1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core IEEE1394 transaction logic
4 *
5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/idr.h>
17 #include <linux/jiffies.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rculist.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/types.h>
27 #include <linux/workqueue.h>
28
29 #include <asm/byteorder.h>
30
31 #include "core.h"
32
33 #define HEADER_PRI(pri) ((pri) << 0)
34 #define HEADER_TCODE(tcode) ((tcode) << 4)
35 #define HEADER_RETRY(retry) ((retry) << 8)
36 #define HEADER_TLABEL(tlabel) ((tlabel) << 10)
37 #define HEADER_DESTINATION(destination) ((destination) << 16)
38 #define HEADER_SOURCE(source) ((source) << 16)
39 #define HEADER_RCODE(rcode) ((rcode) << 12)
40 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
41 #define HEADER_DATA_LENGTH(length) ((length) << 16)
42 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
43
44 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
45 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
46 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
47 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
48 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
49 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
50 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
51 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
52
53 #define HEADER_DESTINATION_IS_BROADCAST(q) \
54 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
55
56 #define PHY_PACKET_CONFIG 0x0
57 #define PHY_PACKET_LINK_ON 0x1
58 #define PHY_PACKET_SELF_ID 0x2
59
60 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
61 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
62 #define PHY_IDENTIFIER(id) ((id) << 30)
63
64 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)65 static int try_cancel_split_timeout(struct fw_transaction *t)
66 {
67 if (t->is_split_transaction)
68 return del_timer(&t->split_timeout_timer);
69 else
70 return 1;
71 }
72
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode)73 static int close_transaction(struct fw_transaction *transaction,
74 struct fw_card *card, int rcode)
75 {
76 struct fw_transaction *t = NULL, *iter;
77 unsigned long flags;
78
79 spin_lock_irqsave(&card->lock, flags);
80 list_for_each_entry(iter, &card->transaction_list, link) {
81 if (iter == transaction) {
82 if (!try_cancel_split_timeout(iter)) {
83 spin_unlock_irqrestore(&card->lock, flags);
84 goto timed_out;
85 }
86 list_del_init(&iter->link);
87 card->tlabel_mask &= ~(1ULL << iter->tlabel);
88 t = iter;
89 break;
90 }
91 }
92 spin_unlock_irqrestore(&card->lock, flags);
93
94 if (t) {
95 t->callback(card, rcode, NULL, 0, t->callback_data);
96 return 0;
97 }
98
99 timed_out:
100 return -ENOENT;
101 }
102
103 /*
104 * Only valid for transactions that are potentially pending (ie have
105 * been sent).
106 */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)107 int fw_cancel_transaction(struct fw_card *card,
108 struct fw_transaction *transaction)
109 {
110 /*
111 * Cancel the packet transmission if it's still queued. That
112 * will call the packet transmission callback which cancels
113 * the transaction.
114 */
115
116 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
117 return 0;
118
119 /*
120 * If the request packet has already been sent, we need to see
121 * if the transaction is still pending and remove it in that case.
122 */
123
124 return close_transaction(transaction, card, RCODE_CANCELLED);
125 }
126 EXPORT_SYMBOL(fw_cancel_transaction);
127
split_transaction_timeout_callback(struct timer_list * timer)128 static void split_transaction_timeout_callback(struct timer_list *timer)
129 {
130 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
131 struct fw_card *card = t->card;
132 unsigned long flags;
133
134 spin_lock_irqsave(&card->lock, flags);
135 if (list_empty(&t->link)) {
136 spin_unlock_irqrestore(&card->lock, flags);
137 return;
138 }
139 list_del(&t->link);
140 card->tlabel_mask &= ~(1ULL << t->tlabel);
141 spin_unlock_irqrestore(&card->lock, flags);
142
143 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
144 }
145
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)146 static void start_split_transaction_timeout(struct fw_transaction *t,
147 struct fw_card *card)
148 {
149 unsigned long flags;
150
151 spin_lock_irqsave(&card->lock, flags);
152
153 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
154 spin_unlock_irqrestore(&card->lock, flags);
155 return;
156 }
157
158 t->is_split_transaction = true;
159 mod_timer(&t->split_timeout_timer,
160 jiffies + card->split_timeout_jiffies);
161
162 spin_unlock_irqrestore(&card->lock, flags);
163 }
164
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)165 static void transmit_complete_callback(struct fw_packet *packet,
166 struct fw_card *card, int status)
167 {
168 struct fw_transaction *t =
169 container_of(packet, struct fw_transaction, packet);
170
171 switch (status) {
172 case ACK_COMPLETE:
173 close_transaction(t, card, RCODE_COMPLETE);
174 break;
175 case ACK_PENDING:
176 start_split_transaction_timeout(t, card);
177 break;
178 case ACK_BUSY_X:
179 case ACK_BUSY_A:
180 case ACK_BUSY_B:
181 close_transaction(t, card, RCODE_BUSY);
182 break;
183 case ACK_DATA_ERROR:
184 close_transaction(t, card, RCODE_DATA_ERROR);
185 break;
186 case ACK_TYPE_ERROR:
187 close_transaction(t, card, RCODE_TYPE_ERROR);
188 break;
189 default:
190 /*
191 * In this case the ack is really a juju specific
192 * rcode, so just forward that to the callback.
