5613  */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)5614 static inline int check_eb_range(const struct extent_buffer *eb,
5615 				 unsigned long start, unsigned long len)
5616 {
5617 	unsigned long offset;
5618 
5619 	/* start, start + len should not go beyond eb->len nor overflow */
5620 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5621 		return report_eb_range(eb, start, len);
5622 
5623 	return false;
5624 }
5625 
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)5626 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5627 			unsigned long start, unsigned long len)
5628 {
5629 	size_t cur;
5630 	size_t offset;
5631 	struct page *page;
5632 	char *kaddr;
5633 	char *dst = (char *)dstv;
5634 	unsigned long i = start >> PAGE_SHIFT;
5635 
5636 	if (check_eb_range(eb, start, len))
5637 		return;
5638 
5639 	offset = offset_in_page(start);
5640 
5641 	while (len > 0) {
5642 		page = eb->pages[i];
5643 
5644 		cur = min(len, (PAGE_SIZE - offset));
5645 		kaddr = page_address(page);
5646 		memcpy(dst, kaddr + offset, cur);
5647 
5648 		dst += cur;
5649 		len -= cur;
5650 		offset = 0;
5651 		i++;
5652 	}
5653 }
5654 
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)5655 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5656 				       void __user *dstv,
5657 				       unsigned long start, unsigned long len)
5658 {
5659 	size_t cur;
5660 	size_t offset;
5661 	struct page *page;
5662 	char *kaddr;
5663 	char __user *dst = (char __user *)dstv;
5664 	unsigned long i = start >> PAGE_SHIFT;
5665 	int ret = 0;
5666 
5667 	WARN_ON(start > eb->len);
5668 	WARN_ON(start + len > eb->start + eb->len);
5669 
5670 	offset = offset_in_page(start);
5671 
5672 	while (len > 0) {
5673 		page = eb->pages[i];
5674 
5675 		cur = min(len, (PAGE_SIZE - offset));
5676 		kaddr = page_address(page);
5677 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5678 			ret = -EFAULT;
5679 			break;
5680 		}
5681 
5682 		dst += cur;
5683 		len -= cur;
5684 		offset = 0;
5685 		i++;
5686 	}
5687 
5688 	return ret;
5689 }
5690 
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)5691 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5692 			 unsigned long start, unsigned long len)
5693 {
5694 	size_t cur;
5695 	size_t offset;
5696 	struct page *page;
5697 	char *kaddr;
5698 	char *ptr = (char *)ptrv;
5699 	unsigned long i = start >> PAGE_SHIFT;
5700 	int ret = 0;
5701 
5702 	if (check_eb_range(eb, start, len))
5703 		return -EINVAL;
5704 
5705 	offset = offset_in_page(start);
5706 
5707 	while (len > 0) {
5708 		page = eb->pages[i];
5709 
5710 		cur = min(len, (PAGE_SIZE - offset));
5711 
5712 		kaddr = page_address(page);
5713 		ret = memcmp(ptr, kaddr + offset, cur);
5714 		if (ret)
5715 			break;
5716 
5717 		ptr += cur;
5718 		len -= cur;
5719 		offset = 0;
5720 		i++;
5721 	}
5722 	return ret;
5723 }
5724 
write_extent_buffer_chunk_tree_uuid(const struct extent_buffer * eb,const void * srcv)5725 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5726 		const void *srcv)
5727 {
5728 	char *kaddr;
5729 
5730 	WARN_ON(!PageUptodate(eb->pages[0]));
5731 	kaddr = page_address(eb->pages[0]);
5732 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5733 			BTRFS_FSID_SIZE);
5734 }
5735 
write_extent_buffer_fsid(const struct extent_buffer * eb,const void * srcv)5736 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5737 {
5738 	char *kaddr;
5739 
5740 	WARN_ON(!PageUptodate(eb->pages[0]));
5741 	kaddr = page_address(eb->pages[0]);
5742 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5743 			BTRFS_FSID_SIZE);
5744 }
5745 
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)5746 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5747 			 unsigned long start, unsigned long len)
