• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This source code is a product of Sun Microsystems, Inc. and is provided
3  * for unrestricted use.  Users may copy or modify this source code without
4  * charge.
5  *
6  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9  *
10  * Sun source code is provided with no support and without any obligation on
11  * the part of Sun Microsystems, Inc. to assist in its use, correction,
12  * modification or enhancement.
13  *
14  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16  * OR ANY PART THEREOF.
17  *
18  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19  * or profits or other special, indirect and consequential damages, even if
20  * Sun has been advised of the possibility of such damages.
21  *
22  * Sun Microsystems, Inc.
23  * 2550 Garcia Avenue
24  * Mountain View, California  94043
25  */
26 
27 /*
28  * g72x.c
29  *
30  * Common routines for G.721 and G.723 conversions.
31  */
32 
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 
37 #include "g72x.h"
38 #include "g72x_priv.h"
39 
40 static G72x_STATE * g72x_state_new (void) ;
41 static int unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples) ;
42 static int pack_bytes (int bits, const short * samples, unsigned char * block) ;
43 
44 static
45 short power2 [15] =
46 {	1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
47 	0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000
48 } ;
49 
50 /*
51  * quan ()
52  *
53  * quantizes the input val against the table of size short integers.
54  * It returns i if table [i - 1] <= val < table [i].
55  *
56  * Using linear search for simple coding.
57  */
58 static
quan(int val,short * table,int size)59 int quan (int val, short *table, int size)
60 {
61 	int		i ;
62 
63 	for (i = 0 ; i < size ; i++)
64 		if (val < *table++)
65 			break ;
66 	return i ;
67 }
68 
69 /*
70  * fmult ()
71  *
72  * returns the integer product of the 14-bit integer "an" and
73  * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
74  */
75 static
fmult(int an,int srn)76 int fmult (int an, int srn)
77 {
78 	short		anmag, anexp, anmant ;
79 	short		wanexp, wanmant ;
80 	short		retval ;
81 
82 	anmag = (an > 0) ? an : ((-an) & 0x1FFF) ;
83 	anexp = quan (anmag, power2, 15) - 6 ;
84 	anmant = (anmag == 0) ? 32 :
85 				(anexp >= 0) ? anmag >> anexp : anmag << -anexp ;
86 	wanexp = anexp + ((srn >> 6) & 0xF) - 13 ;
87 
88 	/*
89 	** The original was :
90 	**		wanmant = (anmant * (srn & 0x3F) + 0x30) >> 4 ;
91 	** but could see no valid reason for the + 0x30.
92 	** Removed it and it improved the SNR of the codec.
93 	*/
94 
95 	wanmant = (anmant * (srn & 0x3F)) >> 4 ;
96 
97 	retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) : (wanmant >> -wanexp) ;
98 
99 	return (((an ^ srn) < 0) ? -retval : retval) ;
100 }
101 
g72x_state_new(void)102 static G72x_STATE * g72x_state_new (void)
103 {	return calloc (1, sizeof (G72x_STATE)) ;
104 }
105 
106 /*
107  * private_init_state ()
108  *
109  * This routine initializes and/or resets the G72x_PRIVATE structure
110  * pointed to by 'state_ptr'.
111  * All the initial state values are specified in the CCITT G.721 document.