193 */
194 close_transaction(t, card, status);
195 break;
196 }
197 }
198
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)199 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
200 int destination_id, int source_id, int generation, int speed,
201 unsigned long long offset, void *payload, size_t length)
202 {
203 int ext_tcode;
204
205 if (tcode == TCODE_STREAM_DATA) {
206 packet->header[0] =
207 HEADER_DATA_LENGTH(length) |
208 destination_id |
209 HEADER_TCODE(TCODE_STREAM_DATA);
210 packet->header_length = 4;
211 packet->payload = payload;
212 packet->payload_length = length;
213
214 goto common;
215 }
216
217 if (tcode > 0x10) {
218 ext_tcode = tcode & ~0x10;
219 tcode = TCODE_LOCK_REQUEST;
220 } else
221 ext_tcode = 0;
222
223 packet->header[0] =
224 HEADER_RETRY(RETRY_X) |
225 HEADER_TLABEL(tlabel) |
226 HEADER_TCODE(tcode) |
227 HEADER_DESTINATION(destination_id);
228 packet->header[1] =
229 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
230 packet->header[2] =
231 offset;
232
233 switch (tcode) {
234 case TCODE_WRITE_QUADLET_REQUEST:
235 packet->header[3] = *(u32 *)payload;
236 packet->header_length = 16;
237 packet->payload_length = 0;
238 break;
239
240 case TCODE_LOCK_REQUEST:
241 case TCODE_WRITE_BLOCK_REQUEST:
242 packet->header[3] =
243 HEADER_DATA_LENGTH(length) |
244 HEADER_EXTENDED_TCODE(ext_tcode);
245 packet->header_length = 16;
246 packet->payload = payload;
247 packet->payload_length = length;
248 break;
249
250 case TCODE_READ_QUADLET_REQUEST:
251 packet->header_length = 12;
252 packet->payload_length = 0;
253 break;
254
255 case TCODE_READ_BLOCK_REQUEST:
256 packet->header[3] =
257 HEADER_DATA_LENGTH(length) |
258 HEADER_EXTENDED_TCODE(ext_tcode);
259 packet->header_length = 16;
260 packet->payload_length = 0;
261 break;
262
263 default:
264 WARN(1, "wrong tcode %d\n", tcode);
265 }
266 common:
267 packet->speed = speed;
268 packet->generation = generation;
269 packet->ack = 0;
270 packet->payload_mapped = false;
271 }
272
allocate_tlabel(struct fw_card * card)273 static int allocate_tlabel(struct fw_card *card)
274 {
275 int tlabel;
276
277 tlabel = card->current_tlabel;
278 while (card->tlabel_mask & (1ULL << tlabel)) {
279 tlabel = (tlabel + 1) & 0x3f;
280 if (tlabel == card->current_tlabel)
281 return -EBUSY;
282 }
283
284 card->current_tlabel = (tlabel + 1) & 0x3f;
285 card->tlabel_mask |= 1ULL << tlabel;
286
287 return tlabel;
288 }
289
290 /**
291 * fw_send_request() - submit a request packet for transmission
292 * @card: interface to send the request at
293 * @t: transaction instance to which the request belongs
294 * @tcode: transaction code
295 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
296 * @generation: bus generation in which request and response are valid
297 * @speed: transmission speed
298 * @offset: 48bit wide offset into destination's address space
299 * @payload: data payload for the request subaction
300 * @length: length of the payload, in bytes
301 * @callback: function to be called when the transaction is completed
302 * @callback_data: data to be passed to the transaction completion callback
303 *
304 * Submit a request packet into the asynchronous request transmission queue.
305 * Can be called from atomic context. If you prefer a blocking API, use
306 * fw_run_transaction() in a context that can sleep.
307 *
308 * In case of lock requests, specify one of the firewire-core specific %TCODE_
309 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
310 *
311 * Make sure that the value in @destination_id is not older than the one in
312 * @generation. Otherwise the request is in danger to be sent to a wrong node.
313 *
314 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
315 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
316 * It will contain tag, channel, and sy data instead of a node ID then.
317 *
318 * The payload buffer at @data is going to be DMA-mapped except in case of
319 * @length <= 8 or of local (loopback) requests. Hence make sure that the
320 * buffer complies with the restrictions of the streaming DMA mapping API.
321 * @payload must not be freed before the @callback is called.
322 *
323 * In case of request types without payload, @data is NULL and @length is 0.
324 *
325 * After the transaction is completed successfully or unsuccessfully, the
326 * @callback will be called. Among its parameters is the response code which
327 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
328 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
329 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
330 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
331 * generation, or missing ACK respectively.
332 *
333 * Note some timing corner cases: fw_send_request() may complete much earlier
334 * than when the request packet actually hits the wire. On the other hand,
335 * transaction completion and hence execution of @callback may happen even
336 * before fw_send_request() returns.