5748 {
5749 	size_t cur;
5750 	size_t offset;
5751 	struct page *page;
5752 	char *kaddr;
5753 	char *src = (char *)srcv;
5754 	unsigned long i = start >> PAGE_SHIFT;
5755 
5756 	if (check_eb_range(eb, start, len))
5757 		return;
5758 
5759 	offset = offset_in_page(start);
5760 
5761 	while (len > 0) {
5762 		page = eb->pages[i];
5763 		WARN_ON(!PageUptodate(page));
5764 
5765 		cur = min(len, PAGE_SIZE - offset);
5766 		kaddr = page_address(page);
5767 		memcpy(kaddr + offset, src, cur);
5768 
5769 		src += cur;
5770 		len -= cur;
5771 		offset = 0;
5772 		i++;
5773 	}
5774 }
5775 
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)5776 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5777 		unsigned long len)
5778 {
5779 	size_t cur;
5780 	size_t offset;
5781 	struct page *page;
5782 	char *kaddr;
5783 	unsigned long i = start >> PAGE_SHIFT;
5784 
5785 	if (check_eb_range(eb, start, len))
5786 		return;
5787 
5788 	offset = offset_in_page(start);
5789 
5790 	while (len > 0) {
5791 		page = eb->pages[i];
5792 		WARN_ON(!PageUptodate(page));
5793 
5794 		cur = min(len, PAGE_SIZE - offset);
5795 		kaddr = page_address(page);
5796 		memset(kaddr + offset, 0, cur);
5797 
5798 		len -= cur;
5799 		offset = 0;
5800 		i++;
5801 	}
5802 }
5803 
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)5804 void copy_extent_buffer_full(const struct extent_buffer *dst,
5805 			     const struct extent_buffer *src)
5806 {
5807 	int i;
5808 	int num_pages;
5809 
5810 	ASSERT(dst->len == src->len);
5811 
5812 	num_pages = num_extent_pages(dst);
5813 	for (i = 0; i < num_pages; i++)
5814 		copy_page(page_address(dst->pages[i]),
5815 				page_address(src->pages[i]));
5816 }
5817 
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5818 void copy_extent_buffer(const struct extent_buffer *dst,
5819 			const struct extent_buffer *src,
5820 			unsigned long dst_offset, unsigned long src_offset,
5821 			unsigned long len)
5822 {
5823 	u64 dst_len = dst->len;
5824 	size_t cur;
5825 	size_t offset;
5826 	struct page *page;
5827 	char *kaddr;
5828 	unsigned long i = dst_offset >> PAGE_SHIFT;
5829 
5830 	if (check_eb_range(dst, dst_offset, len) ||
5831 	    check_eb_range(src, src_offset, len))
5832 		return;
5833 
5834 	WARN_ON(src->len != dst_len);
5835 
5836 	offset = offset_in_page(dst_offset);
5837 
5838 	while (len > 0) {
5839 		page = dst->pages[i];
5840 		WARN_ON(!PageUptodate(page));
5841 
5842 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5843 
5844 		kaddr = page_address(page);
5845 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5846 
5847 		src_offset += cur;
5848 		len -= cur;
5849 		offset = 0;
5850 		i++;
5851 	}
5852 }
5853 
5854 /*
5855  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5856  * given bit number
5857  * @eb: the extent buffer
5858  * @start: offset of the bitmap item in the extent buffer
5859  * @nr: bit number
5860  * @page_index: return index of the page in the extent buffer that contains the
5861  * given bit number
5862  * @page_offset: return offset into the page given by page_index
5863  *
5864  * This helper hides the ugliness of finding the byte in an extent buffer which
5865  * contains a given bit.
5866  */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)5867 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5868 				    unsigned long start, unsigned long nr,
5869 				    unsigned long *page_index,
5870 				    size_t *page_offset)
5871 {
5872 	size_t byte_offset = BIT_BYTE(nr);
5873 	size_t offset;
5874 
5875 	/*
5876 	 * The byte we want is the offset of the extent buffer + the offset of
5877 	 * the bitmap item in the extent buffer + the offset of the byte in the
5878 	 * bitmap item.
