• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core IEEE1394 transaction logic
4  *
5  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/idr.h>
17 #include <linux/jiffies.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rculist.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/types.h>
27 #include <linux/workqueue.h>
28 
29 #include <asm/byteorder.h>
30 
31 #include "core.h"
32 
33 #define HEADER_PRI(pri)			((pri) << 0)
34 #define HEADER_TCODE(tcode)		((tcode) << 4)
35 #define HEADER_RETRY(retry)		((retry) << 8)
36 #define HEADER_TLABEL(tlabel)		((tlabel) << 10)
37 #define HEADER_DESTINATION(destination)	((destination) << 16)
38 #define HEADER_SOURCE(source)		((source) << 16)
39 #define HEADER_RCODE(rcode)		((rcode) << 12)
40 #define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
41 #define HEADER_DATA_LENGTH(length)	((length) << 16)
42 #define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
43 
44 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
45 #define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
46 #define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
47 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
48 #define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
49 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
50 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
51 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
52 
53 #define HEADER_DESTINATION_IS_BROADCAST(q) \
54 	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
55 
56 #define PHY_PACKET_CONFIG	0x0
57 #define PHY_PACKET_LINK_ON	0x1
58 #define PHY_PACKET_SELF_ID	0x2
59 
60 #define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
61 #define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
62 #define PHY_IDENTIFIER(id)		((id) << 30)
63 
64 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)65 static int try_cancel_split_timeout(struct fw_transaction *t)
66 {
67 	if (t->is_split_transaction)
68 		return del_timer(&t->split_timeout_timer);
69 	else
70 		return 1;
71 }
72 
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode)73 static int close_transaction(struct fw_transaction *transaction,
74 			     struct fw_card *card, int rcode)
75 {
76 	struct fw_transaction *t = NULL, *iter;
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&card->lock, flags);
80 	list_for_each_entry(iter, &card->transaction_list, link) {
81 		if (iter == transaction) {
82 			if (!try_cancel_split_timeout(iter)) {
83 				spin_unlock_irqrestore(&card->lock, flags);
84 				goto timed_out;
85 			}
86 			list_del_init(&iter->link);
87 			card->tlabel_mask &= ~(1ULL << iter->tlabel);
88 			t = iter;
89 			break;
90 		}
91 	}
92 	spin_unlock_irqrestore(&card->lock, flags);
93 
94 	if (t) {
95 		t->callback(card, rcode, NULL, 0, t->callback_data);
96 		return 0;
97 	}
98 
99  timed_out:
100 	return -ENOENT;
101 }
102 
103 /*
104  * Only valid for transactions that are potentially pending (ie have
105  * been sent).
106  */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)107 int fw_cancel_transaction(struct fw_card *card,
108 			  struct fw_transaction *transaction)
109 {
110 	/*
111 	 * Cancel the packet transmission if it's still queued.  That
112 	 * will call the packet transmission callback which cancels
113 	 * the transaction.
114 	 */
115 
116 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
117 		return 0;
118 
119 	/*
120 	 * If the request packet has already been sent, we need to see
121 	 * if the transaction is still pending and remove it in that case.
122 	 */
123 
124 	return close_transaction(transaction, card, RCODE_CANCELLED);
125 }
126 EXPORT_SYMBOL(fw_cancel_transaction);
127 
split_transaction_timeout_callback(struct timer_list * timer)128 static void split_transaction_timeout_callback(struct timer_list *timer)
129 {
130 	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
131 	struct fw_card *card = t->card;
132 	unsigned long flags;
133 
134 	spin_lock_irqsave(&card->lock, flags);
135 	if (list_empty(&t->link)) {
136 		spin_unlock_irqrestore(&card->lock, flags);
137 		return;
138 	}
139 	list_del(&t->link);
140 	card->tlabel_mask &= ~(1ULL << t->tlabel);
141 	spin_unlock_irqrestore(&card->lock, flags);
142 
143 	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
144 }
145 
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)146 static void start_split_transaction_timeout(struct fw_transaction *t,
147 					    struct fw_card *card)
148 {
149 	unsigned long flags;
150 
151 	spin_lock_irqsave(&card->lock, flags);
152 
153 	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
154 		spin_unlock_irqrestore(&card->lock, flags);
155 		return;
156 	}
157 
158 	t->is_split_transaction = true;
159 	mod_timer(&t->split_timeout_timer,
160 		  jiffies + card->split_timeout_jiffies);
161 
162 	spin_unlock_irqrestore(&card->lock, flags);
163 }
164 
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)165 static void transmit_complete_callback(struct fw_packet *packet,
166 				       struct fw_card *card, int status)
167 {
168 	struct fw_transaction *t =
169 	    container_of(packet, struct fw_transaction, packet);
170 
171 	switch (status) {
172 	case ACK_COMPLETE:
173 		close_transaction(t, card, RCODE_COMPLETE);
174 		break;
175 	case ACK_PENDING:
176 		start_split_transaction_timeout(t, card);
177 		break;
178 	case ACK_BUSY_X:
179 	case ACK_BUSY_A:
180 	case ACK_BUSY_B:
181 		close_transaction(t, card, RCODE_BUSY);
182 		break;
183 	case ACK_DATA_ERROR:
184 		close_transaction(t, card, RCODE_DATA_ERROR);
185 		break;
186 	case ACK_TYPE_ERROR:
187 		close_transaction(t, card, RCODE_TYPE_ERROR);
188 		break;
189 	default:
190 		/*
191 		 * In this case the ack is really a juju specific
192 		 * rcode, so just forward that to the callback.