337 */
fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,fw_transaction_callback_t callback,void * callback_data)338 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
339 int destination_id, int generation, int speed,
340 unsigned long long offset, void *payload, size_t length,
341 fw_transaction_callback_t callback, void *callback_data)
342 {
343 unsigned long flags;
344 int tlabel;
345
346 /*
347 * Allocate tlabel from the bitmap and put the transaction on
348 * the list while holding the card spinlock.
349 */
350
351 spin_lock_irqsave(&card->lock, flags);
352
353 tlabel = allocate_tlabel(card);
354 if (tlabel < 0) {
355 spin_unlock_irqrestore(&card->lock, flags);
356 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
357 return;
358 }
359
360 t->node_id = destination_id;
361 t->tlabel = tlabel;
362 t->card = card;
363 t->is_split_transaction = false;
364 timer_setup(&t->split_timeout_timer,
365 split_transaction_timeout_callback, 0);
366 t->callback = callback;
367 t->callback_data = callback_data;
368
369 fw_fill_request(&t->packet, tcode, t->tlabel,
370 destination_id, card->node_id, generation,
371 speed, offset, payload, length);
372 t->packet.callback = transmit_complete_callback;
373
374 list_add_tail(&t->link, &card->transaction_list);
375
376 spin_unlock_irqrestore(&card->lock, flags);
377
378 card->driver->send_request(card, &t->packet);
379 }
380 EXPORT_SYMBOL(fw_send_request);
381
382 struct transaction_callback_data {
383 struct completion done;
384 void *payload;
385 int rcode;
386 };
387
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)388 static void transaction_callback(struct fw_card *card, int rcode,
389 void *payload, size_t length, void *data)
390 {
391 struct transaction_callback_data *d = data;
392
393 if (rcode == RCODE_COMPLETE)
394 memcpy(d->payload, payload, length);
395 d->rcode = rcode;
396 complete(&d->done);
397 }
398
399 /**
400 * fw_run_transaction() - send request and sleep until transaction is completed
401 * @card: card interface for this request
402 * @tcode: transaction code
403 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
404 * @generation: bus generation in which request and response are valid
405 * @speed: transmission speed
406 * @offset: 48bit wide offset into destination's address space
407 * @payload: data payload for the request subaction
408 * @length: length of the payload, in bytes
409 *
410 * Returns the RCODE. See fw_send_request() for parameter documentation.
411 * Unlike fw_send_request(), @data points to the payload of the request or/and
412 * to the payload of the response. DMA mapping restrictions apply to outbound
413 * request payloads of >= 8 bytes but not to inbound response payloads.
414 */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)415 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
416 int generation, int speed, unsigned long long offset,
417 void *payload, size_t length)
418 {
419 struct transaction_callback_data d;
420 struct fw_transaction t;
421
422 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
423 init_completion(&d.done);
424 d.payload = payload;
425 fw_send_request(card, &t, tcode, destination_id, generation, speed,
426 offset, payload, length, transaction_callback, &d);
427 wait_for_completion(&d.done);
428 destroy_timer_on_stack(&t.split_timeout_timer);
429
430 return d.rcode;
431 }
432 EXPORT_SYMBOL(fw_run_transaction);
433
434 static DEFINE_MUTEX(phy_config_mutex);
435 static DECLARE_COMPLETION(phy_config_done);
436
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)437 static void transmit_phy_packet_callback(struct fw_packet *packet,
438 struct fw_card *card, int status)
439 {
440 complete(&phy_config_done);
441 }
442
443 static struct fw_packet phy_config_packet = {
444 .header_length = 12,
445 .header[0] = TCODE_LINK_INTERNAL << 4,
446 .payload_length = 0,
447 .speed = SCODE_100,
448 .callback = transmit_phy_packet_callback,
449 };
450
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)451 void fw_send_phy_config(struct fw_card *card,
452 int node_id, int generation, int gap_count)
453 {
454 long timeout = DIV_ROUND_UP(HZ, 10);
455 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
456
457 if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
458 data |= PHY_CONFIG_ROOT_ID(node_id);
459
460 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
461 gap_count = card->driver->read_phy_reg(card, 1);
462 if (gap_count < 0)
463 return;
464
465 gap_count &= 63;
466 if (gap_count == 63)
467 return;
468 }
469 data |= PHY_CONFIG_GAP_COUNT(gap_count);
470
471 mutex_lock(&phy_config_mutex);
472
473 phy_config_packet.header[1] = data;