5879 	 */
5880 	offset = start + byte_offset;
5881 
5882 	*page_index = offset >> PAGE_SHIFT;
5883 	*page_offset = offset_in_page(offset);
5884 }
5885 
5886 /**
5887  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5888  * @eb: the extent buffer
5889  * @start: offset of the bitmap item in the extent buffer
5890  * @nr: bit number to test
5891  */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)5892 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5893 			   unsigned long nr)
5894 {
5895 	u8 *kaddr;
5896 	struct page *page;
5897 	unsigned long i;
5898 	size_t offset;
5899 
5900 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5901 	page = eb->pages[i];
5902 	WARN_ON(!PageUptodate(page));
5903 	kaddr = page_address(page);
5904 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5905 }
5906 
5907 /**
5908  * extent_buffer_bitmap_set - set an area of a bitmap
5909  * @eb: the extent buffer
5910  * @start: offset of the bitmap item in the extent buffer
5911  * @pos: bit number of the first bit
5912  * @len: number of bits to set
5913  */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5914 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5915 			      unsigned long pos, unsigned long len)
5916 {
5917 	u8 *kaddr;
5918 	struct page *page;
5919 	unsigned long i;
5920 	size_t offset;
5921 	const unsigned int size = pos + len;
5922 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5923 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5924 
5925 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5926 	page = eb->pages[i];
5927 	WARN_ON(!PageUptodate(page));
5928 	kaddr = page_address(page);
5929 
5930 	while (len >= bits_to_set) {
5931 		kaddr[offset] |= mask_to_set;
5932 		len -= bits_to_set;
5933 		bits_to_set = BITS_PER_BYTE;
5934 		mask_to_set = ~0;
5935 		if (++offset >= PAGE_SIZE && len > 0) {
5936 			offset = 0;
5937 			page = eb->pages[++i];
5938 			WARN_ON(!PageUptodate(page));
5939 			kaddr = page_address(page);
5940 		}
5941 	}
5942 	if (len) {
5943 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5944 		kaddr[offset] |= mask_to_set;
5945 	}
5946 }
5947 
5948 
5949 /**
5950  * extent_buffer_bitmap_clear - clear an area of a bitmap
5951  * @eb: the extent buffer
5952  * @start: offset of the bitmap item in the extent buffer
5953  * @pos: bit number of the first bit
5954  * @len: number of bits to clear
5955  */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5956 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5957 				unsigned long start, unsigned long pos,
5958 				unsigned long len)
5959 {
5960 	u8 *kaddr;
5961 	struct page *page;
5962 	unsigned long i;
5963 	size_t offset;
5964 	const unsigned int size = pos + len;
5965 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5966 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5967 
5968 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5969 	page = eb->pages[i];
5970 	WARN_ON(!PageUptodate(page));
5971 	kaddr = page_address(page);
5972 
5973 	while (len >= bits_to_clear) {
5974 		kaddr[offset] &= ~mask_to_clear;
5975 		len -= bits_to_clear;
5976 		bits_to_clear = BITS_PER_BYTE;
5977 		mask_to_clear = ~0;
5978 		if (++offset >= PAGE_SIZE && len > 0) {
5979 			offset = 0;
5980 			page = eb->pages[++i];
5981 			WARN_ON(!PageUptodate(page));
5982 			kaddr = page_address(page);
5983 		}
5984 	}
5985 	if (len) {
5986 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5987 		kaddr[offset] &= ~mask_to_clear;
5988 	}
5989 }
5990 
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)5991 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5992 {
5993 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5994 	return distance < len;
5995 }
5996 
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)5997 static void copy_pages(struct page *dst_page, struct page *src_page,
5998 		       unsigned long dst_off, unsigned long src_off,
5999 		       unsigned long len)
6000 {
6001 	char *dst_kaddr = page_address(dst_page);
6002 	char *src_kaddr;