193 		 */
194 		close_transaction(t, card, status);
195 		break;
196 	}
197 }
198 
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)199 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
200 		int destination_id, int source_id, int generation, int speed,
201 		unsigned long long offset, void *payload, size_t length)
202 {
203 	int ext_tcode;
204 
205 	if (tcode == TCODE_STREAM_DATA) {
206 		packet->header[0] =
207 			HEADER_DATA_LENGTH(length) |
208 			destination_id |
209 			HEADER_TCODE(TCODE_STREAM_DATA);
210 		packet->header_length = 4;
211 		packet->payload = payload;
212 		packet->payload_length = length;
213 
214 		goto common;
215 	}
216 
217 	if (tcode > 0x10) {
218 		ext_tcode = tcode & ~0x10;
219 		tcode = TCODE_LOCK_REQUEST;
220 	} else
221 		ext_tcode = 0;
222 
223 	packet->header[0] =
224 		HEADER_RETRY(RETRY_X) |
225 		HEADER_TLABEL(tlabel) |
226 		HEADER_TCODE(tcode) |
227 		HEADER_DESTINATION(destination_id);
228 	packet->header[1] =
229 		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
230 	packet->header[2] =
231 		offset;
232 
233 	switch (tcode) {
234 	case TCODE_WRITE_QUADLET_REQUEST:
235 		packet->header[3] = *(u32 *)payload;
236 		packet->header_length = 16;
237 		packet->payload_length = 0;
238 		break;
239 
240 	case TCODE_LOCK_REQUEST:
241 	case TCODE_WRITE_BLOCK_REQUEST:
242 		packet->header[3] =
243 			HEADER_DATA_LENGTH(length) |
244 			HEADER_EXTENDED_TCODE(ext_tcode);
245 		packet->header_length = 16;
246 		packet->payload = payload;
247 		packet->payload_length = length;
248 		break;
249 
250 	case TCODE_READ_QUADLET_REQUEST:
251 		packet->header_length = 12;
252 		packet->payload_length = 0;
253 		break;
254 
255 	case TCODE_READ_BLOCK_REQUEST:
256 		packet->header[3] =
257 			HEADER_DATA_LENGTH(length) |
258 			HEADER_EXTENDED_TCODE(ext_tcode);
259 		packet->header_length = 16;
260 		packet->payload_length = 0;
261 		break;
262 
263 	default:
264 		WARN(1, "wrong tcode %d\n", tcode);
265 	}
266  common:
267 	packet->speed = speed;
268 	packet->generation = generation;
269 	packet->ack = 0;
270 	packet->payload_mapped = false;
271 }
272 
allocate_tlabel(struct fw_card * card)273 static int allocate_tlabel(struct fw_card *card)
274 {
275 	int tlabel;
276 
277 	tlabel = card->current_tlabel;
278 	while (card->tlabel_mask & (1ULL << tlabel)) {
279 		tlabel = (tlabel + 1) & 0x3f;
280 		if (tlabel == card->current_tlabel)
281 			return -EBUSY;
282 	}
283 
284 	card->current_tlabel = (tlabel + 1) & 0x3f;
285 	card->tlabel_mask |= 1ULL << tlabel;
286 
287 	return tlabel;
288 }
289 
290 /**
291  * fw_send_request() - submit a request packet for transmission
292  * @card:		interface to send the request at
293  * @t:			transaction instance to which the request belongs
294  * @tcode:		transaction code
295  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
296  * @generation:		bus generation in which request and response are valid
297  * @speed:		transmission speed
298  * @offset:		48bit wide offset into destination's address space
299  * @payload:		data payload for the request subaction
300  * @length:		length of the payload, in bytes
301  * @callback:		function to be called when the transaction is completed
302  * @callback_data:	data to be passed to the transaction completion callback
303  *
304  * Submit a request packet into the asynchronous request transmission queue.
305  * Can be called from atomic context.  If you prefer a blocking API, use
306  * fw_run_transaction() in a context that can sleep.
307  *
308  * In case of lock requests, specify one of the firewire-core specific %TCODE_
309  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
310  *
311  * Make sure that the value in @destination_id is not older than the one in
312  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
313  *
314  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
315  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
316  * It will contain tag, channel, and sy data instead of a node ID then.
317  *
318  * The payload buffer at @data is going to be DMA-mapped except in case of
319  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
320  * buffer complies with the restrictions of the streaming DMA mapping API.
321  * @payload must not be freed before the @callback is called.
322  *
323  * In case of request types without payload, @data is NULL and @length is 0.
324  *
325  * After the transaction is completed successfully or unsuccessfully, the
326  * @callback will be called.  Among its parameters is the response code which
327  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
328  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
329  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
330  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
331  * generation, or missing ACK respectively.
332  *
333  * Note some timing corner cases:  fw_send_request() may complete much earlier
334  * than when the request packet actually hits the wire.  On the other hand,
335  * transaction completion and hence execution of @callback may happen even
336  * before fw_send_request() returns.