112  */
private_init_state(G72x_STATE * state_ptr)113 void private_init_state (G72x_STATE *state_ptr)
114 {
115 	int		cnta ;
116 
117 	state_ptr->yl = 34816 ;
118 	state_ptr->yu = 544 ;
119 	state_ptr->dms = 0 ;
120 	state_ptr->dml = 0 ;
121 	state_ptr->ap = 0 ;
122 	for (cnta = 0 ; cnta < 2 ; cnta++)
123 	{	state_ptr->a [cnta] = 0 ;
124 		state_ptr->pk [cnta] = 0 ;
125 		state_ptr->sr [cnta] = 32 ;
126 		}
127 	for (cnta = 0 ; cnta < 6 ; cnta++)
128 	{	state_ptr->b [cnta] = 0 ;
129 		state_ptr->dq [cnta] = 32 ;
130 		}
131 	state_ptr->td = 0 ;
132 }	/* private_init_state */
133 
g72x_reader_init(int codec,int * blocksize,int * samplesperblock)134 struct g72x_state * g72x_reader_init (int codec, int *blocksize, int *samplesperblock)
135 {	G72x_STATE *pstate ;
136 
137 	if ((pstate = g72x_state_new ()) == NULL)
138 		return NULL ;
139 
140 	private_init_state (pstate) ;
141 
142 	pstate->encoder = NULL ;
143 
144 	switch (codec)
145 	{	case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */
146 				pstate->decoder = g723_16_decoder ;
147 				*blocksize = G723_16_BYTES_PER_BLOCK ;
148 				*samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
149 				pstate->codec_bits = 2 ;
150 				pstate->blocksize = G723_16_BYTES_PER_BLOCK ;
151 				pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
152 				break ;
153 
154 		case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */
155 				pstate->decoder = g723_24_decoder ;
156 				*blocksize = G723_24_BYTES_PER_BLOCK ;
157 				*samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
158 				pstate->codec_bits = 3 ;
159 				pstate->blocksize = G723_24_BYTES_PER_BLOCK ;
160 				pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
161 				break ;
162 
163 		case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */
164 				pstate->decoder = g721_decoder ;
165 				*blocksize = G721_32_BYTES_PER_BLOCK ;
166 				*samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
167 				pstate->codec_bits = 4 ;
168 				pstate->blocksize = G721_32_BYTES_PER_BLOCK ;
169 				pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
170 				break ;
171 
172 		case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */
173 				pstate->decoder = g723_40_decoder ;
174 				*blocksize = G721_40_BYTES_PER_BLOCK ;
175 				*samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
176 				pstate->codec_bits = 5 ;
177 				pstate->blocksize = G721_40_BYTES_PER_BLOCK ;
178 				pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
179 				break ;
180 
181 		default :
182 				free (pstate) ;
183 				return NULL ;
184 		} ;
185 
186 	return pstate ;
187 }	/* g72x_reader_init */
188 
g72x_writer_init(int codec,int * blocksize,int * samplesperblock)189 struct g72x_state * g72x_writer_init (int codec, int *blocksize, int *samplesperblock)
190 {	G72x_STATE *pstate ;
191 
192 	if ((pstate = g72x_state_new ()) == NULL)
193 		return NULL ;
194 
195 	private_init_state (pstate) ;
196 	pstate->decoder = NULL ;
197 
198 	switch (codec)
199 	{	case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */
200 				pstate->encoder = g723_16_encoder ;
201 				*blocksize = G723_16_BYTES_PER_BLOCK ;
202 				*samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
203 				pstate->codec_bits = 2 ;
204 				pstate->blocksize = G723_16_BYTES_PER_BLOCK ;
205 				pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
206 				break ;
207 
208 		case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */
209 				pstate->encoder = g723_24_encoder ;
210 				*blocksize = G723_24_BYTES_PER_BLOCK ;
211 				*samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
212 				pstate->codec_bits = 3 ;
213 				pstate->blocksize = G723_24_BYTES_PER_BLOCK ;
214 				pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
215 				break ;
216 
217 		case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */
218 				pstate->encoder = g721_encoder ;
219 				*blocksize = G721_32_BYTES_PER_BLOCK ;
220 				*samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
221 				pstate->codec_bits = 4 ;
222 				pstate->blocksize = G721_32_BYTES_PER_BLOCK ;
223 				pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
224 				break ;
225 
226 		case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */
227 				pstate->encoder = g723_40_encoder ;
228 				*blocksize = G721_40_BYTES_PER_BLOCK ;
229 				*samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
230 				pstate->codec_bits = 5 ;
231 				pstate->blocksize = G721_40_BYTES_PER_BLOCK ;
232 				pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
233 				break ;
234 
235 		default :
236 				free (pstate) ;
237 				return NULL ;
238 		} ;
239 
240 	return pstate ;
241 }	/* g72x_writer_init */
242 
g72x_decode_block(G72x_STATE * pstate,const unsigned char * block,short * samples)243 int g72x_decode_block (G72x_STATE *pstate, const unsigned char *block, short *samples)
244 {	int	k, count ;
245 
246 	count = unpack_bytes (pstate->codec_bits, pstate->blocksize, block, samples) ;
247 
248 	for (k = 0 ; k < count ; k++)
249 		samples [k] = pstate->decoder (samples [k], pstate) ;
250 
251 	return 0 ;
252 }	/* g72x_decode_block */
253 
g72x_encode_block(G72x_STATE * pstate,short * samples,unsigned char * block)254 int g72x_encode_block (G72x_STATE *pstate, short *samples, unsigned char *block)
255 {	int k, count ;
256 
257 	for (k = 0 ; k < pstate->samplesperblock ; k++)
258 		samples [k] = pstate->encoder (samples [k], pstate) ;
259 
260 	count = pack_bytes (pstate->codec_bits, samples, block) ;
261 
262 	return count ;
263 }	/* g72x_encode_block */
264 
265 /*
266  * predictor_zero ()
267  *
268  * computes the estimated signal from 6-zero predictor.