474 phy_config_packet.header[2] = ~data;
475 phy_config_packet.generation = generation;
476 reinit_completion(&phy_config_done);
477
478 card->driver->send_request(card, &phy_config_packet);
479 wait_for_completion_timeout(&phy_config_done, timeout);
480
481 mutex_unlock(&phy_config_mutex);
482 }
483
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)484 static struct fw_address_handler *lookup_overlapping_address_handler(
485 struct list_head *list, unsigned long long offset, size_t length)
486 {
487 struct fw_address_handler *handler;
488
489 list_for_each_entry_rcu(handler, list, link) {
490 if (handler->offset < offset + length &&
491 offset < handler->offset + handler->length)
492 return handler;
493 }
494
495 return NULL;
496 }
497
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)498 static bool is_enclosing_handler(struct fw_address_handler *handler,
499 unsigned long long offset, size_t length)
500 {
501 return handler->offset <= offset &&
502 offset + length <= handler->offset + handler->length;
503 }
504
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)505 static struct fw_address_handler *lookup_enclosing_address_handler(
506 struct list_head *list, unsigned long long offset, size_t length)
507 {
508 struct fw_address_handler *handler;
509
510 list_for_each_entry_rcu(handler, list, link) {
511 if (is_enclosing_handler(handler, offset, length))
512 return handler;
513 }
514
515 return NULL;
516 }
517
518 static DEFINE_SPINLOCK(address_handler_list_lock);
519 static LIST_HEAD(address_handler_list);
520
521 const struct fw_address_region fw_high_memory_region =
522 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
523 EXPORT_SYMBOL(fw_high_memory_region);
524
525 static const struct fw_address_region low_memory_region =
526 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
527
528 #if 0
529 const struct fw_address_region fw_private_region =
530 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
531 const struct fw_address_region fw_csr_region =
532 { .start = CSR_REGISTER_BASE,
533 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
534 const struct fw_address_region fw_unit_space_region =
535 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
536 #endif /* 0 */
537
is_in_fcp_region(u64 offset,size_t length)538 static bool is_in_fcp_region(u64 offset, size_t length)
539 {
540 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
541 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
542 }
543
544 /**
545 * fw_core_add_address_handler() - register for incoming requests
546 * @handler: callback
547 * @region: region in the IEEE 1212 node space address range
548 *
549 * region->start, ->end, and handler->length have to be quadlet-aligned.
550 *
551 * When a request is received that falls within the specified address range,
552 * the specified callback is invoked. The parameters passed to the callback
553 * give the details of the particular request.
554 *
555 * To be called in process context.
556 * Return value: 0 on success, non-zero otherwise.
557 *
558 * The start offset of the handler's address region is determined by
559 * fw_core_add_address_handler() and is returned in handler->offset.
560 *
561 * Address allocations are exclusive, except for the FCP registers.
562 */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)563 int fw_core_add_address_handler(struct fw_address_handler *handler,
564 const struct fw_address_region *region)
565 {
566 struct fw_address_handler *other;
567 int ret = -EBUSY;
568
569 if (region->start & 0xffff000000000003ULL ||
570 region->start >= region->end ||
571 region->end > 0x0001000000000000ULL ||
572 handler->length & 3 ||
573 handler->length == 0)
574 return -EINVAL;
575
576 spin_lock(&address_handler_list_lock);
577
578 handler->offset = region->start;
579 while (handler->offset + handler->length <= region->end) {
580 if (is_in_fcp_region(handler->offset, handler->length))
581 other = NULL;
582 else
583 other = lookup_overlapping_address_handler
584 (&address_handler_list,
585 handler->offset, handler->length);
586 if (other != NULL) {
587 handler->offset += other->length;
588 } else {
589 list_add_tail_rcu(&handler->link, &address_handler_list);
590 ret = 0;
591 break;
592 }
593 }
594
595 spin_unlock(&address_handler_list_lock);
596
597 return ret;
598 }
599 EXPORT_SYMBOL(fw_core_add_address_handler);
600
601 /**
602 * fw_core_remove_address_handler() - unregister an address handler
603 * @handler: callback
604 *
605 * To be called in process context.
606 *
607 * When fw_core_remove_address_handler() returns, @handler->callback() is
608 * guaranteed to not run on any CPU anymore.