337  */
fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,fw_transaction_callback_t callback,void * callback_data)338 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
339 		     int destination_id, int generation, int speed,
340 		     unsigned long long offset, void *payload, size_t length,
341 		     fw_transaction_callback_t callback, void *callback_data)
342 {
343 	unsigned long flags;
344 	int tlabel;
345 
346 	/*
347 	 * Allocate tlabel from the bitmap and put the transaction on
348 	 * the list while holding the card spinlock.
349 	 */
350 
351 	spin_lock_irqsave(&card->lock, flags);
352 
353 	tlabel = allocate_tlabel(card);
354 	if (tlabel < 0) {
355 		spin_unlock_irqrestore(&card->lock, flags);
356 		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
357 		return;
358 	}
359 
360 	t->node_id = destination_id;
361 	t->tlabel = tlabel;
362 	t->card = card;
363 	t->is_split_transaction = false;
364 	timer_setup(&t->split_timeout_timer,
365 		    split_transaction_timeout_callback, 0);
366 	t->callback = callback;
367 	t->callback_data = callback_data;
368 
369 	fw_fill_request(&t->packet, tcode, t->tlabel,
370 			destination_id, card->node_id, generation,
371 			speed, offset, payload, length);
372 	t->packet.callback = transmit_complete_callback;
373 
374 	list_add_tail(&t->link, &card->transaction_list);
375 
376 	spin_unlock_irqrestore(&card->lock, flags);
377 
378 	card->driver->send_request(card, &t->packet);
379 }
380 EXPORT_SYMBOL(fw_send_request);
381 
382 struct transaction_callback_data {
383 	struct completion done;
384 	void *payload;
385 	int rcode;
386 };
387 
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)388 static void transaction_callback(struct fw_card *card, int rcode,
389 				 void *payload, size_t length, void *data)
390 {
391 	struct transaction_callback_data *d = data;
392 
393 	if (rcode == RCODE_COMPLETE)
394 		memcpy(d->payload, payload, length);
395 	d->rcode = rcode;
396 	complete(&d->done);
397 }
398 
399 /**
400  * fw_run_transaction() - send request and sleep until transaction is completed
401  * @card:		card interface for this request
402  * @tcode:		transaction code
403  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
404  * @generation:		bus generation in which request and response are valid
405  * @speed:		transmission speed
406  * @offset:		48bit wide offset into destination's address space
407  * @payload:		data payload for the request subaction
408  * @length:		length of the payload, in bytes
409  *
410  * Returns the RCODE.  See fw_send_request() for parameter documentation.
411  * Unlike fw_send_request(), @data points to the payload of the request or/and
412  * to the payload of the response.  DMA mapping restrictions apply to outbound
413  * request payloads of >= 8 bytes but not to inbound response payloads.
414  */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)415 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
416 		       int generation, int speed, unsigned long long offset,
417 		       void *payload, size_t length)
418 {
419 	struct transaction_callback_data d;
420 	struct fw_transaction t;
421 
422 	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
423 	init_completion(&d.done);
424 	d.payload = payload;
425 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
426 			offset, payload, length, transaction_callback, &d);
427 	wait_for_completion(&d.done);
428 	destroy_timer_on_stack(&t.split_timeout_timer);
429 
430 	return d.rcode;
431 }
432 EXPORT_SYMBOL(fw_run_transaction);
433 
434 static DEFINE_MUTEX(phy_config_mutex);
435 static DECLARE_COMPLETION(phy_config_done);
436 
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)437 static void transmit_phy_packet_callback(struct fw_packet *packet,
438 					 struct fw_card *card, int status)
439 {
440 	complete(&phy_config_done);
441 }
442 
443 static struct fw_packet phy_config_packet = {
444 	.header_length	= 12,
445 	.header[0]	= TCODE_LINK_INTERNAL << 4,
446 	.payload_length	= 0,
447 	.speed		= SCODE_100,
448 	.callback	= transmit_phy_packet_callback,
449 };
450 
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)451 void fw_send_phy_config(struct fw_card *card,
452 			int node_id, int generation, int gap_count)
453 {
454 	long timeout = DIV_ROUND_UP(HZ, 10);
455 	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
456 
457 	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
458 		data |= PHY_CONFIG_ROOT_ID(node_id);
459 
460 	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
461 		gap_count = card->driver->read_phy_reg(card, 1);
462 		if (gap_count < 0)
463 			return;
464 
465 		gap_count &= 63;
466 		if (gap_count == 63)
467 			return;
468 	}
469 	data |= PHY_CONFIG_GAP_COUNT(gap_count);
470 
471 	mutex_lock(&phy_config_mutex);
472 
473 	phy_config_packet.header[1] = data;