269  *
270  */
predictor_zero(G72x_STATE * state_ptr)271 int predictor_zero (G72x_STATE *state_ptr)
272 {
273 	int		i ;
274 	int		sezi ;
275 
276 	sezi = fmult (state_ptr->b [0] >> 2, state_ptr->dq [0]) ;
277 	for (i = 1 ; i < 6 ; i++)			/* ACCUM */
278 		sezi += fmult (state_ptr->b [i] >> 2, state_ptr->dq [i]) ;
279 	return sezi ;
280 }
281 /*
282  * predictor_pole ()
283  *
284  * computes the estimated signal from 2-pole predictor.
285  *
286  */
predictor_pole(G72x_STATE * state_ptr)287 int predictor_pole (G72x_STATE *state_ptr)
288 {
289 	return (fmult (state_ptr->a [1] >> 2, state_ptr->sr [1]) +
290 			fmult (state_ptr->a [0] >> 2, state_ptr->sr [0])) ;
291 }
292 /*
293  * step_size ()
294  *
295  * computes the quantization step size of the adaptive quantizer.
296  *
297  */
step_size(G72x_STATE * state_ptr)298 int step_size (G72x_STATE *state_ptr)
299 {
300 	int		y ;
301 	int		dif ;
302 	int		al ;
303 
304 	if (state_ptr->ap >= 256)
305 		return (state_ptr->yu) ;
306 	else {
307 		y = state_ptr->yl >> 6 ;
308 		dif = state_ptr->yu - y ;
309 		al = state_ptr->ap >> 2 ;
310 		if (dif > 0)
311 			y += (dif * al) >> 6 ;
312 		else if (dif < 0)
313 			y += (dif * al + 0x3F) >> 6 ;
314 		return y ;
315 	}
316 }
317 
318 /*
319  * quantize ()
320  *
321  * Given a raw sample, 'd', of the difference signal and a
322  * quantization step size scale factor, 'y', this routine returns the
323  * ADPCM codeword to which that sample gets quantized.  The step
324  * size scale factor division operation is done in the log base 2 domain
325  * as a subtraction.
326  */
quantize(int d,int y,short * table,int size)327 int quantize (
328 	int		d,	/* Raw difference signal sample */
329 	int		y,	/* Step size multiplier */
330 	short	*table,	/* quantization table */
331 	int		size)	/* table size of short integers */
332 {
333 	short		dqm ;	/* Magnitude of 'd' */
334 	short		expon ;	/* Integer part of base 2 log of 'd' */
335 	short		mant ;	/* Fractional part of base 2 log */
336 	short		dl ;	/* Log of magnitude of 'd' */
337 	short		dln ;	/* Step size scale factor normalized log */
338 	int		i ;
339 
340 	/*
341 	 * LOG
342 	 *
343 	 * Compute base 2 log of 'd', and store in 'dl'.
344 	 */
345 	dqm = abs (d) ;
346 	expon = quan (dqm >> 1, power2, 15) ;
347 	mant = ((dqm << 7) >> expon) & 0x7F ;	/* Fractional portion. */
348 	dl = (expon << 7) + mant ;
349 
350 	/*
351 	 * SUBTB
352 	 *
353 	 * "Divide" by step size multiplier.