609 */
fw_core_remove_address_handler(struct fw_address_handler * handler)610 void fw_core_remove_address_handler(struct fw_address_handler *handler)
611 {
612 spin_lock(&address_handler_list_lock);
613 list_del_rcu(&handler->link);
614 spin_unlock(&address_handler_list_lock);
615 synchronize_rcu();
616 }
617 EXPORT_SYMBOL(fw_core_remove_address_handler);
618
619 struct fw_request {
620 struct fw_packet response;
621 u32 request_header[4];
622 int ack;
623 u32 length;
624 u32 data[];
625 };
626
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)627 static void free_response_callback(struct fw_packet *packet,
628 struct fw_card *card, int status)
629 {
630 struct fw_request *request;
631
632 request = container_of(packet, struct fw_request, response);
633 kfree(request);
634 }
635
fw_get_response_length(struct fw_request * r)636 int fw_get_response_length(struct fw_request *r)
637 {
638 int tcode, ext_tcode, data_length;
639
640 tcode = HEADER_GET_TCODE(r->request_header[0]);
641
642 switch (tcode) {
643 case TCODE_WRITE_QUADLET_REQUEST:
644 case TCODE_WRITE_BLOCK_REQUEST:
645 return 0;
646
647 case TCODE_READ_QUADLET_REQUEST:
648 return 4;
649
650 case TCODE_READ_BLOCK_REQUEST:
651 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
652 return data_length;
653
654 case TCODE_LOCK_REQUEST:
655 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
656 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
657 switch (ext_tcode) {
658 case EXTCODE_FETCH_ADD:
659 case EXTCODE_LITTLE_ADD:
660 return data_length;
661 default:
662 return data_length / 2;
663 }
664
665 default:
666 WARN(1, "wrong tcode %d\n", tcode);
667 return 0;
668 }
669 }
670
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)671 void fw_fill_response(struct fw_packet *response, u32 *request_header,
672 int rcode, void *payload, size_t length)
673 {
674 int tcode, tlabel, extended_tcode, source, destination;
675
676 tcode = HEADER_GET_TCODE(request_header[0]);
677 tlabel = HEADER_GET_TLABEL(request_header[0]);
678 source = HEADER_GET_DESTINATION(request_header[0]);
679 destination = HEADER_GET_SOURCE(request_header[1]);
680 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
681
682 response->header[0] =
683 HEADER_RETRY(RETRY_1) |
684 HEADER_TLABEL(tlabel) |
685 HEADER_DESTINATION(destination);
686 response->header[1] =
687 HEADER_SOURCE(source) |
688 HEADER_RCODE(rcode);
689 response->header[2] = 0;
690
691 switch (tcode) {
692 case TCODE_WRITE_QUADLET_REQUEST:
693 case TCODE_WRITE_BLOCK_REQUEST:
694 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
695 response->header_length = 12;
696 response->payload_length = 0;
697 break;
698
699 case TCODE_READ_QUADLET_REQUEST:
700 response->header[0] |=
701 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
702 if (payload != NULL)
703 response->header[3] = *(u32 *)payload;
704 else
705 response->header[3] = 0;
706 response->header_length = 16;
707 response->payload_length = 0;
708 break;
709
710 case TCODE_READ_BLOCK_REQUEST:
711 case TCODE_LOCK_REQUEST:
712 response->header[0] |= HEADER_TCODE(tcode + 2);
713 response->header[3] =
714 HEADER_DATA_LENGTH(length) |
715 HEADER_EXTENDED_TCODE(extended_tcode);
716 response->header_length = 16;
717 response->payload = payload;
718 response->payload_length = length;
719 break;
720
721 default:
722 WARN(1, "wrong tcode %d\n", tcode);
723 }
724
725 response->payload_mapped = false;
726 }
727 EXPORT_SYMBOL(fw_fill_response);
728
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)729 static u32 compute_split_timeout_timestamp(struct fw_card *card,
730 u32 request_timestamp)
731 {
732 unsigned int cycles;
733 u32 timestamp;
734
735 cycles = card->split_timeout_cycles;
736 cycles += request_timestamp & 0x1fff;
737
738 timestamp = request_timestamp & ~0x1fff;
739 timestamp += (cycles / 8000) << 13;
740 timestamp |= cycles % 8000;
741
742 return timestamp;
743 }
744
allocate_request(struct fw_card * card,struct fw_packet * p)745 static struct fw_request *allocate_request(struct fw_card *card,
746 struct fw_packet *p)
747 {
748 struct fw_request *request;
749 u32 *data, length;
750 int request_tcode;
751
752 request_tcode = HEADER_GET_TCODE(p->header[0]);
753 switch (request_tcode) {
754 case TCODE_WRITE_QUADLET_REQUEST:
755 data = &p->header[3];
756 length = 4;
757 break;
758
759 case TCODE_WRITE_BLOCK_REQUEST:
760 case TCODE_LOCK_REQUEST:
761 data = p->payload;
762 length = HEADER_GET_DATA_LENGTH(p->header[3]);
763 break;
764
765 case TCODE_READ_QUADLET_REQUEST:
766 data = NULL;
767 length = 4;
768 break;
769
770 case TCODE_READ_BLOCK_REQUEST:
771 data = NULL;
772 length = HEADER_GET_DATA_LENGTH(p->header[3]);
773 break;
774
775 default:
776 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
777 p->header[0], p->header[1], p->header[2]);
778 return NULL;
779 }
780
781 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
782 if (request == NULL)
783 return NULL;
784
785 request->response.speed = p->speed;
786 request->response.timestamp =
787 compute_split_timeout_timestamp(card, p->timestamp);
788 request->response.generation = p->generation;
789 request->response.ack = 0;
790 request->response.callback = free_response_callback;
791 request->ack = p->ack;
792 request->length = length;
793 if (data)
794 memcpy(request->data, data, length);
795
796 memcpy(request->request_header, p->header, sizeof(p->header));
797
798 return request;
799 }
800
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)801 void fw_send_response(struct fw_card *card,
802 struct fw_request *request, int rcode)
803 {
804 if (WARN_ONCE(!request, "invalid for FCP address handlers"))
805 return;
806
807 /* unified transaction or broadcast transaction: don't respond */