474 	phy_config_packet.header[2] = ~data;
475 	phy_config_packet.generation = generation;
476 	reinit_completion(&phy_config_done);
477 
478 	card->driver->send_request(card, &phy_config_packet);
479 	wait_for_completion_timeout(&phy_config_done, timeout);
480 
481 	mutex_unlock(&phy_config_mutex);
482 }
483 
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)484 static struct fw_address_handler *lookup_overlapping_address_handler(
485 	struct list_head *list, unsigned long long offset, size_t length)
486 {
487 	struct fw_address_handler *handler;
488 
489 	list_for_each_entry_rcu(handler, list, link) {
490 		if (handler->offset < offset + length &&
491 		    offset < handler->offset + handler->length)
492 			return handler;
493 	}
494 
495 	return NULL;
496 }
497 
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)498 static bool is_enclosing_handler(struct fw_address_handler *handler,
499 				 unsigned long long offset, size_t length)
500 {
501 	return handler->offset <= offset &&
502 		offset + length <= handler->offset + handler->length;
503 }
504 
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)505 static struct fw_address_handler *lookup_enclosing_address_handler(
506 	struct list_head *list, unsigned long long offset, size_t length)
507 {
508 	struct fw_address_handler *handler;
509 
510 	list_for_each_entry_rcu(handler, list, link) {
511 		if (is_enclosing_handler(handler, offset, length))
512 			return handler;
513 	}
514 
515 	return NULL;
516 }
517 
518 static DEFINE_SPINLOCK(address_handler_list_lock);
519 static LIST_HEAD(address_handler_list);
520 
521 const struct fw_address_region fw_high_memory_region =
522 	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
523 EXPORT_SYMBOL(fw_high_memory_region);
524 
525 static const struct fw_address_region low_memory_region =
526 	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
527 
528 #if 0
529 const struct fw_address_region fw_private_region =
530 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
531 const struct fw_address_region fw_csr_region =
532 	{ .start = CSR_REGISTER_BASE,
533 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
534 const struct fw_address_region fw_unit_space_region =
535 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
536 #endif  /*  0  */
537 
is_in_fcp_region(u64 offset,size_t length)538 static bool is_in_fcp_region(u64 offset, size_t length)
539 {
540 	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
541 		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
542 }
543 
544 /**
545  * fw_core_add_address_handler() - register for incoming requests
546  * @handler:	callback
547  * @region:	region in the IEEE 1212 node space address range
548  *
549  * region->start, ->end, and handler->length have to be quadlet-aligned.
550  *
551  * When a request is received that falls within the specified address range,
552  * the specified callback is invoked.  The parameters passed to the callback
553  * give the details of the particular request.
554  *
555  * To be called in process context.
556  * Return value:  0 on success, non-zero otherwise.
557  *
558  * The start offset of the handler's address region is determined by
559  * fw_core_add_address_handler() and is returned in handler->offset.
560  *
561  * Address allocations are exclusive, except for the FCP registers.
562  */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)563 int fw_core_add_address_handler(struct fw_address_handler *handler,
564 				const struct fw_address_region *region)
565 {
566 	struct fw_address_handler *other;
567 	int ret = -EBUSY;
568 
569 	if (region->start & 0xffff000000000003ULL ||
570 	    region->start >= region->end ||
571 	    region->end   > 0x0001000000000000ULL ||
572 	    handler->length & 3 ||
573 	    handler->length == 0)
574 		return -EINVAL;
575 
576 	spin_lock(&address_handler_list_lock);
577 
578 	handler->offset = region->start;
579 	while (handler->offset + handler->length <= region->end) {
580 		if (is_in_fcp_region(handler->offset, handler->length))
581 			other = NULL;
582 		else
583 			other = lookup_overlapping_address_handler
584 					(&address_handler_list,
585 					 handler->offset, handler->length);
586 		if (other != NULL) {
587 			handler->offset += other->length;
588 		} else {
589 			list_add_tail_rcu(&handler->link, &address_handler_list);
590 			ret = 0;
591 			break;
592 		}
593 	}
594 
595 	spin_unlock(&address_handler_list_lock);
596 
597 	return ret;
598 }
599 EXPORT_SYMBOL(fw_core_add_address_handler);
600 
601 /**
602  * fw_core_remove_address_handler() - unregister an address handler
603  * @handler: callback
604  *
605  * To be called in process context.
606  *
607  * When fw_core_remove_address_handler() returns, @handler->callback() is
608  * guaranteed to not run on any CPU anymore.