354 	 */
355 	dln = dl - (y >> 2) ;
356 
357 	/*
358 	 * QUAN
359 	 *
360 	 * Obtain codword i for 'd'.
361 	 */
362 	i = quan (dln, table, size) ;
363 	if (d < 0)			/* take 1's complement of i */
364 		return ((size << 1) + 1 - i) ;
365 	else if (i == 0)		/* take 1's complement of 0 */
366 		return ((size << 1) + 1) ; /* new in 1988 */
367 
368 	return i ;
369 }
370 /*
371  * reconstruct ()
372  *
373  * Returns reconstructed difference signal 'dq' obtained from
374  * codeword 'i' and quantization step size scale factor 'y'.
375  * Multiplication is performed in log base 2 domain as addition.
376  */
377 int
reconstruct(int sign,int dqln,int y)378 reconstruct (
379 	int		sign,	/* 0 for non-negative value */
380 	int		dqln,	/* G.72x codeword */
381 	int		y)	/* Step size multiplier */
382 {
383 	short		dql ;	/* Log of 'dq' magnitude */
384 	short		dex ;	/* Integer part of log */
385 	short		dqt ;
386 	short		dq ;	/* Reconstructed difference signal sample */
387 
388 	dql = dqln + (y >> 2) ;	/* ADDA */
389 
390 	if (dql < 0)
391 		return ((sign) ? -0x8000 : 0) ;
392 	else		/* ANTILOG */
393 	{	dex = (dql >> 7) & 15 ;
394 		dqt = 128 + (dql & 127) ;
395 		dq = (dqt << 7) >> (14 - dex) ;
396 		return ((sign) ? (dq - 0x8000) : dq) ;
397 		}
398 }
399 
400 
401 /*
402  * update ()
403  *
404  * updates the state variables for each output code
405  */
406 void
update(int code_size,int y,int wi,int fi,int dq,int sr,int dqsez,G72x_STATE * state_ptr)407 update (
408 	int		code_size,	/* distinguish 723_40 with others */
409 	int		y,		/* quantizer step size */
410 	int		wi,		/* scale factor multiplier */
411 	int		fi,		/* for long/short term energies */
412 	int		dq,		/* quantized prediction difference */
413 	int		sr,		/* reconstructed signal */
414 	int		dqsez,		/* difference from 2-pole predictor */
415 	G72x_STATE *state_ptr)	/* coder state pointer */
416 {
417 	int		cnt ;
418 	short		mag, expon ;	/* Adaptive predictor, FLOAT A */
419 	short		a2p = 0 ;	/* LIMC */
420 	short		a1ul ;		/* UPA1 */
421 	short		pks1 ;		/* UPA2 */
422 	short		fa1 ;
423 	char		tr ;		/* tone/transition detector */
424 	short		ylint, thr2, dqthr ;
425 	short		ylfrac, thr1 ;
426 	short		pk0 ;
427 
428 	pk0 = (dqsez < 0) ? 1 : 0 ;	/* needed in updating predictor poles */
429 
430 	mag = dq & 0x7FFF ;		/* prediction difference magnitude */
431 	/* TRANS */
432 	ylint = state_ptr->yl >> 15 ;	/* exponent part of yl */
433 	ylfrac = (state_ptr->yl >> 10) & 0x1F ;	/* fractional part of yl */
434 	thr1 = (32 + ylfrac) << ylint ;		/* threshold */
435 	thr2 = (ylint > 9) ? 31 << 10 : thr1 ;	/* limit thr2 to 31 << 10 */
436 	dqthr = (thr2 + (thr2 >> 1)) >> 1 ;	/* dqthr = 0.75 * thr2 */
437 	if (state_ptr->td == 0)		/* signal supposed voice */
438 		tr = 0 ;
439 	else if (mag <= dqthr)		/* supposed data, but small mag */
440 		tr = 0 ;			/* treated as voice */
441 	else				/* signal is data (modem) */
442 		tr = 1 ;
443 
444 	/*
445 	 * Quantizer scale factor adaptation.