808 if (request->ack != ACK_PENDING ||
809 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
810 kfree(request);
811 return;
812 }
813
814 if (rcode == RCODE_COMPLETE)
815 fw_fill_response(&request->response, request->request_header,
816 rcode, request->data,
817 fw_get_response_length(request));
818 else
819 fw_fill_response(&request->response, request->request_header,
820 rcode, NULL, 0);
821
822 card->driver->send_response(card, &request->response);
823 }
824 EXPORT_SYMBOL(fw_send_response);
825
826 /**
827 * fw_get_request_speed() - returns speed at which the @request was received
828 * @request: firewire request data
829 */
fw_get_request_speed(struct fw_request * request)830 int fw_get_request_speed(struct fw_request *request)
831 {
832 return request->response.speed;
833 }
834 EXPORT_SYMBOL(fw_get_request_speed);
835
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)836 static void handle_exclusive_region_request(struct fw_card *card,
837 struct fw_packet *p,
838 struct fw_request *request,
839 unsigned long long offset)
840 {
841 struct fw_address_handler *handler;
842 int tcode, destination, source;
843
844 destination = HEADER_GET_DESTINATION(p->header[0]);
845 source = HEADER_GET_SOURCE(p->header[1]);
846 tcode = HEADER_GET_TCODE(p->header[0]);
847 if (tcode == TCODE_LOCK_REQUEST)
848 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
849
850 rcu_read_lock();
851 handler = lookup_enclosing_address_handler(&address_handler_list,
852 offset, request->length);
853 if (handler)
854 handler->address_callback(card, request,
855 tcode, destination, source,
856 p->generation, offset,
857 request->data, request->length,
858 handler->callback_data);
859 rcu_read_unlock();
860
861 if (!handler)
862 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
863 }
864
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)865 static void handle_fcp_region_request(struct fw_card *card,
866 struct fw_packet *p,
867 struct fw_request *request,
868 unsigned long long offset)
869 {
870 struct fw_address_handler *handler;
871 int tcode, destination, source;
872
873 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
874 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
875 request->length > 0x200) {
876 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
877
878 return;
879 }
880
881 tcode = HEADER_GET_TCODE(p->header[0]);
882 destination = HEADER_GET_DESTINATION(p->header[0]);
883 source = HEADER_GET_SOURCE(p->header[1]);
884
885 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
886 tcode != TCODE_WRITE_BLOCK_REQUEST) {
887 fw_send_response(card, request, RCODE_TYPE_ERROR);
888
889 return;
890 }
891
892 rcu_read_lock();
893 list_for_each_entry_rcu(handler, &address_handler_list, link) {
894 if (is_enclosing_handler(handler, offset, request->length))
895 handler->address_callback(card, NULL, tcode,
896 destination, source,
897 p->generation, offset,
898 request->data,
899 request->length,
900 handler->callback_data);
901 }
902 rcu_read_unlock();
903
904 fw_send_response(card, request, RCODE_COMPLETE);
905 }
906
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)907 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
908 {
909 struct fw_request *request;
910 unsigned long long offset;
911
912 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
913 return;
914
915 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
916 fw_cdev_handle_phy_packet(card, p);
917 return;
918 }
919
920 request = allocate_request(card, p);
921 if (request == NULL) {
922 /* FIXME: send statically allocated busy packet. */
923 return;
924 }
925
926 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
927 p->header[2];
928
929 if (!is_in_fcp_region(offset, request->length))
930 handle_exclusive_region_request(card, p, request, offset);
931 else
932 handle_fcp_region_request(card, p, request, offset);
933
934 }
935 EXPORT_SYMBOL(fw_core_handle_request);
936
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)937 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
938 {
939 struct fw_transaction *t = NULL, *iter;
940 unsigned long flags;
941 u32 *data;
942 size_t data_length;
943 int tcode, tlabel, source, rcode;
944
945 tcode = HEADER_GET_TCODE(p->header[0]);
946 tlabel = HEADER_GET_TLABEL(p->header[0]);
947 source = HEADER_GET_SOURCE(p->header[1]);
948 rcode = HEADER_GET_RCODE(p->header[1]);
949
950 spin_lock_irqsave(&card->lock, flags);
951 list_for_each_entry(iter, &card->transaction_list, link) {
952 if (iter->node_id == source && iter->tlabel == tlabel) {
953 if (!try_cancel_split_timeout(iter)) {
954 spin_unlock_irqrestore(&card->lock, flags);
955 goto timed_out;
956 }
957 list_del_init(&iter->link);
958 card->tlabel_mask &= ~(1ULL << iter->tlabel);
959 t = iter;
960 break;
961 }
962 }
963 spin_unlock_irqrestore(&card->lock, flags);
964
965 if (!t) {
966 timed_out:
967 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
968 source, tlabel);
969 return;
970 }
971
972 /*
973 * FIXME: sanity check packet, is length correct, does tcodes
974 * and addresses match.
975 */
976
977 switch (tcode) {
978 case TCODE_READ_QUADLET_RESPONSE:
979 data = (u32 *) &p->header[3];
980 data_length = 4;
981 break;
982
983 case TCODE_WRITE_RESPONSE:
984 data = NULL;
985 data_length = 0;
986 break;
987
988 case TCODE_READ_BLOCK_RESPONSE:
989 case TCODE_LOCK_RESPONSE:
990 data = p->payload;
991 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
992 break;
993
994 default:
995 /* Should never happen, this is just to shut up gcc. */
996 data = NULL;
997 data_length = 0;
998 break;
999 }
1000
1001 /*
1002 * The response handler may be executed while the request handler
1003 * is still pending. Cancel the request handler.