609  */
fw_core_remove_address_handler(struct fw_address_handler * handler)610 void fw_core_remove_address_handler(struct fw_address_handler *handler)
611 {
612 	spin_lock(&address_handler_list_lock);
613 	list_del_rcu(&handler->link);
614 	spin_unlock(&address_handler_list_lock);
615 	synchronize_rcu();
616 }
617 EXPORT_SYMBOL(fw_core_remove_address_handler);
618 
619 struct fw_request {
620 	struct fw_packet response;
621 	u32 request_header[4];
622 	int ack;
623 	u32 length;
624 	u32 data[];
625 };
626 
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)627 static void free_response_callback(struct fw_packet *packet,
628 				   struct fw_card *card, int status)
629 {
630 	struct fw_request *request;
631 
632 	request = container_of(packet, struct fw_request, response);
633 	kfree(request);
634 }
635 
fw_get_response_length(struct fw_request * r)636 int fw_get_response_length(struct fw_request *r)
637 {
638 	int tcode, ext_tcode, data_length;
639 
640 	tcode = HEADER_GET_TCODE(r->request_header[0]);
641 
642 	switch (tcode) {
643 	case TCODE_WRITE_QUADLET_REQUEST:
644 	case TCODE_WRITE_BLOCK_REQUEST:
645 		return 0;
646 
647 	case TCODE_READ_QUADLET_REQUEST:
648 		return 4;
649 
650 	case TCODE_READ_BLOCK_REQUEST:
651 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
652 		return data_length;
653 
654 	case TCODE_LOCK_REQUEST:
655 		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
656 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
657 		switch (ext_tcode) {
658 		case EXTCODE_FETCH_ADD:
659 		case EXTCODE_LITTLE_ADD:
660 			return data_length;
661 		default:
662 			return data_length / 2;
663 		}
664 
665 	default:
666 		WARN(1, "wrong tcode %d\n", tcode);
667 		return 0;
668 	}
669 }
670 
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)671 void fw_fill_response(struct fw_packet *response, u32 *request_header,
672 		      int rcode, void *payload, size_t length)
673 {
674 	int tcode, tlabel, extended_tcode, source, destination;
675 
676 	tcode          = HEADER_GET_TCODE(request_header[0]);
677 	tlabel         = HEADER_GET_TLABEL(request_header[0]);
678 	source         = HEADER_GET_DESTINATION(request_header[0]);
679 	destination    = HEADER_GET_SOURCE(request_header[1]);
680 	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
681 
682 	response->header[0] =
683 		HEADER_RETRY(RETRY_1) |
684 		HEADER_TLABEL(tlabel) |
685 		HEADER_DESTINATION(destination);
686 	response->header[1] =
687 		HEADER_SOURCE(source) |
688 		HEADER_RCODE(rcode);
689 	response->header[2] = 0;
690 
691 	switch (tcode) {
692 	case TCODE_WRITE_QUADLET_REQUEST:
693 	case TCODE_WRITE_BLOCK_REQUEST:
694 		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
695 		response->header_length = 12;
696 		response->payload_length = 0;
697 		break;
698 
699 	case TCODE_READ_QUADLET_REQUEST:
700 		response->header[0] |=
701 			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
702 		if (payload != NULL)
703 			response->header[3] = *(u32 *)payload;
704 		else
705 			response->header[3] = 0;
706 		response->header_length = 16;
707 		response->payload_length = 0;
708 		break;
709 
710 	case TCODE_READ_BLOCK_REQUEST:
711 	case TCODE_LOCK_REQUEST:
712 		response->header[0] |= HEADER_TCODE(tcode + 2);
713 		response->header[3] =
714 			HEADER_DATA_LENGTH(length) |
715 			HEADER_EXTENDED_TCODE(extended_tcode);
716 		response->header_length = 16;
717 		response->payload = payload;
718 		response->payload_length = length;
719 		break;
720 
721 	default:
722 		WARN(1, "wrong tcode %d\n", tcode);
723 	}
724 
725 	response->payload_mapped = false;
726 }
727 EXPORT_SYMBOL(fw_fill_response);
728 
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)729 static u32 compute_split_timeout_timestamp(struct fw_card *card,
730 					   u32 request_timestamp)
731 {
732 	unsigned int cycles;
733 	u32 timestamp;
734 
735 	cycles = card->split_timeout_cycles;
736 	cycles += request_timestamp & 0x1fff;
737 
738 	timestamp = request_timestamp & ~0x1fff;
739 	timestamp += (cycles / 8000) << 13;
740 	timestamp |= cycles % 8000;
741 
742 	return timestamp;
743 }
744 
allocate_request(struct fw_card * card,struct fw_packet * p)745 static struct fw_request *allocate_request(struct fw_card *card,
746 					   struct fw_packet *p)
747 {
748 	struct fw_request *request;
749 	u32 *data, length;
750 	int request_tcode;
751 
752 	request_tcode = HEADER_GET_TCODE(p->header[0]);
753 	switch (request_tcode) {
754 	case TCODE_WRITE_QUADLET_REQUEST:
755 		data = &p->header[3];
756 		length = 4;
757 		break;
758 
759 	case TCODE_WRITE_BLOCK_REQUEST:
760 	case TCODE_LOCK_REQUEST:
761 		data = p->payload;
762 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
763 		break;
764 
765 	case TCODE_READ_QUADLET_REQUEST:
766 		data = NULL;
767 		length = 4;
768 		break;
769 
770 	case TCODE_READ_BLOCK_REQUEST:
771 		data = NULL;
772 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
773 		break;
774 
775 	default:
776 		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
777 			 p->header[0], p->header[1], p->header[2]);
778 		return NULL;
779 	}
780 
781 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
782 	if (request == NULL)
783 		return NULL;
784 
785 	request->response.speed = p->speed;
786 	request->response.timestamp =
787 			compute_split_timeout_timestamp(card, p->timestamp);
788 	request->response.generation = p->generation;
789 	request->response.ack = 0;
790 	request->response.callback = free_response_callback;
791 	request->ack = p->ack;
792 	request->length = length;
793 	if (data)
794 		memcpy(request->data, data, length);
795 
796 	memcpy(request->request_header, p->header, sizeof(p->header));
797 
798 	return request;
799 }
800 
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)801 void fw_send_response(struct fw_card *card,
802 		      struct fw_request *request, int rcode)
803 {
804 	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
805 		return;
806 
807 	/* unified transaction or broadcast transaction: don't respond */
808 	if (request->ack != ACK_PENDING ||