446 	 */
447 
448 	/* FUNCTW & FILTD & DELAY */
449 	/* update non-steady state step size multiplier */
450 	state_ptr->yu = y + ((wi - y) >> 5) ;
451 
452 	/* LIMB */
453 	if (state_ptr->yu < 544)	/* 544 <= yu <= 5120 */
454 		state_ptr->yu = 544 ;
455 	else if (state_ptr->yu > 5120)
456 		state_ptr->yu = 5120 ;
457 
458 	/* FILTE & DELAY */
459 	/* update steady state step size multiplier */
460 	state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6) ;
461 
462 	/*
463 	 * Adaptive predictor coefficients.
464 	 */
465 	if (tr == 1) {			/* reset a's and b's for modem signal */
466 		state_ptr->a [0] = 0 ;
467 		state_ptr->a [1] = 0 ;
468 		state_ptr->b [0] = 0 ;
469 		state_ptr->b [1] = 0 ;
470 		state_ptr->b [2] = 0 ;
471 		state_ptr->b [3] = 0 ;
472 		state_ptr->b [4] = 0 ;
473 		state_ptr->b [5] = 0 ;
474 		}
475 	else			/* update a's and b's */
476 	{	pks1 = pk0 ^ state_ptr->pk [0] ;		/* UPA2 */
477 
478 		/* update predictor pole a [1] */
479 		a2p = state_ptr->a [1] - (state_ptr->a [1] >> 7) ;
480 		if (dqsez != 0)
481 		{	fa1 = (pks1) ? state_ptr->a [0] : -state_ptr->a [0] ;
482 			if (fa1 < -8191)	/* a2p = function of fa1 */
483 				a2p -= 0x100 ;
484 			else if (fa1 > 8191)
485 				a2p += 0xFF ;
486 			else
487 				a2p += fa1 >> 5 ;
488 
489 			if (pk0 ^ state_ptr->pk [1])
490 			{	/* LIMC */
491 				if (a2p <= -12160)
492 					a2p = -12288 ;
493 				else if (a2p >= 12416)
494 					a2p = 12288 ;
495 				else
496 					a2p -= 0x80 ;
497 				}
498 			else if (a2p <= -12416)
499 				a2p = -12288 ;
500 			else if (a2p >= 12160)
501 				a2p = 12288 ;
502 			else
503 				a2p += 0x80 ;
504 		}
505 
506 		/* TRIGB & DELAY */
507 		state_ptr->a [1] = a2p ;
508 
509 		/* UPA1 */
510 		/* update predictor pole a [0] */
511 		state_ptr->a [0] -= state_ptr->a [0] >> 8 ;
512 		if (dqsez != 0)
513 		{	if (pks1 == 0)
514 				state_ptr->a [0] += 192 ;
515 			else
516 				state_ptr->a [0] -= 192 ;
517 			} ;
518 
519 		/* LIMD */
520 		a1ul = 15360 - a2p ;
521 		if (state_ptr->a [0] < -a1ul)
522 			state_ptr->a [0] = -a1ul ;
523 		else if (state_ptr->a [0] > a1ul)
524 			state_ptr->a [0] = a1ul ;
525 
526 		/* UPB : update predictor zeros b [6] */
527 		for (cnt = 0 ; cnt < 6 ; cnt++)
528 		{	if (code_size == 5)		/* for 40Kbps G.723 */
529 				state_ptr->b [cnt] -= state_ptr->b [cnt] >> 9 ;
530 			else			/* for G.721 and 24Kbps G.723 */
531 				state_ptr->b [cnt] -= state_ptr->b [cnt] >> 8 ;
532 			if (dq & 0x7FFF)			/* XOR */
533 			{	if ((dq ^ state_ptr->dq [cnt]) >= 0)
534 					state_ptr->b [cnt] += 128 ;
535 				else
536 					state_ptr->b [cnt] -= 128 ;
537 				}
538 			}
539 		}
540 
541 	for (cnt = 5 ; cnt > 0 ; cnt--)
542 		state_ptr->dq [cnt] = state_ptr->dq [cnt - 1] ;
543 	/* FLOAT A : convert dq [0] to 4-bit exp, 6-bit mantissa f.p. */
544 	if (mag == 0)
545 		state_ptr->dq [0] = (dq >= 0) ? 0x20 : 0xFC20 ;
546 	else
547 	{	expon = quan (mag, power2, 15) ;
548 		state_ptr->dq [0] = (dq >= 0) ?