1004 */
1005 card->driver->cancel_packet(card, &t->packet);
1006
1007 t->callback(card, rcode, data, data_length, t->callback_data);
1008 }
1009 EXPORT_SYMBOL(fw_core_handle_response);
1010
1011 /**
1012 * fw_rcode_string - convert a firewire result code to an error description
1013 * @rcode: the result code
1014 */
fw_rcode_string(int rcode)1015 const char *fw_rcode_string(int rcode)
1016 {
1017 static const char *const names[] = {
1018 [RCODE_COMPLETE] = "no error",
1019 [RCODE_CONFLICT_ERROR] = "conflict error",
1020 [RCODE_DATA_ERROR] = "data error",
1021 [RCODE_TYPE_ERROR] = "type error",
1022 [RCODE_ADDRESS_ERROR] = "address error",
1023 [RCODE_SEND_ERROR] = "send error",
1024 [RCODE_CANCELLED] = "timeout",
1025 [RCODE_BUSY] = "busy",
1026 [RCODE_GENERATION] = "bus reset",
1027 [RCODE_NO_ACK] = "no ack",
1028 };
1029
1030 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1031 return names[rcode];
1032 else
1033 return "unknown";
1034 }
1035 EXPORT_SYMBOL(fw_rcode_string);
1036
1037 static const struct fw_address_region topology_map_region =
1038 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1039 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1040
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1041 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1042 int tcode, int destination, int source, int generation,
1043 unsigned long long offset, void *payload, size_t length,
1044 void *callback_data)
1045 {
1046 int start;
1047
1048 if (!TCODE_IS_READ_REQUEST(tcode)) {
1049 fw_send_response(card, request, RCODE_TYPE_ERROR);
1050 return;
1051 }
1052
1053 if ((offset & 3) > 0 || (length & 3) > 0) {
1054 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1055 return;
1056 }
1057
1058 start = (offset - topology_map_region.start) / 4;
1059 memcpy(payload, &card->topology_map[start], length);
1060
1061 fw_send_response(card, request, RCODE_COMPLETE);
1062 }
1063
1064 static struct fw_address_handler topology_map = {
1065 .length = 0x400,
1066 .address_callback = handle_topology_map,
1067 };
1068
1069 static const struct fw_address_region registers_region =
1070 { .start = CSR_REGISTER_BASE,
1071 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1072
update_split_timeout(struct fw_card * card)1073 static void update_split_timeout(struct fw_card *card)
1074 {
1075 unsigned int cycles;
1076
1077 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1078
1079 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1080 cycles = clamp(cycles, 800u, 3u * 8000u);
1081
1082 card->split_timeout_cycles = cycles;
1083 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1084 }
1085
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1086 static void handle_registers(struct fw_card *card, struct fw_request *request,
1087 int tcode, int destination, int source, int generation,
1088 unsigned long long offset, void *payload, size_t length,
1089 void *callback_data)
1090 {
1091 int reg = offset & ~CSR_REGISTER_BASE;
1092 __be32 *data = payload;
1093 int rcode = RCODE_COMPLETE;
1094 unsigned long flags;
1095
1096 switch (reg) {
1097 case CSR_PRIORITY_BUDGET:
1098 if (!card->priority_budget_implemented) {
1099 rcode = RCODE_ADDRESS_ERROR;
1100 break;
1101 }
1102 fallthrough;
1103
1104 case CSR_NODE_IDS:
1105 /*
1106 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1107 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1108 */
1109 fallthrough;
1110
1111 case CSR_STATE_CLEAR:
1112 case CSR_STATE_SET:
1113 case CSR_CYCLE_TIME:
1114 case CSR_BUS_TIME:
1115 case CSR_BUSY_TIMEOUT:
1116 if (tcode == TCODE_READ_QUADLET_REQUEST)
1117 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1118 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1119 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1120 else
1121 rcode = RCODE_TYPE_ERROR;
1122 break;
1123
1124 case CSR_RESET_START:
1125 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1126 card->driver->write_csr(card, CSR_STATE_CLEAR,
1127 CSR_STATE_BIT_ABDICATE);
1128 else
1129 rcode = RCODE_TYPE_ERROR;
1130 break;
1131
1132 case CSR_SPLIT_TIMEOUT_HI:
1133 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1134 *data = cpu_to_be32(card->split_timeout_hi);
1135 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1136 spin_lock_irqsave(&card->lock, flags);
1137 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1138 update_split_timeout(card);
1139 spin_unlock_irqrestore(&card->lock, flags);
1140 } else {
1141 rcode = RCODE_TYPE_ERROR;
1142 }
1143 break;
1144
1145 case CSR_SPLIT_TIMEOUT_LO:
1146 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1147 *data = cpu_to_be32(card->split_timeout_lo);
1148 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1149 spin_lock_irqsave(&card->lock, flags);
1150 card->split_timeout_lo =
1151 be32_to_cpu(*data) & 0xfff80000;
1152 update_split_timeout(card);
1153 spin_unlock_irqrestore(&card->lock, flags);
1154 } else {
1155 rcode = RCODE_TYPE_ERROR;
1156 }
1157 break;
1158
1159 case CSR_MAINT_UTILITY:
1160 if (tcode == TCODE_READ_QUADLET_REQUEST)
1161 *data = card->maint_utility_register;
1162 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1163 card->maint_utility_register = *data;
1164 else
1165 rcode = RCODE_TYPE_ERROR;
1166 break;
1167
1168 case CSR_BROADCAST_CHANNEL:
1169 if (tcode == TCODE_READ_QUADLET_REQUEST)
1170 *data = cpu_to_be32(card->broadcast_channel);
1171 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1172 card->broadcast_channel =
1173 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1174 BROADCAST_CHANNEL_INITIAL;
1175 else
1176 rcode = RCODE_TYPE_ERROR;
1177 break;
1178
1179 case CSR_BUS_MANAGER_ID:
1180 case CSR_BANDWIDTH_AVAILABLE:
1181 case CSR_CHANNELS_AVAILABLE_HI:
1182 case CSR_CHANNELS_AVAILABLE_LO:
1183 /*
1184 * FIXME: these are handled by the OHCI hardware and
1185 * the stack never sees these request. If we add
1186 * support for a new type of controller that doesn't
1187 * handle this in hardware we need to deal with these
1188 * transactions.