809 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
810 		kfree(request);
811 		return;
812 	}
813 
814 	if (rcode == RCODE_COMPLETE)
815 		fw_fill_response(&request->response, request->request_header,
816 				 rcode, request->data,
817 				 fw_get_response_length(request));
818 	else
819 		fw_fill_response(&request->response, request->request_header,
820 				 rcode, NULL, 0);
821 
822 	card->driver->send_response(card, &request->response);
823 }
824 EXPORT_SYMBOL(fw_send_response);
825 
826 /**
827  * fw_get_request_speed() - returns speed at which the @request was received
828  * @request: firewire request data
829  */
fw_get_request_speed(struct fw_request * request)830 int fw_get_request_speed(struct fw_request *request)
831 {
832 	return request->response.speed;
833 }
834 EXPORT_SYMBOL(fw_get_request_speed);
835 
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)836 static void handle_exclusive_region_request(struct fw_card *card,
837 					    struct fw_packet *p,
838 					    struct fw_request *request,
839 					    unsigned long long offset)
840 {
841 	struct fw_address_handler *handler;
842 	int tcode, destination, source;
843 
844 	destination = HEADER_GET_DESTINATION(p->header[0]);
845 	source      = HEADER_GET_SOURCE(p->header[1]);
846 	tcode       = HEADER_GET_TCODE(p->header[0]);
847 	if (tcode == TCODE_LOCK_REQUEST)
848 		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
849 
850 	rcu_read_lock();
851 	handler = lookup_enclosing_address_handler(&address_handler_list,
852 						   offset, request->length);
853 	if (handler)
854 		handler->address_callback(card, request,
855 					  tcode, destination, source,
856 					  p->generation, offset,
857 					  request->data, request->length,
858 					  handler->callback_data);
859 	rcu_read_unlock();
860 
861 	if (!handler)
862 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
863 }
864 
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)865 static void handle_fcp_region_request(struct fw_card *card,
866 				      struct fw_packet *p,
867 				      struct fw_request *request,
868 				      unsigned long long offset)
869 {
870 	struct fw_address_handler *handler;
871 	int tcode, destination, source;
872 
873 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
874 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
875 	    request->length > 0x200) {
876 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
877 
878 		return;
879 	}
880 
881 	tcode       = HEADER_GET_TCODE(p->header[0]);
882 	destination = HEADER_GET_DESTINATION(p->header[0]);
883 	source      = HEADER_GET_SOURCE(p->header[1]);
884 
885 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
886 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
887 		fw_send_response(card, request, RCODE_TYPE_ERROR);
888 
889 		return;
890 	}
891 
892 	rcu_read_lock();
893 	list_for_each_entry_rcu(handler, &address_handler_list, link) {
894 		if (is_enclosing_handler(handler, offset, request->length))
895 			handler->address_callback(card, NULL, tcode,
896 						  destination, source,
897 						  p->generation, offset,
898 						  request->data,
899 						  request->length,
900 						  handler->callback_data);
901 	}
902 	rcu_read_unlock();
903 
904 	fw_send_response(card, request, RCODE_COMPLETE);
905 }
906 
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)907 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
908 {
909 	struct fw_request *request;
910 	unsigned long long offset;
911 
912 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
913 		return;
914 
915 	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
916 		fw_cdev_handle_phy_packet(card, p);
917 		return;
918 	}
919 
920 	request = allocate_request(card, p);
921 	if (request == NULL) {
922 		/* FIXME: send statically allocated busy packet. */
923 		return;
924 	}
925 
926 	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
927 		p->header[2];
928 
929 	if (!is_in_fcp_region(offset, request->length))
930 		handle_exclusive_region_request(card, p, request, offset);
931 	else
932 		handle_fcp_region_request(card, p, request, offset);
933 
934 }
935 EXPORT_SYMBOL(fw_core_handle_request);
936 
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)937 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
938 {
939 	struct fw_transaction *t = NULL, *iter;
940 	unsigned long flags;
941 	u32 *data;
942 	size_t data_length;
943 	int tcode, tlabel, source, rcode;
944 
945 	tcode	= HEADER_GET_TCODE(p->header[0]);
946 	tlabel	= HEADER_GET_TLABEL(p->header[0]);
947 	source	= HEADER_GET_SOURCE(p->header[1]);
948 	rcode	= HEADER_GET_RCODE(p->header[1]);
949 
950 	spin_lock_irqsave(&card->lock, flags);
951 	list_for_each_entry(iter, &card->transaction_list, link) {
952 		if (iter->node_id == source && iter->tlabel == tlabel) {
953 			if (!try_cancel_split_timeout(iter)) {
954 				spin_unlock_irqrestore(&card->lock, flags);
955 				goto timed_out;
956 			}
957 			list_del_init(&iter->link);
958 			card->tlabel_mask &= ~(1ULL << iter->tlabel);
959 			t = iter;
960 			break;
961 		}
962 	}
963 	spin_unlock_irqrestore(&card->lock, flags);
964 
965 	if (!t) {
966  timed_out:
967 		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
968 			  source, tlabel);
969 		return;
970 	}
971 
972 	/*
973 	 * FIXME: sanity check packet, is length correct, does tcodes
974 	 * and addresses match.
975 	 */
976 
977 	switch (tcode) {
978 	case TCODE_READ_QUADLET_RESPONSE:
979 		data = (u32 *) &p->header[3];
980 		data_length = 4;
981 		break;
982 
983 	case TCODE_WRITE_RESPONSE:
984 		data = NULL;
985 		data_length = 0;
986 		break;
987 
988 	case TCODE_READ_BLOCK_RESPONSE:
989 	case TCODE_LOCK_RESPONSE:
990 		data = p->payload;
991 		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
992 		break;
993 
994 	default:
995 		/* Should never happen, this is just to shut up gcc. */
996 		data = NULL;
997 		data_length = 0;
998 		break;
999 	}
1000 
1001 	/*
1002 	 * The response handler may be executed while the request handler
1003 	 * is still pending.  Cancel the request handler.