549 			(expon << 6) + ((mag << 6) >> expon) :
550 			(expon << 6) + ((mag << 6) >> expon) - 0x400 ;
551 		}
552 
553 	state_ptr->sr [1] = state_ptr->sr [0] ;
554 	/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
555 	if (sr == 0)
556 		state_ptr->sr [0] = 0x20 ;
557 	else if (sr > 0)
558 	{	expon = quan (sr, power2, 15) ;
559 		state_ptr->sr [0] = (expon << 6) + ((sr << 6) >> expon) ;
560 		}
561 	else if (sr > -32768)
562 	{	mag = -sr ;
563 		expon = quan (mag, power2, 15) ;
564 		state_ptr->sr [0] = (expon << 6) + ((mag << 6) >> expon) - 0x400 ;
565 		}
566 	else
567 		state_ptr->sr [0] = (short) 0xFC20 ;
568 
569 	/* DELAY A */
570 	state_ptr->pk [1] = state_ptr->pk [0] ;
571 	state_ptr->pk [0] = pk0 ;
572 
573 	/* TONE */
574 	if (tr == 1)		/* this sample has been treated as data */
575 		state_ptr->td = 0 ;	/* next one will be treated as voice */
576 	else if (a2p < -11776)	/* small sample-to-sample correlation */
577 		state_ptr->td = 1 ;	/* signal may be data */
578 	else				/* signal is voice */
579 		state_ptr->td = 0 ;
580 
581 	/*
582 	 * Adaptation speed control.
583 	 */
584 	state_ptr->dms += (fi - state_ptr->dms) >> 5 ;		/* FILTA */
585 	state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7) ;	/* FILTB */
586 
587 	if (tr == 1)
588 		state_ptr->ap = 256 ;
589 	else if (y < 1536)					/* SUBTC */
590 		state_ptr->ap += (0x200 - state_ptr->ap) >> 4 ;
591 	else if (state_ptr->td == 1)
592 		state_ptr->ap += (0x200 - state_ptr->ap) >> 4 ;
593 	else if (abs ((state_ptr->dms << 2) - state_ptr->dml) >= (state_ptr->dml >> 3))
594 		state_ptr->ap += (0x200 - state_ptr->ap) >> 4 ;
595 	else
596 		state_ptr->ap += (-state_ptr->ap) >> 4 ;
597 
598 	return ;
599 } /* update */
600 
601 /*------------------------------------------------------------------------------
602 */
603 
604 static int
unpack_bytes(int bits,int blocksize,const unsigned char * block,short * samples)605 unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples)
606 {	unsigned int	in_buffer = 0 ;
607 	unsigned char	in_byte ;
608 	int				k, in_bits = 0, bindex = 0 ;
609 
610 	for (k = 0 ; bindex <= blocksize && k < G72x_BLOCK_SIZE ; k++)
611 	{	if (in_bits < bits)
612 		{	in_byte = block [bindex++] ;
613 
614 			in_buffer |= (in_byte << in_bits) ;
615 			in_bits += 8 ;
616 			}
617 		samples [k] = in_buffer & ((1 << bits) - 1) ;
618 		in_buffer >>= bits ;
619 		in_bits -= bits ;
620 		} ;
621 
622 	return k ;
623 } /* unpack_bytes */
624 
625 static int
pack_bytes(int bits,const short * samples,unsigned char * block)626 pack_bytes (int bits, const short * samples, unsigned char * block)
627 {
628 	unsigned int	out_buffer = 0 ;
629 	int				k, bindex = 0, out_bits = 0 ;
630 	unsigned char	out_byte ;
631 
632 	for (k = 0 ; k < G72x_BLOCK_SIZE ; k++)
633 	{	out_buffer |= (samples [k] << out_bits) ;
634 		out_bits += bits ;
635 		if (out_bits >= 8)
636 		{	out_byte = out_buffer & 0xFF ;
637 			out_bits -= 8 ;
638 			out_buffer >>= 8 ;
639 			block [bindex++] = out_byte ;
640 			}
641 		} ;
642 
643 	return bindex ;
644 } /* pack_bytes */
645 
646