1189 */
1190 BUG();
1191 break;
1192
1193 default:
1194 rcode = RCODE_ADDRESS_ERROR;
1195 break;
1196 }
1197
1198 fw_send_response(card, request, rcode);
1199 }
1200
1201 static struct fw_address_handler registers = {
1202 .length = 0x400,
1203 .address_callback = handle_registers,
1204 };
1205
handle_low_memory(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1206 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1207 int tcode, int destination, int source, int generation,
1208 unsigned long long offset, void *payload, size_t length,
1209 void *callback_data)
1210 {
1211 /*
1212 * This catches requests not handled by the physical DMA unit,
1213 * i.e., wrong transaction types or unauthorized source nodes.
1214 */
1215 fw_send_response(card, request, RCODE_TYPE_ERROR);
1216 }
1217
1218 static struct fw_address_handler low_memory = {
1219 .length = FW_MAX_PHYSICAL_RANGE,
1220 .address_callback = handle_low_memory,
1221 };
1222
1223 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1224 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1225 MODULE_LICENSE("GPL");
1226
1227 static const u32 vendor_textual_descriptor[] = {
1228 /* textual descriptor leaf () */
1229 0x00060000,
1230 0x00000000,
1231 0x00000000,
1232 0x4c696e75, /* L i n u */
1233 0x78204669, /* x F i */
1234 0x72657769, /* r e w i */
1235 0x72650000, /* r e */
1236 };
1237
1238 static const u32 model_textual_descriptor[] = {
1239 /* model descriptor leaf () */
1240 0x00030000,
1241 0x00000000,
1242 0x00000000,
1243 0x4a756a75, /* J u j u */
1244 };
1245
1246 static struct fw_descriptor vendor_id_descriptor = {
1247 .length = ARRAY_SIZE(vendor_textual_descriptor),
1248 .immediate = 0x03001f11,
1249 .key = 0x81000000,
1250 .data = vendor_textual_descriptor,
1251 };
1252
1253 static struct fw_descriptor model_id_descriptor = {
1254 .length = ARRAY_SIZE(model_textual_descriptor),
1255 .immediate = 0x17023901,
1256 .key = 0x81000000,
1257 .data = model_textual_descriptor,
1258 };
1259
fw_core_init(void)1260 static int __init fw_core_init(void)
1261 {
1262 int ret;
1263
1264 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1265 if (!fw_workqueue)
1266 return -ENOMEM;
1267
1268 ret = bus_register(&fw_bus_type);
1269 if (ret < 0) {
1270 destroy_workqueue(fw_workqueue);
1271 return ret;
1272 }
1273
1274 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1275 if (fw_cdev_major < 0) {
1276 bus_unregister(&fw_bus_type);
1277 destroy_workqueue(fw_workqueue);
1278 return fw_cdev_major;
1279 }
1280
1281 fw_core_add_address_handler(&topology_map, &topology_map_region);
1282 fw_core_add_address_handler(®isters, ®isters_region);
1283 fw_core_add_address_handler(&low_memory, &low_memory_region);
1284 fw_core_add_descriptor(&vendor_id_descriptor);
1285 fw_core_add_descriptor(&model_id_descriptor);
1286
1287 return 0;
1288 }
1289
fw_core_cleanup(void)1290 static void __exit fw_core_cleanup(void)
1291 {
1292 unregister_chrdev(fw_cdev_major, "firewire");
1293 bus_unregister(&fw_bus_type);
1294 destroy_workqueue(fw_workqueue);
1295 idr_destroy(&fw_device_idr);
1296 }
1297
1298 module_init(fw_core_init);
1299 module_exit(fw_core_cleanup);
1300