1004 	 */
1005 	card->driver->cancel_packet(card, &t->packet);
1006 
1007 	t->callback(card, rcode, data, data_length, t->callback_data);
1008 }
1009 EXPORT_SYMBOL(fw_core_handle_response);
1010 
1011 /**
1012  * fw_rcode_string - convert a firewire result code to an error description
1013  * @rcode: the result code
1014  */
fw_rcode_string(int rcode)1015 const char *fw_rcode_string(int rcode)
1016 {
1017 	static const char *const names[] = {
1018 		[RCODE_COMPLETE]       = "no error",
1019 		[RCODE_CONFLICT_ERROR] = "conflict error",
1020 		[RCODE_DATA_ERROR]     = "data error",
1021 		[RCODE_TYPE_ERROR]     = "type error",
1022 		[RCODE_ADDRESS_ERROR]  = "address error",
1023 		[RCODE_SEND_ERROR]     = "send error",
1024 		[RCODE_CANCELLED]      = "timeout",
1025 		[RCODE_BUSY]           = "busy",
1026 		[RCODE_GENERATION]     = "bus reset",
1027 		[RCODE_NO_ACK]         = "no ack",
1028 	};
1029 
1030 	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1031 		return names[rcode];
1032 	else
1033 		return "unknown";
1034 }
1035 EXPORT_SYMBOL(fw_rcode_string);
1036 
1037 static const struct fw_address_region topology_map_region =
1038 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1039 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1040 
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1041 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1042 		int tcode, int destination, int source, int generation,
1043 		unsigned long long offset, void *payload, size_t length,
1044 		void *callback_data)
1045 {
1046 	int start;
1047 
1048 	if (!TCODE_IS_READ_REQUEST(tcode)) {
1049 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1050 		return;
1051 	}
1052 
1053 	if ((offset & 3) > 0 || (length & 3) > 0) {
1054 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1055 		return;
1056 	}
1057 
1058 	start = (offset - topology_map_region.start) / 4;
1059 	memcpy(payload, &card->topology_map[start], length);
1060 
1061 	fw_send_response(card, request, RCODE_COMPLETE);
1062 }
1063 
1064 static struct fw_address_handler topology_map = {
1065 	.length			= 0x400,
1066 	.address_callback	= handle_topology_map,
1067 };
1068 
1069 static const struct fw_address_region registers_region =
1070 	{ .start = CSR_REGISTER_BASE,
1071 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1072 
update_split_timeout(struct fw_card * card)1073 static void update_split_timeout(struct fw_card *card)
1074 {
1075 	unsigned int cycles;
1076 
1077 	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1078 
1079 	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1080 	cycles = clamp(cycles, 800u, 3u * 8000u);
1081 
1082 	card->split_timeout_cycles = cycles;
1083 	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1084 }
1085 
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1086 static void handle_registers(struct fw_card *card, struct fw_request *request,
1087 		int tcode, int destination, int source, int generation,
1088 		unsigned long long offset, void *payload, size_t length,
1089 		void *callback_data)
1090 {
1091 	int reg = offset & ~CSR_REGISTER_BASE;
1092 	__be32 *data = payload;
1093 	int rcode = RCODE_COMPLETE;
1094 	unsigned long flags;
1095 
1096 	switch (reg) {
1097 	case CSR_PRIORITY_BUDGET:
1098 		if (!card->priority_budget_implemented) {
1099 			rcode = RCODE_ADDRESS_ERROR;
1100 			break;
1101 		}
1102 		fallthrough;
1103 
1104 	case CSR_NODE_IDS:
1105 		/*
1106 		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1107 		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1108 		 */
1109 		fallthrough;
1110 
1111 	case CSR_STATE_CLEAR:
1112 	case CSR_STATE_SET:
1113 	case CSR_CYCLE_TIME:
1114 	case CSR_BUS_TIME:
1115 	case CSR_BUSY_TIMEOUT:
1116 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1117 			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1118 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1119 			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1120 		else
1121 			rcode = RCODE_TYPE_ERROR;
1122 		break;
1123 
1124 	case CSR_RESET_START:
1125 		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1126 			card->driver->write_csr(card, CSR_STATE_CLEAR,
1127 						CSR_STATE_BIT_ABDICATE);
1128 		else
1129 			rcode = RCODE_TYPE_ERROR;
1130 		break;
1131 
1132 	case CSR_SPLIT_TIMEOUT_HI:
1133 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1134 			*data = cpu_to_be32(card->split_timeout_hi);
1135 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1136 			spin_lock_irqsave(&card->lock, flags);
1137 			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1138 			update_split_timeout(card);
1139 			spin_unlock_irqrestore(&card->lock, flags);
1140 		} else {
1141 			rcode = RCODE_TYPE_ERROR;
1142 		}
1143 		break;
1144 
1145 	case CSR_SPLIT_TIMEOUT_LO:
1146 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1147 			*data = cpu_to_be32(card->split_timeout_lo);
1148 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1149 			spin_lock_irqsave(&card->lock, flags);
1150 			card->split_timeout_lo =
1151 					be32_to_cpu(*data) & 0xfff80000;
1152 			update_split_timeout(card);
1153 			spin_unlock_irqrestore(&card->lock, flags);
1154 		} else {
1155 			rcode = RCODE_TYPE_ERROR;
1156 		}
1157 		break;
1158 
1159 	case CSR_MAINT_UTILITY:
1160 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1161 			*data = card->maint_utility_register;
1162 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1163 			card->maint_utility_register = *data;
1164 		else
1165 			rcode = RCODE_TYPE_ERROR;
1166 		break;
1167 
1168 	case CSR_BROADCAST_CHANNEL:
1169 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1170 			*data = cpu_to_be32(card->broadcast_channel);
1171 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1172 			card->broadcast_channel =
1173 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1174 			    BROADCAST_CHANNEL_INITIAL;
1175 		else
1176 			rcode = RCODE_TYPE_ERROR;
1177 		break;
1178 
1179 	case CSR_BUS_MANAGER_ID:
1180 	case CSR_BANDWIDTH_AVAILABLE:
1181 	case CSR_CHANNELS_AVAILABLE_HI:
1182 	case CSR_CHANNELS_AVAILABLE_LO:
1183 		/*
1184 		 * FIXME: these are handled by the OHCI hardware and
1185 		 * the stack never sees these request. If we add
1186 		 * support for a new type of controller that doesn't
1187 		 * handle this in hardware we need to deal with these
1188 		 * transactions.