6003 	int must_memmove = 0;
6004 
6005 	if (dst_page != src_page) {
6006 		src_kaddr = page_address(src_page);
6007 	} else {
6008 		src_kaddr = dst_kaddr;
6009 		if (areas_overlap(src_off, dst_off, len))
6010 			must_memmove = 1;
6011 	}
6012 
6013 	if (must_memmove)
6014 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6015 	else
6016 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6017 }
6018 
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)6019 void memcpy_extent_buffer(const struct extent_buffer *dst,
6020 			  unsigned long dst_offset, unsigned long src_offset,
6021 			  unsigned long len)
6022 {
6023 	size_t cur;
6024 	size_t dst_off_in_page;
6025 	size_t src_off_in_page;
6026 	unsigned long dst_i;
6027 	unsigned long src_i;
6028 
6029 	if (check_eb_range(dst, dst_offset, len) ||
6030 	    check_eb_range(dst, src_offset, len))
6031 		return;
6032 
6033 	while (len > 0) {
6034 		dst_off_in_page = offset_in_page(dst_offset);
6035 		src_off_in_page = offset_in_page(src_offset);
6036 
6037 		dst_i = dst_offset >> PAGE_SHIFT;
6038 		src_i = src_offset >> PAGE_SHIFT;
6039 
6040 		cur = min(len, (unsigned long)(PAGE_SIZE -
6041 					       src_off_in_page));
6042 		cur = min_t(unsigned long, cur,
6043 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6044 
6045 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6046 			   dst_off_in_page, src_off_in_page, cur);
6047 
6048 		src_offset += cur;
6049 		dst_offset += cur;
6050 		len -= cur;
6051 	}
6052 }
6053 
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)6054 void memmove_extent_buffer(const struct extent_buffer *dst,
6055 			   unsigned long dst_offset, unsigned long src_offset,
6056 			   unsigned long len)
6057 {
6058 	size_t cur;
6059 	size_t dst_off_in_page;
6060 	size_t src_off_in_page;
6061 	unsigned long dst_end = dst_offset + len - 1;
6062 	unsigned long src_end = src_offset + len - 1;
6063 	unsigned long dst_i;
6064 	unsigned long src_i;
6065 
6066 	if (check_eb_range(dst, dst_offset, len) ||
6067 	    check_eb_range(dst, src_offset, len))
6068 		return;
6069 	if (dst_offset < src_offset) {
6070 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6071 		return;
6072 	}
6073 	while (len > 0) {
6074 		dst_i = dst_end >> PAGE_SHIFT;
6075 		src_i = src_end >> PAGE_SHIFT;
6076 
6077 		dst_off_in_page = offset_in_page(dst_end);
6078 		src_off_in_page = offset_in_page(src_end);
6079 
6080 		cur = min_t(unsigned long, len, src_off_in_page + 1);
6081 		cur = min(cur, dst_off_in_page + 1);
6082 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6083 			   dst_off_in_page - cur + 1,
6084 			   src_off_in_page - cur + 1, cur);
6085 
6086 		dst_end -= cur;
6087 		src_end -= cur;
6088 		len -= cur;
6089 	}
6090 }
6091 
try_release_extent_buffer(struct page * page)6092 int try_release_extent_buffer(struct page *page)
6093 {
6094 	struct extent_buffer *eb;
6095 
6096 	/*
6097 	 * We need to make sure nobody is attaching this page to an eb right
6098 	 * now.
6099 	 */
6100 	spin_lock(&page->mapping->private_lock);
6101 	if (!PagePrivate(page)) {
6102 		spin_unlock(&page->mapping->private_lock);
6103 		return 1;
6104 	}
6105 
6106 	eb = (struct extent_buffer *)page->private;
6107 	BUG_ON(!eb);
6108 
6109 	/*
6110 	 * This is a little awful but should be ok, we need to make sure that
6111 	 * the eb doesn't disappear out from under us while we're looking at
6112 	 * this page.
6113 	 */
6114 	spin_lock(&eb->refs_lock);
6115 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6116 		spin_unlock(&eb->refs_lock);
6117 		spin_unlock(&page->mapping->private_lock);
6118 		return 0;
6119 	}
6120 	spin_unlock(&page->mapping->private_lock);
6121 
6122 	/*
6123 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6124 	 * so just return, this page will likely be freed soon anyway.
6125 	 */
6126 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6127 		spin_unlock(&eb->refs_lock);
6128 		return 0;
6129 	}
6130 
6131 	return release_extent_buffer(eb);
6132 }
6133