1189 		 */
1190 		BUG();
1191 		break;
1192 
1193 	default:
1194 		rcode = RCODE_ADDRESS_ERROR;
1195 		break;
1196 	}
1197 
1198 	fw_send_response(card, request, rcode);
1199 }
1200 
1201 static struct fw_address_handler registers = {
1202 	.length			= 0x400,
1203 	.address_callback	= handle_registers,
1204 };
1205 
handle_low_memory(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1206 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1207 		int tcode, int destination, int source, int generation,
1208 		unsigned long long offset, void *payload, size_t length,
1209 		void *callback_data)
1210 {
1211 	/*
1212 	 * This catches requests not handled by the physical DMA unit,
1213 	 * i.e., wrong transaction types or unauthorized source nodes.
1214 	 */
1215 	fw_send_response(card, request, RCODE_TYPE_ERROR);
1216 }
1217 
1218 static struct fw_address_handler low_memory = {
1219 	.length			= FW_MAX_PHYSICAL_RANGE,
1220 	.address_callback	= handle_low_memory,
1221 };
1222 
1223 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1224 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1225 MODULE_LICENSE("GPL");
1226 
1227 static const u32 vendor_textual_descriptor[] = {
1228 	/* textual descriptor leaf () */
1229 	0x00060000,
1230 	0x00000000,
1231 	0x00000000,
1232 	0x4c696e75,		/* L i n u */
1233 	0x78204669,		/* x   F i */
1234 	0x72657769,		/* r e w i */
1235 	0x72650000,		/* r e     */
1236 };
1237 
1238 static const u32 model_textual_descriptor[] = {
1239 	/* model descriptor leaf () */
1240 	0x00030000,
1241 	0x00000000,
1242 	0x00000000,
1243 	0x4a756a75,		/* J u j u */
1244 };
1245 
1246 static struct fw_descriptor vendor_id_descriptor = {
1247 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1248 	.immediate = 0x03001f11,
1249 	.key = 0x81000000,
1250 	.data = vendor_textual_descriptor,
1251 };
1252 
1253 static struct fw_descriptor model_id_descriptor = {
1254 	.length = ARRAY_SIZE(model_textual_descriptor),
1255 	.immediate = 0x17023901,
1256 	.key = 0x81000000,
1257 	.data = model_textual_descriptor,
1258 };
1259 
fw_core_init(void)1260 static int __init fw_core_init(void)
1261 {
1262 	int ret;
1263 
1264 	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1265 	if (!fw_workqueue)
1266 		return -ENOMEM;
1267 
1268 	ret = bus_register(&fw_bus_type);
1269 	if (ret < 0) {
1270 		destroy_workqueue(fw_workqueue);
1271 		return ret;
1272 	}
1273 
1274 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1275 	if (fw_cdev_major < 0) {
1276 		bus_unregister(&fw_bus_type);
1277 		destroy_workqueue(fw_workqueue);
1278 		return fw_cdev_major;
1279 	}
1280 
1281 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1282 	fw_core_add_address_handler(&registers, &registers_region);
1283 	fw_core_add_address_handler(&low_memory, &low_memory_region);
1284 	fw_core_add_descriptor(&vendor_id_descriptor);
1285 	fw_core_add_descriptor(&model_id_descriptor);
1286 
1287 	return 0;
1288 }
1289 
fw_core_cleanup(void)1290 static void __exit fw_core_cleanup(void)
1291 {
1292 	unregister_chrdev(fw_cdev_major, "firewire");
1293 	bus_unregister(&fw_bus_type);
1294 	destroy_workqueue(fw_workqueue);
1295 	idr_destroy(&fw_device_idr);
1296 }
1297 
1298 module_init(fw_core_init);
1299 module_exit(fw_core_cleanup);
1300